From Andrew Chatham and Craig Silverstein: Add support for version
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol.  This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49                     elfcpp::STT type, elfcpp::STB binding,
50                     elfcpp::STV visibility, unsigned char nonvis)
51 {
52   this->name_ = name;
53   this->version_ = version;
54   this->symtab_index_ = 0;
55   this->dynsym_index_ = 0;
56   this->got_offset_ = 0;
57   this->plt_offset_ = 0;
58   this->type_ = type;
59   this->binding_ = binding;
60   this->visibility_ = visibility;
61   this->nonvis_ = nonvis;
62   this->is_target_special_ = false;
63   this->is_def_ = false;
64   this->is_forwarder_ = false;
65   this->has_alias_ = false;
66   this->needs_dynsym_entry_ = false;
67   this->in_reg_ = false;
68   this->in_dyn_ = false;
69   this->has_got_offset_ = false;
70   this->has_plt_offset_ = false;
71   this->has_warning_ = false;
72   this->is_copied_from_dynobj_ = false;
73 }
74
75 // Return the demangled version of the symbol's name, but only
76 // if the --demangle flag was set.
77
78 static std::string
79 demangle(const char* name)
80 {
81   if (!parameters->demangle())
82     return name;
83
84   // cplus_demangle allocates memory for the result it returns,
85   // and returns NULL if the name is already demangled.
86   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
87   if (demangled_name == NULL)
88     return name;
89
90   std::string retval(demangled_name);
91   free(demangled_name);
92   return retval;
93 }
94
95 std::string
96 Symbol::demangled_name() const
97 {
98   return demangle(this->name());
99 }
100
101 // Initialize the fields in the base class Symbol for SYM in OBJECT.
102
103 template<int size, bool big_endian>
104 void
105 Symbol::init_base(const char* name, const char* version, Object* object,
106                   const elfcpp::Sym<size, big_endian>& sym)
107 {
108   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
109                     sym.get_st_visibility(), sym.get_st_nonvis());
110   this->u_.from_object.object = object;
111   // FIXME: Handle SHN_XINDEX.
112   this->u_.from_object.shndx = sym.get_st_shndx();
113   this->source_ = FROM_OBJECT;
114   this->in_reg_ = !object->is_dynamic();
115   this->in_dyn_ = object->is_dynamic();
116 }
117
118 // Initialize the fields in the base class Symbol for a symbol defined
119 // in an Output_data.
120
121 void
122 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
123                   elfcpp::STB binding, elfcpp::STV visibility,
124                   unsigned char nonvis, bool offset_is_from_end)
125 {
126   this->init_fields(name, NULL, type, binding, visibility, nonvis);
127   this->u_.in_output_data.output_data = od;
128   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
129   this->source_ = IN_OUTPUT_DATA;
130   this->in_reg_ = true;
131 }
132
133 // Initialize the fields in the base class Symbol for a symbol defined
134 // in an Output_segment.
135
136 void
137 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
138                   elfcpp::STB binding, elfcpp::STV visibility,
139                   unsigned char nonvis, Segment_offset_base offset_base)
140 {
141   this->init_fields(name, NULL, type, binding, visibility, nonvis);
142   this->u_.in_output_segment.output_segment = os;
143   this->u_.in_output_segment.offset_base = offset_base;
144   this->source_ = IN_OUTPUT_SEGMENT;
145   this->in_reg_ = true;
146 }
147
148 // Initialize the fields in the base class Symbol for a symbol defined
149 // as a constant.
150
151 void
152 Symbol::init_base(const char* name, elfcpp::STT type,
153                   elfcpp::STB binding, elfcpp::STV visibility,
154                   unsigned char nonvis)
155 {
156   this->init_fields(name, NULL, type, binding, visibility, nonvis);
157   this->source_ = CONSTANT;
158   this->in_reg_ = true;
159 }
160
161 // Allocate a common symbol in the base.
162
163 void
164 Symbol::allocate_base_common(Output_data* od)
165 {
166   gold_assert(this->is_common());
167   this->source_ = IN_OUTPUT_DATA;
168   this->u_.in_output_data.output_data = od;
169   this->u_.in_output_data.offset_is_from_end = false;
170 }
171
172 // Initialize the fields in Sized_symbol for SYM in OBJECT.
173
174 template<int size>
175 template<bool big_endian>
176 void
177 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
178                          const elfcpp::Sym<size, big_endian>& sym)
179 {
180   this->init_base(name, version, object, sym);
181   this->value_ = sym.get_st_value();
182   this->symsize_ = sym.get_st_size();
183 }
184
185 // Initialize the fields in Sized_symbol for a symbol defined in an
186 // Output_data.
187
188 template<int size>
189 void
190 Sized_symbol<size>::init(const char* name, Output_data* od,
191                          Value_type value, Size_type symsize,
192                          elfcpp::STT type, elfcpp::STB binding,
193                          elfcpp::STV visibility, unsigned char nonvis,
194                          bool offset_is_from_end)
195 {
196   this->init_base(name, od, type, binding, visibility, nonvis,
197                   offset_is_from_end);
198   this->value_ = value;
199   this->symsize_ = symsize;
200 }
201
202 // Initialize the fields in Sized_symbol for a symbol defined in an
203 // Output_segment.
204
205 template<int size>
206 void
207 Sized_symbol<size>::init(const char* name, Output_segment* os,
208                          Value_type value, Size_type symsize,
209                          elfcpp::STT type, elfcpp::STB binding,
210                          elfcpp::STV visibility, unsigned char nonvis,
211                          Segment_offset_base offset_base)
212 {
213   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
214   this->value_ = value;
215   this->symsize_ = symsize;
216 }
217
218 // Initialize the fields in Sized_symbol for a symbol defined as a
219 // constant.
220
221 template<int size>
222 void
223 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
224                          elfcpp::STT type, elfcpp::STB binding,
225                          elfcpp::STV visibility, unsigned char nonvis)
226 {
227   this->init_base(name, type, binding, visibility, nonvis);
228   this->value_ = value;
229   this->symsize_ = symsize;
230 }
231
232 // Allocate a common symbol.
233
234 template<int size>
235 void
236 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
237 {
238   this->allocate_base_common(od);
239   this->value_ = value;
240 }
241
242 // Return true if this symbol should be added to the dynamic symbol
243 // table.
244
245 inline bool
246 Symbol::should_add_dynsym_entry() const
247 {
248   // If the symbol is used by a dynamic relocation, we need to add it.
249   if (this->needs_dynsym_entry())
250     return true;
251
252   // If exporting all symbols or building a shared library,
253   // and the symbol is defined in a regular object and is
254   // externally visible, we need to add it.
255   if ((parameters->export_dynamic() || parameters->output_is_shared())
256       && !this->is_from_dynobj()
257       && this->is_externally_visible())
258     return true;
259
260   return false;
261 }
262
263 // Return true if the final value of this symbol is known at link
264 // time.
265
266 bool
267 Symbol::final_value_is_known() const
268 {
269   // If we are not generating an executable, then no final values are
270   // known, since they will change at runtime.
271   if (!parameters->output_is_executable())
272     return false;
273
274   // If the symbol is not from an object file, then it is defined, and
275   // known.
276   if (this->source_ != FROM_OBJECT)
277     return true;
278
279   // If the symbol is from a dynamic object, then the final value is
280   // not known.
281   if (this->object()->is_dynamic())
282     return false;
283
284   // If the symbol is not undefined (it is defined or common), then
285   // the final value is known.
286   if (!this->is_undefined())
287     return true;
288
289   // If the symbol is undefined, then whether the final value is known
290   // depends on whether we are doing a static link.  If we are doing a
291   // dynamic link, then the final value could be filled in at runtime.
292   // This could reasonably be the case for a weak undefined symbol.
293   return parameters->doing_static_link();
294 }
295
296 // Class Symbol_table.
297
298 Symbol_table::Symbol_table(unsigned int count,
299                            const Version_script_info& version_script)
300   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
301     forwarders_(), commons_(), warnings_(), version_script_(version_script)
302 {
303   namepool_.reserve(count);
304 }
305
306 Symbol_table::~Symbol_table()
307 {
308 }
309
310 // The hash function.  The key values are Stringpool keys.
311
312 inline size_t
313 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
314 {
315   return key.first ^ key.second;
316 }
317
318 // The symbol table key equality function.  This is called with
319 // Stringpool keys.
320
321 inline bool
322 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
323                                           const Symbol_table_key& k2) const
324 {
325   return k1.first == k2.first && k1.second == k2.second;
326 }
327
328 // Make TO a symbol which forwards to FROM.
329
330 void
331 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
332 {
333   gold_assert(from != to);
334   gold_assert(!from->is_forwarder() && !to->is_forwarder());
335   this->forwarders_[from] = to;
336   from->set_forwarder();
337 }
338
339 // Resolve the forwards from FROM, returning the real symbol.
340
341 Symbol*
342 Symbol_table::resolve_forwards(const Symbol* from) const
343 {
344   gold_assert(from->is_forwarder());
345   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
346     this->forwarders_.find(from);
347   gold_assert(p != this->forwarders_.end());
348   return p->second;
349 }
350
351 // Look up a symbol by name.
352
353 Symbol*
354 Symbol_table::lookup(const char* name, const char* version) const
355 {
356   Stringpool::Key name_key;
357   name = this->namepool_.find(name, &name_key);
358   if (name == NULL)
359     return NULL;
360
361   Stringpool::Key version_key = 0;
362   if (version != NULL)
363     {
364       version = this->namepool_.find(version, &version_key);
365       if (version == NULL)
366         return NULL;
367     }
368
369   Symbol_table_key key(name_key, version_key);
370   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
371   if (p == this->table_.end())
372     return NULL;
373   return p->second;
374 }
375
376 // Resolve a Symbol with another Symbol.  This is only used in the
377 // unusual case where there are references to both an unversioned
378 // symbol and a symbol with a version, and we then discover that that
379 // version is the default version.  Because this is unusual, we do
380 // this the slow way, by converting back to an ELF symbol.
381
382 template<int size, bool big_endian>
383 void
384 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
385                       const char* version ACCEPT_SIZE_ENDIAN)
386 {
387   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
388   elfcpp::Sym_write<size, big_endian> esym(buf);
389   // We don't bother to set the st_name field.
390   esym.put_st_value(from->value());
391   esym.put_st_size(from->symsize());
392   esym.put_st_info(from->binding(), from->type());
393   esym.put_st_other(from->visibility(), from->nonvis());
394   esym.put_st_shndx(from->shndx());
395   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
396   if (from->in_reg())
397     to->set_in_reg();
398   if (from->in_dyn())
399     to->set_in_dyn();
400 }
401
402 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
403 // name and VERSION is the version; both are canonicalized.  DEF is
404 // whether this is the default version.
405
406 // If DEF is true, then this is the definition of a default version of
407 // a symbol.  That means that any lookup of NAME/NULL and any lookup
408 // of NAME/VERSION should always return the same symbol.  This is
409 // obvious for references, but in particular we want to do this for
410 // definitions: overriding NAME/NULL should also override
411 // NAME/VERSION.  If we don't do that, it would be very hard to
412 // override functions in a shared library which uses versioning.
413
414 // We implement this by simply making both entries in the hash table
415 // point to the same Symbol structure.  That is easy enough if this is
416 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
417 // that we have seen both already, in which case they will both have
418 // independent entries in the symbol table.  We can't simply change
419 // the symbol table entry, because we have pointers to the entries
420 // attached to the object files.  So we mark the entry attached to the
421 // object file as a forwarder, and record it in the forwarders_ map.
422 // Note that entries in the hash table will never be marked as
423 // forwarders.
424 //
425 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
426 // symbol exactly as it existed in the input file.  SYM is usually
427 // that as well, but can be modified, for instance if we determine
428 // it's in a to-be-discarded section.
429
430 template<int size, bool big_endian>
431 Sized_symbol<size>*
432 Symbol_table::add_from_object(Object* object,
433                               const char *name,
434                               Stringpool::Key name_key,
435                               const char *version,
436                               Stringpool::Key version_key,
437                               bool def,
438                               const elfcpp::Sym<size, big_endian>& sym,
439                               const elfcpp::Sym<size, big_endian>& orig_sym)
440 {
441   Symbol* const snull = NULL;
442   std::pair<typename Symbol_table_type::iterator, bool> ins =
443     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
444                                        snull));
445
446   std::pair<typename Symbol_table_type::iterator, bool> insdef =
447     std::make_pair(this->table_.end(), false);
448   if (def)
449     {
450       const Stringpool::Key vnull_key = 0;
451       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
452                                                                  vnull_key),
453                                                   snull));
454     }
455
456   // ins.first: an iterator, which is a pointer to a pair.
457   // ins.first->first: the key (a pair of name and version).
458   // ins.first->second: the value (Symbol*).
459   // ins.second: true if new entry was inserted, false if not.
460
461   Sized_symbol<size>* ret;
462   bool was_undefined;
463   bool was_common;
464   if (!ins.second)
465     {
466       // We already have an entry for NAME/VERSION.
467       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
468                                                            SELECT_SIZE(size));
469       gold_assert(ret != NULL);
470
471       was_undefined = ret->is_undefined();
472       was_common = ret->is_common();
473
474       this->resolve(ret, sym, orig_sym, object, version);
475
476       if (def)
477         {
478           if (insdef.second)
479             {
480               // This is the first time we have seen NAME/NULL.  Make
481               // NAME/NULL point to NAME/VERSION.
482               insdef.first->second = ret;
483             }
484           else if (insdef.first->second != ret
485                    && insdef.first->second->is_undefined())
486             {
487               // This is the unfortunate case where we already have
488               // entries for both NAME/VERSION and NAME/NULL.  Note
489               // that we don't want to combine them if the existing
490               // symbol is going to override the new one.  FIXME: We
491               // currently just test is_undefined, but this may not do
492               // the right thing if the existing symbol is from a
493               // shared library and the new one is from a regular
494               // object.
495
496               const Sized_symbol<size>* sym2;
497               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
498                 insdef.first->second
499                 SELECT_SIZE(size));
500               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
501                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
502               this->make_forwarder(insdef.first->second, ret);
503               insdef.first->second = ret;
504             }
505         }
506     }
507   else
508     {
509       // This is the first time we have seen NAME/VERSION.
510       gold_assert(ins.first->second == NULL);
511
512       was_undefined = false;
513       was_common = false;
514
515       if (def && !insdef.second)
516         {
517           // We already have an entry for NAME/NULL.  If we override
518           // it, then change it to NAME/VERSION.
519           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
520               insdef.first->second
521               SELECT_SIZE(size));
522           this->resolve(ret, sym, orig_sym, object, version);
523           ins.first->second = ret;
524         }
525       else
526         {
527           Sized_target<size, big_endian>* target =
528             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
529                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
530           if (!target->has_make_symbol())
531             ret = new Sized_symbol<size>();
532           else
533             {
534               ret = target->make_symbol();
535               if (ret == NULL)
536                 {
537                   // This means that we don't want a symbol table
538                   // entry after all.
539                   if (!def)
540                     this->table_.erase(ins.first);
541                   else
542                     {
543                       this->table_.erase(insdef.first);
544                       // Inserting insdef invalidated ins.
545                       this->table_.erase(std::make_pair(name_key,
546                                                         version_key));
547                     }
548                   return NULL;
549                 }
550             }
551
552           ret->init(name, version, object, sym);
553
554           ins.first->second = ret;
555           if (def)
556             {
557               // This is the first time we have seen NAME/NULL.  Point
558               // it at the new entry for NAME/VERSION.
559               gold_assert(insdef.second);
560               insdef.first->second = ret;
561             }
562         }
563     }
564
565   // Record every time we see a new undefined symbol, to speed up
566   // archive groups.
567   if (!was_undefined && ret->is_undefined())
568     ++this->saw_undefined_;
569
570   // Keep track of common symbols, to speed up common symbol
571   // allocation.
572   if (!was_common && ret->is_common())
573     this->commons_.push_back(ret);
574
575   ret->set_is_default(def);
576   return ret;
577 }
578
579 // Add all the symbols in a relocatable object to the hash table.
580
581 template<int size, bool big_endian>
582 void
583 Symbol_table::add_from_relobj(
584     Sized_relobj<size, big_endian>* relobj,
585     const unsigned char* syms,
586     size_t count,
587     const char* sym_names,
588     size_t sym_name_size,
589     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
590 {
591   gold_assert(size == relobj->target()->get_size());
592   gold_assert(size == parameters->get_size());
593
594   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
595
596   const unsigned char* p = syms;
597   for (size_t i = 0; i < count; ++i, p += sym_size)
598     {
599       elfcpp::Sym<size, big_endian> sym(p);
600       elfcpp::Sym<size, big_endian>* psym = &sym;
601
602       unsigned int st_name = psym->get_st_name();
603       if (st_name >= sym_name_size)
604         {
605           relobj->error(_("bad global symbol name offset %u at %zu"),
606                         st_name, i);
607           continue;
608         }
609
610       const char* name = sym_names + st_name;
611
612       // A symbol defined in a section which we are not including must
613       // be treated as an undefined symbol.
614       unsigned char symbuf[sym_size];
615       elfcpp::Sym<size, big_endian> sym2(symbuf);
616       unsigned int st_shndx = psym->get_st_shndx();
617       if (st_shndx != elfcpp::SHN_UNDEF
618           && st_shndx < elfcpp::SHN_LORESERVE
619           && !relobj->is_section_included(st_shndx))
620         {
621           memcpy(symbuf, p, sym_size);
622           elfcpp::Sym_write<size, big_endian> sw(symbuf);
623           sw.put_st_shndx(elfcpp::SHN_UNDEF);
624           psym = &sym2;
625         }
626
627       // In an object file, an '@' in the name separates the symbol
628       // name from the version name.  If there are two '@' characters,
629       // this is the default version.
630       const char* ver = strchr(name, '@');
631       int namelen = 0;
632       bool def = false;
633
634       if (ver != NULL)
635         {
636           // The symbol name is of the form foo@VERSION or foo@@VERSION
637           namelen = ver - name;
638           ++ver;
639           if (*ver == '@')
640             {
641               def = true;
642               ++ver;
643             }
644         }
645       else if (!version_script_.empty())
646         {
647           // The symbol name did not have a version, but
648           // the version script may assign a version anyway.
649           namelen = strlen(name);
650           def = true;
651           const std::string& version =
652               version_script_.get_symbol_version(name);
653           if (!version.empty())
654             ver = version.c_str();
655         }
656
657       Sized_symbol<size>* res;
658       if (ver == NULL)
659         {
660           Stringpool::Key name_key;
661           name = this->namepool_.add(name, true, &name_key);
662           res = this->add_from_object(relobj, name, name_key, NULL, 0,
663                                       false, *psym, sym);
664         }
665       else
666         {
667           Stringpool::Key name_key;
668           name = this->namepool_.add_with_length(name, namelen, true,
669                                                  &name_key);
670           Stringpool::Key ver_key;
671           ver = this->namepool_.add(ver, true, &ver_key);
672
673           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
674                                       def, *psym, sym);
675         }
676
677       (*sympointers)[i] = res;
678     }
679 }
680
681 // Add all the symbols in a dynamic object to the hash table.
682
683 template<int size, bool big_endian>
684 void
685 Symbol_table::add_from_dynobj(
686     Sized_dynobj<size, big_endian>* dynobj,
687     const unsigned char* syms,
688     size_t count,
689     const char* sym_names,
690     size_t sym_name_size,
691     const unsigned char* versym,
692     size_t versym_size,
693     const std::vector<const char*>* version_map)
694 {
695   gold_assert(size == dynobj->target()->get_size());
696   gold_assert(size == parameters->get_size());
697
698   if (versym != NULL && versym_size / 2 < count)
699     {
700       dynobj->error(_("too few symbol versions"));
701       return;
702     }
703
704   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
705
706   // We keep a list of all STT_OBJECT symbols, so that we can resolve
707   // weak aliases.  This is necessary because if the dynamic object
708   // provides the same variable under two names, one of which is a
709   // weak definition, and the regular object refers to the weak
710   // definition, we have to put both the weak definition and the
711   // strong definition into the dynamic symbol table.  Given a weak
712   // definition, the only way that we can find the corresponding
713   // strong definition, if any, is to search the symbol table.
714   std::vector<Sized_symbol<size>*> object_symbols;
715
716   const unsigned char* p = syms;
717   const unsigned char* vs = versym;
718   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
719     {
720       elfcpp::Sym<size, big_endian> sym(p);
721
722       // Ignore symbols with local binding.
723       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
724         continue;
725
726       unsigned int st_name = sym.get_st_name();
727       if (st_name >= sym_name_size)
728         {
729           dynobj->error(_("bad symbol name offset %u at %zu"),
730                         st_name, i);
731           continue;
732         }
733
734       const char* name = sym_names + st_name;
735
736       Sized_symbol<size>* res;
737
738       if (versym == NULL)
739         {
740           Stringpool::Key name_key;
741           name = this->namepool_.add(name, true, &name_key);
742           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
743                                       false, sym, sym);
744         }
745       else
746         {
747           // Read the version information.
748
749           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
750
751           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
752           v &= elfcpp::VERSYM_VERSION;
753
754           // The Sun documentation says that V can be VER_NDX_LOCAL,
755           // or VER_NDX_GLOBAL, or a version index.  The meaning of
756           // VER_NDX_LOCAL is defined as "Symbol has local scope."
757           // The old GNU linker will happily generate VER_NDX_LOCAL
758           // for an undefined symbol.  I don't know what the Sun
759           // linker will generate.
760
761           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
762               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
763             {
764               // This symbol should not be visible outside the object.
765               continue;
766             }
767
768           // At this point we are definitely going to add this symbol.
769           Stringpool::Key name_key;
770           name = this->namepool_.add(name, true, &name_key);
771
772           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
773               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
774             {
775               // This symbol does not have a version.
776               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
777                                           false, sym, sym);
778             }
779           else
780             {
781               if (v >= version_map->size())
782                 {
783                   dynobj->error(_("versym for symbol %zu out of range: %u"),
784                                 i, v);
785                   continue;
786                 }
787
788               const char* version = (*version_map)[v];
789               if (version == NULL)
790                 {
791                   dynobj->error(_("versym for symbol %zu has no name: %u"),
792                                 i, v);
793                   continue;
794                 }
795
796               Stringpool::Key version_key;
797               version = this->namepool_.add(version, true, &version_key);
798
799               // If this is an absolute symbol, and the version name
800               // and symbol name are the same, then this is the
801               // version definition symbol.  These symbols exist to
802               // support using -u to pull in particular versions.  We
803               // do not want to record a version for them.
804               if (sym.get_st_shndx() == elfcpp::SHN_ABS
805                   && name_key == version_key)
806                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
807                                             false, sym, sym);
808               else
809                 {
810                   const bool def = (!hidden
811                                     && (sym.get_st_shndx()
812                                         != elfcpp::SHN_UNDEF));
813                   res = this->add_from_object(dynobj, name, name_key, version,
814                                               version_key, def, sym, sym);
815                 }
816             }
817         }
818
819       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
820           && sym.get_st_type() == elfcpp::STT_OBJECT)
821         object_symbols.push_back(res);
822     }
823
824   this->record_weak_aliases(&object_symbols);
825 }
826
827 // This is used to sort weak aliases.  We sort them first by section
828 // index, then by offset, then by weak ahead of strong.
829
830 template<int size>
831 class Weak_alias_sorter
832 {
833  public:
834   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
835 };
836
837 template<int size>
838 bool
839 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
840                                     const Sized_symbol<size>* s2) const
841 {
842   if (s1->shndx() != s2->shndx())
843     return s1->shndx() < s2->shndx();
844   if (s1->value() != s2->value())
845     return s1->value() < s2->value();
846   if (s1->binding() != s2->binding())
847     {
848       if (s1->binding() == elfcpp::STB_WEAK)
849         return true;
850       if (s2->binding() == elfcpp::STB_WEAK)
851         return false;
852     }
853   return std::string(s1->name()) < std::string(s2->name());
854 }
855
856 // SYMBOLS is a list of object symbols from a dynamic object.  Look
857 // for any weak aliases, and record them so that if we add the weak
858 // alias to the dynamic symbol table, we also add the corresponding
859 // strong symbol.
860
861 template<int size>
862 void
863 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
864 {
865   // Sort the vector by section index, then by offset, then by weak
866   // ahead of strong.
867   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
868
869   // Walk through the vector.  For each weak definition, record
870   // aliases.
871   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
872          symbols->begin();
873        p != symbols->end();
874        ++p)
875     {
876       if ((*p)->binding() != elfcpp::STB_WEAK)
877         continue;
878
879       // Build a circular list of weak aliases.  Each symbol points to
880       // the next one in the circular list.
881
882       Sized_symbol<size>* from_sym = *p;
883       typename std::vector<Sized_symbol<size>*>::const_iterator q;
884       for (q = p + 1; q != symbols->end(); ++q)
885         {
886           if ((*q)->shndx() != from_sym->shndx()
887               || (*q)->value() != from_sym->value())
888             break;
889
890           this->weak_aliases_[from_sym] = *q;
891           from_sym->set_has_alias();
892           from_sym = *q;
893         }
894
895       if (from_sym != *p)
896         {
897           this->weak_aliases_[from_sym] = *p;
898           from_sym->set_has_alias();
899         }
900
901       p = q - 1;
902     }
903 }
904
905 // Create and return a specially defined symbol.  If ONLY_IF_REF is
906 // true, then only create the symbol if there is a reference to it.
907 // If this does not return NULL, it sets *POLDSYM to the existing
908 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
909
910 template<int size, bool big_endian>
911 Sized_symbol<size>*
912 Symbol_table::define_special_symbol(const Target* target, const char** pname,
913                                     const char** pversion, bool only_if_ref,
914                                     Sized_symbol<size>** poldsym
915                                     ACCEPT_SIZE_ENDIAN)
916 {
917   Symbol* oldsym;
918   Sized_symbol<size>* sym;
919   bool add_to_table = false;
920   typename Symbol_table_type::iterator add_loc = this->table_.end();
921
922   if (only_if_ref)
923     {
924       oldsym = this->lookup(*pname, *pversion);
925       if (oldsym == NULL || !oldsym->is_undefined())
926         return NULL;
927
928       *pname = oldsym->name();
929       *pversion = oldsym->version();
930     }
931   else
932     {
933       // Canonicalize NAME and VERSION.
934       Stringpool::Key name_key;
935       *pname = this->namepool_.add(*pname, true, &name_key);
936
937       Stringpool::Key version_key = 0;
938       if (*pversion != NULL)
939         *pversion = this->namepool_.add(*pversion, true, &version_key);
940
941       Symbol* const snull = NULL;
942       std::pair<typename Symbol_table_type::iterator, bool> ins =
943         this->table_.insert(std::make_pair(std::make_pair(name_key,
944                                                           version_key),
945                                            snull));
946
947       if (!ins.second)
948         {
949           // We already have a symbol table entry for NAME/VERSION.
950           oldsym = ins.first->second;
951           gold_assert(oldsym != NULL);
952         }
953       else
954         {
955           // We haven't seen this symbol before.
956           gold_assert(ins.first->second == NULL);
957           add_to_table = true;
958           add_loc = ins.first;
959           oldsym = NULL;
960         }
961     }
962
963   if (!target->has_make_symbol())
964     sym = new Sized_symbol<size>();
965   else
966     {
967       gold_assert(target->get_size() == size);
968       gold_assert(target->is_big_endian() ? big_endian : !big_endian);
969       typedef Sized_target<size, big_endian> My_target;
970       const My_target* sized_target =
971           static_cast<const My_target*>(target);
972       sym = sized_target->make_symbol();
973       if (sym == NULL)
974         return NULL;
975     }
976
977   if (add_to_table)
978     add_loc->second = sym;
979   else
980     gold_assert(oldsym != NULL);
981
982   *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
983                                                             SELECT_SIZE(size));
984
985   return sym;
986 }
987
988 // Define a symbol based on an Output_data.
989
990 Symbol*
991 Symbol_table::define_in_output_data(const Target* target, const char* name,
992                                     const char* version, Output_data* od,
993                                     uint64_t value, uint64_t symsize,
994                                     elfcpp::STT type, elfcpp::STB binding,
995                                     elfcpp::STV visibility,
996                                     unsigned char nonvis,
997                                     bool offset_is_from_end,
998                                     bool only_if_ref)
999 {
1000   if (parameters->get_size() == 32)
1001     {
1002 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1003       return this->do_define_in_output_data<32>(target, name, version, od,
1004                                                 value, symsize, type, binding,
1005                                                 visibility, nonvis,
1006                                                 offset_is_from_end,
1007                                                 only_if_ref);
1008 #else
1009       gold_unreachable();
1010 #endif
1011     }
1012   else if (parameters->get_size() == 64)
1013     {
1014 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1015       return this->do_define_in_output_data<64>(target, name, version, od,
1016                                                 value, symsize, type, binding,
1017                                                 visibility, nonvis,
1018                                                 offset_is_from_end,
1019                                                 only_if_ref);
1020 #else
1021       gold_unreachable();
1022 #endif
1023     }
1024   else
1025     gold_unreachable();
1026 }
1027
1028 // Define a symbol in an Output_data, sized version.
1029
1030 template<int size>
1031 Sized_symbol<size>*
1032 Symbol_table::do_define_in_output_data(
1033     const Target* target,
1034     const char* name,
1035     const char* version,
1036     Output_data* od,
1037     typename elfcpp::Elf_types<size>::Elf_Addr value,
1038     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1039     elfcpp::STT type,
1040     elfcpp::STB binding,
1041     elfcpp::STV visibility,
1042     unsigned char nonvis,
1043     bool offset_is_from_end,
1044     bool only_if_ref)
1045 {
1046   Sized_symbol<size>* sym;
1047   Sized_symbol<size>* oldsym;
1048
1049   if (parameters->is_big_endian())
1050     {
1051 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1052       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1053           target, &name, &version, only_if_ref, &oldsym
1054           SELECT_SIZE_ENDIAN(size, true));
1055 #else
1056       gold_unreachable();
1057 #endif
1058     }
1059   else
1060     {
1061 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1062       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1063           target, &name, &version, only_if_ref, &oldsym
1064           SELECT_SIZE_ENDIAN(size, false));
1065 #else
1066       gold_unreachable();
1067 #endif
1068     }
1069
1070   if (sym == NULL)
1071     return NULL;
1072
1073   gold_assert(version == NULL || oldsym != NULL);
1074   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1075             offset_is_from_end);
1076
1077   if (oldsym == NULL)
1078     return sym;
1079
1080   if (Symbol_table::should_override_with_special(oldsym))
1081     this->override_with_special(oldsym, sym);
1082   delete sym;
1083   return oldsym;
1084 }
1085
1086 // Define a symbol based on an Output_segment.
1087
1088 Symbol*
1089 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1090                                        const char* version, Output_segment* os,
1091                                        uint64_t value, uint64_t symsize,
1092                                        elfcpp::STT type, elfcpp::STB binding,
1093                                        elfcpp::STV visibility,
1094                                        unsigned char nonvis,
1095                                        Symbol::Segment_offset_base offset_base,
1096                                        bool only_if_ref)
1097 {
1098   if (parameters->get_size() == 32)
1099     {
1100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1101       return this->do_define_in_output_segment<32>(target, name, version, os,
1102                                                    value, symsize, type,
1103                                                    binding, visibility, nonvis,
1104                                                    offset_base, only_if_ref);
1105 #else
1106       gold_unreachable();
1107 #endif
1108     }
1109   else if (parameters->get_size() == 64)
1110     {
1111 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1112       return this->do_define_in_output_segment<64>(target, name, version, os,
1113                                                    value, symsize, type,
1114                                                    binding, visibility, nonvis,
1115                                                    offset_base, only_if_ref);
1116 #else
1117       gold_unreachable();
1118 #endif
1119     }
1120   else
1121     gold_unreachable();
1122 }
1123
1124 // Define a symbol in an Output_segment, sized version.
1125
1126 template<int size>
1127 Sized_symbol<size>*
1128 Symbol_table::do_define_in_output_segment(
1129     const Target* target,
1130     const char* name,
1131     const char* version,
1132     Output_segment* os,
1133     typename elfcpp::Elf_types<size>::Elf_Addr value,
1134     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1135     elfcpp::STT type,
1136     elfcpp::STB binding,
1137     elfcpp::STV visibility,
1138     unsigned char nonvis,
1139     Symbol::Segment_offset_base offset_base,
1140     bool only_if_ref)
1141 {
1142   Sized_symbol<size>* sym;
1143   Sized_symbol<size>* oldsym;
1144
1145   if (parameters->is_big_endian())
1146     {
1147 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1148       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1149           target, &name, &version, only_if_ref, &oldsym
1150           SELECT_SIZE_ENDIAN(size, true));
1151 #else
1152       gold_unreachable();
1153 #endif
1154     }
1155   else
1156     {
1157 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1158       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1159           target, &name, &version, only_if_ref, &oldsym
1160           SELECT_SIZE_ENDIAN(size, false));
1161 #else
1162       gold_unreachable();
1163 #endif
1164     }
1165
1166   if (sym == NULL)
1167     return NULL;
1168
1169   gold_assert(version == NULL || oldsym != NULL);
1170   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1171             offset_base);
1172
1173   if (oldsym == NULL)
1174     return sym;
1175
1176   if (Symbol_table::should_override_with_special(oldsym))
1177     this->override_with_special(oldsym, sym);
1178   delete sym;
1179   return oldsym;
1180 }
1181
1182 // Define a special symbol with a constant value.  It is a multiple
1183 // definition error if this symbol is already defined.
1184
1185 Symbol*
1186 Symbol_table::define_as_constant(const Target* target, const char* name,
1187                                  const char* version, uint64_t value,
1188                                  uint64_t symsize, elfcpp::STT type,
1189                                  elfcpp::STB binding, elfcpp::STV visibility,
1190                                  unsigned char nonvis, bool only_if_ref)
1191 {
1192   if (parameters->get_size() == 32)
1193     {
1194 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1195       return this->do_define_as_constant<32>(target, name, version, value,
1196                                              symsize, type, binding,
1197                                              visibility, nonvis, only_if_ref);
1198 #else
1199       gold_unreachable();
1200 #endif
1201     }
1202   else if (parameters->get_size() == 64)
1203     {
1204 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1205       return this->do_define_as_constant<64>(target, name, version, value,
1206                                              symsize, type, binding,
1207                                              visibility, nonvis, only_if_ref);
1208 #else
1209       gold_unreachable();
1210 #endif
1211     }
1212   else
1213     gold_unreachable();
1214 }
1215
1216 // Define a symbol as a constant, sized version.
1217
1218 template<int size>
1219 Sized_symbol<size>*
1220 Symbol_table::do_define_as_constant(
1221     const Target* target,
1222     const char* name,
1223     const char* version,
1224     typename elfcpp::Elf_types<size>::Elf_Addr value,
1225     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1226     elfcpp::STT type,
1227     elfcpp::STB binding,
1228     elfcpp::STV visibility,
1229     unsigned char nonvis,
1230     bool only_if_ref)
1231 {
1232   Sized_symbol<size>* sym;
1233   Sized_symbol<size>* oldsym;
1234
1235   if (parameters->is_big_endian())
1236     {
1237 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1238       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1239           target, &name, &version, only_if_ref, &oldsym
1240           SELECT_SIZE_ENDIAN(size, true));
1241 #else
1242       gold_unreachable();
1243 #endif
1244     }
1245   else
1246     {
1247 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1248       sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1249           target, &name, &version, only_if_ref, &oldsym
1250           SELECT_SIZE_ENDIAN(size, false));
1251 #else
1252       gold_unreachable();
1253 #endif
1254     }
1255
1256   if (sym == NULL)
1257     return NULL;
1258
1259   gold_assert(version == NULL || version == name || oldsym != NULL);
1260   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1261
1262   if (oldsym == NULL)
1263     return sym;
1264
1265   if (Symbol_table::should_override_with_special(oldsym))
1266     this->override_with_special(oldsym, sym);
1267   delete sym;
1268   return oldsym;
1269 }
1270
1271 // Define a set of symbols in output sections.
1272
1273 void
1274 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1275                              int count, const Define_symbol_in_section* p)
1276 {
1277   for (int i = 0; i < count; ++i, ++p)
1278     {
1279       Output_section* os = layout->find_output_section(p->output_section);
1280       if (os != NULL)
1281         this->define_in_output_data(target, p->name, NULL, os, p->value,
1282                                     p->size, p->type, p->binding,
1283                                     p->visibility, p->nonvis,
1284                                     p->offset_is_from_end, p->only_if_ref);
1285       else
1286         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1287                                  p->binding, p->visibility, p->nonvis,
1288                                  p->only_if_ref);
1289     }
1290 }
1291
1292 // Define a set of symbols in output segments.
1293
1294 void
1295 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1296                              int count, const Define_symbol_in_segment* p)
1297 {
1298   for (int i = 0; i < count; ++i, ++p)
1299     {
1300       Output_segment* os = layout->find_output_segment(p->segment_type,
1301                                                        p->segment_flags_set,
1302                                                        p->segment_flags_clear);
1303       if (os != NULL)
1304         this->define_in_output_segment(target, p->name, NULL, os, p->value,
1305                                        p->size, p->type, p->binding,
1306                                        p->visibility, p->nonvis,
1307                                        p->offset_base, p->only_if_ref);
1308       else
1309         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1310                                  p->binding, p->visibility, p->nonvis,
1311                                  p->only_if_ref);
1312     }
1313 }
1314
1315 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1316 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1317 // the offset within POSD.
1318
1319 template<int size>
1320 void
1321 Symbol_table::define_with_copy_reloc(
1322     const Target* target,
1323     Sized_symbol<size>* csym,
1324     Output_data* posd,
1325     typename elfcpp::Elf_types<size>::Elf_Addr value)
1326 {
1327   gold_assert(csym->is_from_dynobj());
1328   gold_assert(!csym->is_copied_from_dynobj());
1329   Object* object = csym->object();
1330   gold_assert(object->is_dynamic());
1331   Dynobj* dynobj = static_cast<Dynobj*>(object);
1332
1333   // Our copied variable has to override any variable in a shared
1334   // library.
1335   elfcpp::STB binding = csym->binding();
1336   if (binding == elfcpp::STB_WEAK)
1337     binding = elfcpp::STB_GLOBAL;
1338
1339   this->define_in_output_data(target, csym->name(), csym->version(),
1340                               posd, value, csym->symsize(),
1341                               csym->type(), binding,
1342                               csym->visibility(), csym->nonvis(),
1343                               false, false);
1344
1345   csym->set_is_copied_from_dynobj();
1346   csym->set_needs_dynsym_entry();
1347
1348   this->copied_symbol_dynobjs_[csym] = dynobj;
1349
1350   // We have now defined all aliases, but we have not entered them all
1351   // in the copied_symbol_dynobjs_ map.
1352   if (csym->has_alias())
1353     {
1354       Symbol* sym = csym;
1355       while (true)
1356         {
1357           sym = this->weak_aliases_[sym];
1358           if (sym == csym)
1359             break;
1360           gold_assert(sym->output_data() == posd);
1361
1362           sym->set_is_copied_from_dynobj();
1363           this->copied_symbol_dynobjs_[sym] = dynobj;
1364         }
1365     }
1366 }
1367
1368 // SYM is defined using a COPY reloc.  Return the dynamic object where
1369 // the original definition was found.
1370
1371 Dynobj*
1372 Symbol_table::get_copy_source(const Symbol* sym) const
1373 {
1374   gold_assert(sym->is_copied_from_dynobj());
1375   Copied_symbol_dynobjs::const_iterator p =
1376     this->copied_symbol_dynobjs_.find(sym);
1377   gold_assert(p != this->copied_symbol_dynobjs_.end());
1378   return p->second;
1379 }
1380
1381 // Set the dynamic symbol indexes.  INDEX is the index of the first
1382 // global dynamic symbol.  Pointers to the symbols are stored into the
1383 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1384 // updated dynamic symbol index.
1385
1386 unsigned int
1387 Symbol_table::set_dynsym_indexes(const Target* target,
1388                                  unsigned int index,
1389                                  std::vector<Symbol*>* syms,
1390                                  Stringpool* dynpool,
1391                                  Versions* versions)
1392 {
1393   for (Symbol_table_type::iterator p = this->table_.begin();
1394        p != this->table_.end();
1395        ++p)
1396     {
1397       Symbol* sym = p->second;
1398
1399       // Note that SYM may already have a dynamic symbol index, since
1400       // some symbols appear more than once in the symbol table, with
1401       // and without a version.
1402
1403       if (!sym->should_add_dynsym_entry())
1404         sym->set_dynsym_index(-1U);
1405       else if (!sym->has_dynsym_index())
1406         {
1407           sym->set_dynsym_index(index);
1408           ++index;
1409           syms->push_back(sym);
1410           dynpool->add(sym->name(), false, NULL);
1411
1412           // Record any version information.
1413           if (sym->version() != NULL)
1414             versions->record_version(this, dynpool, sym);
1415         }
1416     }
1417
1418   // Finish up the versions.  In some cases this may add new dynamic
1419   // symbols.
1420   index = versions->finalize(target, this, index, syms);
1421
1422   return index;
1423 }
1424
1425 // Set the final values for all the symbols.  The index of the first
1426 // global symbol in the output file is INDEX.  Record the file offset
1427 // OFF.  Add their names to POOL.  Return the new file offset.
1428
1429 off_t
1430 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1431                        size_t dyn_global_index, size_t dyncount,
1432                        Stringpool* pool)
1433 {
1434   off_t ret;
1435
1436   gold_assert(index != 0);
1437   this->first_global_index_ = index;
1438
1439   this->dynamic_offset_ = dynoff;
1440   this->first_dynamic_global_index_ = dyn_global_index;
1441   this->dynamic_count_ = dyncount;
1442
1443   if (parameters->get_size() == 32)
1444     {
1445 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1446       ret = this->sized_finalize<32>(index, off, pool);
1447 #else
1448       gold_unreachable();
1449 #endif
1450     }
1451   else if (parameters->get_size() == 64)
1452     {
1453 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1454       ret = this->sized_finalize<64>(index, off, pool);
1455 #else
1456       gold_unreachable();
1457 #endif
1458     }
1459   else
1460     gold_unreachable();
1461
1462   // Now that we have the final symbol table, we can reliably note
1463   // which symbols should get warnings.
1464   this->warnings_.note_warnings(this);
1465
1466   return ret;
1467 }
1468
1469 // Set the final value for all the symbols.  This is called after
1470 // Layout::finalize, so all the output sections have their final
1471 // address.
1472
1473 template<int size>
1474 off_t
1475 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1476 {
1477   off = align_address(off, size >> 3);
1478   this->offset_ = off;
1479
1480   size_t orig_index = index;
1481
1482   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1483   for (Symbol_table_type::iterator p = this->table_.begin();
1484        p != this->table_.end();
1485        ++p)
1486     {
1487       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1488
1489       // FIXME: Here we need to decide which symbols should go into
1490       // the output file, based on --strip.
1491
1492       // The default version of a symbol may appear twice in the
1493       // symbol table.  We only need to finalize it once.
1494       if (sym->has_symtab_index())
1495         continue;
1496
1497       if (!sym->in_reg())
1498         {
1499           gold_assert(!sym->has_symtab_index());
1500           sym->set_symtab_index(-1U);
1501           gold_assert(sym->dynsym_index() == -1U);
1502           continue;
1503         }
1504
1505       typename Sized_symbol<size>::Value_type value;
1506
1507       switch (sym->source())
1508         {
1509         case Symbol::FROM_OBJECT:
1510           {
1511             unsigned int shndx = sym->shndx();
1512
1513             // FIXME: We need some target specific support here.
1514             if (shndx >= elfcpp::SHN_LORESERVE
1515                 && shndx != elfcpp::SHN_ABS)
1516               {
1517                 gold_error(_("%s: unsupported symbol section 0x%x"),
1518                            sym->demangled_name().c_str(), shndx);
1519                 shndx = elfcpp::SHN_UNDEF;
1520               }
1521
1522             Object* symobj = sym->object();
1523             if (symobj->is_dynamic())
1524               {
1525                 value = 0;
1526                 shndx = elfcpp::SHN_UNDEF;
1527               }
1528             else if (shndx == elfcpp::SHN_UNDEF)
1529               value = 0;
1530             else if (shndx == elfcpp::SHN_ABS)
1531               value = sym->value();
1532             else
1533               {
1534                 Relobj* relobj = static_cast<Relobj*>(symobj);
1535                 section_offset_type secoff;
1536                 Output_section* os = relobj->output_section(shndx, &secoff);
1537
1538                 if (os == NULL)
1539                   {
1540                     sym->set_symtab_index(-1U);
1541                     gold_assert(sym->dynsym_index() == -1U);
1542                     continue;
1543                   }
1544
1545                 if (sym->type() == elfcpp::STT_TLS)
1546                   value = sym->value() + os->tls_offset() + secoff;
1547                 else
1548                   value = sym->value() + os->address() + secoff;
1549               }
1550           }
1551           break;
1552
1553         case Symbol::IN_OUTPUT_DATA:
1554           {
1555             Output_data* od = sym->output_data();
1556             value = sym->value() + od->address();
1557             if (sym->offset_is_from_end())
1558               value += od->data_size();
1559           }
1560           break;
1561
1562         case Symbol::IN_OUTPUT_SEGMENT:
1563           {
1564             Output_segment* os = sym->output_segment();
1565             value = sym->value() + os->vaddr();
1566             switch (sym->offset_base())
1567               {
1568               case Symbol::SEGMENT_START:
1569                 break;
1570               case Symbol::SEGMENT_END:
1571                 value += os->memsz();
1572                 break;
1573               case Symbol::SEGMENT_BSS:
1574                 value += os->filesz();
1575                 break;
1576               default:
1577                 gold_unreachable();
1578               }
1579           }
1580           break;
1581
1582         case Symbol::CONSTANT:
1583           value = sym->value();
1584           break;
1585
1586         default:
1587           gold_unreachable();
1588         }
1589
1590       sym->set_value(value);
1591
1592       if (parameters->strip_all())
1593         sym->set_symtab_index(-1U);
1594       else
1595         {
1596           sym->set_symtab_index(index);
1597           pool->add(sym->name(), false, NULL);
1598           ++index;
1599           off += sym_size;
1600         }
1601     }
1602
1603   this->output_count_ = index - orig_index;
1604
1605   return off;
1606 }
1607
1608 // Write out the global symbols.
1609
1610 void
1611 Symbol_table::write_globals(const Input_objects* input_objects,
1612                             const Stringpool* sympool,
1613                             const Stringpool* dynpool, Output_file* of) const
1614 {
1615   if (parameters->get_size() == 32)
1616     {
1617       if (parameters->is_big_endian())
1618         {
1619 #ifdef HAVE_TARGET_32_BIG
1620           this->sized_write_globals<32, true>(input_objects, sympool,
1621                                               dynpool, of);
1622 #else
1623           gold_unreachable();
1624 #endif
1625         }
1626       else
1627         {
1628 #ifdef HAVE_TARGET_32_LITTLE
1629           this->sized_write_globals<32, false>(input_objects, sympool,
1630                                                dynpool, of);
1631 #else
1632           gold_unreachable();
1633 #endif
1634         }
1635     }
1636   else if (parameters->get_size() == 64)
1637     {
1638       if (parameters->is_big_endian())
1639         {
1640 #ifdef HAVE_TARGET_64_BIG
1641           this->sized_write_globals<64, true>(input_objects, sympool,
1642                                               dynpool, of);
1643 #else
1644           gold_unreachable();
1645 #endif
1646         }
1647       else
1648         {
1649 #ifdef HAVE_TARGET_64_LITTLE
1650           this->sized_write_globals<64, false>(input_objects, sympool,
1651                                                dynpool, of);
1652 #else
1653           gold_unreachable();
1654 #endif
1655         }
1656     }
1657   else
1658     gold_unreachable();
1659 }
1660
1661 // Write out the global symbols.
1662
1663 template<int size, bool big_endian>
1664 void
1665 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1666                                   const Stringpool* sympool,
1667                                   const Stringpool* dynpool,
1668                                   Output_file* of) const
1669 {
1670   const Target* const target = input_objects->target();
1671
1672   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1673   unsigned int index = this->first_global_index_;
1674   const off_t oview_size = this->output_count_ * sym_size;
1675   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1676
1677   unsigned int dynamic_count = this->dynamic_count_;
1678   off_t dynamic_size = dynamic_count * sym_size;
1679   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1680   unsigned char* dynamic_view;
1681   if (this->dynamic_offset_ == 0)
1682     dynamic_view = NULL;
1683   else
1684     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1685
1686   unsigned char* ps = psyms;
1687   for (Symbol_table_type::const_iterator p = this->table_.begin();
1688        p != this->table_.end();
1689        ++p)
1690     {
1691       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1692
1693       // Possibly warn about unresolved symbols in shared libraries.
1694       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1695
1696       unsigned int sym_index = sym->symtab_index();
1697       unsigned int dynsym_index;
1698       if (dynamic_view == NULL)
1699         dynsym_index = -1U;
1700       else
1701         dynsym_index = sym->dynsym_index();
1702
1703       if (sym_index == -1U && dynsym_index == -1U)
1704         {
1705           // This symbol is not included in the output file.
1706           continue;
1707         }
1708
1709       if (sym_index == index)
1710         ++index;
1711       else if (sym_index != -1U)
1712         {
1713           // We have already seen this symbol, because it has a
1714           // default version.
1715           gold_assert(sym_index < index);
1716           if (dynsym_index == -1U)
1717             continue;
1718           sym_index = -1U;
1719         }
1720
1721       unsigned int shndx;
1722       typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1723       switch (sym->source())
1724         {
1725         case Symbol::FROM_OBJECT:
1726           {
1727             unsigned int in_shndx = sym->shndx();
1728
1729             // FIXME: We need some target specific support here.
1730             if (in_shndx >= elfcpp::SHN_LORESERVE
1731                 && in_shndx != elfcpp::SHN_ABS)
1732               {
1733                 gold_error(_("%s: unsupported symbol section 0x%x"),
1734                            sym->demangled_name().c_str(), in_shndx);
1735                 shndx = in_shndx;
1736               }
1737             else
1738               {
1739                 Object* symobj = sym->object();
1740                 if (symobj->is_dynamic())
1741                   {
1742                     if (sym->needs_dynsym_value())
1743                       value = target->dynsym_value(sym);
1744                     shndx = elfcpp::SHN_UNDEF;
1745                   }
1746                 else if (in_shndx == elfcpp::SHN_UNDEF
1747                          || in_shndx == elfcpp::SHN_ABS)
1748                   shndx = in_shndx;
1749                 else
1750                   {
1751                     Relobj* relobj = static_cast<Relobj*>(symobj);
1752                     section_offset_type secoff;
1753                     Output_section* os = relobj->output_section(in_shndx,
1754                                                                 &secoff);
1755                     gold_assert(os != NULL);
1756                     shndx = os->out_shndx();
1757                   }
1758               }
1759           }
1760           break;
1761
1762         case Symbol::IN_OUTPUT_DATA:
1763           shndx = sym->output_data()->out_shndx();
1764           break;
1765
1766         case Symbol::IN_OUTPUT_SEGMENT:
1767           shndx = elfcpp::SHN_ABS;
1768           break;
1769
1770         case Symbol::CONSTANT:
1771           shndx = elfcpp::SHN_ABS;
1772           break;
1773
1774         default:
1775           gold_unreachable();
1776         }
1777
1778       if (sym_index != -1U)
1779         {
1780           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1781               sym, sym->value(), shndx, sympool, ps
1782               SELECT_SIZE_ENDIAN(size, big_endian));
1783           ps += sym_size;
1784         }
1785
1786       if (dynsym_index != -1U)
1787         {
1788           dynsym_index -= first_dynamic_global_index;
1789           gold_assert(dynsym_index < dynamic_count);
1790           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1791           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1792               sym, value, shndx, dynpool, pd
1793               SELECT_SIZE_ENDIAN(size, big_endian));
1794         }
1795     }
1796
1797   gold_assert(ps - psyms == oview_size);
1798
1799   of->write_output_view(this->offset_, oview_size, psyms);
1800   if (dynamic_view != NULL)
1801     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1802 }
1803
1804 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1805 // strtab holding the name.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Symbol_table::sized_write_symbol(
1810     Sized_symbol<size>* sym,
1811     typename elfcpp::Elf_types<size>::Elf_Addr value,
1812     unsigned int shndx,
1813     const Stringpool* pool,
1814     unsigned char* p
1815     ACCEPT_SIZE_ENDIAN) const
1816 {
1817   elfcpp::Sym_write<size, big_endian> osym(p);
1818   osym.put_st_name(pool->get_offset(sym->name()));
1819   osym.put_st_value(value);
1820   osym.put_st_size(sym->symsize());
1821   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1822   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1823   osym.put_st_shndx(shndx);
1824 }
1825
1826 // Check for unresolved symbols in shared libraries.  This is
1827 // controlled by the --allow-shlib-undefined option.
1828
1829 // We only warn about libraries for which we have seen all the
1830 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
1831 // which were not seen in this link.  If we didn't see a DT_NEEDED
1832 // entry, we aren't going to be able to reliably report whether the
1833 // symbol is undefined.
1834
1835 // We also don't warn about libraries found in the system library
1836 // directory (the directory were we find libc.so); we assume that
1837 // those libraries are OK.  This heuristic avoids problems in
1838 // GNU/Linux, in which -ldl can have undefined references satisfied by
1839 // ld-linux.so.
1840
1841 inline void
1842 Symbol_table::warn_about_undefined_dynobj_symbol(
1843     const Input_objects* input_objects,
1844     Symbol* sym) const
1845 {
1846   if (sym->source() == Symbol::FROM_OBJECT
1847       && sym->object()->is_dynamic()
1848       && sym->shndx() == elfcpp::SHN_UNDEF
1849       && sym->binding() != elfcpp::STB_WEAK
1850       && !parameters->allow_shlib_undefined()
1851       && !input_objects->target()->is_defined_by_abi(sym)
1852       && !input_objects->found_in_system_library_directory(sym->object()))
1853     {
1854       // A very ugly cast.
1855       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1856       if (!dynobj->has_unknown_needed_entries())
1857         gold_error(_("%s: undefined reference to '%s'"),
1858                    sym->object()->name().c_str(),
1859                    sym->demangled_name().c_str());
1860     }
1861 }
1862
1863 // Write out a section symbol.  Return the update offset.
1864
1865 void
1866 Symbol_table::write_section_symbol(const Output_section *os,
1867                                    Output_file* of,
1868                                    off_t offset) const
1869 {
1870   if (parameters->get_size() == 32)
1871     {
1872       if (parameters->is_big_endian())
1873         {
1874 #ifdef HAVE_TARGET_32_BIG
1875           this->sized_write_section_symbol<32, true>(os, of, offset);
1876 #else
1877           gold_unreachable();
1878 #endif
1879         }
1880       else
1881         {
1882 #ifdef HAVE_TARGET_32_LITTLE
1883           this->sized_write_section_symbol<32, false>(os, of, offset);
1884 #else
1885           gold_unreachable();
1886 #endif
1887         }
1888     }
1889   else if (parameters->get_size() == 64)
1890     {
1891       if (parameters->is_big_endian())
1892         {
1893 #ifdef HAVE_TARGET_64_BIG
1894           this->sized_write_section_symbol<64, true>(os, of, offset);
1895 #else
1896           gold_unreachable();
1897 #endif
1898         }
1899       else
1900         {
1901 #ifdef HAVE_TARGET_64_LITTLE
1902           this->sized_write_section_symbol<64, false>(os, of, offset);
1903 #else
1904           gold_unreachable();
1905 #endif
1906         }
1907     }
1908   else
1909     gold_unreachable();
1910 }
1911
1912 // Write out a section symbol, specialized for size and endianness.
1913
1914 template<int size, bool big_endian>
1915 void
1916 Symbol_table::sized_write_section_symbol(const Output_section* os,
1917                                          Output_file* of,
1918                                          off_t offset) const
1919 {
1920   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1921
1922   unsigned char* pov = of->get_output_view(offset, sym_size);
1923
1924   elfcpp::Sym_write<size, big_endian> osym(pov);
1925   osym.put_st_name(0);
1926   osym.put_st_value(os->address());
1927   osym.put_st_size(0);
1928   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1929                                        elfcpp::STT_SECTION));
1930   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1931   osym.put_st_shndx(os->out_shndx());
1932
1933   of->write_output_view(offset, sym_size, pov);
1934 }
1935
1936 // Print statistical information to stderr.  This is used for --stats.
1937
1938 void
1939 Symbol_table::print_stats() const
1940 {
1941 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
1942   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
1943           program_name, this->table_.size(), this->table_.bucket_count());
1944 #else
1945   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
1946           program_name, this->table_.size());
1947 #endif
1948   this->namepool_.print_stats("symbol table stringpool");
1949 }
1950
1951 // We check for ODR violations by looking for symbols with the same
1952 // name for which the debugging information reports that they were
1953 // defined in different source locations.  When comparing the source
1954 // location, we consider instances with the same base filename and
1955 // line number to be the same.  This is because different object
1956 // files/shared libraries can include the same header file using
1957 // different paths, and we don't want to report an ODR violation in
1958 // that case.
1959
1960 // This struct is used to compare line information, as returned by
1961 // Dwarf_line_info::one_addr2line.  It implements a < comparison
1962 // operator used with std::set.
1963
1964 struct Odr_violation_compare
1965 {
1966   bool
1967   operator()(const std::string& s1, const std::string& s2) const
1968   {
1969     std::string::size_type pos1 = s1.rfind('/');
1970     std::string::size_type pos2 = s2.rfind('/');
1971     if (pos1 == std::string::npos
1972         || pos2 == std::string::npos)
1973       return s1 < s2;
1974     return s1.compare(pos1, std::string::npos,
1975                       s2, pos2, std::string::npos) < 0;
1976   }
1977 };
1978
1979 // Check candidate_odr_violations_ to find symbols with the same name
1980 // but apparently different definitions (different source-file/line-no).
1981
1982 void
1983 Symbol_table::detect_odr_violations(const Task* task,
1984                                     const char* output_file_name) const
1985 {
1986   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1987        it != candidate_odr_violations_.end();
1988        ++it)
1989     {
1990       const char* symbol_name = it->first;
1991       // We use a sorted set so the output is deterministic.
1992       std::set<std::string, Odr_violation_compare> line_nums;
1993
1994       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1995                locs = it->second.begin();
1996            locs != it->second.end();
1997            ++locs)
1998         {
1999           // We need to lock the object in order to read it.  This
2000           // means that we have to run in a singleton Task.  If we
2001           // want to run this in a general Task for better
2002           // performance, we will need one Task for object, plus
2003           // appropriate locking to ensure that we don't conflict with
2004           // other uses of the object.
2005           Task_lock_obj<Object> tl(task, locs->object);
2006           std::string lineno = Dwarf_line_info::one_addr2line(
2007               locs->object, locs->shndx, locs->offset);
2008           if (!lineno.empty())
2009             line_nums.insert(lineno);
2010         }
2011
2012       if (line_nums.size() > 1)
2013         {
2014           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2015                          "places (possible ODR violation):"),
2016                        output_file_name, demangle(symbol_name).c_str());
2017           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2018                it2 != line_nums.end();
2019                ++it2)
2020             fprintf(stderr, "  %s\n", it2->c_str());
2021         }
2022     }
2023 }
2024
2025 // Warnings functions.
2026
2027 // Add a new warning.
2028
2029 void
2030 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2031                       const std::string& warning)
2032 {
2033   name = symtab->canonicalize_name(name);
2034   this->warnings_[name].set(obj, warning);
2035 }
2036
2037 // Look through the warnings and mark the symbols for which we should
2038 // warn.  This is called during Layout::finalize when we know the
2039 // sources for all the symbols.
2040
2041 void
2042 Warnings::note_warnings(Symbol_table* symtab)
2043 {
2044   for (Warning_table::iterator p = this->warnings_.begin();
2045        p != this->warnings_.end();
2046        ++p)
2047     {
2048       Symbol* sym = symtab->lookup(p->first, NULL);
2049       if (sym != NULL
2050           && sym->source() == Symbol::FROM_OBJECT
2051           && sym->object() == p->second.object)
2052         sym->set_has_warning();
2053     }
2054 }
2055
2056 // Issue a warning.  This is called when we see a relocation against a
2057 // symbol for which has a warning.
2058
2059 template<int size, bool big_endian>
2060 void
2061 Warnings::issue_warning(const Symbol* sym,
2062                         const Relocate_info<size, big_endian>* relinfo,
2063                         size_t relnum, off_t reloffset) const
2064 {
2065   gold_assert(sym->has_warning());
2066   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2067   gold_assert(p != this->warnings_.end());
2068   gold_warning_at_location(relinfo, relnum, reloffset,
2069                            "%s", p->second.text.c_str());
2070 }
2071
2072 // Instantiate the templates we need.  We could use the configure
2073 // script to restrict this to only the ones needed for implemented
2074 // targets.
2075
2076 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2077 template
2078 void
2079 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2080 #endif
2081
2082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2083 template
2084 void
2085 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2086 #endif
2087
2088 #ifdef HAVE_TARGET_32_LITTLE
2089 template
2090 void
2091 Symbol_table::add_from_relobj<32, false>(
2092     Sized_relobj<32, false>* relobj,
2093     const unsigned char* syms,
2094     size_t count,
2095     const char* sym_names,
2096     size_t sym_name_size,
2097     Sized_relobj<32, true>::Symbols* sympointers);
2098 #endif
2099
2100 #ifdef HAVE_TARGET_32_BIG
2101 template
2102 void
2103 Symbol_table::add_from_relobj<32, true>(
2104     Sized_relobj<32, true>* relobj,
2105     const unsigned char* syms,
2106     size_t count,
2107     const char* sym_names,
2108     size_t sym_name_size,
2109     Sized_relobj<32, false>::Symbols* sympointers);
2110 #endif
2111
2112 #ifdef HAVE_TARGET_64_LITTLE
2113 template
2114 void
2115 Symbol_table::add_from_relobj<64, false>(
2116     Sized_relobj<64, false>* relobj,
2117     const unsigned char* syms,
2118     size_t count,
2119     const char* sym_names,
2120     size_t sym_name_size,
2121     Sized_relobj<64, true>::Symbols* sympointers);
2122 #endif
2123
2124 #ifdef HAVE_TARGET_64_BIG
2125 template
2126 void
2127 Symbol_table::add_from_relobj<64, true>(
2128     Sized_relobj<64, true>* relobj,
2129     const unsigned char* syms,
2130     size_t count,
2131     const char* sym_names,
2132     size_t sym_name_size,
2133     Sized_relobj<64, false>::Symbols* sympointers);
2134 #endif
2135
2136 #ifdef HAVE_TARGET_32_LITTLE
2137 template
2138 void
2139 Symbol_table::add_from_dynobj<32, false>(
2140     Sized_dynobj<32, false>* dynobj,
2141     const unsigned char* syms,
2142     size_t count,
2143     const char* sym_names,
2144     size_t sym_name_size,
2145     const unsigned char* versym,
2146     size_t versym_size,
2147     const std::vector<const char*>* version_map);
2148 #endif
2149
2150 #ifdef HAVE_TARGET_32_BIG
2151 template
2152 void
2153 Symbol_table::add_from_dynobj<32, true>(
2154     Sized_dynobj<32, true>* dynobj,
2155     const unsigned char* syms,
2156     size_t count,
2157     const char* sym_names,
2158     size_t sym_name_size,
2159     const unsigned char* versym,
2160     size_t versym_size,
2161     const std::vector<const char*>* version_map);
2162 #endif
2163
2164 #ifdef HAVE_TARGET_64_LITTLE
2165 template
2166 void
2167 Symbol_table::add_from_dynobj<64, false>(
2168     Sized_dynobj<64, false>* dynobj,
2169     const unsigned char* syms,
2170     size_t count,
2171     const char* sym_names,
2172     size_t sym_name_size,
2173     const unsigned char* versym,
2174     size_t versym_size,
2175     const std::vector<const char*>* version_map);
2176 #endif
2177
2178 #ifdef HAVE_TARGET_64_BIG
2179 template
2180 void
2181 Symbol_table::add_from_dynobj<64, true>(
2182     Sized_dynobj<64, true>* dynobj,
2183     const unsigned char* syms,
2184     size_t count,
2185     const char* sym_names,
2186     size_t sym_name_size,
2187     const unsigned char* versym,
2188     size_t versym_size,
2189     const std::vector<const char*>* version_map);
2190 #endif
2191
2192 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2193 template
2194 void
2195 Symbol_table::define_with_copy_reloc<32>(
2196     const Target* target,
2197     Sized_symbol<32>* sym,
2198     Output_data* posd,
2199     elfcpp::Elf_types<32>::Elf_Addr value);
2200 #endif
2201
2202 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2203 template
2204 void
2205 Symbol_table::define_with_copy_reloc<64>(
2206     const Target* target,
2207     Sized_symbol<64>* sym,
2208     Output_data* posd,
2209     elfcpp::Elf_types<64>::Elf_Addr value);
2210 #endif
2211
2212 #ifdef HAVE_TARGET_32_LITTLE
2213 template
2214 void
2215 Warnings::issue_warning<32, false>(const Symbol* sym,
2216                                    const Relocate_info<32, false>* relinfo,
2217                                    size_t relnum, off_t reloffset) const;
2218 #endif
2219
2220 #ifdef HAVE_TARGET_32_BIG
2221 template
2222 void
2223 Warnings::issue_warning<32, true>(const Symbol* sym,
2224                                   const Relocate_info<32, true>* relinfo,
2225                                   size_t relnum, off_t reloffset) const;
2226 #endif
2227
2228 #ifdef HAVE_TARGET_64_LITTLE
2229 template
2230 void
2231 Warnings::issue_warning<64, false>(const Symbol* sym,
2232                                    const Relocate_info<64, false>* relinfo,
2233                                    size_t relnum, off_t reloffset) const;
2234 #endif
2235
2236 #ifdef HAVE_TARGET_64_BIG
2237 template
2238 void
2239 Warnings::issue_warning<64, true>(const Symbol* sym,
2240                                   const Relocate_info<64, true>* relinfo,
2241                                   size_t relnum, off_t reloffset) const;
2242 #endif
2243
2244 } // End namespace gold.