PR 9836
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Allocate a common symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
288 {
289   this->allocate_base_common(od);
290   this->value_ = value;
291 }
292
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
295
296 // Return true if this symbol should be added to the dynamic symbol
297 // table.
298
299 inline bool
300 Symbol::should_add_dynsym_entry() const
301 {
302   // If the symbol is used by a dynamic relocation, we need to add it.
303   if (this->needs_dynsym_entry())
304     return true;
305
306   // If this symbol's section is not added, the symbol need not be added. 
307   // The section may have been GCed.  Note that export_dynamic is being 
308   // overridden here.  This should not be done for shared objects.
309   if (parameters->options().gc_sections() 
310       && !parameters->options().shared()
311       && this->source() == Symbol::FROM_OBJECT
312       && !this->object()->is_dynamic())
313     {
314       Relobj* relobj = static_cast<Relobj*>(this->object());
315       bool is_ordinary;
316       unsigned int shndx = this->shndx(&is_ordinary);
317       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
318           && !relobj->is_section_included(shndx))
319         return false;
320     }
321
322   // If the symbol was forced local in a version script, do not add it.
323   if (this->is_forced_local())
324     return false;
325
326   // If the symbol was forced dynamic in a --dynamic-list file, add it.
327   if (parameters->options().in_dynamic_list(this->name()))
328     return true;
329
330   // If dynamic-list-data was specified, add any STT_OBJECT.
331   if (parameters->options().dynamic_list_data()
332       && !this->is_from_dynobj()
333       && this->type() == elfcpp::STT_OBJECT)
334     return true;
335
336   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338   if ((parameters->options().dynamic_list_cpp_new()
339        || parameters->options().dynamic_list_cpp_typeinfo())
340       && !this->is_from_dynobj())
341     {
342       // TODO(csilvers): We could probably figure out if we're an operator
343       //                 new/delete or typeinfo without the need to demangle.
344       char* demangled_name = cplus_demangle(this->name(),
345                                             DMGL_ANSI | DMGL_PARAMS);
346       if (demangled_name == NULL)
347         {
348           // Not a C++ symbol, so it can't satisfy these flags
349         }
350       else if (parameters->options().dynamic_list_cpp_new()
351                && (strprefix(demangled_name, "operator new")
352                    || strprefix(demangled_name, "operator delete")))
353         {
354           free(demangled_name);
355           return true;
356         }
357       else if (parameters->options().dynamic_list_cpp_typeinfo()
358                && (strprefix(demangled_name, "typeinfo name for")
359                    || strprefix(demangled_name, "typeinfo for")))
360         {
361           free(demangled_name);
362           return true;
363         }
364       else
365         free(demangled_name);
366     }
367
368   // If exporting all symbols or building a shared library,
369   // and the symbol is defined in a regular object and is
370   // externally visible, we need to add it.
371   if ((parameters->options().export_dynamic() || parameters->options().shared())
372       && !this->is_from_dynobj()
373       && this->is_externally_visible())
374     return true;
375
376   return false;
377 }
378
379 // Return true if the final value of this symbol is known at link
380 // time.
381
382 bool
383 Symbol::final_value_is_known() const
384 {
385   // If we are not generating an executable, then no final values are
386   // known, since they will change at runtime.
387   if (parameters->options().shared() || parameters->options().relocatable())
388     return false;
389
390   // If the symbol is not from an object file, and is not undefined,
391   // then it is defined, and known.
392   if (this->source_ != FROM_OBJECT)
393     {
394       if (this->source_ != IS_UNDEFINED)
395         return true;
396     }
397   else
398     {
399       // If the symbol is from a dynamic object, then the final value
400       // is not known.
401       if (this->object()->is_dynamic())
402         return false;
403
404       // If the symbol is not undefined (it is defined or common),
405       // then the final value is known.
406       if (!this->is_undefined())
407         return true;
408     }
409
410   // If the symbol is undefined, then whether the final value is known
411   // depends on whether we are doing a static link.  If we are doing a
412   // dynamic link, then the final value could be filled in at runtime.
413   // This could reasonably be the case for a weak undefined symbol.
414   return parameters->doing_static_link();
415 }
416
417 // Return the output section where this symbol is defined.
418
419 Output_section*
420 Symbol::output_section() const
421 {
422   switch (this->source_)
423     {
424     case FROM_OBJECT:
425       {
426         unsigned int shndx = this->u_.from_object.shndx;
427         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
428           {
429             gold_assert(!this->u_.from_object.object->is_dynamic());
430             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
431             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
432             return relobj->output_section(shndx);
433           }
434         return NULL;
435       }
436
437     case IN_OUTPUT_DATA:
438       return this->u_.in_output_data.output_data->output_section();
439
440     case IN_OUTPUT_SEGMENT:
441     case IS_CONSTANT:
442     case IS_UNDEFINED:
443       return NULL;
444
445     default:
446       gold_unreachable();
447     }
448 }
449
450 // Set the symbol's output section.  This is used for symbols defined
451 // in scripts.  This should only be called after the symbol table has
452 // been finalized.
453
454 void
455 Symbol::set_output_section(Output_section* os)
456 {
457   switch (this->source_)
458     {
459     case FROM_OBJECT:
460     case IN_OUTPUT_DATA:
461       gold_assert(this->output_section() == os);
462       break;
463     case IS_CONSTANT:
464       this->source_ = IN_OUTPUT_DATA;
465       this->u_.in_output_data.output_data = os;
466       this->u_.in_output_data.offset_is_from_end = false;
467       break;
468     case IN_OUTPUT_SEGMENT:
469     case IS_UNDEFINED:
470     default:
471       gold_unreachable();
472     }
473 }
474
475 // Class Symbol_table.
476
477 Symbol_table::Symbol_table(unsigned int count,
478                            const Version_script_info& version_script)
479   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
480     forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481     version_script_(version_script), gc_(NULL)
482 {
483   namepool_.reserve(count);
484 }
485
486 Symbol_table::~Symbol_table()
487 {
488 }
489
490 // The hash function.  The key values are Stringpool keys.
491
492 inline size_t
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
494 {
495   return key.first ^ key.second;
496 }
497
498 // The symbol table key equality function.  This is called with
499 // Stringpool keys.
500
501 inline bool
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
503                                           const Symbol_table_key& k2) const
504 {
505   return k1.first == k2.first && k1.second == k2.second;
506 }
507
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
510
511 void 
512 Symbol_table::gc_mark_undef_symbols()
513 {
514   for (options::String_set::const_iterator p =
515          parameters->options().undefined_begin();
516        p != parameters->options().undefined_end();
517        ++p)
518     {
519       const char* name = p->c_str();
520       Symbol* sym = this->lookup(name);
521       gold_assert (sym != NULL);
522       if (sym->source() == Symbol::FROM_OBJECT 
523           && !sym->object()->is_dynamic())
524         {
525           Relobj* obj = static_cast<Relobj*>(sym->object());
526           bool is_ordinary;
527           unsigned int shndx = sym->shndx(&is_ordinary);
528           if (is_ordinary)
529             {
530               gold_assert(this->gc_ != NULL);
531               this->gc_->worklist().push(Section_id(obj, shndx));
532             }
533         }
534     }
535 }
536
537 void
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
539 {
540   if (!sym->is_from_dynobj() 
541       && sym->is_externally_visible())
542     {
543       //Add the object and section to the work list.
544       Relobj* obj = static_cast<Relobj*>(sym->object());
545       bool is_ordinary;
546       unsigned int shndx = sym->shndx(&is_ordinary);
547       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
548         {
549           gold_assert(this->gc_!= NULL);
550           this->gc_->worklist().push(Section_id(obj, shndx));
551         }
552     }
553 }
554
555 // When doing garbage collection, keep symbols that have been seen in
556 // dynamic objects.
557 inline void 
558 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
559 {
560   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
561       && !sym->object()->is_dynamic())
562     {
563       Relobj *obj = static_cast<Relobj*>(sym->object()); 
564       bool is_ordinary;
565       unsigned int shndx = sym->shndx(&is_ordinary);
566       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
567         {
568           gold_assert(this->gc_ != NULL);
569           this->gc_->worklist().push(Section_id(obj, shndx));
570         }
571     }
572 }
573
574 // Make TO a symbol which forwards to FROM.
575
576 void
577 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
578 {
579   gold_assert(from != to);
580   gold_assert(!from->is_forwarder() && !to->is_forwarder());
581   this->forwarders_[from] = to;
582   from->set_forwarder();
583 }
584
585 // Resolve the forwards from FROM, returning the real symbol.
586
587 Symbol*
588 Symbol_table::resolve_forwards(const Symbol* from) const
589 {
590   gold_assert(from->is_forwarder());
591   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
592     this->forwarders_.find(from);
593   gold_assert(p != this->forwarders_.end());
594   return p->second;
595 }
596
597 // Look up a symbol by name.
598
599 Symbol*
600 Symbol_table::lookup(const char* name, const char* version) const
601 {
602   Stringpool::Key name_key;
603   name = this->namepool_.find(name, &name_key);
604   if (name == NULL)
605     return NULL;
606
607   Stringpool::Key version_key = 0;
608   if (version != NULL)
609     {
610       version = this->namepool_.find(version, &version_key);
611       if (version == NULL)
612         return NULL;
613     }
614
615   Symbol_table_key key(name_key, version_key);
616   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
617   if (p == this->table_.end())
618     return NULL;
619   return p->second;
620 }
621
622 // Resolve a Symbol with another Symbol.  This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version.  Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
627
628 template<int size, bool big_endian>
629 void
630 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
631 {
632   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
633   elfcpp::Sym_write<size, big_endian> esym(buf);
634   // We don't bother to set the st_name or the st_shndx field.
635   esym.put_st_value(from->value());
636   esym.put_st_size(from->symsize());
637   esym.put_st_info(from->binding(), from->type());
638   esym.put_st_other(from->visibility(), from->nonvis());
639   bool is_ordinary;
640   unsigned int shndx = from->shndx(&is_ordinary);
641   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
642                 from->version());
643   if (from->in_reg())
644     to->set_in_reg();
645   if (from->in_dyn())
646     to->set_in_dyn();
647   if (parameters->options().gc_sections())
648     this->gc_mark_dyn_syms(to);
649 }
650
651 // Record that a symbol is forced to be local by a version script or
652 // by visibility.
653
654 void
655 Symbol_table::force_local(Symbol* sym)
656 {
657   if (!sym->is_defined() && !sym->is_common())
658     return;
659   if (sym->is_forced_local())
660     {
661       // We already got this one.
662       return;
663     }
664   sym->set_is_forced_local();
665   this->forced_locals_.push_back(sym);
666 }
667
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
669 // is only called for undefined symbols, when at least one --wrap
670 // option was used.
671
672 const char*
673 Symbol_table::wrap_symbol(Object* object, const char* name,
674                           Stringpool::Key* name_key)
675 {
676   // For some targets, we need to ignore a specific character when
677   // wrapping, and add it back later.
678   char prefix = '\0';
679   if (name[0] == object->target()->wrap_char())
680     {
681       prefix = name[0];
682       ++name;
683     }
684
685   if (parameters->options().is_wrap(name))
686     {
687       // Turn NAME into __wrap_NAME.
688       std::string s;
689       if (prefix != '\0')
690         s += prefix;
691       s += "__wrap_";
692       s += name;
693
694       // This will give us both the old and new name in NAMEPOOL_, but
695       // that is OK.  Only the versions we need will wind up in the
696       // real string table in the output file.
697       return this->namepool_.add(s.c_str(), true, name_key);
698     }
699
700   const char* const real_prefix = "__real_";
701   const size_t real_prefix_length = strlen(real_prefix);
702   if (strncmp(name, real_prefix, real_prefix_length) == 0
703       && parameters->options().is_wrap(name + real_prefix_length))
704     {
705       // Turn __real_NAME into NAME.
706       std::string s;
707       if (prefix != '\0')
708         s += prefix;
709       s += name + real_prefix_length;
710       return this->namepool_.add(s.c_str(), true, name_key);
711     }
712
713   return name;
714 }
715
716 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
717 // name and VERSION is the version; both are canonicalized.  DEF is
718 // whether this is the default version.  ST_SHNDX is the symbol's
719 // section index; IS_ORDINARY is whether this is a normal section
720 // rather than a special code.
721
722 // If DEF is true, then this is the definition of a default version of
723 // a symbol.  That means that any lookup of NAME/NULL and any lookup
724 // of NAME/VERSION should always return the same symbol.  This is
725 // obvious for references, but in particular we want to do this for
726 // definitions: overriding NAME/NULL should also override
727 // NAME/VERSION.  If we don't do that, it would be very hard to
728 // override functions in a shared library which uses versioning.
729
730 // We implement this by simply making both entries in the hash table
731 // point to the same Symbol structure.  That is easy enough if this is
732 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
733 // that we have seen both already, in which case they will both have
734 // independent entries in the symbol table.  We can't simply change
735 // the symbol table entry, because we have pointers to the entries
736 // attached to the object files.  So we mark the entry attached to the
737 // object file as a forwarder, and record it in the forwarders_ map.
738 // Note that entries in the hash table will never be marked as
739 // forwarders.
740 //
741 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
742 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
743 // for a special section code.  ST_SHNDX may be modified if the symbol
744 // is defined in a section being discarded.
745
746 template<int size, bool big_endian>
747 Sized_symbol<size>*
748 Symbol_table::add_from_object(Object* object,
749                               const char *name,
750                               Stringpool::Key name_key,
751                               const char *version,
752                               Stringpool::Key version_key,
753                               bool def,
754                               const elfcpp::Sym<size, big_endian>& sym,
755                               unsigned int st_shndx,
756                               bool is_ordinary,
757                               unsigned int orig_st_shndx)
758 {
759   // Print a message if this symbol is being traced.
760   if (parameters->options().is_trace_symbol(name))
761     {
762       if (orig_st_shndx == elfcpp::SHN_UNDEF)
763         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
764       else
765         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
766     }
767
768   // For an undefined symbol, we may need to adjust the name using
769   // --wrap.
770   if (orig_st_shndx == elfcpp::SHN_UNDEF
771       && parameters->options().any_wrap())
772     {
773       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
774       if (wrap_name != name)
775         {
776           // If we see a reference to malloc with version GLIBC_2.0,
777           // and we turn it into a reference to __wrap_malloc, then we
778           // discard the version number.  Otherwise the user would be
779           // required to specify the correct version for
780           // __wrap_malloc.
781           version = NULL;
782           version_key = 0;
783           name = wrap_name;
784         }
785     }
786
787   Symbol* const snull = NULL;
788   std::pair<typename Symbol_table_type::iterator, bool> ins =
789     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
790                                        snull));
791
792   std::pair<typename Symbol_table_type::iterator, bool> insdef =
793     std::make_pair(this->table_.end(), false);
794   if (def)
795     {
796       const Stringpool::Key vnull_key = 0;
797       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
798                                                                  vnull_key),
799                                                   snull));
800     }
801
802   // ins.first: an iterator, which is a pointer to a pair.
803   // ins.first->first: the key (a pair of name and version).
804   // ins.first->second: the value (Symbol*).
805   // ins.second: true if new entry was inserted, false if not.
806
807   Sized_symbol<size>* ret;
808   bool was_undefined;
809   bool was_common;
810   if (!ins.second)
811     {
812       // We already have an entry for NAME/VERSION.
813       ret = this->get_sized_symbol<size>(ins.first->second);
814       gold_assert(ret != NULL);
815
816       was_undefined = ret->is_undefined();
817       was_common = ret->is_common();
818
819       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
820                     version);
821       if (parameters->options().gc_sections())
822         this->gc_mark_dyn_syms(ret);
823
824       if (def)
825         {
826           if (insdef.second)
827             {
828               // This is the first time we have seen NAME/NULL.  Make
829               // NAME/NULL point to NAME/VERSION.
830               insdef.first->second = ret;
831             }
832           else if (insdef.first->second != ret)
833             {
834               // This is the unfortunate case where we already have
835               // entries for both NAME/VERSION and NAME/NULL.  We now
836               // see a symbol NAME/VERSION where VERSION is the
837               // default version.  We have already resolved this new
838               // symbol with the existing NAME/VERSION symbol.
839
840               // It's possible that NAME/NULL and NAME/VERSION are
841               // both defined in regular objects.  This can only
842               // happen if one object file defines foo and another
843               // defines foo@@ver.  This is somewhat obscure, but we
844               // call it a multiple definition error.
845
846               // It's possible that NAME/NULL actually has a version,
847               // in which case it won't be the same as VERSION.  This
848               // happens with ver_test_7.so in the testsuite for the
849               // symbol t2_2.  We see t2_2@@VER2, so we define both
850               // t2_2/VER2 and t2_2/NULL.  We then see an unadorned
851               // t2_2 in an object file and give it version VER1 from
852               // the version script.  This looks like a default
853               // definition for VER1, so it looks like we should merge
854               // t2_2/NULL with t2_2/VER1.  That doesn't make sense,
855               // but it's not obvious that this is an error, either.
856               // So we just punt.
857
858               // If one of the symbols has non-default visibility, and
859               // the other is defined in a shared object, then they
860               // are different symbols.
861
862               // Otherwise, we just resolve the symbols as though they
863               // were the same.
864
865               if (insdef.first->second->version() != NULL)
866                 {
867                   gold_assert(insdef.first->second->version() != version);
868                   def = false;
869                 }
870               else if (ret->visibility() != elfcpp::STV_DEFAULT
871                   && insdef.first->second->is_from_dynobj())
872                 def = false;
873               else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
874                        && ret->is_from_dynobj())
875                 def = false;
876               else
877                 {
878                   const Sized_symbol<size>* sym2;
879                   sym2 = this->get_sized_symbol<size>(insdef.first->second);
880                   Symbol_table::resolve<size, big_endian>(ret, sym2);
881                   this->make_forwarder(insdef.first->second, ret);
882                   insdef.first->second = ret;
883                 }
884             }
885           else
886             def = false;
887         }
888     }
889   else
890     {
891       // This is the first time we have seen NAME/VERSION.
892       gold_assert(ins.first->second == NULL);
893
894       if (def && !insdef.second)
895         {
896           // We already have an entry for NAME/NULL.  If we override
897           // it, then change it to NAME/VERSION.
898           ret = this->get_sized_symbol<size>(insdef.first->second);
899
900           was_undefined = ret->is_undefined();
901           was_common = ret->is_common();
902
903           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
904                         version);
905           if (parameters->options().gc_sections())
906             this->gc_mark_dyn_syms(ret);
907           ins.first->second = ret;
908         }
909       else
910         {
911           was_undefined = false;
912           was_common = false;
913
914           Sized_target<size, big_endian>* target =
915             object->sized_target<size, big_endian>();
916           if (!target->has_make_symbol())
917             ret = new Sized_symbol<size>();
918           else
919             {
920               ret = target->make_symbol();
921               if (ret == NULL)
922                 {
923                   // This means that we don't want a symbol table
924                   // entry after all.
925                   if (!def)
926                     this->table_.erase(ins.first);
927                   else
928                     {
929                       this->table_.erase(insdef.first);
930                       // Inserting insdef invalidated ins.
931                       this->table_.erase(std::make_pair(name_key,
932                                                         version_key));
933                     }
934                   return NULL;
935                 }
936             }
937
938           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
939
940           ins.first->second = ret;
941           if (def)
942             {
943               // This is the first time we have seen NAME/NULL.  Point
944               // it at the new entry for NAME/VERSION.
945               gold_assert(insdef.second);
946               insdef.first->second = ret;
947             }
948         }
949     }
950
951   // Record every time we see a new undefined symbol, to speed up
952   // archive groups.
953   if (!was_undefined && ret->is_undefined())
954     ++this->saw_undefined_;
955
956   // Keep track of common symbols, to speed up common symbol
957   // allocation.
958   if (!was_common && ret->is_common())
959     {
960       if (ret->type() != elfcpp::STT_TLS)
961         this->commons_.push_back(ret);
962       else
963         this->tls_commons_.push_back(ret);
964     }
965
966   // If we're not doing a relocatable link, then any symbol with
967   // hidden or internal visibility is local.
968   if ((ret->visibility() == elfcpp::STV_HIDDEN
969        || ret->visibility() == elfcpp::STV_INTERNAL)
970       && (ret->binding() == elfcpp::STB_GLOBAL
971           || ret->binding() == elfcpp::STB_WEAK)
972       && !parameters->options().relocatable())
973     this->force_local(ret);
974
975   if (def)
976     ret->set_is_default();
977   return ret;
978 }
979
980 // Add all the symbols in a relocatable object to the hash table.
981
982 template<int size, bool big_endian>
983 void
984 Symbol_table::add_from_relobj(
985     Sized_relobj<size, big_endian>* relobj,
986     const unsigned char* syms,
987     size_t count,
988     size_t symndx_offset,
989     const char* sym_names,
990     size_t sym_name_size,
991     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
992     size_t *defined)
993 {
994   *defined = 0;
995
996   gold_assert(size == relobj->target()->get_size());
997   gold_assert(size == parameters->target().get_size());
998
999   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1000
1001   const bool just_symbols = relobj->just_symbols();
1002
1003   const unsigned char* p = syms;
1004   for (size_t i = 0; i < count; ++i, p += sym_size)
1005     {
1006       (*sympointers)[i] = NULL;
1007
1008       elfcpp::Sym<size, big_endian> sym(p);
1009
1010       unsigned int st_name = sym.get_st_name();
1011       if (st_name >= sym_name_size)
1012         {
1013           relobj->error(_("bad global symbol name offset %u at %zu"),
1014                         st_name, i);
1015           continue;
1016         }
1017
1018       const char* name = sym_names + st_name;
1019
1020       bool is_ordinary;
1021       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1022                                                        sym.get_st_shndx(),
1023                                                        &is_ordinary);
1024       unsigned int orig_st_shndx = st_shndx;
1025       if (!is_ordinary)
1026         orig_st_shndx = elfcpp::SHN_UNDEF;
1027
1028       if (st_shndx != elfcpp::SHN_UNDEF)
1029         ++*defined;
1030
1031       // A symbol defined in a section which we are not including must
1032       // be treated as an undefined symbol.
1033       if (st_shndx != elfcpp::SHN_UNDEF
1034           && is_ordinary
1035           && !relobj->is_section_included(st_shndx))
1036         st_shndx = elfcpp::SHN_UNDEF;
1037
1038       // In an object file, an '@' in the name separates the symbol
1039       // name from the version name.  If there are two '@' characters,
1040       // this is the default version.
1041       const char* ver = strchr(name, '@');
1042       Stringpool::Key ver_key = 0;
1043       int namelen = 0;
1044       // DEF: is the version default?  LOCAL: is the symbol forced local?
1045       bool def = false;
1046       bool local = false;
1047
1048       if (ver != NULL)
1049         {
1050           // The symbol name is of the form foo@VERSION or foo@@VERSION
1051           namelen = ver - name;
1052           ++ver;
1053           if (*ver == '@')
1054             {
1055               def = true;
1056               ++ver;
1057             }
1058           ver = this->namepool_.add(ver, true, &ver_key);
1059         }
1060       // We don't want to assign a version to an undefined symbol,
1061       // even if it is listed in the version script.  FIXME: What
1062       // about a common symbol?
1063       else
1064         {
1065           namelen = strlen(name);
1066           if (!this->version_script_.empty()
1067               && st_shndx != elfcpp::SHN_UNDEF)
1068             {
1069               // The symbol name did not have a version, but the
1070               // version script may assign a version anyway.
1071               std::string version;
1072               if (this->version_script_.get_symbol_version(name, &version))
1073                 {
1074                   // The version can be empty if the version script is
1075                   // only used to force some symbols to be local.
1076                   if (!version.empty())
1077                     {
1078                       ver = this->namepool_.add_with_length(version.c_str(),
1079                                                             version.length(),
1080                                                             true,
1081                                                             &ver_key);
1082                       def = true;
1083                     }
1084                 }
1085               else if (this->version_script_.symbol_is_local(name))
1086                 local = true;
1087             }
1088         }
1089
1090       elfcpp::Sym<size, big_endian>* psym = &sym;
1091       unsigned char symbuf[sym_size];
1092       elfcpp::Sym<size, big_endian> sym2(symbuf);
1093       if (just_symbols)
1094         {
1095           memcpy(symbuf, p, sym_size);
1096           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1097           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1098             {
1099               // Symbol values in object files are section relative.
1100               // This is normally what we want, but since here we are
1101               // converting the symbol to absolute we need to add the
1102               // section address.  The section address in an object
1103               // file is normally zero, but people can use a linker
1104               // script to change it.
1105               sw.put_st_value(sym.get_st_value()
1106                               + relobj->section_address(orig_st_shndx));
1107             }
1108           st_shndx = elfcpp::SHN_ABS;
1109           is_ordinary = false;
1110           psym = &sym2;
1111         }
1112
1113       Stringpool::Key name_key;
1114       name = this->namepool_.add_with_length(name, namelen, true,
1115                                              &name_key);
1116
1117       Sized_symbol<size>* res;
1118       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1119                                   def, *psym, st_shndx, is_ordinary,
1120                                   orig_st_shndx);
1121       
1122       // If building a shared library using garbage collection, do not 
1123       // treat externally visible symbols as garbage.
1124       if (parameters->options().gc_sections() 
1125           && parameters->options().shared())
1126         this->gc_mark_symbol_for_shlib(res);
1127
1128       if (local)
1129         this->force_local(res);
1130
1131       (*sympointers)[i] = res;
1132     }
1133 }
1134
1135 // Add a symbol from a plugin-claimed file.
1136
1137 template<int size, bool big_endian>
1138 Symbol*
1139 Symbol_table::add_from_pluginobj(
1140     Sized_pluginobj<size, big_endian>* obj,
1141     const char* name,
1142     const char* ver,
1143     elfcpp::Sym<size, big_endian>* sym)
1144 {
1145   unsigned int st_shndx = sym->get_st_shndx();
1146
1147   Stringpool::Key ver_key = 0;
1148   bool def = false;
1149   bool local = false;
1150
1151   if (ver != NULL)
1152     {
1153       ver = this->namepool_.add(ver, true, &ver_key);
1154     }
1155   // We don't want to assign a version to an undefined symbol,
1156   // even if it is listed in the version script.  FIXME: What
1157   // about a common symbol?
1158   else
1159     {
1160       if (!this->version_script_.empty()
1161           && st_shndx != elfcpp::SHN_UNDEF)
1162         {
1163           // The symbol name did not have a version, but the
1164           // version script may assign a version anyway.
1165           std::string version;
1166           if (this->version_script_.get_symbol_version(name, &version))
1167             {
1168               // The version can be empty if the version script is
1169               // only used to force some symbols to be local.
1170               if (!version.empty())
1171                 {
1172                   ver = this->namepool_.add_with_length(version.c_str(),
1173                                                         version.length(),
1174                                                         true,
1175                                                         &ver_key);
1176                   def = true;
1177                 }
1178             }
1179           else if (this->version_script_.symbol_is_local(name))
1180             local = true;
1181         }
1182     }
1183
1184   Stringpool::Key name_key;
1185   name = this->namepool_.add(name, true, &name_key);
1186
1187   Sized_symbol<size>* res;
1188   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1189                               def, *sym, st_shndx, true, st_shndx);
1190
1191   if (local)
1192     this->force_local(res);
1193
1194   return res;
1195 }
1196
1197 // Add all the symbols in a dynamic object to the hash table.
1198
1199 template<int size, bool big_endian>
1200 void
1201 Symbol_table::add_from_dynobj(
1202     Sized_dynobj<size, big_endian>* dynobj,
1203     const unsigned char* syms,
1204     size_t count,
1205     const char* sym_names,
1206     size_t sym_name_size,
1207     const unsigned char* versym,
1208     size_t versym_size,
1209     const std::vector<const char*>* version_map,
1210     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1211     size_t* defined)
1212 {
1213   *defined = 0;
1214
1215   gold_assert(size == dynobj->target()->get_size());
1216   gold_assert(size == parameters->target().get_size());
1217
1218   if (dynobj->just_symbols())
1219     {
1220       gold_error(_("--just-symbols does not make sense with a shared object"));
1221       return;
1222     }
1223
1224   if (versym != NULL && versym_size / 2 < count)
1225     {
1226       dynobj->error(_("too few symbol versions"));
1227       return;
1228     }
1229
1230   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1231
1232   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1233   // weak aliases.  This is necessary because if the dynamic object
1234   // provides the same variable under two names, one of which is a
1235   // weak definition, and the regular object refers to the weak
1236   // definition, we have to put both the weak definition and the
1237   // strong definition into the dynamic symbol table.  Given a weak
1238   // definition, the only way that we can find the corresponding
1239   // strong definition, if any, is to search the symbol table.
1240   std::vector<Sized_symbol<size>*> object_symbols;
1241
1242   const unsigned char* p = syms;
1243   const unsigned char* vs = versym;
1244   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1245     {
1246       elfcpp::Sym<size, big_endian> sym(p);
1247
1248       if (sympointers != NULL)
1249         (*sympointers)[i] = NULL;
1250
1251       // Ignore symbols with local binding or that have
1252       // internal or hidden visibility.
1253       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1254           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1255           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1256         continue;
1257
1258       // A protected symbol in a shared library must be treated as a
1259       // normal symbol when viewed from outside the shared library.
1260       // Implement this by overriding the visibility here.
1261       elfcpp::Sym<size, big_endian>* psym = &sym;
1262       unsigned char symbuf[sym_size];
1263       elfcpp::Sym<size, big_endian> sym2(symbuf);
1264       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1265         {
1266           memcpy(symbuf, p, sym_size);
1267           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1268           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1269           psym = &sym2;
1270         }
1271
1272       unsigned int st_name = psym->get_st_name();
1273       if (st_name >= sym_name_size)
1274         {
1275           dynobj->error(_("bad symbol name offset %u at %zu"),
1276                         st_name, i);
1277           continue;
1278         }
1279
1280       const char* name = sym_names + st_name;
1281
1282       bool is_ordinary;
1283       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1284                                                        &is_ordinary);
1285
1286       if (st_shndx != elfcpp::SHN_UNDEF)
1287         ++*defined;
1288
1289       Sized_symbol<size>* res;
1290
1291       if (versym == NULL)
1292         {
1293           Stringpool::Key name_key;
1294           name = this->namepool_.add(name, true, &name_key);
1295           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1296                                       false, *psym, st_shndx, is_ordinary,
1297                                       st_shndx);
1298         }
1299       else
1300         {
1301           // Read the version information.
1302
1303           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1304
1305           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1306           v &= elfcpp::VERSYM_VERSION;
1307
1308           // The Sun documentation says that V can be VER_NDX_LOCAL,
1309           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1310           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1311           // The old GNU linker will happily generate VER_NDX_LOCAL
1312           // for an undefined symbol.  I don't know what the Sun
1313           // linker will generate.
1314
1315           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1316               && st_shndx != elfcpp::SHN_UNDEF)
1317             {
1318               // This symbol should not be visible outside the object.
1319               continue;
1320             }
1321
1322           // At this point we are definitely going to add this symbol.
1323           Stringpool::Key name_key;
1324           name = this->namepool_.add(name, true, &name_key);
1325
1326           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1327               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1328             {
1329               // This symbol does not have a version.
1330               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1331                                           false, *psym, st_shndx, is_ordinary,
1332                                           st_shndx);
1333             }
1334           else
1335             {
1336               if (v >= version_map->size())
1337                 {
1338                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1339                                 i, v);
1340                   continue;
1341                 }
1342
1343               const char* version = (*version_map)[v];
1344               if (version == NULL)
1345                 {
1346                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1347                                 i, v);
1348                   continue;
1349                 }
1350
1351               Stringpool::Key version_key;
1352               version = this->namepool_.add(version, true, &version_key);
1353
1354               // If this is an absolute symbol, and the version name
1355               // and symbol name are the same, then this is the
1356               // version definition symbol.  These symbols exist to
1357               // support using -u to pull in particular versions.  We
1358               // do not want to record a version for them.
1359               if (st_shndx == elfcpp::SHN_ABS
1360                   && !is_ordinary
1361                   && name_key == version_key)
1362                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1363                                             false, *psym, st_shndx, is_ordinary,
1364                                             st_shndx);
1365               else
1366                 {
1367                   const bool def = (!hidden
1368                                     && st_shndx != elfcpp::SHN_UNDEF);
1369                   res = this->add_from_object(dynobj, name, name_key, version,
1370                                               version_key, def, *psym, st_shndx,
1371                                               is_ordinary, st_shndx);
1372                 }
1373             }
1374         }
1375
1376       // Note that it is possible that RES was overridden by an
1377       // earlier object, in which case it can't be aliased here.
1378       if (st_shndx != elfcpp::SHN_UNDEF
1379           && is_ordinary
1380           && psym->get_st_type() == elfcpp::STT_OBJECT
1381           && res->source() == Symbol::FROM_OBJECT
1382           && res->object() == dynobj)
1383         object_symbols.push_back(res);
1384
1385       if (sympointers != NULL)
1386         (*sympointers)[i] = res;
1387     }
1388
1389   this->record_weak_aliases(&object_symbols);
1390 }
1391
1392 // This is used to sort weak aliases.  We sort them first by section
1393 // index, then by offset, then by weak ahead of strong.
1394
1395 template<int size>
1396 class Weak_alias_sorter
1397 {
1398  public:
1399   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1400 };
1401
1402 template<int size>
1403 bool
1404 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1405                                     const Sized_symbol<size>* s2) const
1406 {
1407   bool is_ordinary;
1408   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1409   gold_assert(is_ordinary);
1410   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1411   gold_assert(is_ordinary);
1412   if (s1_shndx != s2_shndx)
1413     return s1_shndx < s2_shndx;
1414
1415   if (s1->value() != s2->value())
1416     return s1->value() < s2->value();
1417   if (s1->binding() != s2->binding())
1418     {
1419       if (s1->binding() == elfcpp::STB_WEAK)
1420         return true;
1421       if (s2->binding() == elfcpp::STB_WEAK)
1422         return false;
1423     }
1424   return std::string(s1->name()) < std::string(s2->name());
1425 }
1426
1427 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1428 // for any weak aliases, and record them so that if we add the weak
1429 // alias to the dynamic symbol table, we also add the corresponding
1430 // strong symbol.
1431
1432 template<int size>
1433 void
1434 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1435 {
1436   // Sort the vector by section index, then by offset, then by weak
1437   // ahead of strong.
1438   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1439
1440   // Walk through the vector.  For each weak definition, record
1441   // aliases.
1442   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1443          symbols->begin();
1444        p != symbols->end();
1445        ++p)
1446     {
1447       if ((*p)->binding() != elfcpp::STB_WEAK)
1448         continue;
1449
1450       // Build a circular list of weak aliases.  Each symbol points to
1451       // the next one in the circular list.
1452
1453       Sized_symbol<size>* from_sym = *p;
1454       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1455       for (q = p + 1; q != symbols->end(); ++q)
1456         {
1457           bool dummy;
1458           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1459               || (*q)->value() != from_sym->value())
1460             break;
1461
1462           this->weak_aliases_[from_sym] = *q;
1463           from_sym->set_has_alias();
1464           from_sym = *q;
1465         }
1466
1467       if (from_sym != *p)
1468         {
1469           this->weak_aliases_[from_sym] = *p;
1470           from_sym->set_has_alias();
1471         }
1472
1473       p = q - 1;
1474     }
1475 }
1476
1477 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1478 // true, then only create the symbol if there is a reference to it.
1479 // If this does not return NULL, it sets *POLDSYM to the existing
1480 // symbol if there is one.  This canonicalizes *PNAME and *PVERSION.
1481
1482 template<int size, bool big_endian>
1483 Sized_symbol<size>*
1484 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1485                                     bool only_if_ref,
1486                                     Sized_symbol<size>** poldsym)
1487 {
1488   Symbol* oldsym;
1489   Sized_symbol<size>* sym;
1490   bool add_to_table = false;
1491   typename Symbol_table_type::iterator add_loc = this->table_.end();
1492
1493   // If the caller didn't give us a version, see if we get one from
1494   // the version script.
1495   std::string v;
1496   if (*pversion == NULL)
1497     {
1498       if (this->version_script_.get_symbol_version(*pname, &v))
1499         {
1500           if (!v.empty())
1501             *pversion = v.c_str();
1502         }
1503     }
1504
1505   if (only_if_ref)
1506     {
1507       oldsym = this->lookup(*pname, *pversion);
1508       if (oldsym == NULL || !oldsym->is_undefined())
1509         return NULL;
1510
1511       *pname = oldsym->name();
1512       *pversion = oldsym->version();
1513     }
1514   else
1515     {
1516       // Canonicalize NAME and VERSION.
1517       Stringpool::Key name_key;
1518       *pname = this->namepool_.add(*pname, true, &name_key);
1519
1520       Stringpool::Key version_key = 0;
1521       if (*pversion != NULL)
1522         *pversion = this->namepool_.add(*pversion, true, &version_key);
1523
1524       Symbol* const snull = NULL;
1525       std::pair<typename Symbol_table_type::iterator, bool> ins =
1526         this->table_.insert(std::make_pair(std::make_pair(name_key,
1527                                                           version_key),
1528                                            snull));
1529
1530       if (!ins.second)
1531         {
1532           // We already have a symbol table entry for NAME/VERSION.
1533           oldsym = ins.first->second;
1534           gold_assert(oldsym != NULL);
1535         }
1536       else
1537         {
1538           // We haven't seen this symbol before.
1539           gold_assert(ins.first->second == NULL);
1540           add_to_table = true;
1541           add_loc = ins.first;
1542           oldsym = NULL;
1543         }
1544     }
1545
1546   const Target& target = parameters->target();
1547   if (!target.has_make_symbol())
1548     sym = new Sized_symbol<size>();
1549   else
1550     {
1551       gold_assert(target.get_size() == size);
1552       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1553       typedef Sized_target<size, big_endian> My_target;
1554       const My_target* sized_target =
1555           static_cast<const My_target*>(&target);
1556       sym = sized_target->make_symbol();
1557       if (sym == NULL)
1558         return NULL;
1559     }
1560
1561   if (add_to_table)
1562     add_loc->second = sym;
1563   else
1564     gold_assert(oldsym != NULL);
1565
1566   *poldsym = this->get_sized_symbol<size>(oldsym);
1567
1568   return sym;
1569 }
1570
1571 // Define a symbol based on an Output_data.
1572
1573 Symbol*
1574 Symbol_table::define_in_output_data(const char* name,
1575                                     const char* version,
1576                                     Output_data* od,
1577                                     uint64_t value,
1578                                     uint64_t symsize,
1579                                     elfcpp::STT type,
1580                                     elfcpp::STB binding,
1581                                     elfcpp::STV visibility,
1582                                     unsigned char nonvis,
1583                                     bool offset_is_from_end,
1584                                     bool only_if_ref)
1585 {
1586   if (parameters->target().get_size() == 32)
1587     {
1588 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1589       return this->do_define_in_output_data<32>(name, version, od,
1590                                                 value, symsize, type, binding,
1591                                                 visibility, nonvis,
1592                                                 offset_is_from_end,
1593                                                 only_if_ref);
1594 #else
1595       gold_unreachable();
1596 #endif
1597     }
1598   else if (parameters->target().get_size() == 64)
1599     {
1600 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1601       return this->do_define_in_output_data<64>(name, version, od,
1602                                                 value, symsize, type, binding,
1603                                                 visibility, nonvis,
1604                                                 offset_is_from_end,
1605                                                 only_if_ref);
1606 #else
1607       gold_unreachable();
1608 #endif
1609     }
1610   else
1611     gold_unreachable();
1612 }
1613
1614 // Define a symbol in an Output_data, sized version.
1615
1616 template<int size>
1617 Sized_symbol<size>*
1618 Symbol_table::do_define_in_output_data(
1619     const char* name,
1620     const char* version,
1621     Output_data* od,
1622     typename elfcpp::Elf_types<size>::Elf_Addr value,
1623     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1624     elfcpp::STT type,
1625     elfcpp::STB binding,
1626     elfcpp::STV visibility,
1627     unsigned char nonvis,
1628     bool offset_is_from_end,
1629     bool only_if_ref)
1630 {
1631   Sized_symbol<size>* sym;
1632   Sized_symbol<size>* oldsym;
1633
1634   if (parameters->target().is_big_endian())
1635     {
1636 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1637       sym = this->define_special_symbol<size, true>(&name, &version,
1638                                                     only_if_ref, &oldsym);
1639 #else
1640       gold_unreachable();
1641 #endif
1642     }
1643   else
1644     {
1645 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1646       sym = this->define_special_symbol<size, false>(&name, &version,
1647                                                      only_if_ref, &oldsym);
1648 #else
1649       gold_unreachable();
1650 #endif
1651     }
1652
1653   if (sym == NULL)
1654     return NULL;
1655
1656   sym->init_output_data(name, version, od, value, symsize, type, binding,
1657                         visibility, nonvis, offset_is_from_end);
1658
1659   if (oldsym == NULL)
1660     {
1661       if (binding == elfcpp::STB_LOCAL
1662           || this->version_script_.symbol_is_local(name))
1663         this->force_local(sym);
1664       else if (version != NULL)
1665         sym->set_is_default();
1666       return sym;
1667     }
1668
1669   if (Symbol_table::should_override_with_special(oldsym))
1670     this->override_with_special(oldsym, sym);
1671   delete sym;
1672   return oldsym;
1673 }
1674
1675 // Define a symbol based on an Output_segment.
1676
1677 Symbol*
1678 Symbol_table::define_in_output_segment(const char* name,
1679                                        const char* version, Output_segment* os,
1680                                        uint64_t value,
1681                                        uint64_t symsize,
1682                                        elfcpp::STT type,
1683                                        elfcpp::STB binding,
1684                                        elfcpp::STV visibility,
1685                                        unsigned char nonvis,
1686                                        Symbol::Segment_offset_base offset_base,
1687                                        bool only_if_ref)
1688 {
1689   if (parameters->target().get_size() == 32)
1690     {
1691 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1692       return this->do_define_in_output_segment<32>(name, version, os,
1693                                                    value, symsize, type,
1694                                                    binding, visibility, nonvis,
1695                                                    offset_base, only_if_ref);
1696 #else
1697       gold_unreachable();
1698 #endif
1699     }
1700   else if (parameters->target().get_size() == 64)
1701     {
1702 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1703       return this->do_define_in_output_segment<64>(name, version, os,
1704                                                    value, symsize, type,
1705                                                    binding, visibility, nonvis,
1706                                                    offset_base, only_if_ref);
1707 #else
1708       gold_unreachable();
1709 #endif
1710     }
1711   else
1712     gold_unreachable();
1713 }
1714
1715 // Define a symbol in an Output_segment, sized version.
1716
1717 template<int size>
1718 Sized_symbol<size>*
1719 Symbol_table::do_define_in_output_segment(
1720     const char* name,
1721     const char* version,
1722     Output_segment* os,
1723     typename elfcpp::Elf_types<size>::Elf_Addr value,
1724     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1725     elfcpp::STT type,
1726     elfcpp::STB binding,
1727     elfcpp::STV visibility,
1728     unsigned char nonvis,
1729     Symbol::Segment_offset_base offset_base,
1730     bool only_if_ref)
1731 {
1732   Sized_symbol<size>* sym;
1733   Sized_symbol<size>* oldsym;
1734
1735   if (parameters->target().is_big_endian())
1736     {
1737 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1738       sym = this->define_special_symbol<size, true>(&name, &version,
1739                                                     only_if_ref, &oldsym);
1740 #else
1741       gold_unreachable();
1742 #endif
1743     }
1744   else
1745     {
1746 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1747       sym = this->define_special_symbol<size, false>(&name, &version,
1748                                                      only_if_ref, &oldsym);
1749 #else
1750       gold_unreachable();
1751 #endif
1752     }
1753
1754   if (sym == NULL)
1755     return NULL;
1756
1757   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1758                            visibility, nonvis, offset_base);
1759
1760   if (oldsym == NULL)
1761     {
1762       if (binding == elfcpp::STB_LOCAL
1763           || this->version_script_.symbol_is_local(name))
1764         this->force_local(sym);
1765       else if (version != NULL)
1766         sym->set_is_default();
1767       return sym;
1768     }
1769
1770   if (Symbol_table::should_override_with_special(oldsym))
1771     this->override_with_special(oldsym, sym);
1772   delete sym;
1773   return oldsym;
1774 }
1775
1776 // Define a special symbol with a constant value.  It is a multiple
1777 // definition error if this symbol is already defined.
1778
1779 Symbol*
1780 Symbol_table::define_as_constant(const char* name,
1781                                  const char* version,
1782                                  uint64_t value,
1783                                  uint64_t symsize,
1784                                  elfcpp::STT type,
1785                                  elfcpp::STB binding,
1786                                  elfcpp::STV visibility,
1787                                  unsigned char nonvis,
1788                                  bool only_if_ref,
1789                                  bool force_override)
1790 {
1791   if (parameters->target().get_size() == 32)
1792     {
1793 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1794       return this->do_define_as_constant<32>(name, version, value,
1795                                              symsize, type, binding,
1796                                              visibility, nonvis, only_if_ref,
1797                                              force_override);
1798 #else
1799       gold_unreachable();
1800 #endif
1801     }
1802   else if (parameters->target().get_size() == 64)
1803     {
1804 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1805       return this->do_define_as_constant<64>(name, version, value,
1806                                              symsize, type, binding,
1807                                              visibility, nonvis, only_if_ref,
1808                                              force_override);
1809 #else
1810       gold_unreachable();
1811 #endif
1812     }
1813   else
1814     gold_unreachable();
1815 }
1816
1817 // Define a symbol as a constant, sized version.
1818
1819 template<int size>
1820 Sized_symbol<size>*
1821 Symbol_table::do_define_as_constant(
1822     const char* name,
1823     const char* version,
1824     typename elfcpp::Elf_types<size>::Elf_Addr value,
1825     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1826     elfcpp::STT type,
1827     elfcpp::STB binding,
1828     elfcpp::STV visibility,
1829     unsigned char nonvis,
1830     bool only_if_ref,
1831     bool force_override)
1832 {
1833   Sized_symbol<size>* sym;
1834   Sized_symbol<size>* oldsym;
1835
1836   if (parameters->target().is_big_endian())
1837     {
1838 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1839       sym = this->define_special_symbol<size, true>(&name, &version,
1840                                                     only_if_ref, &oldsym);
1841 #else
1842       gold_unreachable();
1843 #endif
1844     }
1845   else
1846     {
1847 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1848       sym = this->define_special_symbol<size, false>(&name, &version,
1849                                                      only_if_ref, &oldsym);
1850 #else
1851       gold_unreachable();
1852 #endif
1853     }
1854
1855   if (sym == NULL)
1856     return NULL;
1857
1858   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1859                      nonvis);
1860
1861   if (oldsym == NULL)
1862     {
1863       // Version symbols are absolute symbols with name == version.
1864       // We don't want to force them to be local.
1865       if ((version == NULL
1866            || name != version
1867            || value != 0)
1868           && (binding == elfcpp::STB_LOCAL
1869               || this->version_script_.symbol_is_local(name)))
1870         this->force_local(sym);
1871       else if (version != NULL
1872                && (name != version || value != 0))
1873         sym->set_is_default();
1874       return sym;
1875     }
1876
1877   if (force_override || Symbol_table::should_override_with_special(oldsym))
1878     this->override_with_special(oldsym, sym);
1879   delete sym;
1880   return oldsym;
1881 }
1882
1883 // Define a set of symbols in output sections.
1884
1885 void
1886 Symbol_table::define_symbols(const Layout* layout, int count,
1887                              const Define_symbol_in_section* p,
1888                              bool only_if_ref)
1889 {
1890   for (int i = 0; i < count; ++i, ++p)
1891     {
1892       Output_section* os = layout->find_output_section(p->output_section);
1893       if (os != NULL)
1894         this->define_in_output_data(p->name, NULL, os, p->value,
1895                                     p->size, p->type, p->binding,
1896                                     p->visibility, p->nonvis,
1897                                     p->offset_is_from_end,
1898                                     only_if_ref || p->only_if_ref);
1899       else
1900         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1901                                  p->binding, p->visibility, p->nonvis,
1902                                  only_if_ref || p->only_if_ref,
1903                                  false);
1904     }
1905 }
1906
1907 // Define a set of symbols in output segments.
1908
1909 void
1910 Symbol_table::define_symbols(const Layout* layout, int count,
1911                              const Define_symbol_in_segment* p,
1912                              bool only_if_ref)
1913 {
1914   for (int i = 0; i < count; ++i, ++p)
1915     {
1916       Output_segment* os = layout->find_output_segment(p->segment_type,
1917                                                        p->segment_flags_set,
1918                                                        p->segment_flags_clear);
1919       if (os != NULL)
1920         this->define_in_output_segment(p->name, NULL, os, p->value,
1921                                        p->size, p->type, p->binding,
1922                                        p->visibility, p->nonvis,
1923                                        p->offset_base,
1924                                        only_if_ref || p->only_if_ref);
1925       else
1926         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1927                                  p->binding, p->visibility, p->nonvis,
1928                                  only_if_ref || p->only_if_ref,
1929                                  false);
1930     }
1931 }
1932
1933 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
1934 // symbol should be defined--typically a .dyn.bss section.  VALUE is
1935 // the offset within POSD.
1936
1937 template<int size>
1938 void
1939 Symbol_table::define_with_copy_reloc(
1940     Sized_symbol<size>* csym,
1941     Output_data* posd,
1942     typename elfcpp::Elf_types<size>::Elf_Addr value)
1943 {
1944   gold_assert(csym->is_from_dynobj());
1945   gold_assert(!csym->is_copied_from_dynobj());
1946   Object* object = csym->object();
1947   gold_assert(object->is_dynamic());
1948   Dynobj* dynobj = static_cast<Dynobj*>(object);
1949
1950   // Our copied variable has to override any variable in a shared
1951   // library.
1952   elfcpp::STB binding = csym->binding();
1953   if (binding == elfcpp::STB_WEAK)
1954     binding = elfcpp::STB_GLOBAL;
1955
1956   this->define_in_output_data(csym->name(), csym->version(),
1957                               posd, value, csym->symsize(),
1958                               csym->type(), binding,
1959                               csym->visibility(), csym->nonvis(),
1960                               false, false);
1961
1962   csym->set_is_copied_from_dynobj();
1963   csym->set_needs_dynsym_entry();
1964
1965   this->copied_symbol_dynobjs_[csym] = dynobj;
1966
1967   // We have now defined all aliases, but we have not entered them all
1968   // in the copied_symbol_dynobjs_ map.
1969   if (csym->has_alias())
1970     {
1971       Symbol* sym = csym;
1972       while (true)
1973         {
1974           sym = this->weak_aliases_[sym];
1975           if (sym == csym)
1976             break;
1977           gold_assert(sym->output_data() == posd);
1978
1979           sym->set_is_copied_from_dynobj();
1980           this->copied_symbol_dynobjs_[sym] = dynobj;
1981         }
1982     }
1983 }
1984
1985 // SYM is defined using a COPY reloc.  Return the dynamic object where
1986 // the original definition was found.
1987
1988 Dynobj*
1989 Symbol_table::get_copy_source(const Symbol* sym) const
1990 {
1991   gold_assert(sym->is_copied_from_dynobj());
1992   Copied_symbol_dynobjs::const_iterator p =
1993     this->copied_symbol_dynobjs_.find(sym);
1994   gold_assert(p != this->copied_symbol_dynobjs_.end());
1995   return p->second;
1996 }
1997
1998 // Add any undefined symbols named on the command line.
1999
2000 void
2001 Symbol_table::add_undefined_symbols_from_command_line()
2002 {
2003   if (parameters->options().any_undefined())
2004     {
2005       if (parameters->target().get_size() == 32)
2006         {
2007 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2008           this->do_add_undefined_symbols_from_command_line<32>();
2009 #else
2010           gold_unreachable();
2011 #endif
2012         }
2013       else if (parameters->target().get_size() == 64)
2014         {
2015 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2016           this->do_add_undefined_symbols_from_command_line<64>();
2017 #else
2018           gold_unreachable();
2019 #endif
2020         }
2021       else
2022         gold_unreachable();
2023     }
2024 }
2025
2026 template<int size>
2027 void
2028 Symbol_table::do_add_undefined_symbols_from_command_line()
2029 {
2030   for (options::String_set::const_iterator p =
2031          parameters->options().undefined_begin();
2032        p != parameters->options().undefined_end();
2033        ++p)
2034     {
2035       const char* name = p->c_str();
2036
2037       if (this->lookup(name) != NULL)
2038         continue;
2039
2040       const char* version = NULL;
2041
2042       Sized_symbol<size>* sym;
2043       Sized_symbol<size>* oldsym;
2044       if (parameters->target().is_big_endian())
2045         {
2046 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2047           sym = this->define_special_symbol<size, true>(&name, &version,
2048                                                         false, &oldsym);
2049 #else
2050           gold_unreachable();
2051 #endif
2052         }
2053       else
2054         {
2055 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2056           sym = this->define_special_symbol<size, false>(&name, &version,
2057                                                          false, &oldsym);
2058 #else
2059           gold_unreachable();
2060 #endif
2061         }
2062
2063       gold_assert(oldsym == NULL);
2064
2065       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2066                           elfcpp::STV_DEFAULT, 0);
2067       ++this->saw_undefined_;
2068     }
2069 }
2070
2071 // Set the dynamic symbol indexes.  INDEX is the index of the first
2072 // global dynamic symbol.  Pointers to the symbols are stored into the
2073 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2074 // updated dynamic symbol index.
2075
2076 unsigned int
2077 Symbol_table::set_dynsym_indexes(unsigned int index,
2078                                  std::vector<Symbol*>* syms,
2079                                  Stringpool* dynpool,
2080                                  Versions* versions)
2081 {
2082   for (Symbol_table_type::iterator p = this->table_.begin();
2083        p != this->table_.end();
2084        ++p)
2085     {
2086       Symbol* sym = p->second;
2087
2088       // Note that SYM may already have a dynamic symbol index, since
2089       // some symbols appear more than once in the symbol table, with
2090       // and without a version.
2091
2092       if (!sym->should_add_dynsym_entry())
2093         sym->set_dynsym_index(-1U);
2094       else if (!sym->has_dynsym_index())
2095         {
2096           sym->set_dynsym_index(index);
2097           ++index;
2098           syms->push_back(sym);
2099           dynpool->add(sym->name(), false, NULL);
2100
2101           // Record any version information.
2102           if (sym->version() != NULL)
2103             versions->record_version(this, dynpool, sym);
2104         }
2105     }
2106
2107   // Finish up the versions.  In some cases this may add new dynamic
2108   // symbols.
2109   index = versions->finalize(this, index, syms);
2110
2111   return index;
2112 }
2113
2114 // Set the final values for all the symbols.  The index of the first
2115 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2116 // file offset OFF.  Add their names to POOL.  Return the new file
2117 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2118
2119 off_t
2120 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2121                        size_t dyncount, Stringpool* pool,
2122                        unsigned int *plocal_symcount)
2123 {
2124   off_t ret;
2125
2126   gold_assert(*plocal_symcount != 0);
2127   this->first_global_index_ = *plocal_symcount;
2128
2129   this->dynamic_offset_ = dynoff;
2130   this->first_dynamic_global_index_ = dyn_global_index;
2131   this->dynamic_count_ = dyncount;
2132
2133   if (parameters->target().get_size() == 32)
2134     {
2135 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2136       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2137 #else
2138       gold_unreachable();
2139 #endif
2140     }
2141   else if (parameters->target().get_size() == 64)
2142     {
2143 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2144       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2145 #else
2146       gold_unreachable();
2147 #endif
2148     }
2149   else
2150     gold_unreachable();
2151
2152   // Now that we have the final symbol table, we can reliably note
2153   // which symbols should get warnings.
2154   this->warnings_.note_warnings(this);
2155
2156   return ret;
2157 }
2158
2159 // SYM is going into the symbol table at *PINDEX.  Add the name to
2160 // POOL, update *PINDEX and *POFF.
2161
2162 template<int size>
2163 void
2164 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2165                                   unsigned int* pindex, off_t* poff)
2166 {
2167   sym->set_symtab_index(*pindex);
2168   pool->add(sym->name(), false, NULL);
2169   ++*pindex;
2170   *poff += elfcpp::Elf_sizes<size>::sym_size;
2171 }
2172
2173 // Set the final value for all the symbols.  This is called after
2174 // Layout::finalize, so all the output sections have their final
2175 // address.
2176
2177 template<int size>
2178 off_t
2179 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2180                              unsigned int* plocal_symcount)
2181 {
2182   off = align_address(off, size >> 3);
2183   this->offset_ = off;
2184
2185   unsigned int index = *plocal_symcount;
2186   const unsigned int orig_index = index;
2187
2188   // First do all the symbols which have been forced to be local, as
2189   // they must appear before all global symbols.
2190   for (Forced_locals::iterator p = this->forced_locals_.begin();
2191        p != this->forced_locals_.end();
2192        ++p)
2193     {
2194       Symbol* sym = *p;
2195       gold_assert(sym->is_forced_local());
2196       if (this->sized_finalize_symbol<size>(sym))
2197         {
2198           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2199           ++*plocal_symcount;
2200         }
2201     }
2202
2203   // Now do all the remaining symbols.
2204   for (Symbol_table_type::iterator p = this->table_.begin();
2205        p != this->table_.end();
2206        ++p)
2207     {
2208       Symbol* sym = p->second;
2209       if (this->sized_finalize_symbol<size>(sym))
2210         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2211     }
2212
2213   this->output_count_ = index - orig_index;
2214
2215   return off;
2216 }
2217
2218 // Finalize the symbol SYM.  This returns true if the symbol should be
2219 // added to the symbol table, false otherwise.
2220
2221 template<int size>
2222 bool
2223 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2224 {
2225   typedef typename Sized_symbol<size>::Value_type Value_type;
2226
2227   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2228
2229   // The default version of a symbol may appear twice in the symbol
2230   // table.  We only need to finalize it once.
2231   if (sym->has_symtab_index())
2232     return false;
2233
2234   if (!sym->in_reg())
2235     {
2236       gold_assert(!sym->has_symtab_index());
2237       sym->set_symtab_index(-1U);
2238       gold_assert(sym->dynsym_index() == -1U);
2239       return false;
2240     }
2241
2242   Value_type value;
2243
2244   switch (sym->source())
2245     {
2246     case Symbol::FROM_OBJECT:
2247       {
2248         bool is_ordinary;
2249         unsigned int shndx = sym->shndx(&is_ordinary);
2250
2251         // FIXME: We need some target specific support here.
2252         if (!is_ordinary
2253             && shndx != elfcpp::SHN_ABS
2254             && shndx != elfcpp::SHN_COMMON)
2255           {
2256             gold_error(_("%s: unsupported symbol section 0x%x"),
2257                        sym->demangled_name().c_str(), shndx);
2258             shndx = elfcpp::SHN_UNDEF;
2259           }
2260
2261         Object* symobj = sym->object();
2262         if (symobj->is_dynamic())
2263           {
2264             value = 0;
2265             shndx = elfcpp::SHN_UNDEF;
2266           }
2267         else if (symobj->pluginobj() != NULL)
2268           {
2269             value = 0;
2270             shndx = elfcpp::SHN_UNDEF;
2271           }
2272         else if (shndx == elfcpp::SHN_UNDEF)
2273           value = 0;
2274         else if (!is_ordinary
2275                  && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2276           value = sym->value();
2277         else
2278           {
2279             Relobj* relobj = static_cast<Relobj*>(symobj);
2280             Output_section* os = relobj->output_section(shndx);
2281
2282             if (os == NULL)
2283               {
2284                 sym->set_symtab_index(-1U);
2285                 bool static_or_reloc = (parameters->doing_static_link() ||
2286                                         parameters->options().relocatable());
2287                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2288
2289                 return false;
2290               }
2291
2292             uint64_t secoff64 = relobj->output_section_offset(shndx);
2293             if (secoff64 == -1ULL)
2294               {
2295                 // The section needs special handling (e.g., a merge section).
2296                 value = os->output_address(relobj, shndx, sym->value());
2297               }
2298             else
2299               {
2300                 Value_type secoff =
2301                   convert_types<Value_type, uint64_t>(secoff64);
2302                 if (sym->type() == elfcpp::STT_TLS)
2303                   value = sym->value() + os->tls_offset() + secoff;
2304                 else
2305                   value = sym->value() + os->address() + secoff;
2306               }
2307           }
2308       }
2309       break;
2310
2311     case Symbol::IN_OUTPUT_DATA:
2312       {
2313         Output_data* od = sym->output_data();
2314         value = sym->value();
2315         if (sym->type() != elfcpp::STT_TLS)
2316           value += od->address();
2317         else
2318           {
2319             Output_section* os = od->output_section();
2320             gold_assert(os != NULL);
2321             value += os->tls_offset() + (od->address() - os->address());
2322           }
2323         if (sym->offset_is_from_end())
2324           value += od->data_size();
2325       }
2326       break;
2327
2328     case Symbol::IN_OUTPUT_SEGMENT:
2329       {
2330         Output_segment* os = sym->output_segment();
2331         value = sym->value();
2332         if (sym->type() != elfcpp::STT_TLS)
2333           value += os->vaddr();
2334         switch (sym->offset_base())
2335           {
2336           case Symbol::SEGMENT_START:
2337             break;
2338           case Symbol::SEGMENT_END:
2339             value += os->memsz();
2340             break;
2341           case Symbol::SEGMENT_BSS:
2342             value += os->filesz();
2343             break;
2344           default:
2345             gold_unreachable();
2346           }
2347       }
2348       break;
2349
2350     case Symbol::IS_CONSTANT:
2351       value = sym->value();
2352       break;
2353
2354     case Symbol::IS_UNDEFINED:
2355       value = 0;
2356       break;
2357
2358     default:
2359       gold_unreachable();
2360     }
2361
2362   sym->set_value(value);
2363
2364   if (parameters->options().strip_all())
2365     {
2366       sym->set_symtab_index(-1U);
2367       return false;
2368     }
2369
2370   return true;
2371 }
2372
2373 // Write out the global symbols.
2374
2375 void
2376 Symbol_table::write_globals(const Input_objects* input_objects,
2377                             const Stringpool* sympool,
2378                             const Stringpool* dynpool,
2379                             Output_symtab_xindex* symtab_xindex,
2380                             Output_symtab_xindex* dynsym_xindex,
2381                             Output_file* of) const
2382 {
2383   switch (parameters->size_and_endianness())
2384     {
2385 #ifdef HAVE_TARGET_32_LITTLE
2386     case Parameters::TARGET_32_LITTLE:
2387       this->sized_write_globals<32, false>(input_objects, sympool,
2388                                            dynpool, symtab_xindex,
2389                                            dynsym_xindex, of);
2390       break;
2391 #endif
2392 #ifdef HAVE_TARGET_32_BIG
2393     case Parameters::TARGET_32_BIG:
2394       this->sized_write_globals<32, true>(input_objects, sympool,
2395                                           dynpool, symtab_xindex,
2396                                           dynsym_xindex, of);
2397       break;
2398 #endif
2399 #ifdef HAVE_TARGET_64_LITTLE
2400     case Parameters::TARGET_64_LITTLE:
2401       this->sized_write_globals<64, false>(input_objects, sympool,
2402                                            dynpool, symtab_xindex,
2403                                            dynsym_xindex, of);
2404       break;
2405 #endif
2406 #ifdef HAVE_TARGET_64_BIG
2407     case Parameters::TARGET_64_BIG:
2408       this->sized_write_globals<64, true>(input_objects, sympool,
2409                                           dynpool, symtab_xindex,
2410                                           dynsym_xindex, of);
2411       break;
2412 #endif
2413     default:
2414       gold_unreachable();
2415     }
2416 }
2417
2418 // Write out the global symbols.
2419
2420 template<int size, bool big_endian>
2421 void
2422 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2423                                   const Stringpool* sympool,
2424                                   const Stringpool* dynpool,
2425                                   Output_symtab_xindex* symtab_xindex,
2426                                   Output_symtab_xindex* dynsym_xindex,
2427                                   Output_file* of) const
2428 {
2429   const Target& target = parameters->target();
2430
2431   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2432
2433   const unsigned int output_count = this->output_count_;
2434   const section_size_type oview_size = output_count * sym_size;
2435   const unsigned int first_global_index = this->first_global_index_;
2436   unsigned char* psyms;
2437   if (this->offset_ == 0 || output_count == 0)
2438     psyms = NULL;
2439   else
2440     psyms = of->get_output_view(this->offset_, oview_size);
2441
2442   const unsigned int dynamic_count = this->dynamic_count_;
2443   const section_size_type dynamic_size = dynamic_count * sym_size;
2444   const unsigned int first_dynamic_global_index =
2445     this->first_dynamic_global_index_;
2446   unsigned char* dynamic_view;
2447   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2448     dynamic_view = NULL;
2449   else
2450     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2451
2452   for (Symbol_table_type::const_iterator p = this->table_.begin();
2453        p != this->table_.end();
2454        ++p)
2455     {
2456       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2457
2458       // Possibly warn about unresolved symbols in shared libraries.
2459       this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2460
2461       unsigned int sym_index = sym->symtab_index();
2462       unsigned int dynsym_index;
2463       if (dynamic_view == NULL)
2464         dynsym_index = -1U;
2465       else
2466         dynsym_index = sym->dynsym_index();
2467
2468       if (sym_index == -1U && dynsym_index == -1U)
2469         {
2470           // This symbol is not included in the output file.
2471           continue;
2472         }
2473
2474       unsigned int shndx;
2475       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2476       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2477       switch (sym->source())
2478         {
2479         case Symbol::FROM_OBJECT:
2480           {
2481             bool is_ordinary;
2482             unsigned int in_shndx = sym->shndx(&is_ordinary);
2483
2484             // FIXME: We need some target specific support here.
2485             if (!is_ordinary
2486                 && in_shndx != elfcpp::SHN_ABS
2487                 && in_shndx != elfcpp::SHN_COMMON)
2488               {
2489                 gold_error(_("%s: unsupported symbol section 0x%x"),
2490                            sym->demangled_name().c_str(), in_shndx);
2491                 shndx = in_shndx;
2492               }
2493             else
2494               {
2495                 Object* symobj = sym->object();
2496                 if (symobj->is_dynamic())
2497                   {
2498                     if (sym->needs_dynsym_value())
2499                       dynsym_value = target.dynsym_value(sym);
2500                     shndx = elfcpp::SHN_UNDEF;
2501                   }
2502                 else if (symobj->pluginobj() != NULL)
2503                   shndx = elfcpp::SHN_UNDEF;
2504                 else if (in_shndx == elfcpp::SHN_UNDEF
2505                          || (!is_ordinary
2506                              && (in_shndx == elfcpp::SHN_ABS
2507                                  || in_shndx == elfcpp::SHN_COMMON)))
2508                   shndx = in_shndx;
2509                 else
2510                   {
2511                     Relobj* relobj = static_cast<Relobj*>(symobj);
2512                     Output_section* os = relobj->output_section(in_shndx);
2513                     gold_assert(os != NULL);
2514                     shndx = os->out_shndx();
2515
2516                     if (shndx >= elfcpp::SHN_LORESERVE)
2517                       {
2518                         if (sym_index != -1U)
2519                           symtab_xindex->add(sym_index, shndx);
2520                         if (dynsym_index != -1U)
2521                           dynsym_xindex->add(dynsym_index, shndx);
2522                         shndx = elfcpp::SHN_XINDEX;
2523                       }
2524
2525                     // In object files symbol values are section
2526                     // relative.
2527                     if (parameters->options().relocatable())
2528                       sym_value -= os->address();
2529                   }
2530               }
2531           }
2532           break;
2533
2534         case Symbol::IN_OUTPUT_DATA:
2535           shndx = sym->output_data()->out_shndx();
2536           if (shndx >= elfcpp::SHN_LORESERVE)
2537             {
2538               if (sym_index != -1U)
2539                 symtab_xindex->add(sym_index, shndx);
2540               if (dynsym_index != -1U)
2541                 dynsym_xindex->add(dynsym_index, shndx);
2542               shndx = elfcpp::SHN_XINDEX;
2543             }
2544           break;
2545
2546         case Symbol::IN_OUTPUT_SEGMENT:
2547           shndx = elfcpp::SHN_ABS;
2548           break;
2549
2550         case Symbol::IS_CONSTANT:
2551           shndx = elfcpp::SHN_ABS;
2552           break;
2553
2554         case Symbol::IS_UNDEFINED:
2555           shndx = elfcpp::SHN_UNDEF;
2556           break;
2557
2558         default:
2559           gold_unreachable();
2560         }
2561
2562       if (sym_index != -1U)
2563         {
2564           sym_index -= first_global_index;
2565           gold_assert(sym_index < output_count);
2566           unsigned char* ps = psyms + (sym_index * sym_size);
2567           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2568                                                      sympool, ps);
2569         }
2570
2571       if (dynsym_index != -1U)
2572         {
2573           dynsym_index -= first_dynamic_global_index;
2574           gold_assert(dynsym_index < dynamic_count);
2575           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2576           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2577                                                      dynpool, pd);
2578         }
2579     }
2580
2581   of->write_output_view(this->offset_, oview_size, psyms);
2582   if (dynamic_view != NULL)
2583     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2584 }
2585
2586 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2587 // strtab holding the name.
2588
2589 template<int size, bool big_endian>
2590 void
2591 Symbol_table::sized_write_symbol(
2592     Sized_symbol<size>* sym,
2593     typename elfcpp::Elf_types<size>::Elf_Addr value,
2594     unsigned int shndx,
2595     const Stringpool* pool,
2596     unsigned char* p) const
2597 {
2598   elfcpp::Sym_write<size, big_endian> osym(p);
2599   osym.put_st_name(pool->get_offset(sym->name()));
2600   osym.put_st_value(value);
2601   // Use a symbol size of zero for undefined symbols from shared libraries.
2602   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2603     osym.put_st_size(0);
2604   else
2605     osym.put_st_size(sym->symsize());
2606   // A version script may have overridden the default binding.
2607   if (sym->is_forced_local())
2608     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2609   else
2610     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2611   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2612   osym.put_st_shndx(shndx);
2613 }
2614
2615 // Check for unresolved symbols in shared libraries.  This is
2616 // controlled by the --allow-shlib-undefined option.
2617
2618 // We only warn about libraries for which we have seen all the
2619 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2620 // which were not seen in this link.  If we didn't see a DT_NEEDED
2621 // entry, we aren't going to be able to reliably report whether the
2622 // symbol is undefined.
2623
2624 // We also don't warn about libraries found in the system library
2625 // directory (the directory were we find libc.so); we assume that
2626 // those libraries are OK.  This heuristic avoids problems in
2627 // GNU/Linux, in which -ldl can have undefined references satisfied by
2628 // ld-linux.so.
2629
2630 inline void
2631 Symbol_table::warn_about_undefined_dynobj_symbol(
2632     const Input_objects* input_objects,
2633     Symbol* sym) const
2634 {
2635   bool dummy;
2636   if (sym->source() == Symbol::FROM_OBJECT
2637       && sym->object()->is_dynamic()
2638       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2639       && sym->binding() != elfcpp::STB_WEAK
2640       && !parameters->options().allow_shlib_undefined()
2641       && !parameters->target().is_defined_by_abi(sym)
2642       && !input_objects->found_in_system_library_directory(sym->object()))
2643     {
2644       // A very ugly cast.
2645       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2646       if (!dynobj->has_unknown_needed_entries())
2647         gold_undefined_symbol(sym);
2648     }
2649 }
2650
2651 // Write out a section symbol.  Return the update offset.
2652
2653 void
2654 Symbol_table::write_section_symbol(const Output_section *os,
2655                                    Output_symtab_xindex* symtab_xindex,
2656                                    Output_file* of,
2657                                    off_t offset) const
2658 {
2659   switch (parameters->size_and_endianness())
2660     {
2661 #ifdef HAVE_TARGET_32_LITTLE
2662     case Parameters::TARGET_32_LITTLE:
2663       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2664                                                   offset);
2665       break;
2666 #endif
2667 #ifdef HAVE_TARGET_32_BIG
2668     case Parameters::TARGET_32_BIG:
2669       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2670                                                  offset);
2671       break;
2672 #endif
2673 #ifdef HAVE_TARGET_64_LITTLE
2674     case Parameters::TARGET_64_LITTLE:
2675       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2676                                                   offset);
2677       break;
2678 #endif
2679 #ifdef HAVE_TARGET_64_BIG
2680     case Parameters::TARGET_64_BIG:
2681       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2682                                                  offset);
2683       break;
2684 #endif
2685     default:
2686       gold_unreachable();
2687     }
2688 }
2689
2690 // Write out a section symbol, specialized for size and endianness.
2691
2692 template<int size, bool big_endian>
2693 void
2694 Symbol_table::sized_write_section_symbol(const Output_section* os,
2695                                          Output_symtab_xindex* symtab_xindex,
2696                                          Output_file* of,
2697                                          off_t offset) const
2698 {
2699   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2700
2701   unsigned char* pov = of->get_output_view(offset, sym_size);
2702
2703   elfcpp::Sym_write<size, big_endian> osym(pov);
2704   osym.put_st_name(0);
2705   osym.put_st_value(os->address());
2706   osym.put_st_size(0);
2707   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2708                                        elfcpp::STT_SECTION));
2709   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2710
2711   unsigned int shndx = os->out_shndx();
2712   if (shndx >= elfcpp::SHN_LORESERVE)
2713     {
2714       symtab_xindex->add(os->symtab_index(), shndx);
2715       shndx = elfcpp::SHN_XINDEX;
2716     }
2717   osym.put_st_shndx(shndx);
2718
2719   of->write_output_view(offset, sym_size, pov);
2720 }
2721
2722 // Print statistical information to stderr.  This is used for --stats.
2723
2724 void
2725 Symbol_table::print_stats() const
2726 {
2727 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2728   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2729           program_name, this->table_.size(), this->table_.bucket_count());
2730 #else
2731   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2732           program_name, this->table_.size());
2733 #endif
2734   this->namepool_.print_stats("symbol table stringpool");
2735 }
2736
2737 // We check for ODR violations by looking for symbols with the same
2738 // name for which the debugging information reports that they were
2739 // defined in different source locations.  When comparing the source
2740 // location, we consider instances with the same base filename and
2741 // line number to be the same.  This is because different object
2742 // files/shared libraries can include the same header file using
2743 // different paths, and we don't want to report an ODR violation in
2744 // that case.
2745
2746 // This struct is used to compare line information, as returned by
2747 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2748 // operator used with std::set.
2749
2750 struct Odr_violation_compare
2751 {
2752   bool
2753   operator()(const std::string& s1, const std::string& s2) const
2754   {
2755     std::string::size_type pos1 = s1.rfind('/');
2756     std::string::size_type pos2 = s2.rfind('/');
2757     if (pos1 == std::string::npos
2758         || pos2 == std::string::npos)
2759       return s1 < s2;
2760     return s1.compare(pos1, std::string::npos,
2761                       s2, pos2, std::string::npos) < 0;
2762   }
2763 };
2764
2765 // Check candidate_odr_violations_ to find symbols with the same name
2766 // but apparently different definitions (different source-file/line-no).
2767
2768 void
2769 Symbol_table::detect_odr_violations(const Task* task,
2770                                     const char* output_file_name) const
2771 {
2772   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2773        it != candidate_odr_violations_.end();
2774        ++it)
2775     {
2776       const char* symbol_name = it->first;
2777       // We use a sorted set so the output is deterministic.
2778       std::set<std::string, Odr_violation_compare> line_nums;
2779
2780       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2781                locs = it->second.begin();
2782            locs != it->second.end();
2783            ++locs)
2784         {
2785           // We need to lock the object in order to read it.  This
2786           // means that we have to run in a singleton Task.  If we
2787           // want to run this in a general Task for better
2788           // performance, we will need one Task for object, plus
2789           // appropriate locking to ensure that we don't conflict with
2790           // other uses of the object.  Also note, one_addr2line is not
2791           // currently thread-safe.
2792           Task_lock_obj<Object> tl(task, locs->object);
2793           // 16 is the size of the object-cache that one_addr2line should use.
2794           std::string lineno = Dwarf_line_info::one_addr2line(
2795               locs->object, locs->shndx, locs->offset, 16);
2796           if (!lineno.empty())
2797             line_nums.insert(lineno);
2798         }
2799
2800       if (line_nums.size() > 1)
2801         {
2802           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2803                          "places (possible ODR violation):"),
2804                        output_file_name, demangle(symbol_name).c_str());
2805           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2806                it2 != line_nums.end();
2807                ++it2)
2808             fprintf(stderr, "  %s\n", it2->c_str());
2809         }
2810     }
2811   // We only call one_addr2line() in this function, so we can clear its cache.
2812   Dwarf_line_info::clear_addr2line_cache();
2813 }
2814
2815 // Warnings functions.
2816
2817 // Add a new warning.
2818
2819 void
2820 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2821                       const std::string& warning)
2822 {
2823   name = symtab->canonicalize_name(name);
2824   this->warnings_[name].set(obj, warning);
2825 }
2826
2827 // Look through the warnings and mark the symbols for which we should
2828 // warn.  This is called during Layout::finalize when we know the
2829 // sources for all the symbols.
2830
2831 void
2832 Warnings::note_warnings(Symbol_table* symtab)
2833 {
2834   for (Warning_table::iterator p = this->warnings_.begin();
2835        p != this->warnings_.end();
2836        ++p)
2837     {
2838       Symbol* sym = symtab->lookup(p->first, NULL);
2839       if (sym != NULL
2840           && sym->source() == Symbol::FROM_OBJECT
2841           && sym->object() == p->second.object)
2842         sym->set_has_warning();
2843     }
2844 }
2845
2846 // Issue a warning.  This is called when we see a relocation against a
2847 // symbol for which has a warning.
2848
2849 template<int size, bool big_endian>
2850 void
2851 Warnings::issue_warning(const Symbol* sym,
2852                         const Relocate_info<size, big_endian>* relinfo,
2853                         size_t relnum, off_t reloffset) const
2854 {
2855   gold_assert(sym->has_warning());
2856   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2857   gold_assert(p != this->warnings_.end());
2858   gold_warning_at_location(relinfo, relnum, reloffset,
2859                            "%s", p->second.text.c_str());
2860 }
2861
2862 // Instantiate the templates we need.  We could use the configure
2863 // script to restrict this to only the ones needed for implemented
2864 // targets.
2865
2866 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2867 template
2868 void
2869 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2870 #endif
2871
2872 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2873 template
2874 void
2875 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2876 #endif
2877
2878 #ifdef HAVE_TARGET_32_LITTLE
2879 template
2880 void
2881 Symbol_table::add_from_relobj<32, false>(
2882     Sized_relobj<32, false>* relobj,
2883     const unsigned char* syms,
2884     size_t count,
2885     size_t symndx_offset,
2886     const char* sym_names,
2887     size_t sym_name_size,
2888     Sized_relobj<32, false>::Symbols* sympointers,
2889     size_t* defined);
2890 #endif
2891
2892 #ifdef HAVE_TARGET_32_BIG
2893 template
2894 void
2895 Symbol_table::add_from_relobj<32, true>(
2896     Sized_relobj<32, true>* relobj,
2897     const unsigned char* syms,
2898     size_t count,
2899     size_t symndx_offset,
2900     const char* sym_names,
2901     size_t sym_name_size,
2902     Sized_relobj<32, true>::Symbols* sympointers,
2903     size_t* defined);
2904 #endif
2905
2906 #ifdef HAVE_TARGET_64_LITTLE
2907 template
2908 void
2909 Symbol_table::add_from_relobj<64, false>(
2910     Sized_relobj<64, false>* relobj,
2911     const unsigned char* syms,
2912     size_t count,
2913     size_t symndx_offset,
2914     const char* sym_names,
2915     size_t sym_name_size,
2916     Sized_relobj<64, false>::Symbols* sympointers,
2917     size_t* defined);
2918 #endif
2919
2920 #ifdef HAVE_TARGET_64_BIG
2921 template
2922 void
2923 Symbol_table::add_from_relobj<64, true>(
2924     Sized_relobj<64, true>* relobj,
2925     const unsigned char* syms,
2926     size_t count,
2927     size_t symndx_offset,
2928     const char* sym_names,
2929     size_t sym_name_size,
2930     Sized_relobj<64, true>::Symbols* sympointers,
2931     size_t* defined);
2932 #endif
2933
2934 #ifdef HAVE_TARGET_32_LITTLE
2935 template
2936 Symbol*
2937 Symbol_table::add_from_pluginobj<32, false>(
2938     Sized_pluginobj<32, false>* obj,
2939     const char* name,
2940     const char* ver,
2941     elfcpp::Sym<32, false>* sym);
2942 #endif
2943
2944 #ifdef HAVE_TARGET_32_BIG
2945 template
2946 Symbol*
2947 Symbol_table::add_from_pluginobj<32, true>(
2948     Sized_pluginobj<32, true>* obj,
2949     const char* name,
2950     const char* ver,
2951     elfcpp::Sym<32, true>* sym);
2952 #endif
2953
2954 #ifdef HAVE_TARGET_64_LITTLE
2955 template
2956 Symbol*
2957 Symbol_table::add_from_pluginobj<64, false>(
2958     Sized_pluginobj<64, false>* obj,
2959     const char* name,
2960     const char* ver,
2961     elfcpp::Sym<64, false>* sym);
2962 #endif
2963
2964 #ifdef HAVE_TARGET_64_BIG
2965 template
2966 Symbol*
2967 Symbol_table::add_from_pluginobj<64, true>(
2968     Sized_pluginobj<64, true>* obj,
2969     const char* name,
2970     const char* ver,
2971     elfcpp::Sym<64, true>* sym);
2972 #endif
2973
2974 #ifdef HAVE_TARGET_32_LITTLE
2975 template
2976 void
2977 Symbol_table::add_from_dynobj<32, false>(
2978     Sized_dynobj<32, false>* dynobj,
2979     const unsigned char* syms,
2980     size_t count,
2981     const char* sym_names,
2982     size_t sym_name_size,
2983     const unsigned char* versym,
2984     size_t versym_size,
2985     const std::vector<const char*>* version_map,
2986     Sized_relobj<32, false>::Symbols* sympointers,
2987     size_t* defined);
2988 #endif
2989
2990 #ifdef HAVE_TARGET_32_BIG
2991 template
2992 void
2993 Symbol_table::add_from_dynobj<32, true>(
2994     Sized_dynobj<32, true>* dynobj,
2995     const unsigned char* syms,
2996     size_t count,
2997     const char* sym_names,
2998     size_t sym_name_size,
2999     const unsigned char* versym,
3000     size_t versym_size,
3001     const std::vector<const char*>* version_map,
3002     Sized_relobj<32, true>::Symbols* sympointers,
3003     size_t* defined);
3004 #endif
3005
3006 #ifdef HAVE_TARGET_64_LITTLE
3007 template
3008 void
3009 Symbol_table::add_from_dynobj<64, false>(
3010     Sized_dynobj<64, false>* dynobj,
3011     const unsigned char* syms,
3012     size_t count,
3013     const char* sym_names,
3014     size_t sym_name_size,
3015     const unsigned char* versym,
3016     size_t versym_size,
3017     const std::vector<const char*>* version_map,
3018     Sized_relobj<64, false>::Symbols* sympointers,
3019     size_t* defined);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_64_BIG
3023 template
3024 void
3025 Symbol_table::add_from_dynobj<64, true>(
3026     Sized_dynobj<64, true>* dynobj,
3027     const unsigned char* syms,
3028     size_t count,
3029     const char* sym_names,
3030     size_t sym_name_size,
3031     const unsigned char* versym,
3032     size_t versym_size,
3033     const std::vector<const char*>* version_map,
3034     Sized_relobj<64, true>::Symbols* sympointers,
3035     size_t* defined);
3036 #endif
3037
3038 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3039 template
3040 void
3041 Symbol_table::define_with_copy_reloc<32>(
3042     Sized_symbol<32>* sym,
3043     Output_data* posd,
3044     elfcpp::Elf_types<32>::Elf_Addr value);
3045 #endif
3046
3047 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3048 template
3049 void
3050 Symbol_table::define_with_copy_reloc<64>(
3051     Sized_symbol<64>* sym,
3052     Output_data* posd,
3053     elfcpp::Elf_types<64>::Elf_Addr value);
3054 #endif
3055
3056 #ifdef HAVE_TARGET_32_LITTLE
3057 template
3058 void
3059 Warnings::issue_warning<32, false>(const Symbol* sym,
3060                                    const Relocate_info<32, false>* relinfo,
3061                                    size_t relnum, off_t reloffset) const;
3062 #endif
3063
3064 #ifdef HAVE_TARGET_32_BIG
3065 template
3066 void
3067 Warnings::issue_warning<32, true>(const Symbol* sym,
3068                                   const Relocate_info<32, true>* relinfo,
3069                                   size_t relnum, off_t reloffset) const;
3070 #endif
3071
3072 #ifdef HAVE_TARGET_64_LITTLE
3073 template
3074 void
3075 Warnings::issue_warning<64, false>(const Symbol* sym,
3076                                    const Relocate_info<64, false>* relinfo,
3077                                    size_t relnum, off_t reloffset) const;
3078 #endif
3079
3080 #ifdef HAVE_TARGET_64_BIG
3081 template
3082 void
3083 Warnings::issue_warning<64, true>(const Symbol* sym,
3084                                   const Relocate_info<64, true>* relinfo,
3085                                   size_t relnum, off_t reloffset) const;
3086 #endif
3087
3088 } // End namespace gold.