e289f796c59f4eaea360ad49c3dd5e90c16be9f0
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced local in a version script, do not add it.
367   if (this->is_forced_local())
368     return false;
369
370   // If the symbol was forced dynamic in a --dynamic-list file, add it.
371   if (parameters->options().in_dynamic_list(this->name()))
372     return true;
373
374   // If dynamic-list-data was specified, add any STT_OBJECT.
375   if (parameters->options().dynamic_list_data()
376       && !this->is_from_dynobj()
377       && this->type() == elfcpp::STT_OBJECT)
378     return true;
379
380   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382   if ((parameters->options().dynamic_list_cpp_new()
383        || parameters->options().dynamic_list_cpp_typeinfo())
384       && !this->is_from_dynobj())
385     {
386       // TODO(csilvers): We could probably figure out if we're an operator
387       //                 new/delete or typeinfo without the need to demangle.
388       char* demangled_name = cplus_demangle(this->name(),
389                                             DMGL_ANSI | DMGL_PARAMS);
390       if (demangled_name == NULL)
391         {
392           // Not a C++ symbol, so it can't satisfy these flags
393         }
394       else if (parameters->options().dynamic_list_cpp_new()
395                && (strprefix(demangled_name, "operator new")
396                    || strprefix(demangled_name, "operator delete")))
397         {
398           free(demangled_name);
399           return true;
400         }
401       else if (parameters->options().dynamic_list_cpp_typeinfo()
402                && (strprefix(demangled_name, "typeinfo name for")
403                    || strprefix(demangled_name, "typeinfo for")))
404         {
405           free(demangled_name);
406           return true;
407         }
408       else
409         free(demangled_name);
410     }
411
412   // If exporting all symbols or building a shared library,
413   // and the symbol is defined in a regular object and is
414   // externally visible, we need to add it.
415   if ((parameters->options().export_dynamic() || parameters->options().shared())
416       && !this->is_from_dynobj()
417       && !this->is_undefined()
418       && this->is_externally_visible())
419     return true;
420
421   return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430   // If we are not generating an executable, then no final values are
431   // known, since they will change at runtime.
432   if (parameters->options().output_is_position_independent()
433       || parameters->options().relocatable())
434     return false;
435
436   // If the symbol is not from an object file, and is not undefined,
437   // then it is defined, and known.
438   if (this->source_ != FROM_OBJECT)
439     {
440       if (this->source_ != IS_UNDEFINED)
441         return true;
442     }
443   else
444     {
445       // If the symbol is from a dynamic object, then the final value
446       // is not known.
447       if (this->object()->is_dynamic())
448         return false;
449
450       // If the symbol is not undefined (it is defined or common),
451       // then the final value is known.
452       if (!this->is_undefined())
453         return true;
454     }
455
456   // If the symbol is undefined, then whether the final value is known
457   // depends on whether we are doing a static link.  If we are doing a
458   // dynamic link, then the final value could be filled in at runtime.
459   // This could reasonably be the case for a weak undefined symbol.
460   return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468   switch (this->source_)
469     {
470     case FROM_OBJECT:
471       {
472         unsigned int shndx = this->u_.from_object.shndx;
473         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474           {
475             gold_assert(!this->u_.from_object.object->is_dynamic());
476             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478             return relobj->output_section(shndx);
479           }
480         return NULL;
481       }
482
483     case IN_OUTPUT_DATA:
484       return this->u_.in_output_data.output_data->output_section();
485
486     case IN_OUTPUT_SEGMENT:
487     case IS_CONSTANT:
488     case IS_UNDEFINED:
489       return NULL;
490
491     default:
492       gold_unreachable();
493     }
494 }
495
496 // Set the symbol's output section.  This is used for symbols defined
497 // in scripts.  This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503   switch (this->source_)
504     {
505     case FROM_OBJECT:
506     case IN_OUTPUT_DATA:
507       gold_assert(this->output_section() == os);
508       break;
509     case IS_CONSTANT:
510       this->source_ = IN_OUTPUT_DATA;
511       this->u_.in_output_data.output_data = os;
512       this->u_.in_output_data.offset_is_from_end = false;
513       break;
514     case IN_OUTPUT_SEGMENT:
515     case IS_UNDEFINED:
516     default:
517       gold_unreachable();
518     }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524                            const Version_script_info& version_script)
525   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526     forwarders_(), commons_(), tls_commons_(), small_commons_(),
527     large_commons_(), forced_locals_(), warnings_(),
528     version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530   namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function.  This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542                                           const Symbol_table_key& k2) const
543 {
544   return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550   return (parameters->options().icf_enabled()
551           && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void 
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560   for (options::String_set::const_iterator p =
561          parameters->options().undefined_begin();
562        p != parameters->options().undefined_end();
563        ++p)
564     {
565       const char* name = p->c_str();
566       Symbol* sym = this->lookup(name);
567       gold_assert(sym != NULL);
568       if (sym->source() == Symbol::FROM_OBJECT 
569           && !sym->object()->is_dynamic())
570         {
571           Relobj* obj = static_cast<Relobj*>(sym->object());
572           bool is_ordinary;
573           unsigned int shndx = sym->shndx(&is_ordinary);
574           if (is_ordinary)
575             {
576               gold_assert(this->gc_ != NULL);
577               this->gc_->worklist().push(Section_id(obj, shndx));
578             }
579         }
580     }
581
582   for (Script_options::referenced_const_iterator p =
583          layout->script_options()->referenced_begin();
584        p != layout->script_options()->referenced_end();
585        ++p)
586     {
587       Symbol* sym = this->lookup(p->c_str());
588       gold_assert(sym != NULL);
589       if (sym->source() == Symbol::FROM_OBJECT
590           && !sym->object()->is_dynamic())
591         {
592           Relobj* obj = static_cast<Relobj*>(sym->object());
593           bool is_ordinary;
594           unsigned int shndx = sym->shndx(&is_ordinary);
595           if (is_ordinary)
596             {
597               gold_assert(this->gc_ != NULL);
598               this->gc_->worklist().push(Section_id(obj, shndx));
599             }
600         }
601     }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607   if (!sym->is_from_dynobj() 
608       && sym->is_externally_visible())
609     {
610       //Add the object and section to the work list.
611       Relobj* obj = static_cast<Relobj*>(sym->object());
612       bool is_ordinary;
613       unsigned int shndx = sym->shndx(&is_ordinary);
614       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615         {
616           gold_assert(this->gc_!= NULL);
617           this->gc_->worklist().push(Section_id(obj, shndx));
618         }
619     }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void 
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628       && !sym->object()->is_dynamic())
629     {
630       Relobj* obj = static_cast<Relobj*>(sym->object()); 
631       bool is_ordinary;
632       unsigned int shndx = sym->shndx(&is_ordinary);
633       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634         {
635           gold_assert(this->gc_ != NULL);
636           this->gc_->worklist().push(Section_id(obj, shndx));
637         }
638     }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646   gold_assert(from != to);
647   gold_assert(!from->is_forwarder() && !to->is_forwarder());
648   this->forwarders_[from] = to;
649   from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657   gold_assert(from->is_forwarder());
658   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659     this->forwarders_.find(from);
660   gold_assert(p != this->forwarders_.end());
661   return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669   Stringpool::Key name_key;
670   name = this->namepool_.find(name, &name_key);
671   if (name == NULL)
672     return NULL;
673
674   Stringpool::Key version_key = 0;
675   if (version != NULL)
676     {
677       version = this->namepool_.find(version, &version_key);
678       if (version == NULL)
679         return NULL;
680     }
681
682   Symbol_table_key key(name_key, version_key);
683   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684   if (p == this->table_.end())
685     return NULL;
686   return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol.  This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version.  Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700   elfcpp::Sym_write<size, big_endian> esym(buf);
701   // We don't bother to set the st_name or the st_shndx field.
702   esym.put_st_value(from->value());
703   esym.put_st_size(from->symsize());
704   esym.put_st_info(from->binding(), from->type());
705   esym.put_st_other(from->visibility(), from->nonvis());
706   bool is_ordinary;
707   unsigned int shndx = from->shndx(&is_ordinary);
708   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709                 from->version());
710   if (from->in_reg())
711     to->set_in_reg();
712   if (from->in_dyn())
713     to->set_in_dyn();
714   if (parameters->options().gc_sections())
715     this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724   if (!sym->is_defined() && !sym->is_common())
725     return;
726   if (sym->is_forced_local())
727     {
728       // We already got this one.
729       return;
730     }
731   sym->set_is_forced_local();
732   this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742   // For some targets, we need to ignore a specific character when
743   // wrapping, and add it back later.
744   char prefix = '\0';
745   if (name[0] == parameters->target().wrap_char())
746     {
747       prefix = name[0];
748       ++name;
749     }
750
751   if (parameters->options().is_wrap(name))
752     {
753       // Turn NAME into __wrap_NAME.
754       std::string s;
755       if (prefix != '\0')
756         s += prefix;
757       s += "__wrap_";
758       s += name;
759
760       // This will give us both the old and new name in NAMEPOOL_, but
761       // that is OK.  Only the versions we need will wind up in the
762       // real string table in the output file.
763       return this->namepool_.add(s.c_str(), true, name_key);
764     }
765
766   const char* const real_prefix = "__real_";
767   const size_t real_prefix_length = strlen(real_prefix);
768   if (strncmp(name, real_prefix, real_prefix_length) == 0
769       && parameters->options().is_wrap(name + real_prefix_length))
770     {
771       // Turn __real_NAME into NAME.
772       std::string s;
773       if (prefix != '\0')
774         s += prefix;
775       s += name + real_prefix_length;
776       return this->namepool_.add(s.c_str(), true, name_key);
777     }
778
779   return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version.  SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791                                      bool default_is_new,
792                                      Symbol_table_type::iterator pdef)
793 {
794   if (default_is_new)
795     {
796       // This is the first time we have seen NAME/NULL.  Make
797       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798       // version.
799       pdef->second = sym;
800       sym->set_is_default();
801     }
802   else if (pdef->second == sym)
803     {
804       // NAME/NULL already points to NAME/VERSION.  Don't mark the
805       // symbol as the default if it is not already the default.
806     }
807   else
808     {
809       // This is the unfortunate case where we already have entries
810       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
811       // NAME/VERSION where VERSION is the default version.  We have
812       // already resolved this new symbol with the existing
813       // NAME/VERSION symbol.
814
815       // It's possible that NAME/NULL and NAME/VERSION are both
816       // defined in regular objects.  This can only happen if one
817       // object file defines foo and another defines foo@@ver.  This
818       // is somewhat obscure, but we call it a multiple definition
819       // error.
820
821       // It's possible that NAME/NULL actually has a version, in which
822       // case it won't be the same as VERSION.  This happens with
823       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
824       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
825       // then see an unadorned t2_2 in an object file and give it
826       // version VER1 from the version script.  This looks like a
827       // default definition for VER1, so it looks like we should merge
828       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
829       // not obvious that this is an error, either.  So we just punt.
830
831       // If one of the symbols has non-default visibility, and the
832       // other is defined in a shared object, then they are different
833       // symbols.
834
835       // Otherwise, we just resolve the symbols as though they were
836       // the same.
837
838       if (pdef->second->version() != NULL)
839         gold_assert(pdef->second->version() != sym->version());
840       else if (sym->visibility() != elfcpp::STV_DEFAULT
841                && pdef->second->is_from_dynobj())
842         ;
843       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844                && sym->is_from_dynobj())
845         ;
846       else
847         {
848           const Sized_symbol<size>* symdef;
849           symdef = this->get_sized_symbol<size>(pdef->second);
850           Symbol_table::resolve<size, big_endian>(sym, symdef);
851           this->make_forwarder(pdef->second, sym);
852           pdef->second = sym;
853           sym->set_is_default();
854         }
855     }
856 }
857
858 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
859 // name and VERSION is the version; both are canonicalized.  DEF is
860 // whether this is the default version.  ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol.  That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol.  This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION.  If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure.  That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table.  We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files.  So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code.  ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891                               const char* name,
892                               Stringpool::Key name_key,
893                               const char* version,
894                               Stringpool::Key version_key,
895                               bool is_default_version,
896                               const elfcpp::Sym<size, big_endian>& sym,
897                               unsigned int st_shndx,
898                               bool is_ordinary,
899                               unsigned int orig_st_shndx)
900 {
901   // Print a message if this symbol is being traced.
902   if (parameters->options().is_trace_symbol(name))
903     {
904       if (orig_st_shndx == elfcpp::SHN_UNDEF)
905         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906       else
907         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908     }
909
910   // For an undefined symbol, we may need to adjust the name using
911   // --wrap.
912   if (orig_st_shndx == elfcpp::SHN_UNDEF
913       && parameters->options().any_wrap())
914     {
915       const char* wrap_name = this->wrap_symbol(name, &name_key);
916       if (wrap_name != name)
917         {
918           // If we see a reference to malloc with version GLIBC_2.0,
919           // and we turn it into a reference to __wrap_malloc, then we
920           // discard the version number.  Otherwise the user would be
921           // required to specify the correct version for
922           // __wrap_malloc.
923           version = NULL;
924           version_key = 0;
925           name = wrap_name;
926         }
927     }
928
929   Symbol* const snull = NULL;
930   std::pair<typename Symbol_table_type::iterator, bool> ins =
931     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932                                        snull));
933
934   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935     std::make_pair(this->table_.end(), false);
936   if (is_default_version)
937     {
938       const Stringpool::Key vnull_key = 0;
939       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940                                                                      vnull_key),
941                                                       snull));
942     }
943
944   // ins.first: an iterator, which is a pointer to a pair.
945   // ins.first->first: the key (a pair of name and version).
946   // ins.first->second: the value (Symbol*).
947   // ins.second: true if new entry was inserted, false if not.
948
949   Sized_symbol<size>* ret;
950   bool was_undefined;
951   bool was_common;
952   if (!ins.second)
953     {
954       // We already have an entry for NAME/VERSION.
955       ret = this->get_sized_symbol<size>(ins.first->second);
956       gold_assert(ret != NULL);
957
958       was_undefined = ret->is_undefined();
959       was_common = ret->is_common();
960
961       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962                     version);
963       if (parameters->options().gc_sections())
964         this->gc_mark_dyn_syms(ret);
965
966       if (is_default_version)
967         this->define_default_version<size, big_endian>(ret, insdefault.second,
968                                                        insdefault.first);
969     }
970   else
971     {
972       // This is the first time we have seen NAME/VERSION.
973       gold_assert(ins.first->second == NULL);
974
975       if (is_default_version && !insdefault.second)
976         {
977           // We already have an entry for NAME/NULL.  If we override
978           // it, then change it to NAME/VERSION.
979           ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981           was_undefined = ret->is_undefined();
982           was_common = ret->is_common();
983
984           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985                         version);
986           if (parameters->options().gc_sections())
987             this->gc_mark_dyn_syms(ret);
988           ins.first->second = ret;
989         }
990       else
991         {
992           was_undefined = false;
993           was_common = false;
994
995           Sized_target<size, big_endian>* target =
996             parameters->sized_target<size, big_endian>();
997           if (!target->has_make_symbol())
998             ret = new Sized_symbol<size>();
999           else
1000             {
1001               ret = target->make_symbol();
1002               if (ret == NULL)
1003                 {
1004                   // This means that we don't want a symbol table
1005                   // entry after all.
1006                   if (!is_default_version)
1007                     this->table_.erase(ins.first);
1008                   else
1009                     {
1010                       this->table_.erase(insdefault.first);
1011                       // Inserting INSDEFAULT invalidated INS.
1012                       this->table_.erase(std::make_pair(name_key,
1013                                                         version_key));
1014                     }
1015                   return NULL;
1016                 }
1017             }
1018
1019           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021           ins.first->second = ret;
1022           if (is_default_version)
1023             {
1024               // This is the first time we have seen NAME/NULL.  Point
1025               // it at the new entry for NAME/VERSION.
1026               gold_assert(insdefault.second);
1027               insdefault.first->second = ret;
1028             }
1029         }
1030
1031       if (is_default_version)
1032         ret->set_is_default();
1033     }
1034
1035   // Record every time we see a new undefined symbol, to speed up
1036   // archive groups.
1037   if (!was_undefined && ret->is_undefined())
1038     {
1039       ++this->saw_undefined_;
1040       if (parameters->options().has_plugins())
1041         parameters->options().plugins()->new_undefined_symbol(ret);
1042     }
1043
1044   // Keep track of common symbols, to speed up common symbol
1045   // allocation.
1046   if (!was_common && ret->is_common())
1047     {
1048       if (ret->type() == elfcpp::STT_TLS)
1049         this->tls_commons_.push_back(ret);
1050       else if (!is_ordinary
1051                && st_shndx == parameters->target().small_common_shndx())
1052         this->small_commons_.push_back(ret);
1053       else if (!is_ordinary
1054                && st_shndx == parameters->target().large_common_shndx())
1055         this->large_commons_.push_back(ret);
1056       else
1057         this->commons_.push_back(ret);
1058     }
1059
1060   // If we're not doing a relocatable link, then any symbol with
1061   // hidden or internal visibility is local.
1062   if ((ret->visibility() == elfcpp::STV_HIDDEN
1063        || ret->visibility() == elfcpp::STV_INTERNAL)
1064       && (ret->binding() == elfcpp::STB_GLOBAL
1065           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066           || ret->binding() == elfcpp::STB_WEAK)
1067       && !parameters->options().relocatable())
1068     this->force_local(ret);
1069
1070   return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078     Sized_relobj_file<size, big_endian>* relobj,
1079     const unsigned char* syms,
1080     size_t count,
1081     size_t symndx_offset,
1082     const char* sym_names,
1083     size_t sym_name_size,
1084     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085     size_t* defined)
1086 {
1087   *defined = 0;
1088
1089   gold_assert(size == parameters->target().get_size());
1090
1091   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093   const bool just_symbols = relobj->just_symbols();
1094
1095   const unsigned char* p = syms;
1096   for (size_t i = 0; i < count; ++i, p += sym_size)
1097     {
1098       (*sympointers)[i] = NULL;
1099
1100       elfcpp::Sym<size, big_endian> sym(p);
1101
1102       unsigned int st_name = sym.get_st_name();
1103       if (st_name >= sym_name_size)
1104         {
1105           relobj->error(_("bad global symbol name offset %u at %zu"),
1106                         st_name, i);
1107           continue;
1108         }
1109
1110       const char* name = sym_names + st_name;
1111
1112       bool is_ordinary;
1113       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114                                                        sym.get_st_shndx(),
1115                                                        &is_ordinary);
1116       unsigned int orig_st_shndx = st_shndx;
1117       if (!is_ordinary)
1118         orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120       if (st_shndx != elfcpp::SHN_UNDEF)
1121         ++*defined;
1122
1123       // A symbol defined in a section which we are not including must
1124       // be treated as an undefined symbol.
1125       bool is_defined_in_discarded_section = false;
1126       if (st_shndx != elfcpp::SHN_UNDEF
1127           && is_ordinary
1128           && !relobj->is_section_included(st_shndx)
1129           && !this->is_section_folded(relobj, st_shndx))
1130         {
1131           st_shndx = elfcpp::SHN_UNDEF;
1132           is_defined_in_discarded_section = true;
1133         }
1134
1135       // In an object file, an '@' in the name separates the symbol
1136       // name from the version name.  If there are two '@' characters,
1137       // this is the default version.
1138       const char* ver = strchr(name, '@');
1139       Stringpool::Key ver_key = 0;
1140       int namelen = 0;
1141       // IS_DEFAULT_VERSION: is the version default?
1142       // IS_FORCED_LOCAL: is the symbol forced local?
1143       bool is_default_version = false;
1144       bool is_forced_local = false;
1145
1146       if (ver != NULL)
1147         {
1148           // The symbol name is of the form foo@VERSION or foo@@VERSION
1149           namelen = ver - name;
1150           ++ver;
1151           if (*ver == '@')
1152             {
1153               is_default_version = true;
1154               ++ver;
1155             }
1156           ver = this->namepool_.add(ver, true, &ver_key);
1157         }
1158       // We don't want to assign a version to an undefined symbol,
1159       // even if it is listed in the version script.  FIXME: What
1160       // about a common symbol?
1161       else
1162         {
1163           namelen = strlen(name);
1164           if (!this->version_script_.empty()
1165               && st_shndx != elfcpp::SHN_UNDEF)
1166             {
1167               // The symbol name did not have a version, but the
1168               // version script may assign a version anyway.
1169               std::string version;
1170               bool is_global;
1171               if (this->version_script_.get_symbol_version(name, &version,
1172                                                            &is_global))
1173                 {
1174                   if (!is_global)
1175                     is_forced_local = true;
1176                   else if (!version.empty())
1177                     {
1178                       ver = this->namepool_.add_with_length(version.c_str(),
1179                                                             version.length(),
1180                                                             true,
1181                                                             &ver_key);
1182                       is_default_version = true;
1183                     }
1184                 }
1185             }
1186         }
1187
1188       elfcpp::Sym<size, big_endian>* psym = &sym;
1189       unsigned char symbuf[sym_size];
1190       elfcpp::Sym<size, big_endian> sym2(symbuf);
1191       if (just_symbols)
1192         {
1193           memcpy(symbuf, p, sym_size);
1194           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1196             {
1197               // Symbol values in object files are section relative.
1198               // This is normally what we want, but since here we are
1199               // converting the symbol to absolute we need to add the
1200               // section address.  The section address in an object
1201               // file is normally zero, but people can use a linker
1202               // script to change it.
1203               sw.put_st_value(sym.get_st_value()
1204                               + relobj->section_address(orig_st_shndx));
1205             }
1206           st_shndx = elfcpp::SHN_ABS;
1207           is_ordinary = false;
1208           psym = &sym2;
1209         }
1210
1211       // Fix up visibility if object has no-export set.
1212       if (relobj->no_export()
1213           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1214         {
1215           // We may have copied symbol already above.
1216           if (psym != &sym2)
1217             {
1218               memcpy(symbuf, p, sym_size);
1219               psym = &sym2;
1220             }
1221
1222           elfcpp::STV visibility = sym2.get_st_visibility();
1223           if (visibility == elfcpp::STV_DEFAULT
1224               || visibility == elfcpp::STV_PROTECTED)
1225             {
1226               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1227               unsigned char nonvis = sym2.get_st_nonvis();
1228               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1229             }
1230         }
1231
1232       Stringpool::Key name_key;
1233       name = this->namepool_.add_with_length(name, namelen, true,
1234                                              &name_key);
1235
1236       Sized_symbol<size>* res;
1237       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1238                                   is_default_version, *psym, st_shndx,
1239                                   is_ordinary, orig_st_shndx);
1240       
1241       if (is_forced_local)
1242         this->force_local(res);
1243
1244       // If building a shared library using garbage collection, do not 
1245       // treat externally visible symbols as garbage.
1246       if (parameters->options().gc_sections() 
1247           && parameters->options().shared())
1248         this->gc_mark_symbol_for_shlib(res);
1249
1250       if (is_defined_in_discarded_section)
1251         res->set_is_defined_in_discarded_section();
1252
1253       (*sympointers)[i] = res;
1254     }
1255 }
1256
1257 // Add a symbol from a plugin-claimed file.
1258
1259 template<int size, bool big_endian>
1260 Symbol*
1261 Symbol_table::add_from_pluginobj(
1262     Sized_pluginobj<size, big_endian>* obj,
1263     const char* name,
1264     const char* ver,
1265     elfcpp::Sym<size, big_endian>* sym)
1266 {
1267   unsigned int st_shndx = sym->get_st_shndx();
1268   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1269
1270   Stringpool::Key ver_key = 0;
1271   bool is_default_version = false;
1272   bool is_forced_local = false;
1273
1274   if (ver != NULL)
1275     {
1276       ver = this->namepool_.add(ver, true, &ver_key);
1277     }
1278   // We don't want to assign a version to an undefined symbol,
1279   // even if it is listed in the version script.  FIXME: What
1280   // about a common symbol?
1281   else
1282     {
1283       if (!this->version_script_.empty()
1284           && st_shndx != elfcpp::SHN_UNDEF)
1285         {
1286           // The symbol name did not have a version, but the
1287           // version script may assign a version anyway.
1288           std::string version;
1289           bool is_global;
1290           if (this->version_script_.get_symbol_version(name, &version,
1291                                                        &is_global))
1292             {
1293               if (!is_global)
1294                 is_forced_local = true;
1295               else if (!version.empty())
1296                 {
1297                   ver = this->namepool_.add_with_length(version.c_str(),
1298                                                         version.length(),
1299                                                         true,
1300                                                         &ver_key);
1301                   is_default_version = true;
1302                 }
1303             }
1304         }
1305     }
1306
1307   Stringpool::Key name_key;
1308   name = this->namepool_.add(name, true, &name_key);
1309
1310   Sized_symbol<size>* res;
1311   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1312                               is_default_version, *sym, st_shndx,
1313                               is_ordinary, st_shndx);
1314
1315   if (is_forced_local)
1316     this->force_local(res);
1317
1318   return res;
1319 }
1320
1321 // Add all the symbols in a dynamic object to the hash table.
1322
1323 template<int size, bool big_endian>
1324 void
1325 Symbol_table::add_from_dynobj(
1326     Sized_dynobj<size, big_endian>* dynobj,
1327     const unsigned char* syms,
1328     size_t count,
1329     const char* sym_names,
1330     size_t sym_name_size,
1331     const unsigned char* versym,
1332     size_t versym_size,
1333     const std::vector<const char*>* version_map,
1334     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1335     size_t* defined)
1336 {
1337   *defined = 0;
1338
1339   gold_assert(size == parameters->target().get_size());
1340
1341   if (dynobj->just_symbols())
1342     {
1343       gold_error(_("--just-symbols does not make sense with a shared object"));
1344       return;
1345     }
1346
1347   if (versym != NULL && versym_size / 2 < count)
1348     {
1349       dynobj->error(_("too few symbol versions"));
1350       return;
1351     }
1352
1353   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1354
1355   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1356   // weak aliases.  This is necessary because if the dynamic object
1357   // provides the same variable under two names, one of which is a
1358   // weak definition, and the regular object refers to the weak
1359   // definition, we have to put both the weak definition and the
1360   // strong definition into the dynamic symbol table.  Given a weak
1361   // definition, the only way that we can find the corresponding
1362   // strong definition, if any, is to search the symbol table.
1363   std::vector<Sized_symbol<size>*> object_symbols;
1364
1365   const unsigned char* p = syms;
1366   const unsigned char* vs = versym;
1367   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1368     {
1369       elfcpp::Sym<size, big_endian> sym(p);
1370
1371       if (sympointers != NULL)
1372         (*sympointers)[i] = NULL;
1373
1374       // Ignore symbols with local binding or that have
1375       // internal or hidden visibility.
1376       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1377           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1378           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1379         continue;
1380
1381       // A protected symbol in a shared library must be treated as a
1382       // normal symbol when viewed from outside the shared library.
1383       // Implement this by overriding the visibility here.
1384       elfcpp::Sym<size, big_endian>* psym = &sym;
1385       unsigned char symbuf[sym_size];
1386       elfcpp::Sym<size, big_endian> sym2(symbuf);
1387       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1388         {
1389           memcpy(symbuf, p, sym_size);
1390           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1391           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1392           psym = &sym2;
1393         }
1394
1395       unsigned int st_name = psym->get_st_name();
1396       if (st_name >= sym_name_size)
1397         {
1398           dynobj->error(_("bad symbol name offset %u at %zu"),
1399                         st_name, i);
1400           continue;
1401         }
1402
1403       const char* name = sym_names + st_name;
1404
1405       bool is_ordinary;
1406       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1407                                                        &is_ordinary);
1408
1409       if (st_shndx != elfcpp::SHN_UNDEF)
1410         ++*defined;
1411
1412       Sized_symbol<size>* res;
1413
1414       if (versym == NULL)
1415         {
1416           Stringpool::Key name_key;
1417           name = this->namepool_.add(name, true, &name_key);
1418           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1419                                       false, *psym, st_shndx, is_ordinary,
1420                                       st_shndx);
1421         }
1422       else
1423         {
1424           // Read the version information.
1425
1426           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1427
1428           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1429           v &= elfcpp::VERSYM_VERSION;
1430
1431           // The Sun documentation says that V can be VER_NDX_LOCAL,
1432           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1433           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1434           // The old GNU linker will happily generate VER_NDX_LOCAL
1435           // for an undefined symbol.  I don't know what the Sun
1436           // linker will generate.
1437
1438           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1439               && st_shndx != elfcpp::SHN_UNDEF)
1440             {
1441               // This symbol should not be visible outside the object.
1442               continue;
1443             }
1444
1445           // At this point we are definitely going to add this symbol.
1446           Stringpool::Key name_key;
1447           name = this->namepool_.add(name, true, &name_key);
1448
1449           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1450               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1451             {
1452               // This symbol does not have a version.
1453               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1454                                           false, *psym, st_shndx, is_ordinary,
1455                                           st_shndx);
1456             }
1457           else
1458             {
1459               if (v >= version_map->size())
1460                 {
1461                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1462                                 i, v);
1463                   continue;
1464                 }
1465
1466               const char* version = (*version_map)[v];
1467               if (version == NULL)
1468                 {
1469                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1470                                 i, v);
1471                   continue;
1472                 }
1473
1474               Stringpool::Key version_key;
1475               version = this->namepool_.add(version, true, &version_key);
1476
1477               // If this is an absolute symbol, and the version name
1478               // and symbol name are the same, then this is the
1479               // version definition symbol.  These symbols exist to
1480               // support using -u to pull in particular versions.  We
1481               // do not want to record a version for them.
1482               if (st_shndx == elfcpp::SHN_ABS
1483                   && !is_ordinary
1484                   && name_key == version_key)
1485                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1486                                             false, *psym, st_shndx, is_ordinary,
1487                                             st_shndx);
1488               else
1489                 {
1490                   const bool is_default_version =
1491                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1492                   res = this->add_from_object(dynobj, name, name_key, version,
1493                                               version_key, is_default_version,
1494                                               *psym, st_shndx,
1495                                               is_ordinary, st_shndx);
1496                 }
1497             }
1498         }
1499
1500       // Note that it is possible that RES was overridden by an
1501       // earlier object, in which case it can't be aliased here.
1502       if (st_shndx != elfcpp::SHN_UNDEF
1503           && is_ordinary
1504           && psym->get_st_type() == elfcpp::STT_OBJECT
1505           && res->source() == Symbol::FROM_OBJECT
1506           && res->object() == dynobj)
1507         object_symbols.push_back(res);
1508
1509       if (sympointers != NULL)
1510         (*sympointers)[i] = res;
1511     }
1512
1513   this->record_weak_aliases(&object_symbols);
1514 }
1515
1516 // Add a symbol from a incremental object file.
1517
1518 template<int size, bool big_endian>
1519 Sized_symbol<size>*
1520 Symbol_table::add_from_incrobj(
1521     Object* obj,
1522     const char* name,
1523     const char* ver,
1524     elfcpp::Sym<size, big_endian>* sym)
1525 {
1526   unsigned int st_shndx = sym->get_st_shndx();
1527   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1528
1529   Stringpool::Key ver_key = 0;
1530   bool is_default_version = false;
1531   bool is_forced_local = false;
1532
1533   Stringpool::Key name_key;
1534   name = this->namepool_.add(name, true, &name_key);
1535
1536   Sized_symbol<size>* res;
1537   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1538                               is_default_version, *sym, st_shndx,
1539                               is_ordinary, st_shndx);
1540
1541   if (is_forced_local)
1542     this->force_local(res);
1543
1544   return res;
1545 }
1546
1547 // This is used to sort weak aliases.  We sort them first by section
1548 // index, then by offset, then by weak ahead of strong.
1549
1550 template<int size>
1551 class Weak_alias_sorter
1552 {
1553  public:
1554   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1555 };
1556
1557 template<int size>
1558 bool
1559 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1560                                     const Sized_symbol<size>* s2) const
1561 {
1562   bool is_ordinary;
1563   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1564   gold_assert(is_ordinary);
1565   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1566   gold_assert(is_ordinary);
1567   if (s1_shndx != s2_shndx)
1568     return s1_shndx < s2_shndx;
1569
1570   if (s1->value() != s2->value())
1571     return s1->value() < s2->value();
1572   if (s1->binding() != s2->binding())
1573     {
1574       if (s1->binding() == elfcpp::STB_WEAK)
1575         return true;
1576       if (s2->binding() == elfcpp::STB_WEAK)
1577         return false;
1578     }
1579   return std::string(s1->name()) < std::string(s2->name());
1580 }
1581
1582 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1583 // for any weak aliases, and record them so that if we add the weak
1584 // alias to the dynamic symbol table, we also add the corresponding
1585 // strong symbol.
1586
1587 template<int size>
1588 void
1589 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1590 {
1591   // Sort the vector by section index, then by offset, then by weak
1592   // ahead of strong.
1593   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1594
1595   // Walk through the vector.  For each weak definition, record
1596   // aliases.
1597   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1598          symbols->begin();
1599        p != symbols->end();
1600        ++p)
1601     {
1602       if ((*p)->binding() != elfcpp::STB_WEAK)
1603         continue;
1604
1605       // Build a circular list of weak aliases.  Each symbol points to
1606       // the next one in the circular list.
1607
1608       Sized_symbol<size>* from_sym = *p;
1609       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1610       for (q = p + 1; q != symbols->end(); ++q)
1611         {
1612           bool dummy;
1613           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1614               || (*q)->value() != from_sym->value())
1615             break;
1616
1617           this->weak_aliases_[from_sym] = *q;
1618           from_sym->set_has_alias();
1619           from_sym = *q;
1620         }
1621
1622       if (from_sym != *p)
1623         {
1624           this->weak_aliases_[from_sym] = *p;
1625           from_sym->set_has_alias();
1626         }
1627
1628       p = q - 1;
1629     }
1630 }
1631
1632 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1633 // true, then only create the symbol if there is a reference to it.
1634 // If this does not return NULL, it sets *POLDSYM to the existing
1635 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1636 // resolve the newly created symbol to the old one.  This
1637 // canonicalizes *PNAME and *PVERSION.
1638
1639 template<int size, bool big_endian>
1640 Sized_symbol<size>*
1641 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1642                                     bool only_if_ref,
1643                                     Sized_symbol<size>** poldsym,
1644                                     bool* resolve_oldsym)
1645 {
1646   *resolve_oldsym = false;
1647
1648   // If the caller didn't give us a version, see if we get one from
1649   // the version script.
1650   std::string v;
1651   bool is_default_version = false;
1652   if (*pversion == NULL)
1653     {
1654       bool is_global;
1655       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1656         {
1657           if (is_global && !v.empty())
1658             {
1659               *pversion = v.c_str();
1660               // If we get the version from a version script, then we
1661               // are also the default version.
1662               is_default_version = true;
1663             }
1664         }
1665     }
1666
1667   Symbol* oldsym;
1668   Sized_symbol<size>* sym;
1669
1670   bool add_to_table = false;
1671   typename Symbol_table_type::iterator add_loc = this->table_.end();
1672   bool add_def_to_table = false;
1673   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1674
1675   if (only_if_ref)
1676     {
1677       oldsym = this->lookup(*pname, *pversion);
1678       if (oldsym == NULL && is_default_version)
1679         oldsym = this->lookup(*pname, NULL);
1680       if (oldsym == NULL || !oldsym->is_undefined())
1681         return NULL;
1682
1683       *pname = oldsym->name();
1684       if (!is_default_version)
1685         *pversion = oldsym->version();
1686     }
1687   else
1688     {
1689       // Canonicalize NAME and VERSION.
1690       Stringpool::Key name_key;
1691       *pname = this->namepool_.add(*pname, true, &name_key);
1692
1693       Stringpool::Key version_key = 0;
1694       if (*pversion != NULL)
1695         *pversion = this->namepool_.add(*pversion, true, &version_key);
1696
1697       Symbol* const snull = NULL;
1698       std::pair<typename Symbol_table_type::iterator, bool> ins =
1699         this->table_.insert(std::make_pair(std::make_pair(name_key,
1700                                                           version_key),
1701                                            snull));
1702
1703       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1704         std::make_pair(this->table_.end(), false);
1705       if (is_default_version)
1706         {
1707           const Stringpool::Key vnull = 0;
1708           insdefault =
1709             this->table_.insert(std::make_pair(std::make_pair(name_key,
1710                                                               vnull),
1711                                                snull));
1712         }
1713
1714       if (!ins.second)
1715         {
1716           // We already have a symbol table entry for NAME/VERSION.
1717           oldsym = ins.first->second;
1718           gold_assert(oldsym != NULL);
1719
1720           if (is_default_version)
1721             {
1722               Sized_symbol<size>* soldsym =
1723                 this->get_sized_symbol<size>(oldsym);
1724               this->define_default_version<size, big_endian>(soldsym,
1725                                                              insdefault.second,
1726                                                              insdefault.first);
1727             }
1728         }
1729       else
1730         {
1731           // We haven't seen this symbol before.
1732           gold_assert(ins.first->second == NULL);
1733
1734           add_to_table = true;
1735           add_loc = ins.first;
1736
1737           if (is_default_version && !insdefault.second)
1738             {
1739               // We are adding NAME/VERSION, and it is the default
1740               // version.  We already have an entry for NAME/NULL.
1741               oldsym = insdefault.first->second;
1742               *resolve_oldsym = true;
1743             }
1744           else
1745             {
1746               oldsym = NULL;
1747
1748               if (is_default_version)
1749                 {
1750                   add_def_to_table = true;
1751                   add_def_loc = insdefault.first;
1752                 }
1753             }
1754         }
1755     }
1756
1757   const Target& target = parameters->target();
1758   if (!target.has_make_symbol())
1759     sym = new Sized_symbol<size>();
1760   else
1761     {
1762       Sized_target<size, big_endian>* sized_target =
1763         parameters->sized_target<size, big_endian>();
1764       sym = sized_target->make_symbol();
1765       if (sym == NULL)
1766         return NULL;
1767     }
1768
1769   if (add_to_table)
1770     add_loc->second = sym;
1771   else
1772     gold_assert(oldsym != NULL);
1773
1774   if (add_def_to_table)
1775     add_def_loc->second = sym;
1776
1777   *poldsym = this->get_sized_symbol<size>(oldsym);
1778
1779   return sym;
1780 }
1781
1782 // Define a symbol based on an Output_data.
1783
1784 Symbol*
1785 Symbol_table::define_in_output_data(const char* name,
1786                                     const char* version,
1787                                     Defined defined,
1788                                     Output_data* od,
1789                                     uint64_t value,
1790                                     uint64_t symsize,
1791                                     elfcpp::STT type,
1792                                     elfcpp::STB binding,
1793                                     elfcpp::STV visibility,
1794                                     unsigned char nonvis,
1795                                     bool offset_is_from_end,
1796                                     bool only_if_ref)
1797 {
1798   if (parameters->target().get_size() == 32)
1799     {
1800 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1801       return this->do_define_in_output_data<32>(name, version, defined, od,
1802                                                 value, symsize, type, binding,
1803                                                 visibility, nonvis,
1804                                                 offset_is_from_end,
1805                                                 only_if_ref);
1806 #else
1807       gold_unreachable();
1808 #endif
1809     }
1810   else if (parameters->target().get_size() == 64)
1811     {
1812 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1813       return this->do_define_in_output_data<64>(name, version, defined, od,
1814                                                 value, symsize, type, binding,
1815                                                 visibility, nonvis,
1816                                                 offset_is_from_end,
1817                                                 only_if_ref);
1818 #else
1819       gold_unreachable();
1820 #endif
1821     }
1822   else
1823     gold_unreachable();
1824 }
1825
1826 // Define a symbol in an Output_data, sized version.
1827
1828 template<int size>
1829 Sized_symbol<size>*
1830 Symbol_table::do_define_in_output_data(
1831     const char* name,
1832     const char* version,
1833     Defined defined,
1834     Output_data* od,
1835     typename elfcpp::Elf_types<size>::Elf_Addr value,
1836     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1837     elfcpp::STT type,
1838     elfcpp::STB binding,
1839     elfcpp::STV visibility,
1840     unsigned char nonvis,
1841     bool offset_is_from_end,
1842     bool only_if_ref)
1843 {
1844   Sized_symbol<size>* sym;
1845   Sized_symbol<size>* oldsym;
1846   bool resolve_oldsym;
1847
1848   if (parameters->target().is_big_endian())
1849     {
1850 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1851       sym = this->define_special_symbol<size, true>(&name, &version,
1852                                                     only_if_ref, &oldsym,
1853                                                     &resolve_oldsym);
1854 #else
1855       gold_unreachable();
1856 #endif
1857     }
1858   else
1859     {
1860 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1861       sym = this->define_special_symbol<size, false>(&name, &version,
1862                                                      only_if_ref, &oldsym,
1863                                                      &resolve_oldsym);
1864 #else
1865       gold_unreachable();
1866 #endif
1867     }
1868
1869   if (sym == NULL)
1870     return NULL;
1871
1872   sym->init_output_data(name, version, od, value, symsize, type, binding,
1873                         visibility, nonvis, offset_is_from_end,
1874                         defined == PREDEFINED);
1875
1876   if (oldsym == NULL)
1877     {
1878       if (binding == elfcpp::STB_LOCAL
1879           || this->version_script_.symbol_is_local(name))
1880         this->force_local(sym);
1881       else if (version != NULL)
1882         sym->set_is_default();
1883       return sym;
1884     }
1885
1886   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1887     this->override_with_special(oldsym, sym);
1888
1889   if (resolve_oldsym)
1890     return sym;
1891   else
1892     {
1893       delete sym;
1894       return oldsym;
1895     }
1896 }
1897
1898 // Define a symbol based on an Output_segment.
1899
1900 Symbol*
1901 Symbol_table::define_in_output_segment(const char* name,
1902                                        const char* version,
1903                                        Defined defined,
1904                                        Output_segment* os,
1905                                        uint64_t value,
1906                                        uint64_t symsize,
1907                                        elfcpp::STT type,
1908                                        elfcpp::STB binding,
1909                                        elfcpp::STV visibility,
1910                                        unsigned char nonvis,
1911                                        Symbol::Segment_offset_base offset_base,
1912                                        bool only_if_ref)
1913 {
1914   if (parameters->target().get_size() == 32)
1915     {
1916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1917       return this->do_define_in_output_segment<32>(name, version, defined, os,
1918                                                    value, symsize, type,
1919                                                    binding, visibility, nonvis,
1920                                                    offset_base, only_if_ref);
1921 #else
1922       gold_unreachable();
1923 #endif
1924     }
1925   else if (parameters->target().get_size() == 64)
1926     {
1927 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1928       return this->do_define_in_output_segment<64>(name, version, defined, os,
1929                                                    value, symsize, type,
1930                                                    binding, visibility, nonvis,
1931                                                    offset_base, only_if_ref);
1932 #else
1933       gold_unreachable();
1934 #endif
1935     }
1936   else
1937     gold_unreachable();
1938 }
1939
1940 // Define a symbol in an Output_segment, sized version.
1941
1942 template<int size>
1943 Sized_symbol<size>*
1944 Symbol_table::do_define_in_output_segment(
1945     const char* name,
1946     const char* version,
1947     Defined defined,
1948     Output_segment* os,
1949     typename elfcpp::Elf_types<size>::Elf_Addr value,
1950     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1951     elfcpp::STT type,
1952     elfcpp::STB binding,
1953     elfcpp::STV visibility,
1954     unsigned char nonvis,
1955     Symbol::Segment_offset_base offset_base,
1956     bool only_if_ref)
1957 {
1958   Sized_symbol<size>* sym;
1959   Sized_symbol<size>* oldsym;
1960   bool resolve_oldsym;
1961
1962   if (parameters->target().is_big_endian())
1963     {
1964 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1965       sym = this->define_special_symbol<size, true>(&name, &version,
1966                                                     only_if_ref, &oldsym,
1967                                                     &resolve_oldsym);
1968 #else
1969       gold_unreachable();
1970 #endif
1971     }
1972   else
1973     {
1974 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1975       sym = this->define_special_symbol<size, false>(&name, &version,
1976                                                      only_if_ref, &oldsym,
1977                                                      &resolve_oldsym);
1978 #else
1979       gold_unreachable();
1980 #endif
1981     }
1982
1983   if (sym == NULL)
1984     return NULL;
1985
1986   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1987                            visibility, nonvis, offset_base,
1988                            defined == PREDEFINED);
1989
1990   if (oldsym == NULL)
1991     {
1992       if (binding == elfcpp::STB_LOCAL
1993           || this->version_script_.symbol_is_local(name))
1994         this->force_local(sym);
1995       else if (version != NULL)
1996         sym->set_is_default();
1997       return sym;
1998     }
1999
2000   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2001     this->override_with_special(oldsym, sym);
2002
2003   if (resolve_oldsym)
2004     return sym;
2005   else
2006     {
2007       delete sym;
2008       return oldsym;
2009     }
2010 }
2011
2012 // Define a special symbol with a constant value.  It is a multiple
2013 // definition error if this symbol is already defined.
2014
2015 Symbol*
2016 Symbol_table::define_as_constant(const char* name,
2017                                  const char* version,
2018                                  Defined defined,
2019                                  uint64_t value,
2020                                  uint64_t symsize,
2021                                  elfcpp::STT type,
2022                                  elfcpp::STB binding,
2023                                  elfcpp::STV visibility,
2024                                  unsigned char nonvis,
2025                                  bool only_if_ref,
2026                                  bool force_override)
2027 {
2028   if (parameters->target().get_size() == 32)
2029     {
2030 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2031       return this->do_define_as_constant<32>(name, version, defined, value,
2032                                              symsize, type, binding,
2033                                              visibility, nonvis, only_if_ref,
2034                                              force_override);
2035 #else
2036       gold_unreachable();
2037 #endif
2038     }
2039   else if (parameters->target().get_size() == 64)
2040     {
2041 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2042       return this->do_define_as_constant<64>(name, version, defined, value,
2043                                              symsize, type, binding,
2044                                              visibility, nonvis, only_if_ref,
2045                                              force_override);
2046 #else
2047       gold_unreachable();
2048 #endif
2049     }
2050   else
2051     gold_unreachable();
2052 }
2053
2054 // Define a symbol as a constant, sized version.
2055
2056 template<int size>
2057 Sized_symbol<size>*
2058 Symbol_table::do_define_as_constant(
2059     const char* name,
2060     const char* version,
2061     Defined defined,
2062     typename elfcpp::Elf_types<size>::Elf_Addr value,
2063     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2064     elfcpp::STT type,
2065     elfcpp::STB binding,
2066     elfcpp::STV visibility,
2067     unsigned char nonvis,
2068     bool only_if_ref,
2069     bool force_override)
2070 {
2071   Sized_symbol<size>* sym;
2072   Sized_symbol<size>* oldsym;
2073   bool resolve_oldsym;
2074
2075   if (parameters->target().is_big_endian())
2076     {
2077 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2078       sym = this->define_special_symbol<size, true>(&name, &version,
2079                                                     only_if_ref, &oldsym,
2080                                                     &resolve_oldsym);
2081 #else
2082       gold_unreachable();
2083 #endif
2084     }
2085   else
2086     {
2087 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2088       sym = this->define_special_symbol<size, false>(&name, &version,
2089                                                      only_if_ref, &oldsym,
2090                                                      &resolve_oldsym);
2091 #else
2092       gold_unreachable();
2093 #endif
2094     }
2095
2096   if (sym == NULL)
2097     return NULL;
2098
2099   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2100                      nonvis, defined == PREDEFINED);
2101
2102   if (oldsym == NULL)
2103     {
2104       // Version symbols are absolute symbols with name == version.
2105       // We don't want to force them to be local.
2106       if ((version == NULL
2107            || name != version
2108            || value != 0)
2109           && (binding == elfcpp::STB_LOCAL
2110               || this->version_script_.symbol_is_local(name)))
2111         this->force_local(sym);
2112       else if (version != NULL
2113                && (name != version || value != 0))
2114         sym->set_is_default();
2115       return sym;
2116     }
2117
2118   if (force_override
2119       || Symbol_table::should_override_with_special(oldsym, type, defined))
2120     this->override_with_special(oldsym, sym);
2121
2122   if (resolve_oldsym)
2123     return sym;
2124   else
2125     {
2126       delete sym;
2127       return oldsym;
2128     }
2129 }
2130
2131 // Define a set of symbols in output sections.
2132
2133 void
2134 Symbol_table::define_symbols(const Layout* layout, int count,
2135                              const Define_symbol_in_section* p,
2136                              bool only_if_ref)
2137 {
2138   for (int i = 0; i < count; ++i, ++p)
2139     {
2140       Output_section* os = layout->find_output_section(p->output_section);
2141       if (os != NULL)
2142         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2143                                     p->size, p->type, p->binding,
2144                                     p->visibility, p->nonvis,
2145                                     p->offset_is_from_end,
2146                                     only_if_ref || p->only_if_ref);
2147       else
2148         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2149                                  p->type, p->binding, p->visibility, p->nonvis,
2150                                  only_if_ref || p->only_if_ref,
2151                                  false);
2152     }
2153 }
2154
2155 // Define a set of symbols in output segments.
2156
2157 void
2158 Symbol_table::define_symbols(const Layout* layout, int count,
2159                              const Define_symbol_in_segment* p,
2160                              bool only_if_ref)
2161 {
2162   for (int i = 0; i < count; ++i, ++p)
2163     {
2164       Output_segment* os = layout->find_output_segment(p->segment_type,
2165                                                        p->segment_flags_set,
2166                                                        p->segment_flags_clear);
2167       if (os != NULL)
2168         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2169                                        p->size, p->type, p->binding,
2170                                        p->visibility, p->nonvis,
2171                                        p->offset_base,
2172                                        only_if_ref || p->only_if_ref);
2173       else
2174         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2175                                  p->type, p->binding, p->visibility, p->nonvis,
2176                                  only_if_ref || p->only_if_ref,
2177                                  false);
2178     }
2179 }
2180
2181 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2182 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2183 // the offset within POSD.
2184
2185 template<int size>
2186 void
2187 Symbol_table::define_with_copy_reloc(
2188     Sized_symbol<size>* csym,
2189     Output_data* posd,
2190     typename elfcpp::Elf_types<size>::Elf_Addr value)
2191 {
2192   gold_assert(csym->is_from_dynobj());
2193   gold_assert(!csym->is_copied_from_dynobj());
2194   Object* object = csym->object();
2195   gold_assert(object->is_dynamic());
2196   Dynobj* dynobj = static_cast<Dynobj*>(object);
2197
2198   // Our copied variable has to override any variable in a shared
2199   // library.
2200   elfcpp::STB binding = csym->binding();
2201   if (binding == elfcpp::STB_WEAK)
2202     binding = elfcpp::STB_GLOBAL;
2203
2204   this->define_in_output_data(csym->name(), csym->version(), COPY,
2205                               posd, value, csym->symsize(),
2206                               csym->type(), binding,
2207                               csym->visibility(), csym->nonvis(),
2208                               false, false);
2209
2210   csym->set_is_copied_from_dynobj();
2211   csym->set_needs_dynsym_entry();
2212
2213   this->copied_symbol_dynobjs_[csym] = dynobj;
2214
2215   // We have now defined all aliases, but we have not entered them all
2216   // in the copied_symbol_dynobjs_ map.
2217   if (csym->has_alias())
2218     {
2219       Symbol* sym = csym;
2220       while (true)
2221         {
2222           sym = this->weak_aliases_[sym];
2223           if (sym == csym)
2224             break;
2225           gold_assert(sym->output_data() == posd);
2226
2227           sym->set_is_copied_from_dynobj();
2228           this->copied_symbol_dynobjs_[sym] = dynobj;
2229         }
2230     }
2231 }
2232
2233 // SYM is defined using a COPY reloc.  Return the dynamic object where
2234 // the original definition was found.
2235
2236 Dynobj*
2237 Symbol_table::get_copy_source(const Symbol* sym) const
2238 {
2239   gold_assert(sym->is_copied_from_dynobj());
2240   Copied_symbol_dynobjs::const_iterator p =
2241     this->copied_symbol_dynobjs_.find(sym);
2242   gold_assert(p != this->copied_symbol_dynobjs_.end());
2243   return p->second;
2244 }
2245
2246 // Add any undefined symbols named on the command line.
2247
2248 void
2249 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2250 {
2251   if (parameters->options().any_undefined()
2252       || layout->script_options()->any_unreferenced())
2253     {
2254       if (parameters->target().get_size() == 32)
2255         {
2256 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2257           this->do_add_undefined_symbols_from_command_line<32>(layout);
2258 #else
2259           gold_unreachable();
2260 #endif
2261         }
2262       else if (parameters->target().get_size() == 64)
2263         {
2264 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2265           this->do_add_undefined_symbols_from_command_line<64>(layout);
2266 #else
2267           gold_unreachable();
2268 #endif
2269         }
2270       else
2271         gold_unreachable();
2272     }
2273 }
2274
2275 template<int size>
2276 void
2277 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2278 {
2279   for (options::String_set::const_iterator p =
2280          parameters->options().undefined_begin();
2281        p != parameters->options().undefined_end();
2282        ++p)
2283     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2284
2285   for (Script_options::referenced_const_iterator p =
2286          layout->script_options()->referenced_begin();
2287        p != layout->script_options()->referenced_end();
2288        ++p)
2289     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2290 }
2291
2292 template<int size>
2293 void
2294 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2295 {
2296   if (this->lookup(name) != NULL)
2297     return;
2298
2299   const char* version = NULL;
2300
2301   Sized_symbol<size>* sym;
2302   Sized_symbol<size>* oldsym;
2303   bool resolve_oldsym;
2304   if (parameters->target().is_big_endian())
2305     {
2306 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2307       sym = this->define_special_symbol<size, true>(&name, &version,
2308                                                     false, &oldsym,
2309                                                     &resolve_oldsym);
2310 #else
2311       gold_unreachable();
2312 #endif
2313     }
2314   else
2315     {
2316 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2317       sym = this->define_special_symbol<size, false>(&name, &version,
2318                                                      false, &oldsym,
2319                                                      &resolve_oldsym);
2320 #else
2321       gold_unreachable();
2322 #endif
2323     }
2324
2325   gold_assert(oldsym == NULL);
2326
2327   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2328                       elfcpp::STV_DEFAULT, 0);
2329   ++this->saw_undefined_;
2330 }
2331
2332 // Set the dynamic symbol indexes.  INDEX is the index of the first
2333 // global dynamic symbol.  Pointers to the symbols are stored into the
2334 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2335 // updated dynamic symbol index.
2336
2337 unsigned int
2338 Symbol_table::set_dynsym_indexes(unsigned int index,
2339                                  std::vector<Symbol*>* syms,
2340                                  Stringpool* dynpool,
2341                                  Versions* versions)
2342 {
2343   for (Symbol_table_type::iterator p = this->table_.begin();
2344        p != this->table_.end();
2345        ++p)
2346     {
2347       Symbol* sym = p->second;
2348
2349       // Note that SYM may already have a dynamic symbol index, since
2350       // some symbols appear more than once in the symbol table, with
2351       // and without a version.
2352
2353       if (!sym->should_add_dynsym_entry(this))
2354         sym->set_dynsym_index(-1U);
2355       else if (!sym->has_dynsym_index())
2356         {
2357           sym->set_dynsym_index(index);
2358           ++index;
2359           syms->push_back(sym);
2360           dynpool->add(sym->name(), false, NULL);
2361
2362           // Record any version information.
2363           if (sym->version() != NULL)
2364             versions->record_version(this, dynpool, sym);
2365
2366           // If the symbol is defined in a dynamic object and is
2367           // referenced in a regular object, then mark the dynamic
2368           // object as needed.  This is used to implement --as-needed.
2369           if (sym->is_from_dynobj() && sym->in_reg())
2370             sym->object()->set_is_needed();
2371         }
2372     }
2373
2374   // Finish up the versions.  In some cases this may add new dynamic
2375   // symbols.
2376   index = versions->finalize(this, index, syms);
2377
2378   return index;
2379 }
2380
2381 // Set the final values for all the symbols.  The index of the first
2382 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2383 // file offset OFF.  Add their names to POOL.  Return the new file
2384 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2385
2386 off_t
2387 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2388                        size_t dyncount, Stringpool* pool,
2389                        unsigned int* plocal_symcount)
2390 {
2391   off_t ret;
2392
2393   gold_assert(*plocal_symcount != 0);
2394   this->first_global_index_ = *plocal_symcount;
2395
2396   this->dynamic_offset_ = dynoff;
2397   this->first_dynamic_global_index_ = dyn_global_index;
2398   this->dynamic_count_ = dyncount;
2399
2400   if (parameters->target().get_size() == 32)
2401     {
2402 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2403       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2404 #else
2405       gold_unreachable();
2406 #endif
2407     }
2408   else if (parameters->target().get_size() == 64)
2409     {
2410 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2411       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2412 #else
2413       gold_unreachable();
2414 #endif
2415     }
2416   else
2417     gold_unreachable();
2418
2419   // Now that we have the final symbol table, we can reliably note
2420   // which symbols should get warnings.
2421   this->warnings_.note_warnings(this);
2422
2423   return ret;
2424 }
2425
2426 // SYM is going into the symbol table at *PINDEX.  Add the name to
2427 // POOL, update *PINDEX and *POFF.
2428
2429 template<int size>
2430 void
2431 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2432                                   unsigned int* pindex, off_t* poff)
2433 {
2434   sym->set_symtab_index(*pindex);
2435   if (sym->version() == NULL || !parameters->options().relocatable())
2436     pool->add(sym->name(), false, NULL);
2437   else
2438     pool->add(sym->versioned_name(), true, NULL);
2439   ++*pindex;
2440   *poff += elfcpp::Elf_sizes<size>::sym_size;
2441 }
2442
2443 // Set the final value for all the symbols.  This is called after
2444 // Layout::finalize, so all the output sections have their final
2445 // address.
2446
2447 template<int size>
2448 off_t
2449 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2450                              unsigned int* plocal_symcount)
2451 {
2452   off = align_address(off, size >> 3);
2453   this->offset_ = off;
2454
2455   unsigned int index = *plocal_symcount;
2456   const unsigned int orig_index = index;
2457
2458   // First do all the symbols which have been forced to be local, as
2459   // they must appear before all global symbols.
2460   for (Forced_locals::iterator p = this->forced_locals_.begin();
2461        p != this->forced_locals_.end();
2462        ++p)
2463     {
2464       Symbol* sym = *p;
2465       gold_assert(sym->is_forced_local());
2466       if (this->sized_finalize_symbol<size>(sym))
2467         {
2468           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2469           ++*plocal_symcount;
2470         }
2471     }
2472
2473   // Now do all the remaining symbols.
2474   for (Symbol_table_type::iterator p = this->table_.begin();
2475        p != this->table_.end();
2476        ++p)
2477     {
2478       Symbol* sym = p->second;
2479       if (this->sized_finalize_symbol<size>(sym))
2480         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2481     }
2482
2483   this->output_count_ = index - orig_index;
2484
2485   return off;
2486 }
2487
2488 // Compute the final value of SYM and store status in location PSTATUS.
2489 // During relaxation, this may be called multiple times for a symbol to
2490 // compute its would-be final value in each relaxation pass.
2491
2492 template<int size>
2493 typename Sized_symbol<size>::Value_type
2494 Symbol_table::compute_final_value(
2495     const Sized_symbol<size>* sym,
2496     Compute_final_value_status* pstatus) const
2497 {
2498   typedef typename Sized_symbol<size>::Value_type Value_type;
2499   Value_type value;
2500
2501   switch (sym->source())
2502     {
2503     case Symbol::FROM_OBJECT:
2504       {
2505         bool is_ordinary;
2506         unsigned int shndx = sym->shndx(&is_ordinary);
2507
2508         if (!is_ordinary
2509             && shndx != elfcpp::SHN_ABS
2510             && !Symbol::is_common_shndx(shndx))
2511           {
2512             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2513             return 0;
2514           }
2515
2516         Object* symobj = sym->object();
2517         if (symobj->is_dynamic())
2518           {
2519             value = 0;
2520             shndx = elfcpp::SHN_UNDEF;
2521           }
2522         else if (symobj->pluginobj() != NULL)
2523           {
2524             value = 0;
2525             shndx = elfcpp::SHN_UNDEF;
2526           }
2527         else if (shndx == elfcpp::SHN_UNDEF)
2528           value = 0;
2529         else if (!is_ordinary
2530                  && (shndx == elfcpp::SHN_ABS
2531                      || Symbol::is_common_shndx(shndx)))
2532           value = sym->value();
2533         else
2534           {
2535             Relobj* relobj = static_cast<Relobj*>(symobj);
2536             Output_section* os = relobj->output_section(shndx);
2537
2538             if (this->is_section_folded(relobj, shndx))
2539               {
2540                 gold_assert(os == NULL);
2541                 // Get the os of the section it is folded onto.
2542                 Section_id folded = this->icf_->get_folded_section(relobj,
2543                                                                    shndx);
2544                 gold_assert(folded.first != NULL);
2545                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2546                 unsigned folded_shndx = folded.second;
2547
2548                 os = folded_obj->output_section(folded_shndx);  
2549                 gold_assert(os != NULL);
2550
2551                 // Replace (relobj, shndx) with canonical ICF input section.
2552                 shndx = folded_shndx;
2553                 relobj = folded_obj;
2554               }
2555
2556             uint64_t secoff64 = relobj->output_section_offset(shndx);
2557             if (os == NULL)
2558               {
2559                 bool static_or_reloc = (parameters->doing_static_link() ||
2560                                         parameters->options().relocatable());
2561                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2562
2563                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2564                 return 0;
2565               }
2566
2567             if (secoff64 == -1ULL)
2568               {
2569                 // The section needs special handling (e.g., a merge section).
2570
2571                 value = os->output_address(relobj, shndx, sym->value());
2572               }
2573             else
2574               {
2575                 Value_type secoff =
2576                   convert_types<Value_type, uint64_t>(secoff64);
2577                 if (sym->type() == elfcpp::STT_TLS)
2578                   value = sym->value() + os->tls_offset() + secoff;
2579                 else
2580                   value = sym->value() + os->address() + secoff;
2581               }
2582           }
2583       }
2584       break;
2585
2586     case Symbol::IN_OUTPUT_DATA:
2587       {
2588         Output_data* od = sym->output_data();
2589         value = sym->value();
2590         if (sym->type() != elfcpp::STT_TLS)
2591           value += od->address();
2592         else
2593           {
2594             Output_section* os = od->output_section();
2595             gold_assert(os != NULL);
2596             value += os->tls_offset() + (od->address() - os->address());
2597           }
2598         if (sym->offset_is_from_end())
2599           value += od->data_size();
2600       }
2601       break;
2602
2603     case Symbol::IN_OUTPUT_SEGMENT:
2604       {
2605         Output_segment* os = sym->output_segment();
2606         value = sym->value();
2607         if (sym->type() != elfcpp::STT_TLS)
2608           value += os->vaddr();
2609         switch (sym->offset_base())
2610           {
2611           case Symbol::SEGMENT_START:
2612             break;
2613           case Symbol::SEGMENT_END:
2614             value += os->memsz();
2615             break;
2616           case Symbol::SEGMENT_BSS:
2617             value += os->filesz();
2618             break;
2619           default:
2620             gold_unreachable();
2621           }
2622       }
2623       break;
2624
2625     case Symbol::IS_CONSTANT:
2626       value = sym->value();
2627       break;
2628
2629     case Symbol::IS_UNDEFINED:
2630       value = 0;
2631       break;
2632
2633     default:
2634       gold_unreachable();
2635     }
2636
2637   *pstatus = CFVS_OK;
2638   return value;
2639 }
2640
2641 // Finalize the symbol SYM.  This returns true if the symbol should be
2642 // added to the symbol table, false otherwise.
2643
2644 template<int size>
2645 bool
2646 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2647 {
2648   typedef typename Sized_symbol<size>::Value_type Value_type;
2649
2650   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2651
2652   // The default version of a symbol may appear twice in the symbol
2653   // table.  We only need to finalize it once.
2654   if (sym->has_symtab_index())
2655     return false;
2656
2657   if (!sym->in_reg())
2658     {
2659       gold_assert(!sym->has_symtab_index());
2660       sym->set_symtab_index(-1U);
2661       gold_assert(sym->dynsym_index() == -1U);
2662       return false;
2663     }
2664
2665   // If the symbol is only present on plugin files, the plugin decided we
2666   // don't need it.
2667   if (!sym->in_real_elf())
2668     {
2669       gold_assert(!sym->has_symtab_index());
2670       sym->set_symtab_index(-1U);
2671       return false;
2672     }
2673
2674   // Compute final symbol value.
2675   Compute_final_value_status status;
2676   Value_type value = this->compute_final_value(sym, &status);
2677
2678   switch (status)
2679     {
2680     case CFVS_OK:
2681       break;
2682     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2683       {
2684         bool is_ordinary;
2685         unsigned int shndx = sym->shndx(&is_ordinary);
2686         gold_error(_("%s: unsupported symbol section 0x%x"),
2687                    sym->demangled_name().c_str(), shndx);
2688       }
2689       break;
2690     case CFVS_NO_OUTPUT_SECTION:
2691       sym->set_symtab_index(-1U);
2692       return false;
2693     default:
2694       gold_unreachable();
2695     }
2696
2697   sym->set_value(value);
2698
2699   if (parameters->options().strip_all()
2700       || !parameters->options().should_retain_symbol(sym->name()))
2701     {
2702       sym->set_symtab_index(-1U);
2703       return false;
2704     }
2705
2706   return true;
2707 }
2708
2709 // Write out the global symbols.
2710
2711 void
2712 Symbol_table::write_globals(const Stringpool* sympool,
2713                             const Stringpool* dynpool,
2714                             Output_symtab_xindex* symtab_xindex,
2715                             Output_symtab_xindex* dynsym_xindex,
2716                             Output_file* of) const
2717 {
2718   switch (parameters->size_and_endianness())
2719     {
2720 #ifdef HAVE_TARGET_32_LITTLE
2721     case Parameters::TARGET_32_LITTLE:
2722       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2723                                            dynsym_xindex, of);
2724       break;
2725 #endif
2726 #ifdef HAVE_TARGET_32_BIG
2727     case Parameters::TARGET_32_BIG:
2728       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2729                                           dynsym_xindex, of);
2730       break;
2731 #endif
2732 #ifdef HAVE_TARGET_64_LITTLE
2733     case Parameters::TARGET_64_LITTLE:
2734       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2735                                            dynsym_xindex, of);
2736       break;
2737 #endif
2738 #ifdef HAVE_TARGET_64_BIG
2739     case Parameters::TARGET_64_BIG:
2740       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2741                                           dynsym_xindex, of);
2742       break;
2743 #endif
2744     default:
2745       gold_unreachable();
2746     }
2747 }
2748
2749 // Write out the global symbols.
2750
2751 template<int size, bool big_endian>
2752 void
2753 Symbol_table::sized_write_globals(const Stringpool* sympool,
2754                                   const Stringpool* dynpool,
2755                                   Output_symtab_xindex* symtab_xindex,
2756                                   Output_symtab_xindex* dynsym_xindex,
2757                                   Output_file* of) const
2758 {
2759   const Target& target = parameters->target();
2760
2761   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2762
2763   const unsigned int output_count = this->output_count_;
2764   const section_size_type oview_size = output_count * sym_size;
2765   const unsigned int first_global_index = this->first_global_index_;
2766   unsigned char* psyms;
2767   if (this->offset_ == 0 || output_count == 0)
2768     psyms = NULL;
2769   else
2770     psyms = of->get_output_view(this->offset_, oview_size);
2771
2772   const unsigned int dynamic_count = this->dynamic_count_;
2773   const section_size_type dynamic_size = dynamic_count * sym_size;
2774   const unsigned int first_dynamic_global_index =
2775     this->first_dynamic_global_index_;
2776   unsigned char* dynamic_view;
2777   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2778     dynamic_view = NULL;
2779   else
2780     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2781
2782   for (Symbol_table_type::const_iterator p = this->table_.begin();
2783        p != this->table_.end();
2784        ++p)
2785     {
2786       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2787
2788       // Possibly warn about unresolved symbols in shared libraries.
2789       this->warn_about_undefined_dynobj_symbol(sym);
2790
2791       unsigned int sym_index = sym->symtab_index();
2792       unsigned int dynsym_index;
2793       if (dynamic_view == NULL)
2794         dynsym_index = -1U;
2795       else
2796         dynsym_index = sym->dynsym_index();
2797
2798       if (sym_index == -1U && dynsym_index == -1U)
2799         {
2800           // This symbol is not included in the output file.
2801           continue;
2802         }
2803
2804       unsigned int shndx;
2805       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2806       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2807       elfcpp::STB binding = sym->binding();
2808       switch (sym->source())
2809         {
2810         case Symbol::FROM_OBJECT:
2811           {
2812             bool is_ordinary;
2813             unsigned int in_shndx = sym->shndx(&is_ordinary);
2814
2815             if (!is_ordinary
2816                 && in_shndx != elfcpp::SHN_ABS
2817                 && !Symbol::is_common_shndx(in_shndx))
2818               {
2819                 gold_error(_("%s: unsupported symbol section 0x%x"),
2820                            sym->demangled_name().c_str(), in_shndx);
2821                 shndx = in_shndx;
2822               }
2823             else
2824               {
2825                 Object* symobj = sym->object();
2826                 if (symobj->is_dynamic())
2827                   {
2828                     if (sym->needs_dynsym_value())
2829                       dynsym_value = target.dynsym_value(sym);
2830                     shndx = elfcpp::SHN_UNDEF;
2831                     if (sym->is_undef_binding_weak())
2832                       binding = elfcpp::STB_WEAK;
2833                     else
2834                       binding = elfcpp::STB_GLOBAL;
2835                   }
2836                 else if (symobj->pluginobj() != NULL)
2837                   shndx = elfcpp::SHN_UNDEF;
2838                 else if (in_shndx == elfcpp::SHN_UNDEF
2839                          || (!is_ordinary
2840                              && (in_shndx == elfcpp::SHN_ABS
2841                                  || Symbol::is_common_shndx(in_shndx))))
2842                   shndx = in_shndx;
2843                 else
2844                   {
2845                     Relobj* relobj = static_cast<Relobj*>(symobj);
2846                     Output_section* os = relobj->output_section(in_shndx);
2847                     if (this->is_section_folded(relobj, in_shndx))
2848                       {
2849                         // This global symbol must be written out even though
2850                         // it is folded.
2851                         // Get the os of the section it is folded onto.
2852                         Section_id folded =
2853                              this->icf_->get_folded_section(relobj, in_shndx);
2854                         gold_assert(folded.first !=NULL);
2855                         Relobj* folded_obj = 
2856                           reinterpret_cast<Relobj*>(folded.first);
2857                         os = folded_obj->output_section(folded.second);  
2858                         gold_assert(os != NULL);
2859                       }
2860                     gold_assert(os != NULL);
2861                     shndx = os->out_shndx();
2862
2863                     if (shndx >= elfcpp::SHN_LORESERVE)
2864                       {
2865                         if (sym_index != -1U)
2866                           symtab_xindex->add(sym_index, shndx);
2867                         if (dynsym_index != -1U)
2868                           dynsym_xindex->add(dynsym_index, shndx);
2869                         shndx = elfcpp::SHN_XINDEX;
2870                       }
2871
2872                     // In object files symbol values are section
2873                     // relative.
2874                     if (parameters->options().relocatable())
2875                       sym_value -= os->address();
2876                   }
2877               }
2878           }
2879           break;
2880
2881         case Symbol::IN_OUTPUT_DATA:
2882           shndx = sym->output_data()->out_shndx();
2883           if (shndx >= elfcpp::SHN_LORESERVE)
2884             {
2885               if (sym_index != -1U)
2886                 symtab_xindex->add(sym_index, shndx);
2887               if (dynsym_index != -1U)
2888                 dynsym_xindex->add(dynsym_index, shndx);
2889               shndx = elfcpp::SHN_XINDEX;
2890             }
2891           break;
2892
2893         case Symbol::IN_OUTPUT_SEGMENT:
2894           shndx = elfcpp::SHN_ABS;
2895           break;
2896
2897         case Symbol::IS_CONSTANT:
2898           shndx = elfcpp::SHN_ABS;
2899           break;
2900
2901         case Symbol::IS_UNDEFINED:
2902           shndx = elfcpp::SHN_UNDEF;
2903           break;
2904
2905         default:
2906           gold_unreachable();
2907         }
2908
2909       if (sym_index != -1U)
2910         {
2911           sym_index -= first_global_index;
2912           gold_assert(sym_index < output_count);
2913           unsigned char* ps = psyms + (sym_index * sym_size);
2914           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2915                                                      binding, sympool, ps);
2916         }
2917
2918       if (dynsym_index != -1U)
2919         {
2920           dynsym_index -= first_dynamic_global_index;
2921           gold_assert(dynsym_index < dynamic_count);
2922           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2923           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2924                                                      binding, dynpool, pd);
2925         }
2926     }
2927
2928   of->write_output_view(this->offset_, oview_size, psyms);
2929   if (dynamic_view != NULL)
2930     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2931 }
2932
2933 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2934 // strtab holding the name.
2935
2936 template<int size, bool big_endian>
2937 void
2938 Symbol_table::sized_write_symbol(
2939     Sized_symbol<size>* sym,
2940     typename elfcpp::Elf_types<size>::Elf_Addr value,
2941     unsigned int shndx,
2942     elfcpp::STB binding,
2943     const Stringpool* pool,
2944     unsigned char* p) const
2945 {
2946   elfcpp::Sym_write<size, big_endian> osym(p);
2947   if (sym->version() == NULL || !parameters->options().relocatable())
2948     osym.put_st_name(pool->get_offset(sym->name()));
2949   else
2950     osym.put_st_name(pool->get_offset(sym->versioned_name()));
2951   osym.put_st_value(value);
2952   // Use a symbol size of zero for undefined symbols from shared libraries.
2953   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2954     osym.put_st_size(0);
2955   else
2956     osym.put_st_size(sym->symsize());
2957   elfcpp::STT type = sym->type();
2958   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2959   if (type == elfcpp::STT_GNU_IFUNC
2960       && sym->is_from_dynobj())
2961     type = elfcpp::STT_FUNC;
2962   // A version script may have overridden the default binding.
2963   if (sym->is_forced_local())
2964     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2965   else
2966     osym.put_st_info(elfcpp::elf_st_info(binding, type));
2967   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2968   osym.put_st_shndx(shndx);
2969 }
2970
2971 // Check for unresolved symbols in shared libraries.  This is
2972 // controlled by the --allow-shlib-undefined option.
2973
2974 // We only warn about libraries for which we have seen all the
2975 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2976 // which were not seen in this link.  If we didn't see a DT_NEEDED
2977 // entry, we aren't going to be able to reliably report whether the
2978 // symbol is undefined.
2979
2980 // We also don't warn about libraries found in a system library
2981 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2982 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2983 // can have undefined references satisfied by ld-linux.so.
2984
2985 inline void
2986 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2987 {
2988   bool dummy;
2989   if (sym->source() == Symbol::FROM_OBJECT
2990       && sym->object()->is_dynamic()
2991       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2992       && sym->binding() != elfcpp::STB_WEAK
2993       && !parameters->options().allow_shlib_undefined()
2994       && !parameters->target().is_defined_by_abi(sym)
2995       && !sym->object()->is_in_system_directory())
2996     {
2997       // A very ugly cast.
2998       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2999       if (!dynobj->has_unknown_needed_entries())
3000         gold_undefined_symbol(sym);
3001     }
3002 }
3003
3004 // Write out a section symbol.  Return the update offset.
3005
3006 void
3007 Symbol_table::write_section_symbol(const Output_section* os,
3008                                    Output_symtab_xindex* symtab_xindex,
3009                                    Output_file* of,
3010                                    off_t offset) const
3011 {
3012   switch (parameters->size_and_endianness())
3013     {
3014 #ifdef HAVE_TARGET_32_LITTLE
3015     case Parameters::TARGET_32_LITTLE:
3016       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3017                                                   offset);
3018       break;
3019 #endif
3020 #ifdef HAVE_TARGET_32_BIG
3021     case Parameters::TARGET_32_BIG:
3022       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3023                                                  offset);
3024       break;
3025 #endif
3026 #ifdef HAVE_TARGET_64_LITTLE
3027     case Parameters::TARGET_64_LITTLE:
3028       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3029                                                   offset);
3030       break;
3031 #endif
3032 #ifdef HAVE_TARGET_64_BIG
3033     case Parameters::TARGET_64_BIG:
3034       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3035                                                  offset);
3036       break;
3037 #endif
3038     default:
3039       gold_unreachable();
3040     }
3041 }
3042
3043 // Write out a section symbol, specialized for size and endianness.
3044
3045 template<int size, bool big_endian>
3046 void
3047 Symbol_table::sized_write_section_symbol(const Output_section* os,
3048                                          Output_symtab_xindex* symtab_xindex,
3049                                          Output_file* of,
3050                                          off_t offset) const
3051 {
3052   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3053
3054   unsigned char* pov = of->get_output_view(offset, sym_size);
3055
3056   elfcpp::Sym_write<size, big_endian> osym(pov);
3057   osym.put_st_name(0);
3058   if (parameters->options().relocatable())
3059     osym.put_st_value(0);
3060   else
3061     osym.put_st_value(os->address());
3062   osym.put_st_size(0);
3063   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3064                                        elfcpp::STT_SECTION));
3065   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3066
3067   unsigned int shndx = os->out_shndx();
3068   if (shndx >= elfcpp::SHN_LORESERVE)
3069     {
3070       symtab_xindex->add(os->symtab_index(), shndx);
3071       shndx = elfcpp::SHN_XINDEX;
3072     }
3073   osym.put_st_shndx(shndx);
3074
3075   of->write_output_view(offset, sym_size, pov);
3076 }
3077
3078 // Print statistical information to stderr.  This is used for --stats.
3079
3080 void
3081 Symbol_table::print_stats() const
3082 {
3083 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3084   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3085           program_name, this->table_.size(), this->table_.bucket_count());
3086 #else
3087   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3088           program_name, this->table_.size());
3089 #endif
3090   this->namepool_.print_stats("symbol table stringpool");
3091 }
3092
3093 // We check for ODR violations by looking for symbols with the same
3094 // name for which the debugging information reports that they were
3095 // defined in disjoint source locations.  When comparing the source
3096 // location, we consider instances with the same base filename to be
3097 // the same.  This is because different object files/shared libraries
3098 // can include the same header file using different paths, and
3099 // different optimization settings can make the line number appear to
3100 // be a couple lines off, and we don't want to report an ODR violation
3101 // in those cases.
3102
3103 // This struct is used to compare line information, as returned by
3104 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3105 // operator used with std::sort.
3106
3107 struct Odr_violation_compare
3108 {
3109   bool
3110   operator()(const std::string& s1, const std::string& s2) const
3111   {
3112     // Inputs should be of the form "dirname/filename:linenum" where
3113     // "dirname/" is optional.  We want to compare just the filename:linenum.
3114
3115     // Find the last '/' in each string.
3116     std::string::size_type s1begin = s1.rfind('/');
3117     std::string::size_type s2begin = s2.rfind('/');
3118     // If there was no '/' in a string, start at the beginning.
3119     if (s1begin == std::string::npos)
3120       s1begin = 0;
3121     if (s2begin == std::string::npos)
3122       s2begin = 0;
3123     return s1.compare(s1begin, std::string::npos,
3124                       s2, s2begin, std::string::npos) < 0;
3125   }
3126 };
3127
3128 // Returns all of the lines attached to LOC, not just the one the
3129 // instruction actually came from.
3130 std::vector<std::string>
3131 Symbol_table::linenos_from_loc(const Task* task,
3132                                const Symbol_location& loc)
3133 {
3134   // We need to lock the object in order to read it.  This
3135   // means that we have to run in a singleton Task.  If we
3136   // want to run this in a general Task for better
3137   // performance, we will need one Task for object, plus
3138   // appropriate locking to ensure that we don't conflict with
3139   // other uses of the object.  Also note, one_addr2line is not
3140   // currently thread-safe.
3141   Task_lock_obj<Object> tl(task, loc.object);
3142
3143   std::vector<std::string> result;
3144   // 16 is the size of the object-cache that one_addr2line should use.
3145   std::string canonical_result = Dwarf_line_info::one_addr2line(
3146       loc.object, loc.shndx, loc.offset, 16, &result);
3147   if (!canonical_result.empty())
3148     result.push_back(canonical_result);
3149   return result;
3150 }
3151
3152 // OutputIterator that records if it was ever assigned to.  This
3153 // allows it to be used with std::set_intersection() to check for
3154 // intersection rather than computing the intersection.
3155 struct Check_intersection
3156 {
3157   Check_intersection()
3158     : value_(false)
3159   {}
3160
3161   bool had_intersection() const
3162   { return this->value_; }
3163
3164   Check_intersection& operator++()
3165   { return *this; }
3166
3167   Check_intersection& operator*()
3168   { return *this; }
3169
3170   template<typename T>
3171   Check_intersection& operator=(const T&)
3172   {
3173     this->value_ = true;
3174     return *this;
3175   }
3176
3177  private:
3178   bool value_;
3179 };
3180
3181 // Check candidate_odr_violations_ to find symbols with the same name
3182 // but apparently different definitions (different source-file/line-no
3183 // for each line assigned to the first instruction).
3184
3185 void
3186 Symbol_table::detect_odr_violations(const Task* task,
3187                                     const char* output_file_name) const
3188 {
3189   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3190        it != candidate_odr_violations_.end();
3191        ++it)
3192     {
3193       const char* const symbol_name = it->first;
3194
3195       std::string first_object_name;
3196       std::vector<std::string> first_object_linenos;
3197
3198       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3199           locs = it->second.begin();
3200       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3201           locs_end = it->second.end();
3202       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3203         {
3204           // Save the line numbers from the first definition to
3205           // compare to the other definitions.  Ideally, we'd compare
3206           // every definition to every other, but we don't want to
3207           // take O(N^2) time to do this.  This shortcut may cause
3208           // false negatives that appear or disappear depending on the
3209           // link order, but it won't cause false positives.
3210           first_object_name = locs->object->name();
3211           first_object_linenos = this->linenos_from_loc(task, *locs);
3212         }
3213
3214       // Sort by Odr_violation_compare to make std::set_intersection work.
3215       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3216                 Odr_violation_compare());
3217
3218       for (; locs != locs_end; ++locs)
3219         {
3220           std::vector<std::string> linenos =
3221               this->linenos_from_loc(task, *locs);
3222           // linenos will be empty if we couldn't parse the debug info.
3223           if (linenos.empty())
3224             continue;
3225           // Sort by Odr_violation_compare to make std::set_intersection work.
3226           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3227
3228           Check_intersection intersection_result =
3229               std::set_intersection(first_object_linenos.begin(),
3230                                     first_object_linenos.end(),
3231                                     linenos.begin(),
3232                                     linenos.end(),
3233                                     Check_intersection(),
3234                                     Odr_violation_compare());
3235           if (!intersection_result.had_intersection())
3236             {
3237               gold_warning(_("while linking %s: symbol '%s' defined in "
3238                              "multiple places (possible ODR violation):"),
3239                            output_file_name, demangle(symbol_name).c_str());
3240               // This only prints one location from each definition,
3241               // which may not be the location we expect to intersect
3242               // with another definition.  We could print the whole
3243               // set of locations, but that seems too verbose.
3244               gold_assert(!first_object_linenos.empty());
3245               gold_assert(!linenos.empty());
3246               fprintf(stderr, _("  %s from %s\n"),
3247                       first_object_linenos[0].c_str(),
3248                       first_object_name.c_str());
3249               fprintf(stderr, _("  %s from %s\n"),
3250                       linenos[0].c_str(),
3251                       locs->object->name().c_str());
3252               // Only print one broken pair, to avoid needing to
3253               // compare against a list of the disjoint definition
3254               // locations we've found so far.  (If we kept comparing
3255               // against just the first one, we'd get a lot of
3256               // redundant complaints about the second definition
3257               // location.)
3258               break;
3259             }
3260         }
3261     }
3262   // We only call one_addr2line() in this function, so we can clear its cache.
3263   Dwarf_line_info::clear_addr2line_cache();
3264 }
3265
3266 // Warnings functions.
3267
3268 // Add a new warning.
3269
3270 void
3271 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3272                       const std::string& warning)
3273 {
3274   name = symtab->canonicalize_name(name);
3275   this->warnings_[name].set(obj, warning);
3276 }
3277
3278 // Look through the warnings and mark the symbols for which we should
3279 // warn.  This is called during Layout::finalize when we know the
3280 // sources for all the symbols.
3281
3282 void
3283 Warnings::note_warnings(Symbol_table* symtab)
3284 {
3285   for (Warning_table::iterator p = this->warnings_.begin();
3286        p != this->warnings_.end();
3287        ++p)
3288     {
3289       Symbol* sym = symtab->lookup(p->first, NULL);
3290       if (sym != NULL
3291           && sym->source() == Symbol::FROM_OBJECT
3292           && sym->object() == p->second.object)
3293         sym->set_has_warning();
3294     }
3295 }
3296
3297 // Issue a warning.  This is called when we see a relocation against a
3298 // symbol for which has a warning.
3299
3300 template<int size, bool big_endian>
3301 void
3302 Warnings::issue_warning(const Symbol* sym,
3303                         const Relocate_info<size, big_endian>* relinfo,
3304                         size_t relnum, off_t reloffset) const
3305 {
3306   gold_assert(sym->has_warning());
3307
3308   // We don't want to issue a warning for a relocation against the
3309   // symbol in the same object file in which the symbol is defined.
3310   if (sym->object() == relinfo->object)
3311     return;
3312
3313   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3314   gold_assert(p != this->warnings_.end());
3315   gold_warning_at_location(relinfo, relnum, reloffset,
3316                            "%s", p->second.text.c_str());
3317 }
3318
3319 // Instantiate the templates we need.  We could use the configure
3320 // script to restrict this to only the ones needed for implemented
3321 // targets.
3322
3323 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3324 template
3325 void
3326 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3327 #endif
3328
3329 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3330 template
3331 void
3332 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3333 #endif
3334
3335 #ifdef HAVE_TARGET_32_LITTLE
3336 template
3337 void
3338 Symbol_table::add_from_relobj<32, false>(
3339     Sized_relobj_file<32, false>* relobj,
3340     const unsigned char* syms,
3341     size_t count,
3342     size_t symndx_offset,
3343     const char* sym_names,
3344     size_t sym_name_size,
3345     Sized_relobj_file<32, false>::Symbols* sympointers,
3346     size_t* defined);
3347 #endif
3348
3349 #ifdef HAVE_TARGET_32_BIG
3350 template
3351 void
3352 Symbol_table::add_from_relobj<32, true>(
3353     Sized_relobj_file<32, true>* relobj,
3354     const unsigned char* syms,
3355     size_t count,
3356     size_t symndx_offset,
3357     const char* sym_names,
3358     size_t sym_name_size,
3359     Sized_relobj_file<32, true>::Symbols* sympointers,
3360     size_t* defined);
3361 #endif
3362
3363 #ifdef HAVE_TARGET_64_LITTLE
3364 template
3365 void
3366 Symbol_table::add_from_relobj<64, false>(
3367     Sized_relobj_file<64, false>* relobj,
3368     const unsigned char* syms,
3369     size_t count,
3370     size_t symndx_offset,
3371     const char* sym_names,
3372     size_t sym_name_size,
3373     Sized_relobj_file<64, false>::Symbols* sympointers,
3374     size_t* defined);
3375 #endif
3376
3377 #ifdef HAVE_TARGET_64_BIG
3378 template
3379 void
3380 Symbol_table::add_from_relobj<64, true>(
3381     Sized_relobj_file<64, true>* relobj,
3382     const unsigned char* syms,
3383     size_t count,
3384     size_t symndx_offset,
3385     const char* sym_names,
3386     size_t sym_name_size,
3387     Sized_relobj_file<64, true>::Symbols* sympointers,
3388     size_t* defined);
3389 #endif
3390
3391 #ifdef HAVE_TARGET_32_LITTLE
3392 template
3393 Symbol*
3394 Symbol_table::add_from_pluginobj<32, false>(
3395     Sized_pluginobj<32, false>* obj,
3396     const char* name,
3397     const char* ver,
3398     elfcpp::Sym<32, false>* sym);
3399 #endif
3400
3401 #ifdef HAVE_TARGET_32_BIG
3402 template
3403 Symbol*
3404 Symbol_table::add_from_pluginobj<32, true>(
3405     Sized_pluginobj<32, true>* obj,
3406     const char* name,
3407     const char* ver,
3408     elfcpp::Sym<32, true>* sym);
3409 #endif
3410
3411 #ifdef HAVE_TARGET_64_LITTLE
3412 template
3413 Symbol*
3414 Symbol_table::add_from_pluginobj<64, false>(
3415     Sized_pluginobj<64, false>* obj,
3416     const char* name,
3417     const char* ver,
3418     elfcpp::Sym<64, false>* sym);
3419 #endif
3420
3421 #ifdef HAVE_TARGET_64_BIG
3422 template
3423 Symbol*
3424 Symbol_table::add_from_pluginobj<64, true>(
3425     Sized_pluginobj<64, true>* obj,
3426     const char* name,
3427     const char* ver,
3428     elfcpp::Sym<64, true>* sym);
3429 #endif
3430
3431 #ifdef HAVE_TARGET_32_LITTLE
3432 template
3433 void
3434 Symbol_table::add_from_dynobj<32, false>(
3435     Sized_dynobj<32, false>* dynobj,
3436     const unsigned char* syms,
3437     size_t count,
3438     const char* sym_names,
3439     size_t sym_name_size,
3440     const unsigned char* versym,
3441     size_t versym_size,
3442     const std::vector<const char*>* version_map,
3443     Sized_relobj_file<32, false>::Symbols* sympointers,
3444     size_t* defined);
3445 #endif
3446
3447 #ifdef HAVE_TARGET_32_BIG
3448 template
3449 void
3450 Symbol_table::add_from_dynobj<32, true>(
3451     Sized_dynobj<32, true>* dynobj,
3452     const unsigned char* syms,
3453     size_t count,
3454     const char* sym_names,
3455     size_t sym_name_size,
3456     const unsigned char* versym,
3457     size_t versym_size,
3458     const std::vector<const char*>* version_map,
3459     Sized_relobj_file<32, true>::Symbols* sympointers,
3460     size_t* defined);
3461 #endif
3462
3463 #ifdef HAVE_TARGET_64_LITTLE
3464 template
3465 void
3466 Symbol_table::add_from_dynobj<64, false>(
3467     Sized_dynobj<64, false>* dynobj,
3468     const unsigned char* syms,
3469     size_t count,
3470     const char* sym_names,
3471     size_t sym_name_size,
3472     const unsigned char* versym,
3473     size_t versym_size,
3474     const std::vector<const char*>* version_map,
3475     Sized_relobj_file<64, false>::Symbols* sympointers,
3476     size_t* defined);
3477 #endif
3478
3479 #ifdef HAVE_TARGET_64_BIG
3480 template
3481 void
3482 Symbol_table::add_from_dynobj<64, true>(
3483     Sized_dynobj<64, true>* dynobj,
3484     const unsigned char* syms,
3485     size_t count,
3486     const char* sym_names,
3487     size_t sym_name_size,
3488     const unsigned char* versym,
3489     size_t versym_size,
3490     const std::vector<const char*>* version_map,
3491     Sized_relobj_file<64, true>::Symbols* sympointers,
3492     size_t* defined);
3493 #endif
3494
3495 #ifdef HAVE_TARGET_32_LITTLE
3496 template
3497 Sized_symbol<32>*
3498 Symbol_table::add_from_incrobj(
3499     Object* obj,
3500     const char* name,
3501     const char* ver,
3502     elfcpp::Sym<32, false>* sym);
3503 #endif
3504
3505 #ifdef HAVE_TARGET_32_BIG
3506 template
3507 Sized_symbol<32>*
3508 Symbol_table::add_from_incrobj(
3509     Object* obj,
3510     const char* name,
3511     const char* ver,
3512     elfcpp::Sym<32, true>* sym);
3513 #endif
3514
3515 #ifdef HAVE_TARGET_64_LITTLE
3516 template
3517 Sized_symbol<64>*
3518 Symbol_table::add_from_incrobj(
3519     Object* obj,
3520     const char* name,
3521     const char* ver,
3522     elfcpp::Sym<64, false>* sym);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_64_BIG
3526 template
3527 Sized_symbol<64>*
3528 Symbol_table::add_from_incrobj(
3529     Object* obj,
3530     const char* name,
3531     const char* ver,
3532     elfcpp::Sym<64, true>* sym);
3533 #endif
3534
3535 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3536 template
3537 void
3538 Symbol_table::define_with_copy_reloc<32>(
3539     Sized_symbol<32>* sym,
3540     Output_data* posd,
3541     elfcpp::Elf_types<32>::Elf_Addr value);
3542 #endif
3543
3544 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3545 template
3546 void
3547 Symbol_table::define_with_copy_reloc<64>(
3548     Sized_symbol<64>* sym,
3549     Output_data* posd,
3550     elfcpp::Elf_types<64>::Elf_Addr value);
3551 #endif
3552
3553 #ifdef HAVE_TARGET_32_LITTLE
3554 template
3555 void
3556 Warnings::issue_warning<32, false>(const Symbol* sym,
3557                                    const Relocate_info<32, false>* relinfo,
3558                                    size_t relnum, off_t reloffset) const;
3559 #endif
3560
3561 #ifdef HAVE_TARGET_32_BIG
3562 template
3563 void
3564 Warnings::issue_warning<32, true>(const Symbol* sym,
3565                                   const Relocate_info<32, true>* relinfo,
3566                                   size_t relnum, off_t reloffset) const;
3567 #endif
3568
3569 #ifdef HAVE_TARGET_64_LITTLE
3570 template
3571 void
3572 Warnings::issue_warning<64, false>(const Symbol* sym,
3573                                    const Relocate_info<64, false>* relinfo,
3574                                    size_t relnum, off_t reloffset) const;
3575 #endif
3576
3577 #ifdef HAVE_TARGET_64_BIG
3578 template
3579 void
3580 Warnings::issue_warning<64, true>(const Symbol* sym,
3581                                   const Relocate_info<64, true>* relinfo,
3582                                   size_t relnum, off_t reloffset) const;
3583 #endif
3584
3585 } // End namespace gold.