* i386.cc (Target_i386::Got_type): New enum declaration.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offsets_.init();
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_plt_offset_ = false;
70   this->has_warning_ = false;
71   this->is_copied_from_dynobj_ = false;
72   this->is_forced_local_ = false;
73 }
74
75 // Return the demangled version of the symbol's name, but only
76 // if the --demangle flag was set.
77
78 static std::string
79 demangle(const char* name)
80 {
81   if (!parameters->options().do_demangle())
82     return name;
83
84   // cplus_demangle allocates memory for the result it returns,
85   // and returns NULL if the name is already demangled.
86   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
87   if (demangled_name == NULL)
88     return name;
89
90   std::string retval(demangled_name);
91   free(demangled_name);
92   return retval;
93 }
94
95 std::string
96 Symbol::demangled_name() const
97 {
98   return demangle(this->name());
99 }
100
101 // Initialize the fields in the base class Symbol for SYM in OBJECT.
102
103 template<int size, bool big_endian>
104 void
105 Symbol::init_base(const char* name, const char* version, Object* object,
106                   const elfcpp::Sym<size, big_endian>& sym)
107 {
108   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
109                     sym.get_st_visibility(), sym.get_st_nonvis());
110   this->u_.from_object.object = object;
111   // FIXME: Handle SHN_XINDEX.
112   this->u_.from_object.shndx = sym.get_st_shndx();
113   this->source_ = FROM_OBJECT;
114   this->in_reg_ = !object->is_dynamic();
115   this->in_dyn_ = object->is_dynamic();
116 }
117
118 // Initialize the fields in the base class Symbol for a symbol defined
119 // in an Output_data.
120
121 void
122 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
123                   elfcpp::STB binding, elfcpp::STV visibility,
124                   unsigned char nonvis, bool offset_is_from_end)
125 {
126   this->init_fields(name, NULL, type, binding, visibility, nonvis);
127   this->u_.in_output_data.output_data = od;
128   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
129   this->source_ = IN_OUTPUT_DATA;
130   this->in_reg_ = true;
131 }
132
133 // Initialize the fields in the base class Symbol for a symbol defined
134 // in an Output_segment.
135
136 void
137 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
138                   elfcpp::STB binding, elfcpp::STV visibility,
139                   unsigned char nonvis, Segment_offset_base offset_base)
140 {
141   this->init_fields(name, NULL, type, binding, visibility, nonvis);
142   this->u_.in_output_segment.output_segment = os;
143   this->u_.in_output_segment.offset_base = offset_base;
144   this->source_ = IN_OUTPUT_SEGMENT;
145   this->in_reg_ = true;
146 }
147
148 // Initialize the fields in the base class Symbol for a symbol defined
149 // as a constant.
150
151 void
152 Symbol::init_base(const char* name, elfcpp::STT type,
153                   elfcpp::STB binding, elfcpp::STV visibility,
154                   unsigned char nonvis)
155 {
156   this->init_fields(name, NULL, type, binding, visibility, nonvis);
157   this->source_ = CONSTANT;
158   this->in_reg_ = true;
159 }
160
161 // Allocate a common symbol in the base.
162
163 void
164 Symbol::allocate_base_common(Output_data* od)
165 {
166   gold_assert(this->is_common());
167   this->source_ = IN_OUTPUT_DATA;
168   this->u_.in_output_data.output_data = od;
169   this->u_.in_output_data.offset_is_from_end = false;
170 }
171
172 // Initialize the fields in Sized_symbol for SYM in OBJECT.
173
174 template<int size>
175 template<bool big_endian>
176 void
177 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
178                          const elfcpp::Sym<size, big_endian>& sym)
179 {
180   this->init_base(name, version, object, sym);
181   this->value_ = sym.get_st_value();
182   this->symsize_ = sym.get_st_size();
183 }
184
185 // Initialize the fields in Sized_symbol for a symbol defined in an
186 // Output_data.
187
188 template<int size>
189 void
190 Sized_symbol<size>::init(const char* name, Output_data* od,
191                          Value_type value, Size_type symsize,
192                          elfcpp::STT type, elfcpp::STB binding,
193                          elfcpp::STV visibility, unsigned char nonvis,
194                          bool offset_is_from_end)
195 {
196   this->init_base(name, od, type, binding, visibility, nonvis,
197                   offset_is_from_end);
198   this->value_ = value;
199   this->symsize_ = symsize;
200 }
201
202 // Initialize the fields in Sized_symbol for a symbol defined in an
203 // Output_segment.
204
205 template<int size>
206 void
207 Sized_symbol<size>::init(const char* name, Output_segment* os,
208                          Value_type value, Size_type symsize,
209                          elfcpp::STT type, elfcpp::STB binding,
210                          elfcpp::STV visibility, unsigned char nonvis,
211                          Segment_offset_base offset_base)
212 {
213   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
214   this->value_ = value;
215   this->symsize_ = symsize;
216 }
217
218 // Initialize the fields in Sized_symbol for a symbol defined as a
219 // constant.
220
221 template<int size>
222 void
223 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
224                          elfcpp::STT type, elfcpp::STB binding,
225                          elfcpp::STV visibility, unsigned char nonvis)
226 {
227   this->init_base(name, type, binding, visibility, nonvis);
228   this->value_ = value;
229   this->symsize_ = symsize;
230 }
231
232 // Allocate a common symbol.
233
234 template<int size>
235 void
236 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
237 {
238   this->allocate_base_common(od);
239   this->value_ = value;
240 }
241
242 // Return true if this symbol should be added to the dynamic symbol
243 // table.
244
245 inline bool
246 Symbol::should_add_dynsym_entry() const
247 {
248   // If the symbol is used by a dynamic relocation, we need to add it.
249   if (this->needs_dynsym_entry())
250     return true;
251
252   // If the symbol was forced local in a version script, do not add it.
253   if (this->is_forced_local())
254     return false;
255
256   // If exporting all symbols or building a shared library,
257   // and the symbol is defined in a regular object and is
258   // externally visible, we need to add it.
259   if ((parameters->options().export_dynamic() || parameters->options().shared())
260       && !this->is_from_dynobj()
261       && this->is_externally_visible())
262     return true;
263
264   return false;
265 }
266
267 // Return true if the final value of this symbol is known at link
268 // time.
269
270 bool
271 Symbol::final_value_is_known() const
272 {
273   // If we are not generating an executable, then no final values are
274   // known, since they will change at runtime.
275   if (parameters->options().shared() || parameters->options().relocatable())
276     return false;
277
278   // If the symbol is not from an object file, then it is defined, and
279   // known.
280   if (this->source_ != FROM_OBJECT)
281     return true;
282
283   // If the symbol is from a dynamic object, then the final value is
284   // not known.
285   if (this->object()->is_dynamic())
286     return false;
287
288   // If the symbol is not undefined (it is defined or common), then
289   // the final value is known.
290   if (!this->is_undefined())
291     return true;
292
293   // If the symbol is undefined, then whether the final value is known
294   // depends on whether we are doing a static link.  If we are doing a
295   // dynamic link, then the final value could be filled in at runtime.
296   // This could reasonably be the case for a weak undefined symbol.
297   return parameters->doing_static_link();
298 }
299
300 // Return the output section where this symbol is defined.
301
302 Output_section*
303 Symbol::output_section() const
304 {
305   switch (this->source_)
306     {
307     case FROM_OBJECT:
308       {
309         unsigned int shndx = this->u_.from_object.shndx;
310         if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
311           {
312             gold_assert(!this->u_.from_object.object->is_dynamic());
313             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
314             section_offset_type dummy;
315             return relobj->output_section(shndx, &dummy);
316           }
317         return NULL;
318       }
319
320     case IN_OUTPUT_DATA:
321       return this->u_.in_output_data.output_data->output_section();
322
323     case IN_OUTPUT_SEGMENT:
324     case CONSTANT:
325       return NULL;
326
327     default:
328       gold_unreachable();
329     }
330 }
331
332 // Set the symbol's output section.  This is used for symbols defined
333 // in scripts.  This should only be called after the symbol table has
334 // been finalized.
335
336 void
337 Symbol::set_output_section(Output_section* os)
338 {
339   switch (this->source_)
340     {
341     case FROM_OBJECT:
342     case IN_OUTPUT_DATA:
343       gold_assert(this->output_section() == os);
344       break;
345     case CONSTANT:
346       this->source_ = IN_OUTPUT_DATA;
347       this->u_.in_output_data.output_data = os;
348       this->u_.in_output_data.offset_is_from_end = false;
349       break;
350     case IN_OUTPUT_SEGMENT:
351     default:
352       gold_unreachable();
353     }
354 }
355
356 // Class Symbol_table.
357
358 Symbol_table::Symbol_table(unsigned int count,
359                            const Version_script_info& version_script)
360   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
361     forwarders_(), commons_(), forced_locals_(), warnings_(),
362     version_script_(version_script)
363 {
364   namepool_.reserve(count);
365 }
366
367 Symbol_table::~Symbol_table()
368 {
369 }
370
371 // The hash function.  The key values are Stringpool keys.
372
373 inline size_t
374 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
375 {
376   return key.first ^ key.second;
377 }
378
379 // The symbol table key equality function.  This is called with
380 // Stringpool keys.
381
382 inline bool
383 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
384                                           const Symbol_table_key& k2) const
385 {
386   return k1.first == k2.first && k1.second == k2.second;
387 }
388
389 // Make TO a symbol which forwards to FROM.
390
391 void
392 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
393 {
394   gold_assert(from != to);
395   gold_assert(!from->is_forwarder() && !to->is_forwarder());
396   this->forwarders_[from] = to;
397   from->set_forwarder();
398 }
399
400 // Resolve the forwards from FROM, returning the real symbol.
401
402 Symbol*
403 Symbol_table::resolve_forwards(const Symbol* from) const
404 {
405   gold_assert(from->is_forwarder());
406   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
407     this->forwarders_.find(from);
408   gold_assert(p != this->forwarders_.end());
409   return p->second;
410 }
411
412 // Look up a symbol by name.
413
414 Symbol*
415 Symbol_table::lookup(const char* name, const char* version) const
416 {
417   Stringpool::Key name_key;
418   name = this->namepool_.find(name, &name_key);
419   if (name == NULL)
420     return NULL;
421
422   Stringpool::Key version_key = 0;
423   if (version != NULL)
424     {
425       version = this->namepool_.find(version, &version_key);
426       if (version == NULL)
427         return NULL;
428     }
429
430   Symbol_table_key key(name_key, version_key);
431   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
432   if (p == this->table_.end())
433     return NULL;
434   return p->second;
435 }
436
437 // Resolve a Symbol with another Symbol.  This is only used in the
438 // unusual case where there are references to both an unversioned
439 // symbol and a symbol with a version, and we then discover that that
440 // version is the default version.  Because this is unusual, we do
441 // this the slow way, by converting back to an ELF symbol.
442
443 template<int size, bool big_endian>
444 void
445 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
446                       const char* version)
447 {
448   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
449   elfcpp::Sym_write<size, big_endian> esym(buf);
450   // We don't bother to set the st_name field.
451   esym.put_st_value(from->value());
452   esym.put_st_size(from->symsize());
453   esym.put_st_info(from->binding(), from->type());
454   esym.put_st_other(from->visibility(), from->nonvis());
455   esym.put_st_shndx(from->shndx());
456   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
457   if (from->in_reg())
458     to->set_in_reg();
459   if (from->in_dyn())
460     to->set_in_dyn();
461 }
462
463 // Record that a symbol is forced to be local by a version script.
464
465 void
466 Symbol_table::force_local(Symbol* sym)
467 {
468   if (!sym->is_defined() && !sym->is_common())
469     return;
470   if (sym->is_forced_local())
471     {
472       // We already got this one.
473       return;
474     }
475   sym->set_is_forced_local();
476   this->forced_locals_.push_back(sym);
477 }
478
479 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
480 // name and VERSION is the version; both are canonicalized.  DEF is
481 // whether this is the default version.
482
483 // If DEF is true, then this is the definition of a default version of
484 // a symbol.  That means that any lookup of NAME/NULL and any lookup
485 // of NAME/VERSION should always return the same symbol.  This is
486 // obvious for references, but in particular we want to do this for
487 // definitions: overriding NAME/NULL should also override
488 // NAME/VERSION.  If we don't do that, it would be very hard to
489 // override functions in a shared library which uses versioning.
490
491 // We implement this by simply making both entries in the hash table
492 // point to the same Symbol structure.  That is easy enough if this is
493 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
494 // that we have seen both already, in which case they will both have
495 // independent entries in the symbol table.  We can't simply change
496 // the symbol table entry, because we have pointers to the entries
497 // attached to the object files.  So we mark the entry attached to the
498 // object file as a forwarder, and record it in the forwarders_ map.
499 // Note that entries in the hash table will never be marked as
500 // forwarders.
501 //
502 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
503 // symbol exactly as it existed in the input file.  SYM is usually
504 // that as well, but can be modified, for instance if we determine
505 // it's in a to-be-discarded section.
506
507 template<int size, bool big_endian>
508 Sized_symbol<size>*
509 Symbol_table::add_from_object(Object* object,
510                               const char *name,
511                               Stringpool::Key name_key,
512                               const char *version,
513                               Stringpool::Key version_key,
514                               bool def,
515                               const elfcpp::Sym<size, big_endian>& sym,
516                               const elfcpp::Sym<size, big_endian>& orig_sym)
517 {
518   Symbol* const snull = NULL;
519   std::pair<typename Symbol_table_type::iterator, bool> ins =
520     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
521                                        snull));
522
523   std::pair<typename Symbol_table_type::iterator, bool> insdef =
524     std::make_pair(this->table_.end(), false);
525   if (def)
526     {
527       const Stringpool::Key vnull_key = 0;
528       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
529                                                                  vnull_key),
530                                                   snull));
531     }
532
533   // ins.first: an iterator, which is a pointer to a pair.
534   // ins.first->first: the key (a pair of name and version).
535   // ins.first->second: the value (Symbol*).
536   // ins.second: true if new entry was inserted, false if not.
537
538   Sized_symbol<size>* ret;
539   bool was_undefined;
540   bool was_common;
541   if (!ins.second)
542     {
543       // We already have an entry for NAME/VERSION.
544       ret = this->get_sized_symbol<size>(ins.first->second);
545       gold_assert(ret != NULL);
546
547       was_undefined = ret->is_undefined();
548       was_common = ret->is_common();
549
550       this->resolve(ret, sym, orig_sym, object, version);
551
552       if (def)
553         {
554           if (insdef.second)
555             {
556               // This is the first time we have seen NAME/NULL.  Make
557               // NAME/NULL point to NAME/VERSION.
558               insdef.first->second = ret;
559             }
560           else if (insdef.first->second != ret
561                    && insdef.first->second->is_undefined())
562             {
563               // This is the unfortunate case where we already have
564               // entries for both NAME/VERSION and NAME/NULL.  Note
565               // that we don't want to combine them if the existing
566               // symbol is going to override the new one.  FIXME: We
567               // currently just test is_undefined, but this may not do
568               // the right thing if the existing symbol is from a
569               // shared library and the new one is from a regular
570               // object.
571
572               const Sized_symbol<size>* sym2;
573               sym2 = this->get_sized_symbol<size>(insdef.first->second);
574               Symbol_table::resolve<size, big_endian>(ret, sym2, version);
575               this->make_forwarder(insdef.first->second, ret);
576               insdef.first->second = ret;
577             }
578         }
579     }
580   else
581     {
582       // This is the first time we have seen NAME/VERSION.
583       gold_assert(ins.first->second == NULL);
584
585       was_undefined = false;
586       was_common = false;
587
588       if (def && !insdef.second)
589         {
590           // We already have an entry for NAME/NULL.  If we override
591           // it, then change it to NAME/VERSION.
592           ret = this->get_sized_symbol<size>(insdef.first->second);
593           this->resolve(ret, sym, orig_sym, object, version);
594           ins.first->second = ret;
595         }
596       else
597         {
598           Sized_target<size, big_endian>* target =
599             object->sized_target<size, big_endian>();
600           if (!target->has_make_symbol())
601             ret = new Sized_symbol<size>();
602           else
603             {
604               ret = target->make_symbol();
605               if (ret == NULL)
606                 {
607                   // This means that we don't want a symbol table
608                   // entry after all.
609                   if (!def)
610                     this->table_.erase(ins.first);
611                   else
612                     {
613                       this->table_.erase(insdef.first);
614                       // Inserting insdef invalidated ins.
615                       this->table_.erase(std::make_pair(name_key,
616                                                         version_key));
617                     }
618                   return NULL;
619                 }
620             }
621
622           ret->init(name, version, object, sym);
623
624           ins.first->second = ret;
625           if (def)
626             {
627               // This is the first time we have seen NAME/NULL.  Point
628               // it at the new entry for NAME/VERSION.
629               gold_assert(insdef.second);
630               insdef.first->second = ret;
631             }
632         }
633     }
634
635   // Record every time we see a new undefined symbol, to speed up
636   // archive groups.
637   if (!was_undefined && ret->is_undefined())
638     ++this->saw_undefined_;
639
640   // Keep track of common symbols, to speed up common symbol
641   // allocation.
642   if (!was_common && ret->is_common())
643     this->commons_.push_back(ret);
644
645   if (def)
646     ret->set_is_default();
647   return ret;
648 }
649
650 // Add all the symbols in a relocatable object to the hash table.
651
652 template<int size, bool big_endian>
653 void
654 Symbol_table::add_from_relobj(
655     Sized_relobj<size, big_endian>* relobj,
656     const unsigned char* syms,
657     size_t count,
658     const char* sym_names,
659     size_t sym_name_size,
660     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
661 {
662   gold_assert(size == relobj->target()->get_size());
663   gold_assert(size == parameters->target().get_size());
664
665   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
666
667   const bool just_symbols = relobj->just_symbols();
668
669   const unsigned char* p = syms;
670   for (size_t i = 0; i < count; ++i, p += sym_size)
671     {
672       elfcpp::Sym<size, big_endian> sym(p);
673       elfcpp::Sym<size, big_endian>* psym = &sym;
674
675       unsigned int st_name = psym->get_st_name();
676       if (st_name >= sym_name_size)
677         {
678           relobj->error(_("bad global symbol name offset %u at %zu"),
679                         st_name, i);
680           continue;
681         }
682
683       const char* name = sym_names + st_name;
684
685       // A symbol defined in a section which we are not including must
686       // be treated as an undefined symbol.
687       unsigned char symbuf[sym_size];
688       elfcpp::Sym<size, big_endian> sym2(symbuf);
689       unsigned int st_shndx = psym->get_st_shndx();
690       if (st_shndx != elfcpp::SHN_UNDEF
691           && st_shndx < elfcpp::SHN_LORESERVE
692           && !relobj->is_section_included(st_shndx))
693         {
694           memcpy(symbuf, p, sym_size);
695           elfcpp::Sym_write<size, big_endian> sw(symbuf);
696           sw.put_st_shndx(elfcpp::SHN_UNDEF);
697           psym = &sym2;
698         }
699
700       // In an object file, an '@' in the name separates the symbol
701       // name from the version name.  If there are two '@' characters,
702       // this is the default version.
703       const char* ver = strchr(name, '@');
704       int namelen = 0;
705       // DEF: is the version default?  LOCAL: is the symbol forced local?
706       bool def = false;
707       bool local = false;
708
709       if (ver != NULL)
710         {
711           // The symbol name is of the form foo@VERSION or foo@@VERSION
712           namelen = ver - name;
713           ++ver;
714           if (*ver == '@')
715             {
716               def = true;
717               ++ver;
718             }
719         }
720       else if (!version_script_.empty())
721         {
722           // The symbol name did not have a version, but
723           // the version script may assign a version anyway.
724           namelen = strlen(name);
725           def = true;
726           // Check the global: entries from the version script.
727           const std::string& version =
728               version_script_.get_symbol_version(name);
729           if (!version.empty())
730             ver = version.c_str();
731           // Check the local: entries from the version script
732           if (version_script_.symbol_is_local(name))
733             local = true;
734         }
735
736       if (just_symbols)
737         {
738           if (psym != &sym2)
739             memcpy(symbuf, p, sym_size);
740           elfcpp::Sym_write<size, big_endian> sw(symbuf);
741           sw.put_st_shndx(elfcpp::SHN_ABS);
742           if (st_shndx != elfcpp::SHN_UNDEF
743               && st_shndx < elfcpp::SHN_LORESERVE)
744             {
745               // Symbol values in object files are section relative.
746               // This is normally what we want, but since here we are
747               // converting the symbol to absolute we need to add the
748               // section address.  The section address in an object
749               // file is normally zero, but people can use a linker
750               // script to change it.
751               sw.put_st_value(sym2.get_st_value()
752                               + relobj->section_address(st_shndx));
753             }
754           psym = &sym2;
755         }
756
757       Sized_symbol<size>* res;
758       if (ver == NULL)
759         {
760           Stringpool::Key name_key;
761           name = this->namepool_.add(name, true, &name_key);
762           res = this->add_from_object(relobj, name, name_key, NULL, 0,
763                                       false, *psym, sym);
764           if (local)
765             this->force_local(res);
766         }
767       else
768         {
769           Stringpool::Key name_key;
770           name = this->namepool_.add_with_length(name, namelen, true,
771                                                  &name_key);
772           Stringpool::Key ver_key;
773           ver = this->namepool_.add(ver, true, &ver_key);
774
775           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
776                                       def, *psym, sym);
777         }
778
779       (*sympointers)[i] = res;
780     }
781 }
782
783 // Add all the symbols in a dynamic object to the hash table.
784
785 template<int size, bool big_endian>
786 void
787 Symbol_table::add_from_dynobj(
788     Sized_dynobj<size, big_endian>* dynobj,
789     const unsigned char* syms,
790     size_t count,
791     const char* sym_names,
792     size_t sym_name_size,
793     const unsigned char* versym,
794     size_t versym_size,
795     const std::vector<const char*>* version_map)
796 {
797   gold_assert(size == dynobj->target()->get_size());
798   gold_assert(size == parameters->target().get_size());
799
800   if (dynobj->just_symbols())
801     {
802       gold_error(_("--just-symbols does not make sense with a shared object"));
803       return;
804     }
805
806   if (versym != NULL && versym_size / 2 < count)
807     {
808       dynobj->error(_("too few symbol versions"));
809       return;
810     }
811
812   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
813
814   // We keep a list of all STT_OBJECT symbols, so that we can resolve
815   // weak aliases.  This is necessary because if the dynamic object
816   // provides the same variable under two names, one of which is a
817   // weak definition, and the regular object refers to the weak
818   // definition, we have to put both the weak definition and the
819   // strong definition into the dynamic symbol table.  Given a weak
820   // definition, the only way that we can find the corresponding
821   // strong definition, if any, is to search the symbol table.
822   std::vector<Sized_symbol<size>*> object_symbols;
823
824   const unsigned char* p = syms;
825   const unsigned char* vs = versym;
826   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
827     {
828       elfcpp::Sym<size, big_endian> sym(p);
829
830       // Ignore symbols with local binding or that have
831       // internal or hidden visibility.
832       if (sym.get_st_bind() == elfcpp::STB_LOCAL
833           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
834           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
835         continue;
836
837       unsigned int st_name = sym.get_st_name();
838       if (st_name >= sym_name_size)
839         {
840           dynobj->error(_("bad symbol name offset %u at %zu"),
841                         st_name, i);
842           continue;
843         }
844
845       const char* name = sym_names + st_name;
846
847       Sized_symbol<size>* res;
848
849       if (versym == NULL)
850         {
851           Stringpool::Key name_key;
852           name = this->namepool_.add(name, true, &name_key);
853           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
854                                       false, sym, sym);
855         }
856       else
857         {
858           // Read the version information.
859
860           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
861
862           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
863           v &= elfcpp::VERSYM_VERSION;
864
865           // The Sun documentation says that V can be VER_NDX_LOCAL,
866           // or VER_NDX_GLOBAL, or a version index.  The meaning of
867           // VER_NDX_LOCAL is defined as "Symbol has local scope."
868           // The old GNU linker will happily generate VER_NDX_LOCAL
869           // for an undefined symbol.  I don't know what the Sun
870           // linker will generate.
871
872           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
873               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
874             {
875               // This symbol should not be visible outside the object.
876               continue;
877             }
878
879           // At this point we are definitely going to add this symbol.
880           Stringpool::Key name_key;
881           name = this->namepool_.add(name, true, &name_key);
882
883           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
884               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
885             {
886               // This symbol does not have a version.
887               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
888                                           false, sym, sym);
889             }
890           else
891             {
892               if (v >= version_map->size())
893                 {
894                   dynobj->error(_("versym for symbol %zu out of range: %u"),
895                                 i, v);
896                   continue;
897                 }
898
899               const char* version = (*version_map)[v];
900               if (version == NULL)
901                 {
902                   dynobj->error(_("versym for symbol %zu has no name: %u"),
903                                 i, v);
904                   continue;
905                 }
906
907               Stringpool::Key version_key;
908               version = this->namepool_.add(version, true, &version_key);
909
910               // If this is an absolute symbol, and the version name
911               // and symbol name are the same, then this is the
912               // version definition symbol.  These symbols exist to
913               // support using -u to pull in particular versions.  We
914               // do not want to record a version for them.
915               if (sym.get_st_shndx() == elfcpp::SHN_ABS
916                   && name_key == version_key)
917                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
918                                             false, sym, sym);
919               else
920                 {
921                   const bool def = (!hidden
922                                     && (sym.get_st_shndx()
923                                         != elfcpp::SHN_UNDEF));
924                   res = this->add_from_object(dynobj, name, name_key, version,
925                                               version_key, def, sym, sym);
926                 }
927             }
928         }
929
930       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
931           && sym.get_st_type() == elfcpp::STT_OBJECT)
932         object_symbols.push_back(res);
933     }
934
935   this->record_weak_aliases(&object_symbols);
936 }
937
938 // This is used to sort weak aliases.  We sort them first by section
939 // index, then by offset, then by weak ahead of strong.
940
941 template<int size>
942 class Weak_alias_sorter
943 {
944  public:
945   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
946 };
947
948 template<int size>
949 bool
950 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
951                                     const Sized_symbol<size>* s2) const
952 {
953   if (s1->shndx() != s2->shndx())
954     return s1->shndx() < s2->shndx();
955   if (s1->value() != s2->value())
956     return s1->value() < s2->value();
957   if (s1->binding() != s2->binding())
958     {
959       if (s1->binding() == elfcpp::STB_WEAK)
960         return true;
961       if (s2->binding() == elfcpp::STB_WEAK)
962         return false;
963     }
964   return std::string(s1->name()) < std::string(s2->name());
965 }
966
967 // SYMBOLS is a list of object symbols from a dynamic object.  Look
968 // for any weak aliases, and record them so that if we add the weak
969 // alias to the dynamic symbol table, we also add the corresponding
970 // strong symbol.
971
972 template<int size>
973 void
974 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
975 {
976   // Sort the vector by section index, then by offset, then by weak
977   // ahead of strong.
978   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
979
980   // Walk through the vector.  For each weak definition, record
981   // aliases.
982   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
983          symbols->begin();
984        p != symbols->end();
985        ++p)
986     {
987       if ((*p)->binding() != elfcpp::STB_WEAK)
988         continue;
989
990       // Build a circular list of weak aliases.  Each symbol points to
991       // the next one in the circular list.
992
993       Sized_symbol<size>* from_sym = *p;
994       typename std::vector<Sized_symbol<size>*>::const_iterator q;
995       for (q = p + 1; q != symbols->end(); ++q)
996         {
997           if ((*q)->shndx() != from_sym->shndx()
998               || (*q)->value() != from_sym->value())
999             break;
1000
1001           this->weak_aliases_[from_sym] = *q;
1002           from_sym->set_has_alias();
1003           from_sym = *q;
1004         }
1005
1006       if (from_sym != *p)
1007         {
1008           this->weak_aliases_[from_sym] = *p;
1009           from_sym->set_has_alias();
1010         }
1011
1012       p = q - 1;
1013     }
1014 }
1015
1016 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1017 // true, then only create the symbol if there is a reference to it.
1018 // If this does not return NULL, it sets *POLDSYM to the existing
1019 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1020
1021 template<int size, bool big_endian>
1022 Sized_symbol<size>*
1023 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1024                                     bool only_if_ref,
1025                                     Sized_symbol<size>** poldsym)
1026 {
1027   Symbol* oldsym;
1028   Sized_symbol<size>* sym;
1029   bool add_to_table = false;
1030   typename Symbol_table_type::iterator add_loc = this->table_.end();
1031
1032   // If the caller didn't give us a version, see if we get one from
1033   // the version script.
1034   if (*pversion == NULL)
1035     {
1036       const std::string& v(this->version_script_.get_symbol_version(*pname));
1037       if (!v.empty())
1038         *pversion = v.c_str();
1039     }
1040
1041   if (only_if_ref)
1042     {
1043       oldsym = this->lookup(*pname, *pversion);
1044       if (oldsym == NULL || !oldsym->is_undefined())
1045         return NULL;
1046
1047       *pname = oldsym->name();
1048       *pversion = oldsym->version();
1049     }
1050   else
1051     {
1052       // Canonicalize NAME and VERSION.
1053       Stringpool::Key name_key;
1054       *pname = this->namepool_.add(*pname, true, &name_key);
1055
1056       Stringpool::Key version_key = 0;
1057       if (*pversion != NULL)
1058         *pversion = this->namepool_.add(*pversion, true, &version_key);
1059
1060       Symbol* const snull = NULL;
1061       std::pair<typename Symbol_table_type::iterator, bool> ins =
1062         this->table_.insert(std::make_pair(std::make_pair(name_key,
1063                                                           version_key),
1064                                            snull));
1065
1066       if (!ins.second)
1067         {
1068           // We already have a symbol table entry for NAME/VERSION.
1069           oldsym = ins.first->second;
1070           gold_assert(oldsym != NULL);
1071         }
1072       else
1073         {
1074           // We haven't seen this symbol before.
1075           gold_assert(ins.first->second == NULL);
1076           add_to_table = true;
1077           add_loc = ins.first;
1078           oldsym = NULL;
1079         }
1080     }
1081
1082   const Target& target = parameters->target();
1083   if (!target.has_make_symbol())
1084     sym = new Sized_symbol<size>();
1085   else
1086     {
1087       gold_assert(target.get_size() == size);
1088       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1089       typedef Sized_target<size, big_endian> My_target;
1090       const My_target* sized_target =
1091           static_cast<const My_target*>(&target);
1092       sym = sized_target->make_symbol();
1093       if (sym == NULL)
1094         return NULL;
1095     }
1096
1097   if (add_to_table)
1098     add_loc->second = sym;
1099   else
1100     gold_assert(oldsym != NULL);
1101
1102   *poldsym = this->get_sized_symbol<size>(oldsym);
1103
1104   return sym;
1105 }
1106
1107 // Define a symbol based on an Output_data.
1108
1109 Symbol*
1110 Symbol_table::define_in_output_data(const char* name,
1111                                     const char* version,
1112                                     Output_data* od,
1113                                     uint64_t value,
1114                                     uint64_t symsize,
1115                                     elfcpp::STT type,
1116                                     elfcpp::STB binding,
1117                                     elfcpp::STV visibility,
1118                                     unsigned char nonvis,
1119                                     bool offset_is_from_end,
1120                                     bool only_if_ref)
1121 {
1122   if (parameters->target().get_size() == 32)
1123     {
1124 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1125       return this->do_define_in_output_data<32>(name, version, od,
1126                                                 value, symsize, type, binding,
1127                                                 visibility, nonvis,
1128                                                 offset_is_from_end,
1129                                                 only_if_ref);
1130 #else
1131       gold_unreachable();
1132 #endif
1133     }
1134   else if (parameters->target().get_size() == 64)
1135     {
1136 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1137       return this->do_define_in_output_data<64>(name, version, od,
1138                                                 value, symsize, type, binding,
1139                                                 visibility, nonvis,
1140                                                 offset_is_from_end,
1141                                                 only_if_ref);
1142 #else
1143       gold_unreachable();
1144 #endif
1145     }
1146   else
1147     gold_unreachable();
1148 }
1149
1150 // Define a symbol in an Output_data, sized version.
1151
1152 template<int size>
1153 Sized_symbol<size>*
1154 Symbol_table::do_define_in_output_data(
1155     const char* name,
1156     const char* version,
1157     Output_data* od,
1158     typename elfcpp::Elf_types<size>::Elf_Addr value,
1159     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1160     elfcpp::STT type,
1161     elfcpp::STB binding,
1162     elfcpp::STV visibility,
1163     unsigned char nonvis,
1164     bool offset_is_from_end,
1165     bool only_if_ref)
1166 {
1167   Sized_symbol<size>* sym;
1168   Sized_symbol<size>* oldsym;
1169
1170   if (parameters->target().is_big_endian())
1171     {
1172 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1173       sym = this->define_special_symbol<size, true>(&name, &version,
1174                                                     only_if_ref, &oldsym);
1175 #else
1176       gold_unreachable();
1177 #endif
1178     }
1179   else
1180     {
1181 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1182       sym = this->define_special_symbol<size, false>(&name, &version,
1183                                                      only_if_ref, &oldsym);
1184 #else
1185       gold_unreachable();
1186 #endif
1187     }
1188
1189   if (sym == NULL)
1190     return NULL;
1191
1192   gold_assert(version == NULL || oldsym != NULL);
1193   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1194             offset_is_from_end);
1195
1196   if (oldsym == NULL)
1197     {
1198       if (binding == elfcpp::STB_LOCAL
1199           || this->version_script_.symbol_is_local(name))
1200         this->force_local(sym);
1201       return sym;
1202     }
1203
1204   if (Symbol_table::should_override_with_special(oldsym))
1205     this->override_with_special(oldsym, sym);
1206   delete sym;
1207   return oldsym;
1208 }
1209
1210 // Define a symbol based on an Output_segment.
1211
1212 Symbol*
1213 Symbol_table::define_in_output_segment(const char* name,
1214                                        const char* version, Output_segment* os,
1215                                        uint64_t value,
1216                                        uint64_t symsize,
1217                                        elfcpp::STT type,
1218                                        elfcpp::STB binding,
1219                                        elfcpp::STV visibility,
1220                                        unsigned char nonvis,
1221                                        Symbol::Segment_offset_base offset_base,
1222                                        bool only_if_ref)
1223 {
1224   if (parameters->target().get_size() == 32)
1225     {
1226 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1227       return this->do_define_in_output_segment<32>(name, version, os,
1228                                                    value, symsize, type,
1229                                                    binding, visibility, nonvis,
1230                                                    offset_base, only_if_ref);
1231 #else
1232       gold_unreachable();
1233 #endif
1234     }
1235   else if (parameters->target().get_size() == 64)
1236     {
1237 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1238       return this->do_define_in_output_segment<64>(name, version, os,
1239                                                    value, symsize, type,
1240                                                    binding, visibility, nonvis,
1241                                                    offset_base, only_if_ref);
1242 #else
1243       gold_unreachable();
1244 #endif
1245     }
1246   else
1247     gold_unreachable();
1248 }
1249
1250 // Define a symbol in an Output_segment, sized version.
1251
1252 template<int size>
1253 Sized_symbol<size>*
1254 Symbol_table::do_define_in_output_segment(
1255     const char* name,
1256     const char* version,
1257     Output_segment* os,
1258     typename elfcpp::Elf_types<size>::Elf_Addr value,
1259     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1260     elfcpp::STT type,
1261     elfcpp::STB binding,
1262     elfcpp::STV visibility,
1263     unsigned char nonvis,
1264     Symbol::Segment_offset_base offset_base,
1265     bool only_if_ref)
1266 {
1267   Sized_symbol<size>* sym;
1268   Sized_symbol<size>* oldsym;
1269
1270   if (parameters->target().is_big_endian())
1271     {
1272 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1273       sym = this->define_special_symbol<size, true>(&name, &version,
1274                                                     only_if_ref, &oldsym);
1275 #else
1276       gold_unreachable();
1277 #endif
1278     }
1279   else
1280     {
1281 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1282       sym = this->define_special_symbol<size, false>(&name, &version,
1283                                                      only_if_ref, &oldsym);
1284 #else
1285       gold_unreachable();
1286 #endif
1287     }
1288
1289   if (sym == NULL)
1290     return NULL;
1291
1292   gold_assert(version == NULL || oldsym != NULL);
1293   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1294             offset_base);
1295
1296   if (oldsym == NULL)
1297     {
1298       if (binding == elfcpp::STB_LOCAL
1299           || this->version_script_.symbol_is_local(name))
1300         this->force_local(sym);
1301       return sym;
1302     }
1303
1304   if (Symbol_table::should_override_with_special(oldsym))
1305     this->override_with_special(oldsym, sym);
1306   delete sym;
1307   return oldsym;
1308 }
1309
1310 // Define a special symbol with a constant value.  It is a multiple
1311 // definition error if this symbol is already defined.
1312
1313 Symbol*
1314 Symbol_table::define_as_constant(const char* name,
1315                                  const char* version,
1316                                  uint64_t value,
1317                                  uint64_t symsize,
1318                                  elfcpp::STT type,
1319                                  elfcpp::STB binding,
1320                                  elfcpp::STV visibility,
1321                                  unsigned char nonvis,
1322                                  bool only_if_ref,
1323                                  bool force_override)
1324 {
1325   if (parameters->target().get_size() == 32)
1326     {
1327 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1328       return this->do_define_as_constant<32>(name, version, value,
1329                                              symsize, type, binding,
1330                                              visibility, nonvis, only_if_ref,
1331                                              force_override);
1332 #else
1333       gold_unreachable();
1334 #endif
1335     }
1336   else if (parameters->target().get_size() == 64)
1337     {
1338 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1339       return this->do_define_as_constant<64>(name, version, value,
1340                                              symsize, type, binding,
1341                                              visibility, nonvis, only_if_ref,
1342                                              force_override);
1343 #else
1344       gold_unreachable();
1345 #endif
1346     }
1347   else
1348     gold_unreachable();
1349 }
1350
1351 // Define a symbol as a constant, sized version.
1352
1353 template<int size>
1354 Sized_symbol<size>*
1355 Symbol_table::do_define_as_constant(
1356     const char* name,
1357     const char* version,
1358     typename elfcpp::Elf_types<size>::Elf_Addr value,
1359     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1360     elfcpp::STT type,
1361     elfcpp::STB binding,
1362     elfcpp::STV visibility,
1363     unsigned char nonvis,
1364     bool only_if_ref,
1365     bool force_override)
1366 {
1367   Sized_symbol<size>* sym;
1368   Sized_symbol<size>* oldsym;
1369
1370   if (parameters->target().is_big_endian())
1371     {
1372 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1373       sym = this->define_special_symbol<size, true>(&name, &version,
1374                                                     only_if_ref, &oldsym);
1375 #else
1376       gold_unreachable();
1377 #endif
1378     }
1379   else
1380     {
1381 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1382       sym = this->define_special_symbol<size, false>(&name, &version,
1383                                                      only_if_ref, &oldsym);
1384 #else
1385       gold_unreachable();
1386 #endif
1387     }
1388
1389   if (sym == NULL)
1390     return NULL;
1391
1392   gold_assert(version == NULL || version == name || oldsym != NULL);
1393   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1394
1395   if (oldsym == NULL)
1396     {
1397       if (binding == elfcpp::STB_LOCAL
1398           || this->version_script_.symbol_is_local(name))
1399         this->force_local(sym);
1400       return sym;
1401     }
1402
1403   if (force_override || Symbol_table::should_override_with_special(oldsym))
1404     this->override_with_special(oldsym, sym);
1405   delete sym;
1406   return oldsym;
1407 }
1408
1409 // Define a set of symbols in output sections.
1410
1411 void
1412 Symbol_table::define_symbols(const Layout* layout, int count,
1413                              const Define_symbol_in_section* p,
1414                              bool only_if_ref)
1415 {
1416   for (int i = 0; i < count; ++i, ++p)
1417     {
1418       Output_section* os = layout->find_output_section(p->output_section);
1419       if (os != NULL)
1420         this->define_in_output_data(p->name, NULL, os, p->value,
1421                                     p->size, p->type, p->binding,
1422                                     p->visibility, p->nonvis,
1423                                     p->offset_is_from_end,
1424                                     only_if_ref || p->only_if_ref);
1425       else
1426         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1427                                  p->binding, p->visibility, p->nonvis,
1428                                  only_if_ref || p->only_if_ref,
1429                                  false);
1430     }
1431 }
1432
1433 // Define a set of symbols in output segments.
1434
1435 void
1436 Symbol_table::define_symbols(const Layout* layout, int count,
1437                              const Define_symbol_in_segment* p,
1438                              bool only_if_ref)
1439 {
1440   for (int i = 0; i < count; ++i, ++p)
1441     {
1442       Output_segment* os = layout->find_output_segment(p->segment_type,
1443                                                        p->segment_flags_set,
1444                                                        p->segment_flags_clear);
1445       if (os != NULL)
1446         this->define_in_output_segment(p->name, NULL, os, p->value,
1447                                        p->size, p->type, p->binding,
1448                                        p->visibility, p->nonvis,
1449                                        p->offset_base,
1450                                        only_if_ref || p->only_if_ref);
1451       else
1452         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1453                                  p->binding, p->visibility, p->nonvis,
1454                                  only_if_ref || p->only_if_ref,
1455                                  false);
1456     }
1457 }
1458
1459 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1460 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1461 // the offset within POSD.
1462
1463 template<int size>
1464 void
1465 Symbol_table::define_with_copy_reloc(
1466     Sized_symbol<size>* csym,
1467     Output_data* posd,
1468     typename elfcpp::Elf_types<size>::Elf_Addr value)
1469 {
1470   gold_assert(csym->is_from_dynobj());
1471   gold_assert(!csym->is_copied_from_dynobj());
1472   Object* object = csym->object();
1473   gold_assert(object->is_dynamic());
1474   Dynobj* dynobj = static_cast<Dynobj*>(object);
1475
1476   // Our copied variable has to override any variable in a shared
1477   // library.
1478   elfcpp::STB binding = csym->binding();
1479   if (binding == elfcpp::STB_WEAK)
1480     binding = elfcpp::STB_GLOBAL;
1481
1482   this->define_in_output_data(csym->name(), csym->version(),
1483                               posd, value, csym->symsize(),
1484                               csym->type(), binding,
1485                               csym->visibility(), csym->nonvis(),
1486                               false, false);
1487
1488   csym->set_is_copied_from_dynobj();
1489   csym->set_needs_dynsym_entry();
1490
1491   this->copied_symbol_dynobjs_[csym] = dynobj;
1492
1493   // We have now defined all aliases, but we have not entered them all
1494   // in the copied_symbol_dynobjs_ map.
1495   if (csym->has_alias())
1496     {
1497       Symbol* sym = csym;
1498       while (true)
1499         {
1500           sym = this->weak_aliases_[sym];
1501           if (sym == csym)
1502             break;
1503           gold_assert(sym->output_data() == posd);
1504
1505           sym->set_is_copied_from_dynobj();
1506           this->copied_symbol_dynobjs_[sym] = dynobj;
1507         }
1508     }
1509 }
1510
1511 // SYM is defined using a COPY reloc.  Return the dynamic object where
1512 // the original definition was found.
1513
1514 Dynobj*
1515 Symbol_table::get_copy_source(const Symbol* sym) const
1516 {
1517   gold_assert(sym->is_copied_from_dynobj());
1518   Copied_symbol_dynobjs::const_iterator p =
1519     this->copied_symbol_dynobjs_.find(sym);
1520   gold_assert(p != this->copied_symbol_dynobjs_.end());
1521   return p->second;
1522 }
1523
1524 // Set the dynamic symbol indexes.  INDEX is the index of the first
1525 // global dynamic symbol.  Pointers to the symbols are stored into the
1526 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1527 // updated dynamic symbol index.
1528
1529 unsigned int
1530 Symbol_table::set_dynsym_indexes(unsigned int index,
1531                                  std::vector<Symbol*>* syms,
1532                                  Stringpool* dynpool,
1533                                  Versions* versions)
1534 {
1535   for (Symbol_table_type::iterator p = this->table_.begin();
1536        p != this->table_.end();
1537        ++p)
1538     {
1539       Symbol* sym = p->second;
1540
1541       // Note that SYM may already have a dynamic symbol index, since
1542       // some symbols appear more than once in the symbol table, with
1543       // and without a version.
1544
1545       if (!sym->should_add_dynsym_entry())
1546         sym->set_dynsym_index(-1U);
1547       else if (!sym->has_dynsym_index())
1548         {
1549           sym->set_dynsym_index(index);
1550           ++index;
1551           syms->push_back(sym);
1552           dynpool->add(sym->name(), false, NULL);
1553
1554           // Record any version information.
1555           if (sym->version() != NULL)
1556             versions->record_version(this, dynpool, sym);
1557         }
1558     }
1559
1560   // Finish up the versions.  In some cases this may add new dynamic
1561   // symbols.
1562   index = versions->finalize(this, index, syms);
1563
1564   return index;
1565 }
1566
1567 // Set the final values for all the symbols.  The index of the first
1568 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1569 // file offset OFF.  Add their names to POOL.  Return the new file
1570 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1571
1572 off_t
1573 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1574                        size_t dyncount, Stringpool* pool,
1575                        unsigned int *plocal_symcount)
1576 {
1577   off_t ret;
1578
1579   gold_assert(*plocal_symcount != 0);
1580   this->first_global_index_ = *plocal_symcount;
1581
1582   this->dynamic_offset_ = dynoff;
1583   this->first_dynamic_global_index_ = dyn_global_index;
1584   this->dynamic_count_ = dyncount;
1585
1586   if (parameters->target().get_size() == 32)
1587     {
1588 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1589       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1590 #else
1591       gold_unreachable();
1592 #endif
1593     }
1594   else if (parameters->target().get_size() == 64)
1595     {
1596 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1597       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1598 #else
1599       gold_unreachable();
1600 #endif
1601     }
1602   else
1603     gold_unreachable();
1604
1605   // Now that we have the final symbol table, we can reliably note
1606   // which symbols should get warnings.
1607   this->warnings_.note_warnings(this);
1608
1609   return ret;
1610 }
1611
1612 // SYM is going into the symbol table at *PINDEX.  Add the name to
1613 // POOL, update *PINDEX and *POFF.
1614
1615 template<int size>
1616 void
1617 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1618                                   unsigned int* pindex, off_t* poff)
1619 {
1620   sym->set_symtab_index(*pindex);
1621   pool->add(sym->name(), false, NULL);
1622   ++*pindex;
1623   *poff += elfcpp::Elf_sizes<size>::sym_size;
1624 }
1625
1626 // Set the final value for all the symbols.  This is called after
1627 // Layout::finalize, so all the output sections have their final
1628 // address.
1629
1630 template<int size>
1631 off_t
1632 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1633                              unsigned int* plocal_symcount)
1634 {
1635   off = align_address(off, size >> 3);
1636   this->offset_ = off;
1637
1638   unsigned int index = *plocal_symcount;
1639   const unsigned int orig_index = index;
1640
1641   // First do all the symbols which have been forced to be local, as
1642   // they must appear before all global symbols.
1643   for (Forced_locals::iterator p = this->forced_locals_.begin();
1644        p != this->forced_locals_.end();
1645        ++p)
1646     {
1647       Symbol* sym = *p;
1648       gold_assert(sym->is_forced_local());
1649       if (this->sized_finalize_symbol<size>(sym))
1650         {
1651           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1652           ++*plocal_symcount;
1653         }
1654     }
1655
1656   // Now do all the remaining symbols.
1657   for (Symbol_table_type::iterator p = this->table_.begin();
1658        p != this->table_.end();
1659        ++p)
1660     {
1661       Symbol* sym = p->second;
1662       if (this->sized_finalize_symbol<size>(sym))
1663         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1664     }
1665
1666   this->output_count_ = index - orig_index;
1667
1668   return off;
1669 }
1670
1671 // Finalize the symbol SYM.  This returns true if the symbol should be
1672 // added to the symbol table, false otherwise.
1673
1674 template<int size>
1675 bool
1676 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1677 {
1678   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1679
1680   // The default version of a symbol may appear twice in the symbol
1681   // table.  We only need to finalize it once.
1682   if (sym->has_symtab_index())
1683     return false;
1684
1685   if (!sym->in_reg())
1686     {
1687       gold_assert(!sym->has_symtab_index());
1688       sym->set_symtab_index(-1U);
1689       gold_assert(sym->dynsym_index() == -1U);
1690       return false;
1691     }
1692
1693   typename Sized_symbol<size>::Value_type value;
1694
1695   switch (sym->source())
1696     {
1697     case Symbol::FROM_OBJECT:
1698       {
1699         unsigned int shndx = sym->shndx();
1700
1701         // FIXME: We need some target specific support here.
1702         if (shndx >= elfcpp::SHN_LORESERVE
1703             && shndx != elfcpp::SHN_ABS
1704             && shndx != elfcpp::SHN_COMMON)
1705           {
1706             gold_error(_("%s: unsupported symbol section 0x%x"),
1707                        sym->demangled_name().c_str(), shndx);
1708             shndx = elfcpp::SHN_UNDEF;
1709           }
1710
1711         Object* symobj = sym->object();
1712         if (symobj->is_dynamic())
1713           {
1714             value = 0;
1715             shndx = elfcpp::SHN_UNDEF;
1716           }
1717         else if (shndx == elfcpp::SHN_UNDEF)
1718           value = 0;
1719         else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1720           value = sym->value();
1721         else
1722           {
1723             Relobj* relobj = static_cast<Relobj*>(symobj);
1724             section_offset_type secoff;
1725             Output_section* os = relobj->output_section(shndx, &secoff);
1726
1727             if (os == NULL)
1728               {
1729                 sym->set_symtab_index(-1U);
1730                 gold_assert(sym->dynsym_index() == -1U);
1731                 return false;
1732               }
1733
1734             if (sym->type() == elfcpp::STT_TLS)
1735               value = sym->value() + os->tls_offset() + secoff;
1736             else
1737               value = sym->value() + os->address() + secoff;
1738           }
1739       }
1740       break;
1741
1742     case Symbol::IN_OUTPUT_DATA:
1743       {
1744         Output_data* od = sym->output_data();
1745         value = sym->value() + od->address();
1746         if (sym->offset_is_from_end())
1747           value += od->data_size();
1748       }
1749       break;
1750
1751     case Symbol::IN_OUTPUT_SEGMENT:
1752       {
1753         Output_segment* os = sym->output_segment();
1754         value = sym->value() + os->vaddr();
1755         switch (sym->offset_base())
1756           {
1757           case Symbol::SEGMENT_START:
1758             break;
1759           case Symbol::SEGMENT_END:
1760             value += os->memsz();
1761             break;
1762           case Symbol::SEGMENT_BSS:
1763             value += os->filesz();
1764             break;
1765           default:
1766             gold_unreachable();
1767           }
1768       }
1769       break;
1770
1771     case Symbol::CONSTANT:
1772       value = sym->value();
1773       break;
1774
1775     default:
1776       gold_unreachable();
1777     }
1778
1779   sym->set_value(value);
1780
1781   if (parameters->options().strip_all())
1782     {
1783       sym->set_symtab_index(-1U);
1784       return false;
1785     }
1786
1787   return true;
1788 }
1789
1790 // Write out the global symbols.
1791
1792 void
1793 Symbol_table::write_globals(const Input_objects* input_objects,
1794                             const Stringpool* sympool,
1795                             const Stringpool* dynpool, Output_file* of) const
1796 {
1797   switch (parameters->size_and_endianness())
1798     {
1799 #ifdef HAVE_TARGET_32_LITTLE
1800     case Parameters::TARGET_32_LITTLE:
1801       this->sized_write_globals<32, false>(input_objects, sympool,
1802                                            dynpool, of);
1803       break;
1804 #endif
1805 #ifdef HAVE_TARGET_32_BIG
1806     case Parameters::TARGET_32_BIG:
1807       this->sized_write_globals<32, true>(input_objects, sympool,
1808                                           dynpool, of);
1809       break;
1810 #endif
1811 #ifdef HAVE_TARGET_64_LITTLE
1812     case Parameters::TARGET_64_LITTLE:
1813       this->sized_write_globals<64, false>(input_objects, sympool,
1814                                            dynpool, of);
1815       break;
1816 #endif
1817 #ifdef HAVE_TARGET_64_BIG
1818     case Parameters::TARGET_64_BIG:
1819       this->sized_write_globals<64, true>(input_objects, sympool,
1820                                           dynpool, of);
1821       break;
1822 #endif
1823     default:
1824       gold_unreachable();
1825     }
1826 }
1827
1828 // Write out the global symbols.
1829
1830 template<int size, bool big_endian>
1831 void
1832 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1833                                   const Stringpool* sympool,
1834                                   const Stringpool* dynpool,
1835                                   Output_file* of) const
1836 {
1837   const Target& target = parameters->target();
1838
1839   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1840
1841   const unsigned int output_count = this->output_count_;
1842   const section_size_type oview_size = output_count * sym_size;
1843   const unsigned int first_global_index = this->first_global_index_;
1844   unsigned char* psyms;
1845   if (this->offset_ == 0 || output_count == 0)
1846     psyms = NULL;
1847   else
1848     psyms = of->get_output_view(this->offset_, oview_size);
1849
1850   const unsigned int dynamic_count = this->dynamic_count_;
1851   const section_size_type dynamic_size = dynamic_count * sym_size;
1852   const unsigned int first_dynamic_global_index =
1853     this->first_dynamic_global_index_;
1854   unsigned char* dynamic_view;
1855   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1856     dynamic_view = NULL;
1857   else
1858     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1859
1860   for (Symbol_table_type::const_iterator p = this->table_.begin();
1861        p != this->table_.end();
1862        ++p)
1863     {
1864       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1865
1866       // Possibly warn about unresolved symbols in shared libraries.
1867       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1868
1869       unsigned int sym_index = sym->symtab_index();
1870       unsigned int dynsym_index;
1871       if (dynamic_view == NULL)
1872         dynsym_index = -1U;
1873       else
1874         dynsym_index = sym->dynsym_index();
1875
1876       if (sym_index == -1U && dynsym_index == -1U)
1877         {
1878           // This symbol is not included in the output file.
1879           continue;
1880         }
1881
1882       unsigned int shndx;
1883       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1884       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1885       switch (sym->source())
1886         {
1887         case Symbol::FROM_OBJECT:
1888           {
1889             unsigned int in_shndx = sym->shndx();
1890
1891             // FIXME: We need some target specific support here.
1892             if (in_shndx >= elfcpp::SHN_LORESERVE
1893                 && in_shndx != elfcpp::SHN_ABS
1894                 && in_shndx != elfcpp::SHN_COMMON)
1895               {
1896                 gold_error(_("%s: unsupported symbol section 0x%x"),
1897                            sym->demangled_name().c_str(), in_shndx);
1898                 shndx = in_shndx;
1899               }
1900             else
1901               {
1902                 Object* symobj = sym->object();
1903                 if (symobj->is_dynamic())
1904                   {
1905                     if (sym->needs_dynsym_value())
1906                       dynsym_value = target.dynsym_value(sym);
1907                     shndx = elfcpp::SHN_UNDEF;
1908                   }
1909                 else if (in_shndx == elfcpp::SHN_UNDEF
1910                          || in_shndx == elfcpp::SHN_ABS
1911                          || in_shndx == elfcpp::SHN_COMMON)
1912                   shndx = in_shndx;
1913                 else
1914                   {
1915                     Relobj* relobj = static_cast<Relobj*>(symobj);
1916                     section_offset_type secoff;
1917                     Output_section* os = relobj->output_section(in_shndx,
1918                                                                 &secoff);
1919                     gold_assert(os != NULL);
1920                     shndx = os->out_shndx();
1921
1922                     // In object files symbol values are section
1923                     // relative.
1924                     if (parameters->options().relocatable())
1925                       sym_value -= os->address();
1926                   }
1927               }
1928           }
1929           break;
1930
1931         case Symbol::IN_OUTPUT_DATA:
1932           shndx = sym->output_data()->out_shndx();
1933           break;
1934
1935         case Symbol::IN_OUTPUT_SEGMENT:
1936           shndx = elfcpp::SHN_ABS;
1937           break;
1938
1939         case Symbol::CONSTANT:
1940           shndx = elfcpp::SHN_ABS;
1941           break;
1942
1943         default:
1944           gold_unreachable();
1945         }
1946
1947       if (sym_index != -1U)
1948         {
1949           sym_index -= first_global_index;
1950           gold_assert(sym_index < output_count);
1951           unsigned char* ps = psyms + (sym_index * sym_size);
1952           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1953                                                      sympool, ps);
1954         }
1955
1956       if (dynsym_index != -1U)
1957         {
1958           dynsym_index -= first_dynamic_global_index;
1959           gold_assert(dynsym_index < dynamic_count);
1960           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1961           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1962                                                      dynpool, pd);
1963         }
1964     }
1965
1966   of->write_output_view(this->offset_, oview_size, psyms);
1967   if (dynamic_view != NULL)
1968     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1969 }
1970
1971 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1972 // strtab holding the name.
1973
1974 template<int size, bool big_endian>
1975 void
1976 Symbol_table::sized_write_symbol(
1977     Sized_symbol<size>* sym,
1978     typename elfcpp::Elf_types<size>::Elf_Addr value,
1979     unsigned int shndx,
1980     const Stringpool* pool,
1981     unsigned char* p) const
1982 {
1983   elfcpp::Sym_write<size, big_endian> osym(p);
1984   osym.put_st_name(pool->get_offset(sym->name()));
1985   osym.put_st_value(value);
1986   osym.put_st_size(sym->symsize());
1987   // A version script may have overridden the default binding.
1988   if (sym->is_forced_local())
1989     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1990   else
1991     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1992   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1993   osym.put_st_shndx(shndx);
1994 }
1995
1996 // Check for unresolved symbols in shared libraries.  This is
1997 // controlled by the --allow-shlib-undefined option.
1998
1999 // We only warn about libraries for which we have seen all the
2000 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2001 // which were not seen in this link.  If we didn't see a DT_NEEDED
2002 // entry, we aren't going to be able to reliably report whether the
2003 // symbol is undefined.
2004
2005 // We also don't warn about libraries found in the system library
2006 // directory (the directory were we find libc.so); we assume that
2007 // those libraries are OK.  This heuristic avoids problems in
2008 // GNU/Linux, in which -ldl can have undefined references satisfied by
2009 // ld-linux.so.
2010
2011 inline void
2012 Symbol_table::warn_about_undefined_dynobj_symbol(
2013     const Input_objects* input_objects,
2014     Symbol* sym) const
2015 {
2016   if (sym->source() == Symbol::FROM_OBJECT
2017       && sym->object()->is_dynamic()
2018       && sym->shndx() == elfcpp::SHN_UNDEF
2019       && sym->binding() != elfcpp::STB_WEAK
2020       && !parameters->options().allow_shlib_undefined()
2021       && !parameters->target().is_defined_by_abi(sym)
2022       && !input_objects->found_in_system_library_directory(sym->object()))
2023     {
2024       // A very ugly cast.
2025       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2026       if (!dynobj->has_unknown_needed_entries())
2027         gold_error(_("%s: undefined reference to '%s'"),
2028                    sym->object()->name().c_str(),
2029                    sym->demangled_name().c_str());
2030     }
2031 }
2032
2033 // Write out a section symbol.  Return the update offset.
2034
2035 void
2036 Symbol_table::write_section_symbol(const Output_section *os,
2037                                    Output_file* of,
2038                                    off_t offset) const
2039 {
2040   switch (parameters->size_and_endianness())
2041     {
2042 #ifdef HAVE_TARGET_32_LITTLE
2043     case Parameters::TARGET_32_LITTLE:
2044       this->sized_write_section_symbol<32, false>(os, of, offset);
2045       break;
2046 #endif
2047 #ifdef HAVE_TARGET_32_BIG
2048     case Parameters::TARGET_32_BIG:
2049       this->sized_write_section_symbol<32, true>(os, of, offset);
2050       break;
2051 #endif
2052 #ifdef HAVE_TARGET_64_LITTLE
2053     case Parameters::TARGET_64_LITTLE:
2054       this->sized_write_section_symbol<64, false>(os, of, offset);
2055       break;
2056 #endif
2057 #ifdef HAVE_TARGET_64_BIG
2058     case Parameters::TARGET_64_BIG:
2059       this->sized_write_section_symbol<64, true>(os, of, offset);
2060       break;
2061 #endif
2062     default:
2063       gold_unreachable();
2064     }
2065 }
2066
2067 // Write out a section symbol, specialized for size and endianness.
2068
2069 template<int size, bool big_endian>
2070 void
2071 Symbol_table::sized_write_section_symbol(const Output_section* os,
2072                                          Output_file* of,
2073                                          off_t offset) const
2074 {
2075   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2076
2077   unsigned char* pov = of->get_output_view(offset, sym_size);
2078
2079   elfcpp::Sym_write<size, big_endian> osym(pov);
2080   osym.put_st_name(0);
2081   osym.put_st_value(os->address());
2082   osym.put_st_size(0);
2083   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2084                                        elfcpp::STT_SECTION));
2085   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2086   osym.put_st_shndx(os->out_shndx());
2087
2088   of->write_output_view(offset, sym_size, pov);
2089 }
2090
2091 // Print statistical information to stderr.  This is used for --stats.
2092
2093 void
2094 Symbol_table::print_stats() const
2095 {
2096 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2097   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2098           program_name, this->table_.size(), this->table_.bucket_count());
2099 #else
2100   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2101           program_name, this->table_.size());
2102 #endif
2103   this->namepool_.print_stats("symbol table stringpool");
2104 }
2105
2106 // We check for ODR violations by looking for symbols with the same
2107 // name for which the debugging information reports that they were
2108 // defined in different source locations.  When comparing the source
2109 // location, we consider instances with the same base filename and
2110 // line number to be the same.  This is because different object
2111 // files/shared libraries can include the same header file using
2112 // different paths, and we don't want to report an ODR violation in
2113 // that case.
2114
2115 // This struct is used to compare line information, as returned by
2116 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2117 // operator used with std::set.
2118
2119 struct Odr_violation_compare
2120 {
2121   bool
2122   operator()(const std::string& s1, const std::string& s2) const
2123   {
2124     std::string::size_type pos1 = s1.rfind('/');
2125     std::string::size_type pos2 = s2.rfind('/');
2126     if (pos1 == std::string::npos
2127         || pos2 == std::string::npos)
2128       return s1 < s2;
2129     return s1.compare(pos1, std::string::npos,
2130                       s2, pos2, std::string::npos) < 0;
2131   }
2132 };
2133
2134 // Check candidate_odr_violations_ to find symbols with the same name
2135 // but apparently different definitions (different source-file/line-no).
2136
2137 void
2138 Symbol_table::detect_odr_violations(const Task* task,
2139                                     const char* output_file_name) const
2140 {
2141   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2142        it != candidate_odr_violations_.end();
2143        ++it)
2144     {
2145       const char* symbol_name = it->first;
2146       // We use a sorted set so the output is deterministic.
2147       std::set<std::string, Odr_violation_compare> line_nums;
2148
2149       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2150                locs = it->second.begin();
2151            locs != it->second.end();
2152            ++locs)
2153         {
2154           // We need to lock the object in order to read it.  This
2155           // means that we have to run in a singleton Task.  If we
2156           // want to run this in a general Task for better
2157           // performance, we will need one Task for object, plus
2158           // appropriate locking to ensure that we don't conflict with
2159           // other uses of the object.
2160           Task_lock_obj<Object> tl(task, locs->object);
2161           std::string lineno = Dwarf_line_info::one_addr2line(
2162               locs->object, locs->shndx, locs->offset);
2163           if (!lineno.empty())
2164             line_nums.insert(lineno);
2165         }
2166
2167       if (line_nums.size() > 1)
2168         {
2169           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2170                          "places (possible ODR violation):"),
2171                        output_file_name, demangle(symbol_name).c_str());
2172           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2173                it2 != line_nums.end();
2174                ++it2)
2175             fprintf(stderr, "  %s\n", it2->c_str());
2176         }
2177     }
2178 }
2179
2180 // Warnings functions.
2181
2182 // Add a new warning.
2183
2184 void
2185 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2186                       const std::string& warning)
2187 {
2188   name = symtab->canonicalize_name(name);
2189   this->warnings_[name].set(obj, warning);
2190 }
2191
2192 // Look through the warnings and mark the symbols for which we should
2193 // warn.  This is called during Layout::finalize when we know the
2194 // sources for all the symbols.
2195
2196 void
2197 Warnings::note_warnings(Symbol_table* symtab)
2198 {
2199   for (Warning_table::iterator p = this->warnings_.begin();
2200        p != this->warnings_.end();
2201        ++p)
2202     {
2203       Symbol* sym = symtab->lookup(p->first, NULL);
2204       if (sym != NULL
2205           && sym->source() == Symbol::FROM_OBJECT
2206           && sym->object() == p->second.object)
2207         sym->set_has_warning();
2208     }
2209 }
2210
2211 // Issue a warning.  This is called when we see a relocation against a
2212 // symbol for which has a warning.
2213
2214 template<int size, bool big_endian>
2215 void
2216 Warnings::issue_warning(const Symbol* sym,
2217                         const Relocate_info<size, big_endian>* relinfo,
2218                         size_t relnum, off_t reloffset) const
2219 {
2220   gold_assert(sym->has_warning());
2221   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2222   gold_assert(p != this->warnings_.end());
2223   gold_warning_at_location(relinfo, relnum, reloffset,
2224                            "%s", p->second.text.c_str());
2225 }
2226
2227 // Instantiate the templates we need.  We could use the configure
2228 // script to restrict this to only the ones needed for implemented
2229 // targets.
2230
2231 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2232 template
2233 void
2234 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2235 #endif
2236
2237 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2238 template
2239 void
2240 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2241 #endif
2242
2243 #ifdef HAVE_TARGET_32_LITTLE
2244 template
2245 void
2246 Symbol_table::add_from_relobj<32, false>(
2247     Sized_relobj<32, false>* relobj,
2248     const unsigned char* syms,
2249     size_t count,
2250     const char* sym_names,
2251     size_t sym_name_size,
2252     Sized_relobj<32, true>::Symbols* sympointers);
2253 #endif
2254
2255 #ifdef HAVE_TARGET_32_BIG
2256 template
2257 void
2258 Symbol_table::add_from_relobj<32, true>(
2259     Sized_relobj<32, true>* relobj,
2260     const unsigned char* syms,
2261     size_t count,
2262     const char* sym_names,
2263     size_t sym_name_size,
2264     Sized_relobj<32, false>::Symbols* sympointers);
2265 #endif
2266
2267 #ifdef HAVE_TARGET_64_LITTLE
2268 template
2269 void
2270 Symbol_table::add_from_relobj<64, false>(
2271     Sized_relobj<64, false>* relobj,
2272     const unsigned char* syms,
2273     size_t count,
2274     const char* sym_names,
2275     size_t sym_name_size,
2276     Sized_relobj<64, true>::Symbols* sympointers);
2277 #endif
2278
2279 #ifdef HAVE_TARGET_64_BIG
2280 template
2281 void
2282 Symbol_table::add_from_relobj<64, true>(
2283     Sized_relobj<64, true>* relobj,
2284     const unsigned char* syms,
2285     size_t count,
2286     const char* sym_names,
2287     size_t sym_name_size,
2288     Sized_relobj<64, false>::Symbols* sympointers);
2289 #endif
2290
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 template
2293 void
2294 Symbol_table::add_from_dynobj<32, false>(
2295     Sized_dynobj<32, false>* dynobj,
2296     const unsigned char* syms,
2297     size_t count,
2298     const char* sym_names,
2299     size_t sym_name_size,
2300     const unsigned char* versym,
2301     size_t versym_size,
2302     const std::vector<const char*>* version_map);
2303 #endif
2304
2305 #ifdef HAVE_TARGET_32_BIG
2306 template
2307 void
2308 Symbol_table::add_from_dynobj<32, true>(
2309     Sized_dynobj<32, true>* dynobj,
2310     const unsigned char* syms,
2311     size_t count,
2312     const char* sym_names,
2313     size_t sym_name_size,
2314     const unsigned char* versym,
2315     size_t versym_size,
2316     const std::vector<const char*>* version_map);
2317 #endif
2318
2319 #ifdef HAVE_TARGET_64_LITTLE
2320 template
2321 void
2322 Symbol_table::add_from_dynobj<64, false>(
2323     Sized_dynobj<64, false>* dynobj,
2324     const unsigned char* syms,
2325     size_t count,
2326     const char* sym_names,
2327     size_t sym_name_size,
2328     const unsigned char* versym,
2329     size_t versym_size,
2330     const std::vector<const char*>* version_map);
2331 #endif
2332
2333 #ifdef HAVE_TARGET_64_BIG
2334 template
2335 void
2336 Symbol_table::add_from_dynobj<64, true>(
2337     Sized_dynobj<64, true>* dynobj,
2338     const unsigned char* syms,
2339     size_t count,
2340     const char* sym_names,
2341     size_t sym_name_size,
2342     const unsigned char* versym,
2343     size_t versym_size,
2344     const std::vector<const char*>* version_map);
2345 #endif
2346
2347 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2348 template
2349 void
2350 Symbol_table::define_with_copy_reloc<32>(
2351     Sized_symbol<32>* sym,
2352     Output_data* posd,
2353     elfcpp::Elf_types<32>::Elf_Addr value);
2354 #endif
2355
2356 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2357 template
2358 void
2359 Symbol_table::define_with_copy_reloc<64>(
2360     Sized_symbol<64>* sym,
2361     Output_data* posd,
2362     elfcpp::Elf_types<64>::Elf_Addr value);
2363 #endif
2364
2365 #ifdef HAVE_TARGET_32_LITTLE
2366 template
2367 void
2368 Warnings::issue_warning<32, false>(const Symbol* sym,
2369                                    const Relocate_info<32, false>* relinfo,
2370                                    size_t relnum, off_t reloffset) const;
2371 #endif
2372
2373 #ifdef HAVE_TARGET_32_BIG
2374 template
2375 void
2376 Warnings::issue_warning<32, true>(const Symbol* sym,
2377                                   const Relocate_info<32, true>* relinfo,
2378                                   size_t relnum, off_t reloffset) const;
2379 #endif
2380
2381 #ifdef HAVE_TARGET_64_LITTLE
2382 template
2383 void
2384 Warnings::issue_warning<64, false>(const Symbol* sym,
2385                                    const Relocate_info<64, false>* relinfo,
2386                                    size_t relnum, off_t reloffset) const;
2387 #endif
2388
2389 #ifdef HAVE_TARGET_64_BIG
2390 template
2391 void
2392 Warnings::issue_warning<64, true>(const Symbol* sym,
2393                                   const Relocate_info<64, true>* relinfo,
2394                                   size_t relnum, off_t reloffset) const;
2395 #endif
2396
2397 } // End namespace gold.