* options.h (class General_options): Define --wrap as a special
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol.  This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51                     elfcpp::STT type, elfcpp::STB binding,
52                     elfcpp::STV visibility, unsigned char nonvis)
53 {
54   this->name_ = name;
55   this->version_ = version;
56   this->symtab_index_ = 0;
57   this->dynsym_index_ = 0;
58   this->got_offsets_.init();
59   this->plt_offset_ = 0;
60   this->type_ = type;
61   this->binding_ = binding;
62   this->visibility_ = visibility;
63   this->nonvis_ = nonvis;
64   this->is_target_special_ = false;
65   this->is_def_ = false;
66   this->is_forwarder_ = false;
67   this->has_alias_ = false;
68   this->needs_dynsym_entry_ = false;
69   this->in_reg_ = false;
70   this->in_dyn_ = false;
71   this->has_plt_offset_ = false;
72   this->has_warning_ = false;
73   this->is_copied_from_dynobj_ = false;
74   this->is_forced_local_ = false;
75 }
76
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
79
80 static std::string
81 demangle(const char* name)
82 {
83   if (!parameters->options().do_demangle())
84     return name;
85
86   // cplus_demangle allocates memory for the result it returns,
87   // and returns NULL if the name is already demangled.
88   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89   if (demangled_name == NULL)
90     return name;
91
92   std::string retval(demangled_name);
93   free(demangled_name);
94   return retval;
95 }
96
97 std::string
98 Symbol::demangled_name() const
99 {
100   return demangle(this->name());
101 }
102
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105 template<int size, bool big_endian>
106 void
107 Symbol::init_base(const char* name, const char* version, Object* object,
108                   const elfcpp::Sym<size, big_endian>& sym)
109 {
110   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111                     sym.get_st_visibility(), sym.get_st_nonvis());
112   this->u_.from_object.object = object;
113   // FIXME: Handle SHN_XINDEX.
114   this->u_.from_object.shndx = sym.get_st_shndx();
115   this->source_ = FROM_OBJECT;
116   this->in_reg_ = !object->is_dynamic();
117   this->in_dyn_ = object->is_dynamic();
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
122
123 void
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125                   elfcpp::STB binding, elfcpp::STV visibility,
126                   unsigned char nonvis, bool offset_is_from_end)
127 {
128   this->init_fields(name, NULL, type, binding, visibility, nonvis);
129   this->u_.in_output_data.output_data = od;
130   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131   this->source_ = IN_OUTPUT_DATA;
132   this->in_reg_ = true;
133 }
134
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
137
138 void
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140                   elfcpp::STB binding, elfcpp::STV visibility,
141                   unsigned char nonvis, Segment_offset_base offset_base)
142 {
143   this->init_fields(name, NULL, type, binding, visibility, nonvis);
144   this->u_.in_output_segment.output_segment = os;
145   this->u_.in_output_segment.offset_base = offset_base;
146   this->source_ = IN_OUTPUT_SEGMENT;
147   this->in_reg_ = true;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // as a constant.
152
153 void
154 Symbol::init_base(const char* name, elfcpp::STT type,
155                   elfcpp::STB binding, elfcpp::STV visibility,
156                   unsigned char nonvis)
157 {
158   this->init_fields(name, NULL, type, binding, visibility, nonvis);
159   this->source_ = CONSTANT;
160   this->in_reg_ = true;
161 }
162
163 // Allocate a common symbol in the base.
164
165 void
166 Symbol::allocate_base_common(Output_data* od)
167 {
168   gold_assert(this->is_common());
169   this->source_ = IN_OUTPUT_DATA;
170   this->u_.in_output_data.output_data = od;
171   this->u_.in_output_data.offset_is_from_end = false;
172 }
173
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175
176 template<int size>
177 template<bool big_endian>
178 void
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180                          const elfcpp::Sym<size, big_endian>& sym)
181 {
182   this->init_base(name, version, object, sym);
183   this->value_ = sym.get_st_value();
184   this->symsize_ = sym.get_st_size();
185 }
186
187 // Initialize the fields in Sized_symbol for a symbol defined in an
188 // Output_data.
189
190 template<int size>
191 void
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193                          Value_type value, Size_type symsize,
194                          elfcpp::STT type, elfcpp::STB binding,
195                          elfcpp::STV visibility, unsigned char nonvis,
196                          bool offset_is_from_end)
197 {
198   this->init_base(name, od, type, binding, visibility, nonvis,
199                   offset_is_from_end);
200   this->value_ = value;
201   this->symsize_ = symsize;
202 }
203
204 // Initialize the fields in Sized_symbol for a symbol defined in an
205 // Output_segment.
206
207 template<int size>
208 void
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210                          Value_type value, Size_type symsize,
211                          elfcpp::STT type, elfcpp::STB binding,
212                          elfcpp::STV visibility, unsigned char nonvis,
213                          Segment_offset_base offset_base)
214 {
215   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216   this->value_ = value;
217   this->symsize_ = symsize;
218 }
219
220 // Initialize the fields in Sized_symbol for a symbol defined as a
221 // constant.
222
223 template<int size>
224 void
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226                          elfcpp::STT type, elfcpp::STB binding,
227                          elfcpp::STV visibility, unsigned char nonvis)
228 {
229   this->init_base(name, type, binding, visibility, nonvis);
230   this->value_ = value;
231   this->symsize_ = symsize;
232 }
233
234 // Allocate a common symbol.
235
236 template<int size>
237 void
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 {
240   this->allocate_base_common(od);
241   this->value_ = value;
242 }
243
244 // Return true if this symbol should be added to the dynamic symbol
245 // table.
246
247 inline bool
248 Symbol::should_add_dynsym_entry() const
249 {
250   // If the symbol is used by a dynamic relocation, we need to add it.
251   if (this->needs_dynsym_entry())
252     return true;
253
254   // If the symbol was forced local in a version script, do not add it.
255   if (this->is_forced_local())
256     return false;
257
258   // If exporting all symbols or building a shared library,
259   // and the symbol is defined in a regular object and is
260   // externally visible, we need to add it.
261   if ((parameters->options().export_dynamic() || parameters->options().shared())
262       && !this->is_from_dynobj()
263       && this->is_externally_visible())
264     return true;
265
266   return false;
267 }
268
269 // Return true if the final value of this symbol is known at link
270 // time.
271
272 bool
273 Symbol::final_value_is_known() const
274 {
275   // If we are not generating an executable, then no final values are
276   // known, since they will change at runtime.
277   if (parameters->options().shared() || parameters->options().relocatable())
278     return false;
279
280   // If the symbol is not from an object file, then it is defined, and
281   // known.
282   if (this->source_ != FROM_OBJECT)
283     return true;
284
285   // If the symbol is from a dynamic object, then the final value is
286   // not known.
287   if (this->object()->is_dynamic())
288     return false;
289
290   // If the symbol is not undefined (it is defined or common), then
291   // the final value is known.
292   if (!this->is_undefined())
293     return true;
294
295   // If the symbol is undefined, then whether the final value is known
296   // depends on whether we are doing a static link.  If we are doing a
297   // dynamic link, then the final value could be filled in at runtime.
298   // This could reasonably be the case for a weak undefined symbol.
299   return parameters->doing_static_link();
300 }
301
302 // Return the output section where this symbol is defined.
303
304 Output_section*
305 Symbol::output_section() const
306 {
307   switch (this->source_)
308     {
309     case FROM_OBJECT:
310       {
311         unsigned int shndx = this->u_.from_object.shndx;
312         if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313           {
314             gold_assert(!this->u_.from_object.object->is_dynamic());
315             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316             section_offset_type dummy;
317             return relobj->output_section(shndx, &dummy);
318           }
319         return NULL;
320       }
321
322     case IN_OUTPUT_DATA:
323       return this->u_.in_output_data.output_data->output_section();
324
325     case IN_OUTPUT_SEGMENT:
326     case CONSTANT:
327       return NULL;
328
329     default:
330       gold_unreachable();
331     }
332 }
333
334 // Set the symbol's output section.  This is used for symbols defined
335 // in scripts.  This should only be called after the symbol table has
336 // been finalized.
337
338 void
339 Symbol::set_output_section(Output_section* os)
340 {
341   switch (this->source_)
342     {
343     case FROM_OBJECT:
344     case IN_OUTPUT_DATA:
345       gold_assert(this->output_section() == os);
346       break;
347     case CONSTANT:
348       this->source_ = IN_OUTPUT_DATA;
349       this->u_.in_output_data.output_data = os;
350       this->u_.in_output_data.offset_is_from_end = false;
351       break;
352     case IN_OUTPUT_SEGMENT:
353     default:
354       gold_unreachable();
355     }
356 }
357
358 // Class Symbol_table.
359
360 Symbol_table::Symbol_table(unsigned int count,
361                            const Version_script_info& version_script)
362   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363     forwarders_(), commons_(), forced_locals_(), warnings_(),
364     version_script_(version_script)
365 {
366   namepool_.reserve(count);
367 }
368
369 Symbol_table::~Symbol_table()
370 {
371 }
372
373 // The hash function.  The key values are Stringpool keys.
374
375 inline size_t
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 {
378   return key.first ^ key.second;
379 }
380
381 // The symbol table key equality function.  This is called with
382 // Stringpool keys.
383
384 inline bool
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386                                           const Symbol_table_key& k2) const
387 {
388   return k1.first == k2.first && k1.second == k2.second;
389 }
390
391 // Make TO a symbol which forwards to FROM.
392
393 void
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 {
396   gold_assert(from != to);
397   gold_assert(!from->is_forwarder() && !to->is_forwarder());
398   this->forwarders_[from] = to;
399   from->set_forwarder();
400 }
401
402 // Resolve the forwards from FROM, returning the real symbol.
403
404 Symbol*
405 Symbol_table::resolve_forwards(const Symbol* from) const
406 {
407   gold_assert(from->is_forwarder());
408   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409     this->forwarders_.find(from);
410   gold_assert(p != this->forwarders_.end());
411   return p->second;
412 }
413
414 // Look up a symbol by name.
415
416 Symbol*
417 Symbol_table::lookup(const char* name, const char* version) const
418 {
419   Stringpool::Key name_key;
420   name = this->namepool_.find(name, &name_key);
421   if (name == NULL)
422     return NULL;
423
424   Stringpool::Key version_key = 0;
425   if (version != NULL)
426     {
427       version = this->namepool_.find(version, &version_key);
428       if (version == NULL)
429         return NULL;
430     }
431
432   Symbol_table_key key(name_key, version_key);
433   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434   if (p == this->table_.end())
435     return NULL;
436   return p->second;
437 }
438
439 // Resolve a Symbol with another Symbol.  This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version.  Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
444
445 template<int size, bool big_endian>
446 void
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
448                       const char* version)
449 {
450   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451   elfcpp::Sym_write<size, big_endian> esym(buf);
452   // We don't bother to set the st_name field.
453   esym.put_st_value(from->value());
454   esym.put_st_size(from->symsize());
455   esym.put_st_info(from->binding(), from->type());
456   esym.put_st_other(from->visibility(), from->nonvis());
457   esym.put_st_shndx(from->shndx());
458   this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
459   if (from->in_reg())
460     to->set_in_reg();
461   if (from->in_dyn())
462     to->set_in_dyn();
463 }
464
465 // Record that a symbol is forced to be local by a version script.
466
467 void
468 Symbol_table::force_local(Symbol* sym)
469 {
470   if (!sym->is_defined() && !sym->is_common())
471     return;
472   if (sym->is_forced_local())
473     {
474       // We already got this one.
475       return;
476     }
477   sym->set_is_forced_local();
478   this->forced_locals_.push_back(sym);
479 }
480
481 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
482 // is only called for undefined symbols, when at least one --wrap
483 // option was used.
484
485 const char*
486 Symbol_table::wrap_symbol(Object* object, const char* name,
487                           Stringpool::Key* name_key)
488 {
489   // For some targets, we need to ignore a specific character when
490   // wrapping, and add it back later.
491   char prefix = '\0';
492   if (name[0] == object->target()->wrap_char())
493     {
494       prefix = name[0];
495       ++name;
496     }
497
498   if (parameters->options().is_wrap_symbol(name))
499     {
500       // Turn NAME into __wrap_NAME.
501       std::string s;
502       if (prefix != '\0')
503         s += prefix;
504       s += "__wrap_";
505       s += name;
506
507       // This will give us both the old and new name in NAMEPOOL_, but
508       // that is OK.  Only the versions we need will wind up in the
509       // real string table in the output file.
510       return this->namepool_.add(s.c_str(), true, name_key);
511     }
512
513   const char* const real_prefix = "__real_";
514   const size_t real_prefix_length = strlen(real_prefix);
515   if (strncmp(name, real_prefix, real_prefix_length) == 0
516       && parameters->options().is_wrap_symbol(name + real_prefix_length))
517     {
518       // Turn __real_NAME into NAME.
519       std::string s;
520       if (prefix != '\0')
521         s += prefix;
522       s += name + real_prefix_length;
523       return this->namepool_.add(s.c_str(), true, name_key);
524     }
525
526   return name;
527 }
528
529 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
530 // name and VERSION is the version; both are canonicalized.  DEF is
531 // whether this is the default version.
532
533 // If DEF is true, then this is the definition of a default version of
534 // a symbol.  That means that any lookup of NAME/NULL and any lookup
535 // of NAME/VERSION should always return the same symbol.  This is
536 // obvious for references, but in particular we want to do this for
537 // definitions: overriding NAME/NULL should also override
538 // NAME/VERSION.  If we don't do that, it would be very hard to
539 // override functions in a shared library which uses versioning.
540
541 // We implement this by simply making both entries in the hash table
542 // point to the same Symbol structure.  That is easy enough if this is
543 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
544 // that we have seen both already, in which case they will both have
545 // independent entries in the symbol table.  We can't simply change
546 // the symbol table entry, because we have pointers to the entries
547 // attached to the object files.  So we mark the entry attached to the
548 // object file as a forwarder, and record it in the forwarders_ map.
549 // Note that entries in the hash table will never be marked as
550 // forwarders.
551 //
552 // SYM and ORIG_SYM are almost always the same.  ORIG_SYM is the
553 // symbol exactly as it existed in the input file.  SYM is usually
554 // that as well, but can be modified, for instance if we determine
555 // it's in a to-be-discarded section.
556
557 template<int size, bool big_endian>
558 Sized_symbol<size>*
559 Symbol_table::add_from_object(Object* object,
560                               const char *name,
561                               Stringpool::Key name_key,
562                               const char *version,
563                               Stringpool::Key version_key,
564                               bool def,
565                               const elfcpp::Sym<size, big_endian>& sym,
566                               const elfcpp::Sym<size, big_endian>& orig_sym)
567 {
568   // For an undefined symbol, we may need to adjust the name using
569   // --wrap.
570   if (orig_sym.get_st_shndx() == elfcpp::SHN_UNDEF
571       && parameters->options().any_wrap_symbols())
572     {
573       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
574       if (wrap_name != name)
575         {
576           // If we see a reference to malloc with version GLIBC_2.0,
577           // and we turn it into a reference to __wrap_malloc, then we
578           // discard the version number.  Otherwise the user would be
579           // required to specify the correct version for
580           // __wrap_malloc.
581           version = NULL;
582           version_key = 0;
583           name = wrap_name;
584         }
585     }
586
587   Symbol* const snull = NULL;
588   std::pair<typename Symbol_table_type::iterator, bool> ins =
589     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
590                                        snull));
591
592   std::pair<typename Symbol_table_type::iterator, bool> insdef =
593     std::make_pair(this->table_.end(), false);
594   if (def)
595     {
596       const Stringpool::Key vnull_key = 0;
597       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
598                                                                  vnull_key),
599                                                   snull));
600     }
601
602   // ins.first: an iterator, which is a pointer to a pair.
603   // ins.first->first: the key (a pair of name and version).
604   // ins.first->second: the value (Symbol*).
605   // ins.second: true if new entry was inserted, false if not.
606
607   Sized_symbol<size>* ret;
608   bool was_undefined;
609   bool was_common;
610   if (!ins.second)
611     {
612       // We already have an entry for NAME/VERSION.
613       ret = this->get_sized_symbol<size>(ins.first->second);
614       gold_assert(ret != NULL);
615
616       was_undefined = ret->is_undefined();
617       was_common = ret->is_common();
618
619       this->resolve(ret, sym, orig_sym, object, version);
620
621       if (def)
622         {
623           if (insdef.second)
624             {
625               // This is the first time we have seen NAME/NULL.  Make
626               // NAME/NULL point to NAME/VERSION.
627               insdef.first->second = ret;
628             }
629           else if (insdef.first->second != ret
630                    && insdef.first->second->is_undefined())
631             {
632               // This is the unfortunate case where we already have
633               // entries for both NAME/VERSION and NAME/NULL.  Note
634               // that we don't want to combine them if the existing
635               // symbol is going to override the new one.  FIXME: We
636               // currently just test is_undefined, but this may not do
637               // the right thing if the existing symbol is from a
638               // shared library and the new one is from a regular
639               // object.
640
641               const Sized_symbol<size>* sym2;
642               sym2 = this->get_sized_symbol<size>(insdef.first->second);
643               Symbol_table::resolve<size, big_endian>(ret, sym2, version);
644               this->make_forwarder(insdef.first->second, ret);
645               insdef.first->second = ret;
646             }
647           else
648             def = false;
649         }
650     }
651   else
652     {
653       // This is the first time we have seen NAME/VERSION.
654       gold_assert(ins.first->second == NULL);
655
656       if (def && !insdef.second)
657         {
658           // We already have an entry for NAME/NULL.  If we override
659           // it, then change it to NAME/VERSION.
660           ret = this->get_sized_symbol<size>(insdef.first->second);
661
662           was_undefined = ret->is_undefined();
663           was_common = ret->is_common();
664
665           this->resolve(ret, sym, orig_sym, object, version);
666           ins.first->second = ret;
667         }
668       else
669         {
670           was_undefined = false;
671           was_common = false;
672
673           Sized_target<size, big_endian>* target =
674             object->sized_target<size, big_endian>();
675           if (!target->has_make_symbol())
676             ret = new Sized_symbol<size>();
677           else
678             {
679               ret = target->make_symbol();
680               if (ret == NULL)
681                 {
682                   // This means that we don't want a symbol table
683                   // entry after all.
684                   if (!def)
685                     this->table_.erase(ins.first);
686                   else
687                     {
688                       this->table_.erase(insdef.first);
689                       // Inserting insdef invalidated ins.
690                       this->table_.erase(std::make_pair(name_key,
691                                                         version_key));
692                     }
693                   return NULL;
694                 }
695             }
696
697           ret->init(name, version, object, sym);
698
699           ins.first->second = ret;
700           if (def)
701             {
702               // This is the first time we have seen NAME/NULL.  Point
703               // it at the new entry for NAME/VERSION.
704               gold_assert(insdef.second);
705               insdef.first->second = ret;
706             }
707         }
708     }
709
710   // Record every time we see a new undefined symbol, to speed up
711   // archive groups.
712   if (!was_undefined && ret->is_undefined())
713     ++this->saw_undefined_;
714
715   // Keep track of common symbols, to speed up common symbol
716   // allocation.
717   if (!was_common && ret->is_common())
718     this->commons_.push_back(ret);
719
720   if (def)
721     ret->set_is_default();
722   return ret;
723 }
724
725 // Add all the symbols in a relocatable object to the hash table.
726
727 template<int size, bool big_endian>
728 void
729 Symbol_table::add_from_relobj(
730     Sized_relobj<size, big_endian>* relobj,
731     const unsigned char* syms,
732     size_t count,
733     const char* sym_names,
734     size_t sym_name_size,
735     typename Sized_relobj<size, big_endian>::Symbols* sympointers)
736 {
737   gold_assert(size == relobj->target()->get_size());
738   gold_assert(size == parameters->target().get_size());
739
740   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
741
742   const bool just_symbols = relobj->just_symbols();
743
744   const unsigned char* p = syms;
745   for (size_t i = 0; i < count; ++i, p += sym_size)
746     {
747       elfcpp::Sym<size, big_endian> sym(p);
748       elfcpp::Sym<size, big_endian>* psym = &sym;
749
750       unsigned int st_name = psym->get_st_name();
751       if (st_name >= sym_name_size)
752         {
753           relobj->error(_("bad global symbol name offset %u at %zu"),
754                         st_name, i);
755           continue;
756         }
757
758       const char* name = sym_names + st_name;
759
760       // A symbol defined in a section which we are not including must
761       // be treated as an undefined symbol.
762       unsigned char symbuf[sym_size];
763       elfcpp::Sym<size, big_endian> sym2(symbuf);
764       unsigned int st_shndx = psym->get_st_shndx();
765       if (st_shndx != elfcpp::SHN_UNDEF
766           && st_shndx < elfcpp::SHN_LORESERVE
767           && !relobj->is_section_included(st_shndx))
768         {
769           memcpy(symbuf, p, sym_size);
770           elfcpp::Sym_write<size, big_endian> sw(symbuf);
771           sw.put_st_shndx(elfcpp::SHN_UNDEF);
772           psym = &sym2;
773         }
774
775       // In an object file, an '@' in the name separates the symbol
776       // name from the version name.  If there are two '@' characters,
777       // this is the default version.
778       const char* ver = strchr(name, '@');
779       int namelen = 0;
780       // DEF: is the version default?  LOCAL: is the symbol forced local?
781       bool def = false;
782       bool local = false;
783
784       if (ver != NULL)
785         {
786           // The symbol name is of the form foo@VERSION or foo@@VERSION
787           namelen = ver - name;
788           ++ver;
789           if (*ver == '@')
790             {
791               def = true;
792               ++ver;
793             }
794         }
795       // We don't want to assign a version to an undefined symbol,
796       // even if it is listed in the version script.  FIXME: What
797       // about a common symbol?
798       else if (!version_script_.empty()
799                && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
800         {
801           // The symbol name did not have a version, but
802           // the version script may assign a version anyway.
803           namelen = strlen(name);
804           def = true;
805           // Check the global: entries from the version script.
806           const std::string& version =
807               version_script_.get_symbol_version(name);
808           if (!version.empty())
809             ver = version.c_str();
810           // Check the local: entries from the version script
811           if (version_script_.symbol_is_local(name))
812             local = true;
813         }
814
815       if (just_symbols)
816         {
817           if (psym != &sym2)
818             memcpy(symbuf, p, sym_size);
819           elfcpp::Sym_write<size, big_endian> sw(symbuf);
820           sw.put_st_shndx(elfcpp::SHN_ABS);
821           if (st_shndx != elfcpp::SHN_UNDEF
822               && st_shndx < elfcpp::SHN_LORESERVE)
823             {
824               // Symbol values in object files are section relative.
825               // This is normally what we want, but since here we are
826               // converting the symbol to absolute we need to add the
827               // section address.  The section address in an object
828               // file is normally zero, but people can use a linker
829               // script to change it.
830               sw.put_st_value(sym2.get_st_value()
831                               + relobj->section_address(st_shndx));
832             }
833           psym = &sym2;
834         }
835
836       Sized_symbol<size>* res;
837       if (ver == NULL)
838         {
839           Stringpool::Key name_key;
840           name = this->namepool_.add(name, true, &name_key);
841           res = this->add_from_object(relobj, name, name_key, NULL, 0,
842                                       false, *psym, sym);
843           if (local)
844             this->force_local(res);
845         }
846       else
847         {
848           Stringpool::Key name_key;
849           name = this->namepool_.add_with_length(name, namelen, true,
850                                                  &name_key);
851           Stringpool::Key ver_key;
852           ver = this->namepool_.add(ver, true, &ver_key);
853
854           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
855                                       def, *psym, sym);
856         }
857
858       (*sympointers)[i] = res;
859     }
860 }
861
862 // Add all the symbols in a dynamic object to the hash table.
863
864 template<int size, bool big_endian>
865 void
866 Symbol_table::add_from_dynobj(
867     Sized_dynobj<size, big_endian>* dynobj,
868     const unsigned char* syms,
869     size_t count,
870     const char* sym_names,
871     size_t sym_name_size,
872     const unsigned char* versym,
873     size_t versym_size,
874     const std::vector<const char*>* version_map)
875 {
876   gold_assert(size == dynobj->target()->get_size());
877   gold_assert(size == parameters->target().get_size());
878
879   if (dynobj->just_symbols())
880     {
881       gold_error(_("--just-symbols does not make sense with a shared object"));
882       return;
883     }
884
885   if (versym != NULL && versym_size / 2 < count)
886     {
887       dynobj->error(_("too few symbol versions"));
888       return;
889     }
890
891   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
892
893   // We keep a list of all STT_OBJECT symbols, so that we can resolve
894   // weak aliases.  This is necessary because if the dynamic object
895   // provides the same variable under two names, one of which is a
896   // weak definition, and the regular object refers to the weak
897   // definition, we have to put both the weak definition and the
898   // strong definition into the dynamic symbol table.  Given a weak
899   // definition, the only way that we can find the corresponding
900   // strong definition, if any, is to search the symbol table.
901   std::vector<Sized_symbol<size>*> object_symbols;
902
903   const unsigned char* p = syms;
904   const unsigned char* vs = versym;
905   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
906     {
907       elfcpp::Sym<size, big_endian> sym(p);
908
909       // Ignore symbols with local binding or that have
910       // internal or hidden visibility.
911       if (sym.get_st_bind() == elfcpp::STB_LOCAL
912           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
913           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
914         continue;
915
916       unsigned int st_name = sym.get_st_name();
917       if (st_name >= sym_name_size)
918         {
919           dynobj->error(_("bad symbol name offset %u at %zu"),
920                         st_name, i);
921           continue;
922         }
923
924       const char* name = sym_names + st_name;
925
926       Sized_symbol<size>* res;
927
928       if (versym == NULL)
929         {
930           Stringpool::Key name_key;
931           name = this->namepool_.add(name, true, &name_key);
932           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
933                                       false, sym, sym);
934         }
935       else
936         {
937           // Read the version information.
938
939           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
940
941           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
942           v &= elfcpp::VERSYM_VERSION;
943
944           // The Sun documentation says that V can be VER_NDX_LOCAL,
945           // or VER_NDX_GLOBAL, or a version index.  The meaning of
946           // VER_NDX_LOCAL is defined as "Symbol has local scope."
947           // The old GNU linker will happily generate VER_NDX_LOCAL
948           // for an undefined symbol.  I don't know what the Sun
949           // linker will generate.
950
951           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
952               && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
953             {
954               // This symbol should not be visible outside the object.
955               continue;
956             }
957
958           // At this point we are definitely going to add this symbol.
959           Stringpool::Key name_key;
960           name = this->namepool_.add(name, true, &name_key);
961
962           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
963               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
964             {
965               // This symbol does not have a version.
966               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
967                                           false, sym, sym);
968             }
969           else
970             {
971               if (v >= version_map->size())
972                 {
973                   dynobj->error(_("versym for symbol %zu out of range: %u"),
974                                 i, v);
975                   continue;
976                 }
977
978               const char* version = (*version_map)[v];
979               if (version == NULL)
980                 {
981                   dynobj->error(_("versym for symbol %zu has no name: %u"),
982                                 i, v);
983                   continue;
984                 }
985
986               Stringpool::Key version_key;
987               version = this->namepool_.add(version, true, &version_key);
988
989               // If this is an absolute symbol, and the version name
990               // and symbol name are the same, then this is the
991               // version definition symbol.  These symbols exist to
992               // support using -u to pull in particular versions.  We
993               // do not want to record a version for them.
994               if (sym.get_st_shndx() == elfcpp::SHN_ABS
995                   && name_key == version_key)
996                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
997                                             false, sym, sym);
998               else
999                 {
1000                   const bool def = (!hidden
1001                                     && (sym.get_st_shndx()
1002                                         != elfcpp::SHN_UNDEF));
1003                   res = this->add_from_object(dynobj, name, name_key, version,
1004                                               version_key, def, sym, sym);
1005                 }
1006             }
1007         }
1008
1009       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
1010           && sym.get_st_type() == elfcpp::STT_OBJECT)
1011         object_symbols.push_back(res);
1012     }
1013
1014   this->record_weak_aliases(&object_symbols);
1015 }
1016
1017 // This is used to sort weak aliases.  We sort them first by section
1018 // index, then by offset, then by weak ahead of strong.
1019
1020 template<int size>
1021 class Weak_alias_sorter
1022 {
1023  public:
1024   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1025 };
1026
1027 template<int size>
1028 bool
1029 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1030                                     const Sized_symbol<size>* s2) const
1031 {
1032   if (s1->shndx() != s2->shndx())
1033     return s1->shndx() < s2->shndx();
1034   if (s1->value() != s2->value())
1035     return s1->value() < s2->value();
1036   if (s1->binding() != s2->binding())
1037     {
1038       if (s1->binding() == elfcpp::STB_WEAK)
1039         return true;
1040       if (s2->binding() == elfcpp::STB_WEAK)
1041         return false;
1042     }
1043   return std::string(s1->name()) < std::string(s2->name());
1044 }
1045
1046 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1047 // for any weak aliases, and record them so that if we add the weak
1048 // alias to the dynamic symbol table, we also add the corresponding
1049 // strong symbol.
1050
1051 template<int size>
1052 void
1053 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1054 {
1055   // Sort the vector by section index, then by offset, then by weak
1056   // ahead of strong.
1057   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1058
1059   // Walk through the vector.  For each weak definition, record
1060   // aliases.
1061   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1062          symbols->begin();
1063        p != symbols->end();
1064        ++p)
1065     {
1066       if ((*p)->binding() != elfcpp::STB_WEAK)
1067         continue;
1068
1069       // Build a circular list of weak aliases.  Each symbol points to
1070       // the next one in the circular list.
1071
1072       Sized_symbol<size>* from_sym = *p;
1073       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1074       for (q = p + 1; q != symbols->end(); ++q)
1075         {
1076           if ((*q)->shndx() != from_sym->shndx()
1077               || (*q)->value() != from_sym->value())
1078             break;
1079
1080           this->weak_aliases_[from_sym] = *q;
1081           from_sym->set_has_alias();
1082           from_sym = *q;
1083         }
1084
1085       if (from_sym != *p)
1086         {
1087           this->weak_aliases_[from_sym] = *p;
1088           from_sym->set_has_alias();
1089         }
1090
1091       p = q - 1;
1092     }
1093 }
1094
1095 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1096 // true, then only create the symbol if there is a reference to it.
1097 // If this does not return NULL, it sets *POLDSYM to the existing
1098 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1099
1100 template<int size, bool big_endian>
1101 Sized_symbol<size>*
1102 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1103                                     bool only_if_ref,
1104                                     Sized_symbol<size>** poldsym)
1105 {
1106   Symbol* oldsym;
1107   Sized_symbol<size>* sym;
1108   bool add_to_table = false;
1109   typename Symbol_table_type::iterator add_loc = this->table_.end();
1110
1111   // If the caller didn't give us a version, see if we get one from
1112   // the version script.
1113   if (*pversion == NULL)
1114     {
1115       const std::string& v(this->version_script_.get_symbol_version(*pname));
1116       if (!v.empty())
1117         *pversion = v.c_str();
1118     }
1119
1120   if (only_if_ref)
1121     {
1122       oldsym = this->lookup(*pname, *pversion);
1123       if (oldsym == NULL || !oldsym->is_undefined())
1124         return NULL;
1125
1126       *pname = oldsym->name();
1127       *pversion = oldsym->version();
1128     }
1129   else
1130     {
1131       // Canonicalize NAME and VERSION.
1132       Stringpool::Key name_key;
1133       *pname = this->namepool_.add(*pname, true, &name_key);
1134
1135       Stringpool::Key version_key = 0;
1136       if (*pversion != NULL)
1137         *pversion = this->namepool_.add(*pversion, true, &version_key);
1138
1139       Symbol* const snull = NULL;
1140       std::pair<typename Symbol_table_type::iterator, bool> ins =
1141         this->table_.insert(std::make_pair(std::make_pair(name_key,
1142                                                           version_key),
1143                                            snull));
1144
1145       if (!ins.second)
1146         {
1147           // We already have a symbol table entry for NAME/VERSION.
1148           oldsym = ins.first->second;
1149           gold_assert(oldsym != NULL);
1150         }
1151       else
1152         {
1153           // We haven't seen this symbol before.
1154           gold_assert(ins.first->second == NULL);
1155           add_to_table = true;
1156           add_loc = ins.first;
1157           oldsym = NULL;
1158         }
1159     }
1160
1161   const Target& target = parameters->target();
1162   if (!target.has_make_symbol())
1163     sym = new Sized_symbol<size>();
1164   else
1165     {
1166       gold_assert(target.get_size() == size);
1167       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1168       typedef Sized_target<size, big_endian> My_target;
1169       const My_target* sized_target =
1170           static_cast<const My_target*>(&target);
1171       sym = sized_target->make_symbol();
1172       if (sym == NULL)
1173         return NULL;
1174     }
1175
1176   if (add_to_table)
1177     add_loc->second = sym;
1178   else
1179     gold_assert(oldsym != NULL);
1180
1181   *poldsym = this->get_sized_symbol<size>(oldsym);
1182
1183   return sym;
1184 }
1185
1186 // Define a symbol based on an Output_data.
1187
1188 Symbol*
1189 Symbol_table::define_in_output_data(const char* name,
1190                                     const char* version,
1191                                     Output_data* od,
1192                                     uint64_t value,
1193                                     uint64_t symsize,
1194                                     elfcpp::STT type,
1195                                     elfcpp::STB binding,
1196                                     elfcpp::STV visibility,
1197                                     unsigned char nonvis,
1198                                     bool offset_is_from_end,
1199                                     bool only_if_ref)
1200 {
1201   if (parameters->target().get_size() == 32)
1202     {
1203 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1204       return this->do_define_in_output_data<32>(name, version, od,
1205                                                 value, symsize, type, binding,
1206                                                 visibility, nonvis,
1207                                                 offset_is_from_end,
1208                                                 only_if_ref);
1209 #else
1210       gold_unreachable();
1211 #endif
1212     }
1213   else if (parameters->target().get_size() == 64)
1214     {
1215 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1216       return this->do_define_in_output_data<64>(name, version, od,
1217                                                 value, symsize, type, binding,
1218                                                 visibility, nonvis,
1219                                                 offset_is_from_end,
1220                                                 only_if_ref);
1221 #else
1222       gold_unreachable();
1223 #endif
1224     }
1225   else
1226     gold_unreachable();
1227 }
1228
1229 // Define a symbol in an Output_data, sized version.
1230
1231 template<int size>
1232 Sized_symbol<size>*
1233 Symbol_table::do_define_in_output_data(
1234     const char* name,
1235     const char* version,
1236     Output_data* od,
1237     typename elfcpp::Elf_types<size>::Elf_Addr value,
1238     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1239     elfcpp::STT type,
1240     elfcpp::STB binding,
1241     elfcpp::STV visibility,
1242     unsigned char nonvis,
1243     bool offset_is_from_end,
1244     bool only_if_ref)
1245 {
1246   Sized_symbol<size>* sym;
1247   Sized_symbol<size>* oldsym;
1248
1249   if (parameters->target().is_big_endian())
1250     {
1251 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1252       sym = this->define_special_symbol<size, true>(&name, &version,
1253                                                     only_if_ref, &oldsym);
1254 #else
1255       gold_unreachable();
1256 #endif
1257     }
1258   else
1259     {
1260 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1261       sym = this->define_special_symbol<size, false>(&name, &version,
1262                                                      only_if_ref, &oldsym);
1263 #else
1264       gold_unreachable();
1265 #endif
1266     }
1267
1268   if (sym == NULL)
1269     return NULL;
1270
1271   gold_assert(version == NULL || oldsym != NULL);
1272   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1273             offset_is_from_end);
1274
1275   if (oldsym == NULL)
1276     {
1277       if (binding == elfcpp::STB_LOCAL
1278           || this->version_script_.symbol_is_local(name))
1279         this->force_local(sym);
1280       return sym;
1281     }
1282
1283   if (Symbol_table::should_override_with_special(oldsym))
1284     this->override_with_special(oldsym, sym);
1285   delete sym;
1286   return oldsym;
1287 }
1288
1289 // Define a symbol based on an Output_segment.
1290
1291 Symbol*
1292 Symbol_table::define_in_output_segment(const char* name,
1293                                        const char* version, Output_segment* os,
1294                                        uint64_t value,
1295                                        uint64_t symsize,
1296                                        elfcpp::STT type,
1297                                        elfcpp::STB binding,
1298                                        elfcpp::STV visibility,
1299                                        unsigned char nonvis,
1300                                        Symbol::Segment_offset_base offset_base,
1301                                        bool only_if_ref)
1302 {
1303   if (parameters->target().get_size() == 32)
1304     {
1305 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1306       return this->do_define_in_output_segment<32>(name, version, os,
1307                                                    value, symsize, type,
1308                                                    binding, visibility, nonvis,
1309                                                    offset_base, only_if_ref);
1310 #else
1311       gold_unreachable();
1312 #endif
1313     }
1314   else if (parameters->target().get_size() == 64)
1315     {
1316 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1317       return this->do_define_in_output_segment<64>(name, version, os,
1318                                                    value, symsize, type,
1319                                                    binding, visibility, nonvis,
1320                                                    offset_base, only_if_ref);
1321 #else
1322       gold_unreachable();
1323 #endif
1324     }
1325   else
1326     gold_unreachable();
1327 }
1328
1329 // Define a symbol in an Output_segment, sized version.
1330
1331 template<int size>
1332 Sized_symbol<size>*
1333 Symbol_table::do_define_in_output_segment(
1334     const char* name,
1335     const char* version,
1336     Output_segment* os,
1337     typename elfcpp::Elf_types<size>::Elf_Addr value,
1338     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1339     elfcpp::STT type,
1340     elfcpp::STB binding,
1341     elfcpp::STV visibility,
1342     unsigned char nonvis,
1343     Symbol::Segment_offset_base offset_base,
1344     bool only_if_ref)
1345 {
1346   Sized_symbol<size>* sym;
1347   Sized_symbol<size>* oldsym;
1348
1349   if (parameters->target().is_big_endian())
1350     {
1351 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1352       sym = this->define_special_symbol<size, true>(&name, &version,
1353                                                     only_if_ref, &oldsym);
1354 #else
1355       gold_unreachable();
1356 #endif
1357     }
1358   else
1359     {
1360 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1361       sym = this->define_special_symbol<size, false>(&name, &version,
1362                                                      only_if_ref, &oldsym);
1363 #else
1364       gold_unreachable();
1365 #endif
1366     }
1367
1368   if (sym == NULL)
1369     return NULL;
1370
1371   gold_assert(version == NULL || oldsym != NULL);
1372   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1373             offset_base);
1374
1375   if (oldsym == NULL)
1376     {
1377       if (binding == elfcpp::STB_LOCAL
1378           || this->version_script_.symbol_is_local(name))
1379         this->force_local(sym);
1380       return sym;
1381     }
1382
1383   if (Symbol_table::should_override_with_special(oldsym))
1384     this->override_with_special(oldsym, sym);
1385   delete sym;
1386   return oldsym;
1387 }
1388
1389 // Define a special symbol with a constant value.  It is a multiple
1390 // definition error if this symbol is already defined.
1391
1392 Symbol*
1393 Symbol_table::define_as_constant(const char* name,
1394                                  const char* version,
1395                                  uint64_t value,
1396                                  uint64_t symsize,
1397                                  elfcpp::STT type,
1398                                  elfcpp::STB binding,
1399                                  elfcpp::STV visibility,
1400                                  unsigned char nonvis,
1401                                  bool only_if_ref,
1402                                  bool force_override)
1403 {
1404   if (parameters->target().get_size() == 32)
1405     {
1406 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1407       return this->do_define_as_constant<32>(name, version, value,
1408                                              symsize, type, binding,
1409                                              visibility, nonvis, only_if_ref,
1410                                              force_override);
1411 #else
1412       gold_unreachable();
1413 #endif
1414     }
1415   else if (parameters->target().get_size() == 64)
1416     {
1417 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1418       return this->do_define_as_constant<64>(name, version, value,
1419                                              symsize, type, binding,
1420                                              visibility, nonvis, only_if_ref,
1421                                              force_override);
1422 #else
1423       gold_unreachable();
1424 #endif
1425     }
1426   else
1427     gold_unreachable();
1428 }
1429
1430 // Define a symbol as a constant, sized version.
1431
1432 template<int size>
1433 Sized_symbol<size>*
1434 Symbol_table::do_define_as_constant(
1435     const char* name,
1436     const char* version,
1437     typename elfcpp::Elf_types<size>::Elf_Addr value,
1438     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1439     elfcpp::STT type,
1440     elfcpp::STB binding,
1441     elfcpp::STV visibility,
1442     unsigned char nonvis,
1443     bool only_if_ref,
1444     bool force_override)
1445 {
1446   Sized_symbol<size>* sym;
1447   Sized_symbol<size>* oldsym;
1448
1449   if (parameters->target().is_big_endian())
1450     {
1451 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1452       sym = this->define_special_symbol<size, true>(&name, &version,
1453                                                     only_if_ref, &oldsym);
1454 #else
1455       gold_unreachable();
1456 #endif
1457     }
1458   else
1459     {
1460 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1461       sym = this->define_special_symbol<size, false>(&name, &version,
1462                                                      only_if_ref, &oldsym);
1463 #else
1464       gold_unreachable();
1465 #endif
1466     }
1467
1468   if (sym == NULL)
1469     return NULL;
1470
1471   gold_assert(version == NULL || version == name || oldsym != NULL);
1472   sym->init(name, value, symsize, type, binding, visibility, nonvis);
1473
1474   if (oldsym == NULL)
1475     {
1476       // Version symbols are absolute symbols with name == version.
1477       // We don't want to force them to be local.
1478       if ((version == NULL
1479            || name != version
1480            || value != 0)
1481           && (binding == elfcpp::STB_LOCAL
1482               || this->version_script_.symbol_is_local(name)))
1483         this->force_local(sym);
1484       return sym;
1485     }
1486
1487   if (force_override || Symbol_table::should_override_with_special(oldsym))
1488     this->override_with_special(oldsym, sym);
1489   delete sym;
1490   return oldsym;
1491 }
1492
1493 // Define a set of symbols in output sections.
1494
1495 void
1496 Symbol_table::define_symbols(const Layout* layout, int count,
1497                              const Define_symbol_in_section* p,
1498                              bool only_if_ref)
1499 {
1500   for (int i = 0; i < count; ++i, ++p)
1501     {
1502       Output_section* os = layout->find_output_section(p->output_section);
1503       if (os != NULL)
1504         this->define_in_output_data(p->name, NULL, os, p->value,
1505                                     p->size, p->type, p->binding,
1506                                     p->visibility, p->nonvis,
1507                                     p->offset_is_from_end,
1508                                     only_if_ref || p->only_if_ref);
1509       else
1510         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1511                                  p->binding, p->visibility, p->nonvis,
1512                                  only_if_ref || p->only_if_ref,
1513                                  false);
1514     }
1515 }
1516
1517 // Define a set of symbols in output segments.
1518
1519 void
1520 Symbol_table::define_symbols(const Layout* layout, int count,
1521                              const Define_symbol_in_segment* p,
1522                              bool only_if_ref)
1523 {
1524   for (int i = 0; i < count; ++i, ++p)
1525     {
1526       Output_segment* os = layout->find_output_segment(p->segment_type,
1527                                                        p->segment_flags_set,
1528                                                        p->segment_flags_clear);
1529       if (os != NULL)
1530         this->define_in_output_segment(p->name, NULL, os, p->value,
1531                                        p->size, p->type, p->binding,
1532                                        p->visibility, p->nonvis,
1533                                        p->offset_base,
1534                                        only_if_ref || p->only_if_ref);
1535       else
1536         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1537                                  p->binding, p->visibility, p->nonvis,
1538                                  only_if_ref || p->only_if_ref,
1539                                  false);
1540     }
1541 }
1542
1543 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1544 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1545 // the offset within POSD.
1546
1547 template<int size>
1548 void
1549 Symbol_table::define_with_copy_reloc(
1550     Sized_symbol<size>* csym,
1551     Output_data* posd,
1552     typename elfcpp::Elf_types<size>::Elf_Addr value)
1553 {
1554   gold_assert(csym->is_from_dynobj());
1555   gold_assert(!csym->is_copied_from_dynobj());
1556   Object* object = csym->object();
1557   gold_assert(object->is_dynamic());
1558   Dynobj* dynobj = static_cast<Dynobj*>(object);
1559
1560   // Our copied variable has to override any variable in a shared
1561   // library.
1562   elfcpp::STB binding = csym->binding();
1563   if (binding == elfcpp::STB_WEAK)
1564     binding = elfcpp::STB_GLOBAL;
1565
1566   this->define_in_output_data(csym->name(), csym->version(),
1567                               posd, value, csym->symsize(),
1568                               csym->type(), binding,
1569                               csym->visibility(), csym->nonvis(),
1570                               false, false);
1571
1572   csym->set_is_copied_from_dynobj();
1573   csym->set_needs_dynsym_entry();
1574
1575   this->copied_symbol_dynobjs_[csym] = dynobj;
1576
1577   // We have now defined all aliases, but we have not entered them all
1578   // in the copied_symbol_dynobjs_ map.
1579   if (csym->has_alias())
1580     {
1581       Symbol* sym = csym;
1582       while (true)
1583         {
1584           sym = this->weak_aliases_[sym];
1585           if (sym == csym)
1586             break;
1587           gold_assert(sym->output_data() == posd);
1588
1589           sym->set_is_copied_from_dynobj();
1590           this->copied_symbol_dynobjs_[sym] = dynobj;
1591         }
1592     }
1593 }
1594
1595 // SYM is defined using a COPY reloc.  Return the dynamic object where
1596 // the original definition was found.
1597
1598 Dynobj*
1599 Symbol_table::get_copy_source(const Symbol* sym) const
1600 {
1601   gold_assert(sym->is_copied_from_dynobj());
1602   Copied_symbol_dynobjs::const_iterator p =
1603     this->copied_symbol_dynobjs_.find(sym);
1604   gold_assert(p != this->copied_symbol_dynobjs_.end());
1605   return p->second;
1606 }
1607
1608 // Set the dynamic symbol indexes.  INDEX is the index of the first
1609 // global dynamic symbol.  Pointers to the symbols are stored into the
1610 // vector SYMS.  The names are added to DYNPOOL.  This returns an
1611 // updated dynamic symbol index.
1612
1613 unsigned int
1614 Symbol_table::set_dynsym_indexes(unsigned int index,
1615                                  std::vector<Symbol*>* syms,
1616                                  Stringpool* dynpool,
1617                                  Versions* versions)
1618 {
1619   for (Symbol_table_type::iterator p = this->table_.begin();
1620        p != this->table_.end();
1621        ++p)
1622     {
1623       Symbol* sym = p->second;
1624
1625       // Note that SYM may already have a dynamic symbol index, since
1626       // some symbols appear more than once in the symbol table, with
1627       // and without a version.
1628
1629       if (!sym->should_add_dynsym_entry())
1630         sym->set_dynsym_index(-1U);
1631       else if (!sym->has_dynsym_index())
1632         {
1633           sym->set_dynsym_index(index);
1634           ++index;
1635           syms->push_back(sym);
1636           dynpool->add(sym->name(), false, NULL);
1637
1638           // Record any version information.
1639           if (sym->version() != NULL)
1640             versions->record_version(this, dynpool, sym);
1641         }
1642     }
1643
1644   // Finish up the versions.  In some cases this may add new dynamic
1645   // symbols.
1646   index = versions->finalize(this, index, syms);
1647
1648   return index;
1649 }
1650
1651 // Set the final values for all the symbols.  The index of the first
1652 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
1653 // file offset OFF.  Add their names to POOL.  Return the new file
1654 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
1655
1656 off_t
1657 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1658                        size_t dyncount, Stringpool* pool,
1659                        unsigned int *plocal_symcount)
1660 {
1661   off_t ret;
1662
1663   gold_assert(*plocal_symcount != 0);
1664   this->first_global_index_ = *plocal_symcount;
1665
1666   this->dynamic_offset_ = dynoff;
1667   this->first_dynamic_global_index_ = dyn_global_index;
1668   this->dynamic_count_ = dyncount;
1669
1670   if (parameters->target().get_size() == 32)
1671     {
1672 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1673       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1674 #else
1675       gold_unreachable();
1676 #endif
1677     }
1678   else if (parameters->target().get_size() == 64)
1679     {
1680 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1681       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1682 #else
1683       gold_unreachable();
1684 #endif
1685     }
1686   else
1687     gold_unreachable();
1688
1689   // Now that we have the final symbol table, we can reliably note
1690   // which symbols should get warnings.
1691   this->warnings_.note_warnings(this);
1692
1693   return ret;
1694 }
1695
1696 // SYM is going into the symbol table at *PINDEX.  Add the name to
1697 // POOL, update *PINDEX and *POFF.
1698
1699 template<int size>
1700 void
1701 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1702                                   unsigned int* pindex, off_t* poff)
1703 {
1704   sym->set_symtab_index(*pindex);
1705   pool->add(sym->name(), false, NULL);
1706   ++*pindex;
1707   *poff += elfcpp::Elf_sizes<size>::sym_size;
1708 }
1709
1710 // Set the final value for all the symbols.  This is called after
1711 // Layout::finalize, so all the output sections have their final
1712 // address.
1713
1714 template<int size>
1715 off_t
1716 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1717                              unsigned int* plocal_symcount)
1718 {
1719   off = align_address(off, size >> 3);
1720   this->offset_ = off;
1721
1722   unsigned int index = *plocal_symcount;
1723   const unsigned int orig_index = index;
1724
1725   // First do all the symbols which have been forced to be local, as
1726   // they must appear before all global symbols.
1727   for (Forced_locals::iterator p = this->forced_locals_.begin();
1728        p != this->forced_locals_.end();
1729        ++p)
1730     {
1731       Symbol* sym = *p;
1732       gold_assert(sym->is_forced_local());
1733       if (this->sized_finalize_symbol<size>(sym))
1734         {
1735           this->add_to_final_symtab<size>(sym, pool, &index, &off);
1736           ++*plocal_symcount;
1737         }
1738     }
1739
1740   // Now do all the remaining symbols.
1741   for (Symbol_table_type::iterator p = this->table_.begin();
1742        p != this->table_.end();
1743        ++p)
1744     {
1745       Symbol* sym = p->second;
1746       if (this->sized_finalize_symbol<size>(sym))
1747         this->add_to_final_symtab<size>(sym, pool, &index, &off);
1748     }
1749
1750   this->output_count_ = index - orig_index;
1751
1752   return off;
1753 }
1754
1755 // Finalize the symbol SYM.  This returns true if the symbol should be
1756 // added to the symbol table, false otherwise.
1757
1758 template<int size>
1759 bool
1760 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1761 {
1762   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1763
1764   // The default version of a symbol may appear twice in the symbol
1765   // table.  We only need to finalize it once.
1766   if (sym->has_symtab_index())
1767     return false;
1768
1769   if (!sym->in_reg())
1770     {
1771       gold_assert(!sym->has_symtab_index());
1772       sym->set_symtab_index(-1U);
1773       gold_assert(sym->dynsym_index() == -1U);
1774       return false;
1775     }
1776
1777   typename Sized_symbol<size>::Value_type value;
1778
1779   switch (sym->source())
1780     {
1781     case Symbol::FROM_OBJECT:
1782       {
1783         unsigned int shndx = sym->shndx();
1784
1785         // FIXME: We need some target specific support here.
1786         if (shndx >= elfcpp::SHN_LORESERVE
1787             && shndx != elfcpp::SHN_ABS
1788             && shndx != elfcpp::SHN_COMMON)
1789           {
1790             gold_error(_("%s: unsupported symbol section 0x%x"),
1791                        sym->demangled_name().c_str(), shndx);
1792             shndx = elfcpp::SHN_UNDEF;
1793           }
1794
1795         Object* symobj = sym->object();
1796         if (symobj->is_dynamic())
1797           {
1798             value = 0;
1799             shndx = elfcpp::SHN_UNDEF;
1800           }
1801         else if (shndx == elfcpp::SHN_UNDEF)
1802           value = 0;
1803         else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1804           value = sym->value();
1805         else
1806           {
1807             Relobj* relobj = static_cast<Relobj*>(symobj);
1808             section_offset_type secoff;
1809             Output_section* os = relobj->output_section(shndx, &secoff);
1810
1811             if (os == NULL)
1812               {
1813                 sym->set_symtab_index(-1U);
1814                 gold_assert(sym->dynsym_index() == -1U);
1815                 return false;
1816               }
1817
1818             if (sym->type() == elfcpp::STT_TLS)
1819               value = sym->value() + os->tls_offset() + secoff;
1820             else
1821               value = sym->value() + os->address() + secoff;
1822           }
1823       }
1824       break;
1825
1826     case Symbol::IN_OUTPUT_DATA:
1827       {
1828         Output_data* od = sym->output_data();
1829         value = sym->value() + od->address();
1830         if (sym->offset_is_from_end())
1831           value += od->data_size();
1832       }
1833       break;
1834
1835     case Symbol::IN_OUTPUT_SEGMENT:
1836       {
1837         Output_segment* os = sym->output_segment();
1838         value = sym->value() + os->vaddr();
1839         switch (sym->offset_base())
1840           {
1841           case Symbol::SEGMENT_START:
1842             break;
1843           case Symbol::SEGMENT_END:
1844             value += os->memsz();
1845             break;
1846           case Symbol::SEGMENT_BSS:
1847             value += os->filesz();
1848             break;
1849           default:
1850             gold_unreachable();
1851           }
1852       }
1853       break;
1854
1855     case Symbol::CONSTANT:
1856       value = sym->value();
1857       break;
1858
1859     default:
1860       gold_unreachable();
1861     }
1862
1863   sym->set_value(value);
1864
1865   if (parameters->options().strip_all())
1866     {
1867       sym->set_symtab_index(-1U);
1868       return false;
1869     }
1870
1871   return true;
1872 }
1873
1874 // Write out the global symbols.
1875
1876 void
1877 Symbol_table::write_globals(const Input_objects* input_objects,
1878                             const Stringpool* sympool,
1879                             const Stringpool* dynpool, Output_file* of) const
1880 {
1881   switch (parameters->size_and_endianness())
1882     {
1883 #ifdef HAVE_TARGET_32_LITTLE
1884     case Parameters::TARGET_32_LITTLE:
1885       this->sized_write_globals<32, false>(input_objects, sympool,
1886                                            dynpool, of);
1887       break;
1888 #endif
1889 #ifdef HAVE_TARGET_32_BIG
1890     case Parameters::TARGET_32_BIG:
1891       this->sized_write_globals<32, true>(input_objects, sympool,
1892                                           dynpool, of);
1893       break;
1894 #endif
1895 #ifdef HAVE_TARGET_64_LITTLE
1896     case Parameters::TARGET_64_LITTLE:
1897       this->sized_write_globals<64, false>(input_objects, sympool,
1898                                            dynpool, of);
1899       break;
1900 #endif
1901 #ifdef HAVE_TARGET_64_BIG
1902     case Parameters::TARGET_64_BIG:
1903       this->sized_write_globals<64, true>(input_objects, sympool,
1904                                           dynpool, of);
1905       break;
1906 #endif
1907     default:
1908       gold_unreachable();
1909     }
1910 }
1911
1912 // Write out the global symbols.
1913
1914 template<int size, bool big_endian>
1915 void
1916 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1917                                   const Stringpool* sympool,
1918                                   const Stringpool* dynpool,
1919                                   Output_file* of) const
1920 {
1921   const Target& target = parameters->target();
1922
1923   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1924
1925   const unsigned int output_count = this->output_count_;
1926   const section_size_type oview_size = output_count * sym_size;
1927   const unsigned int first_global_index = this->first_global_index_;
1928   unsigned char* psyms;
1929   if (this->offset_ == 0 || output_count == 0)
1930     psyms = NULL;
1931   else
1932     psyms = of->get_output_view(this->offset_, oview_size);
1933
1934   const unsigned int dynamic_count = this->dynamic_count_;
1935   const section_size_type dynamic_size = dynamic_count * sym_size;
1936   const unsigned int first_dynamic_global_index =
1937     this->first_dynamic_global_index_;
1938   unsigned char* dynamic_view;
1939   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1940     dynamic_view = NULL;
1941   else
1942     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1943
1944   for (Symbol_table_type::const_iterator p = this->table_.begin();
1945        p != this->table_.end();
1946        ++p)
1947     {
1948       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1949
1950       // Possibly warn about unresolved symbols in shared libraries.
1951       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1952
1953       unsigned int sym_index = sym->symtab_index();
1954       unsigned int dynsym_index;
1955       if (dynamic_view == NULL)
1956         dynsym_index = -1U;
1957       else
1958         dynsym_index = sym->dynsym_index();
1959
1960       if (sym_index == -1U && dynsym_index == -1U)
1961         {
1962           // This symbol is not included in the output file.
1963           continue;
1964         }
1965
1966       unsigned int shndx;
1967       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1968       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1969       switch (sym->source())
1970         {
1971         case Symbol::FROM_OBJECT:
1972           {
1973             unsigned int in_shndx = sym->shndx();
1974
1975             // FIXME: We need some target specific support here.
1976             if (in_shndx >= elfcpp::SHN_LORESERVE
1977                 && in_shndx != elfcpp::SHN_ABS
1978                 && in_shndx != elfcpp::SHN_COMMON)
1979               {
1980                 gold_error(_("%s: unsupported symbol section 0x%x"),
1981                            sym->demangled_name().c_str(), in_shndx);
1982                 shndx = in_shndx;
1983               }
1984             else
1985               {
1986                 Object* symobj = sym->object();
1987                 if (symobj->is_dynamic())
1988                   {
1989                     if (sym->needs_dynsym_value())
1990                       dynsym_value = target.dynsym_value(sym);
1991                     shndx = elfcpp::SHN_UNDEF;
1992                   }
1993                 else if (in_shndx == elfcpp::SHN_UNDEF
1994                          || in_shndx == elfcpp::SHN_ABS
1995                          || in_shndx == elfcpp::SHN_COMMON)
1996                   shndx = in_shndx;
1997                 else
1998                   {
1999                     Relobj* relobj = static_cast<Relobj*>(symobj);
2000                     section_offset_type secoff;
2001                     Output_section* os = relobj->output_section(in_shndx,
2002                                                                 &secoff);
2003                     gold_assert(os != NULL);
2004                     shndx = os->out_shndx();
2005
2006                     // In object files symbol values are section
2007                     // relative.
2008                     if (parameters->options().relocatable())
2009                       sym_value -= os->address();
2010                   }
2011               }
2012           }
2013           break;
2014
2015         case Symbol::IN_OUTPUT_DATA:
2016           shndx = sym->output_data()->out_shndx();
2017           break;
2018
2019         case Symbol::IN_OUTPUT_SEGMENT:
2020           shndx = elfcpp::SHN_ABS;
2021           break;
2022
2023         case Symbol::CONSTANT:
2024           shndx = elfcpp::SHN_ABS;
2025           break;
2026
2027         default:
2028           gold_unreachable();
2029         }
2030
2031       if (sym_index != -1U)
2032         {
2033           sym_index -= first_global_index;
2034           gold_assert(sym_index < output_count);
2035           unsigned char* ps = psyms + (sym_index * sym_size);
2036           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2037                                                      sympool, ps);
2038         }
2039
2040       if (dynsym_index != -1U)
2041         {
2042           dynsym_index -= first_dynamic_global_index;
2043           gold_assert(dynsym_index < dynamic_count);
2044           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2045           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2046                                                      dynpool, pd);
2047         }
2048     }
2049
2050   of->write_output_view(this->offset_, oview_size, psyms);
2051   if (dynamic_view != NULL)
2052     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2053 }
2054
2055 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2056 // strtab holding the name.
2057
2058 template<int size, bool big_endian>
2059 void
2060 Symbol_table::sized_write_symbol(
2061     Sized_symbol<size>* sym,
2062     typename elfcpp::Elf_types<size>::Elf_Addr value,
2063     unsigned int shndx,
2064     const Stringpool* pool,
2065     unsigned char* p) const
2066 {
2067   elfcpp::Sym_write<size, big_endian> osym(p);
2068   osym.put_st_name(pool->get_offset(sym->name()));
2069   osym.put_st_value(value);
2070   osym.put_st_size(sym->symsize());
2071   // A version script may have overridden the default binding.
2072   if (sym->is_forced_local())
2073     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2074   else
2075     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2076   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2077   osym.put_st_shndx(shndx);
2078 }
2079
2080 // Check for unresolved symbols in shared libraries.  This is
2081 // controlled by the --allow-shlib-undefined option.
2082
2083 // We only warn about libraries for which we have seen all the
2084 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2085 // which were not seen in this link.  If we didn't see a DT_NEEDED
2086 // entry, we aren't going to be able to reliably report whether the
2087 // symbol is undefined.
2088
2089 // We also don't warn about libraries found in the system library
2090 // directory (the directory were we find libc.so); we assume that
2091 // those libraries are OK.  This heuristic avoids problems in
2092 // GNU/Linux, in which -ldl can have undefined references satisfied by
2093 // ld-linux.so.
2094
2095 inline void
2096 Symbol_table::warn_about_undefined_dynobj_symbol(
2097     const Input_objects* input_objects,
2098     Symbol* sym) const
2099 {
2100   if (sym->source() == Symbol::FROM_OBJECT
2101       && sym->object()->is_dynamic()
2102       && sym->shndx() == elfcpp::SHN_UNDEF
2103       && sym->binding() != elfcpp::STB_WEAK
2104       && !parameters->options().allow_shlib_undefined()
2105       && !parameters->target().is_defined_by_abi(sym)
2106       && !input_objects->found_in_system_library_directory(sym->object()))
2107     {
2108       // A very ugly cast.
2109       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2110       if (!dynobj->has_unknown_needed_entries())
2111         gold_error(_("%s: undefined reference to '%s'"),
2112                    sym->object()->name().c_str(),
2113                    sym->demangled_name().c_str());
2114     }
2115 }
2116
2117 // Write out a section symbol.  Return the update offset.
2118
2119 void
2120 Symbol_table::write_section_symbol(const Output_section *os,
2121                                    Output_file* of,
2122                                    off_t offset) const
2123 {
2124   switch (parameters->size_and_endianness())
2125     {
2126 #ifdef HAVE_TARGET_32_LITTLE
2127     case Parameters::TARGET_32_LITTLE:
2128       this->sized_write_section_symbol<32, false>(os, of, offset);
2129       break;
2130 #endif
2131 #ifdef HAVE_TARGET_32_BIG
2132     case Parameters::TARGET_32_BIG:
2133       this->sized_write_section_symbol<32, true>(os, of, offset);
2134       break;
2135 #endif
2136 #ifdef HAVE_TARGET_64_LITTLE
2137     case Parameters::TARGET_64_LITTLE:
2138       this->sized_write_section_symbol<64, false>(os, of, offset);
2139       break;
2140 #endif
2141 #ifdef HAVE_TARGET_64_BIG
2142     case Parameters::TARGET_64_BIG:
2143       this->sized_write_section_symbol<64, true>(os, of, offset);
2144       break;
2145 #endif
2146     default:
2147       gold_unreachable();
2148     }
2149 }
2150
2151 // Write out a section symbol, specialized for size and endianness.
2152
2153 template<int size, bool big_endian>
2154 void
2155 Symbol_table::sized_write_section_symbol(const Output_section* os,
2156                                          Output_file* of,
2157                                          off_t offset) const
2158 {
2159   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2160
2161   unsigned char* pov = of->get_output_view(offset, sym_size);
2162
2163   elfcpp::Sym_write<size, big_endian> osym(pov);
2164   osym.put_st_name(0);
2165   osym.put_st_value(os->address());
2166   osym.put_st_size(0);
2167   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2168                                        elfcpp::STT_SECTION));
2169   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2170   osym.put_st_shndx(os->out_shndx());
2171
2172   of->write_output_view(offset, sym_size, pov);
2173 }
2174
2175 // Print statistical information to stderr.  This is used for --stats.
2176
2177 void
2178 Symbol_table::print_stats() const
2179 {
2180 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2181   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2182           program_name, this->table_.size(), this->table_.bucket_count());
2183 #else
2184   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2185           program_name, this->table_.size());
2186 #endif
2187   this->namepool_.print_stats("symbol table stringpool");
2188 }
2189
2190 // We check for ODR violations by looking for symbols with the same
2191 // name for which the debugging information reports that they were
2192 // defined in different source locations.  When comparing the source
2193 // location, we consider instances with the same base filename and
2194 // line number to be the same.  This is because different object
2195 // files/shared libraries can include the same header file using
2196 // different paths, and we don't want to report an ODR violation in
2197 // that case.
2198
2199 // This struct is used to compare line information, as returned by
2200 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2201 // operator used with std::set.
2202
2203 struct Odr_violation_compare
2204 {
2205   bool
2206   operator()(const std::string& s1, const std::string& s2) const
2207   {
2208     std::string::size_type pos1 = s1.rfind('/');
2209     std::string::size_type pos2 = s2.rfind('/');
2210     if (pos1 == std::string::npos
2211         || pos2 == std::string::npos)
2212       return s1 < s2;
2213     return s1.compare(pos1, std::string::npos,
2214                       s2, pos2, std::string::npos) < 0;
2215   }
2216 };
2217
2218 // Check candidate_odr_violations_ to find symbols with the same name
2219 // but apparently different definitions (different source-file/line-no).
2220
2221 void
2222 Symbol_table::detect_odr_violations(const Task* task,
2223                                     const char* output_file_name) const
2224 {
2225   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2226        it != candidate_odr_violations_.end();
2227        ++it)
2228     {
2229       const char* symbol_name = it->first;
2230       // We use a sorted set so the output is deterministic.
2231       std::set<std::string, Odr_violation_compare> line_nums;
2232
2233       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2234                locs = it->second.begin();
2235            locs != it->second.end();
2236            ++locs)
2237         {
2238           // We need to lock the object in order to read it.  This
2239           // means that we have to run in a singleton Task.  If we
2240           // want to run this in a general Task for better
2241           // performance, we will need one Task for object, plus
2242           // appropriate locking to ensure that we don't conflict with
2243           // other uses of the object.
2244           Task_lock_obj<Object> tl(task, locs->object);
2245           std::string lineno = Dwarf_line_info::one_addr2line(
2246               locs->object, locs->shndx, locs->offset);
2247           if (!lineno.empty())
2248             line_nums.insert(lineno);
2249         }
2250
2251       if (line_nums.size() > 1)
2252         {
2253           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2254                          "places (possible ODR violation):"),
2255                        output_file_name, demangle(symbol_name).c_str());
2256           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2257                it2 != line_nums.end();
2258                ++it2)
2259             fprintf(stderr, "  %s\n", it2->c_str());
2260         }
2261     }
2262 }
2263
2264 // Warnings functions.
2265
2266 // Add a new warning.
2267
2268 void
2269 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2270                       const std::string& warning)
2271 {
2272   name = symtab->canonicalize_name(name);
2273   this->warnings_[name].set(obj, warning);
2274 }
2275
2276 // Look through the warnings and mark the symbols for which we should
2277 // warn.  This is called during Layout::finalize when we know the
2278 // sources for all the symbols.
2279
2280 void
2281 Warnings::note_warnings(Symbol_table* symtab)
2282 {
2283   for (Warning_table::iterator p = this->warnings_.begin();
2284        p != this->warnings_.end();
2285        ++p)
2286     {
2287       Symbol* sym = symtab->lookup(p->first, NULL);
2288       if (sym != NULL
2289           && sym->source() == Symbol::FROM_OBJECT
2290           && sym->object() == p->second.object)
2291         sym->set_has_warning();
2292     }
2293 }
2294
2295 // Issue a warning.  This is called when we see a relocation against a
2296 // symbol for which has a warning.
2297
2298 template<int size, bool big_endian>
2299 void
2300 Warnings::issue_warning(const Symbol* sym,
2301                         const Relocate_info<size, big_endian>* relinfo,
2302                         size_t relnum, off_t reloffset) const
2303 {
2304   gold_assert(sym->has_warning());
2305   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2306   gold_assert(p != this->warnings_.end());
2307   gold_warning_at_location(relinfo, relnum, reloffset,
2308                            "%s", p->second.text.c_str());
2309 }
2310
2311 // Instantiate the templates we need.  We could use the configure
2312 // script to restrict this to only the ones needed for implemented
2313 // targets.
2314
2315 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2316 template
2317 void
2318 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2319 #endif
2320
2321 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2322 template
2323 void
2324 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2325 #endif
2326
2327 #ifdef HAVE_TARGET_32_LITTLE
2328 template
2329 void
2330 Symbol_table::add_from_relobj<32, false>(
2331     Sized_relobj<32, false>* relobj,
2332     const unsigned char* syms,
2333     size_t count,
2334     const char* sym_names,
2335     size_t sym_name_size,
2336     Sized_relobj<32, true>::Symbols* sympointers);
2337 #endif
2338
2339 #ifdef HAVE_TARGET_32_BIG
2340 template
2341 void
2342 Symbol_table::add_from_relobj<32, true>(
2343     Sized_relobj<32, true>* relobj,
2344     const unsigned char* syms,
2345     size_t count,
2346     const char* sym_names,
2347     size_t sym_name_size,
2348     Sized_relobj<32, false>::Symbols* sympointers);
2349 #endif
2350
2351 #ifdef HAVE_TARGET_64_LITTLE
2352 template
2353 void
2354 Symbol_table::add_from_relobj<64, false>(
2355     Sized_relobj<64, false>* relobj,
2356     const unsigned char* syms,
2357     size_t count,
2358     const char* sym_names,
2359     size_t sym_name_size,
2360     Sized_relobj<64, true>::Symbols* sympointers);
2361 #endif
2362
2363 #ifdef HAVE_TARGET_64_BIG
2364 template
2365 void
2366 Symbol_table::add_from_relobj<64, true>(
2367     Sized_relobj<64, true>* relobj,
2368     const unsigned char* syms,
2369     size_t count,
2370     const char* sym_names,
2371     size_t sym_name_size,
2372     Sized_relobj<64, false>::Symbols* sympointers);
2373 #endif
2374
2375 #ifdef HAVE_TARGET_32_LITTLE
2376 template
2377 void
2378 Symbol_table::add_from_dynobj<32, false>(
2379     Sized_dynobj<32, false>* dynobj,
2380     const unsigned char* syms,
2381     size_t count,
2382     const char* sym_names,
2383     size_t sym_name_size,
2384     const unsigned char* versym,
2385     size_t versym_size,
2386     const std::vector<const char*>* version_map);
2387 #endif
2388
2389 #ifdef HAVE_TARGET_32_BIG
2390 template
2391 void
2392 Symbol_table::add_from_dynobj<32, true>(
2393     Sized_dynobj<32, true>* dynobj,
2394     const unsigned char* syms,
2395     size_t count,
2396     const char* sym_names,
2397     size_t sym_name_size,
2398     const unsigned char* versym,
2399     size_t versym_size,
2400     const std::vector<const char*>* version_map);
2401 #endif
2402
2403 #ifdef HAVE_TARGET_64_LITTLE
2404 template
2405 void
2406 Symbol_table::add_from_dynobj<64, false>(
2407     Sized_dynobj<64, false>* dynobj,
2408     const unsigned char* syms,
2409     size_t count,
2410     const char* sym_names,
2411     size_t sym_name_size,
2412     const unsigned char* versym,
2413     size_t versym_size,
2414     const std::vector<const char*>* version_map);
2415 #endif
2416
2417 #ifdef HAVE_TARGET_64_BIG
2418 template
2419 void
2420 Symbol_table::add_from_dynobj<64, true>(
2421     Sized_dynobj<64, true>* dynobj,
2422     const unsigned char* syms,
2423     size_t count,
2424     const char* sym_names,
2425     size_t sym_name_size,
2426     const unsigned char* versym,
2427     size_t versym_size,
2428     const std::vector<const char*>* version_map);
2429 #endif
2430
2431 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2432 template
2433 void
2434 Symbol_table::define_with_copy_reloc<32>(
2435     Sized_symbol<32>* sym,
2436     Output_data* posd,
2437     elfcpp::Elf_types<32>::Elf_Addr value);
2438 #endif
2439
2440 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2441 template
2442 void
2443 Symbol_table::define_with_copy_reloc<64>(
2444     Sized_symbol<64>* sym,
2445     Output_data* posd,
2446     elfcpp::Elf_types<64>::Elf_Addr value);
2447 #endif
2448
2449 #ifdef HAVE_TARGET_32_LITTLE
2450 template
2451 void
2452 Warnings::issue_warning<32, false>(const Symbol* sym,
2453                                    const Relocate_info<32, false>* relinfo,
2454                                    size_t relnum, off_t reloffset) const;
2455 #endif
2456
2457 #ifdef HAVE_TARGET_32_BIG
2458 template
2459 void
2460 Warnings::issue_warning<32, true>(const Symbol* sym,
2461                                   const Relocate_info<32, true>* relinfo,
2462                                   size_t relnum, off_t reloffset) const;
2463 #endif
2464
2465 #ifdef HAVE_TARGET_64_LITTLE
2466 template
2467 void
2468 Warnings::issue_warning<64, false>(const Symbol* sym,
2469                                    const Relocate_info<64, false>* relinfo,
2470                                    size_t relnum, off_t reloffset) const;
2471 #endif
2472
2473 #ifdef HAVE_TARGET_64_BIG
2474 template
2475 void
2476 Warnings::issue_warning<64, true>(const Symbol* sym,
2477                                   const Relocate_info<64, true>* relinfo,
2478                                   size_t relnum, off_t reloffset) const;
2479 #endif
2480
2481 } // End namespace gold.