daf9daf453a218a4921e650a393e194892624443
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h"   // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol.  This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54                     elfcpp::STT type, elfcpp::STB binding,
55                     elfcpp::STV visibility, unsigned char nonvis)
56 {
57   this->name_ = name;
58   this->version_ = version;
59   this->symtab_index_ = 0;
60   this->dynsym_index_ = 0;
61   this->got_offsets_.init();
62   this->plt_offset_ = 0;
63   this->type_ = type;
64   this->binding_ = binding;
65   this->visibility_ = visibility;
66   this->nonvis_ = nonvis;
67   this->is_target_special_ = false;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_plt_offset_ = false;
75   this->has_warning_ = false;
76   this->is_copied_from_dynobj_ = false;
77   this->is_forced_local_ = false;
78   this->is_ordinary_shndx_ = false;
79   this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88   if (!parameters->options().do_demangle())
89     return name;
90
91   // cplus_demangle allocates memory for the result it returns,
92   // and returns NULL if the name is already demangled.
93   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94   if (demangled_name == NULL)
95     return name;
96
97   std::string retval(demangled_name);
98   free(demangled_name);
99   return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105   return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113                          const elfcpp::Sym<size, big_endian>& sym,
114                          unsigned int st_shndx, bool is_ordinary)
115 {
116   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117                     sym.get_st_visibility(), sym.get_st_nonvis());
118   this->u_.from_object.object = object;
119   this->u_.from_object.shndx = st_shndx;
120   this->is_ordinary_shndx_ = is_ordinary;
121   this->source_ = FROM_OBJECT;
122   this->in_reg_ = !object->is_dynamic();
123   this->in_dyn_ = object->is_dynamic();
124   this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132                               Output_data* od, elfcpp::STT type,
133                               elfcpp::STB binding, elfcpp::STV visibility,
134                               unsigned char nonvis, bool offset_is_from_end)
135 {
136   this->init_fields(name, version, type, binding, visibility, nonvis);
137   this->u_.in_output_data.output_data = od;
138   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139   this->source_ = IN_OUTPUT_DATA;
140   this->in_reg_ = true;
141   this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149                                  Output_segment* os, elfcpp::STT type,
150                                  elfcpp::STB binding, elfcpp::STV visibility,
151                                  unsigned char nonvis,
152                                  Segment_offset_base offset_base)
153 {
154   this->init_fields(name, version, type, binding, visibility, nonvis);
155   this->u_.in_output_segment.output_segment = os;
156   this->u_.in_output_segment.offset_base = offset_base;
157   this->source_ = IN_OUTPUT_SEGMENT;
158   this->in_reg_ = true;
159   this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167                            elfcpp::STT type, elfcpp::STB binding,
168                            elfcpp::STV visibility, unsigned char nonvis)
169 {
170   this->init_fields(name, version, type, binding, visibility, nonvis);
171   this->source_ = IS_CONSTANT;
172   this->in_reg_ = true;
173   this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181                             elfcpp::STT type, elfcpp::STB binding,
182                             elfcpp::STV visibility, unsigned char nonvis)
183 {
184   this->init_fields(name, version, type, binding, visibility, nonvis);
185   this->dynsym_index_ = -1U;
186   this->source_ = IS_UNDEFINED;
187   this->in_reg_ = true;
188   this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196   gold_assert(this->is_common());
197   this->source_ = IN_OUTPUT_DATA;
198   this->u_.in_output_data.output_data = od;
199   this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208                                 Object* object,
209                                 const elfcpp::Sym<size, big_endian>& sym,
210                                 unsigned int st_shndx, bool is_ordinary)
211 {
212   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213   this->value_ = sym.get_st_value();
214   this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223                                      Output_data* od, Value_type value,
224                                      Size_type symsize, elfcpp::STT type,
225                                      elfcpp::STB binding,
226                                      elfcpp::STV visibility,
227                                      unsigned char nonvis,
228                                      bool offset_is_from_end)
229 {
230   this->init_base_output_data(name, version, od, type, binding, visibility,
231                               nonvis, offset_is_from_end);
232   this->value_ = value;
233   this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242                                         Output_segment* os, Value_type value,
243                                         Size_type symsize, elfcpp::STT type,
244                                         elfcpp::STB binding,
245                                         elfcpp::STV visibility,
246                                         unsigned char nonvis,
247                                         Segment_offset_base offset_base)
248 {
249   this->init_base_output_segment(name, version, os, type, binding, visibility,
250                                  nonvis, offset_base);
251   this->value_ = value;
252   this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261                                   Value_type value, Size_type symsize,
262                                   elfcpp::STT type, elfcpp::STB binding,
263                                   elfcpp::STV visibility, unsigned char nonvis)
264 {
265   this->init_base_constant(name, version, type, binding, visibility, nonvis);
266   this->value_ = value;
267   this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275                                    elfcpp::STT type, elfcpp::STB binding,
276                                    elfcpp::STV visibility, unsigned char nonvis)
277 {
278   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279   this->value_ = 0;
280   this->symsize_ = 0;
281 }
282
283 // Return true if SHNDX represents a common symbol.
284
285 bool
286 Symbol::is_common_shndx(unsigned int shndx)
287 {
288   return (shndx == elfcpp::SHN_COMMON
289           || shndx == parameters->target().small_common_shndx()
290           || shndx == parameters->target().large_common_shndx());
291 }
292
293 // Allocate a common symbol.
294
295 template<int size>
296 void
297 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
298 {
299   this->allocate_base_common(od);
300   this->value_ = value;
301 }
302
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
305
306 // Return true if this symbol should be added to the dynamic symbol
307 // table.
308
309 inline bool
310 Symbol::should_add_dynsym_entry() const
311 {
312   // If the symbol is used by a dynamic relocation, we need to add it.
313   if (this->needs_dynsym_entry())
314     return true;
315
316   // If this symbol's section is not added, the symbol need not be added. 
317   // The section may have been GCed.  Note that export_dynamic is being 
318   // overridden here.  This should not be done for shared objects.
319   if (parameters->options().gc_sections() 
320       && !parameters->options().shared()
321       && this->source() == Symbol::FROM_OBJECT
322       && !this->object()->is_dynamic())
323     {
324       Relobj* relobj = static_cast<Relobj*>(this->object());
325       bool is_ordinary;
326       unsigned int shndx = this->shndx(&is_ordinary);
327       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
328           && !relobj->is_section_included(shndx))
329         return false;
330     }
331
332   // If the symbol was forced local in a version script, do not add it.
333   if (this->is_forced_local())
334     return false;
335
336   // If the symbol was forced dynamic in a --dynamic-list file, add it.
337   if (parameters->options().in_dynamic_list(this->name()))
338     return true;
339
340   // If dynamic-list-data was specified, add any STT_OBJECT.
341   if (parameters->options().dynamic_list_data()
342       && !this->is_from_dynobj()
343       && this->type() == elfcpp::STT_OBJECT)
344     return true;
345
346   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348   if ((parameters->options().dynamic_list_cpp_new()
349        || parameters->options().dynamic_list_cpp_typeinfo())
350       && !this->is_from_dynobj())
351     {
352       // TODO(csilvers): We could probably figure out if we're an operator
353       //                 new/delete or typeinfo without the need to demangle.
354       char* demangled_name = cplus_demangle(this->name(),
355                                             DMGL_ANSI | DMGL_PARAMS);
356       if (demangled_name == NULL)
357         {
358           // Not a C++ symbol, so it can't satisfy these flags
359         }
360       else if (parameters->options().dynamic_list_cpp_new()
361                && (strprefix(demangled_name, "operator new")
362                    || strprefix(demangled_name, "operator delete")))
363         {
364           free(demangled_name);
365           return true;
366         }
367       else if (parameters->options().dynamic_list_cpp_typeinfo()
368                && (strprefix(demangled_name, "typeinfo name for")
369                    || strprefix(demangled_name, "typeinfo for")))
370         {
371           free(demangled_name);
372           return true;
373         }
374       else
375         free(demangled_name);
376     }
377
378   // If exporting all symbols or building a shared library,
379   // and the symbol is defined in a regular object and is
380   // externally visible, we need to add it.
381   if ((parameters->options().export_dynamic() || parameters->options().shared())
382       && !this->is_from_dynobj()
383       && this->is_externally_visible())
384     return true;
385
386   return false;
387 }
388
389 // Return true if the final value of this symbol is known at link
390 // time.
391
392 bool
393 Symbol::final_value_is_known() const
394 {
395   // If we are not generating an executable, then no final values are
396   // known, since they will change at runtime.
397   if (parameters->options().shared() || parameters->options().relocatable())
398     return false;
399
400   // If the symbol is not from an object file, and is not undefined,
401   // then it is defined, and known.
402   if (this->source_ != FROM_OBJECT)
403     {
404       if (this->source_ != IS_UNDEFINED)
405         return true;
406     }
407   else
408     {
409       // If the symbol is from a dynamic object, then the final value
410       // is not known.
411       if (this->object()->is_dynamic())
412         return false;
413
414       // If the symbol is not undefined (it is defined or common),
415       // then the final value is known.
416       if (!this->is_undefined())
417         return true;
418     }
419
420   // If the symbol is undefined, then whether the final value is known
421   // depends on whether we are doing a static link.  If we are doing a
422   // dynamic link, then the final value could be filled in at runtime.
423   // This could reasonably be the case for a weak undefined symbol.
424   return parameters->doing_static_link();
425 }
426
427 // Return the output section where this symbol is defined.
428
429 Output_section*
430 Symbol::output_section() const
431 {
432   switch (this->source_)
433     {
434     case FROM_OBJECT:
435       {
436         unsigned int shndx = this->u_.from_object.shndx;
437         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
438           {
439             gold_assert(!this->u_.from_object.object->is_dynamic());
440             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
441             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
442             return relobj->output_section(shndx);
443           }
444         return NULL;
445       }
446
447     case IN_OUTPUT_DATA:
448       return this->u_.in_output_data.output_data->output_section();
449
450     case IN_OUTPUT_SEGMENT:
451     case IS_CONSTANT:
452     case IS_UNDEFINED:
453       return NULL;
454
455     default:
456       gold_unreachable();
457     }
458 }
459
460 // Set the symbol's output section.  This is used for symbols defined
461 // in scripts.  This should only be called after the symbol table has
462 // been finalized.
463
464 void
465 Symbol::set_output_section(Output_section* os)
466 {
467   switch (this->source_)
468     {
469     case FROM_OBJECT:
470     case IN_OUTPUT_DATA:
471       gold_assert(this->output_section() == os);
472       break;
473     case IS_CONSTANT:
474       this->source_ = IN_OUTPUT_DATA;
475       this->u_.in_output_data.output_data = os;
476       this->u_.in_output_data.offset_is_from_end = false;
477       break;
478     case IN_OUTPUT_SEGMENT:
479     case IS_UNDEFINED:
480     default:
481       gold_unreachable();
482     }
483 }
484
485 // Class Symbol_table.
486
487 Symbol_table::Symbol_table(unsigned int count,
488                            const Version_script_info& version_script)
489   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
490     forwarders_(), commons_(), tls_commons_(), small_commons_(),
491     large_commons_(), forced_locals_(), warnings_(),
492     version_script_(version_script), gc_(NULL)
493 {
494   namepool_.reserve(count);
495 }
496
497 Symbol_table::~Symbol_table()
498 {
499 }
500
501 // The hash function.  The key values are Stringpool keys.
502
503 inline size_t
504 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
505 {
506   return key.first ^ key.second;
507 }
508
509 // The symbol table key equality function.  This is called with
510 // Stringpool keys.
511
512 inline bool
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
514                                           const Symbol_table_key& k2) const
515 {
516   return k1.first == k2.first && k1.second == k2.second;
517 }
518
519 // For symbols that have been listed with -u option, add them to the
520 // work list to avoid gc'ing them.
521
522 void 
523 Symbol_table::gc_mark_undef_symbols()
524 {
525   for (options::String_set::const_iterator p =
526          parameters->options().undefined_begin();
527        p != parameters->options().undefined_end();
528        ++p)
529     {
530       const char* name = p->c_str();
531       Symbol* sym = this->lookup(name);
532       gold_assert (sym != NULL);
533       if (sym->source() == Symbol::FROM_OBJECT 
534           && !sym->object()->is_dynamic())
535         {
536           Relobj* obj = static_cast<Relobj*>(sym->object());
537           bool is_ordinary;
538           unsigned int shndx = sym->shndx(&is_ordinary);
539           if (is_ordinary)
540             {
541               gold_assert(this->gc_ != NULL);
542               this->gc_->worklist().push(Section_id(obj, shndx));
543             }
544         }
545     }
546 }
547
548 void
549 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
550 {
551   if (!sym->is_from_dynobj() 
552       && sym->is_externally_visible())
553     {
554       //Add the object and section to the work list.
555       Relobj* obj = static_cast<Relobj*>(sym->object());
556       bool is_ordinary;
557       unsigned int shndx = sym->shndx(&is_ordinary);
558       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
559         {
560           gold_assert(this->gc_!= NULL);
561           this->gc_->worklist().push(Section_id(obj, shndx));
562         }
563     }
564 }
565
566 // When doing garbage collection, keep symbols that have been seen in
567 // dynamic objects.
568 inline void 
569 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
570 {
571   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
572       && !sym->object()->is_dynamic())
573     {
574       Relobj *obj = static_cast<Relobj*>(sym->object()); 
575       bool is_ordinary;
576       unsigned int shndx = sym->shndx(&is_ordinary);
577       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
578         {
579           gold_assert(this->gc_ != NULL);
580           this->gc_->worklist().push(Section_id(obj, shndx));
581         }
582     }
583 }
584
585 // Make TO a symbol which forwards to FROM.
586
587 void
588 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
589 {
590   gold_assert(from != to);
591   gold_assert(!from->is_forwarder() && !to->is_forwarder());
592   this->forwarders_[from] = to;
593   from->set_forwarder();
594 }
595
596 // Resolve the forwards from FROM, returning the real symbol.
597
598 Symbol*
599 Symbol_table::resolve_forwards(const Symbol* from) const
600 {
601   gold_assert(from->is_forwarder());
602   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
603     this->forwarders_.find(from);
604   gold_assert(p != this->forwarders_.end());
605   return p->second;
606 }
607
608 // Look up a symbol by name.
609
610 Symbol*
611 Symbol_table::lookup(const char* name, const char* version) const
612 {
613   Stringpool::Key name_key;
614   name = this->namepool_.find(name, &name_key);
615   if (name == NULL)
616     return NULL;
617
618   Stringpool::Key version_key = 0;
619   if (version != NULL)
620     {
621       version = this->namepool_.find(version, &version_key);
622       if (version == NULL)
623         return NULL;
624     }
625
626   Symbol_table_key key(name_key, version_key);
627   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
628   if (p == this->table_.end())
629     return NULL;
630   return p->second;
631 }
632
633 // Resolve a Symbol with another Symbol.  This is only used in the
634 // unusual case where there are references to both an unversioned
635 // symbol and a symbol with a version, and we then discover that that
636 // version is the default version.  Because this is unusual, we do
637 // this the slow way, by converting back to an ELF symbol.
638
639 template<int size, bool big_endian>
640 void
641 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
642 {
643   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
644   elfcpp::Sym_write<size, big_endian> esym(buf);
645   // We don't bother to set the st_name or the st_shndx field.
646   esym.put_st_value(from->value());
647   esym.put_st_size(from->symsize());
648   esym.put_st_info(from->binding(), from->type());
649   esym.put_st_other(from->visibility(), from->nonvis());
650   bool is_ordinary;
651   unsigned int shndx = from->shndx(&is_ordinary);
652   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
653                 from->version());
654   if (from->in_reg())
655     to->set_in_reg();
656   if (from->in_dyn())
657     to->set_in_dyn();
658   if (parameters->options().gc_sections())
659     this->gc_mark_dyn_syms(to);
660 }
661
662 // Record that a symbol is forced to be local by a version script or
663 // by visibility.
664
665 void
666 Symbol_table::force_local(Symbol* sym)
667 {
668   if (!sym->is_defined() && !sym->is_common())
669     return;
670   if (sym->is_forced_local())
671     {
672       // We already got this one.
673       return;
674     }
675   sym->set_is_forced_local();
676   this->forced_locals_.push_back(sym);
677 }
678
679 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
680 // is only called for undefined symbols, when at least one --wrap
681 // option was used.
682
683 const char*
684 Symbol_table::wrap_symbol(Object* object, const char* name,
685                           Stringpool::Key* name_key)
686 {
687   // For some targets, we need to ignore a specific character when
688   // wrapping, and add it back later.
689   char prefix = '\0';
690   if (name[0] == object->target()->wrap_char())
691     {
692       prefix = name[0];
693       ++name;
694     }
695
696   if (parameters->options().is_wrap(name))
697     {
698       // Turn NAME into __wrap_NAME.
699       std::string s;
700       if (prefix != '\0')
701         s += prefix;
702       s += "__wrap_";
703       s += name;
704
705       // This will give us both the old and new name in NAMEPOOL_, but
706       // that is OK.  Only the versions we need will wind up in the
707       // real string table in the output file.
708       return this->namepool_.add(s.c_str(), true, name_key);
709     }
710
711   const char* const real_prefix = "__real_";
712   const size_t real_prefix_length = strlen(real_prefix);
713   if (strncmp(name, real_prefix, real_prefix_length) == 0
714       && parameters->options().is_wrap(name + real_prefix_length))
715     {
716       // Turn __real_NAME into NAME.
717       std::string s;
718       if (prefix != '\0')
719         s += prefix;
720       s += name + real_prefix_length;
721       return this->namepool_.add(s.c_str(), true, name_key);
722     }
723
724   return name;
725 }
726
727 // This is called when we see a symbol NAME/VERSION, and the symbol
728 // already exists in the symbol table, and VERSION is marked as being
729 // the default version.  SYM is the NAME/VERSION symbol we just added.
730 // DEFAULT_IS_NEW is true if this is the first time we have seen the
731 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
732
733 template<int size, bool big_endian>
734 void
735 Symbol_table::define_default_version(Sized_symbol<size>* sym,
736                                      bool default_is_new,
737                                      Symbol_table_type::iterator pdef)
738 {
739   if (default_is_new)
740     {
741       // This is the first time we have seen NAME/NULL.  Make
742       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
743       // version.
744       pdef->second = sym;
745       sym->set_is_default();
746     }
747   else if (pdef->second == sym)
748     {
749       // NAME/NULL already points to NAME/VERSION.  Don't mark the
750       // symbol as the default if it is not already the default.
751     }
752   else
753     {
754       // This is the unfortunate case where we already have entries
755       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
756       // NAME/VERSION where VERSION is the default version.  We have
757       // already resolved this new symbol with the existing
758       // NAME/VERSION symbol.
759
760       // It's possible that NAME/NULL and NAME/VERSION are both
761       // defined in regular objects.  This can only happen if one
762       // object file defines foo and another defines foo@@ver.  This
763       // is somewhat obscure, but we call it a multiple definition
764       // error.
765
766       // It's possible that NAME/NULL actually has a version, in which
767       // case it won't be the same as VERSION.  This happens with
768       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
769       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
770       // then see an unadorned t2_2 in an object file and give it
771       // version VER1 from the version script.  This looks like a
772       // default definition for VER1, so it looks like we should merge
773       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
774       // not obvious that this is an error, either.  So we just punt.
775
776       // If one of the symbols has non-default visibility, and the
777       // other is defined in a shared object, then they are different
778       // symbols.
779
780       // Otherwise, we just resolve the symbols as though they were
781       // the same.
782
783       if (pdef->second->version() != NULL)
784         gold_assert(pdef->second->version() != sym->version());
785       else if (sym->visibility() != elfcpp::STV_DEFAULT
786                && pdef->second->is_from_dynobj())
787         ;
788       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
789                && sym->is_from_dynobj())
790         ;
791       else
792         {
793           const Sized_symbol<size>* symdef;
794           symdef = this->get_sized_symbol<size>(pdef->second);
795           Symbol_table::resolve<size, big_endian>(sym, symdef);
796           this->make_forwarder(pdef->second, sym);
797           pdef->second = sym;
798           sym->set_is_default();
799         }
800     }
801 }
802
803 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
804 // name and VERSION is the version; both are canonicalized.  DEF is
805 // whether this is the default version.  ST_SHNDX is the symbol's
806 // section index; IS_ORDINARY is whether this is a normal section
807 // rather than a special code.
808
809 // If DEF is true, then this is the definition of a default version of
810 // a symbol.  That means that any lookup of NAME/NULL and any lookup
811 // of NAME/VERSION should always return the same symbol.  This is
812 // obvious for references, but in particular we want to do this for
813 // definitions: overriding NAME/NULL should also override
814 // NAME/VERSION.  If we don't do that, it would be very hard to
815 // override functions in a shared library which uses versioning.
816
817 // We implement this by simply making both entries in the hash table
818 // point to the same Symbol structure.  That is easy enough if this is
819 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
820 // that we have seen both already, in which case they will both have
821 // independent entries in the symbol table.  We can't simply change
822 // the symbol table entry, because we have pointers to the entries
823 // attached to the object files.  So we mark the entry attached to the
824 // object file as a forwarder, and record it in the forwarders_ map.
825 // Note that entries in the hash table will never be marked as
826 // forwarders.
827 //
828 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
829 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
830 // for a special section code.  ST_SHNDX may be modified if the symbol
831 // is defined in a section being discarded.
832
833 template<int size, bool big_endian>
834 Sized_symbol<size>*
835 Symbol_table::add_from_object(Object* object,
836                               const char *name,
837                               Stringpool::Key name_key,
838                               const char *version,
839                               Stringpool::Key version_key,
840                               bool def,
841                               const elfcpp::Sym<size, big_endian>& sym,
842                               unsigned int st_shndx,
843                               bool is_ordinary,
844                               unsigned int orig_st_shndx)
845 {
846   // Print a message if this symbol is being traced.
847   if (parameters->options().is_trace_symbol(name))
848     {
849       if (orig_st_shndx == elfcpp::SHN_UNDEF)
850         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
851       else
852         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
853     }
854
855   // For an undefined symbol, we may need to adjust the name using
856   // --wrap.
857   if (orig_st_shndx == elfcpp::SHN_UNDEF
858       && parameters->options().any_wrap())
859     {
860       const char* wrap_name = this->wrap_symbol(object, name, &name_key);
861       if (wrap_name != name)
862         {
863           // If we see a reference to malloc with version GLIBC_2.0,
864           // and we turn it into a reference to __wrap_malloc, then we
865           // discard the version number.  Otherwise the user would be
866           // required to specify the correct version for
867           // __wrap_malloc.
868           version = NULL;
869           version_key = 0;
870           name = wrap_name;
871         }
872     }
873
874   Symbol* const snull = NULL;
875   std::pair<typename Symbol_table_type::iterator, bool> ins =
876     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
877                                        snull));
878
879   std::pair<typename Symbol_table_type::iterator, bool> insdef =
880     std::make_pair(this->table_.end(), false);
881   if (def)
882     {
883       const Stringpool::Key vnull_key = 0;
884       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
885                                                                  vnull_key),
886                                                   snull));
887     }
888
889   // ins.first: an iterator, which is a pointer to a pair.
890   // ins.first->first: the key (a pair of name and version).
891   // ins.first->second: the value (Symbol*).
892   // ins.second: true if new entry was inserted, false if not.
893
894   Sized_symbol<size>* ret;
895   bool was_undefined;
896   bool was_common;
897   if (!ins.second)
898     {
899       // We already have an entry for NAME/VERSION.
900       ret = this->get_sized_symbol<size>(ins.first->second);
901       gold_assert(ret != NULL);
902
903       was_undefined = ret->is_undefined();
904       was_common = ret->is_common();
905
906       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
907                     version);
908       if (parameters->options().gc_sections())
909         this->gc_mark_dyn_syms(ret);
910
911       if (def)
912         this->define_default_version<size, big_endian>(ret, insdef.second,
913                                                        insdef.first);
914     }
915   else
916     {
917       // This is the first time we have seen NAME/VERSION.
918       gold_assert(ins.first->second == NULL);
919
920       if (def && !insdef.second)
921         {
922           // We already have an entry for NAME/NULL.  If we override
923           // it, then change it to NAME/VERSION.
924           ret = this->get_sized_symbol<size>(insdef.first->second);
925
926           was_undefined = ret->is_undefined();
927           was_common = ret->is_common();
928
929           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
930                         version);
931           if (parameters->options().gc_sections())
932             this->gc_mark_dyn_syms(ret);
933           ins.first->second = ret;
934         }
935       else
936         {
937           was_undefined = false;
938           was_common = false;
939
940           Sized_target<size, big_endian>* target =
941             object->sized_target<size, big_endian>();
942           if (!target->has_make_symbol())
943             ret = new Sized_symbol<size>();
944           else
945             {
946               ret = target->make_symbol();
947               if (ret == NULL)
948                 {
949                   // This means that we don't want a symbol table
950                   // entry after all.
951                   if (!def)
952                     this->table_.erase(ins.first);
953                   else
954                     {
955                       this->table_.erase(insdef.first);
956                       // Inserting insdef invalidated ins.
957                       this->table_.erase(std::make_pair(name_key,
958                                                         version_key));
959                     }
960                   return NULL;
961                 }
962             }
963
964           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
965
966           ins.first->second = ret;
967           if (def)
968             {
969               // This is the first time we have seen NAME/NULL.  Point
970               // it at the new entry for NAME/VERSION.
971               gold_assert(insdef.second);
972               insdef.first->second = ret;
973             }
974         }
975
976       if (def)
977         ret->set_is_default();
978     }
979
980   // Record every time we see a new undefined symbol, to speed up
981   // archive groups.
982   if (!was_undefined && ret->is_undefined())
983     ++this->saw_undefined_;
984
985   // Keep track of common symbols, to speed up common symbol
986   // allocation.
987   if (!was_common && ret->is_common())
988     {
989       if (ret->type() == elfcpp::STT_TLS)
990         this->tls_commons_.push_back(ret);
991       else if (!is_ordinary
992                && st_shndx == parameters->target().small_common_shndx())
993         this->small_commons_.push_back(ret);
994       else if (!is_ordinary
995                && st_shndx == parameters->target().large_common_shndx())
996         this->large_commons_.push_back(ret);
997       else
998         this->commons_.push_back(ret);
999     }
1000
1001   // If we're not doing a relocatable link, then any symbol with
1002   // hidden or internal visibility is local.
1003   if ((ret->visibility() == elfcpp::STV_HIDDEN
1004        || ret->visibility() == elfcpp::STV_INTERNAL)
1005       && (ret->binding() == elfcpp::STB_GLOBAL
1006           || ret->binding() == elfcpp::STB_WEAK)
1007       && !parameters->options().relocatable())
1008     this->force_local(ret);
1009
1010   return ret;
1011 }
1012
1013 // Add all the symbols in a relocatable object to the hash table.
1014
1015 template<int size, bool big_endian>
1016 void
1017 Symbol_table::add_from_relobj(
1018     Sized_relobj<size, big_endian>* relobj,
1019     const unsigned char* syms,
1020     size_t count,
1021     size_t symndx_offset,
1022     const char* sym_names,
1023     size_t sym_name_size,
1024     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1025     size_t *defined)
1026 {
1027   *defined = 0;
1028
1029   gold_assert(size == relobj->target()->get_size());
1030   gold_assert(size == parameters->target().get_size());
1031
1032   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1033
1034   const bool just_symbols = relobj->just_symbols();
1035
1036   const unsigned char* p = syms;
1037   for (size_t i = 0; i < count; ++i, p += sym_size)
1038     {
1039       (*sympointers)[i] = NULL;
1040
1041       elfcpp::Sym<size, big_endian> sym(p);
1042
1043       unsigned int st_name = sym.get_st_name();
1044       if (st_name >= sym_name_size)
1045         {
1046           relobj->error(_("bad global symbol name offset %u at %zu"),
1047                         st_name, i);
1048           continue;
1049         }
1050
1051       const char* name = sym_names + st_name;
1052
1053       bool is_ordinary;
1054       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1055                                                        sym.get_st_shndx(),
1056                                                        &is_ordinary);
1057       unsigned int orig_st_shndx = st_shndx;
1058       if (!is_ordinary)
1059         orig_st_shndx = elfcpp::SHN_UNDEF;
1060
1061       if (st_shndx != elfcpp::SHN_UNDEF)
1062         ++*defined;
1063
1064       // A symbol defined in a section which we are not including must
1065       // be treated as an undefined symbol.
1066       if (st_shndx != elfcpp::SHN_UNDEF
1067           && is_ordinary
1068           && !relobj->is_section_included(st_shndx))
1069         st_shndx = elfcpp::SHN_UNDEF;
1070
1071       // In an object file, an '@' in the name separates the symbol
1072       // name from the version name.  If there are two '@' characters,
1073       // this is the default version.
1074       const char* ver = strchr(name, '@');
1075       Stringpool::Key ver_key = 0;
1076       int namelen = 0;
1077       // DEF: is the version default?  LOCAL: is the symbol forced local?
1078       bool def = false;
1079       bool local = false;
1080
1081       if (ver != NULL)
1082         {
1083           // The symbol name is of the form foo@VERSION or foo@@VERSION
1084           namelen = ver - name;
1085           ++ver;
1086           if (*ver == '@')
1087             {
1088               def = true;
1089               ++ver;
1090             }
1091           ver = this->namepool_.add(ver, true, &ver_key);
1092         }
1093       // We don't want to assign a version to an undefined symbol,
1094       // even if it is listed in the version script.  FIXME: What
1095       // about a common symbol?
1096       else
1097         {
1098           namelen = strlen(name);
1099           if (!this->version_script_.empty()
1100               && st_shndx != elfcpp::SHN_UNDEF)
1101             {
1102               // The symbol name did not have a version, but the
1103               // version script may assign a version anyway.
1104               std::string version;
1105               if (this->version_script_.get_symbol_version(name, &version))
1106                 {
1107                   // The version can be empty if the version script is
1108                   // only used to force some symbols to be local.
1109                   if (!version.empty())
1110                     {
1111                       ver = this->namepool_.add_with_length(version.c_str(),
1112                                                             version.length(),
1113                                                             true,
1114                                                             &ver_key);
1115                       def = true;
1116                     }
1117                 }
1118               else if (this->version_script_.symbol_is_local(name))
1119                 local = true;
1120             }
1121         }
1122
1123       elfcpp::Sym<size, big_endian>* psym = &sym;
1124       unsigned char symbuf[sym_size];
1125       elfcpp::Sym<size, big_endian> sym2(symbuf);
1126       if (just_symbols)
1127         {
1128           memcpy(symbuf, p, sym_size);
1129           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1130           if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1131             {
1132               // Symbol values in object files are section relative.
1133               // This is normally what we want, but since here we are
1134               // converting the symbol to absolute we need to add the
1135               // section address.  The section address in an object
1136               // file is normally zero, but people can use a linker
1137               // script to change it.
1138               sw.put_st_value(sym.get_st_value()
1139                               + relobj->section_address(orig_st_shndx));
1140             }
1141           st_shndx = elfcpp::SHN_ABS;
1142           is_ordinary = false;
1143           psym = &sym2;
1144         }
1145
1146       // Fix up visibility if object has no-export set.
1147       if (relobj->no_export())
1148         {
1149           // We may have copied symbol already above.
1150           if (psym != &sym2)
1151             {
1152               memcpy(symbuf, p, sym_size);
1153               psym = &sym2;
1154             }
1155
1156           elfcpp::STV visibility = sym2.get_st_visibility();
1157           if (visibility == elfcpp::STV_DEFAULT
1158               || visibility == elfcpp::STV_PROTECTED)
1159             {
1160               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1161               unsigned char nonvis = sym2.get_st_nonvis();
1162               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1163             }
1164         }
1165
1166       Stringpool::Key name_key;
1167       name = this->namepool_.add_with_length(name, namelen, true,
1168                                              &name_key);
1169
1170       Sized_symbol<size>* res;
1171       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1172                                   def, *psym, st_shndx, is_ordinary,
1173                                   orig_st_shndx);
1174       
1175       // If building a shared library using garbage collection, do not 
1176       // treat externally visible symbols as garbage.
1177       if (parameters->options().gc_sections() 
1178           && parameters->options().shared())
1179         this->gc_mark_symbol_for_shlib(res);
1180
1181       if (local)
1182         this->force_local(res);
1183
1184       (*sympointers)[i] = res;
1185     }
1186 }
1187
1188 // Add a symbol from a plugin-claimed file.
1189
1190 template<int size, bool big_endian>
1191 Symbol*
1192 Symbol_table::add_from_pluginobj(
1193     Sized_pluginobj<size, big_endian>* obj,
1194     const char* name,
1195     const char* ver,
1196     elfcpp::Sym<size, big_endian>* sym)
1197 {
1198   unsigned int st_shndx = sym->get_st_shndx();
1199
1200   Stringpool::Key ver_key = 0;
1201   bool def = false;
1202   bool local = false;
1203
1204   if (ver != NULL)
1205     {
1206       ver = this->namepool_.add(ver, true, &ver_key);
1207     }
1208   // We don't want to assign a version to an undefined symbol,
1209   // even if it is listed in the version script.  FIXME: What
1210   // about a common symbol?
1211   else
1212     {
1213       if (!this->version_script_.empty()
1214           && st_shndx != elfcpp::SHN_UNDEF)
1215         {
1216           // The symbol name did not have a version, but the
1217           // version script may assign a version anyway.
1218           std::string version;
1219           if (this->version_script_.get_symbol_version(name, &version))
1220             {
1221               // The version can be empty if the version script is
1222               // only used to force some symbols to be local.
1223               if (!version.empty())
1224                 {
1225                   ver = this->namepool_.add_with_length(version.c_str(),
1226                                                         version.length(),
1227                                                         true,
1228                                                         &ver_key);
1229                   def = true;
1230                 }
1231             }
1232           else if (this->version_script_.symbol_is_local(name))
1233             local = true;
1234         }
1235     }
1236
1237   Stringpool::Key name_key;
1238   name = this->namepool_.add(name, true, &name_key);
1239
1240   Sized_symbol<size>* res;
1241   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1242                               def, *sym, st_shndx, true, st_shndx);
1243
1244   if (local)
1245     this->force_local(res);
1246
1247   return res;
1248 }
1249
1250 // Add all the symbols in a dynamic object to the hash table.
1251
1252 template<int size, bool big_endian>
1253 void
1254 Symbol_table::add_from_dynobj(
1255     Sized_dynobj<size, big_endian>* dynobj,
1256     const unsigned char* syms,
1257     size_t count,
1258     const char* sym_names,
1259     size_t sym_name_size,
1260     const unsigned char* versym,
1261     size_t versym_size,
1262     const std::vector<const char*>* version_map,
1263     typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1264     size_t* defined)
1265 {
1266   *defined = 0;
1267
1268   gold_assert(size == dynobj->target()->get_size());
1269   gold_assert(size == parameters->target().get_size());
1270
1271   if (dynobj->just_symbols())
1272     {
1273       gold_error(_("--just-symbols does not make sense with a shared object"));
1274       return;
1275     }
1276
1277   if (versym != NULL && versym_size / 2 < count)
1278     {
1279       dynobj->error(_("too few symbol versions"));
1280       return;
1281     }
1282
1283   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1284
1285   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1286   // weak aliases.  This is necessary because if the dynamic object
1287   // provides the same variable under two names, one of which is a
1288   // weak definition, and the regular object refers to the weak
1289   // definition, we have to put both the weak definition and the
1290   // strong definition into the dynamic symbol table.  Given a weak
1291   // definition, the only way that we can find the corresponding
1292   // strong definition, if any, is to search the symbol table.
1293   std::vector<Sized_symbol<size>*> object_symbols;
1294
1295   const unsigned char* p = syms;
1296   const unsigned char* vs = versym;
1297   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1298     {
1299       elfcpp::Sym<size, big_endian> sym(p);
1300
1301       if (sympointers != NULL)
1302         (*sympointers)[i] = NULL;
1303
1304       // Ignore symbols with local binding or that have
1305       // internal or hidden visibility.
1306       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1307           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1308           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1309         continue;
1310
1311       // A protected symbol in a shared library must be treated as a
1312       // normal symbol when viewed from outside the shared library.
1313       // Implement this by overriding the visibility here.
1314       elfcpp::Sym<size, big_endian>* psym = &sym;
1315       unsigned char symbuf[sym_size];
1316       elfcpp::Sym<size, big_endian> sym2(symbuf);
1317       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1318         {
1319           memcpy(symbuf, p, sym_size);
1320           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1321           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1322           psym = &sym2;
1323         }
1324
1325       unsigned int st_name = psym->get_st_name();
1326       if (st_name >= sym_name_size)
1327         {
1328           dynobj->error(_("bad symbol name offset %u at %zu"),
1329                         st_name, i);
1330           continue;
1331         }
1332
1333       const char* name = sym_names + st_name;
1334
1335       bool is_ordinary;
1336       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1337                                                        &is_ordinary);
1338
1339       if (st_shndx != elfcpp::SHN_UNDEF)
1340         ++*defined;
1341
1342       Sized_symbol<size>* res;
1343
1344       if (versym == NULL)
1345         {
1346           Stringpool::Key name_key;
1347           name = this->namepool_.add(name, true, &name_key);
1348           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1349                                       false, *psym, st_shndx, is_ordinary,
1350                                       st_shndx);
1351         }
1352       else
1353         {
1354           // Read the version information.
1355
1356           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1357
1358           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1359           v &= elfcpp::VERSYM_VERSION;
1360
1361           // The Sun documentation says that V can be VER_NDX_LOCAL,
1362           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1363           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1364           // The old GNU linker will happily generate VER_NDX_LOCAL
1365           // for an undefined symbol.  I don't know what the Sun
1366           // linker will generate.
1367
1368           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1369               && st_shndx != elfcpp::SHN_UNDEF)
1370             {
1371               // This symbol should not be visible outside the object.
1372               continue;
1373             }
1374
1375           // At this point we are definitely going to add this symbol.
1376           Stringpool::Key name_key;
1377           name = this->namepool_.add(name, true, &name_key);
1378
1379           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1380               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1381             {
1382               // This symbol does not have a version.
1383               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1384                                           false, *psym, st_shndx, is_ordinary,
1385                                           st_shndx);
1386             }
1387           else
1388             {
1389               if (v >= version_map->size())
1390                 {
1391                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1392                                 i, v);
1393                   continue;
1394                 }
1395
1396               const char* version = (*version_map)[v];
1397               if (version == NULL)
1398                 {
1399                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1400                                 i, v);
1401                   continue;
1402                 }
1403
1404               Stringpool::Key version_key;
1405               version = this->namepool_.add(version, true, &version_key);
1406
1407               // If this is an absolute symbol, and the version name
1408               // and symbol name are the same, then this is the
1409               // version definition symbol.  These symbols exist to
1410               // support using -u to pull in particular versions.  We
1411               // do not want to record a version for them.
1412               if (st_shndx == elfcpp::SHN_ABS
1413                   && !is_ordinary
1414                   && name_key == version_key)
1415                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1416                                             false, *psym, st_shndx, is_ordinary,
1417                                             st_shndx);
1418               else
1419                 {
1420                   const bool def = (!hidden
1421                                     && st_shndx != elfcpp::SHN_UNDEF);
1422                   res = this->add_from_object(dynobj, name, name_key, version,
1423                                               version_key, def, *psym, st_shndx,
1424                                               is_ordinary, st_shndx);
1425                 }
1426             }
1427         }
1428
1429       // Note that it is possible that RES was overridden by an
1430       // earlier object, in which case it can't be aliased here.
1431       if (st_shndx != elfcpp::SHN_UNDEF
1432           && is_ordinary
1433           && psym->get_st_type() == elfcpp::STT_OBJECT
1434           && res->source() == Symbol::FROM_OBJECT
1435           && res->object() == dynobj)
1436         object_symbols.push_back(res);
1437
1438       if (sympointers != NULL)
1439         (*sympointers)[i] = res;
1440     }
1441
1442   this->record_weak_aliases(&object_symbols);
1443 }
1444
1445 // This is used to sort weak aliases.  We sort them first by section
1446 // index, then by offset, then by weak ahead of strong.
1447
1448 template<int size>
1449 class Weak_alias_sorter
1450 {
1451  public:
1452   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1453 };
1454
1455 template<int size>
1456 bool
1457 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1458                                     const Sized_symbol<size>* s2) const
1459 {
1460   bool is_ordinary;
1461   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1462   gold_assert(is_ordinary);
1463   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1464   gold_assert(is_ordinary);
1465   if (s1_shndx != s2_shndx)
1466     return s1_shndx < s2_shndx;
1467
1468   if (s1->value() != s2->value())
1469     return s1->value() < s2->value();
1470   if (s1->binding() != s2->binding())
1471     {
1472       if (s1->binding() == elfcpp::STB_WEAK)
1473         return true;
1474       if (s2->binding() == elfcpp::STB_WEAK)
1475         return false;
1476     }
1477   return std::string(s1->name()) < std::string(s2->name());
1478 }
1479
1480 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1481 // for any weak aliases, and record them so that if we add the weak
1482 // alias to the dynamic symbol table, we also add the corresponding
1483 // strong symbol.
1484
1485 template<int size>
1486 void
1487 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1488 {
1489   // Sort the vector by section index, then by offset, then by weak
1490   // ahead of strong.
1491   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1492
1493   // Walk through the vector.  For each weak definition, record
1494   // aliases.
1495   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1496          symbols->begin();
1497        p != symbols->end();
1498        ++p)
1499     {
1500       if ((*p)->binding() != elfcpp::STB_WEAK)
1501         continue;
1502
1503       // Build a circular list of weak aliases.  Each symbol points to
1504       // the next one in the circular list.
1505
1506       Sized_symbol<size>* from_sym = *p;
1507       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1508       for (q = p + 1; q != symbols->end(); ++q)
1509         {
1510           bool dummy;
1511           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1512               || (*q)->value() != from_sym->value())
1513             break;
1514
1515           this->weak_aliases_[from_sym] = *q;
1516           from_sym->set_has_alias();
1517           from_sym = *q;
1518         }
1519
1520       if (from_sym != *p)
1521         {
1522           this->weak_aliases_[from_sym] = *p;
1523           from_sym->set_has_alias();
1524         }
1525
1526       p = q - 1;
1527     }
1528 }
1529
1530 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1531 // true, then only create the symbol if there is a reference to it.
1532 // If this does not return NULL, it sets *POLDSYM to the existing
1533 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1534 // resolve the newly created symbol to the old one.  This
1535 // canonicalizes *PNAME and *PVERSION.
1536
1537 template<int size, bool big_endian>
1538 Sized_symbol<size>*
1539 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1540                                     bool only_if_ref,
1541                                     Sized_symbol<size>** poldsym,
1542                                     bool *resolve_oldsym)
1543 {
1544   *resolve_oldsym = false;
1545
1546   // If the caller didn't give us a version, see if we get one from
1547   // the version script.
1548   std::string v;
1549   bool is_default_version = false;
1550   if (*pversion == NULL)
1551     {
1552       if (this->version_script_.get_symbol_version(*pname, &v))
1553         {
1554           if (!v.empty())
1555             *pversion = v.c_str();
1556
1557           // If we get the version from a version script, then we are
1558           // also the default version.
1559           is_default_version = true;
1560         }
1561     }
1562
1563   Symbol* oldsym;
1564   Sized_symbol<size>* sym;
1565
1566   bool add_to_table = false;
1567   typename Symbol_table_type::iterator add_loc = this->table_.end();
1568   bool add_def_to_table = false;
1569   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1570
1571   if (only_if_ref)
1572     {
1573       oldsym = this->lookup(*pname, *pversion);
1574       if (oldsym == NULL && is_default_version)
1575         oldsym = this->lookup(*pname, NULL);
1576       if (oldsym == NULL || !oldsym->is_undefined())
1577         return NULL;
1578
1579       *pname = oldsym->name();
1580       if (!is_default_version)
1581         *pversion = oldsym->version();
1582     }
1583   else
1584     {
1585       // Canonicalize NAME and VERSION.
1586       Stringpool::Key name_key;
1587       *pname = this->namepool_.add(*pname, true, &name_key);
1588
1589       Stringpool::Key version_key = 0;
1590       if (*pversion != NULL)
1591         *pversion = this->namepool_.add(*pversion, true, &version_key);
1592
1593       Symbol* const snull = NULL;
1594       std::pair<typename Symbol_table_type::iterator, bool> ins =
1595         this->table_.insert(std::make_pair(std::make_pair(name_key,
1596                                                           version_key),
1597                                            snull));
1598
1599       std::pair<typename Symbol_table_type::iterator, bool> insdef =
1600         std::make_pair(this->table_.end(), false);
1601       if (is_default_version)
1602         {
1603           const Stringpool::Key vnull = 0;
1604           insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1605                                                                      vnull),
1606                                                       snull));
1607         }
1608
1609       if (!ins.second)
1610         {
1611           // We already have a symbol table entry for NAME/VERSION.
1612           oldsym = ins.first->second;
1613           gold_assert(oldsym != NULL);
1614
1615           if (is_default_version)
1616             {
1617               Sized_symbol<size>* soldsym =
1618                 this->get_sized_symbol<size>(oldsym);
1619               this->define_default_version<size, big_endian>(soldsym,
1620                                                              insdef.second,
1621                                                              insdef.first);
1622             }
1623         }
1624       else
1625         {
1626           // We haven't seen this symbol before.
1627           gold_assert(ins.first->second == NULL);
1628
1629           add_to_table = true;
1630           add_loc = ins.first;
1631
1632           if (is_default_version && !insdef.second)
1633             {
1634               // We are adding NAME/VERSION, and it is the default
1635               // version.  We already have an entry for NAME/NULL.
1636               oldsym = insdef.first->second;
1637               *resolve_oldsym = true;
1638             }
1639           else
1640             {
1641               oldsym = NULL;
1642
1643               if (is_default_version)
1644                 {
1645                   add_def_to_table = true;
1646                   add_def_loc = insdef.first;
1647                 }
1648             }
1649         }
1650     }
1651
1652   const Target& target = parameters->target();
1653   if (!target.has_make_symbol())
1654     sym = new Sized_symbol<size>();
1655   else
1656     {
1657       gold_assert(target.get_size() == size);
1658       gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1659       typedef Sized_target<size, big_endian> My_target;
1660       const My_target* sized_target =
1661           static_cast<const My_target*>(&target);
1662       sym = sized_target->make_symbol();
1663       if (sym == NULL)
1664         return NULL;
1665     }
1666
1667   if (add_to_table)
1668     add_loc->second = sym;
1669   else
1670     gold_assert(oldsym != NULL);
1671
1672   if (add_def_to_table)
1673     add_def_loc->second = sym;
1674
1675   *poldsym = this->get_sized_symbol<size>(oldsym);
1676
1677   return sym;
1678 }
1679
1680 // Define a symbol based on an Output_data.
1681
1682 Symbol*
1683 Symbol_table::define_in_output_data(const char* name,
1684                                     const char* version,
1685                                     Output_data* od,
1686                                     uint64_t value,
1687                                     uint64_t symsize,
1688                                     elfcpp::STT type,
1689                                     elfcpp::STB binding,
1690                                     elfcpp::STV visibility,
1691                                     unsigned char nonvis,
1692                                     bool offset_is_from_end,
1693                                     bool only_if_ref)
1694 {
1695   if (parameters->target().get_size() == 32)
1696     {
1697 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1698       return this->do_define_in_output_data<32>(name, version, od,
1699                                                 value, symsize, type, binding,
1700                                                 visibility, nonvis,
1701                                                 offset_is_from_end,
1702                                                 only_if_ref);
1703 #else
1704       gold_unreachable();
1705 #endif
1706     }
1707   else if (parameters->target().get_size() == 64)
1708     {
1709 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1710       return this->do_define_in_output_data<64>(name, version, od,
1711                                                 value, symsize, type, binding,
1712                                                 visibility, nonvis,
1713                                                 offset_is_from_end,
1714                                                 only_if_ref);
1715 #else
1716       gold_unreachable();
1717 #endif
1718     }
1719   else
1720     gold_unreachable();
1721 }
1722
1723 // Define a symbol in an Output_data, sized version.
1724
1725 template<int size>
1726 Sized_symbol<size>*
1727 Symbol_table::do_define_in_output_data(
1728     const char* name,
1729     const char* version,
1730     Output_data* od,
1731     typename elfcpp::Elf_types<size>::Elf_Addr value,
1732     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1733     elfcpp::STT type,
1734     elfcpp::STB binding,
1735     elfcpp::STV visibility,
1736     unsigned char nonvis,
1737     bool offset_is_from_end,
1738     bool only_if_ref)
1739 {
1740   Sized_symbol<size>* sym;
1741   Sized_symbol<size>* oldsym;
1742   bool resolve_oldsym;
1743
1744   if (parameters->target().is_big_endian())
1745     {
1746 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1747       sym = this->define_special_symbol<size, true>(&name, &version,
1748                                                     only_if_ref, &oldsym,
1749                                                     &resolve_oldsym);
1750 #else
1751       gold_unreachable();
1752 #endif
1753     }
1754   else
1755     {
1756 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1757       sym = this->define_special_symbol<size, false>(&name, &version,
1758                                                      only_if_ref, &oldsym,
1759                                                      &resolve_oldsym);
1760 #else
1761       gold_unreachable();
1762 #endif
1763     }
1764
1765   if (sym == NULL)
1766     return NULL;
1767
1768   sym->init_output_data(name, version, od, value, symsize, type, binding,
1769                         visibility, nonvis, offset_is_from_end);
1770
1771   if (oldsym == NULL)
1772     {
1773       if (binding == elfcpp::STB_LOCAL
1774           || this->version_script_.symbol_is_local(name))
1775         this->force_local(sym);
1776       else if (version != NULL)
1777         sym->set_is_default();
1778       return sym;
1779     }
1780
1781   if (Symbol_table::should_override_with_special(oldsym))
1782     this->override_with_special(oldsym, sym);
1783
1784   if (resolve_oldsym)
1785     return sym;
1786   else
1787     {
1788       delete sym;
1789       return oldsym;
1790     }
1791 }
1792
1793 // Define a symbol based on an Output_segment.
1794
1795 Symbol*
1796 Symbol_table::define_in_output_segment(const char* name,
1797                                        const char* version, Output_segment* os,
1798                                        uint64_t value,
1799                                        uint64_t symsize,
1800                                        elfcpp::STT type,
1801                                        elfcpp::STB binding,
1802                                        elfcpp::STV visibility,
1803                                        unsigned char nonvis,
1804                                        Symbol::Segment_offset_base offset_base,
1805                                        bool only_if_ref)
1806 {
1807   if (parameters->target().get_size() == 32)
1808     {
1809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1810       return this->do_define_in_output_segment<32>(name, version, os,
1811                                                    value, symsize, type,
1812                                                    binding, visibility, nonvis,
1813                                                    offset_base, only_if_ref);
1814 #else
1815       gold_unreachable();
1816 #endif
1817     }
1818   else if (parameters->target().get_size() == 64)
1819     {
1820 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1821       return this->do_define_in_output_segment<64>(name, version, os,
1822                                                    value, symsize, type,
1823                                                    binding, visibility, nonvis,
1824                                                    offset_base, only_if_ref);
1825 #else
1826       gold_unreachable();
1827 #endif
1828     }
1829   else
1830     gold_unreachable();
1831 }
1832
1833 // Define a symbol in an Output_segment, sized version.
1834
1835 template<int size>
1836 Sized_symbol<size>*
1837 Symbol_table::do_define_in_output_segment(
1838     const char* name,
1839     const char* version,
1840     Output_segment* os,
1841     typename elfcpp::Elf_types<size>::Elf_Addr value,
1842     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1843     elfcpp::STT type,
1844     elfcpp::STB binding,
1845     elfcpp::STV visibility,
1846     unsigned char nonvis,
1847     Symbol::Segment_offset_base offset_base,
1848     bool only_if_ref)
1849 {
1850   Sized_symbol<size>* sym;
1851   Sized_symbol<size>* oldsym;
1852   bool resolve_oldsym;
1853
1854   if (parameters->target().is_big_endian())
1855     {
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1857       sym = this->define_special_symbol<size, true>(&name, &version,
1858                                                     only_if_ref, &oldsym,
1859                                                     &resolve_oldsym);
1860 #else
1861       gold_unreachable();
1862 #endif
1863     }
1864   else
1865     {
1866 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1867       sym = this->define_special_symbol<size, false>(&name, &version,
1868                                                      only_if_ref, &oldsym,
1869                                                      &resolve_oldsym);
1870 #else
1871       gold_unreachable();
1872 #endif
1873     }
1874
1875   if (sym == NULL)
1876     return NULL;
1877
1878   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1879                            visibility, nonvis, offset_base);
1880
1881   if (oldsym == NULL)
1882     {
1883       if (binding == elfcpp::STB_LOCAL
1884           || this->version_script_.symbol_is_local(name))
1885         this->force_local(sym);
1886       else if (version != NULL)
1887         sym->set_is_default();
1888       return sym;
1889     }
1890
1891   if (Symbol_table::should_override_with_special(oldsym))
1892     this->override_with_special(oldsym, sym);
1893
1894   if (resolve_oldsym)
1895     return sym;
1896   else
1897     {
1898       delete sym;
1899       return oldsym;
1900     }
1901 }
1902
1903 // Define a special symbol with a constant value.  It is a multiple
1904 // definition error if this symbol is already defined.
1905
1906 Symbol*
1907 Symbol_table::define_as_constant(const char* name,
1908                                  const char* version,
1909                                  uint64_t value,
1910                                  uint64_t symsize,
1911                                  elfcpp::STT type,
1912                                  elfcpp::STB binding,
1913                                  elfcpp::STV visibility,
1914                                  unsigned char nonvis,
1915                                  bool only_if_ref,
1916                                  bool force_override)
1917 {
1918   if (parameters->target().get_size() == 32)
1919     {
1920 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1921       return this->do_define_as_constant<32>(name, version, value,
1922                                              symsize, type, binding,
1923                                              visibility, nonvis, only_if_ref,
1924                                              force_override);
1925 #else
1926       gold_unreachable();
1927 #endif
1928     }
1929   else if (parameters->target().get_size() == 64)
1930     {
1931 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1932       return this->do_define_as_constant<64>(name, version, value,
1933                                              symsize, type, binding,
1934                                              visibility, nonvis, only_if_ref,
1935                                              force_override);
1936 #else
1937       gold_unreachable();
1938 #endif
1939     }
1940   else
1941     gold_unreachable();
1942 }
1943
1944 // Define a symbol as a constant, sized version.
1945
1946 template<int size>
1947 Sized_symbol<size>*
1948 Symbol_table::do_define_as_constant(
1949     const char* name,
1950     const char* version,
1951     typename elfcpp::Elf_types<size>::Elf_Addr value,
1952     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1953     elfcpp::STT type,
1954     elfcpp::STB binding,
1955     elfcpp::STV visibility,
1956     unsigned char nonvis,
1957     bool only_if_ref,
1958     bool force_override)
1959 {
1960   Sized_symbol<size>* sym;
1961   Sized_symbol<size>* oldsym;
1962   bool resolve_oldsym;
1963
1964   if (parameters->target().is_big_endian())
1965     {
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967       sym = this->define_special_symbol<size, true>(&name, &version,
1968                                                     only_if_ref, &oldsym,
1969                                                     &resolve_oldsym);
1970 #else
1971       gold_unreachable();
1972 #endif
1973     }
1974   else
1975     {
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977       sym = this->define_special_symbol<size, false>(&name, &version,
1978                                                      only_if_ref, &oldsym,
1979                                                      &resolve_oldsym);
1980 #else
1981       gold_unreachable();
1982 #endif
1983     }
1984
1985   if (sym == NULL)
1986     return NULL;
1987
1988   sym->init_constant(name, version, value, symsize, type, binding, visibility,
1989                      nonvis);
1990
1991   if (oldsym == NULL)
1992     {
1993       // Version symbols are absolute symbols with name == version.
1994       // We don't want to force them to be local.
1995       if ((version == NULL
1996            || name != version
1997            || value != 0)
1998           && (binding == elfcpp::STB_LOCAL
1999               || this->version_script_.symbol_is_local(name)))
2000         this->force_local(sym);
2001       else if (version != NULL
2002                && (name != version || value != 0))
2003         sym->set_is_default();
2004       return sym;
2005     }
2006
2007   if (force_override || Symbol_table::should_override_with_special(oldsym))
2008     this->override_with_special(oldsym, sym);
2009
2010   if (resolve_oldsym)
2011     return sym;
2012   else
2013     {
2014       delete sym;
2015       return oldsym;
2016     }
2017 }
2018
2019 // Define a set of symbols in output sections.
2020
2021 void
2022 Symbol_table::define_symbols(const Layout* layout, int count,
2023                              const Define_symbol_in_section* p,
2024                              bool only_if_ref)
2025 {
2026   for (int i = 0; i < count; ++i, ++p)
2027     {
2028       Output_section* os = layout->find_output_section(p->output_section);
2029       if (os != NULL)
2030         this->define_in_output_data(p->name, NULL, os, p->value,
2031                                     p->size, p->type, p->binding,
2032                                     p->visibility, p->nonvis,
2033                                     p->offset_is_from_end,
2034                                     only_if_ref || p->only_if_ref);
2035       else
2036         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2037                                  p->binding, p->visibility, p->nonvis,
2038                                  only_if_ref || p->only_if_ref,
2039                                  false);
2040     }
2041 }
2042
2043 // Define a set of symbols in output segments.
2044
2045 void
2046 Symbol_table::define_symbols(const Layout* layout, int count,
2047                              const Define_symbol_in_segment* p,
2048                              bool only_if_ref)
2049 {
2050   for (int i = 0; i < count; ++i, ++p)
2051     {
2052       Output_segment* os = layout->find_output_segment(p->segment_type,
2053                                                        p->segment_flags_set,
2054                                                        p->segment_flags_clear);
2055       if (os != NULL)
2056         this->define_in_output_segment(p->name, NULL, os, p->value,
2057                                        p->size, p->type, p->binding,
2058                                        p->visibility, p->nonvis,
2059                                        p->offset_base,
2060                                        only_if_ref || p->only_if_ref);
2061       else
2062         this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2063                                  p->binding, p->visibility, p->nonvis,
2064                                  only_if_ref || p->only_if_ref,
2065                                  false);
2066     }
2067 }
2068
2069 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2070 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2071 // the offset within POSD.
2072
2073 template<int size>
2074 void
2075 Symbol_table::define_with_copy_reloc(
2076     Sized_symbol<size>* csym,
2077     Output_data* posd,
2078     typename elfcpp::Elf_types<size>::Elf_Addr value)
2079 {
2080   gold_assert(csym->is_from_dynobj());
2081   gold_assert(!csym->is_copied_from_dynobj());
2082   Object* object = csym->object();
2083   gold_assert(object->is_dynamic());
2084   Dynobj* dynobj = static_cast<Dynobj*>(object);
2085
2086   // Our copied variable has to override any variable in a shared
2087   // library.
2088   elfcpp::STB binding = csym->binding();
2089   if (binding == elfcpp::STB_WEAK)
2090     binding = elfcpp::STB_GLOBAL;
2091
2092   this->define_in_output_data(csym->name(), csym->version(),
2093                               posd, value, csym->symsize(),
2094                               csym->type(), binding,
2095                               csym->visibility(), csym->nonvis(),
2096                               false, false);
2097
2098   csym->set_is_copied_from_dynobj();
2099   csym->set_needs_dynsym_entry();
2100
2101   this->copied_symbol_dynobjs_[csym] = dynobj;
2102
2103   // We have now defined all aliases, but we have not entered them all
2104   // in the copied_symbol_dynobjs_ map.
2105   if (csym->has_alias())
2106     {
2107       Symbol* sym = csym;
2108       while (true)
2109         {
2110           sym = this->weak_aliases_[sym];
2111           if (sym == csym)
2112             break;
2113           gold_assert(sym->output_data() == posd);
2114
2115           sym->set_is_copied_from_dynobj();
2116           this->copied_symbol_dynobjs_[sym] = dynobj;
2117         }
2118     }
2119 }
2120
2121 // SYM is defined using a COPY reloc.  Return the dynamic object where
2122 // the original definition was found.
2123
2124 Dynobj*
2125 Symbol_table::get_copy_source(const Symbol* sym) const
2126 {
2127   gold_assert(sym->is_copied_from_dynobj());
2128   Copied_symbol_dynobjs::const_iterator p =
2129     this->copied_symbol_dynobjs_.find(sym);
2130   gold_assert(p != this->copied_symbol_dynobjs_.end());
2131   return p->second;
2132 }
2133
2134 // Add any undefined symbols named on the command line.
2135
2136 void
2137 Symbol_table::add_undefined_symbols_from_command_line()
2138 {
2139   if (parameters->options().any_undefined())
2140     {
2141       if (parameters->target().get_size() == 32)
2142         {
2143 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2144           this->do_add_undefined_symbols_from_command_line<32>();
2145 #else
2146           gold_unreachable();
2147 #endif
2148         }
2149       else if (parameters->target().get_size() == 64)
2150         {
2151 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2152           this->do_add_undefined_symbols_from_command_line<64>();
2153 #else
2154           gold_unreachable();
2155 #endif
2156         }
2157       else
2158         gold_unreachable();
2159     }
2160 }
2161
2162 template<int size>
2163 void
2164 Symbol_table::do_add_undefined_symbols_from_command_line()
2165 {
2166   for (options::String_set::const_iterator p =
2167          parameters->options().undefined_begin();
2168        p != parameters->options().undefined_end();
2169        ++p)
2170     {
2171       const char* name = p->c_str();
2172
2173       if (this->lookup(name) != NULL)
2174         continue;
2175
2176       const char* version = NULL;
2177
2178       Sized_symbol<size>* sym;
2179       Sized_symbol<size>* oldsym;
2180       bool resolve_oldsym;
2181       if (parameters->target().is_big_endian())
2182         {
2183 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2184           sym = this->define_special_symbol<size, true>(&name, &version,
2185                                                         false, &oldsym,
2186                                                         &resolve_oldsym);
2187 #else
2188           gold_unreachable();
2189 #endif
2190         }
2191       else
2192         {
2193 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2194           sym = this->define_special_symbol<size, false>(&name, &version,
2195                                                          false, &oldsym,
2196                                                          &resolve_oldsym);
2197 #else
2198           gold_unreachable();
2199 #endif
2200         }
2201
2202       gold_assert(oldsym == NULL);
2203
2204       sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2205                           elfcpp::STV_DEFAULT, 0);
2206       ++this->saw_undefined_;
2207     }
2208 }
2209
2210 // Set the dynamic symbol indexes.  INDEX is the index of the first
2211 // global dynamic symbol.  Pointers to the symbols are stored into the
2212 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2213 // updated dynamic symbol index.
2214
2215 unsigned int
2216 Symbol_table::set_dynsym_indexes(unsigned int index,
2217                                  std::vector<Symbol*>* syms,
2218                                  Stringpool* dynpool,
2219                                  Versions* versions)
2220 {
2221   for (Symbol_table_type::iterator p = this->table_.begin();
2222        p != this->table_.end();
2223        ++p)
2224     {
2225       Symbol* sym = p->second;
2226
2227       // Note that SYM may already have a dynamic symbol index, since
2228       // some symbols appear more than once in the symbol table, with
2229       // and without a version.
2230
2231       if (!sym->should_add_dynsym_entry())
2232         sym->set_dynsym_index(-1U);
2233       else if (!sym->has_dynsym_index())
2234         {
2235           sym->set_dynsym_index(index);
2236           ++index;
2237           syms->push_back(sym);
2238           dynpool->add(sym->name(), false, NULL);
2239
2240           // Record any version information.
2241           if (sym->version() != NULL)
2242             versions->record_version(this, dynpool, sym);
2243         }
2244     }
2245
2246   // Finish up the versions.  In some cases this may add new dynamic
2247   // symbols.
2248   index = versions->finalize(this, index, syms);
2249
2250   return index;
2251 }
2252
2253 // Set the final values for all the symbols.  The index of the first
2254 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2255 // file offset OFF.  Add their names to POOL.  Return the new file
2256 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2257
2258 off_t
2259 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2260                        size_t dyncount, Stringpool* pool,
2261                        unsigned int *plocal_symcount)
2262 {
2263   off_t ret;
2264
2265   gold_assert(*plocal_symcount != 0);
2266   this->first_global_index_ = *plocal_symcount;
2267
2268   this->dynamic_offset_ = dynoff;
2269   this->first_dynamic_global_index_ = dyn_global_index;
2270   this->dynamic_count_ = dyncount;
2271
2272   if (parameters->target().get_size() == 32)
2273     {
2274 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2275       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2276 #else
2277       gold_unreachable();
2278 #endif
2279     }
2280   else if (parameters->target().get_size() == 64)
2281     {
2282 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2283       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2284 #else
2285       gold_unreachable();
2286 #endif
2287     }
2288   else
2289     gold_unreachable();
2290
2291   // Now that we have the final symbol table, we can reliably note
2292   // which symbols should get warnings.
2293   this->warnings_.note_warnings(this);
2294
2295   return ret;
2296 }
2297
2298 // SYM is going into the symbol table at *PINDEX.  Add the name to
2299 // POOL, update *PINDEX and *POFF.
2300
2301 template<int size>
2302 void
2303 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2304                                   unsigned int* pindex, off_t* poff)
2305 {
2306   sym->set_symtab_index(*pindex);
2307   pool->add(sym->name(), false, NULL);
2308   ++*pindex;
2309   *poff += elfcpp::Elf_sizes<size>::sym_size;
2310 }
2311
2312 // Set the final value for all the symbols.  This is called after
2313 // Layout::finalize, so all the output sections have their final
2314 // address.
2315
2316 template<int size>
2317 off_t
2318 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2319                              unsigned int* plocal_symcount)
2320 {
2321   off = align_address(off, size >> 3);
2322   this->offset_ = off;
2323
2324   unsigned int index = *plocal_symcount;
2325   const unsigned int orig_index = index;
2326
2327   // First do all the symbols which have been forced to be local, as
2328   // they must appear before all global symbols.
2329   for (Forced_locals::iterator p = this->forced_locals_.begin();
2330        p != this->forced_locals_.end();
2331        ++p)
2332     {
2333       Symbol* sym = *p;
2334       gold_assert(sym->is_forced_local());
2335       if (this->sized_finalize_symbol<size>(sym))
2336         {
2337           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2338           ++*plocal_symcount;
2339         }
2340     }
2341
2342   // Now do all the remaining symbols.
2343   for (Symbol_table_type::iterator p = this->table_.begin();
2344        p != this->table_.end();
2345        ++p)
2346     {
2347       Symbol* sym = p->second;
2348       if (this->sized_finalize_symbol<size>(sym))
2349         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2350     }
2351
2352   this->output_count_ = index - orig_index;
2353
2354   return off;
2355 }
2356
2357 // Finalize the symbol SYM.  This returns true if the symbol should be
2358 // added to the symbol table, false otherwise.
2359
2360 template<int size>
2361 bool
2362 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2363 {
2364   typedef typename Sized_symbol<size>::Value_type Value_type;
2365
2366   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2367
2368   // The default version of a symbol may appear twice in the symbol
2369   // table.  We only need to finalize it once.
2370   if (sym->has_symtab_index())
2371     return false;
2372
2373   if (!sym->in_reg())
2374     {
2375       gold_assert(!sym->has_symtab_index());
2376       sym->set_symtab_index(-1U);
2377       gold_assert(sym->dynsym_index() == -1U);
2378       return false;
2379     }
2380
2381   Value_type value;
2382
2383   switch (sym->source())
2384     {
2385     case Symbol::FROM_OBJECT:
2386       {
2387         bool is_ordinary;
2388         unsigned int shndx = sym->shndx(&is_ordinary);
2389
2390         if (!is_ordinary
2391             && shndx != elfcpp::SHN_ABS
2392             && !Symbol::is_common_shndx(shndx))
2393           {
2394             gold_error(_("%s: unsupported symbol section 0x%x"),
2395                        sym->demangled_name().c_str(), shndx);
2396             shndx = elfcpp::SHN_UNDEF;
2397           }
2398
2399         Object* symobj = sym->object();
2400         if (symobj->is_dynamic())
2401           {
2402             value = 0;
2403             shndx = elfcpp::SHN_UNDEF;
2404           }
2405         else if (symobj->pluginobj() != NULL)
2406           {
2407             value = 0;
2408             shndx = elfcpp::SHN_UNDEF;
2409           }
2410         else if (shndx == elfcpp::SHN_UNDEF)
2411           value = 0;
2412         else if (!is_ordinary
2413                  && (shndx == elfcpp::SHN_ABS
2414                      || Symbol::is_common_shndx(shndx)))
2415           value = sym->value();
2416         else
2417           {
2418             Relobj* relobj = static_cast<Relobj*>(symobj);
2419             Output_section* os = relobj->output_section(shndx);
2420
2421             if (os == NULL)
2422               {
2423                 sym->set_symtab_index(-1U);
2424                 bool static_or_reloc = (parameters->doing_static_link() ||
2425                                         parameters->options().relocatable());
2426                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2427
2428                 return false;
2429               }
2430
2431             uint64_t secoff64 = relobj->output_section_offset(shndx);
2432             if (secoff64 == -1ULL)
2433               {
2434                 // The section needs special handling (e.g., a merge section).
2435                 value = os->output_address(relobj, shndx, sym->value());
2436               }
2437             else
2438               {
2439                 Value_type secoff =
2440                   convert_types<Value_type, uint64_t>(secoff64);
2441                 if (sym->type() == elfcpp::STT_TLS)
2442                   value = sym->value() + os->tls_offset() + secoff;
2443                 else
2444                   value = sym->value() + os->address() + secoff;
2445               }
2446           }
2447       }
2448       break;
2449
2450     case Symbol::IN_OUTPUT_DATA:
2451       {
2452         Output_data* od = sym->output_data();
2453         value = sym->value();
2454         if (sym->type() != elfcpp::STT_TLS)
2455           value += od->address();
2456         else
2457           {
2458             Output_section* os = od->output_section();
2459             gold_assert(os != NULL);
2460             value += os->tls_offset() + (od->address() - os->address());
2461           }
2462         if (sym->offset_is_from_end())
2463           value += od->data_size();
2464       }
2465       break;
2466
2467     case Symbol::IN_OUTPUT_SEGMENT:
2468       {
2469         Output_segment* os = sym->output_segment();
2470         value = sym->value();
2471         if (sym->type() != elfcpp::STT_TLS)
2472           value += os->vaddr();
2473         switch (sym->offset_base())
2474           {
2475           case Symbol::SEGMENT_START:
2476             break;
2477           case Symbol::SEGMENT_END:
2478             value += os->memsz();
2479             break;
2480           case Symbol::SEGMENT_BSS:
2481             value += os->filesz();
2482             break;
2483           default:
2484             gold_unreachable();
2485           }
2486       }
2487       break;
2488
2489     case Symbol::IS_CONSTANT:
2490       value = sym->value();
2491       break;
2492
2493     case Symbol::IS_UNDEFINED:
2494       value = 0;
2495       break;
2496
2497     default:
2498       gold_unreachable();
2499     }
2500
2501   sym->set_value(value);
2502
2503   if (parameters->options().strip_all())
2504     {
2505       sym->set_symtab_index(-1U);
2506       return false;
2507     }
2508
2509   return true;
2510 }
2511
2512 // Write out the global symbols.
2513
2514 void
2515 Symbol_table::write_globals(const Stringpool* sympool,
2516                             const Stringpool* dynpool,
2517                             Output_symtab_xindex* symtab_xindex,
2518                             Output_symtab_xindex* dynsym_xindex,
2519                             Output_file* of) const
2520 {
2521   switch (parameters->size_and_endianness())
2522     {
2523 #ifdef HAVE_TARGET_32_LITTLE
2524     case Parameters::TARGET_32_LITTLE:
2525       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2526                                            dynsym_xindex, of);
2527       break;
2528 #endif
2529 #ifdef HAVE_TARGET_32_BIG
2530     case Parameters::TARGET_32_BIG:
2531       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2532                                           dynsym_xindex, of);
2533       break;
2534 #endif
2535 #ifdef HAVE_TARGET_64_LITTLE
2536     case Parameters::TARGET_64_LITTLE:
2537       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2538                                            dynsym_xindex, of);
2539       break;
2540 #endif
2541 #ifdef HAVE_TARGET_64_BIG
2542     case Parameters::TARGET_64_BIG:
2543       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2544                                           dynsym_xindex, of);
2545       break;
2546 #endif
2547     default:
2548       gold_unreachable();
2549     }
2550 }
2551
2552 // Write out the global symbols.
2553
2554 template<int size, bool big_endian>
2555 void
2556 Symbol_table::sized_write_globals(const Stringpool* sympool,
2557                                   const Stringpool* dynpool,
2558                                   Output_symtab_xindex* symtab_xindex,
2559                                   Output_symtab_xindex* dynsym_xindex,
2560                                   Output_file* of) const
2561 {
2562   const Target& target = parameters->target();
2563
2564   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2565
2566   const unsigned int output_count = this->output_count_;
2567   const section_size_type oview_size = output_count * sym_size;
2568   const unsigned int first_global_index = this->first_global_index_;
2569   unsigned char* psyms;
2570   if (this->offset_ == 0 || output_count == 0)
2571     psyms = NULL;
2572   else
2573     psyms = of->get_output_view(this->offset_, oview_size);
2574
2575   const unsigned int dynamic_count = this->dynamic_count_;
2576   const section_size_type dynamic_size = dynamic_count * sym_size;
2577   const unsigned int first_dynamic_global_index =
2578     this->first_dynamic_global_index_;
2579   unsigned char* dynamic_view;
2580   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2581     dynamic_view = NULL;
2582   else
2583     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2584
2585   for (Symbol_table_type::const_iterator p = this->table_.begin();
2586        p != this->table_.end();
2587        ++p)
2588     {
2589       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2590
2591       // Possibly warn about unresolved symbols in shared libraries.
2592       this->warn_about_undefined_dynobj_symbol(sym);
2593
2594       unsigned int sym_index = sym->symtab_index();
2595       unsigned int dynsym_index;
2596       if (dynamic_view == NULL)
2597         dynsym_index = -1U;
2598       else
2599         dynsym_index = sym->dynsym_index();
2600
2601       if (sym_index == -1U && dynsym_index == -1U)
2602         {
2603           // This symbol is not included in the output file.
2604           continue;
2605         }
2606
2607       unsigned int shndx;
2608       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2609       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2610       switch (sym->source())
2611         {
2612         case Symbol::FROM_OBJECT:
2613           {
2614             bool is_ordinary;
2615             unsigned int in_shndx = sym->shndx(&is_ordinary);
2616
2617             if (!is_ordinary
2618                 && in_shndx != elfcpp::SHN_ABS
2619                 && !Symbol::is_common_shndx(in_shndx))
2620               {
2621                 gold_error(_("%s: unsupported symbol section 0x%x"),
2622                            sym->demangled_name().c_str(), in_shndx);
2623                 shndx = in_shndx;
2624               }
2625             else
2626               {
2627                 Object* symobj = sym->object();
2628                 if (symobj->is_dynamic())
2629                   {
2630                     if (sym->needs_dynsym_value())
2631                       dynsym_value = target.dynsym_value(sym);
2632                     shndx = elfcpp::SHN_UNDEF;
2633                   }
2634                 else if (symobj->pluginobj() != NULL)
2635                   shndx = elfcpp::SHN_UNDEF;
2636                 else if (in_shndx == elfcpp::SHN_UNDEF
2637                          || (!is_ordinary
2638                              && (in_shndx == elfcpp::SHN_ABS
2639                                  || Symbol::is_common_shndx(in_shndx))))
2640                   shndx = in_shndx;
2641                 else
2642                   {
2643                     Relobj* relobj = static_cast<Relobj*>(symobj);
2644                     Output_section* os = relobj->output_section(in_shndx);
2645                     gold_assert(os != NULL);
2646                     shndx = os->out_shndx();
2647
2648                     if (shndx >= elfcpp::SHN_LORESERVE)
2649                       {
2650                         if (sym_index != -1U)
2651                           symtab_xindex->add(sym_index, shndx);
2652                         if (dynsym_index != -1U)
2653                           dynsym_xindex->add(dynsym_index, shndx);
2654                         shndx = elfcpp::SHN_XINDEX;
2655                       }
2656
2657                     // In object files symbol values are section
2658                     // relative.
2659                     if (parameters->options().relocatable())
2660                       sym_value -= os->address();
2661                   }
2662               }
2663           }
2664           break;
2665
2666         case Symbol::IN_OUTPUT_DATA:
2667           shndx = sym->output_data()->out_shndx();
2668           if (shndx >= elfcpp::SHN_LORESERVE)
2669             {
2670               if (sym_index != -1U)
2671                 symtab_xindex->add(sym_index, shndx);
2672               if (dynsym_index != -1U)
2673                 dynsym_xindex->add(dynsym_index, shndx);
2674               shndx = elfcpp::SHN_XINDEX;
2675             }
2676           break;
2677
2678         case Symbol::IN_OUTPUT_SEGMENT:
2679           shndx = elfcpp::SHN_ABS;
2680           break;
2681
2682         case Symbol::IS_CONSTANT:
2683           shndx = elfcpp::SHN_ABS;
2684           break;
2685
2686         case Symbol::IS_UNDEFINED:
2687           shndx = elfcpp::SHN_UNDEF;
2688           break;
2689
2690         default:
2691           gold_unreachable();
2692         }
2693
2694       if (sym_index != -1U)
2695         {
2696           sym_index -= first_global_index;
2697           gold_assert(sym_index < output_count);
2698           unsigned char* ps = psyms + (sym_index * sym_size);
2699           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2700                                                      sympool, ps);
2701         }
2702
2703       if (dynsym_index != -1U)
2704         {
2705           dynsym_index -= first_dynamic_global_index;
2706           gold_assert(dynsym_index < dynamic_count);
2707           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2708           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2709                                                      dynpool, pd);
2710         }
2711     }
2712
2713   of->write_output_view(this->offset_, oview_size, psyms);
2714   if (dynamic_view != NULL)
2715     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2716 }
2717
2718 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2719 // strtab holding the name.
2720
2721 template<int size, bool big_endian>
2722 void
2723 Symbol_table::sized_write_symbol(
2724     Sized_symbol<size>* sym,
2725     typename elfcpp::Elf_types<size>::Elf_Addr value,
2726     unsigned int shndx,
2727     const Stringpool* pool,
2728     unsigned char* p) const
2729 {
2730   elfcpp::Sym_write<size, big_endian> osym(p);
2731   osym.put_st_name(pool->get_offset(sym->name()));
2732   osym.put_st_value(value);
2733   // Use a symbol size of zero for undefined symbols from shared libraries.
2734   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2735     osym.put_st_size(0);
2736   else
2737     osym.put_st_size(sym->symsize());
2738   // A version script may have overridden the default binding.
2739   if (sym->is_forced_local())
2740     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2741   else
2742     osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2743   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2744   osym.put_st_shndx(shndx);
2745 }
2746
2747 // Check for unresolved symbols in shared libraries.  This is
2748 // controlled by the --allow-shlib-undefined option.
2749
2750 // We only warn about libraries for which we have seen all the
2751 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2752 // which were not seen in this link.  If we didn't see a DT_NEEDED
2753 // entry, we aren't going to be able to reliably report whether the
2754 // symbol is undefined.
2755
2756 // We also don't warn about libraries found in a system library
2757 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2758 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2759 // can have undefined references satisfied by ld-linux.so.
2760
2761 inline void
2762 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2763 {
2764   bool dummy;
2765   if (sym->source() == Symbol::FROM_OBJECT
2766       && sym->object()->is_dynamic()
2767       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2768       && sym->binding() != elfcpp::STB_WEAK
2769       && !parameters->options().allow_shlib_undefined()
2770       && !parameters->target().is_defined_by_abi(sym)
2771       && !sym->object()->is_in_system_directory())
2772     {
2773       // A very ugly cast.
2774       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2775       if (!dynobj->has_unknown_needed_entries())
2776         gold_undefined_symbol(sym);
2777     }
2778 }
2779
2780 // Write out a section symbol.  Return the update offset.
2781
2782 void
2783 Symbol_table::write_section_symbol(const Output_section *os,
2784                                    Output_symtab_xindex* symtab_xindex,
2785                                    Output_file* of,
2786                                    off_t offset) const
2787 {
2788   switch (parameters->size_and_endianness())
2789     {
2790 #ifdef HAVE_TARGET_32_LITTLE
2791     case Parameters::TARGET_32_LITTLE:
2792       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2793                                                   offset);
2794       break;
2795 #endif
2796 #ifdef HAVE_TARGET_32_BIG
2797     case Parameters::TARGET_32_BIG:
2798       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2799                                                  offset);
2800       break;
2801 #endif
2802 #ifdef HAVE_TARGET_64_LITTLE
2803     case Parameters::TARGET_64_LITTLE:
2804       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2805                                                   offset);
2806       break;
2807 #endif
2808 #ifdef HAVE_TARGET_64_BIG
2809     case Parameters::TARGET_64_BIG:
2810       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2811                                                  offset);
2812       break;
2813 #endif
2814     default:
2815       gold_unreachable();
2816     }
2817 }
2818
2819 // Write out a section symbol, specialized for size and endianness.
2820
2821 template<int size, bool big_endian>
2822 void
2823 Symbol_table::sized_write_section_symbol(const Output_section* os,
2824                                          Output_symtab_xindex* symtab_xindex,
2825                                          Output_file* of,
2826                                          off_t offset) const
2827 {
2828   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2829
2830   unsigned char* pov = of->get_output_view(offset, sym_size);
2831
2832   elfcpp::Sym_write<size, big_endian> osym(pov);
2833   osym.put_st_name(0);
2834   if (parameters->options().relocatable())
2835     osym.put_st_value(0);
2836   else
2837     osym.put_st_value(os->address());
2838   osym.put_st_size(0);
2839   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2840                                        elfcpp::STT_SECTION));
2841   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2842
2843   unsigned int shndx = os->out_shndx();
2844   if (shndx >= elfcpp::SHN_LORESERVE)
2845     {
2846       symtab_xindex->add(os->symtab_index(), shndx);
2847       shndx = elfcpp::SHN_XINDEX;
2848     }
2849   osym.put_st_shndx(shndx);
2850
2851   of->write_output_view(offset, sym_size, pov);
2852 }
2853
2854 // Print statistical information to stderr.  This is used for --stats.
2855
2856 void
2857 Symbol_table::print_stats() const
2858 {
2859 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2860   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2861           program_name, this->table_.size(), this->table_.bucket_count());
2862 #else
2863   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2864           program_name, this->table_.size());
2865 #endif
2866   this->namepool_.print_stats("symbol table stringpool");
2867 }
2868
2869 // We check for ODR violations by looking for symbols with the same
2870 // name for which the debugging information reports that they were
2871 // defined in different source locations.  When comparing the source
2872 // location, we consider instances with the same base filename and
2873 // line number to be the same.  This is because different object
2874 // files/shared libraries can include the same header file using
2875 // different paths, and we don't want to report an ODR violation in
2876 // that case.
2877
2878 // This struct is used to compare line information, as returned by
2879 // Dwarf_line_info::one_addr2line.  It implements a < comparison
2880 // operator used with std::set.
2881
2882 struct Odr_violation_compare
2883 {
2884   bool
2885   operator()(const std::string& s1, const std::string& s2) const
2886   {
2887     std::string::size_type pos1 = s1.rfind('/');
2888     std::string::size_type pos2 = s2.rfind('/');
2889     if (pos1 == std::string::npos
2890         || pos2 == std::string::npos)
2891       return s1 < s2;
2892     return s1.compare(pos1, std::string::npos,
2893                       s2, pos2, std::string::npos) < 0;
2894   }
2895 };
2896
2897 // Check candidate_odr_violations_ to find symbols with the same name
2898 // but apparently different definitions (different source-file/line-no).
2899
2900 void
2901 Symbol_table::detect_odr_violations(const Task* task,
2902                                     const char* output_file_name) const
2903 {
2904   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2905        it != candidate_odr_violations_.end();
2906        ++it)
2907     {
2908       const char* symbol_name = it->first;
2909       // We use a sorted set so the output is deterministic.
2910       std::set<std::string, Odr_violation_compare> line_nums;
2911
2912       for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2913                locs = it->second.begin();
2914            locs != it->second.end();
2915            ++locs)
2916         {
2917           // We need to lock the object in order to read it.  This
2918           // means that we have to run in a singleton Task.  If we
2919           // want to run this in a general Task for better
2920           // performance, we will need one Task for object, plus
2921           // appropriate locking to ensure that we don't conflict with
2922           // other uses of the object.  Also note, one_addr2line is not
2923           // currently thread-safe.
2924           Task_lock_obj<Object> tl(task, locs->object);
2925           // 16 is the size of the object-cache that one_addr2line should use.
2926           std::string lineno = Dwarf_line_info::one_addr2line(
2927               locs->object, locs->shndx, locs->offset, 16);
2928           if (!lineno.empty())
2929             line_nums.insert(lineno);
2930         }
2931
2932       if (line_nums.size() > 1)
2933         {
2934           gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2935                          "places (possible ODR violation):"),
2936                        output_file_name, demangle(symbol_name).c_str());
2937           for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2938                it2 != line_nums.end();
2939                ++it2)
2940             fprintf(stderr, "  %s\n", it2->c_str());
2941         }
2942     }
2943   // We only call one_addr2line() in this function, so we can clear its cache.
2944   Dwarf_line_info::clear_addr2line_cache();
2945 }
2946
2947 // Warnings functions.
2948
2949 // Add a new warning.
2950
2951 void
2952 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2953                       const std::string& warning)
2954 {
2955   name = symtab->canonicalize_name(name);
2956   this->warnings_[name].set(obj, warning);
2957 }
2958
2959 // Look through the warnings and mark the symbols for which we should
2960 // warn.  This is called during Layout::finalize when we know the
2961 // sources for all the symbols.
2962
2963 void
2964 Warnings::note_warnings(Symbol_table* symtab)
2965 {
2966   for (Warning_table::iterator p = this->warnings_.begin();
2967        p != this->warnings_.end();
2968        ++p)
2969     {
2970       Symbol* sym = symtab->lookup(p->first, NULL);
2971       if (sym != NULL
2972           && sym->source() == Symbol::FROM_OBJECT
2973           && sym->object() == p->second.object)
2974         sym->set_has_warning();
2975     }
2976 }
2977
2978 // Issue a warning.  This is called when we see a relocation against a
2979 // symbol for which has a warning.
2980
2981 template<int size, bool big_endian>
2982 void
2983 Warnings::issue_warning(const Symbol* sym,
2984                         const Relocate_info<size, big_endian>* relinfo,
2985                         size_t relnum, off_t reloffset) const
2986 {
2987   gold_assert(sym->has_warning());
2988   Warning_table::const_iterator p = this->warnings_.find(sym->name());
2989   gold_assert(p != this->warnings_.end());
2990   gold_warning_at_location(relinfo, relnum, reloffset,
2991                            "%s", p->second.text.c_str());
2992 }
2993
2994 // Instantiate the templates we need.  We could use the configure
2995 // script to restrict this to only the ones needed for implemented
2996 // targets.
2997
2998 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2999 template
3000 void
3001 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3002 #endif
3003
3004 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3005 template
3006 void
3007 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3008 #endif
3009
3010 #ifdef HAVE_TARGET_32_LITTLE
3011 template
3012 void
3013 Symbol_table::add_from_relobj<32, false>(
3014     Sized_relobj<32, false>* relobj,
3015     const unsigned char* syms,
3016     size_t count,
3017     size_t symndx_offset,
3018     const char* sym_names,
3019     size_t sym_name_size,
3020     Sized_relobj<32, false>::Symbols* sympointers,
3021     size_t* defined);
3022 #endif
3023
3024 #ifdef HAVE_TARGET_32_BIG
3025 template
3026 void
3027 Symbol_table::add_from_relobj<32, true>(
3028     Sized_relobj<32, true>* relobj,
3029     const unsigned char* syms,
3030     size_t count,
3031     size_t symndx_offset,
3032     const char* sym_names,
3033     size_t sym_name_size,
3034     Sized_relobj<32, true>::Symbols* sympointers,
3035     size_t* defined);
3036 #endif
3037
3038 #ifdef HAVE_TARGET_64_LITTLE
3039 template
3040 void
3041 Symbol_table::add_from_relobj<64, false>(
3042     Sized_relobj<64, false>* relobj,
3043     const unsigned char* syms,
3044     size_t count,
3045     size_t symndx_offset,
3046     const char* sym_names,
3047     size_t sym_name_size,
3048     Sized_relobj<64, false>::Symbols* sympointers,
3049     size_t* defined);
3050 #endif
3051
3052 #ifdef HAVE_TARGET_64_BIG
3053 template
3054 void
3055 Symbol_table::add_from_relobj<64, true>(
3056     Sized_relobj<64, true>* relobj,
3057     const unsigned char* syms,
3058     size_t count,
3059     size_t symndx_offset,
3060     const char* sym_names,
3061     size_t sym_name_size,
3062     Sized_relobj<64, true>::Symbols* sympointers,
3063     size_t* defined);
3064 #endif
3065
3066 #ifdef HAVE_TARGET_32_LITTLE
3067 template
3068 Symbol*
3069 Symbol_table::add_from_pluginobj<32, false>(
3070     Sized_pluginobj<32, false>* obj,
3071     const char* name,
3072     const char* ver,
3073     elfcpp::Sym<32, false>* sym);
3074 #endif
3075
3076 #ifdef HAVE_TARGET_32_BIG
3077 template
3078 Symbol*
3079 Symbol_table::add_from_pluginobj<32, true>(
3080     Sized_pluginobj<32, true>* obj,
3081     const char* name,
3082     const char* ver,
3083     elfcpp::Sym<32, true>* sym);
3084 #endif
3085
3086 #ifdef HAVE_TARGET_64_LITTLE
3087 template
3088 Symbol*
3089 Symbol_table::add_from_pluginobj<64, false>(
3090     Sized_pluginobj<64, false>* obj,
3091     const char* name,
3092     const char* ver,
3093     elfcpp::Sym<64, false>* sym);
3094 #endif
3095
3096 #ifdef HAVE_TARGET_64_BIG
3097 template
3098 Symbol*
3099 Symbol_table::add_from_pluginobj<64, true>(
3100     Sized_pluginobj<64, true>* obj,
3101     const char* name,
3102     const char* ver,
3103     elfcpp::Sym<64, true>* sym);
3104 #endif
3105
3106 #ifdef HAVE_TARGET_32_LITTLE
3107 template
3108 void
3109 Symbol_table::add_from_dynobj<32, false>(
3110     Sized_dynobj<32, false>* dynobj,
3111     const unsigned char* syms,
3112     size_t count,
3113     const char* sym_names,
3114     size_t sym_name_size,
3115     const unsigned char* versym,
3116     size_t versym_size,
3117     const std::vector<const char*>* version_map,
3118     Sized_relobj<32, false>::Symbols* sympointers,
3119     size_t* defined);
3120 #endif
3121
3122 #ifdef HAVE_TARGET_32_BIG
3123 template
3124 void
3125 Symbol_table::add_from_dynobj<32, true>(
3126     Sized_dynobj<32, true>* dynobj,
3127     const unsigned char* syms,
3128     size_t count,
3129     const char* sym_names,
3130     size_t sym_name_size,
3131     const unsigned char* versym,
3132     size_t versym_size,
3133     const std::vector<const char*>* version_map,
3134     Sized_relobj<32, true>::Symbols* sympointers,
3135     size_t* defined);
3136 #endif
3137
3138 #ifdef HAVE_TARGET_64_LITTLE
3139 template
3140 void
3141 Symbol_table::add_from_dynobj<64, false>(
3142     Sized_dynobj<64, false>* dynobj,
3143     const unsigned char* syms,
3144     size_t count,
3145     const char* sym_names,
3146     size_t sym_name_size,
3147     const unsigned char* versym,
3148     size_t versym_size,
3149     const std::vector<const char*>* version_map,
3150     Sized_relobj<64, false>::Symbols* sympointers,
3151     size_t* defined);
3152 #endif
3153
3154 #ifdef HAVE_TARGET_64_BIG
3155 template
3156 void
3157 Symbol_table::add_from_dynobj<64, true>(
3158     Sized_dynobj<64, true>* dynobj,
3159     const unsigned char* syms,
3160     size_t count,
3161     const char* sym_names,
3162     size_t sym_name_size,
3163     const unsigned char* versym,
3164     size_t versym_size,
3165     const std::vector<const char*>* version_map,
3166     Sized_relobj<64, true>::Symbols* sympointers,
3167     size_t* defined);
3168 #endif
3169
3170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3171 template
3172 void
3173 Symbol_table::define_with_copy_reloc<32>(
3174     Sized_symbol<32>* sym,
3175     Output_data* posd,
3176     elfcpp::Elf_types<32>::Elf_Addr value);
3177 #endif
3178
3179 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3180 template
3181 void
3182 Symbol_table::define_with_copy_reloc<64>(
3183     Sized_symbol<64>* sym,
3184     Output_data* posd,
3185     elfcpp::Elf_types<64>::Elf_Addr value);
3186 #endif
3187
3188 #ifdef HAVE_TARGET_32_LITTLE
3189 template
3190 void
3191 Warnings::issue_warning<32, false>(const Symbol* sym,
3192                                    const Relocate_info<32, false>* relinfo,
3193                                    size_t relnum, off_t reloffset) const;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_32_BIG
3197 template
3198 void
3199 Warnings::issue_warning<32, true>(const Symbol* sym,
3200                                   const Relocate_info<32, true>* relinfo,
3201                                   size_t relnum, off_t reloffset) const;
3202 #endif
3203
3204 #ifdef HAVE_TARGET_64_LITTLE
3205 template
3206 void
3207 Warnings::issue_warning<64, false>(const Symbol* sym,
3208                                    const Relocate_info<64, false>* relinfo,
3209                                    size_t relnum, off_t reloffset) const;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_BIG
3213 template
3214 void
3215 Warnings::issue_warning<64, true>(const Symbol* sym,
3216                                   const Relocate_info<64, true>* relinfo,
3217                                   size_t relnum, off_t reloffset) const;
3218 #endif
3219
3220 } // End namespace gold.