Generate version information.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol.  This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26                     elfcpp::STT type, elfcpp::STB binding,
27                     elfcpp::STV visibility, unsigned char nonvis)
28 {
29   this->name_ = name;
30   this->version_ = version;
31   this->symtab_index_ = 0;
32   this->dynsym_index_ = 0;
33   this->got_offset_ = 0;
34   this->type_ = type;
35   this->binding_ = binding;
36   this->visibility_ = visibility;
37   this->nonvis_ = nonvis;
38   this->is_target_special_ = false;
39   this->is_def_ = false;
40   this->is_forwarder_ = false;
41   this->needs_dynsym_entry_ = false;
42   this->in_dyn_ = false;
43   this->has_got_offset_ = false;
44   this->has_warning_ = false;
45 }
46
47 // Initialize the fields in the base class Symbol for SYM in OBJECT.
48
49 template<int size, bool big_endian>
50 void
51 Symbol::init_base(const char* name, const char* version, Object* object,
52                   const elfcpp::Sym<size, big_endian>& sym)
53 {
54   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
55                     sym.get_st_visibility(), sym.get_st_nonvis());
56   this->u_.from_object.object = object;
57   // FIXME: Handle SHN_XINDEX.
58   this->u_.from_object.shndx = sym.get_st_shndx();
59   this->source_ = FROM_OBJECT;
60   this->in_dyn_ = object->is_dynamic();
61 }
62
63 // Initialize the fields in the base class Symbol for a symbol defined
64 // in an Output_data.
65
66 void
67 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
68                   elfcpp::STB binding, elfcpp::STV visibility,
69                   unsigned char nonvis, bool offset_is_from_end)
70 {
71   this->init_fields(name, NULL, type, binding, visibility, nonvis);
72   this->u_.in_output_data.output_data = od;
73   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
74   this->source_ = IN_OUTPUT_DATA;
75 }
76
77 // Initialize the fields in the base class Symbol for a symbol defined
78 // in an Output_segment.
79
80 void
81 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
82                   elfcpp::STB binding, elfcpp::STV visibility,
83                   unsigned char nonvis, Segment_offset_base offset_base)
84 {
85   this->init_fields(name, NULL, type, binding, visibility, nonvis);
86   this->u_.in_output_segment.output_segment = os;
87   this->u_.in_output_segment.offset_base = offset_base;
88   this->source_ = IN_OUTPUT_SEGMENT;
89 }
90
91 // Initialize the fields in the base class Symbol for a symbol defined
92 // as a constant.
93
94 void
95 Symbol::init_base(const char* name, elfcpp::STT type,
96                   elfcpp::STB binding, elfcpp::STV visibility,
97                   unsigned char nonvis)
98 {
99   this->init_fields(name, NULL, type, binding, visibility, nonvis);
100   this->source_ = CONSTANT;
101 }
102
103 // Initialize the fields in Sized_symbol for SYM in OBJECT.
104
105 template<int size>
106 template<bool big_endian>
107 void
108 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
109                          const elfcpp::Sym<size, big_endian>& sym)
110 {
111   this->init_base(name, version, object, sym);
112   this->value_ = sym.get_st_value();
113   this->symsize_ = sym.get_st_size();
114 }
115
116 // Initialize the fields in Sized_symbol for a symbol defined in an
117 // Output_data.
118
119 template<int size>
120 void
121 Sized_symbol<size>::init(const char* name, Output_data* od,
122                          Value_type value, Size_type symsize,
123                          elfcpp::STT type, elfcpp::STB binding,
124                          elfcpp::STV visibility, unsigned char nonvis,
125                          bool offset_is_from_end)
126 {
127   this->init_base(name, od, type, binding, visibility, nonvis,
128                   offset_is_from_end);
129   this->value_ = value;
130   this->symsize_ = symsize;
131 }
132
133 // Initialize the fields in Sized_symbol for a symbol defined in an
134 // Output_segment.
135
136 template<int size>
137 void
138 Sized_symbol<size>::init(const char* name, Output_segment* os,
139                          Value_type value, Size_type symsize,
140                          elfcpp::STT type, elfcpp::STB binding,
141                          elfcpp::STV visibility, unsigned char nonvis,
142                          Segment_offset_base offset_base)
143 {
144   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
145   this->value_ = value;
146   this->symsize_ = symsize;
147 }
148
149 // Initialize the fields in Sized_symbol for a symbol defined as a
150 // constant.
151
152 template<int size>
153 void
154 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
155                          elfcpp::STT type, elfcpp::STB binding,
156                          elfcpp::STV visibility, unsigned char nonvis)
157 {
158   this->init_base(name, type, binding, visibility, nonvis);
159   this->value_ = value;
160   this->symsize_ = symsize;
161 }
162
163 // Class Symbol_table.
164
165 Symbol_table::Symbol_table()
166   : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
167     forwarders_(), commons_(), warnings_()
168 {
169 }
170
171 Symbol_table::~Symbol_table()
172 {
173 }
174
175 // The hash function.  The key is always canonicalized, so we use a
176 // simple combination of the pointers.
177
178 size_t
179 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
180 {
181   return key.first ^ key.second;
182 }
183
184 // The symbol table key equality function.  This is only called with
185 // canonicalized name and version strings, so we can use pointer
186 // comparison.
187
188 bool
189 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
190                                           const Symbol_table_key& k2) const
191 {
192   return k1.first == k2.first && k1.second == k2.second;
193 }
194
195 // Make TO a symbol which forwards to FROM.  
196
197 void
198 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
199 {
200   gold_assert(from != to);
201   gold_assert(!from->is_forwarder() && !to->is_forwarder());
202   this->forwarders_[from] = to;
203   from->set_forwarder();
204 }
205
206 // Resolve the forwards from FROM, returning the real symbol.
207
208 Symbol*
209 Symbol_table::resolve_forwards(const Symbol* from) const
210 {
211   gold_assert(from->is_forwarder());
212   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
213     this->forwarders_.find(from);
214   gold_assert(p != this->forwarders_.end());
215   return p->second;
216 }
217
218 // Look up a symbol by name.
219
220 Symbol*
221 Symbol_table::lookup(const char* name, const char* version) const
222 {
223   Stringpool::Key name_key;
224   name = this->namepool_.find(name, &name_key);
225   if (name == NULL)
226     return NULL;
227
228   Stringpool::Key version_key = 0;
229   if (version != NULL)
230     {
231       version = this->namepool_.find(version, &version_key);
232       if (version == NULL)
233         return NULL;
234     }
235
236   Symbol_table_key key(name_key, version_key);
237   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
238   if (p == this->table_.end())
239     return NULL;
240   return p->second;
241 }
242
243 // Resolve a Symbol with another Symbol.  This is only used in the
244 // unusual case where there are references to both an unversioned
245 // symbol and a symbol with a version, and we then discover that that
246 // version is the default version.  Because this is unusual, we do
247 // this the slow way, by converting back to an ELF symbol.
248
249 template<int size, bool big_endian>
250 void
251 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
252                       const char* version ACCEPT_SIZE_ENDIAN)
253 {
254   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
255   elfcpp::Sym_write<size, big_endian> esym(buf);
256   // We don't bother to set the st_name field.
257   esym.put_st_value(from->value());
258   esym.put_st_size(from->symsize());
259   esym.put_st_info(from->binding(), from->type());
260   esym.put_st_other(from->visibility(), from->nonvis());
261   esym.put_st_shndx(from->shndx());
262   Symbol_table::resolve(to, esym.sym(), from->object(), version);
263 }
264
265 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
266 // name and VERSION is the version; both are canonicalized.  DEF is
267 // whether this is the default version.
268
269 // If DEF is true, then this is the definition of a default version of
270 // a symbol.  That means that any lookup of NAME/NULL and any lookup
271 // of NAME/VERSION should always return the same symbol.  This is
272 // obvious for references, but in particular we want to do this for
273 // definitions: overriding NAME/NULL should also override
274 // NAME/VERSION.  If we don't do that, it would be very hard to
275 // override functions in a shared library which uses versioning.
276
277 // We implement this by simply making both entries in the hash table
278 // point to the same Symbol structure.  That is easy enough if this is
279 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
280 // that we have seen both already, in which case they will both have
281 // independent entries in the symbol table.  We can't simply change
282 // the symbol table entry, because we have pointers to the entries
283 // attached to the object files.  So we mark the entry attached to the
284 // object file as a forwarder, and record it in the forwarders_ map.
285 // Note that entries in the hash table will never be marked as
286 // forwarders.
287
288 template<int size, bool big_endian>
289 Symbol*
290 Symbol_table::add_from_object(Object* object,
291                               const char *name,
292                               Stringpool::Key name_key,
293                               const char *version,
294                               Stringpool::Key version_key,
295                               bool def,
296                               const elfcpp::Sym<size, big_endian>& sym)
297 {
298   Symbol* const snull = NULL;
299   std::pair<typename Symbol_table_type::iterator, bool> ins =
300     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
301                                        snull));
302
303   std::pair<typename Symbol_table_type::iterator, bool> insdef =
304     std::make_pair(this->table_.end(), false);
305   if (def)
306     {
307       const Stringpool::Key vnull_key = 0;
308       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
309                                                                  vnull_key),
310                                                   snull));
311     }
312
313   // ins.first: an iterator, which is a pointer to a pair.
314   // ins.first->first: the key (a pair of name and version).
315   // ins.first->second: the value (Symbol*).
316   // ins.second: true if new entry was inserted, false if not.
317
318   Sized_symbol<size>* ret;
319   bool was_undefined;
320   bool was_common;
321   if (!ins.second)
322     {
323       // We already have an entry for NAME/VERSION.
324       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
325                                                            SELECT_SIZE(size));
326       gold_assert(ret != NULL);
327
328       was_undefined = ret->is_undefined();
329       was_common = ret->is_common();
330
331       Symbol_table::resolve(ret, sym, object, version);
332
333       if (def)
334         {
335           if (insdef.second)
336             {
337               // This is the first time we have seen NAME/NULL.  Make
338               // NAME/NULL point to NAME/VERSION.
339               insdef.first->second = ret;
340             }
341           else if (insdef.first->second != ret)
342             {
343               // This is the unfortunate case where we already have
344               // entries for both NAME/VERSION and NAME/NULL.
345               const Sized_symbol<size>* sym2;
346               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
347                 insdef.first->second
348                 SELECT_SIZE(size));
349               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
350                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
351               this->make_forwarder(insdef.first->second, ret);
352               insdef.first->second = ret;
353             }
354         }
355     }
356   else
357     {
358       // This is the first time we have seen NAME/VERSION.
359       gold_assert(ins.first->second == NULL);
360
361       was_undefined = false;
362       was_common = false;
363
364       if (def && !insdef.second)
365         {
366           // We already have an entry for NAME/NULL.  If we override
367           // it, then change it to NAME/VERSION.
368           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
369               insdef.first->second
370               SELECT_SIZE(size));
371           Symbol_table::resolve(ret, sym, object, version);
372           ins.first->second = ret;
373         }
374       else
375         {
376           Sized_target<size, big_endian>* target =
377             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
378                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
379           if (!target->has_make_symbol())
380             ret = new Sized_symbol<size>();
381           else
382             {
383               ret = target->make_symbol();
384               if (ret == NULL)
385                 {
386                   // This means that we don't want a symbol table
387                   // entry after all.
388                   if (!def)
389                     this->table_.erase(ins.first);
390                   else
391                     {
392                       this->table_.erase(insdef.first);
393                       // Inserting insdef invalidated ins.
394                       this->table_.erase(std::make_pair(name_key,
395                                                         version_key));
396                     }
397                   return NULL;
398                 }
399             }
400
401           ret->init(name, version, object, sym);
402
403           ins.first->second = ret;
404           if (def)
405             {
406               // This is the first time we have seen NAME/NULL.  Point
407               // it at the new entry for NAME/VERSION.
408               gold_assert(insdef.second);
409               insdef.first->second = ret;
410             }
411         }
412     }
413
414   // Record every time we see a new undefined symbol, to speed up
415   // archive groups.
416   if (!was_undefined && ret->is_undefined())
417     ++this->saw_undefined_;
418
419   // Keep track of common symbols, to speed up common symbol
420   // allocation.
421   if (!was_common && ret->is_common())
422     this->commons_.push_back(ret);
423
424   return ret;
425 }
426
427 // Add all the symbols in a relocatable object to the hash table.
428
429 template<int size, bool big_endian>
430 void
431 Symbol_table::add_from_relobj(
432     Sized_relobj<size, big_endian>* relobj,
433     const unsigned char* syms,
434     size_t count,
435     const char* sym_names,
436     size_t sym_name_size,
437     Symbol** sympointers)
438 {
439   // We take the size from the first object we see.
440   if (this->get_size() == 0)
441     this->set_size(size);
442
443   if (size != this->get_size() || size != relobj->target()->get_size())
444     {
445       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
446               program_name, relobj->name().c_str());
447       gold_exit(false);
448     }
449
450   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
451
452   const unsigned char* p = syms;
453   for (size_t i = 0; i < count; ++i, p += sym_size)
454     {
455       elfcpp::Sym<size, big_endian> sym(p);
456       elfcpp::Sym<size, big_endian>* psym = &sym;
457
458       unsigned int st_name = psym->get_st_name();
459       if (st_name >= sym_name_size)
460         {
461           fprintf(stderr,
462                   _("%s: %s: bad global symbol name offset %u at %lu\n"),
463                   program_name, relobj->name().c_str(), st_name,
464                   static_cast<unsigned long>(i));
465           gold_exit(false);
466         }
467
468       const char* name = sym_names + st_name;
469
470       // A symbol defined in a section which we are not including must
471       // be treated as an undefined symbol.
472       unsigned char symbuf[sym_size];
473       elfcpp::Sym<size, big_endian> sym2(symbuf);
474       unsigned int st_shndx = psym->get_st_shndx();
475       if (st_shndx != elfcpp::SHN_UNDEF
476           && st_shndx < elfcpp::SHN_LORESERVE
477           && !relobj->is_section_included(st_shndx))
478         {
479           memcpy(symbuf, p, sym_size);
480           elfcpp::Sym_write<size, big_endian> sw(symbuf);
481           sw.put_st_shndx(elfcpp::SHN_UNDEF);
482           psym = &sym2;
483         }
484
485       // In an object file, an '@' in the name separates the symbol
486       // name from the version name.  If there are two '@' characters,
487       // this is the default version.
488       const char* ver = strchr(name, '@');
489
490       Symbol* res;
491       if (ver == NULL)
492         {
493           Stringpool::Key name_key;
494           name = this->namepool_.add(name, &name_key);
495           res = this->add_from_object(relobj, name, name_key, NULL, 0,
496                                       false, *psym);
497         }
498       else
499         {
500           Stringpool::Key name_key;
501           name = this->namepool_.add(name, ver - name, &name_key);
502
503           bool def = false;
504           ++ver;
505           if (*ver == '@')
506             {
507               def = true;
508               ++ver;
509             }
510
511           Stringpool::Key ver_key;
512           ver = this->namepool_.add(ver, &ver_key);
513
514           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
515                                       def, *psym);
516         }
517
518       *sympointers++ = res;
519     }
520 }
521
522 // Add all the symbols in a dynamic object to the hash table.
523
524 template<int size, bool big_endian>
525 void
526 Symbol_table::add_from_dynobj(
527     Sized_dynobj<size, big_endian>* dynobj,
528     const unsigned char* syms,
529     size_t count,
530     const char* sym_names,
531     size_t sym_name_size,
532     const unsigned char* versym,
533     size_t versym_size,
534     const std::vector<const char*>* version_map)
535 {
536   // We take the size from the first object we see.
537   if (this->get_size() == 0)
538     this->set_size(size);
539
540   if (size != this->get_size() || size != dynobj->target()->get_size())
541     {
542       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
543               program_name, dynobj->name().c_str());
544       gold_exit(false);
545     }
546
547   if (versym != NULL && versym_size / 2 < count)
548     {
549       fprintf(stderr, _("%s: %s: too few symbol versions\n"),
550               program_name, dynobj->name().c_str());
551       gold_exit(false);
552     }
553
554   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
555
556   const unsigned char* p = syms;
557   const unsigned char* vs = versym;
558   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
559     {
560       elfcpp::Sym<size, big_endian> sym(p);
561
562       // Ignore symbols with local binding.
563       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
564         continue;
565
566       unsigned int st_name = sym.get_st_name();
567       if (st_name >= sym_name_size)
568         {
569           fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
570                   program_name, dynobj->name().c_str(), st_name,
571                   static_cast<unsigned long>(i));
572           gold_exit(false);
573         }
574
575       const char* name = sym_names + st_name;
576
577       if (versym == NULL)
578         {
579           Stringpool::Key name_key;
580           name = this->namepool_.add(name, &name_key);
581           this->add_from_object(dynobj, name, name_key, NULL, 0,
582                                 false, sym);
583           continue;
584         }
585
586       // Read the version information.
587
588       unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
589
590       bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
591       v &= elfcpp::VERSYM_VERSION;
592
593       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
594         {
595           // This symbol should not be visible outside the object.
596           continue;
597         }
598
599       // At this point we are definitely going to add this symbol.
600       Stringpool::Key name_key;
601       name = this->namepool_.add(name, &name_key);
602
603       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
604         {
605           // This symbol does not have a version.
606           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
607           continue;
608         }
609
610       if (v >= version_map->size())
611         {
612           fprintf(stderr,
613                   _("%s: %s: versym for symbol %zu out of range: %u\n"),
614                   program_name, dynobj->name().c_str(), i, v);
615           gold_exit(false);
616         }
617
618       const char* version = (*version_map)[v];
619       if (version == NULL)
620         {
621           fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
622                   program_name, dynobj->name().c_str(), i, v);
623           gold_exit(false);
624         }
625
626       Stringpool::Key version_key;
627       version = this->namepool_.add(version, &version_key);
628
629       // If this is an absolute symbol, and the version name and
630       // symbol name are the same, then this is the version definition
631       // symbol.  These symbols exist to support using -u to pull in
632       // particular versions.  We do not want to record a version for
633       // them.
634       if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
635         {
636           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
637           continue;
638         }
639
640       const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
641
642       this->add_from_object(dynobj, name, name_key, version, version_key,
643                             def, sym);
644     }
645 }
646
647 // Create and return a specially defined symbol.  If ONLY_IF_REF is
648 // true, then only create the symbol if there is a reference to it.
649
650 template<int size, bool big_endian>
651 Sized_symbol<size>*
652 Symbol_table::define_special_symbol(const Target* target, const char* name,
653                                     const char* version, bool only_if_ref
654                                     ACCEPT_SIZE_ENDIAN)
655 {
656   gold_assert(this->size_ == size);
657
658   Symbol* oldsym;
659   Sized_symbol<size>* sym;
660
661   if (only_if_ref)
662     {
663       oldsym = this->lookup(name, version);
664       if (oldsym == NULL || !oldsym->is_undefined())
665         return NULL;
666       sym = NULL;
667
668       // Canonicalize NAME and VERSION.
669       name = oldsym->name();
670       version = oldsym->version();
671     }
672   else
673     {
674       // Canonicalize NAME and VERSION.
675       Stringpool::Key name_key;
676       name = this->namepool_.add(name, &name_key);
677
678       Stringpool::Key version_key = 0;
679       if (version != NULL)
680         version = this->namepool_.add(version, &version_key);
681
682       Symbol* const snull = NULL;
683       std::pair<typename Symbol_table_type::iterator, bool> ins =
684         this->table_.insert(std::make_pair(std::make_pair(name_key,
685                                                           version_key),
686                                            snull));
687
688       if (!ins.second)
689         {
690           // We already have a symbol table entry for NAME/VERSION.
691           oldsym = ins.first->second;
692           gold_assert(oldsym != NULL);
693           sym = NULL;
694         }
695       else
696         {
697           // We haven't seen this symbol before.
698           gold_assert(ins.first->second == NULL);
699
700           if (!target->has_make_symbol())
701             sym = new Sized_symbol<size>();
702           else
703             {
704               gold_assert(target->get_size() == size);
705               gold_assert(target->is_big_endian() ? big_endian : !big_endian);
706               typedef Sized_target<size, big_endian> My_target;
707               const My_target* sized_target =
708                 static_cast<const My_target*>(target);
709               sym = sized_target->make_symbol();
710               if (sym == NULL)
711                 return NULL;
712             }
713
714           ins.first->second = sym;
715           oldsym = NULL;
716         }
717     }
718
719   if (oldsym != NULL)
720     {
721       gold_assert(sym == NULL);
722
723       sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
724                                                            SELECT_SIZE(size));
725       gold_assert(sym->source() == Symbol::FROM_OBJECT);
726       const int old_shndx = sym->shndx();
727       if (old_shndx != elfcpp::SHN_UNDEF
728           && old_shndx != elfcpp::SHN_COMMON
729           && !sym->object()->is_dynamic())
730         {
731           fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
732                   program_name, name);
733           // FIXME: Report old location.  Record that we have seen an
734           // error.
735           return NULL;
736         }
737
738       // Our new definition is going to override the old reference.
739     }
740
741   return sym;
742 }
743
744 // Define a symbol based on an Output_data.
745
746 Symbol*
747 Symbol_table::define_in_output_data(const Target* target, const char* name,
748                                     const char* version, Output_data* od,
749                                     uint64_t value, uint64_t symsize,
750                                     elfcpp::STT type, elfcpp::STB binding,
751                                     elfcpp::STV visibility,
752                                     unsigned char nonvis,
753                                     bool offset_is_from_end,
754                                     bool only_if_ref)
755 {
756   gold_assert(target->get_size() == this->size_);
757   if (this->size_ == 32)
758     return this->do_define_in_output_data<32>(target, name, version, od, value,
759                                               symsize, type, binding,
760                                               visibility, nonvis,
761                                               offset_is_from_end, only_if_ref);
762   else if (this->size_ == 64)
763     return this->do_define_in_output_data<64>(target, name, version, od, value,
764                                               symsize, type, binding,
765                                               visibility, nonvis,
766                                               offset_is_from_end, only_if_ref);
767   else
768     gold_unreachable();
769 }
770
771 // Define a symbol in an Output_data, sized version.
772
773 template<int size>
774 Sized_symbol<size>*
775 Symbol_table::do_define_in_output_data(
776     const Target* target,
777     const char* name,
778     const char* version,
779     Output_data* od,
780     typename elfcpp::Elf_types<size>::Elf_Addr value,
781     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
782     elfcpp::STT type,
783     elfcpp::STB binding,
784     elfcpp::STV visibility,
785     unsigned char nonvis,
786     bool offset_is_from_end,
787     bool only_if_ref)
788 {
789   Sized_symbol<size>* sym;
790
791   if (target->is_big_endian())
792     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
793         target, name, version, only_if_ref
794         SELECT_SIZE_ENDIAN(size, true));
795   else
796     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
797         target, name, version, only_if_ref
798         SELECT_SIZE_ENDIAN(size, false));
799
800   if (sym == NULL)
801     return NULL;
802
803   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
804             offset_is_from_end);
805
806   return sym;
807 }
808
809 // Define a symbol based on an Output_segment.
810
811 Symbol*
812 Symbol_table::define_in_output_segment(const Target* target, const char* name,
813                                        const char* version, Output_segment* os,
814                                        uint64_t value, uint64_t symsize,
815                                        elfcpp::STT type, elfcpp::STB binding,
816                                        elfcpp::STV visibility,
817                                        unsigned char nonvis,
818                                        Symbol::Segment_offset_base offset_base,
819                                        bool only_if_ref)
820 {
821   gold_assert(target->get_size() == this->size_);
822   if (this->size_ == 32)
823     return this->do_define_in_output_segment<32>(target, name, version, os,
824                                                  value, symsize, type, binding,
825                                                  visibility, nonvis,
826                                                  offset_base, only_if_ref);
827   else if (this->size_ == 64)
828     return this->do_define_in_output_segment<64>(target, name, version, os,
829                                                  value, symsize, type, binding,
830                                                  visibility, nonvis,
831                                                  offset_base, only_if_ref);
832   else
833     gold_unreachable();
834 }
835
836 // Define a symbol in an Output_segment, sized version.
837
838 template<int size>
839 Sized_symbol<size>*
840 Symbol_table::do_define_in_output_segment(
841     const Target* target,
842     const char* name,
843     const char* version,
844     Output_segment* os,
845     typename elfcpp::Elf_types<size>::Elf_Addr value,
846     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
847     elfcpp::STT type,
848     elfcpp::STB binding,
849     elfcpp::STV visibility,
850     unsigned char nonvis,
851     Symbol::Segment_offset_base offset_base,
852     bool only_if_ref)
853 {
854   Sized_symbol<size>* sym;
855
856   if (target->is_big_endian())
857     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
858         target, name, version, only_if_ref
859         SELECT_SIZE_ENDIAN(size, true));
860   else
861     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
862         target, name, version, only_if_ref
863         SELECT_SIZE_ENDIAN(size, false));
864
865   if (sym == NULL)
866     return NULL;
867
868   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
869             offset_base);
870
871   return sym;
872 }
873
874 // Define a special symbol with a constant value.  It is a multiple
875 // definition error if this symbol is already defined.
876
877 Symbol*
878 Symbol_table::define_as_constant(const Target* target, const char* name,
879                                  const char* version, uint64_t value,
880                                  uint64_t symsize, elfcpp::STT type,
881                                  elfcpp::STB binding, elfcpp::STV visibility,
882                                  unsigned char nonvis, bool only_if_ref)
883 {
884   gold_assert(target->get_size() == this->size_);
885   if (this->size_ == 32)
886     return this->do_define_as_constant<32>(target, name, version, value,
887                                            symsize, type, binding, visibility,
888                                            nonvis, only_if_ref);
889   else if (this->size_ == 64)
890     return this->do_define_as_constant<64>(target, name, version, value,
891                                            symsize, type, binding, visibility,
892                                            nonvis, only_if_ref);
893   else
894     gold_unreachable();
895 }
896
897 // Define a symbol as a constant, sized version.
898
899 template<int size>
900 Sized_symbol<size>*
901 Symbol_table::do_define_as_constant(
902     const Target* target,
903     const char* name,
904     const char* version,
905     typename elfcpp::Elf_types<size>::Elf_Addr value,
906     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
907     elfcpp::STT type,
908     elfcpp::STB binding,
909     elfcpp::STV visibility,
910     unsigned char nonvis,
911     bool only_if_ref)
912 {
913   Sized_symbol<size>* sym;
914
915   if (target->is_big_endian())
916     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
917         target, name, version, only_if_ref
918         SELECT_SIZE_ENDIAN(size, true));
919   else
920     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
921         target, name, version, only_if_ref
922         SELECT_SIZE_ENDIAN(size, false));
923
924   if (sym == NULL)
925     return NULL;
926
927   sym->init(name, value, symsize, type, binding, visibility, nonvis);
928
929   return sym;
930 }
931
932 // Define a set of symbols in output sections.
933
934 void
935 Symbol_table::define_symbols(const Layout* layout, const Target* target,
936                              int count, const Define_symbol_in_section* p)
937 {
938   for (int i = 0; i < count; ++i, ++p)
939     {
940       Output_section* os = layout->find_output_section(p->output_section);
941       if (os != NULL)
942         this->define_in_output_data(target, p->name, NULL, os, p->value,
943                                     p->size, p->type, p->binding,
944                                     p->visibility, p->nonvis,
945                                     p->offset_is_from_end, p->only_if_ref);
946       else
947         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
948                                  p->binding, p->visibility, p->nonvis,
949                                  p->only_if_ref);
950     }
951 }
952
953 // Define a set of symbols in output segments.
954
955 void
956 Symbol_table::define_symbols(const Layout* layout, const Target* target,
957                              int count, const Define_symbol_in_segment* p)
958 {
959   for (int i = 0; i < count; ++i, ++p)
960     {
961       Output_segment* os = layout->find_output_segment(p->segment_type,
962                                                        p->segment_flags_set,
963                                                        p->segment_flags_clear);
964       if (os != NULL)
965         this->define_in_output_segment(target, p->name, NULL, os, p->value,
966                                        p->size, p->type, p->binding,
967                                        p->visibility, p->nonvis,
968                                        p->offset_base, p->only_if_ref);
969       else
970         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
971                                  p->binding, p->visibility, p->nonvis,
972                                  p->only_if_ref);
973     }
974 }
975
976 // Set the dynamic symbol indexes.  INDEX is the index of the first
977 // global dynamic symbol.  Pointers to the symbols are stored into the
978 // vector SYMS.  The names are added to DYNPOOL.  This returns an
979 // updated dynamic symbol index.
980
981 unsigned int
982 Symbol_table::set_dynsym_indexes(const General_options* options,
983                                  const Target* target,
984                                  unsigned int index,
985                                  std::vector<Symbol*>* syms,
986                                  Stringpool* dynpool,
987                                  Versions* versions)
988 {
989   for (Symbol_table_type::iterator p = this->table_.begin();
990        p != this->table_.end();
991        ++p)
992     {
993       Symbol* sym = p->second;
994
995       // Note that SYM may already have a dynamic symbol index, since
996       // some symbols appear more than once in the symbol table, with
997       // and without a version.
998
999       if (!sym->needs_dynsym_entry())
1000         sym->set_dynsym_index(-1U);
1001       else if (!sym->has_dynsym_index())
1002         {
1003           sym->set_dynsym_index(index);
1004           ++index;
1005           syms->push_back(sym);
1006           dynpool->add(sym->name(), NULL);
1007
1008           // Record any version information.
1009           if (sym->version() != NULL)
1010             versions->record_version(options, dynpool, sym);
1011         }
1012     }
1013
1014   // Finish up the versions.  In some cases this may add new dynamic
1015   // symbols.
1016   index = versions->finalize(target, this, index, syms);
1017
1018   return index;
1019 }
1020
1021 // Set the final values for all the symbols.  The index of the first
1022 // global symbol in the output file is INDEX.  Record the file offset
1023 // OFF.  Add their names to POOL.  Return the new file offset.
1024
1025 off_t
1026 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1027                        size_t dyn_global_index, size_t dyncount,
1028                        Stringpool* pool)
1029 {
1030   off_t ret;
1031
1032   gold_assert(index != 0);
1033   this->first_global_index_ = index;
1034
1035   this->dynamic_offset_ = dynoff;
1036   this->first_dynamic_global_index_ = dyn_global_index;
1037   this->dynamic_count_ = dyncount;
1038
1039   if (this->size_ == 32)
1040     ret = this->sized_finalize<32>(index, off, pool);
1041   else if (this->size_ == 64)
1042     ret = this->sized_finalize<64>(index, off, pool);
1043   else
1044     gold_unreachable();
1045
1046   // Now that we have the final symbol table, we can reliably note
1047   // which symbols should get warnings.
1048   this->warnings_.note_warnings(this);
1049
1050   return ret;
1051 }
1052
1053 // Set the final value for all the symbols.  This is called after
1054 // Layout::finalize, so all the output sections have their final
1055 // address.
1056
1057 template<int size>
1058 off_t
1059 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1060 {
1061   off = align_address(off, size >> 3);
1062   this->offset_ = off;
1063
1064   size_t orig_index = index;
1065
1066   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1067   for (Symbol_table_type::iterator p = this->table_.begin();
1068        p != this->table_.end();
1069        ++p)
1070     {
1071       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1072
1073       // FIXME: Here we need to decide which symbols should go into
1074       // the output file, based on --strip.
1075
1076       // The default version of a symbol may appear twice in the
1077       // symbol table.  We only need to finalize it once.
1078       if (sym->has_symtab_index())
1079         continue;
1080
1081       typename Sized_symbol<size>::Value_type value;
1082
1083       switch (sym->source())
1084         {
1085         case Symbol::FROM_OBJECT:
1086           {
1087             unsigned int shndx = sym->shndx();
1088
1089             // FIXME: We need some target specific support here.
1090             if (shndx >= elfcpp::SHN_LORESERVE
1091                 && shndx != elfcpp::SHN_ABS)
1092               {
1093                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1094                         program_name, sym->name(), shndx);
1095                 gold_exit(false);
1096               }
1097
1098             Object* symobj = sym->object();
1099             if (symobj->is_dynamic())
1100               {
1101                 value = 0;
1102                 shndx = elfcpp::SHN_UNDEF;
1103               }
1104             else if (shndx == elfcpp::SHN_UNDEF)
1105               value = 0;
1106             else if (shndx == elfcpp::SHN_ABS)
1107               value = sym->value();
1108             else
1109               {
1110                 Relobj* relobj = static_cast<Relobj*>(symobj);
1111                 off_t secoff;
1112                 Output_section* os = relobj->output_section(shndx, &secoff);
1113
1114                 if (os == NULL)
1115                   {
1116                     sym->set_symtab_index(-1U);
1117                     gold_assert(sym->dynsym_index() == -1U);
1118                     continue;
1119                   }
1120
1121                 value = sym->value() + os->address() + secoff;
1122               }
1123           }
1124           break;
1125
1126         case Symbol::IN_OUTPUT_DATA:
1127           {
1128             Output_data* od = sym->output_data();
1129             value = sym->value() + od->address();
1130             if (sym->offset_is_from_end())
1131               value += od->data_size();
1132           }
1133           break;
1134
1135         case Symbol::IN_OUTPUT_SEGMENT:
1136           {
1137             Output_segment* os = sym->output_segment();
1138             value = sym->value() + os->vaddr();
1139             switch (sym->offset_base())
1140               {
1141               case Symbol::SEGMENT_START:
1142                 break;
1143               case Symbol::SEGMENT_END:
1144                 value += os->memsz();
1145                 break;
1146               case Symbol::SEGMENT_BSS:
1147                 value += os->filesz();
1148                 break;
1149               default:
1150                 gold_unreachable();
1151               }
1152           }
1153           break;
1154
1155         case Symbol::CONSTANT:
1156           value = sym->value();
1157           break;
1158
1159         default:
1160           gold_unreachable();
1161         }
1162
1163       sym->set_value(value);
1164       sym->set_symtab_index(index);
1165       pool->add(sym->name(), NULL);
1166       ++index;
1167       off += sym_size;
1168     }
1169
1170   this->output_count_ = index - orig_index;
1171
1172   return off;
1173 }
1174
1175 // Write out the global symbols.
1176
1177 void
1178 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1179                             const Stringpool* dynpool, Output_file* of) const
1180 {
1181   if (this->size_ == 32)
1182     {
1183       if (target->is_big_endian())
1184         this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1185       else
1186         this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1187     }
1188   else if (this->size_ == 64)
1189     {
1190       if (target->is_big_endian())
1191         this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1192       else
1193         this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1194     }
1195   else
1196     gold_unreachable();
1197 }
1198
1199 // Write out the global symbols.
1200
1201 template<int size, bool big_endian>
1202 void
1203 Symbol_table::sized_write_globals(const Target*,
1204                                   const Stringpool* sympool,
1205                                   const Stringpool* dynpool,
1206                                   Output_file* of) const
1207 {
1208   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1209   unsigned int index = this->first_global_index_;
1210   const off_t oview_size = this->output_count_ * sym_size;
1211   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1212
1213   unsigned int dynamic_count = this->dynamic_count_;
1214   off_t dynamic_size = dynamic_count * sym_size;
1215   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1216   unsigned char* dynamic_view;
1217   if (this->dynamic_offset_ == 0)
1218     dynamic_view = NULL;
1219   else
1220     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1221
1222   unsigned char* ps = psyms;
1223   for (Symbol_table_type::const_iterator p = this->table_.begin();
1224        p != this->table_.end();
1225        ++p)
1226     {
1227       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1228
1229       unsigned int sym_index = sym->symtab_index();
1230       unsigned int dynsym_index;
1231       if (dynamic_view == NULL)
1232         dynsym_index = -1U;
1233       else
1234         dynsym_index = sym->dynsym_index();
1235
1236       if (sym_index == -1U && dynsym_index == -1U)
1237         {
1238           // This symbol is not included in the output file.
1239           continue;
1240         }
1241
1242       if (sym_index == index)
1243         ++index;
1244       else if (sym_index != -1U)
1245         {
1246           // We have already seen this symbol, because it has a
1247           // default version.
1248           gold_assert(sym_index < index);
1249           if (dynsym_index == -1U)
1250             continue;
1251           sym_index = -1U;
1252         }
1253
1254       unsigned int shndx;
1255       switch (sym->source())
1256         {
1257         case Symbol::FROM_OBJECT:
1258           {
1259             unsigned int in_shndx = sym->shndx();
1260
1261             // FIXME: We need some target specific support here.
1262             if (in_shndx >= elfcpp::SHN_LORESERVE
1263                 && in_shndx != elfcpp::SHN_ABS)
1264               {
1265                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1266                         program_name, sym->name(), in_shndx);
1267                 gold_exit(false);
1268               }
1269
1270             Object* symobj = sym->object();
1271             if (symobj->is_dynamic())
1272               {
1273                 // FIXME.
1274                 shndx = elfcpp::SHN_UNDEF;
1275               }
1276             else if (in_shndx == elfcpp::SHN_UNDEF
1277                      || in_shndx == elfcpp::SHN_ABS)
1278               shndx = in_shndx;
1279             else
1280               {
1281                 Relobj* relobj = static_cast<Relobj*>(symobj);
1282                 off_t secoff;
1283                 Output_section* os = relobj->output_section(in_shndx, &secoff);
1284                 gold_assert(os != NULL);
1285                 shndx = os->out_shndx();
1286               }
1287           }
1288           break;
1289
1290         case Symbol::IN_OUTPUT_DATA:
1291           shndx = sym->output_data()->out_shndx();
1292           break;
1293
1294         case Symbol::IN_OUTPUT_SEGMENT:
1295           shndx = elfcpp::SHN_ABS;
1296           break;
1297
1298         case Symbol::CONSTANT:
1299           shndx = elfcpp::SHN_ABS;
1300           break;
1301
1302         default:
1303           gold_unreachable();
1304         }
1305
1306       if (sym_index != -1U)
1307         {
1308           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1309               sym, shndx, sympool, ps
1310               SELECT_SIZE_ENDIAN(size, big_endian));
1311           ps += sym_size;
1312         }
1313
1314       if (dynsym_index != -1U)
1315         {
1316           dynsym_index -= first_dynamic_global_index;
1317           gold_assert(dynsym_index < dynamic_count);
1318           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1319           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1320               sym, shndx, dynpool, pd
1321               SELECT_SIZE_ENDIAN(size, big_endian));
1322         }
1323     }
1324
1325   gold_assert(ps - psyms == oview_size);
1326
1327   of->write_output_view(this->offset_, oview_size, psyms);
1328   if (dynamic_view != NULL)
1329     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1330 }
1331
1332 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1333 // strtab holding the name.
1334
1335 template<int size, bool big_endian>
1336 void
1337 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1338                                  unsigned int shndx,
1339                                  const Stringpool* pool,
1340                                  unsigned char* p
1341                                  ACCEPT_SIZE_ENDIAN) const
1342 {
1343   elfcpp::Sym_write<size, big_endian> osym(p);
1344   osym.put_st_name(pool->get_offset(sym->name()));
1345   osym.put_st_value(sym->value());
1346   osym.put_st_size(sym->symsize());
1347   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1348   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1349   osym.put_st_shndx(shndx);
1350 }
1351
1352 // Write out a section symbol.  Return the update offset.
1353
1354 void
1355 Symbol_table::write_section_symbol(const Target* target,
1356                                    const Output_section *os,
1357                                    Output_file* of,
1358                                    off_t offset) const
1359 {
1360   if (this->size_ == 32)
1361     {
1362       if (target->is_big_endian())
1363         this->sized_write_section_symbol<32, true>(os, of, offset);
1364       else
1365         this->sized_write_section_symbol<32, false>(os, of, offset);
1366     }
1367   else if (this->size_ == 64)
1368     {
1369       if (target->is_big_endian())
1370         this->sized_write_section_symbol<64, true>(os, of, offset);
1371       else
1372         this->sized_write_section_symbol<64, false>(os, of, offset);
1373     }
1374   else
1375     gold_unreachable();
1376 }
1377
1378 // Write out a section symbol, specialized for size and endianness.
1379
1380 template<int size, bool big_endian>
1381 void
1382 Symbol_table::sized_write_section_symbol(const Output_section* os,
1383                                          Output_file* of,
1384                                          off_t offset) const
1385 {
1386   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1387
1388   unsigned char* pov = of->get_output_view(offset, sym_size);
1389
1390   elfcpp::Sym_write<size, big_endian> osym(pov);
1391   osym.put_st_name(0);
1392   osym.put_st_value(os->address());
1393   osym.put_st_size(0);
1394   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1395                                        elfcpp::STT_SECTION));
1396   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1397   osym.put_st_shndx(os->out_shndx());
1398
1399   of->write_output_view(offset, sym_size, pov);
1400 }
1401
1402 // Warnings functions.
1403
1404 // Add a new warning.
1405
1406 void
1407 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1408                       unsigned int shndx)
1409 {
1410   name = symtab->canonicalize_name(name);
1411   this->warnings_[name].set(obj, shndx);
1412 }
1413
1414 // Look through the warnings and mark the symbols for which we should
1415 // warn.  This is called during Layout::finalize when we know the
1416 // sources for all the symbols.
1417
1418 void
1419 Warnings::note_warnings(Symbol_table* symtab)
1420 {
1421   for (Warning_table::iterator p = this->warnings_.begin();
1422        p != this->warnings_.end();
1423        ++p)
1424     {
1425       Symbol* sym = symtab->lookup(p->first, NULL);
1426       if (sym != NULL
1427           && sym->source() == Symbol::FROM_OBJECT
1428           && sym->object() == p->second.object)
1429         {
1430           sym->set_has_warning();
1431
1432           // Read the section contents to get the warning text.  It
1433           // would be nicer if we only did this if we have to actually
1434           // issue a warning.  Unfortunately, warnings are issued as
1435           // we relocate sections.  That means that we can not lock
1436           // the object then, as we might try to issue the same
1437           // warning multiple times simultaneously.
1438           {
1439             Task_locker_obj<Object> tl(*p->second.object);
1440             const unsigned char* c;
1441             off_t len;
1442             c = p->second.object->section_contents(p->second.shndx, &len);
1443             p->second.set_text(reinterpret_cast<const char*>(c), len);
1444           }
1445         }
1446     }
1447 }
1448
1449 // Issue a warning.  This is called when we see a relocation against a
1450 // symbol for which has a warning.
1451
1452 void
1453 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1454 {
1455   gold_assert(sym->has_warning());
1456   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1457   gold_assert(p != this->warnings_.end());
1458   fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1459           p->second.text.c_str());
1460 }
1461
1462 // Instantiate the templates we need.  We could use the configure
1463 // script to restrict this to only the ones needed for implemented
1464 // targets.
1465
1466 template
1467 void
1468 Symbol_table::add_from_relobj<32, true>(
1469     Sized_relobj<32, true>* relobj,
1470     const unsigned char* syms,
1471     size_t count,
1472     const char* sym_names,
1473     size_t sym_name_size,
1474     Symbol** sympointers);
1475
1476 template
1477 void
1478 Symbol_table::add_from_relobj<32, false>(
1479     Sized_relobj<32, false>* relobj,
1480     const unsigned char* syms,
1481     size_t count,
1482     const char* sym_names,
1483     size_t sym_name_size,
1484     Symbol** sympointers);
1485
1486 template
1487 void
1488 Symbol_table::add_from_relobj<64, true>(
1489     Sized_relobj<64, true>* relobj,
1490     const unsigned char* syms,
1491     size_t count,
1492     const char* sym_names,
1493     size_t sym_name_size,
1494     Symbol** sympointers);
1495
1496 template
1497 void
1498 Symbol_table::add_from_relobj<64, false>(
1499     Sized_relobj<64, false>* relobj,
1500     const unsigned char* syms,
1501     size_t count,
1502     const char* sym_names,
1503     size_t sym_name_size,
1504     Symbol** sympointers);
1505
1506 template
1507 void
1508 Symbol_table::add_from_dynobj<32, true>(
1509     Sized_dynobj<32, true>* dynobj,
1510     const unsigned char* syms,
1511     size_t count,
1512     const char* sym_names,
1513     size_t sym_name_size,
1514     const unsigned char* versym,
1515     size_t versym_size,
1516     const std::vector<const char*>* version_map);
1517
1518 template
1519 void
1520 Symbol_table::add_from_dynobj<32, false>(
1521     Sized_dynobj<32, false>* dynobj,
1522     const unsigned char* syms,
1523     size_t count,
1524     const char* sym_names,
1525     size_t sym_name_size,
1526     const unsigned char* versym,
1527     size_t versym_size,
1528     const std::vector<const char*>* version_map);
1529
1530 template
1531 void
1532 Symbol_table::add_from_dynobj<64, true>(
1533     Sized_dynobj<64, true>* dynobj,
1534     const unsigned char* syms,
1535     size_t count,
1536     const char* sym_names,
1537     size_t sym_name_size,
1538     const unsigned char* versym,
1539     size_t versym_size,
1540     const std::vector<const char*>* version_map);
1541
1542 template
1543 void
1544 Symbol_table::add_from_dynobj<64, false>(
1545     Sized_dynobj<64, false>* dynobj,
1546     const unsigned char* syms,
1547     size_t count,
1548     const char* sym_names,
1549     size_t sym_name_size,
1550     const unsigned char* versym,
1551     size_t versym_size,
1552     const std::vector<const char*>* version_map);
1553
1554 } // End namespace gold.