Don't emit symbols seen only in dynamic object, don't read duplicate
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol.  This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26                     elfcpp::STT type, elfcpp::STB binding,
27                     elfcpp::STV visibility, unsigned char nonvis)
28 {
29   this->name_ = name;
30   this->version_ = version;
31   this->symtab_index_ = 0;
32   this->dynsym_index_ = 0;
33   this->got_offset_ = 0;
34   this->type_ = type;
35   this->binding_ = binding;
36   this->visibility_ = visibility;
37   this->nonvis_ = nonvis;
38   this->is_target_special_ = false;
39   this->is_def_ = false;
40   this->is_forwarder_ = false;
41   this->needs_dynsym_entry_ = false;
42   this->in_reg_ = false;
43   this->in_dyn_ = false;
44   this->has_got_offset_ = false;
45   this->has_warning_ = false;
46 }
47
48 // Initialize the fields in the base class Symbol for SYM in OBJECT.
49
50 template<int size, bool big_endian>
51 void
52 Symbol::init_base(const char* name, const char* version, Object* object,
53                   const elfcpp::Sym<size, big_endian>& sym)
54 {
55   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
56                     sym.get_st_visibility(), sym.get_st_nonvis());
57   this->u_.from_object.object = object;
58   // FIXME: Handle SHN_XINDEX.
59   this->u_.from_object.shndx = sym.get_st_shndx();
60   this->source_ = FROM_OBJECT;
61   this->in_reg_ = !object->is_dynamic();
62   this->in_dyn_ = object->is_dynamic();
63 }
64
65 // Initialize the fields in the base class Symbol for a symbol defined
66 // in an Output_data.
67
68 void
69 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
70                   elfcpp::STB binding, elfcpp::STV visibility,
71                   unsigned char nonvis, bool offset_is_from_end)
72 {
73   this->init_fields(name, NULL, type, binding, visibility, nonvis);
74   this->u_.in_output_data.output_data = od;
75   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
76   this->source_ = IN_OUTPUT_DATA;
77   this->in_reg_ = true;
78 }
79
80 // Initialize the fields in the base class Symbol for a symbol defined
81 // in an Output_segment.
82
83 void
84 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
85                   elfcpp::STB binding, elfcpp::STV visibility,
86                   unsigned char nonvis, Segment_offset_base offset_base)
87 {
88   this->init_fields(name, NULL, type, binding, visibility, nonvis);
89   this->u_.in_output_segment.output_segment = os;
90   this->u_.in_output_segment.offset_base = offset_base;
91   this->source_ = IN_OUTPUT_SEGMENT;
92   this->in_reg_ = true;
93 }
94
95 // Initialize the fields in the base class Symbol for a symbol defined
96 // as a constant.
97
98 void
99 Symbol::init_base(const char* name, elfcpp::STT type,
100                   elfcpp::STB binding, elfcpp::STV visibility,
101                   unsigned char nonvis)
102 {
103   this->init_fields(name, NULL, type, binding, visibility, nonvis);
104   this->source_ = CONSTANT;
105   this->in_reg_ = true;
106 }
107
108 // Initialize the fields in Sized_symbol for SYM in OBJECT.
109
110 template<int size>
111 template<bool big_endian>
112 void
113 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
114                          const elfcpp::Sym<size, big_endian>& sym)
115 {
116   this->init_base(name, version, object, sym);
117   this->value_ = sym.get_st_value();
118   this->symsize_ = sym.get_st_size();
119 }
120
121 // Initialize the fields in Sized_symbol for a symbol defined in an
122 // Output_data.
123
124 template<int size>
125 void
126 Sized_symbol<size>::init(const char* name, Output_data* od,
127                          Value_type value, Size_type symsize,
128                          elfcpp::STT type, elfcpp::STB binding,
129                          elfcpp::STV visibility, unsigned char nonvis,
130                          bool offset_is_from_end)
131 {
132   this->init_base(name, od, type, binding, visibility, nonvis,
133                   offset_is_from_end);
134   this->value_ = value;
135   this->symsize_ = symsize;
136 }
137
138 // Initialize the fields in Sized_symbol for a symbol defined in an
139 // Output_segment.
140
141 template<int size>
142 void
143 Sized_symbol<size>::init(const char* name, Output_segment* os,
144                          Value_type value, Size_type symsize,
145                          elfcpp::STT type, elfcpp::STB binding,
146                          elfcpp::STV visibility, unsigned char nonvis,
147                          Segment_offset_base offset_base)
148 {
149   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
150   this->value_ = value;
151   this->symsize_ = symsize;
152 }
153
154 // Initialize the fields in Sized_symbol for a symbol defined as a
155 // constant.
156
157 template<int size>
158 void
159 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
160                          elfcpp::STT type, elfcpp::STB binding,
161                          elfcpp::STV visibility, unsigned char nonvis)
162 {
163   this->init_base(name, type, binding, visibility, nonvis);
164   this->value_ = value;
165   this->symsize_ = symsize;
166 }
167
168 // Class Symbol_table.
169
170 Symbol_table::Symbol_table()
171   : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
172     forwarders_(), commons_(), warnings_()
173 {
174 }
175
176 Symbol_table::~Symbol_table()
177 {
178 }
179
180 // The hash function.  The key is always canonicalized, so we use a
181 // simple combination of the pointers.
182
183 size_t
184 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
185 {
186   return key.first ^ key.second;
187 }
188
189 // The symbol table key equality function.  This is only called with
190 // canonicalized name and version strings, so we can use pointer
191 // comparison.
192
193 bool
194 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
195                                           const Symbol_table_key& k2) const
196 {
197   return k1.first == k2.first && k1.second == k2.second;
198 }
199
200 // Make TO a symbol which forwards to FROM.  
201
202 void
203 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
204 {
205   gold_assert(from != to);
206   gold_assert(!from->is_forwarder() && !to->is_forwarder());
207   this->forwarders_[from] = to;
208   from->set_forwarder();
209 }
210
211 // Resolve the forwards from FROM, returning the real symbol.
212
213 Symbol*
214 Symbol_table::resolve_forwards(const Symbol* from) const
215 {
216   gold_assert(from->is_forwarder());
217   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
218     this->forwarders_.find(from);
219   gold_assert(p != this->forwarders_.end());
220   return p->second;
221 }
222
223 // Look up a symbol by name.
224
225 Symbol*
226 Symbol_table::lookup(const char* name, const char* version) const
227 {
228   Stringpool::Key name_key;
229   name = this->namepool_.find(name, &name_key);
230   if (name == NULL)
231     return NULL;
232
233   Stringpool::Key version_key = 0;
234   if (version != NULL)
235     {
236       version = this->namepool_.find(version, &version_key);
237       if (version == NULL)
238         return NULL;
239     }
240
241   Symbol_table_key key(name_key, version_key);
242   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
243   if (p == this->table_.end())
244     return NULL;
245   return p->second;
246 }
247
248 // Resolve a Symbol with another Symbol.  This is only used in the
249 // unusual case where there are references to both an unversioned
250 // symbol and a symbol with a version, and we then discover that that
251 // version is the default version.  Because this is unusual, we do
252 // this the slow way, by converting back to an ELF symbol.
253
254 template<int size, bool big_endian>
255 void
256 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
257                       const char* version ACCEPT_SIZE_ENDIAN)
258 {
259   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
260   elfcpp::Sym_write<size, big_endian> esym(buf);
261   // We don't bother to set the st_name field.
262   esym.put_st_value(from->value());
263   esym.put_st_size(from->symsize());
264   esym.put_st_info(from->binding(), from->type());
265   esym.put_st_other(from->visibility(), from->nonvis());
266   esym.put_st_shndx(from->shndx());
267   Symbol_table::resolve(to, esym.sym(), from->object(), version);
268 }
269
270 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
271 // name and VERSION is the version; both are canonicalized.  DEF is
272 // whether this is the default version.
273
274 // If DEF is true, then this is the definition of a default version of
275 // a symbol.  That means that any lookup of NAME/NULL and any lookup
276 // of NAME/VERSION should always return the same symbol.  This is
277 // obvious for references, but in particular we want to do this for
278 // definitions: overriding NAME/NULL should also override
279 // NAME/VERSION.  If we don't do that, it would be very hard to
280 // override functions in a shared library which uses versioning.
281
282 // We implement this by simply making both entries in the hash table
283 // point to the same Symbol structure.  That is easy enough if this is
284 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
285 // that we have seen both already, in which case they will both have
286 // independent entries in the symbol table.  We can't simply change
287 // the symbol table entry, because we have pointers to the entries
288 // attached to the object files.  So we mark the entry attached to the
289 // object file as a forwarder, and record it in the forwarders_ map.
290 // Note that entries in the hash table will never be marked as
291 // forwarders.
292
293 template<int size, bool big_endian>
294 Symbol*
295 Symbol_table::add_from_object(Object* object,
296                               const char *name,
297                               Stringpool::Key name_key,
298                               const char *version,
299                               Stringpool::Key version_key,
300                               bool def,
301                               const elfcpp::Sym<size, big_endian>& sym)
302 {
303   Symbol* const snull = NULL;
304   std::pair<typename Symbol_table_type::iterator, bool> ins =
305     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
306                                        snull));
307
308   std::pair<typename Symbol_table_type::iterator, bool> insdef =
309     std::make_pair(this->table_.end(), false);
310   if (def)
311     {
312       const Stringpool::Key vnull_key = 0;
313       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
314                                                                  vnull_key),
315                                                   snull));
316     }
317
318   // ins.first: an iterator, which is a pointer to a pair.
319   // ins.first->first: the key (a pair of name and version).
320   // ins.first->second: the value (Symbol*).
321   // ins.second: true if new entry was inserted, false if not.
322
323   Sized_symbol<size>* ret;
324   bool was_undefined;
325   bool was_common;
326   if (!ins.second)
327     {
328       // We already have an entry for NAME/VERSION.
329       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
330                                                            SELECT_SIZE(size));
331       gold_assert(ret != NULL);
332
333       was_undefined = ret->is_undefined();
334       was_common = ret->is_common();
335
336       Symbol_table::resolve(ret, sym, object, version);
337
338       if (def)
339         {
340           if (insdef.second)
341             {
342               // This is the first time we have seen NAME/NULL.  Make
343               // NAME/NULL point to NAME/VERSION.
344               insdef.first->second = ret;
345             }
346           else if (insdef.first->second != ret)
347             {
348               // This is the unfortunate case where we already have
349               // entries for both NAME/VERSION and NAME/NULL.
350               const Sized_symbol<size>* sym2;
351               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
352                 insdef.first->second
353                 SELECT_SIZE(size));
354               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
355                 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
356               this->make_forwarder(insdef.first->second, ret);
357               insdef.first->second = ret;
358             }
359         }
360     }
361   else
362     {
363       // This is the first time we have seen NAME/VERSION.
364       gold_assert(ins.first->second == NULL);
365
366       was_undefined = false;
367       was_common = false;
368
369       if (def && !insdef.second)
370         {
371           // We already have an entry for NAME/NULL.  If we override
372           // it, then change it to NAME/VERSION.
373           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
374               insdef.first->second
375               SELECT_SIZE(size));
376           Symbol_table::resolve(ret, sym, object, version);
377           ins.first->second = ret;
378         }
379       else
380         {
381           Sized_target<size, big_endian>* target =
382             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
383                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
384           if (!target->has_make_symbol())
385             ret = new Sized_symbol<size>();
386           else
387             {
388               ret = target->make_symbol();
389               if (ret == NULL)
390                 {
391                   // This means that we don't want a symbol table
392                   // entry after all.
393                   if (!def)
394                     this->table_.erase(ins.first);
395                   else
396                     {
397                       this->table_.erase(insdef.first);
398                       // Inserting insdef invalidated ins.
399                       this->table_.erase(std::make_pair(name_key,
400                                                         version_key));
401                     }
402                   return NULL;
403                 }
404             }
405
406           ret->init(name, version, object, sym);
407
408           ins.first->second = ret;
409           if (def)
410             {
411               // This is the first time we have seen NAME/NULL.  Point
412               // it at the new entry for NAME/VERSION.
413               gold_assert(insdef.second);
414               insdef.first->second = ret;
415             }
416         }
417     }
418
419   // Record every time we see a new undefined symbol, to speed up
420   // archive groups.
421   if (!was_undefined && ret->is_undefined())
422     ++this->saw_undefined_;
423
424   // Keep track of common symbols, to speed up common symbol
425   // allocation.
426   if (!was_common && ret->is_common())
427     this->commons_.push_back(ret);
428
429   return ret;
430 }
431
432 // Add all the symbols in a relocatable object to the hash table.
433
434 template<int size, bool big_endian>
435 void
436 Symbol_table::add_from_relobj(
437     Sized_relobj<size, big_endian>* relobj,
438     const unsigned char* syms,
439     size_t count,
440     const char* sym_names,
441     size_t sym_name_size,
442     Symbol** sympointers)
443 {
444   // We take the size from the first object we see.
445   if (this->get_size() == 0)
446     this->set_size(size);
447
448   if (size != this->get_size() || size != relobj->target()->get_size())
449     {
450       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
451               program_name, relobj->name().c_str());
452       gold_exit(false);
453     }
454
455   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
456
457   const unsigned char* p = syms;
458   for (size_t i = 0; i < count; ++i, p += sym_size)
459     {
460       elfcpp::Sym<size, big_endian> sym(p);
461       elfcpp::Sym<size, big_endian>* psym = &sym;
462
463       unsigned int st_name = psym->get_st_name();
464       if (st_name >= sym_name_size)
465         {
466           fprintf(stderr,
467                   _("%s: %s: bad global symbol name offset %u at %lu\n"),
468                   program_name, relobj->name().c_str(), st_name,
469                   static_cast<unsigned long>(i));
470           gold_exit(false);
471         }
472
473       const char* name = sym_names + st_name;
474
475       // A symbol defined in a section which we are not including must
476       // be treated as an undefined symbol.
477       unsigned char symbuf[sym_size];
478       elfcpp::Sym<size, big_endian> sym2(symbuf);
479       unsigned int st_shndx = psym->get_st_shndx();
480       if (st_shndx != elfcpp::SHN_UNDEF
481           && st_shndx < elfcpp::SHN_LORESERVE
482           && !relobj->is_section_included(st_shndx))
483         {
484           memcpy(symbuf, p, sym_size);
485           elfcpp::Sym_write<size, big_endian> sw(symbuf);
486           sw.put_st_shndx(elfcpp::SHN_UNDEF);
487           psym = &sym2;
488         }
489
490       // In an object file, an '@' in the name separates the symbol
491       // name from the version name.  If there are two '@' characters,
492       // this is the default version.
493       const char* ver = strchr(name, '@');
494
495       Symbol* res;
496       if (ver == NULL)
497         {
498           Stringpool::Key name_key;
499           name = this->namepool_.add(name, &name_key);
500           res = this->add_from_object(relobj, name, name_key, NULL, 0,
501                                       false, *psym);
502         }
503       else
504         {
505           Stringpool::Key name_key;
506           name = this->namepool_.add(name, ver - name, &name_key);
507
508           bool def = false;
509           ++ver;
510           if (*ver == '@')
511             {
512               def = true;
513               ++ver;
514             }
515
516           Stringpool::Key ver_key;
517           ver = this->namepool_.add(ver, &ver_key);
518
519           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
520                                       def, *psym);
521         }
522
523       *sympointers++ = res;
524     }
525 }
526
527 // Add all the symbols in a dynamic object to the hash table.
528
529 template<int size, bool big_endian>
530 void
531 Symbol_table::add_from_dynobj(
532     Sized_dynobj<size, big_endian>* dynobj,
533     const unsigned char* syms,
534     size_t count,
535     const char* sym_names,
536     size_t sym_name_size,
537     const unsigned char* versym,
538     size_t versym_size,
539     const std::vector<const char*>* version_map)
540 {
541   // We take the size from the first object we see.
542   if (this->get_size() == 0)
543     this->set_size(size);
544
545   if (size != this->get_size() || size != dynobj->target()->get_size())
546     {
547       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
548               program_name, dynobj->name().c_str());
549       gold_exit(false);
550     }
551
552   if (versym != NULL && versym_size / 2 < count)
553     {
554       fprintf(stderr, _("%s: %s: too few symbol versions\n"),
555               program_name, dynobj->name().c_str());
556       gold_exit(false);
557     }
558
559   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
560
561   const unsigned char* p = syms;
562   const unsigned char* vs = versym;
563   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
564     {
565       elfcpp::Sym<size, big_endian> sym(p);
566
567       // Ignore symbols with local binding.
568       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
569         continue;
570
571       unsigned int st_name = sym.get_st_name();
572       if (st_name >= sym_name_size)
573         {
574           fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
575                   program_name, dynobj->name().c_str(), st_name,
576                   static_cast<unsigned long>(i));
577           gold_exit(false);
578         }
579
580       const char* name = sym_names + st_name;
581
582       if (versym == NULL)
583         {
584           Stringpool::Key name_key;
585           name = this->namepool_.add(name, &name_key);
586           this->add_from_object(dynobj, name, name_key, NULL, 0,
587                                 false, sym);
588           continue;
589         }
590
591       // Read the version information.
592
593       unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
594
595       bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
596       v &= elfcpp::VERSYM_VERSION;
597
598       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
599         {
600           // This symbol should not be visible outside the object.
601           continue;
602         }
603
604       // At this point we are definitely going to add this symbol.
605       Stringpool::Key name_key;
606       name = this->namepool_.add(name, &name_key);
607
608       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
609         {
610           // This symbol does not have a version.
611           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
612           continue;
613         }
614
615       if (v >= version_map->size())
616         {
617           fprintf(stderr,
618                   _("%s: %s: versym for symbol %zu out of range: %u\n"),
619                   program_name, dynobj->name().c_str(), i, v);
620           gold_exit(false);
621         }
622
623       const char* version = (*version_map)[v];
624       if (version == NULL)
625         {
626           fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
627                   program_name, dynobj->name().c_str(), i, v);
628           gold_exit(false);
629         }
630
631       Stringpool::Key version_key;
632       version = this->namepool_.add(version, &version_key);
633
634       // If this is an absolute symbol, and the version name and
635       // symbol name are the same, then this is the version definition
636       // symbol.  These symbols exist to support using -u to pull in
637       // particular versions.  We do not want to record a version for
638       // them.
639       if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
640         {
641           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
642           continue;
643         }
644
645       const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
646
647       this->add_from_object(dynobj, name, name_key, version, version_key,
648                             def, sym);
649     }
650 }
651
652 // Create and return a specially defined symbol.  If ONLY_IF_REF is
653 // true, then only create the symbol if there is a reference to it.
654
655 template<int size, bool big_endian>
656 Sized_symbol<size>*
657 Symbol_table::define_special_symbol(const Target* target, const char* name,
658                                     const char* version, bool only_if_ref
659                                     ACCEPT_SIZE_ENDIAN)
660 {
661   gold_assert(this->size_ == size);
662
663   Symbol* oldsym;
664   Sized_symbol<size>* sym;
665
666   if (only_if_ref)
667     {
668       oldsym = this->lookup(name, version);
669       if (oldsym == NULL || !oldsym->is_undefined())
670         return NULL;
671       sym = NULL;
672
673       // Canonicalize NAME and VERSION.
674       name = oldsym->name();
675       version = oldsym->version();
676     }
677   else
678     {
679       // Canonicalize NAME and VERSION.
680       Stringpool::Key name_key;
681       name = this->namepool_.add(name, &name_key);
682
683       Stringpool::Key version_key = 0;
684       if (version != NULL)
685         version = this->namepool_.add(version, &version_key);
686
687       Symbol* const snull = NULL;
688       std::pair<typename Symbol_table_type::iterator, bool> ins =
689         this->table_.insert(std::make_pair(std::make_pair(name_key,
690                                                           version_key),
691                                            snull));
692
693       if (!ins.second)
694         {
695           // We already have a symbol table entry for NAME/VERSION.
696           oldsym = ins.first->second;
697           gold_assert(oldsym != NULL);
698           sym = NULL;
699         }
700       else
701         {
702           // We haven't seen this symbol before.
703           gold_assert(ins.first->second == NULL);
704
705           if (!target->has_make_symbol())
706             sym = new Sized_symbol<size>();
707           else
708             {
709               gold_assert(target->get_size() == size);
710               gold_assert(target->is_big_endian() ? big_endian : !big_endian);
711               typedef Sized_target<size, big_endian> My_target;
712               const My_target* sized_target =
713                 static_cast<const My_target*>(target);
714               sym = sized_target->make_symbol();
715               if (sym == NULL)
716                 return NULL;
717             }
718
719           ins.first->second = sym;
720           oldsym = NULL;
721         }
722     }
723
724   if (oldsym != NULL)
725     {
726       gold_assert(sym == NULL);
727
728       sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
729                                                            SELECT_SIZE(size));
730       gold_assert(sym->source() == Symbol::FROM_OBJECT);
731       const int old_shndx = sym->shndx();
732       if (old_shndx != elfcpp::SHN_UNDEF
733           && old_shndx != elfcpp::SHN_COMMON
734           && !sym->object()->is_dynamic())
735         {
736           fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
737                   program_name, name);
738           // FIXME: Report old location.  Record that we have seen an
739           // error.
740           return NULL;
741         }
742
743       // Our new definition is going to override the old reference.
744     }
745
746   return sym;
747 }
748
749 // Define a symbol based on an Output_data.
750
751 Symbol*
752 Symbol_table::define_in_output_data(const Target* target, const char* name,
753                                     const char* version, Output_data* od,
754                                     uint64_t value, uint64_t symsize,
755                                     elfcpp::STT type, elfcpp::STB binding,
756                                     elfcpp::STV visibility,
757                                     unsigned char nonvis,
758                                     bool offset_is_from_end,
759                                     bool only_if_ref)
760 {
761   gold_assert(target->get_size() == this->size_);
762   if (this->size_ == 32)
763     return this->do_define_in_output_data<32>(target, name, version, od, value,
764                                               symsize, type, binding,
765                                               visibility, nonvis,
766                                               offset_is_from_end, only_if_ref);
767   else if (this->size_ == 64)
768     return this->do_define_in_output_data<64>(target, name, version, od, value,
769                                               symsize, type, binding,
770                                               visibility, nonvis,
771                                               offset_is_from_end, only_if_ref);
772   else
773     gold_unreachable();
774 }
775
776 // Define a symbol in an Output_data, sized version.
777
778 template<int size>
779 Sized_symbol<size>*
780 Symbol_table::do_define_in_output_data(
781     const Target* target,
782     const char* name,
783     const char* version,
784     Output_data* od,
785     typename elfcpp::Elf_types<size>::Elf_Addr value,
786     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
787     elfcpp::STT type,
788     elfcpp::STB binding,
789     elfcpp::STV visibility,
790     unsigned char nonvis,
791     bool offset_is_from_end,
792     bool only_if_ref)
793 {
794   Sized_symbol<size>* sym;
795
796   if (target->is_big_endian())
797     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
798         target, name, version, only_if_ref
799         SELECT_SIZE_ENDIAN(size, true));
800   else
801     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
802         target, name, version, only_if_ref
803         SELECT_SIZE_ENDIAN(size, false));
804
805   if (sym == NULL)
806     return NULL;
807
808   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
809             offset_is_from_end);
810
811   return sym;
812 }
813
814 // Define a symbol based on an Output_segment.
815
816 Symbol*
817 Symbol_table::define_in_output_segment(const Target* target, const char* name,
818                                        const char* version, Output_segment* os,
819                                        uint64_t value, uint64_t symsize,
820                                        elfcpp::STT type, elfcpp::STB binding,
821                                        elfcpp::STV visibility,
822                                        unsigned char nonvis,
823                                        Symbol::Segment_offset_base offset_base,
824                                        bool only_if_ref)
825 {
826   gold_assert(target->get_size() == this->size_);
827   if (this->size_ == 32)
828     return this->do_define_in_output_segment<32>(target, name, version, os,
829                                                  value, symsize, type, binding,
830                                                  visibility, nonvis,
831                                                  offset_base, only_if_ref);
832   else if (this->size_ == 64)
833     return this->do_define_in_output_segment<64>(target, name, version, os,
834                                                  value, symsize, type, binding,
835                                                  visibility, nonvis,
836                                                  offset_base, only_if_ref);
837   else
838     gold_unreachable();
839 }
840
841 // Define a symbol in an Output_segment, sized version.
842
843 template<int size>
844 Sized_symbol<size>*
845 Symbol_table::do_define_in_output_segment(
846     const Target* target,
847     const char* name,
848     const char* version,
849     Output_segment* os,
850     typename elfcpp::Elf_types<size>::Elf_Addr value,
851     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
852     elfcpp::STT type,
853     elfcpp::STB binding,
854     elfcpp::STV visibility,
855     unsigned char nonvis,
856     Symbol::Segment_offset_base offset_base,
857     bool only_if_ref)
858 {
859   Sized_symbol<size>* sym;
860
861   if (target->is_big_endian())
862     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
863         target, name, version, only_if_ref
864         SELECT_SIZE_ENDIAN(size, true));
865   else
866     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
867         target, name, version, only_if_ref
868         SELECT_SIZE_ENDIAN(size, false));
869
870   if (sym == NULL)
871     return NULL;
872
873   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
874             offset_base);
875
876   return sym;
877 }
878
879 // Define a special symbol with a constant value.  It is a multiple
880 // definition error if this symbol is already defined.
881
882 Symbol*
883 Symbol_table::define_as_constant(const Target* target, const char* name,
884                                  const char* version, uint64_t value,
885                                  uint64_t symsize, elfcpp::STT type,
886                                  elfcpp::STB binding, elfcpp::STV visibility,
887                                  unsigned char nonvis, bool only_if_ref)
888 {
889   gold_assert(target->get_size() == this->size_);
890   if (this->size_ == 32)
891     return this->do_define_as_constant<32>(target, name, version, value,
892                                            symsize, type, binding, visibility,
893                                            nonvis, only_if_ref);
894   else if (this->size_ == 64)
895     return this->do_define_as_constant<64>(target, name, version, value,
896                                            symsize, type, binding, visibility,
897                                            nonvis, only_if_ref);
898   else
899     gold_unreachable();
900 }
901
902 // Define a symbol as a constant, sized version.
903
904 template<int size>
905 Sized_symbol<size>*
906 Symbol_table::do_define_as_constant(
907     const Target* target,
908     const char* name,
909     const char* version,
910     typename elfcpp::Elf_types<size>::Elf_Addr value,
911     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
912     elfcpp::STT type,
913     elfcpp::STB binding,
914     elfcpp::STV visibility,
915     unsigned char nonvis,
916     bool only_if_ref)
917 {
918   Sized_symbol<size>* sym;
919
920   if (target->is_big_endian())
921     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
922         target, name, version, only_if_ref
923         SELECT_SIZE_ENDIAN(size, true));
924   else
925     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
926         target, name, version, only_if_ref
927         SELECT_SIZE_ENDIAN(size, false));
928
929   if (sym == NULL)
930     return NULL;
931
932   sym->init(name, value, symsize, type, binding, visibility, nonvis);
933
934   return sym;
935 }
936
937 // Define a set of symbols in output sections.
938
939 void
940 Symbol_table::define_symbols(const Layout* layout, const Target* target,
941                              int count, const Define_symbol_in_section* p)
942 {
943   for (int i = 0; i < count; ++i, ++p)
944     {
945       Output_section* os = layout->find_output_section(p->output_section);
946       if (os != NULL)
947         this->define_in_output_data(target, p->name, NULL, os, p->value,
948                                     p->size, p->type, p->binding,
949                                     p->visibility, p->nonvis,
950                                     p->offset_is_from_end, p->only_if_ref);
951       else
952         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
953                                  p->binding, p->visibility, p->nonvis,
954                                  p->only_if_ref);
955     }
956 }
957
958 // Define a set of symbols in output segments.
959
960 void
961 Symbol_table::define_symbols(const Layout* layout, const Target* target,
962                              int count, const Define_symbol_in_segment* p)
963 {
964   for (int i = 0; i < count; ++i, ++p)
965     {
966       Output_segment* os = layout->find_output_segment(p->segment_type,
967                                                        p->segment_flags_set,
968                                                        p->segment_flags_clear);
969       if (os != NULL)
970         this->define_in_output_segment(target, p->name, NULL, os, p->value,
971                                        p->size, p->type, p->binding,
972                                        p->visibility, p->nonvis,
973                                        p->offset_base, p->only_if_ref);
974       else
975         this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
976                                  p->binding, p->visibility, p->nonvis,
977                                  p->only_if_ref);
978     }
979 }
980
981 // Set the dynamic symbol indexes.  INDEX is the index of the first
982 // global dynamic symbol.  Pointers to the symbols are stored into the
983 // vector SYMS.  The names are added to DYNPOOL.  This returns an
984 // updated dynamic symbol index.
985
986 unsigned int
987 Symbol_table::set_dynsym_indexes(const General_options* options,
988                                  const Target* target,
989                                  unsigned int index,
990                                  std::vector<Symbol*>* syms,
991                                  Stringpool* dynpool,
992                                  Versions* versions)
993 {
994   for (Symbol_table_type::iterator p = this->table_.begin();
995        p != this->table_.end();
996        ++p)
997     {
998       Symbol* sym = p->second;
999
1000       // Note that SYM may already have a dynamic symbol index, since
1001       // some symbols appear more than once in the symbol table, with
1002       // and without a version.
1003
1004       if (!sym->needs_dynsym_entry())
1005         sym->set_dynsym_index(-1U);
1006       else if (!sym->has_dynsym_index())
1007         {
1008           sym->set_dynsym_index(index);
1009           ++index;
1010           syms->push_back(sym);
1011           dynpool->add(sym->name(), NULL);
1012
1013           // Record any version information.
1014           if (sym->version() != NULL)
1015             versions->record_version(options, dynpool, sym);
1016         }
1017     }
1018
1019   // Finish up the versions.  In some cases this may add new dynamic
1020   // symbols.
1021   index = versions->finalize(target, this, index, syms);
1022
1023   return index;
1024 }
1025
1026 // Set the final values for all the symbols.  The index of the first
1027 // global symbol in the output file is INDEX.  Record the file offset
1028 // OFF.  Add their names to POOL.  Return the new file offset.
1029
1030 off_t
1031 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1032                        size_t dyn_global_index, size_t dyncount,
1033                        Stringpool* pool)
1034 {
1035   off_t ret;
1036
1037   gold_assert(index != 0);
1038   this->first_global_index_ = index;
1039
1040   this->dynamic_offset_ = dynoff;
1041   this->first_dynamic_global_index_ = dyn_global_index;
1042   this->dynamic_count_ = dyncount;
1043
1044   if (this->size_ == 32)
1045     ret = this->sized_finalize<32>(index, off, pool);
1046   else if (this->size_ == 64)
1047     ret = this->sized_finalize<64>(index, off, pool);
1048   else
1049     gold_unreachable();
1050
1051   // Now that we have the final symbol table, we can reliably note
1052   // which symbols should get warnings.
1053   this->warnings_.note_warnings(this);
1054
1055   return ret;
1056 }
1057
1058 // Set the final value for all the symbols.  This is called after
1059 // Layout::finalize, so all the output sections have their final
1060 // address.
1061
1062 template<int size>
1063 off_t
1064 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1065 {
1066   off = align_address(off, size >> 3);
1067   this->offset_ = off;
1068
1069   size_t orig_index = index;
1070
1071   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1072   for (Symbol_table_type::iterator p = this->table_.begin();
1073        p != this->table_.end();
1074        ++p)
1075     {
1076       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1077
1078       // FIXME: Here we need to decide which symbols should go into
1079       // the output file, based on --strip.
1080
1081       // The default version of a symbol may appear twice in the
1082       // symbol table.  We only need to finalize it once.
1083       if (sym->has_symtab_index())
1084         continue;
1085
1086       if (!sym->in_reg())
1087         {
1088           gold_assert(!sym->has_symtab_index());
1089           sym->set_symtab_index(-1U);
1090           gold_assert(sym->dynsym_index() == -1U);
1091           continue;
1092         }
1093
1094       typename Sized_symbol<size>::Value_type value;
1095
1096       switch (sym->source())
1097         {
1098         case Symbol::FROM_OBJECT:
1099           {
1100             unsigned int shndx = sym->shndx();
1101
1102             // FIXME: We need some target specific support here.
1103             if (shndx >= elfcpp::SHN_LORESERVE
1104                 && shndx != elfcpp::SHN_ABS)
1105               {
1106                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1107                         program_name, sym->name(), shndx);
1108                 gold_exit(false);
1109               }
1110
1111             Object* symobj = sym->object();
1112             if (symobj->is_dynamic())
1113               {
1114                 value = 0;
1115                 shndx = elfcpp::SHN_UNDEF;
1116               }
1117             else if (shndx == elfcpp::SHN_UNDEF)
1118               value = 0;
1119             else if (shndx == elfcpp::SHN_ABS)
1120               value = sym->value();
1121             else
1122               {
1123                 Relobj* relobj = static_cast<Relobj*>(symobj);
1124                 off_t secoff;
1125                 Output_section* os = relobj->output_section(shndx, &secoff);
1126
1127                 if (os == NULL)
1128                   {
1129                     sym->set_symtab_index(-1U);
1130                     gold_assert(sym->dynsym_index() == -1U);
1131                     continue;
1132                   }
1133
1134                 value = sym->value() + os->address() + secoff;
1135               }
1136           }
1137           break;
1138
1139         case Symbol::IN_OUTPUT_DATA:
1140           {
1141             Output_data* od = sym->output_data();
1142             value = sym->value() + od->address();
1143             if (sym->offset_is_from_end())
1144               value += od->data_size();
1145           }
1146           break;
1147
1148         case Symbol::IN_OUTPUT_SEGMENT:
1149           {
1150             Output_segment* os = sym->output_segment();
1151             value = sym->value() + os->vaddr();
1152             switch (sym->offset_base())
1153               {
1154               case Symbol::SEGMENT_START:
1155                 break;
1156               case Symbol::SEGMENT_END:
1157                 value += os->memsz();
1158                 break;
1159               case Symbol::SEGMENT_BSS:
1160                 value += os->filesz();
1161                 break;
1162               default:
1163                 gold_unreachable();
1164               }
1165           }
1166           break;
1167
1168         case Symbol::CONSTANT:
1169           value = sym->value();
1170           break;
1171
1172         default:
1173           gold_unreachable();
1174         }
1175
1176       sym->set_value(value);
1177       sym->set_symtab_index(index);
1178       pool->add(sym->name(), NULL);
1179       ++index;
1180       off += sym_size;
1181     }
1182
1183   this->output_count_ = index - orig_index;
1184
1185   return off;
1186 }
1187
1188 // Write out the global symbols.
1189
1190 void
1191 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1192                             const Stringpool* dynpool, Output_file* of) const
1193 {
1194   if (this->size_ == 32)
1195     {
1196       if (target->is_big_endian())
1197         this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1198       else
1199         this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1200     }
1201   else if (this->size_ == 64)
1202     {
1203       if (target->is_big_endian())
1204         this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1205       else
1206         this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1207     }
1208   else
1209     gold_unreachable();
1210 }
1211
1212 // Write out the global symbols.
1213
1214 template<int size, bool big_endian>
1215 void
1216 Symbol_table::sized_write_globals(const Target*,
1217                                   const Stringpool* sympool,
1218                                   const Stringpool* dynpool,
1219                                   Output_file* of) const
1220 {
1221   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1222   unsigned int index = this->first_global_index_;
1223   const off_t oview_size = this->output_count_ * sym_size;
1224   unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1225
1226   unsigned int dynamic_count = this->dynamic_count_;
1227   off_t dynamic_size = dynamic_count * sym_size;
1228   unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1229   unsigned char* dynamic_view;
1230   if (this->dynamic_offset_ == 0)
1231     dynamic_view = NULL;
1232   else
1233     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1234
1235   unsigned char* ps = psyms;
1236   for (Symbol_table_type::const_iterator p = this->table_.begin();
1237        p != this->table_.end();
1238        ++p)
1239     {
1240       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1241
1242       unsigned int sym_index = sym->symtab_index();
1243       unsigned int dynsym_index;
1244       if (dynamic_view == NULL)
1245         dynsym_index = -1U;
1246       else
1247         dynsym_index = sym->dynsym_index();
1248
1249       if (sym_index == -1U && dynsym_index == -1U)
1250         {
1251           // This symbol is not included in the output file.
1252           continue;
1253         }
1254
1255       if (sym_index == index)
1256         ++index;
1257       else if (sym_index != -1U)
1258         {
1259           // We have already seen this symbol, because it has a
1260           // default version.
1261           gold_assert(sym_index < index);
1262           if (dynsym_index == -1U)
1263             continue;
1264           sym_index = -1U;
1265         }
1266
1267       unsigned int shndx;
1268       switch (sym->source())
1269         {
1270         case Symbol::FROM_OBJECT:
1271           {
1272             unsigned int in_shndx = sym->shndx();
1273
1274             // FIXME: We need some target specific support here.
1275             if (in_shndx >= elfcpp::SHN_LORESERVE
1276                 && in_shndx != elfcpp::SHN_ABS)
1277               {
1278                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1279                         program_name, sym->name(), in_shndx);
1280                 gold_exit(false);
1281               }
1282
1283             Object* symobj = sym->object();
1284             if (symobj->is_dynamic())
1285               {
1286                 // FIXME.
1287                 shndx = elfcpp::SHN_UNDEF;
1288               }
1289             else if (in_shndx == elfcpp::SHN_UNDEF
1290                      || in_shndx == elfcpp::SHN_ABS)
1291               shndx = in_shndx;
1292             else
1293               {
1294                 Relobj* relobj = static_cast<Relobj*>(symobj);
1295                 off_t secoff;
1296                 Output_section* os = relobj->output_section(in_shndx, &secoff);
1297                 gold_assert(os != NULL);
1298                 shndx = os->out_shndx();
1299               }
1300           }
1301           break;
1302
1303         case Symbol::IN_OUTPUT_DATA:
1304           shndx = sym->output_data()->out_shndx();
1305           break;
1306
1307         case Symbol::IN_OUTPUT_SEGMENT:
1308           shndx = elfcpp::SHN_ABS;
1309           break;
1310
1311         case Symbol::CONSTANT:
1312           shndx = elfcpp::SHN_ABS;
1313           break;
1314
1315         default:
1316           gold_unreachable();
1317         }
1318
1319       if (sym_index != -1U)
1320         {
1321           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1322               sym, shndx, sympool, ps
1323               SELECT_SIZE_ENDIAN(size, big_endian));
1324           ps += sym_size;
1325         }
1326
1327       if (dynsym_index != -1U)
1328         {
1329           dynsym_index -= first_dynamic_global_index;
1330           gold_assert(dynsym_index < dynamic_count);
1331           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1332           this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1333               sym, shndx, dynpool, pd
1334               SELECT_SIZE_ENDIAN(size, big_endian));
1335         }
1336     }
1337
1338   gold_assert(ps - psyms == oview_size);
1339
1340   of->write_output_view(this->offset_, oview_size, psyms);
1341   if (dynamic_view != NULL)
1342     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1343 }
1344
1345 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
1346 // strtab holding the name.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1351                                  unsigned int shndx,
1352                                  const Stringpool* pool,
1353                                  unsigned char* p
1354                                  ACCEPT_SIZE_ENDIAN) const
1355 {
1356   elfcpp::Sym_write<size, big_endian> osym(p);
1357   osym.put_st_name(pool->get_offset(sym->name()));
1358   osym.put_st_value(sym->value());
1359   osym.put_st_size(sym->symsize());
1360   osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1361   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1362   osym.put_st_shndx(shndx);
1363 }
1364
1365 // Write out a section symbol.  Return the update offset.
1366
1367 void
1368 Symbol_table::write_section_symbol(const Target* target,
1369                                    const Output_section *os,
1370                                    Output_file* of,
1371                                    off_t offset) const
1372 {
1373   if (this->size_ == 32)
1374     {
1375       if (target->is_big_endian())
1376         this->sized_write_section_symbol<32, true>(os, of, offset);
1377       else
1378         this->sized_write_section_symbol<32, false>(os, of, offset);
1379     }
1380   else if (this->size_ == 64)
1381     {
1382       if (target->is_big_endian())
1383         this->sized_write_section_symbol<64, true>(os, of, offset);
1384       else
1385         this->sized_write_section_symbol<64, false>(os, of, offset);
1386     }
1387   else
1388     gold_unreachable();
1389 }
1390
1391 // Write out a section symbol, specialized for size and endianness.
1392
1393 template<int size, bool big_endian>
1394 void
1395 Symbol_table::sized_write_section_symbol(const Output_section* os,
1396                                          Output_file* of,
1397                                          off_t offset) const
1398 {
1399   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1400
1401   unsigned char* pov = of->get_output_view(offset, sym_size);
1402
1403   elfcpp::Sym_write<size, big_endian> osym(pov);
1404   osym.put_st_name(0);
1405   osym.put_st_value(os->address());
1406   osym.put_st_size(0);
1407   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1408                                        elfcpp::STT_SECTION));
1409   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1410   osym.put_st_shndx(os->out_shndx());
1411
1412   of->write_output_view(offset, sym_size, pov);
1413 }
1414
1415 // Warnings functions.
1416
1417 // Add a new warning.
1418
1419 void
1420 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1421                       unsigned int shndx)
1422 {
1423   name = symtab->canonicalize_name(name);
1424   this->warnings_[name].set(obj, shndx);
1425 }
1426
1427 // Look through the warnings and mark the symbols for which we should
1428 // warn.  This is called during Layout::finalize when we know the
1429 // sources for all the symbols.
1430
1431 void
1432 Warnings::note_warnings(Symbol_table* symtab)
1433 {
1434   for (Warning_table::iterator p = this->warnings_.begin();
1435        p != this->warnings_.end();
1436        ++p)
1437     {
1438       Symbol* sym = symtab->lookup(p->first, NULL);
1439       if (sym != NULL
1440           && sym->source() == Symbol::FROM_OBJECT
1441           && sym->object() == p->second.object)
1442         {
1443           sym->set_has_warning();
1444
1445           // Read the section contents to get the warning text.  It
1446           // would be nicer if we only did this if we have to actually
1447           // issue a warning.  Unfortunately, warnings are issued as
1448           // we relocate sections.  That means that we can not lock
1449           // the object then, as we might try to issue the same
1450           // warning multiple times simultaneously.
1451           {
1452             Task_locker_obj<Object> tl(*p->second.object);
1453             const unsigned char* c;
1454             off_t len;
1455             c = p->second.object->section_contents(p->second.shndx, &len);
1456             p->second.set_text(reinterpret_cast<const char*>(c), len);
1457           }
1458         }
1459     }
1460 }
1461
1462 // Issue a warning.  This is called when we see a relocation against a
1463 // symbol for which has a warning.
1464
1465 void
1466 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1467 {
1468   gold_assert(sym->has_warning());
1469   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1470   gold_assert(p != this->warnings_.end());
1471   fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1472           p->second.text.c_str());
1473 }
1474
1475 // Instantiate the templates we need.  We could use the configure
1476 // script to restrict this to only the ones needed for implemented
1477 // targets.
1478
1479 template
1480 void
1481 Symbol_table::add_from_relobj<32, true>(
1482     Sized_relobj<32, true>* relobj,
1483     const unsigned char* syms,
1484     size_t count,
1485     const char* sym_names,
1486     size_t sym_name_size,
1487     Symbol** sympointers);
1488
1489 template
1490 void
1491 Symbol_table::add_from_relobj<32, false>(
1492     Sized_relobj<32, false>* relobj,
1493     const unsigned char* syms,
1494     size_t count,
1495     const char* sym_names,
1496     size_t sym_name_size,
1497     Symbol** sympointers);
1498
1499 template
1500 void
1501 Symbol_table::add_from_relobj<64, true>(
1502     Sized_relobj<64, true>* relobj,
1503     const unsigned char* syms,
1504     size_t count,
1505     const char* sym_names,
1506     size_t sym_name_size,
1507     Symbol** sympointers);
1508
1509 template
1510 void
1511 Symbol_table::add_from_relobj<64, false>(
1512     Sized_relobj<64, false>* relobj,
1513     const unsigned char* syms,
1514     size_t count,
1515     const char* sym_names,
1516     size_t sym_name_size,
1517     Symbol** sympointers);
1518
1519 template
1520 void
1521 Symbol_table::add_from_dynobj<32, true>(
1522     Sized_dynobj<32, true>* dynobj,
1523     const unsigned char* syms,
1524     size_t count,
1525     const char* sym_names,
1526     size_t sym_name_size,
1527     const unsigned char* versym,
1528     size_t versym_size,
1529     const std::vector<const char*>* version_map);
1530
1531 template
1532 void
1533 Symbol_table::add_from_dynobj<32, false>(
1534     Sized_dynobj<32, false>* dynobj,
1535     const unsigned char* syms,
1536     size_t count,
1537     const char* sym_names,
1538     size_t sym_name_size,
1539     const unsigned char* versym,
1540     size_t versym_size,
1541     const std::vector<const char*>* version_map);
1542
1543 template
1544 void
1545 Symbol_table::add_from_dynobj<64, true>(
1546     Sized_dynobj<64, true>* dynobj,
1547     const unsigned char* syms,
1548     size_t count,
1549     const char* sym_names,
1550     size_t sym_name_size,
1551     const unsigned char* versym,
1552     size_t versym_size,
1553     const std::vector<const char*>* version_map);
1554
1555 template
1556 void
1557 Symbol_table::add_from_dynobj<64, false>(
1558     Sized_dynobj<64, false>* dynobj,
1559     const unsigned char* syms,
1560     size_t count,
1561     const char* sym_names,
1562     size_t sym_name_size,
1563     const unsigned char* versym,
1564     size_t versym_size,
1565     const std::vector<const char*>* version_map);
1566
1567 } // End namespace gold.