(Ada) ravenscar-thread.c: remove unwanted trailing \n in call to warning
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84   this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93   if (!parameters->options().do_demangle())
94     return name;
95
96   // cplus_demangle allocates memory for the result it returns,
97   // and returns NULL if the name is already demangled.
98   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99   if (demangled_name == NULL)
100     return name;
101
102   std::string retval(demangled_name);
103   free(demangled_name);
104   return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110   return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118                          const elfcpp::Sym<size, big_endian>& sym,
119                          unsigned int st_shndx, bool is_ordinary)
120 {
121   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122                     sym.get_st_visibility(), sym.get_st_nonvis());
123   this->u1_.object = object;
124   this->u2_.shndx = st_shndx;
125   this->is_ordinary_shndx_ = is_ordinary;
126   this->source_ = FROM_OBJECT;
127   this->in_reg_ = !object->is_dynamic();
128   this->in_dyn_ = object->is_dynamic();
129   this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137                               Output_data* od, elfcpp::STT type,
138                               elfcpp::STB binding, elfcpp::STV visibility,
139                               unsigned char nonvis, bool offset_is_from_end,
140                               bool is_predefined)
141 {
142   this->init_fields(name, version, type, binding, visibility, nonvis);
143   this->u1_.output_data = od;
144   this->u2_.offset_is_from_end = offset_is_from_end;
145   this->source_ = IN_OUTPUT_DATA;
146   this->in_reg_ = true;
147   this->in_real_elf_ = true;
148   this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156                                  Output_segment* os, elfcpp::STT type,
157                                  elfcpp::STB binding, elfcpp::STV visibility,
158                                  unsigned char nonvis,
159                                  Segment_offset_base offset_base,
160                                  bool is_predefined)
161 {
162   this->init_fields(name, version, type, binding, visibility, nonvis);
163   this->u1_.output_segment = os;
164   this->u2_.offset_base = offset_base;
165   this->source_ = IN_OUTPUT_SEGMENT;
166   this->in_reg_ = true;
167   this->in_real_elf_ = true;
168   this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176                            elfcpp::STT type, elfcpp::STB binding,
177                            elfcpp::STV visibility, unsigned char nonvis,
178                            bool is_predefined)
179 {
180   this->init_fields(name, version, type, binding, visibility, nonvis);
181   this->source_ = IS_CONSTANT;
182   this->in_reg_ = true;
183   this->in_real_elf_ = true;
184   this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192                             elfcpp::STT type, elfcpp::STB binding,
193                             elfcpp::STV visibility, unsigned char nonvis)
194 {
195   this->init_fields(name, version, type, binding, visibility, nonvis);
196   this->dynsym_index_ = -1U;
197   this->source_ = IS_UNDEFINED;
198   this->in_reg_ = true;
199   this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207   gold_assert(this->is_common());
208   this->source_ = IN_OUTPUT_DATA;
209   this->u1_.output_data = od;
210   this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219                                 Object* object,
220                                 const elfcpp::Sym<size, big_endian>& sym,
221                                 unsigned int st_shndx, bool is_ordinary)
222 {
223   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224   this->value_ = sym.get_st_value();
225   this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234                                      Output_data* od, Value_type value,
235                                      Size_type symsize, elfcpp::STT type,
236                                      elfcpp::STB binding,
237                                      elfcpp::STV visibility,
238                                      unsigned char nonvis,
239                                      bool offset_is_from_end,
240                                      bool is_predefined)
241 {
242   this->init_base_output_data(name, version, od, type, binding, visibility,
243                               nonvis, offset_is_from_end, is_predefined);
244   this->value_ = value;
245   this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254                                         Output_segment* os, Value_type value,
255                                         Size_type symsize, elfcpp::STT type,
256                                         elfcpp::STB binding,
257                                         elfcpp::STV visibility,
258                                         unsigned char nonvis,
259                                         Segment_offset_base offset_base,
260                                         bool is_predefined)
261 {
262   this->init_base_output_segment(name, version, os, type, binding, visibility,
263                                  nonvis, offset_base, is_predefined);
264   this->value_ = value;
265   this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274                                   Value_type value, Size_type symsize,
275                                   elfcpp::STT type, elfcpp::STB binding,
276                                   elfcpp::STV visibility, unsigned char nonvis,
277                                   bool is_predefined)
278 {
279   this->init_base_constant(name, version, type, binding, visibility, nonvis,
280                            is_predefined);
281   this->value_ = value;
282   this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290                                    Value_type value, elfcpp::STT type,
291                                    elfcpp::STB binding, elfcpp::STV visibility,
292                                    unsigned char nonvis)
293 {
294   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295   this->value_ = value;
296   this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version.  This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305   gold_assert(this->version_ != NULL);
306   std::string ret = this->name_;
307   ret.push_back('@');
308   if (this->is_def_)
309     ret.push_back('@');
310   ret += this->version_;
311   return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319   return (shndx == elfcpp::SHN_COMMON
320           || shndx == parameters->target().small_common_shndx()
321           || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330   this->allocate_base_common(od);
331   this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343   // If the symbol is only present on plugin files, the plugin decided we
344   // don't need it.
345   if (!this->in_real_elf())
346     return false;
347
348   // If the symbol is used by a dynamic relocation, we need to add it.
349   if (this->needs_dynsym_entry())
350     return true;
351
352   // If this symbol's section is not added, the symbol need not be added. 
353   // The section may have been GCed.  Note that export_dynamic is being 
354   // overridden here.  This should not be done for shared objects.
355   if (parameters->options().gc_sections() 
356       && !parameters->options().shared()
357       && this->source() == Symbol::FROM_OBJECT
358       && !this->object()->is_dynamic())
359     {
360       Relobj* relobj = static_cast<Relobj*>(this->object());
361       bool is_ordinary;
362       unsigned int shndx = this->shndx(&is_ordinary);
363       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364           && !relobj->is_section_included(shndx)
365           && !symtab->is_section_folded(relobj, shndx))
366         return false;
367     }
368
369   // If the symbol was forced dynamic in a --dynamic-list file
370   // or an --export-dynamic-symbol option, add it.
371   if (!this->is_from_dynobj()
372       && (parameters->options().in_dynamic_list(this->name())
373           || parameters->options().is_export_dynamic_symbol(this->name())))
374     {
375       if (!this->is_forced_local())
376         return true;
377       gold_warning(_("Cannot export local symbol '%s'"),
378                    this->demangled_name().c_str());
379       return false;
380     }
381
382   // If the symbol was forced local in a version script, do not add it.
383   if (this->is_forced_local())
384     return false;
385
386   // If dynamic-list-data was specified, add any STT_OBJECT.
387   if (parameters->options().dynamic_list_data()
388       && !this->is_from_dynobj()
389       && this->type() == elfcpp::STT_OBJECT)
390     return true;
391
392   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394   if ((parameters->options().dynamic_list_cpp_new()
395        || parameters->options().dynamic_list_cpp_typeinfo())
396       && !this->is_from_dynobj())
397     {
398       // TODO(csilvers): We could probably figure out if we're an operator
399       //                 new/delete or typeinfo without the need to demangle.
400       char* demangled_name = cplus_demangle(this->name(),
401                                             DMGL_ANSI | DMGL_PARAMS);
402       if (demangled_name == NULL)
403         {
404           // Not a C++ symbol, so it can't satisfy these flags
405         }
406       else if (parameters->options().dynamic_list_cpp_new()
407                && (strprefix(demangled_name, "operator new")
408                    || strprefix(demangled_name, "operator delete")))
409         {
410           free(demangled_name);
411           return true;
412         }
413       else if (parameters->options().dynamic_list_cpp_typeinfo()
414                && (strprefix(demangled_name, "typeinfo name for")
415                    || strprefix(demangled_name, "typeinfo for")))
416         {
417           free(demangled_name);
418           return true;
419         }
420       else
421         free(demangled_name);
422     }
423
424   // If exporting all symbols or building a shared library,
425   // or the symbol should be globally unique (GNU_UNIQUE),
426   // and the symbol is defined in a regular object and is
427   // externally visible, we need to add it.
428   if ((parameters->options().export_dynamic()
429        || parameters->options().shared()
430        || (parameters->options().gnu_unique()
431            && this->binding() == elfcpp::STB_GNU_UNIQUE))
432       && !this->is_from_dynobj()
433       && !this->is_undefined()
434       && this->is_externally_visible())
435     return true;
436
437   return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446   // If we are not generating an executable, then no final values are
447   // known, since they will change at runtime, with the exception of
448   // TLS symbols in a position-independent executable.
449   if ((parameters->options().output_is_position_independent()
450        || parameters->options().relocatable())
451       && !(this->type() == elfcpp::STT_TLS
452            && parameters->options().pie()))
453     return false;
454
455   // If the symbol is not from an object file, and is not undefined,
456   // then it is defined, and known.
457   if (this->source_ != FROM_OBJECT)
458     {
459       if (this->source_ != IS_UNDEFINED)
460         return true;
461     }
462   else
463     {
464       // If the symbol is from a dynamic object, then the final value
465       // is not known.
466       if (this->object()->is_dynamic())
467         return false;
468
469       // If the symbol is not undefined (it is defined or common),
470       // then the final value is known.
471       if (!this->is_undefined())
472         return true;
473     }
474
475   // If the symbol is undefined, then whether the final value is known
476   // depends on whether we are doing a static link.  If we are doing a
477   // dynamic link, then the final value could be filled in at runtime.
478   // This could reasonably be the case for a weak undefined symbol.
479   return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487   switch (this->source_)
488     {
489     case FROM_OBJECT:
490       {
491         unsigned int shndx = this->u2_.shndx;
492         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493           {
494             gold_assert(!this->u1_.object->is_dynamic());
495             gold_assert(this->u1_.object->pluginobj() == NULL);
496             Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497             return relobj->output_section(shndx);
498           }
499         return NULL;
500       }
501
502     case IN_OUTPUT_DATA:
503       return this->u1_.output_data->output_section();
504
505     case IN_OUTPUT_SEGMENT:
506     case IS_CONSTANT:
507     case IS_UNDEFINED:
508       return NULL;
509
510     default:
511       gold_unreachable();
512     }
513 }
514
515 // Set the symbol's output section.  This is used for symbols defined
516 // in scripts.  This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522   switch (this->source_)
523     {
524     case FROM_OBJECT:
525     case IN_OUTPUT_DATA:
526       gold_assert(this->output_section() == os);
527       break;
528     case IS_CONSTANT:
529       this->source_ = IN_OUTPUT_DATA;
530       this->u1_.output_data = os;
531       this->u2_.offset_is_from_end = false;
532       break;
533     case IN_OUTPUT_SEGMENT:
534     case IS_UNDEFINED:
535     default:
536       gold_unreachable();
537     }
538 }
539
540 // Set the symbol's output segment.  This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547   gold_assert(this->is_predefined_);
548   this->source_ = IN_OUTPUT_SEGMENT;
549   this->u1_.output_segment = os;
550   this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined.  This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560   this->source_ = IS_UNDEFINED;
561   this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567                            const Version_script_info& version_script)
568   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569     forwarders_(), commons_(), tls_commons_(), small_commons_(),
570     large_commons_(), forced_locals_(), warnings_(),
571     version_script_(version_script), gc_(NULL), icf_(NULL),
572     target_symbols_()
573 {
574   namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function.  This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586                                           const Symbol_table_key& k2) const
587 {
588   return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594   return (parameters->options().icf_enabled()
595           && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void 
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604   for (options::String_set::const_iterator p =
605          parameters->options().undefined_begin();
606        p != parameters->options().undefined_end();
607        ++p)
608     {
609       const char* name = p->c_str();
610       Symbol* sym = this->lookup(name);
611       gold_assert(sym != NULL);
612       if (sym->source() == Symbol::FROM_OBJECT 
613           && !sym->object()->is_dynamic())
614         {
615           this->gc_mark_symbol(sym);
616         }
617     }
618
619   for (options::String_set::const_iterator p =
620          parameters->options().export_dynamic_symbol_begin();
621        p != parameters->options().export_dynamic_symbol_end();
622        ++p)
623     {
624       const char* name = p->c_str();
625       Symbol* sym = this->lookup(name);
626       // It's not an error if a symbol named by --export-dynamic-symbol
627       // is undefined.
628       if (sym != NULL
629           && sym->source() == Symbol::FROM_OBJECT 
630           && !sym->object()->is_dynamic())
631         {
632           this->gc_mark_symbol(sym);
633         }
634     }
635
636   for (Script_options::referenced_const_iterator p =
637          layout->script_options()->referenced_begin();
638        p != layout->script_options()->referenced_end();
639        ++p)
640     {
641       Symbol* sym = this->lookup(p->c_str());
642       gold_assert(sym != NULL);
643       if (sym->source() == Symbol::FROM_OBJECT
644           && !sym->object()->is_dynamic())
645         {
646           this->gc_mark_symbol(sym);
647         }
648     }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654   // Add the object and section to the work list.
655   bool is_ordinary;
656   unsigned int shndx = sym->shndx(&is_ordinary);
657   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658     {
659       gold_assert(this->gc_!= NULL);
660       Relobj* relobj = static_cast<Relobj*>(sym->object());
661       this->gc_->worklist().push_back(Section_id(relobj, shndx));
662     }
663   parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void 
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672       && !sym->object()->is_dynamic())
673     this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681   gold_assert(from != to);
682   gold_assert(!from->is_forwarder() && !to->is_forwarder());
683   this->forwarders_[from] = to;
684   from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692   gold_assert(from->is_forwarder());
693   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694     this->forwarders_.find(from);
695   gold_assert(p != this->forwarders_.end());
696   return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704   Stringpool::Key name_key;
705   name = this->namepool_.find(name, &name_key);
706   if (name == NULL)
707     return NULL;
708
709   Stringpool::Key version_key = 0;
710   if (version != NULL)
711     {
712       version = this->namepool_.find(version, &version_key);
713       if (version == NULL)
714         return NULL;
715     }
716
717   Symbol_table_key key(name_key, version_key);
718   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719   if (p == this->table_.end())
720     return NULL;
721   return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol.  This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version.  Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735   elfcpp::Sym_write<size, big_endian> esym(buf);
736   // We don't bother to set the st_name or the st_shndx field.
737   esym.put_st_value(from->value());
738   esym.put_st_size(from->symsize());
739   esym.put_st_info(from->binding(), from->type());
740   esym.put_st_other(from->visibility(), from->nonvis());
741   bool is_ordinary;
742   unsigned int shndx = from->shndx(&is_ordinary);
743   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744                 from->version(), true);
745   if (from->in_reg())
746     to->set_in_reg();
747   if (from->in_dyn())
748     to->set_in_dyn();
749   if (parameters->options().gc_sections())
750     this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759   if (!sym->is_defined() && !sym->is_common())
760     return;
761   if (sym->is_forced_local())
762     {
763       // We already got this one.
764       return;
765     }
766   sym->set_is_forced_local();
767   this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777   // For some targets, we need to ignore a specific character when
778   // wrapping, and add it back later.
779   char prefix = '\0';
780   if (name[0] == parameters->target().wrap_char())
781     {
782       prefix = name[0];
783       ++name;
784     }
785
786   if (parameters->options().is_wrap(name))
787     {
788       // Turn NAME into __wrap_NAME.
789       std::string s;
790       if (prefix != '\0')
791         s += prefix;
792       s += "__wrap_";
793       s += name;
794
795       // This will give us both the old and new name in NAMEPOOL_, but
796       // that is OK.  Only the versions we need will wind up in the
797       // real string table in the output file.
798       return this->namepool_.add(s.c_str(), true, name_key);
799     }
800
801   const char* const real_prefix = "__real_";
802   const size_t real_prefix_length = strlen(real_prefix);
803   if (strncmp(name, real_prefix, real_prefix_length) == 0
804       && parameters->options().is_wrap(name + real_prefix_length))
805     {
806       // Turn __real_NAME into NAME.
807       std::string s;
808       if (prefix != '\0')
809         s += prefix;
810       s += name + real_prefix_length;
811       return this->namepool_.add(s.c_str(), true, name_key);
812     }
813
814   return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version.  SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826                                      bool default_is_new,
827                                      Symbol_table_type::iterator pdef)
828 {
829   if (default_is_new)
830     {
831       // This is the first time we have seen NAME/NULL.  Make
832       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833       // version.
834       pdef->second = sym;
835       sym->set_is_default();
836     }
837   else if (pdef->second == sym)
838     {
839       // NAME/NULL already points to NAME/VERSION.  Don't mark the
840       // symbol as the default if it is not already the default.
841     }
842   else
843     {
844       // This is the unfortunate case where we already have entries
845       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
846       // NAME/VERSION where VERSION is the default version.  We have
847       // already resolved this new symbol with the existing
848       // NAME/VERSION symbol.
849
850       // It's possible that NAME/NULL and NAME/VERSION are both
851       // defined in regular objects.  This can only happen if one
852       // object file defines foo and another defines foo@@ver.  This
853       // is somewhat obscure, but we call it a multiple definition
854       // error.
855
856       // It's possible that NAME/NULL actually has a version, in which
857       // case it won't be the same as VERSION.  This happens with
858       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
859       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
860       // then see an unadorned t2_2 in an object file and give it
861       // version VER1 from the version script.  This looks like a
862       // default definition for VER1, so it looks like we should merge
863       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
864       // not obvious that this is an error, either.  So we just punt.
865
866       // If one of the symbols has non-default visibility, and the
867       // other is defined in a shared object, then they are different
868       // symbols.
869
870       // If the two symbols are from different shared objects,
871       // they are different symbols.
872
873       // Otherwise, we just resolve the symbols as though they were
874       // the same.
875
876       if (pdef->second->version() != NULL)
877         gold_assert(pdef->second->version() != sym->version());
878       else if (sym->visibility() != elfcpp::STV_DEFAULT
879                && pdef->second->is_from_dynobj())
880         ;
881       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882                && sym->is_from_dynobj())
883         ;
884       else if (pdef->second->is_from_dynobj()
885                && sym->is_from_dynobj()
886                && pdef->second->is_defined()
887                && pdef->second->object() != sym->object())
888         ;
889       else
890         {
891           const Sized_symbol<size>* symdef;
892           symdef = this->get_sized_symbol<size>(pdef->second);
893           Symbol_table::resolve<size, big_endian>(sym, symdef);
894           this->make_forwarder(pdef->second, sym);
895           pdef->second = sym;
896           sym->set_is_default();
897         }
898     }
899 }
900
901 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
902 // name and VERSION is the version; both are canonicalized.  DEF is
903 // whether this is the default version.  ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol.  That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol.  This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION.  If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure.  That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table.  We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files.  So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code.  ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934                               const char* name,
935                               Stringpool::Key name_key,
936                               const char* version,
937                               Stringpool::Key version_key,
938                               bool is_default_version,
939                               const elfcpp::Sym<size, big_endian>& sym,
940                               unsigned int st_shndx,
941                               bool is_ordinary,
942                               unsigned int orig_st_shndx)
943 {
944   // Print a message if this symbol is being traced.
945   if (parameters->options().is_trace_symbol(name))
946     {
947       if (orig_st_shndx == elfcpp::SHN_UNDEF)
948         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949       else
950         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951     }
952
953   // For an undefined symbol, we may need to adjust the name using
954   // --wrap.
955   if (orig_st_shndx == elfcpp::SHN_UNDEF
956       && parameters->options().any_wrap())
957     {
958       const char* wrap_name = this->wrap_symbol(name, &name_key);
959       if (wrap_name != name)
960         {
961           // If we see a reference to malloc with version GLIBC_2.0,
962           // and we turn it into a reference to __wrap_malloc, then we
963           // discard the version number.  Otherwise the user would be
964           // required to specify the correct version for
965           // __wrap_malloc.
966           version = NULL;
967           version_key = 0;
968           name = wrap_name;
969         }
970     }
971
972   Symbol* const snull = NULL;
973   std::pair<typename Symbol_table_type::iterator, bool> ins =
974     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975                                        snull));
976
977   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978     std::make_pair(this->table_.end(), false);
979   if (is_default_version)
980     {
981       const Stringpool::Key vnull_key = 0;
982       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983                                                                      vnull_key),
984                                                       snull));
985     }
986
987   // ins.first: an iterator, which is a pointer to a pair.
988   // ins.first->first: the key (a pair of name and version).
989   // ins.first->second: the value (Symbol*).
990   // ins.second: true if new entry was inserted, false if not.
991
992   Sized_symbol<size>* ret;
993   bool was_undefined;
994   bool was_common;
995   if (!ins.second)
996     {
997       // We already have an entry for NAME/VERSION.
998       ret = this->get_sized_symbol<size>(ins.first->second);
999       gold_assert(ret != NULL);
1000
1001       was_undefined = ret->is_undefined();
1002       // Commons from plugins are just placeholders.
1003       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006                     version, is_default_version);
1007       if (parameters->options().gc_sections())
1008         this->gc_mark_dyn_syms(ret);
1009
1010       if (is_default_version)
1011         this->define_default_version<size, big_endian>(ret, insdefault.second,
1012                                                        insdefault.first);
1013       else
1014         {
1015           bool dummy;
1016           if (version != NULL
1017               && ret->source() == Symbol::FROM_OBJECT
1018               && ret->object() == object
1019               && is_ordinary
1020               && ret->shndx(&dummy) == st_shndx
1021               && ret->is_default())
1022             {
1023               // We have seen NAME/VERSION already, and marked it as the
1024               // default version, but now we see a definition for
1025               // NAME/VERSION that is not the default version. This can
1026               // happen when the assembler generates two symbols for
1027               // a symbol as a result of a ".symver foo,foo@VER"
1028               // directive. We see the first unversioned symbol and
1029               // we may mark it as the default version (from a
1030               // version script); then we see the second versioned
1031               // symbol and we need to override the first.
1032               // In any other case, the two symbols should have generated
1033               // a multiple definition error.
1034               // (See PR gold/18703.)
1035               ret->set_is_not_default();
1036               const Stringpool::Key vnull_key = 0;
1037               this->table_.erase(std::make_pair(name_key, vnull_key));
1038             }
1039         }
1040     }
1041   else
1042     {
1043       // This is the first time we have seen NAME/VERSION.
1044       gold_assert(ins.first->second == NULL);
1045
1046       if (is_default_version && !insdefault.second)
1047         {
1048           // We already have an entry for NAME/NULL.  If we override
1049           // it, then change it to NAME/VERSION.
1050           ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052           was_undefined = ret->is_undefined();
1053           // Commons from plugins are just placeholders.
1054           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057                         version, is_default_version);
1058           if (parameters->options().gc_sections())
1059             this->gc_mark_dyn_syms(ret);
1060           ins.first->second = ret;
1061         }
1062       else
1063         {
1064           was_undefined = false;
1065           was_common = false;
1066
1067           Sized_target<size, big_endian>* target =
1068             parameters->sized_target<size, big_endian>();
1069           if (!target->has_make_symbol())
1070             ret = new Sized_symbol<size>();
1071           else
1072             {
1073               ret = target->make_symbol(name, sym.get_st_type(), object,
1074                                         st_shndx, sym.get_st_value());
1075               if (ret == NULL)
1076                 {
1077                   // This means that we don't want a symbol table
1078                   // entry after all.
1079                   if (!is_default_version)
1080                     this->table_.erase(ins.first);
1081                   else
1082                     {
1083                       this->table_.erase(insdefault.first);
1084                       // Inserting INSDEFAULT invalidated INS.
1085                       this->table_.erase(std::make_pair(name_key,
1086                                                         version_key));
1087                     }
1088                   return NULL;
1089                 }
1090             }
1091
1092           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094           ins.first->second = ret;
1095           if (is_default_version)
1096             {
1097               // This is the first time we have seen NAME/NULL.  Point
1098               // it at the new entry for NAME/VERSION.
1099               gold_assert(insdefault.second);
1100               insdefault.first->second = ret;
1101             }
1102         }
1103
1104       if (is_default_version)
1105         ret->set_is_default();
1106     }
1107
1108   // Record every time we see a new undefined symbol, to speed up
1109   // archive groups.
1110   if (!was_undefined && ret->is_undefined())
1111     {
1112       ++this->saw_undefined_;
1113       if (parameters->options().has_plugins())
1114         parameters->options().plugins()->new_undefined_symbol(ret);
1115     }
1116
1117   // Keep track of common symbols, to speed up common symbol
1118   // allocation.  Don't record commons from plugin objects;
1119   // we need to wait until we see the real symbol in the
1120   // replacement file.
1121   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122     {
1123       if (ret->type() == elfcpp::STT_TLS)
1124         this->tls_commons_.push_back(ret);
1125       else if (!is_ordinary
1126                && st_shndx == parameters->target().small_common_shndx())
1127         this->small_commons_.push_back(ret);
1128       else if (!is_ordinary
1129                && st_shndx == parameters->target().large_common_shndx())
1130         this->large_commons_.push_back(ret);
1131       else
1132         this->commons_.push_back(ret);
1133     }
1134
1135   // If we're not doing a relocatable link, then any symbol with
1136   // hidden or internal visibility is local.
1137   if ((ret->visibility() == elfcpp::STV_HIDDEN
1138        || ret->visibility() == elfcpp::STV_INTERNAL)
1139       && (ret->binding() == elfcpp::STB_GLOBAL
1140           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1141           || ret->binding() == elfcpp::STB_WEAK)
1142       && !parameters->options().relocatable())
1143     this->force_local(ret);
1144
1145   return ret;
1146 }
1147
1148 // Add all the symbols in a relocatable object to the hash table.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Symbol_table::add_from_relobj(
1153     Sized_relobj_file<size, big_endian>* relobj,
1154     const unsigned char* syms,
1155     size_t count,
1156     size_t symndx_offset,
1157     const char* sym_names,
1158     size_t sym_name_size,
1159     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1160     size_t* defined)
1161 {
1162   *defined = 0;
1163
1164   gold_assert(size == parameters->target().get_size());
1165
1166   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167
1168   const bool just_symbols = relobj->just_symbols();
1169
1170   const unsigned char* p = syms;
1171   for (size_t i = 0; i < count; ++i, p += sym_size)
1172     {
1173       (*sympointers)[i] = NULL;
1174
1175       elfcpp::Sym<size, big_endian> sym(p);
1176
1177       unsigned int st_name = sym.get_st_name();
1178       if (st_name >= sym_name_size)
1179         {
1180           relobj->error(_("bad global symbol name offset %u at %zu"),
1181                         st_name, i);
1182           continue;
1183         }
1184
1185       const char* name = sym_names + st_name;
1186
1187       if (!parameters->options().relocatable()
1188           && name[0] == '_'
1189           && name[1] == '_'
1190           && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1191         gold_info(_("%s: plugin needed to handle lto object"),
1192                   relobj->name().c_str());
1193
1194       bool is_ordinary;
1195       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1196                                                        sym.get_st_shndx(),
1197                                                        &is_ordinary);
1198       unsigned int orig_st_shndx = st_shndx;
1199       if (!is_ordinary)
1200         orig_st_shndx = elfcpp::SHN_UNDEF;
1201
1202       if (st_shndx != elfcpp::SHN_UNDEF)
1203         ++*defined;
1204
1205       // A symbol defined in a section which we are not including must
1206       // be treated as an undefined symbol.
1207       bool is_defined_in_discarded_section = false;
1208       if (st_shndx != elfcpp::SHN_UNDEF
1209           && is_ordinary
1210           && !relobj->is_section_included(st_shndx)
1211           && !this->is_section_folded(relobj, st_shndx))
1212         {
1213           st_shndx = elfcpp::SHN_UNDEF;
1214           is_defined_in_discarded_section = true;
1215         }
1216
1217       // In an object file, an '@' in the name separates the symbol
1218       // name from the version name.  If there are two '@' characters,
1219       // this is the default version.
1220       const char* ver = strchr(name, '@');
1221       Stringpool::Key ver_key = 0;
1222       int namelen = 0;
1223       // IS_DEFAULT_VERSION: is the version default?
1224       // IS_FORCED_LOCAL: is the symbol forced local?
1225       bool is_default_version = false;
1226       bool is_forced_local = false;
1227
1228       // FIXME: For incremental links, we don't store version information,
1229       // so we need to ignore version symbols for now.
1230       if (parameters->incremental_update() && ver != NULL)
1231         {
1232           namelen = ver - name;
1233           ver = NULL;
1234         }
1235
1236       if (ver != NULL)
1237         {
1238           // The symbol name is of the form foo@VERSION or foo@@VERSION
1239           namelen = ver - name;
1240           ++ver;
1241           if (*ver == '@')
1242             {
1243               is_default_version = true;
1244               ++ver;
1245             }
1246           ver = this->namepool_.add(ver, true, &ver_key);
1247         }
1248       // We don't want to assign a version to an undefined symbol,
1249       // even if it is listed in the version script.  FIXME: What
1250       // about a common symbol?
1251       else
1252         {
1253           namelen = strlen(name);
1254           if (!this->version_script_.empty()
1255               && st_shndx != elfcpp::SHN_UNDEF)
1256             {
1257               // The symbol name did not have a version, but the
1258               // version script may assign a version anyway.
1259               std::string version;
1260               bool is_global;
1261               if (this->version_script_.get_symbol_version(name, &version,
1262                                                            &is_global))
1263                 {
1264                   if (!is_global)
1265                     is_forced_local = true;
1266                   else if (!version.empty())
1267                     {
1268                       ver = this->namepool_.add_with_length(version.c_str(),
1269                                                             version.length(),
1270                                                             true,
1271                                                             &ver_key);
1272                       is_default_version = true;
1273                     }
1274                 }
1275             }
1276         }
1277
1278       elfcpp::Sym<size, big_endian>* psym = &sym;
1279       unsigned char symbuf[sym_size];
1280       elfcpp::Sym<size, big_endian> sym2(symbuf);
1281       if (just_symbols)
1282         {
1283           memcpy(symbuf, p, sym_size);
1284           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1285           if (orig_st_shndx != elfcpp::SHN_UNDEF
1286               && is_ordinary
1287               && relobj->e_type() == elfcpp::ET_REL)
1288             {
1289               // Symbol values in relocatable object files are section
1290               // relative.  This is normally what we want, but since here
1291               // we are converting the symbol to absolute we need to add
1292               // the section address.  The section address in an object
1293               // file is normally zero, but people can use a linker
1294               // script to change it.
1295               sw.put_st_value(sym.get_st_value()
1296                               + relobj->section_address(orig_st_shndx));
1297             }
1298           st_shndx = elfcpp::SHN_ABS;
1299           is_ordinary = false;
1300           psym = &sym2;
1301         }
1302
1303       // Fix up visibility if object has no-export set.
1304       if (relobj->no_export()
1305           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1306         {
1307           // We may have copied symbol already above.
1308           if (psym != &sym2)
1309             {
1310               memcpy(symbuf, p, sym_size);
1311               psym = &sym2;
1312             }
1313
1314           elfcpp::STV visibility = sym2.get_st_visibility();
1315           if (visibility == elfcpp::STV_DEFAULT
1316               || visibility == elfcpp::STV_PROTECTED)
1317             {
1318               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1319               unsigned char nonvis = sym2.get_st_nonvis();
1320               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1321             }
1322         }
1323
1324       Stringpool::Key name_key;
1325       name = this->namepool_.add_with_length(name, namelen, true,
1326                                              &name_key);
1327
1328       Sized_symbol<size>* res;
1329       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1330                                   is_default_version, *psym, st_shndx,
1331                                   is_ordinary, orig_st_shndx);
1332
1333       if (res == NULL)
1334         continue;
1335       
1336       if (is_forced_local)
1337         this->force_local(res);
1338
1339       // Do not treat this symbol as garbage if this symbol will be
1340       // exported to the dynamic symbol table.  This is true when
1341       // building a shared library or using --export-dynamic and
1342       // the symbol is externally visible.
1343       if (parameters->options().gc_sections()
1344           && res->is_externally_visible()
1345           && !res->is_from_dynobj()
1346           && (parameters->options().shared()
1347               || parameters->options().export_dynamic()
1348               || parameters->options().in_dynamic_list(res->name())))
1349         this->gc_mark_symbol(res);
1350
1351       if (is_defined_in_discarded_section)
1352         res->set_is_defined_in_discarded_section();
1353
1354       (*sympointers)[i] = res;
1355     }
1356 }
1357
1358 // Add a symbol from a plugin-claimed file.
1359
1360 template<int size, bool big_endian>
1361 Symbol*
1362 Symbol_table::add_from_pluginobj(
1363     Sized_pluginobj<size, big_endian>* obj,
1364     const char* name,
1365     const char* ver,
1366     elfcpp::Sym<size, big_endian>* sym)
1367 {
1368   unsigned int st_shndx = sym->get_st_shndx();
1369   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1370
1371   Stringpool::Key ver_key = 0;
1372   bool is_default_version = false;
1373   bool is_forced_local = false;
1374
1375   if (ver != NULL)
1376     {
1377       ver = this->namepool_.add(ver, true, &ver_key);
1378     }
1379   // We don't want to assign a version to an undefined symbol,
1380   // even if it is listed in the version script.  FIXME: What
1381   // about a common symbol?
1382   else
1383     {
1384       if (!this->version_script_.empty()
1385           && st_shndx != elfcpp::SHN_UNDEF)
1386         {
1387           // The symbol name did not have a version, but the
1388           // version script may assign a version anyway.
1389           std::string version;
1390           bool is_global;
1391           if (this->version_script_.get_symbol_version(name, &version,
1392                                                        &is_global))
1393             {
1394               if (!is_global)
1395                 is_forced_local = true;
1396               else if (!version.empty())
1397                 {
1398                   ver = this->namepool_.add_with_length(version.c_str(),
1399                                                         version.length(),
1400                                                         true,
1401                                                         &ver_key);
1402                   is_default_version = true;
1403                 }
1404             }
1405         }
1406     }
1407
1408   Stringpool::Key name_key;
1409   name = this->namepool_.add(name, true, &name_key);
1410
1411   Sized_symbol<size>* res;
1412   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1413                               is_default_version, *sym, st_shndx,
1414                               is_ordinary, st_shndx);
1415
1416   if (res == NULL)
1417     return NULL;
1418
1419   if (is_forced_local)
1420     this->force_local(res);
1421
1422   return res;
1423 }
1424
1425 // Add all the symbols in a dynamic object to the hash table.
1426
1427 template<int size, bool big_endian>
1428 void
1429 Symbol_table::add_from_dynobj(
1430     Sized_dynobj<size, big_endian>* dynobj,
1431     const unsigned char* syms,
1432     size_t count,
1433     const char* sym_names,
1434     size_t sym_name_size,
1435     const unsigned char* versym,
1436     size_t versym_size,
1437     const std::vector<const char*>* version_map,
1438     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1439     size_t* defined)
1440 {
1441   *defined = 0;
1442
1443   gold_assert(size == parameters->target().get_size());
1444
1445   if (dynobj->just_symbols())
1446     {
1447       gold_error(_("--just-symbols does not make sense with a shared object"));
1448       return;
1449     }
1450
1451   // FIXME: For incremental links, we don't store version information,
1452   // so we need to ignore version symbols for now.
1453   if (parameters->incremental_update())
1454     versym = NULL;
1455
1456   if (versym != NULL && versym_size / 2 < count)
1457     {
1458       dynobj->error(_("too few symbol versions"));
1459       return;
1460     }
1461
1462   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1463
1464   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1465   // weak aliases.  This is necessary because if the dynamic object
1466   // provides the same variable under two names, one of which is a
1467   // weak definition, and the regular object refers to the weak
1468   // definition, we have to put both the weak definition and the
1469   // strong definition into the dynamic symbol table.  Given a weak
1470   // definition, the only way that we can find the corresponding
1471   // strong definition, if any, is to search the symbol table.
1472   std::vector<Sized_symbol<size>*> object_symbols;
1473
1474   const unsigned char* p = syms;
1475   const unsigned char* vs = versym;
1476   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1477     {
1478       elfcpp::Sym<size, big_endian> sym(p);
1479
1480       if (sympointers != NULL)
1481         (*sympointers)[i] = NULL;
1482
1483       // Ignore symbols with local binding or that have
1484       // internal or hidden visibility.
1485       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1486           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1487           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1488         continue;
1489
1490       // A protected symbol in a shared library must be treated as a
1491       // normal symbol when viewed from outside the shared library.
1492       // Implement this by overriding the visibility here.
1493       // Likewise, an IFUNC symbol in a shared library must be treated
1494       // as a normal FUNC symbol.
1495       elfcpp::Sym<size, big_endian>* psym = &sym;
1496       unsigned char symbuf[sym_size];
1497       elfcpp::Sym<size, big_endian> sym2(symbuf);
1498       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1499           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1500         {
1501           memcpy(symbuf, p, sym_size);
1502           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1503           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1504             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1505           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1506             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1507           psym = &sym2;
1508         }
1509
1510       unsigned int st_name = psym->get_st_name();
1511       if (st_name >= sym_name_size)
1512         {
1513           dynobj->error(_("bad symbol name offset %u at %zu"),
1514                         st_name, i);
1515           continue;
1516         }
1517
1518       const char* name = sym_names + st_name;
1519
1520       bool is_ordinary;
1521       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1522                                                        &is_ordinary);
1523
1524       if (st_shndx != elfcpp::SHN_UNDEF)
1525         ++*defined;
1526
1527       Sized_symbol<size>* res;
1528
1529       if (versym == NULL)
1530         {
1531           Stringpool::Key name_key;
1532           name = this->namepool_.add(name, true, &name_key);
1533           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1534                                       false, *psym, st_shndx, is_ordinary,
1535                                       st_shndx);
1536         }
1537       else
1538         {
1539           // Read the version information.
1540
1541           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1542
1543           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1544           v &= elfcpp::VERSYM_VERSION;
1545
1546           // The Sun documentation says that V can be VER_NDX_LOCAL,
1547           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1548           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1549           // The old GNU linker will happily generate VER_NDX_LOCAL
1550           // for an undefined symbol.  I don't know what the Sun
1551           // linker will generate.
1552
1553           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1554               && st_shndx != elfcpp::SHN_UNDEF)
1555             {
1556               // This symbol should not be visible outside the object.
1557               continue;
1558             }
1559
1560           // At this point we are definitely going to add this symbol.
1561           Stringpool::Key name_key;
1562           name = this->namepool_.add(name, true, &name_key);
1563
1564           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1565               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1566             {
1567               // This symbol does not have a version.
1568               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1569                                           false, *psym, st_shndx, is_ordinary,
1570                                           st_shndx);
1571             }
1572           else
1573             {
1574               if (v >= version_map->size())
1575                 {
1576                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1577                                 i, v);
1578                   continue;
1579                 }
1580
1581               const char* version = (*version_map)[v];
1582               if (version == NULL)
1583                 {
1584                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1585                                 i, v);
1586                   continue;
1587                 }
1588
1589               Stringpool::Key version_key;
1590               version = this->namepool_.add(version, true, &version_key);
1591
1592               // If this is an absolute symbol, and the version name
1593               // and symbol name are the same, then this is the
1594               // version definition symbol.  These symbols exist to
1595               // support using -u to pull in particular versions.  We
1596               // do not want to record a version for them.
1597               if (st_shndx == elfcpp::SHN_ABS
1598                   && !is_ordinary
1599                   && name_key == version_key)
1600                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1601                                             false, *psym, st_shndx, is_ordinary,
1602                                             st_shndx);
1603               else
1604                 {
1605                   const bool is_default_version =
1606                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1607                   res = this->add_from_object(dynobj, name, name_key, version,
1608                                               version_key, is_default_version,
1609                                               *psym, st_shndx,
1610                                               is_ordinary, st_shndx);
1611                 }
1612             }
1613         }
1614
1615       if (res == NULL)
1616         continue;
1617
1618       // Note that it is possible that RES was overridden by an
1619       // earlier object, in which case it can't be aliased here.
1620       if (st_shndx != elfcpp::SHN_UNDEF
1621           && is_ordinary
1622           && psym->get_st_type() == elfcpp::STT_OBJECT
1623           && res->source() == Symbol::FROM_OBJECT
1624           && res->object() == dynobj)
1625         object_symbols.push_back(res);
1626
1627       // If the symbol has protected visibility in the dynobj,
1628       // mark it as such if it was not overridden.
1629       if (res->source() == Symbol::FROM_OBJECT
1630           && res->object() == dynobj
1631           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1632         res->set_is_protected();
1633
1634       if (sympointers != NULL)
1635         (*sympointers)[i] = res;
1636     }
1637
1638   this->record_weak_aliases(&object_symbols);
1639 }
1640
1641 // Add a symbol from a incremental object file.
1642
1643 template<int size, bool big_endian>
1644 Sized_symbol<size>*
1645 Symbol_table::add_from_incrobj(
1646     Object* obj,
1647     const char* name,
1648     const char* ver,
1649     elfcpp::Sym<size, big_endian>* sym)
1650 {
1651   unsigned int st_shndx = sym->get_st_shndx();
1652   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1653
1654   Stringpool::Key ver_key = 0;
1655   bool is_default_version = false;
1656
1657   Stringpool::Key name_key;
1658   name = this->namepool_.add(name, true, &name_key);
1659
1660   Sized_symbol<size>* res;
1661   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1662                               is_default_version, *sym, st_shndx,
1663                               is_ordinary, st_shndx);
1664
1665   return res;
1666 }
1667
1668 // This is used to sort weak aliases.  We sort them first by section
1669 // index, then by offset, then by weak ahead of strong.
1670
1671 template<int size>
1672 class Weak_alias_sorter
1673 {
1674  public:
1675   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1676 };
1677
1678 template<int size>
1679 bool
1680 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1681                                     const Sized_symbol<size>* s2) const
1682 {
1683   bool is_ordinary;
1684   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1685   gold_assert(is_ordinary);
1686   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1687   gold_assert(is_ordinary);
1688   if (s1_shndx != s2_shndx)
1689     return s1_shndx < s2_shndx;
1690
1691   if (s1->value() != s2->value())
1692     return s1->value() < s2->value();
1693   if (s1->binding() != s2->binding())
1694     {
1695       if (s1->binding() == elfcpp::STB_WEAK)
1696         return true;
1697       if (s2->binding() == elfcpp::STB_WEAK)
1698         return false;
1699     }
1700   return std::string(s1->name()) < std::string(s2->name());
1701 }
1702
1703 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1704 // for any weak aliases, and record them so that if we add the weak
1705 // alias to the dynamic symbol table, we also add the corresponding
1706 // strong symbol.
1707
1708 template<int size>
1709 void
1710 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1711 {
1712   // Sort the vector by section index, then by offset, then by weak
1713   // ahead of strong.
1714   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1715
1716   // Walk through the vector.  For each weak definition, record
1717   // aliases.
1718   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1719          symbols->begin();
1720        p != symbols->end();
1721        ++p)
1722     {
1723       if ((*p)->binding() != elfcpp::STB_WEAK)
1724         continue;
1725
1726       // Build a circular list of weak aliases.  Each symbol points to
1727       // the next one in the circular list.
1728
1729       Sized_symbol<size>* from_sym = *p;
1730       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1731       for (q = p + 1; q != symbols->end(); ++q)
1732         {
1733           bool dummy;
1734           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1735               || (*q)->value() != from_sym->value())
1736             break;
1737
1738           this->weak_aliases_[from_sym] = *q;
1739           from_sym->set_has_alias();
1740           from_sym = *q;
1741         }
1742
1743       if (from_sym != *p)
1744         {
1745           this->weak_aliases_[from_sym] = *p;
1746           from_sym->set_has_alias();
1747         }
1748
1749       p = q - 1;
1750     }
1751 }
1752
1753 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1754 // true, then only create the symbol if there is a reference to it.
1755 // If this does not return NULL, it sets *POLDSYM to the existing
1756 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1757 // resolve the newly created symbol to the old one.  This
1758 // canonicalizes *PNAME and *PVERSION.
1759
1760 template<int size, bool big_endian>
1761 Sized_symbol<size>*
1762 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1763                                     bool only_if_ref,
1764                                     elfcpp::STV visibility,
1765                                     Sized_symbol<size>** poldsym,
1766                                     bool* resolve_oldsym, bool is_forced_local)
1767 {
1768   *resolve_oldsym = false;
1769   *poldsym = NULL;
1770
1771   // If the caller didn't give us a version, see if we get one from
1772   // the version script.
1773   std::string v;
1774   bool is_default_version = false;
1775   if (!is_forced_local && *pversion == NULL)
1776     {
1777       bool is_global;
1778       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1779         {
1780           if (is_global && !v.empty())
1781             {
1782               *pversion = v.c_str();
1783               // If we get the version from a version script, then we
1784               // are also the default version.
1785               is_default_version = true;
1786             }
1787         }
1788     }
1789
1790   Symbol* oldsym;
1791   Sized_symbol<size>* sym;
1792
1793   bool add_to_table = false;
1794   typename Symbol_table_type::iterator add_loc = this->table_.end();
1795   bool add_def_to_table = false;
1796   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1797
1798   if (only_if_ref)
1799     {
1800       oldsym = this->lookup(*pname, *pversion);
1801       if (oldsym == NULL && is_default_version)
1802         oldsym = this->lookup(*pname, NULL);
1803       if (oldsym == NULL)
1804         return NULL;
1805       if (!oldsym->is_undefined())
1806         {
1807           // Skip if the old definition is from a regular object.
1808           if (!oldsym->is_from_dynobj())
1809             return NULL;
1810
1811           // If the symbol has hidden or internal visibility, ignore
1812           // definition and reference from a dynamic object.
1813           if ((visibility == elfcpp::STV_HIDDEN
1814                || visibility == elfcpp::STV_INTERNAL)
1815               && !oldsym->in_reg())
1816             return NULL;
1817         }
1818
1819       *pname = oldsym->name();
1820       if (is_default_version)
1821         *pversion = this->namepool_.add(*pversion, true, NULL);
1822       else
1823         *pversion = oldsym->version();
1824     }
1825   else
1826     {
1827       // Canonicalize NAME and VERSION.
1828       Stringpool::Key name_key;
1829       *pname = this->namepool_.add(*pname, true, &name_key);
1830
1831       Stringpool::Key version_key = 0;
1832       if (*pversion != NULL)
1833         *pversion = this->namepool_.add(*pversion, true, &version_key);
1834
1835       Symbol* const snull = NULL;
1836       std::pair<typename Symbol_table_type::iterator, bool> ins =
1837         this->table_.insert(std::make_pair(std::make_pair(name_key,
1838                                                           version_key),
1839                                            snull));
1840
1841       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1842         std::make_pair(this->table_.end(), false);
1843       if (is_default_version)
1844         {
1845           const Stringpool::Key vnull = 0;
1846           insdefault =
1847             this->table_.insert(std::make_pair(std::make_pair(name_key,
1848                                                               vnull),
1849                                                snull));
1850         }
1851
1852       if (!ins.second)
1853         {
1854           // We already have a symbol table entry for NAME/VERSION.
1855           oldsym = ins.first->second;
1856           gold_assert(oldsym != NULL);
1857
1858           if (is_default_version)
1859             {
1860               Sized_symbol<size>* soldsym =
1861                 this->get_sized_symbol<size>(oldsym);
1862               this->define_default_version<size, big_endian>(soldsym,
1863                                                              insdefault.second,
1864                                                              insdefault.first);
1865             }
1866         }
1867       else
1868         {
1869           // We haven't seen this symbol before.
1870           gold_assert(ins.first->second == NULL);
1871
1872           add_to_table = true;
1873           add_loc = ins.first;
1874
1875           if (is_default_version && !insdefault.second)
1876             {
1877               // We are adding NAME/VERSION, and it is the default
1878               // version.  We already have an entry for NAME/NULL.
1879               oldsym = insdefault.first->second;
1880               *resolve_oldsym = true;
1881             }
1882           else
1883             {
1884               oldsym = NULL;
1885
1886               if (is_default_version)
1887                 {
1888                   add_def_to_table = true;
1889                   add_def_loc = insdefault.first;
1890                 }
1891             }
1892         }
1893     }
1894
1895   const Target& target = parameters->target();
1896   if (!target.has_make_symbol())
1897     sym = new Sized_symbol<size>();
1898   else
1899     {
1900       Sized_target<size, big_endian>* sized_target =
1901         parameters->sized_target<size, big_endian>();
1902       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1903                                       NULL, elfcpp::SHN_UNDEF, 0);
1904       if (sym == NULL)
1905         return NULL;
1906     }
1907
1908   if (add_to_table)
1909     add_loc->second = sym;
1910   else
1911     gold_assert(oldsym != NULL);
1912
1913   if (add_def_to_table)
1914     add_def_loc->second = sym;
1915
1916   *poldsym = this->get_sized_symbol<size>(oldsym);
1917
1918   return sym;
1919 }
1920
1921 // Define a symbol based on an Output_data.
1922
1923 Symbol*
1924 Symbol_table::define_in_output_data(const char* name,
1925                                     const char* version,
1926                                     Defined defined,
1927                                     Output_data* od,
1928                                     uint64_t value,
1929                                     uint64_t symsize,
1930                                     elfcpp::STT type,
1931                                     elfcpp::STB binding,
1932                                     elfcpp::STV visibility,
1933                                     unsigned char nonvis,
1934                                     bool offset_is_from_end,
1935                                     bool only_if_ref)
1936 {
1937   if (parameters->target().get_size() == 32)
1938     {
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1940       return this->do_define_in_output_data<32>(name, version, defined, od,
1941                                                 value, symsize, type, binding,
1942                                                 visibility, nonvis,
1943                                                 offset_is_from_end,
1944                                                 only_if_ref);
1945 #else
1946       gold_unreachable();
1947 #endif
1948     }
1949   else if (parameters->target().get_size() == 64)
1950     {
1951 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1952       return this->do_define_in_output_data<64>(name, version, defined, od,
1953                                                 value, symsize, type, binding,
1954                                                 visibility, nonvis,
1955                                                 offset_is_from_end,
1956                                                 only_if_ref);
1957 #else
1958       gold_unreachable();
1959 #endif
1960     }
1961   else
1962     gold_unreachable();
1963 }
1964
1965 // Define a symbol in an Output_data, sized version.
1966
1967 template<int size>
1968 Sized_symbol<size>*
1969 Symbol_table::do_define_in_output_data(
1970     const char* name,
1971     const char* version,
1972     Defined defined,
1973     Output_data* od,
1974     typename elfcpp::Elf_types<size>::Elf_Addr value,
1975     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1976     elfcpp::STT type,
1977     elfcpp::STB binding,
1978     elfcpp::STV visibility,
1979     unsigned char nonvis,
1980     bool offset_is_from_end,
1981     bool only_if_ref)
1982 {
1983   Sized_symbol<size>* sym;
1984   Sized_symbol<size>* oldsym;
1985   bool resolve_oldsym;
1986   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1987
1988   if (parameters->target().is_big_endian())
1989     {
1990 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1991       sym = this->define_special_symbol<size, true>(&name, &version,
1992                                                     only_if_ref,
1993                                                     visibility,
1994                                                     &oldsym,
1995                                                     &resolve_oldsym,
1996                                                     is_forced_local);
1997 #else
1998       gold_unreachable();
1999 #endif
2000     }
2001   else
2002     {
2003 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2004       sym = this->define_special_symbol<size, false>(&name, &version,
2005                                                      only_if_ref,
2006                                                      visibility,
2007                                                      &oldsym,
2008                                                      &resolve_oldsym,
2009                                                      is_forced_local);
2010 #else
2011       gold_unreachable();
2012 #endif
2013     }
2014
2015   if (sym == NULL)
2016     return NULL;
2017
2018   sym->init_output_data(name, version, od, value, symsize, type, binding,
2019                         visibility, nonvis, offset_is_from_end,
2020                         defined == PREDEFINED);
2021
2022   if (oldsym == NULL)
2023     {
2024       if (is_forced_local || this->version_script_.symbol_is_local(name))
2025         this->force_local(sym);
2026       else if (version != NULL)
2027         sym->set_is_default();
2028       return sym;
2029     }
2030
2031   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2032     this->override_with_special(oldsym, sym);
2033
2034   if (resolve_oldsym)
2035     return sym;
2036   else
2037     {
2038       if (defined == PREDEFINED
2039           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2040         this->force_local(oldsym);
2041       delete sym;
2042       return oldsym;
2043     }
2044 }
2045
2046 // Define a symbol based on an Output_segment.
2047
2048 Symbol*
2049 Symbol_table::define_in_output_segment(const char* name,
2050                                        const char* version,
2051                                        Defined defined,
2052                                        Output_segment* os,
2053                                        uint64_t value,
2054                                        uint64_t symsize,
2055                                        elfcpp::STT type,
2056                                        elfcpp::STB binding,
2057                                        elfcpp::STV visibility,
2058                                        unsigned char nonvis,
2059                                        Symbol::Segment_offset_base offset_base,
2060                                        bool only_if_ref)
2061 {
2062   if (parameters->target().get_size() == 32)
2063     {
2064 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2065       return this->do_define_in_output_segment<32>(name, version, defined, os,
2066                                                    value, symsize, type,
2067                                                    binding, visibility, nonvis,
2068                                                    offset_base, only_if_ref);
2069 #else
2070       gold_unreachable();
2071 #endif
2072     }
2073   else if (parameters->target().get_size() == 64)
2074     {
2075 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2076       return this->do_define_in_output_segment<64>(name, version, defined, os,
2077                                                    value, symsize, type,
2078                                                    binding, visibility, nonvis,
2079                                                    offset_base, only_if_ref);
2080 #else
2081       gold_unreachable();
2082 #endif
2083     }
2084   else
2085     gold_unreachable();
2086 }
2087
2088 // Define a symbol in an Output_segment, sized version.
2089
2090 template<int size>
2091 Sized_symbol<size>*
2092 Symbol_table::do_define_in_output_segment(
2093     const char* name,
2094     const char* version,
2095     Defined defined,
2096     Output_segment* os,
2097     typename elfcpp::Elf_types<size>::Elf_Addr value,
2098     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2099     elfcpp::STT type,
2100     elfcpp::STB binding,
2101     elfcpp::STV visibility,
2102     unsigned char nonvis,
2103     Symbol::Segment_offset_base offset_base,
2104     bool only_if_ref)
2105 {
2106   Sized_symbol<size>* sym;
2107   Sized_symbol<size>* oldsym;
2108   bool resolve_oldsym;
2109   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2110
2111   if (parameters->target().is_big_endian())
2112     {
2113 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2114       sym = this->define_special_symbol<size, true>(&name, &version,
2115                                                     only_if_ref,
2116                                                     visibility,
2117                                                     &oldsym,
2118                                                     &resolve_oldsym,
2119                                                     is_forced_local);
2120 #else
2121       gold_unreachable();
2122 #endif
2123     }
2124   else
2125     {
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2127       sym = this->define_special_symbol<size, false>(&name, &version,
2128                                                      only_if_ref,
2129                                                      visibility,
2130                                                      &oldsym,
2131                                                      &resolve_oldsym,
2132                                                      is_forced_local);
2133 #else
2134       gold_unreachable();
2135 #endif
2136     }
2137
2138   if (sym == NULL)
2139     return NULL;
2140
2141   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2142                            visibility, nonvis, offset_base,
2143                            defined == PREDEFINED);
2144
2145   if (oldsym == NULL)
2146     {
2147       if (is_forced_local || this->version_script_.symbol_is_local(name))
2148         this->force_local(sym);
2149       else if (version != NULL)
2150         sym->set_is_default();
2151       return sym;
2152     }
2153
2154   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2155     this->override_with_special(oldsym, sym);
2156
2157   if (resolve_oldsym)
2158     return sym;
2159   else
2160     {
2161       if (is_forced_local || this->version_script_.symbol_is_local(name))
2162         this->force_local(oldsym);
2163       delete sym;
2164       return oldsym;
2165     }
2166 }
2167
2168 // Define a special symbol with a constant value.  It is a multiple
2169 // definition error if this symbol is already defined.
2170
2171 Symbol*
2172 Symbol_table::define_as_constant(const char* name,
2173                                  const char* version,
2174                                  Defined defined,
2175                                  uint64_t value,
2176                                  uint64_t symsize,
2177                                  elfcpp::STT type,
2178                                  elfcpp::STB binding,
2179                                  elfcpp::STV visibility,
2180                                  unsigned char nonvis,
2181                                  bool only_if_ref,
2182                                  bool force_override)
2183 {
2184   if (parameters->target().get_size() == 32)
2185     {
2186 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2187       return this->do_define_as_constant<32>(name, version, defined, value,
2188                                              symsize, type, binding,
2189                                              visibility, nonvis, only_if_ref,
2190                                              force_override);
2191 #else
2192       gold_unreachable();
2193 #endif
2194     }
2195   else if (parameters->target().get_size() == 64)
2196     {
2197 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2198       return this->do_define_as_constant<64>(name, version, defined, value,
2199                                              symsize, type, binding,
2200                                              visibility, nonvis, only_if_ref,
2201                                              force_override);
2202 #else
2203       gold_unreachable();
2204 #endif
2205     }
2206   else
2207     gold_unreachable();
2208 }
2209
2210 // Define a symbol as a constant, sized version.
2211
2212 template<int size>
2213 Sized_symbol<size>*
2214 Symbol_table::do_define_as_constant(
2215     const char* name,
2216     const char* version,
2217     Defined defined,
2218     typename elfcpp::Elf_types<size>::Elf_Addr value,
2219     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2220     elfcpp::STT type,
2221     elfcpp::STB binding,
2222     elfcpp::STV visibility,
2223     unsigned char nonvis,
2224     bool only_if_ref,
2225     bool force_override)
2226 {
2227   Sized_symbol<size>* sym;
2228   Sized_symbol<size>* oldsym;
2229   bool resolve_oldsym;
2230   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2231
2232   if (parameters->target().is_big_endian())
2233     {
2234 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2235       sym = this->define_special_symbol<size, true>(&name, &version,
2236                                                     only_if_ref,
2237                                                     visibility,
2238                                                     &oldsym,
2239                                                     &resolve_oldsym,
2240                                                     is_forced_local);
2241 #else
2242       gold_unreachable();
2243 #endif
2244     }
2245   else
2246     {
2247 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2248       sym = this->define_special_symbol<size, false>(&name, &version,
2249                                                      only_if_ref,
2250                                                      visibility,
2251                                                      &oldsym,
2252                                                      &resolve_oldsym,
2253                                                      is_forced_local);
2254 #else
2255       gold_unreachable();
2256 #endif
2257     }
2258
2259   if (sym == NULL)
2260     return NULL;
2261
2262   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2263                      nonvis, defined == PREDEFINED);
2264
2265   if (oldsym == NULL)
2266     {
2267       // Version symbols are absolute symbols with name == version.
2268       // We don't want to force them to be local.
2269       if ((version == NULL
2270            || name != version
2271            || value != 0)
2272           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2273         this->force_local(sym);
2274       else if (version != NULL
2275                && (name != version || value != 0))
2276         sym->set_is_default();
2277       return sym;
2278     }
2279
2280   if (force_override
2281       || Symbol_table::should_override_with_special(oldsym, type, defined))
2282     this->override_with_special(oldsym, sym);
2283
2284   if (resolve_oldsym)
2285     return sym;
2286   else
2287     {
2288       if (is_forced_local || this->version_script_.symbol_is_local(name))
2289         this->force_local(oldsym);
2290       delete sym;
2291       return oldsym;
2292     }
2293 }
2294
2295 // Define a set of symbols in output sections.
2296
2297 void
2298 Symbol_table::define_symbols(const Layout* layout, int count,
2299                              const Define_symbol_in_section* p,
2300                              bool only_if_ref)
2301 {
2302   for (int i = 0; i < count; ++i, ++p)
2303     {
2304       Output_section* os = layout->find_output_section(p->output_section);
2305       if (os != NULL)
2306         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2307                                     p->size, p->type, p->binding,
2308                                     p->visibility, p->nonvis,
2309                                     p->offset_is_from_end,
2310                                     only_if_ref || p->only_if_ref);
2311       else
2312         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2313                                  p->type, p->binding, p->visibility, p->nonvis,
2314                                  only_if_ref || p->only_if_ref,
2315                                  false);
2316     }
2317 }
2318
2319 // Define a set of symbols in output segments.
2320
2321 void
2322 Symbol_table::define_symbols(const Layout* layout, int count,
2323                              const Define_symbol_in_segment* p,
2324                              bool only_if_ref)
2325 {
2326   for (int i = 0; i < count; ++i, ++p)
2327     {
2328       Output_segment* os = layout->find_output_segment(p->segment_type,
2329                                                        p->segment_flags_set,
2330                                                        p->segment_flags_clear);
2331       if (os != NULL)
2332         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2333                                        p->size, p->type, p->binding,
2334                                        p->visibility, p->nonvis,
2335                                        p->offset_base,
2336                                        only_if_ref || p->only_if_ref);
2337       else
2338         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2339                                  p->type, p->binding, p->visibility, p->nonvis,
2340                                  only_if_ref || p->only_if_ref,
2341                                  false);
2342     }
2343 }
2344
2345 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2346 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2347 // the offset within POSD.
2348
2349 template<int size>
2350 void
2351 Symbol_table::define_with_copy_reloc(
2352     Sized_symbol<size>* csym,
2353     Output_data* posd,
2354     typename elfcpp::Elf_types<size>::Elf_Addr value)
2355 {
2356   gold_assert(csym->is_from_dynobj());
2357   gold_assert(!csym->is_copied_from_dynobj());
2358   Object* object = csym->object();
2359   gold_assert(object->is_dynamic());
2360   Dynobj* dynobj = static_cast<Dynobj*>(object);
2361
2362   // Our copied variable has to override any variable in a shared
2363   // library.
2364   elfcpp::STB binding = csym->binding();
2365   if (binding == elfcpp::STB_WEAK)
2366     binding = elfcpp::STB_GLOBAL;
2367
2368   this->define_in_output_data(csym->name(), csym->version(), COPY,
2369                               posd, value, csym->symsize(),
2370                               csym->type(), binding,
2371                               csym->visibility(), csym->nonvis(),
2372                               false, false);
2373
2374   csym->set_is_copied_from_dynobj();
2375   csym->set_needs_dynsym_entry();
2376
2377   this->copied_symbol_dynobjs_[csym] = dynobj;
2378
2379   // We have now defined all aliases, but we have not entered them all
2380   // in the copied_symbol_dynobjs_ map.
2381   if (csym->has_alias())
2382     {
2383       Symbol* sym = csym;
2384       while (true)
2385         {
2386           sym = this->weak_aliases_[sym];
2387           if (sym == csym)
2388             break;
2389           gold_assert(sym->output_data() == posd);
2390
2391           sym->set_is_copied_from_dynobj();
2392           this->copied_symbol_dynobjs_[sym] = dynobj;
2393         }
2394     }
2395 }
2396
2397 // SYM is defined using a COPY reloc.  Return the dynamic object where
2398 // the original definition was found.
2399
2400 Dynobj*
2401 Symbol_table::get_copy_source(const Symbol* sym) const
2402 {
2403   gold_assert(sym->is_copied_from_dynobj());
2404   Copied_symbol_dynobjs::const_iterator p =
2405     this->copied_symbol_dynobjs_.find(sym);
2406   gold_assert(p != this->copied_symbol_dynobjs_.end());
2407   return p->second;
2408 }
2409
2410 // Add any undefined symbols named on the command line.
2411
2412 void
2413 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2414 {
2415   if (parameters->options().any_undefined()
2416       || layout->script_options()->any_unreferenced())
2417     {
2418       if (parameters->target().get_size() == 32)
2419         {
2420 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2421           this->do_add_undefined_symbols_from_command_line<32>(layout);
2422 #else
2423           gold_unreachable();
2424 #endif
2425         }
2426       else if (parameters->target().get_size() == 64)
2427         {
2428 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2429           this->do_add_undefined_symbols_from_command_line<64>(layout);
2430 #else
2431           gold_unreachable();
2432 #endif
2433         }
2434       else
2435         gold_unreachable();
2436     }
2437 }
2438
2439 template<int size>
2440 void
2441 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2442 {
2443   for (options::String_set::const_iterator p =
2444          parameters->options().undefined_begin();
2445        p != parameters->options().undefined_end();
2446        ++p)
2447     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2448
2449   for (options::String_set::const_iterator p =
2450          parameters->options().export_dynamic_symbol_begin();
2451        p != parameters->options().export_dynamic_symbol_end();
2452        ++p)
2453     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2454
2455   for (Script_options::referenced_const_iterator p =
2456          layout->script_options()->referenced_begin();
2457        p != layout->script_options()->referenced_end();
2458        ++p)
2459     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2460 }
2461
2462 template<int size>
2463 void
2464 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2465 {
2466   if (this->lookup(name) != NULL)
2467     return;
2468
2469   const char* version = NULL;
2470
2471   Sized_symbol<size>* sym;
2472   Sized_symbol<size>* oldsym;
2473   bool resolve_oldsym;
2474   if (parameters->target().is_big_endian())
2475     {
2476 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2477       sym = this->define_special_symbol<size, true>(&name, &version,
2478                                                     false,
2479                                                     elfcpp::STV_DEFAULT,
2480                                                     &oldsym,
2481                                                     &resolve_oldsym,
2482                                                     false);
2483 #else
2484       gold_unreachable();
2485 #endif
2486     }
2487   else
2488     {
2489 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2490       sym = this->define_special_symbol<size, false>(&name, &version,
2491                                                      false,
2492                                                      elfcpp::STV_DEFAULT,
2493                                                      &oldsym,
2494                                                      &resolve_oldsym,
2495                                                      false);
2496 #else
2497       gold_unreachable();
2498 #endif
2499     }
2500
2501   gold_assert(oldsym == NULL);
2502
2503   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2504                       elfcpp::STV_DEFAULT, 0);
2505   ++this->saw_undefined_;
2506 }
2507
2508 // Set the dynamic symbol indexes.  INDEX is the index of the first
2509 // global dynamic symbol.  Pointers to the global symbols are stored
2510 // into the vector SYMS.  The names are added to DYNPOOL.
2511 // This returns an updated dynamic symbol index.
2512
2513 unsigned int
2514 Symbol_table::set_dynsym_indexes(unsigned int index,
2515                                  unsigned int* pforced_local_count,
2516                                  std::vector<Symbol*>* syms,
2517                                  Stringpool* dynpool,
2518                                  Versions* versions)
2519 {
2520   std::vector<Symbol*> as_needed_sym;
2521
2522   // First process all the symbols which have been forced to be local,
2523   // as they must appear before all global symbols.
2524   unsigned int forced_local_count = 0;
2525   for (Forced_locals::iterator p = this->forced_locals_.begin();
2526        p != this->forced_locals_.end();
2527        ++p)
2528     {
2529       Symbol* sym = *p;
2530       gold_assert(sym->is_forced_local());
2531       if (sym->has_dynsym_index())
2532         continue;
2533       if (!sym->should_add_dynsym_entry(this))
2534         sym->set_dynsym_index(-1U);
2535       else
2536         {
2537           sym->set_dynsym_index(index);
2538           ++index;
2539           ++forced_local_count;
2540           dynpool->add(sym->name(), false, NULL);
2541         }
2542     }
2543   *pforced_local_count = forced_local_count;
2544
2545   // Allow a target to set dynsym indexes.
2546   if (parameters->target().has_custom_set_dynsym_indexes())
2547     {
2548       std::vector<Symbol*> dyn_symbols;
2549       for (Symbol_table_type::iterator p = this->table_.begin();
2550            p != this->table_.end();
2551            ++p)
2552         {
2553           Symbol* sym = p->second;
2554           if (sym->is_forced_local())
2555             continue;
2556           if (!sym->should_add_dynsym_entry(this))
2557             sym->set_dynsym_index(-1U);
2558           else
2559             dyn_symbols.push_back(sym);
2560         }
2561
2562       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2563                                                      dynpool, versions, this);
2564     }
2565
2566   for (Symbol_table_type::iterator p = this->table_.begin();
2567        p != this->table_.end();
2568        ++p)
2569     {
2570       Symbol* sym = p->second;
2571
2572       if (sym->is_forced_local())
2573         continue;
2574
2575       // Note that SYM may already have a dynamic symbol index, since
2576       // some symbols appear more than once in the symbol table, with
2577       // and without a version.
2578
2579       if (!sym->should_add_dynsym_entry(this))
2580         sym->set_dynsym_index(-1U);
2581       else if (!sym->has_dynsym_index())
2582         {
2583           sym->set_dynsym_index(index);
2584           ++index;
2585           syms->push_back(sym);
2586           dynpool->add(sym->name(), false, NULL);
2587
2588           // If the symbol is defined in a dynamic object and is
2589           // referenced strongly in a regular object, then mark the
2590           // dynamic object as needed.  This is used to implement
2591           // --as-needed.
2592           if (sym->is_from_dynobj()
2593               && sym->in_reg()
2594               && !sym->is_undef_binding_weak())
2595             sym->object()->set_is_needed();
2596
2597           // Record any version information, except those from
2598           // as-needed libraries not seen to be needed.  Note that the
2599           // is_needed state for such libraries can change in this loop.
2600           if (sym->version() != NULL)
2601             {
2602               if (!sym->is_from_dynobj()
2603                   || !sym->object()->as_needed()
2604                   || sym->object()->is_needed())
2605                 versions->record_version(this, dynpool, sym);
2606               else
2607                 as_needed_sym.push_back(sym);
2608             }
2609         }
2610     }
2611
2612   // Process version information for symbols from as-needed libraries.
2613   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2614        p != as_needed_sym.end();
2615        ++p)
2616     {
2617       Symbol* sym = *p;
2618
2619       if (sym->object()->is_needed())
2620         versions->record_version(this, dynpool, sym);
2621       else
2622         sym->clear_version();
2623     }
2624
2625   // Finish up the versions.  In some cases this may add new dynamic
2626   // symbols.
2627   index = versions->finalize(this, index, syms);
2628
2629   // Process target-specific symbols.
2630   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2631        p != this->target_symbols_.end();
2632        ++p)
2633     {
2634       (*p)->set_dynsym_index(index);
2635       ++index;
2636       syms->push_back(*p);
2637       dynpool->add((*p)->name(), false, NULL);
2638     }
2639
2640   return index;
2641 }
2642
2643 // Set the final values for all the symbols.  The index of the first
2644 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2645 // file offset OFF.  Add their names to POOL.  Return the new file
2646 // offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
2647 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2648 // written from the global symbol table in Symtab::write_globals(),
2649 // which will include forced-local symbols.  DYN_GLOBAL_INDEX is
2650 // not necessarily the same as the sh_info field for the .dynsym
2651 // section, which will point to the first real global symbol.
2652
2653 off_t
2654 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2655                        size_t dyncount, Stringpool* pool,
2656                        unsigned int* plocal_symcount)
2657 {
2658   off_t ret;
2659
2660   gold_assert(*plocal_symcount != 0);
2661   this->first_global_index_ = *plocal_symcount;
2662
2663   this->dynamic_offset_ = dynoff;
2664   this->first_dynamic_global_index_ = dyn_global_index;
2665   this->dynamic_count_ = dyncount;
2666
2667   if (parameters->target().get_size() == 32)
2668     {
2669 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2670       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2671 #else
2672       gold_unreachable();
2673 #endif
2674     }
2675   else if (parameters->target().get_size() == 64)
2676     {
2677 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2678       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2679 #else
2680       gold_unreachable();
2681 #endif
2682     }
2683   else
2684     gold_unreachable();
2685
2686   // Now that we have the final symbol table, we can reliably note
2687   // which symbols should get warnings.
2688   this->warnings_.note_warnings(this);
2689
2690   return ret;
2691 }
2692
2693 // SYM is going into the symbol table at *PINDEX.  Add the name to
2694 // POOL, update *PINDEX and *POFF.
2695
2696 template<int size>
2697 void
2698 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2699                                   unsigned int* pindex, off_t* poff)
2700 {
2701   sym->set_symtab_index(*pindex);
2702   if (sym->version() == NULL || !parameters->options().relocatable())
2703     pool->add(sym->name(), false, NULL);
2704   else
2705     pool->add(sym->versioned_name(), true, NULL);
2706   ++*pindex;
2707   *poff += elfcpp::Elf_sizes<size>::sym_size;
2708 }
2709
2710 // Set the final value for all the symbols.  This is called after
2711 // Layout::finalize, so all the output sections have their final
2712 // address.
2713
2714 template<int size>
2715 off_t
2716 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2717                              unsigned int* plocal_symcount)
2718 {
2719   off = align_address(off, size >> 3);
2720   this->offset_ = off;
2721
2722   unsigned int index = *plocal_symcount;
2723   const unsigned int orig_index = index;
2724
2725   // First do all the symbols which have been forced to be local, as
2726   // they must appear before all global symbols.
2727   for (Forced_locals::iterator p = this->forced_locals_.begin();
2728        p != this->forced_locals_.end();
2729        ++p)
2730     {
2731       Symbol* sym = *p;
2732       gold_assert(sym->is_forced_local());
2733       if (this->sized_finalize_symbol<size>(sym))
2734         {
2735           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2736           ++*plocal_symcount;
2737         }
2738     }
2739
2740   // Now do all the remaining symbols.
2741   for (Symbol_table_type::iterator p = this->table_.begin();
2742        p != this->table_.end();
2743        ++p)
2744     {
2745       Symbol* sym = p->second;
2746       if (this->sized_finalize_symbol<size>(sym))
2747         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2748     }
2749
2750   // Now do target-specific symbols.
2751   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2752        p != this->target_symbols_.end();
2753        ++p)
2754     {
2755       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2756     }
2757
2758   this->output_count_ = index - orig_index;
2759
2760   return off;
2761 }
2762
2763 // Compute the final value of SYM and store status in location PSTATUS.
2764 // During relaxation, this may be called multiple times for a symbol to
2765 // compute its would-be final value in each relaxation pass.
2766
2767 template<int size>
2768 typename Sized_symbol<size>::Value_type
2769 Symbol_table::compute_final_value(
2770     const Sized_symbol<size>* sym,
2771     Compute_final_value_status* pstatus) const
2772 {
2773   typedef typename Sized_symbol<size>::Value_type Value_type;
2774   Value_type value;
2775
2776   switch (sym->source())
2777     {
2778     case Symbol::FROM_OBJECT:
2779       {
2780         bool is_ordinary;
2781         unsigned int shndx = sym->shndx(&is_ordinary);
2782
2783         if (!is_ordinary
2784             && shndx != elfcpp::SHN_ABS
2785             && !Symbol::is_common_shndx(shndx))
2786           {
2787             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2788             return 0;
2789           }
2790
2791         Object* symobj = sym->object();
2792         if (symobj->is_dynamic())
2793           {
2794             value = 0;
2795             shndx = elfcpp::SHN_UNDEF;
2796           }
2797         else if (symobj->pluginobj() != NULL)
2798           {
2799             value = 0;
2800             shndx = elfcpp::SHN_UNDEF;
2801           }
2802         else if (shndx == elfcpp::SHN_UNDEF)
2803           value = 0;
2804         else if (!is_ordinary
2805                  && (shndx == elfcpp::SHN_ABS
2806                      || Symbol::is_common_shndx(shndx)))
2807           value = sym->value();
2808         else
2809           {
2810             Relobj* relobj = static_cast<Relobj*>(symobj);
2811             Output_section* os = relobj->output_section(shndx);
2812
2813             if (this->is_section_folded(relobj, shndx))
2814               {
2815                 gold_assert(os == NULL);
2816                 // Get the os of the section it is folded onto.
2817                 Section_id folded = this->icf_->get_folded_section(relobj,
2818                                                                    shndx);
2819                 gold_assert(folded.first != NULL);
2820                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2821                 unsigned folded_shndx = folded.second;
2822
2823                 os = folded_obj->output_section(folded_shndx);  
2824                 gold_assert(os != NULL);
2825
2826                 // Replace (relobj, shndx) with canonical ICF input section.
2827                 shndx = folded_shndx;
2828                 relobj = folded_obj;
2829               }
2830
2831             uint64_t secoff64 = relobj->output_section_offset(shndx);
2832             if (os == NULL)
2833               {
2834                 bool static_or_reloc = (parameters->doing_static_link() ||
2835                                         parameters->options().relocatable());
2836                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2837
2838                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2839                 return 0;
2840               }
2841
2842             if (secoff64 == -1ULL)
2843               {
2844                 // The section needs special handling (e.g., a merge section).
2845
2846                 value = os->output_address(relobj, shndx, sym->value());
2847               }
2848             else
2849               {
2850                 Value_type secoff =
2851                   convert_types<Value_type, uint64_t>(secoff64);
2852                 if (sym->type() == elfcpp::STT_TLS)
2853                   value = sym->value() + os->tls_offset() + secoff;
2854                 else
2855                   value = sym->value() + os->address() + secoff;
2856               }
2857           }
2858       }
2859       break;
2860
2861     case Symbol::IN_OUTPUT_DATA:
2862       {
2863         Output_data* od = sym->output_data();
2864         value = sym->value();
2865         if (sym->type() != elfcpp::STT_TLS)
2866           value += od->address();
2867         else
2868           {
2869             Output_section* os = od->output_section();
2870             gold_assert(os != NULL);
2871             value += os->tls_offset() + (od->address() - os->address());
2872           }
2873         if (sym->offset_is_from_end())
2874           value += od->data_size();
2875       }
2876       break;
2877
2878     case Symbol::IN_OUTPUT_SEGMENT:
2879       {
2880         Output_segment* os = sym->output_segment();
2881         value = sym->value();
2882         if (sym->type() != elfcpp::STT_TLS)
2883           value += os->vaddr();
2884         switch (sym->offset_base())
2885           {
2886           case Symbol::SEGMENT_START:
2887             break;
2888           case Symbol::SEGMENT_END:
2889             value += os->memsz();
2890             break;
2891           case Symbol::SEGMENT_BSS:
2892             value += os->filesz();
2893             break;
2894           default:
2895             gold_unreachable();
2896           }
2897       }
2898       break;
2899
2900     case Symbol::IS_CONSTANT:
2901       value = sym->value();
2902       break;
2903
2904     case Symbol::IS_UNDEFINED:
2905       value = 0;
2906       break;
2907
2908     default:
2909       gold_unreachable();
2910     }
2911
2912   *pstatus = CFVS_OK;
2913   return value;
2914 }
2915
2916 // Finalize the symbol SYM.  This returns true if the symbol should be
2917 // added to the symbol table, false otherwise.
2918
2919 template<int size>
2920 bool
2921 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2922 {
2923   typedef typename Sized_symbol<size>::Value_type Value_type;
2924
2925   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2926
2927   // The default version of a symbol may appear twice in the symbol
2928   // table.  We only need to finalize it once.
2929   if (sym->has_symtab_index())
2930     return false;
2931
2932   if (!sym->in_reg())
2933     {
2934       gold_assert(!sym->has_symtab_index());
2935       sym->set_symtab_index(-1U);
2936       gold_assert(sym->dynsym_index() == -1U);
2937       return false;
2938     }
2939
2940   // If the symbol is only present on plugin files, the plugin decided we
2941   // don't need it.
2942   if (!sym->in_real_elf())
2943     {
2944       gold_assert(!sym->has_symtab_index());
2945       sym->set_symtab_index(-1U);
2946       return false;
2947     }
2948
2949   // Compute final symbol value.
2950   Compute_final_value_status status;
2951   Value_type value = this->compute_final_value(sym, &status);
2952
2953   switch (status)
2954     {
2955     case CFVS_OK:
2956       break;
2957     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2958       {
2959         bool is_ordinary;
2960         unsigned int shndx = sym->shndx(&is_ordinary);
2961         gold_error(_("%s: unsupported symbol section 0x%x"),
2962                    sym->demangled_name().c_str(), shndx);
2963       }
2964       break;
2965     case CFVS_NO_OUTPUT_SECTION:
2966       sym->set_symtab_index(-1U);
2967       return false;
2968     default:
2969       gold_unreachable();
2970     }
2971
2972   sym->set_value(value);
2973
2974   if (parameters->options().strip_all()
2975       || !parameters->options().should_retain_symbol(sym->name()))
2976     {
2977       sym->set_symtab_index(-1U);
2978       return false;
2979     }
2980
2981   return true;
2982 }
2983
2984 // Write out the global symbols.
2985
2986 void
2987 Symbol_table::write_globals(const Stringpool* sympool,
2988                             const Stringpool* dynpool,
2989                             Output_symtab_xindex* symtab_xindex,
2990                             Output_symtab_xindex* dynsym_xindex,
2991                             Output_file* of) const
2992 {
2993   switch (parameters->size_and_endianness())
2994     {
2995 #ifdef HAVE_TARGET_32_LITTLE
2996     case Parameters::TARGET_32_LITTLE:
2997       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2998                                            dynsym_xindex, of);
2999       break;
3000 #endif
3001 #ifdef HAVE_TARGET_32_BIG
3002     case Parameters::TARGET_32_BIG:
3003       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3004                                           dynsym_xindex, of);
3005       break;
3006 #endif
3007 #ifdef HAVE_TARGET_64_LITTLE
3008     case Parameters::TARGET_64_LITTLE:
3009       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3010                                            dynsym_xindex, of);
3011       break;
3012 #endif
3013 #ifdef HAVE_TARGET_64_BIG
3014     case Parameters::TARGET_64_BIG:
3015       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3016                                           dynsym_xindex, of);
3017       break;
3018 #endif
3019     default:
3020       gold_unreachable();
3021     }
3022 }
3023
3024 // Write out the global symbols.
3025
3026 template<int size, bool big_endian>
3027 void
3028 Symbol_table::sized_write_globals(const Stringpool* sympool,
3029                                   const Stringpool* dynpool,
3030                                   Output_symtab_xindex* symtab_xindex,
3031                                   Output_symtab_xindex* dynsym_xindex,
3032                                   Output_file* of) const
3033 {
3034   const Target& target = parameters->target();
3035
3036   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3037
3038   const unsigned int output_count = this->output_count_;
3039   const section_size_type oview_size = output_count * sym_size;
3040   const unsigned int first_global_index = this->first_global_index_;
3041   unsigned char* psyms;
3042   if (this->offset_ == 0 || output_count == 0)
3043     psyms = NULL;
3044   else
3045     psyms = of->get_output_view(this->offset_, oview_size);
3046
3047   const unsigned int dynamic_count = this->dynamic_count_;
3048   const section_size_type dynamic_size = dynamic_count * sym_size;
3049   const unsigned int first_dynamic_global_index =
3050     this->first_dynamic_global_index_;
3051   unsigned char* dynamic_view;
3052   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3053     dynamic_view = NULL;
3054   else
3055     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3056
3057   for (Symbol_table_type::const_iterator p = this->table_.begin();
3058        p != this->table_.end();
3059        ++p)
3060     {
3061       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3062
3063       // Possibly warn about unresolved symbols in shared libraries.
3064       this->warn_about_undefined_dynobj_symbol(sym);
3065
3066       unsigned int sym_index = sym->symtab_index();
3067       unsigned int dynsym_index;
3068       if (dynamic_view == NULL)
3069         dynsym_index = -1U;
3070       else
3071         dynsym_index = sym->dynsym_index();
3072
3073       if (sym_index == -1U && dynsym_index == -1U)
3074         {
3075           // This symbol is not included in the output file.
3076           continue;
3077         }
3078
3079       unsigned int shndx;
3080       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3081       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3082       elfcpp::STB binding = sym->binding();
3083
3084       // If --weak-unresolved-symbols is set, change binding of unresolved
3085       // global symbols to STB_WEAK.
3086       if (parameters->options().weak_unresolved_symbols()
3087           && binding == elfcpp::STB_GLOBAL
3088           && sym->is_undefined())
3089         binding = elfcpp::STB_WEAK;
3090
3091       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3092       if (binding == elfcpp::STB_GNU_UNIQUE
3093           && !parameters->options().gnu_unique())
3094         binding = elfcpp::STB_GLOBAL;
3095
3096       switch (sym->source())
3097         {
3098         case Symbol::FROM_OBJECT:
3099           {
3100             bool is_ordinary;
3101             unsigned int in_shndx = sym->shndx(&is_ordinary);
3102
3103             if (!is_ordinary
3104                 && in_shndx != elfcpp::SHN_ABS
3105                 && !Symbol::is_common_shndx(in_shndx))
3106               {
3107                 gold_error(_("%s: unsupported symbol section 0x%x"),
3108                            sym->demangled_name().c_str(), in_shndx);
3109                 shndx = in_shndx;
3110               }
3111             else
3112               {
3113                 Object* symobj = sym->object();
3114                 if (symobj->is_dynamic())
3115                   {
3116                     if (sym->needs_dynsym_value())
3117                       dynsym_value = target.dynsym_value(sym);
3118                     shndx = elfcpp::SHN_UNDEF;
3119                     if (sym->is_undef_binding_weak())
3120                       binding = elfcpp::STB_WEAK;
3121                     else
3122                       binding = elfcpp::STB_GLOBAL;
3123                   }
3124                 else if (symobj->pluginobj() != NULL)
3125                   shndx = elfcpp::SHN_UNDEF;
3126                 else if (in_shndx == elfcpp::SHN_UNDEF
3127                          || (!is_ordinary
3128                              && (in_shndx == elfcpp::SHN_ABS
3129                                  || Symbol::is_common_shndx(in_shndx))))
3130                   shndx = in_shndx;
3131                 else
3132                   {
3133                     Relobj* relobj = static_cast<Relobj*>(symobj);
3134                     Output_section* os = relobj->output_section(in_shndx);
3135                     if (this->is_section_folded(relobj, in_shndx))
3136                       {
3137                         // This global symbol must be written out even though
3138                         // it is folded.
3139                         // Get the os of the section it is folded onto.
3140                         Section_id folded =
3141                              this->icf_->get_folded_section(relobj, in_shndx);
3142                         gold_assert(folded.first !=NULL);
3143                         Relobj* folded_obj = 
3144                           reinterpret_cast<Relobj*>(folded.first);
3145                         os = folded_obj->output_section(folded.second);  
3146                         gold_assert(os != NULL);
3147                       }
3148                     gold_assert(os != NULL);
3149                     shndx = os->out_shndx();
3150
3151                     if (shndx >= elfcpp::SHN_LORESERVE)
3152                       {
3153                         if (sym_index != -1U)
3154                           symtab_xindex->add(sym_index, shndx);
3155                         if (dynsym_index != -1U)
3156                           dynsym_xindex->add(dynsym_index, shndx);
3157                         shndx = elfcpp::SHN_XINDEX;
3158                       }
3159
3160                     // In object files symbol values are section
3161                     // relative.
3162                     if (parameters->options().relocatable())
3163                       sym_value -= os->address();
3164                   }
3165               }
3166           }
3167           break;
3168
3169         case Symbol::IN_OUTPUT_DATA:
3170           {
3171             Output_data* od = sym->output_data();
3172
3173             shndx = od->out_shndx();
3174             if (shndx >= elfcpp::SHN_LORESERVE)
3175               {
3176                 if (sym_index != -1U)
3177                   symtab_xindex->add(sym_index, shndx);
3178                 if (dynsym_index != -1U)
3179                   dynsym_xindex->add(dynsym_index, shndx);
3180                 shndx = elfcpp::SHN_XINDEX;
3181               }
3182
3183             // In object files symbol values are section
3184             // relative.
3185             if (parameters->options().relocatable())
3186               {
3187                 Output_section* os = od->output_section();
3188                 gold_assert(os != NULL);
3189                 sym_value -= os->address();
3190               }
3191           }
3192           break;
3193
3194         case Symbol::IN_OUTPUT_SEGMENT:
3195           {
3196             Output_segment* oseg = sym->output_segment();
3197             Output_section* osect = oseg->first_section();
3198             if (osect == NULL)
3199               shndx = elfcpp::SHN_ABS;
3200             else
3201               shndx = osect->out_shndx();
3202           }
3203           break;
3204
3205         case Symbol::IS_CONSTANT:
3206           shndx = elfcpp::SHN_ABS;
3207           break;
3208
3209         case Symbol::IS_UNDEFINED:
3210           shndx = elfcpp::SHN_UNDEF;
3211           break;
3212
3213         default:
3214           gold_unreachable();
3215         }
3216
3217       if (sym_index != -1U)
3218         {
3219           sym_index -= first_global_index;
3220           gold_assert(sym_index < output_count);
3221           unsigned char* ps = psyms + (sym_index * sym_size);
3222           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3223                                                      binding, sympool, ps);
3224         }
3225
3226       if (dynsym_index != -1U)
3227         {
3228           dynsym_index -= first_dynamic_global_index;
3229           gold_assert(dynsym_index < dynamic_count);
3230           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3231           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3232                                                      binding, dynpool, pd);
3233           // Allow a target to adjust dynamic symbol value.
3234           parameters->target().adjust_dyn_symbol(sym, pd);
3235         }
3236     }
3237
3238   // Write the target-specific symbols.
3239   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3240        p != this->target_symbols_.end();
3241        ++p)
3242     {
3243       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3244
3245       unsigned int sym_index = sym->symtab_index();
3246       unsigned int dynsym_index;
3247       if (dynamic_view == NULL)
3248         dynsym_index = -1U;
3249       else
3250         dynsym_index = sym->dynsym_index();
3251
3252       unsigned int shndx;
3253       switch (sym->source())
3254         {
3255         case Symbol::IS_CONSTANT:
3256           shndx = elfcpp::SHN_ABS;
3257           break;
3258         case Symbol::IS_UNDEFINED:
3259           shndx = elfcpp::SHN_UNDEF;
3260           break;
3261         default:
3262           gold_unreachable();
3263         }
3264
3265       if (sym_index != -1U)
3266         {
3267           sym_index -= first_global_index;
3268           gold_assert(sym_index < output_count);
3269           unsigned char* ps = psyms + (sym_index * sym_size);
3270           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3271                                                      sym->binding(), sympool,
3272                                                      ps);
3273         }
3274
3275       if (dynsym_index != -1U)
3276         {
3277           dynsym_index -= first_dynamic_global_index;
3278           gold_assert(dynsym_index < dynamic_count);
3279           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3280           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3281                                                      sym->binding(), dynpool,
3282                                                      pd);
3283         }
3284     }
3285
3286   of->write_output_view(this->offset_, oview_size, psyms);
3287   if (dynamic_view != NULL)
3288     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3289 }
3290
3291 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3292 // strtab holding the name.
3293
3294 template<int size, bool big_endian>
3295 void
3296 Symbol_table::sized_write_symbol(
3297     Sized_symbol<size>* sym,
3298     typename elfcpp::Elf_types<size>::Elf_Addr value,
3299     unsigned int shndx,
3300     elfcpp::STB binding,
3301     const Stringpool* pool,
3302     unsigned char* p) const
3303 {
3304   elfcpp::Sym_write<size, big_endian> osym(p);
3305   if (sym->version() == NULL || !parameters->options().relocatable())
3306     osym.put_st_name(pool->get_offset(sym->name()));
3307   else
3308     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3309   osym.put_st_value(value);
3310   // Use a symbol size of zero for undefined symbols from shared libraries.
3311   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3312     osym.put_st_size(0);
3313   else
3314     osym.put_st_size(sym->symsize());
3315   elfcpp::STT type = sym->type();
3316   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3317   // A version script may have overridden the default binding.
3318   if (sym->is_forced_local())
3319     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3320   else
3321     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3322   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3323   osym.put_st_shndx(shndx);
3324 }
3325
3326 // Check for unresolved symbols in shared libraries.  This is
3327 // controlled by the --allow-shlib-undefined option.
3328
3329 // We only warn about libraries for which we have seen all the
3330 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3331 // which were not seen in this link.  If we didn't see a DT_NEEDED
3332 // entry, we aren't going to be able to reliably report whether the
3333 // symbol is undefined.
3334
3335 // We also don't warn about libraries found in a system library
3336 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3337 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3338 // can have undefined references satisfied by ld-linux.so.
3339
3340 inline void
3341 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3342 {
3343   bool dummy;
3344   if (sym->source() == Symbol::FROM_OBJECT
3345       && sym->object()->is_dynamic()
3346       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3347       && sym->binding() != elfcpp::STB_WEAK
3348       && !parameters->options().allow_shlib_undefined()
3349       && !parameters->target().is_defined_by_abi(sym)
3350       && !sym->object()->is_in_system_directory())
3351     {
3352       // A very ugly cast.
3353       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3354       if (!dynobj->has_unknown_needed_entries())
3355         gold_undefined_symbol(sym);
3356     }
3357 }
3358
3359 // Write out a section symbol.  Return the update offset.
3360
3361 void
3362 Symbol_table::write_section_symbol(const Output_section* os,
3363                                    Output_symtab_xindex* symtab_xindex,
3364                                    Output_file* of,
3365                                    off_t offset) const
3366 {
3367   switch (parameters->size_and_endianness())
3368     {
3369 #ifdef HAVE_TARGET_32_LITTLE
3370     case Parameters::TARGET_32_LITTLE:
3371       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3372                                                   offset);
3373       break;
3374 #endif
3375 #ifdef HAVE_TARGET_32_BIG
3376     case Parameters::TARGET_32_BIG:
3377       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3378                                                  offset);
3379       break;
3380 #endif
3381 #ifdef HAVE_TARGET_64_LITTLE
3382     case Parameters::TARGET_64_LITTLE:
3383       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3384                                                   offset);
3385       break;
3386 #endif
3387 #ifdef HAVE_TARGET_64_BIG
3388     case Parameters::TARGET_64_BIG:
3389       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3390                                                  offset);
3391       break;
3392 #endif
3393     default:
3394       gold_unreachable();
3395     }
3396 }
3397
3398 // Write out a section symbol, specialized for size and endianness.
3399
3400 template<int size, bool big_endian>
3401 void
3402 Symbol_table::sized_write_section_symbol(const Output_section* os,
3403                                          Output_symtab_xindex* symtab_xindex,
3404                                          Output_file* of,
3405                                          off_t offset) const
3406 {
3407   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3408
3409   unsigned char* pov = of->get_output_view(offset, sym_size);
3410
3411   elfcpp::Sym_write<size, big_endian> osym(pov);
3412   osym.put_st_name(0);
3413   if (parameters->options().relocatable())
3414     osym.put_st_value(0);
3415   else
3416     osym.put_st_value(os->address());
3417   osym.put_st_size(0);
3418   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3419                                        elfcpp::STT_SECTION));
3420   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3421
3422   unsigned int shndx = os->out_shndx();
3423   if (shndx >= elfcpp::SHN_LORESERVE)
3424     {
3425       symtab_xindex->add(os->symtab_index(), shndx);
3426       shndx = elfcpp::SHN_XINDEX;
3427     }
3428   osym.put_st_shndx(shndx);
3429
3430   of->write_output_view(offset, sym_size, pov);
3431 }
3432
3433 // Print statistical information to stderr.  This is used for --stats.
3434
3435 void
3436 Symbol_table::print_stats() const
3437 {
3438 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3439   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3440           program_name, this->table_.size(), this->table_.bucket_count());
3441 #else
3442   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3443           program_name, this->table_.size());
3444 #endif
3445   this->namepool_.print_stats("symbol table stringpool");
3446 }
3447
3448 // We check for ODR violations by looking for symbols with the same
3449 // name for which the debugging information reports that they were
3450 // defined in disjoint source locations.  When comparing the source
3451 // location, we consider instances with the same base filename to be
3452 // the same.  This is because different object files/shared libraries
3453 // can include the same header file using different paths, and
3454 // different optimization settings can make the line number appear to
3455 // be a couple lines off, and we don't want to report an ODR violation
3456 // in those cases.
3457
3458 // This struct is used to compare line information, as returned by
3459 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3460 // operator used with std::sort.
3461
3462 struct Odr_violation_compare
3463 {
3464   bool
3465   operator()(const std::string& s1, const std::string& s2) const
3466   {
3467     // Inputs should be of the form "dirname/filename:linenum" where
3468     // "dirname/" is optional.  We want to compare just the filename:linenum.
3469
3470     // Find the last '/' in each string.
3471     std::string::size_type s1begin = s1.rfind('/');
3472     std::string::size_type s2begin = s2.rfind('/');
3473     // If there was no '/' in a string, start at the beginning.
3474     if (s1begin == std::string::npos)
3475       s1begin = 0;
3476     if (s2begin == std::string::npos)
3477       s2begin = 0;
3478     return s1.compare(s1begin, std::string::npos,
3479                       s2, s2begin, std::string::npos) < 0;
3480   }
3481 };
3482
3483 // Returns all of the lines attached to LOC, not just the one the
3484 // instruction actually came from.
3485 std::vector<std::string>
3486 Symbol_table::linenos_from_loc(const Task* task,
3487                                const Symbol_location& loc)
3488 {
3489   // We need to lock the object in order to read it.  This
3490   // means that we have to run in a singleton Task.  If we
3491   // want to run this in a general Task for better
3492   // performance, we will need one Task for object, plus
3493   // appropriate locking to ensure that we don't conflict with
3494   // other uses of the object.  Also note, one_addr2line is not
3495   // currently thread-safe.
3496   Task_lock_obj<Object> tl(task, loc.object);
3497
3498   std::vector<std::string> result;
3499   Symbol_location code_loc = loc;
3500   parameters->target().function_location(&code_loc);
3501   // 16 is the size of the object-cache that one_addr2line should use.
3502   std::string canonical_result = Dwarf_line_info::one_addr2line(
3503       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3504   if (!canonical_result.empty())
3505     result.push_back(canonical_result);
3506   return result;
3507 }
3508
3509 // OutputIterator that records if it was ever assigned to.  This
3510 // allows it to be used with std::set_intersection() to check for
3511 // intersection rather than computing the intersection.
3512 struct Check_intersection
3513 {
3514   Check_intersection()
3515     : value_(false)
3516   {}
3517
3518   bool had_intersection() const
3519   { return this->value_; }
3520
3521   Check_intersection& operator++()
3522   { return *this; }
3523
3524   Check_intersection& operator*()
3525   { return *this; }
3526
3527   template<typename T>
3528   Check_intersection& operator=(const T&)
3529   {
3530     this->value_ = true;
3531     return *this;
3532   }
3533
3534  private:
3535   bool value_;
3536 };
3537
3538 // Check candidate_odr_violations_ to find symbols with the same name
3539 // but apparently different definitions (different source-file/line-no
3540 // for each line assigned to the first instruction).
3541
3542 void
3543 Symbol_table::detect_odr_violations(const Task* task,
3544                                     const char* output_file_name) const
3545 {
3546   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3547        it != candidate_odr_violations_.end();
3548        ++it)
3549     {
3550       const char* const symbol_name = it->first;
3551
3552       std::string first_object_name;
3553       std::vector<std::string> first_object_linenos;
3554
3555       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3556           locs = it->second.begin();
3557       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3558           locs_end = it->second.end();
3559       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3560         {
3561           // Save the line numbers from the first definition to
3562           // compare to the other definitions.  Ideally, we'd compare
3563           // every definition to every other, but we don't want to
3564           // take O(N^2) time to do this.  This shortcut may cause
3565           // false negatives that appear or disappear depending on the
3566           // link order, but it won't cause false positives.
3567           first_object_name = locs->object->name();
3568           first_object_linenos = this->linenos_from_loc(task, *locs);
3569         }
3570       if (first_object_linenos.empty())
3571         continue;
3572
3573       // Sort by Odr_violation_compare to make std::set_intersection work.
3574       std::string first_object_canonical_result = first_object_linenos.back();
3575       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3576                 Odr_violation_compare());
3577
3578       for (; locs != locs_end; ++locs)
3579         {
3580           std::vector<std::string> linenos =
3581               this->linenos_from_loc(task, *locs);
3582           // linenos will be empty if we couldn't parse the debug info.
3583           if (linenos.empty())
3584             continue;
3585           // Sort by Odr_violation_compare to make std::set_intersection work.
3586           gold_assert(!linenos.empty());
3587           std::string second_object_canonical_result = linenos.back();
3588           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3589
3590           Check_intersection intersection_result =
3591               std::set_intersection(first_object_linenos.begin(),
3592                                     first_object_linenos.end(),
3593                                     linenos.begin(),
3594                                     linenos.end(),
3595                                     Check_intersection(),
3596                                     Odr_violation_compare());
3597           if (!intersection_result.had_intersection())
3598             {
3599               gold_warning(_("while linking %s: symbol '%s' defined in "
3600                              "multiple places (possible ODR violation):"),
3601                            output_file_name, demangle(symbol_name).c_str());
3602               // This only prints one location from each definition,
3603               // which may not be the location we expect to intersect
3604               // with another definition.  We could print the whole
3605               // set of locations, but that seems too verbose.
3606               fprintf(stderr, _("  %s from %s\n"),
3607                       first_object_canonical_result.c_str(),
3608                       first_object_name.c_str());
3609               fprintf(stderr, _("  %s from %s\n"),
3610                       second_object_canonical_result.c_str(),
3611                       locs->object->name().c_str());
3612               // Only print one broken pair, to avoid needing to
3613               // compare against a list of the disjoint definition
3614               // locations we've found so far.  (If we kept comparing
3615               // against just the first one, we'd get a lot of
3616               // redundant complaints about the second definition
3617               // location.)
3618               break;
3619             }
3620         }
3621     }
3622   // We only call one_addr2line() in this function, so we can clear its cache.
3623   Dwarf_line_info::clear_addr2line_cache();
3624 }
3625
3626 // Warnings functions.
3627
3628 // Add a new warning.
3629
3630 void
3631 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3632                       const std::string& warning)
3633 {
3634   name = symtab->canonicalize_name(name);
3635   this->warnings_[name].set(obj, warning);
3636 }
3637
3638 // Look through the warnings and mark the symbols for which we should
3639 // warn.  This is called during Layout::finalize when we know the
3640 // sources for all the symbols.
3641
3642 void
3643 Warnings::note_warnings(Symbol_table* symtab)
3644 {
3645   for (Warning_table::iterator p = this->warnings_.begin();
3646        p != this->warnings_.end();
3647        ++p)
3648     {
3649       Symbol* sym = symtab->lookup(p->first, NULL);
3650       if (sym != NULL
3651           && sym->source() == Symbol::FROM_OBJECT
3652           && sym->object() == p->second.object)
3653         sym->set_has_warning();
3654     }
3655 }
3656
3657 // Issue a warning.  This is called when we see a relocation against a
3658 // symbol for which has a warning.
3659
3660 template<int size, bool big_endian>
3661 void
3662 Warnings::issue_warning(const Symbol* sym,
3663                         const Relocate_info<size, big_endian>* relinfo,
3664                         size_t relnum, off_t reloffset) const
3665 {
3666   gold_assert(sym->has_warning());
3667
3668   // We don't want to issue a warning for a relocation against the
3669   // symbol in the same object file in which the symbol is defined.
3670   if (sym->object() == relinfo->object)
3671     return;
3672
3673   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3674   gold_assert(p != this->warnings_.end());
3675   gold_warning_at_location(relinfo, relnum, reloffset,
3676                            "%s", p->second.text.c_str());
3677 }
3678
3679 // Instantiate the templates we need.  We could use the configure
3680 // script to restrict this to only the ones needed for implemented
3681 // targets.
3682
3683 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3684 template
3685 void
3686 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3687 #endif
3688
3689 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3690 template
3691 void
3692 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3693 #endif
3694
3695 #ifdef HAVE_TARGET_32_LITTLE
3696 template
3697 void
3698 Symbol_table::add_from_relobj<32, false>(
3699     Sized_relobj_file<32, false>* relobj,
3700     const unsigned char* syms,
3701     size_t count,
3702     size_t symndx_offset,
3703     const char* sym_names,
3704     size_t sym_name_size,
3705     Sized_relobj_file<32, false>::Symbols* sympointers,
3706     size_t* defined);
3707 #endif
3708
3709 #ifdef HAVE_TARGET_32_BIG
3710 template
3711 void
3712 Symbol_table::add_from_relobj<32, true>(
3713     Sized_relobj_file<32, true>* relobj,
3714     const unsigned char* syms,
3715     size_t count,
3716     size_t symndx_offset,
3717     const char* sym_names,
3718     size_t sym_name_size,
3719     Sized_relobj_file<32, true>::Symbols* sympointers,
3720     size_t* defined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_64_LITTLE
3724 template
3725 void
3726 Symbol_table::add_from_relobj<64, false>(
3727     Sized_relobj_file<64, false>* relobj,
3728     const unsigned char* syms,
3729     size_t count,
3730     size_t symndx_offset,
3731     const char* sym_names,
3732     size_t sym_name_size,
3733     Sized_relobj_file<64, false>::Symbols* sympointers,
3734     size_t* defined);
3735 #endif
3736
3737 #ifdef HAVE_TARGET_64_BIG
3738 template
3739 void
3740 Symbol_table::add_from_relobj<64, true>(
3741     Sized_relobj_file<64, true>* relobj,
3742     const unsigned char* syms,
3743     size_t count,
3744     size_t symndx_offset,
3745     const char* sym_names,
3746     size_t sym_name_size,
3747     Sized_relobj_file<64, true>::Symbols* sympointers,
3748     size_t* defined);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_32_LITTLE
3752 template
3753 Symbol*
3754 Symbol_table::add_from_pluginobj<32, false>(
3755     Sized_pluginobj<32, false>* obj,
3756     const char* name,
3757     const char* ver,
3758     elfcpp::Sym<32, false>* sym);
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_BIG
3762 template
3763 Symbol*
3764 Symbol_table::add_from_pluginobj<32, true>(
3765     Sized_pluginobj<32, true>* obj,
3766     const char* name,
3767     const char* ver,
3768     elfcpp::Sym<32, true>* sym);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_LITTLE
3772 template
3773 Symbol*
3774 Symbol_table::add_from_pluginobj<64, false>(
3775     Sized_pluginobj<64, false>* obj,
3776     const char* name,
3777     const char* ver,
3778     elfcpp::Sym<64, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_64_BIG
3782 template
3783 Symbol*
3784 Symbol_table::add_from_pluginobj<64, true>(
3785     Sized_pluginobj<64, true>* obj,
3786     const char* name,
3787     const char* ver,
3788     elfcpp::Sym<64, true>* sym);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_32_LITTLE
3792 template
3793 void
3794 Symbol_table::add_from_dynobj<32, false>(
3795     Sized_dynobj<32, false>* dynobj,
3796     const unsigned char* syms,
3797     size_t count,
3798     const char* sym_names,
3799     size_t sym_name_size,
3800     const unsigned char* versym,
3801     size_t versym_size,
3802     const std::vector<const char*>* version_map,
3803     Sized_relobj_file<32, false>::Symbols* sympointers,
3804     size_t* defined);
3805 #endif
3806
3807 #ifdef HAVE_TARGET_32_BIG
3808 template
3809 void
3810 Symbol_table::add_from_dynobj<32, true>(
3811     Sized_dynobj<32, true>* dynobj,
3812     const unsigned char* syms,
3813     size_t count,
3814     const char* sym_names,
3815     size_t sym_name_size,
3816     const unsigned char* versym,
3817     size_t versym_size,
3818     const std::vector<const char*>* version_map,
3819     Sized_relobj_file<32, true>::Symbols* sympointers,
3820     size_t* defined);
3821 #endif
3822
3823 #ifdef HAVE_TARGET_64_LITTLE
3824 template
3825 void
3826 Symbol_table::add_from_dynobj<64, false>(
3827     Sized_dynobj<64, false>* dynobj,
3828     const unsigned char* syms,
3829     size_t count,
3830     const char* sym_names,
3831     size_t sym_name_size,
3832     const unsigned char* versym,
3833     size_t versym_size,
3834     const std::vector<const char*>* version_map,
3835     Sized_relobj_file<64, false>::Symbols* sympointers,
3836     size_t* defined);
3837 #endif
3838
3839 #ifdef HAVE_TARGET_64_BIG
3840 template
3841 void
3842 Symbol_table::add_from_dynobj<64, true>(
3843     Sized_dynobj<64, true>* dynobj,
3844     const unsigned char* syms,
3845     size_t count,
3846     const char* sym_names,
3847     size_t sym_name_size,
3848     const unsigned char* versym,
3849     size_t versym_size,
3850     const std::vector<const char*>* version_map,
3851     Sized_relobj_file<64, true>::Symbols* sympointers,
3852     size_t* defined);
3853 #endif
3854
3855 #ifdef HAVE_TARGET_32_LITTLE
3856 template
3857 Sized_symbol<32>*
3858 Symbol_table::add_from_incrobj(
3859     Object* obj,
3860     const char* name,
3861     const char* ver,
3862     elfcpp::Sym<32, false>* sym);
3863 #endif
3864
3865 #ifdef HAVE_TARGET_32_BIG
3866 template
3867 Sized_symbol<32>*
3868 Symbol_table::add_from_incrobj(
3869     Object* obj,
3870     const char* name,
3871     const char* ver,
3872     elfcpp::Sym<32, true>* sym);
3873 #endif
3874
3875 #ifdef HAVE_TARGET_64_LITTLE
3876 template
3877 Sized_symbol<64>*
3878 Symbol_table::add_from_incrobj(
3879     Object* obj,
3880     const char* name,
3881     const char* ver,
3882     elfcpp::Sym<64, false>* sym);
3883 #endif
3884
3885 #ifdef HAVE_TARGET_64_BIG
3886 template
3887 Sized_symbol<64>*
3888 Symbol_table::add_from_incrobj(
3889     Object* obj,
3890     const char* name,
3891     const char* ver,
3892     elfcpp::Sym<64, true>* sym);
3893 #endif
3894
3895 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3896 template
3897 void
3898 Symbol_table::define_with_copy_reloc<32>(
3899     Sized_symbol<32>* sym,
3900     Output_data* posd,
3901     elfcpp::Elf_types<32>::Elf_Addr value);
3902 #endif
3903
3904 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3905 template
3906 void
3907 Symbol_table::define_with_copy_reloc<64>(
3908     Sized_symbol<64>* sym,
3909     Output_data* posd,
3910     elfcpp::Elf_types<64>::Elf_Addr value);
3911 #endif
3912
3913 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3914 template
3915 void
3916 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3917                                    Output_data* od, Value_type value,
3918                                    Size_type symsize, elfcpp::STT type,
3919                                    elfcpp::STB binding,
3920                                    elfcpp::STV visibility,
3921                                    unsigned char nonvis,
3922                                    bool offset_is_from_end,
3923                                    bool is_predefined);
3924
3925 template
3926 void
3927 Sized_symbol<32>::init_constant(const char* name, const char* version,
3928                                 Value_type value, Size_type symsize,
3929                                 elfcpp::STT type, elfcpp::STB binding,
3930                                 elfcpp::STV visibility, unsigned char nonvis,
3931                                 bool is_predefined);
3932
3933 template
3934 void
3935 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3936                                  Value_type value, elfcpp::STT type,
3937                                  elfcpp::STB binding, elfcpp::STV visibility,
3938                                  unsigned char nonvis);
3939 #endif
3940
3941 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3942 template
3943 void
3944 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3945                                    Output_data* od, Value_type value,
3946                                    Size_type symsize, elfcpp::STT type,
3947                                    elfcpp::STB binding,
3948                                    elfcpp::STV visibility,
3949                                    unsigned char nonvis,
3950                                    bool offset_is_from_end,
3951                                    bool is_predefined);
3952
3953 template
3954 void
3955 Sized_symbol<64>::init_constant(const char* name, const char* version,
3956                                 Value_type value, Size_type symsize,
3957                                 elfcpp::STT type, elfcpp::STB binding,
3958                                 elfcpp::STV visibility, unsigned char nonvis,
3959                                 bool is_predefined);
3960
3961 template
3962 void
3963 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3964                                  Value_type value, elfcpp::STT type,
3965                                  elfcpp::STB binding, elfcpp::STV visibility,
3966                                  unsigned char nonvis);
3967 #endif
3968
3969 #ifdef HAVE_TARGET_32_LITTLE
3970 template
3971 void
3972 Warnings::issue_warning<32, false>(const Symbol* sym,
3973                                    const Relocate_info<32, false>* relinfo,
3974                                    size_t relnum, off_t reloffset) const;
3975 #endif
3976
3977 #ifdef HAVE_TARGET_32_BIG
3978 template
3979 void
3980 Warnings::issue_warning<32, true>(const Symbol* sym,
3981                                   const Relocate_info<32, true>* relinfo,
3982                                   size_t relnum, off_t reloffset) const;
3983 #endif
3984
3985 #ifdef HAVE_TARGET_64_LITTLE
3986 template
3987 void
3988 Warnings::issue_warning<64, false>(const Symbol* sym,
3989                                    const Relocate_info<64, false>* relinfo,
3990                                    size_t relnum, off_t reloffset) const;
3991 #endif
3992
3993 #ifdef HAVE_TARGET_64_BIG
3994 template
3995 void
3996 Warnings::issue_warning<64, true>(const Symbol* sym,
3997                                   const Relocate_info<64, true>* relinfo,
3998                                   size_t relnum, off_t reloffset) const;
3999 #endif
4000
4001 } // End namespace gold.