constify to_open
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Set the symbol's output segment.  This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537   gold_assert(this->is_predefined_);
538   this->source_ = IN_OUTPUT_SEGMENT;
539   this->u_.in_output_segment.output_segment = os;
540   this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined.  This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550   gold_assert(this->is_predefined_);
551   this->source_ = IS_UNDEFINED;
552   this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558                            const Version_script_info& version_script)
559   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560     forwarders_(), commons_(), tls_commons_(), small_commons_(),
561     large_commons_(), forced_locals_(), warnings_(),
562     version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564   namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function.  This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576                                           const Symbol_table_key& k2) const
577 {
578   return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584   return (parameters->options().icf_enabled()
585           && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void 
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594   for (options::String_set::const_iterator p =
595          parameters->options().undefined_begin();
596        p != parameters->options().undefined_end();
597        ++p)
598     {
599       const char* name = p->c_str();
600       Symbol* sym = this->lookup(name);
601       gold_assert(sym != NULL);
602       if (sym->source() == Symbol::FROM_OBJECT 
603           && !sym->object()->is_dynamic())
604         {
605           this->gc_mark_symbol(sym);
606         }
607     }
608
609   for (options::String_set::const_iterator p =
610          parameters->options().export_dynamic_symbol_begin();
611        p != parameters->options().export_dynamic_symbol_end();
612        ++p)
613     {
614       const char* name = p->c_str();
615       Symbol* sym = this->lookup(name);
616       // It's not an error if a symbol named by --export-dynamic-symbol
617       // is undefined.
618       if (sym != NULL
619           && sym->source() == Symbol::FROM_OBJECT 
620           && !sym->object()->is_dynamic())
621         {
622           this->gc_mark_symbol(sym);
623         }
624     }
625
626   for (Script_options::referenced_const_iterator p =
627          layout->script_options()->referenced_begin();
628        p != layout->script_options()->referenced_end();
629        ++p)
630     {
631       Symbol* sym = this->lookup(p->c_str());
632       gold_assert(sym != NULL);
633       if (sym->source() == Symbol::FROM_OBJECT
634           && !sym->object()->is_dynamic())
635         {
636           this->gc_mark_symbol(sym);
637         }
638     }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644   // Add the object and section to the work list.
645   bool is_ordinary;
646   unsigned int shndx = sym->shndx(&is_ordinary);
647   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648     {
649       gold_assert(this->gc_!= NULL);
650       this->gc_->worklist().push(Section_id(sym->object(), shndx));
651     }
652   parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void 
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661       && !sym->object()->is_dynamic())
662     this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670   gold_assert(from != to);
671   gold_assert(!from->is_forwarder() && !to->is_forwarder());
672   this->forwarders_[from] = to;
673   from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681   gold_assert(from->is_forwarder());
682   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683     this->forwarders_.find(from);
684   gold_assert(p != this->forwarders_.end());
685   return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693   Stringpool::Key name_key;
694   name = this->namepool_.find(name, &name_key);
695   if (name == NULL)
696     return NULL;
697
698   Stringpool::Key version_key = 0;
699   if (version != NULL)
700     {
701       version = this->namepool_.find(version, &version_key);
702       if (version == NULL)
703         return NULL;
704     }
705
706   Symbol_table_key key(name_key, version_key);
707   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708   if (p == this->table_.end())
709     return NULL;
710   return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol.  This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version.  Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724   elfcpp::Sym_write<size, big_endian> esym(buf);
725   // We don't bother to set the st_name or the st_shndx field.
726   esym.put_st_value(from->value());
727   esym.put_st_size(from->symsize());
728   esym.put_st_info(from->binding(), from->type());
729   esym.put_st_other(from->visibility(), from->nonvis());
730   bool is_ordinary;
731   unsigned int shndx = from->shndx(&is_ordinary);
732   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733                 from->version());
734   if (from->in_reg())
735     to->set_in_reg();
736   if (from->in_dyn())
737     to->set_in_dyn();
738   if (parameters->options().gc_sections())
739     this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748   if (!sym->is_defined() && !sym->is_common())
749     return;
750   if (sym->is_forced_local())
751     {
752       // We already got this one.
753       return;
754     }
755   sym->set_is_forced_local();
756   this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766   // For some targets, we need to ignore a specific character when
767   // wrapping, and add it back later.
768   char prefix = '\0';
769   if (name[0] == parameters->target().wrap_char())
770     {
771       prefix = name[0];
772       ++name;
773     }
774
775   if (parameters->options().is_wrap(name))
776     {
777       // Turn NAME into __wrap_NAME.
778       std::string s;
779       if (prefix != '\0')
780         s += prefix;
781       s += "__wrap_";
782       s += name;
783
784       // This will give us both the old and new name in NAMEPOOL_, but
785       // that is OK.  Only the versions we need will wind up in the
786       // real string table in the output file.
787       return this->namepool_.add(s.c_str(), true, name_key);
788     }
789
790   const char* const real_prefix = "__real_";
791   const size_t real_prefix_length = strlen(real_prefix);
792   if (strncmp(name, real_prefix, real_prefix_length) == 0
793       && parameters->options().is_wrap(name + real_prefix_length))
794     {
795       // Turn __real_NAME into NAME.
796       std::string s;
797       if (prefix != '\0')
798         s += prefix;
799       s += name + real_prefix_length;
800       return this->namepool_.add(s.c_str(), true, name_key);
801     }
802
803   return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version.  SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815                                      bool default_is_new,
816                                      Symbol_table_type::iterator pdef)
817 {
818   if (default_is_new)
819     {
820       // This is the first time we have seen NAME/NULL.  Make
821       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822       // version.
823       pdef->second = sym;
824       sym->set_is_default();
825     }
826   else if (pdef->second == sym)
827     {
828       // NAME/NULL already points to NAME/VERSION.  Don't mark the
829       // symbol as the default if it is not already the default.
830     }
831   else
832     {
833       // This is the unfortunate case where we already have entries
834       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
835       // NAME/VERSION where VERSION is the default version.  We have
836       // already resolved this new symbol with the existing
837       // NAME/VERSION symbol.
838
839       // It's possible that NAME/NULL and NAME/VERSION are both
840       // defined in regular objects.  This can only happen if one
841       // object file defines foo and another defines foo@@ver.  This
842       // is somewhat obscure, but we call it a multiple definition
843       // error.
844
845       // It's possible that NAME/NULL actually has a version, in which
846       // case it won't be the same as VERSION.  This happens with
847       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
848       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
849       // then see an unadorned t2_2 in an object file and give it
850       // version VER1 from the version script.  This looks like a
851       // default definition for VER1, so it looks like we should merge
852       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
853       // not obvious that this is an error, either.  So we just punt.
854
855       // If one of the symbols has non-default visibility, and the
856       // other is defined in a shared object, then they are different
857       // symbols.
858
859       // Otherwise, we just resolve the symbols as though they were
860       // the same.
861
862       if (pdef->second->version() != NULL)
863         gold_assert(pdef->second->version() != sym->version());
864       else if (sym->visibility() != elfcpp::STV_DEFAULT
865                && pdef->second->is_from_dynobj())
866         ;
867       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868                && sym->is_from_dynobj())
869         ;
870       else
871         {
872           const Sized_symbol<size>* symdef;
873           symdef = this->get_sized_symbol<size>(pdef->second);
874           Symbol_table::resolve<size, big_endian>(sym, symdef);
875           this->make_forwarder(pdef->second, sym);
876           pdef->second = sym;
877           sym->set_is_default();
878         }
879     }
880 }
881
882 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
883 // name and VERSION is the version; both are canonicalized.  DEF is
884 // whether this is the default version.  ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol.  That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol.  This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION.  If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure.  That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table.  We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files.  So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code.  ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915                               const char* name,
916                               Stringpool::Key name_key,
917                               const char* version,
918                               Stringpool::Key version_key,
919                               bool is_default_version,
920                               const elfcpp::Sym<size, big_endian>& sym,
921                               unsigned int st_shndx,
922                               bool is_ordinary,
923                               unsigned int orig_st_shndx)
924 {
925   // Print a message if this symbol is being traced.
926   if (parameters->options().is_trace_symbol(name))
927     {
928       if (orig_st_shndx == elfcpp::SHN_UNDEF)
929         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930       else
931         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932     }
933
934   // For an undefined symbol, we may need to adjust the name using
935   // --wrap.
936   if (orig_st_shndx == elfcpp::SHN_UNDEF
937       && parameters->options().any_wrap())
938     {
939       const char* wrap_name = this->wrap_symbol(name, &name_key);
940       if (wrap_name != name)
941         {
942           // If we see a reference to malloc with version GLIBC_2.0,
943           // and we turn it into a reference to __wrap_malloc, then we
944           // discard the version number.  Otherwise the user would be
945           // required to specify the correct version for
946           // __wrap_malloc.
947           version = NULL;
948           version_key = 0;
949           name = wrap_name;
950         }
951     }
952
953   Symbol* const snull = NULL;
954   std::pair<typename Symbol_table_type::iterator, bool> ins =
955     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956                                        snull));
957
958   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959     std::make_pair(this->table_.end(), false);
960   if (is_default_version)
961     {
962       const Stringpool::Key vnull_key = 0;
963       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964                                                                      vnull_key),
965                                                       snull));
966     }
967
968   // ins.first: an iterator, which is a pointer to a pair.
969   // ins.first->first: the key (a pair of name and version).
970   // ins.first->second: the value (Symbol*).
971   // ins.second: true if new entry was inserted, false if not.
972
973   Sized_symbol<size>* ret;
974   bool was_undefined;
975   bool was_common;
976   if (!ins.second)
977     {
978       // We already have an entry for NAME/VERSION.
979       ret = this->get_sized_symbol<size>(ins.first->second);
980       gold_assert(ret != NULL);
981
982       was_undefined = ret->is_undefined();
983       was_common = ret->is_common();
984
985       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986                     version);
987       if (parameters->options().gc_sections())
988         this->gc_mark_dyn_syms(ret);
989
990       if (is_default_version)
991         this->define_default_version<size, big_endian>(ret, insdefault.second,
992                                                        insdefault.first);
993     }
994   else
995     {
996       // This is the first time we have seen NAME/VERSION.
997       gold_assert(ins.first->second == NULL);
998
999       if (is_default_version && !insdefault.second)
1000         {
1001           // We already have an entry for NAME/NULL.  If we override
1002           // it, then change it to NAME/VERSION.
1003           ret = this->get_sized_symbol<size>(insdefault.first->second);
1004
1005           was_undefined = ret->is_undefined();
1006           was_common = ret->is_common();
1007
1008           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1009                         version);
1010           if (parameters->options().gc_sections())
1011             this->gc_mark_dyn_syms(ret);
1012           ins.first->second = ret;
1013         }
1014       else
1015         {
1016           was_undefined = false;
1017           was_common = false;
1018
1019           Sized_target<size, big_endian>* target =
1020             parameters->sized_target<size, big_endian>();
1021           if (!target->has_make_symbol())
1022             ret = new Sized_symbol<size>();
1023           else
1024             {
1025               ret = target->make_symbol();
1026               if (ret == NULL)
1027                 {
1028                   // This means that we don't want a symbol table
1029                   // entry after all.
1030                   if (!is_default_version)
1031                     this->table_.erase(ins.first);
1032                   else
1033                     {
1034                       this->table_.erase(insdefault.first);
1035                       // Inserting INSDEFAULT invalidated INS.
1036                       this->table_.erase(std::make_pair(name_key,
1037                                                         version_key));
1038                     }
1039                   return NULL;
1040                 }
1041             }
1042
1043           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1044
1045           ins.first->second = ret;
1046           if (is_default_version)
1047             {
1048               // This is the first time we have seen NAME/NULL.  Point
1049               // it at the new entry for NAME/VERSION.
1050               gold_assert(insdefault.second);
1051               insdefault.first->second = ret;
1052             }
1053         }
1054
1055       if (is_default_version)
1056         ret->set_is_default();
1057     }
1058
1059   // Record every time we see a new undefined symbol, to speed up
1060   // archive groups.
1061   if (!was_undefined && ret->is_undefined())
1062     {
1063       ++this->saw_undefined_;
1064       if (parameters->options().has_plugins())
1065         parameters->options().plugins()->new_undefined_symbol(ret);
1066     }
1067
1068   // Keep track of common symbols, to speed up common symbol
1069   // allocation.
1070   if (!was_common && ret->is_common())
1071     {
1072       if (ret->type() == elfcpp::STT_TLS)
1073         this->tls_commons_.push_back(ret);
1074       else if (!is_ordinary
1075                && st_shndx == parameters->target().small_common_shndx())
1076         this->small_commons_.push_back(ret);
1077       else if (!is_ordinary
1078                && st_shndx == parameters->target().large_common_shndx())
1079         this->large_commons_.push_back(ret);
1080       else
1081         this->commons_.push_back(ret);
1082     }
1083
1084   // If we're not doing a relocatable link, then any symbol with
1085   // hidden or internal visibility is local.
1086   if ((ret->visibility() == elfcpp::STV_HIDDEN
1087        || ret->visibility() == elfcpp::STV_INTERNAL)
1088       && (ret->binding() == elfcpp::STB_GLOBAL
1089           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1090           || ret->binding() == elfcpp::STB_WEAK)
1091       && !parameters->options().relocatable())
1092     this->force_local(ret);
1093
1094   return ret;
1095 }
1096
1097 // Add all the symbols in a relocatable object to the hash table.
1098
1099 template<int size, bool big_endian>
1100 void
1101 Symbol_table::add_from_relobj(
1102     Sized_relobj_file<size, big_endian>* relobj,
1103     const unsigned char* syms,
1104     size_t count,
1105     size_t symndx_offset,
1106     const char* sym_names,
1107     size_t sym_name_size,
1108     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1109     size_t* defined)
1110 {
1111   *defined = 0;
1112
1113   gold_assert(size == parameters->target().get_size());
1114
1115   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1116
1117   const bool just_symbols = relobj->just_symbols();
1118
1119   const unsigned char* p = syms;
1120   for (size_t i = 0; i < count; ++i, p += sym_size)
1121     {
1122       (*sympointers)[i] = NULL;
1123
1124       elfcpp::Sym<size, big_endian> sym(p);
1125
1126       unsigned int st_name = sym.get_st_name();
1127       if (st_name >= sym_name_size)
1128         {
1129           relobj->error(_("bad global symbol name offset %u at %zu"),
1130                         st_name, i);
1131           continue;
1132         }
1133
1134       const char* name = sym_names + st_name;
1135
1136       bool is_ordinary;
1137       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1138                                                        sym.get_st_shndx(),
1139                                                        &is_ordinary);
1140       unsigned int orig_st_shndx = st_shndx;
1141       if (!is_ordinary)
1142         orig_st_shndx = elfcpp::SHN_UNDEF;
1143
1144       if (st_shndx != elfcpp::SHN_UNDEF)
1145         ++*defined;
1146
1147       // A symbol defined in a section which we are not including must
1148       // be treated as an undefined symbol.
1149       bool is_defined_in_discarded_section = false;
1150       if (st_shndx != elfcpp::SHN_UNDEF
1151           && is_ordinary
1152           && !relobj->is_section_included(st_shndx)
1153           && !this->is_section_folded(relobj, st_shndx))
1154         {
1155           st_shndx = elfcpp::SHN_UNDEF;
1156           is_defined_in_discarded_section = true;
1157         }
1158
1159       // In an object file, an '@' in the name separates the symbol
1160       // name from the version name.  If there are two '@' characters,
1161       // this is the default version.
1162       const char* ver = strchr(name, '@');
1163       Stringpool::Key ver_key = 0;
1164       int namelen = 0;
1165       // IS_DEFAULT_VERSION: is the version default?
1166       // IS_FORCED_LOCAL: is the symbol forced local?
1167       bool is_default_version = false;
1168       bool is_forced_local = false;
1169
1170       // FIXME: For incremental links, we don't store version information,
1171       // so we need to ignore version symbols for now.
1172       if (parameters->incremental_update() && ver != NULL)
1173         {
1174           namelen = ver - name;
1175           ver = NULL;
1176         }
1177
1178       if (ver != NULL)
1179         {
1180           // The symbol name is of the form foo@VERSION or foo@@VERSION
1181           namelen = ver - name;
1182           ++ver;
1183           if (*ver == '@')
1184             {
1185               is_default_version = true;
1186               ++ver;
1187             }
1188           ver = this->namepool_.add(ver, true, &ver_key);
1189         }
1190       // We don't want to assign a version to an undefined symbol,
1191       // even if it is listed in the version script.  FIXME: What
1192       // about a common symbol?
1193       else
1194         {
1195           namelen = strlen(name);
1196           if (!this->version_script_.empty()
1197               && st_shndx != elfcpp::SHN_UNDEF)
1198             {
1199               // The symbol name did not have a version, but the
1200               // version script may assign a version anyway.
1201               std::string version;
1202               bool is_global;
1203               if (this->version_script_.get_symbol_version(name, &version,
1204                                                            &is_global))
1205                 {
1206                   if (!is_global)
1207                     is_forced_local = true;
1208                   else if (!version.empty())
1209                     {
1210                       ver = this->namepool_.add_with_length(version.c_str(),
1211                                                             version.length(),
1212                                                             true,
1213                                                             &ver_key);
1214                       is_default_version = true;
1215                     }
1216                 }
1217             }
1218         }
1219
1220       elfcpp::Sym<size, big_endian>* psym = &sym;
1221       unsigned char symbuf[sym_size];
1222       elfcpp::Sym<size, big_endian> sym2(symbuf);
1223       if (just_symbols)
1224         {
1225           memcpy(symbuf, p, sym_size);
1226           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1227           if (orig_st_shndx != elfcpp::SHN_UNDEF
1228               && is_ordinary
1229               && relobj->e_type() == elfcpp::ET_REL)
1230             {
1231               // Symbol values in relocatable object files are section
1232               // relative.  This is normally what we want, but since here
1233               // we are converting the symbol to absolute we need to add
1234               // the section address.  The section address in an object
1235               // file is normally zero, but people can use a linker
1236               // script to change it.
1237               sw.put_st_value(sym.get_st_value()
1238                               + relobj->section_address(orig_st_shndx));
1239             }
1240           st_shndx = elfcpp::SHN_ABS;
1241           is_ordinary = false;
1242           psym = &sym2;
1243         }
1244
1245       // Fix up visibility if object has no-export set.
1246       if (relobj->no_export()
1247           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1248         {
1249           // We may have copied symbol already above.
1250           if (psym != &sym2)
1251             {
1252               memcpy(symbuf, p, sym_size);
1253               psym = &sym2;
1254             }
1255
1256           elfcpp::STV visibility = sym2.get_st_visibility();
1257           if (visibility == elfcpp::STV_DEFAULT
1258               || visibility == elfcpp::STV_PROTECTED)
1259             {
1260               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1261               unsigned char nonvis = sym2.get_st_nonvis();
1262               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1263             }
1264         }
1265
1266       Stringpool::Key name_key;
1267       name = this->namepool_.add_with_length(name, namelen, true,
1268                                              &name_key);
1269
1270       Sized_symbol<size>* res;
1271       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1272                                   is_default_version, *psym, st_shndx,
1273                                   is_ordinary, orig_st_shndx);
1274       
1275       if (is_forced_local)
1276         this->force_local(res);
1277
1278       // Do not treat this symbol as garbage if this symbol will be
1279       // exported to the dynamic symbol table.  This is true when
1280       // building a shared library or using --export-dynamic and
1281       // the symbol is externally visible.
1282       if (parameters->options().gc_sections()
1283           && res->is_externally_visible()
1284           && !res->is_from_dynobj()
1285           && (parameters->options().shared()
1286               || parameters->options().export_dynamic()
1287               || parameters->options().in_dynamic_list(res->name())))
1288         this->gc_mark_symbol(res);
1289
1290       if (is_defined_in_discarded_section)
1291         res->set_is_defined_in_discarded_section();
1292
1293       (*sympointers)[i] = res;
1294     }
1295 }
1296
1297 // Add a symbol from a plugin-claimed file.
1298
1299 template<int size, bool big_endian>
1300 Symbol*
1301 Symbol_table::add_from_pluginobj(
1302     Sized_pluginobj<size, big_endian>* obj,
1303     const char* name,
1304     const char* ver,
1305     elfcpp::Sym<size, big_endian>* sym)
1306 {
1307   unsigned int st_shndx = sym->get_st_shndx();
1308   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1309
1310   Stringpool::Key ver_key = 0;
1311   bool is_default_version = false;
1312   bool is_forced_local = false;
1313
1314   if (ver != NULL)
1315     {
1316       ver = this->namepool_.add(ver, true, &ver_key);
1317     }
1318   // We don't want to assign a version to an undefined symbol,
1319   // even if it is listed in the version script.  FIXME: What
1320   // about a common symbol?
1321   else
1322     {
1323       if (!this->version_script_.empty()
1324           && st_shndx != elfcpp::SHN_UNDEF)
1325         {
1326           // The symbol name did not have a version, but the
1327           // version script may assign a version anyway.
1328           std::string version;
1329           bool is_global;
1330           if (this->version_script_.get_symbol_version(name, &version,
1331                                                        &is_global))
1332             {
1333               if (!is_global)
1334                 is_forced_local = true;
1335               else if (!version.empty())
1336                 {
1337                   ver = this->namepool_.add_with_length(version.c_str(),
1338                                                         version.length(),
1339                                                         true,
1340                                                         &ver_key);
1341                   is_default_version = true;
1342                 }
1343             }
1344         }
1345     }
1346
1347   Stringpool::Key name_key;
1348   name = this->namepool_.add(name, true, &name_key);
1349
1350   Sized_symbol<size>* res;
1351   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1352                               is_default_version, *sym, st_shndx,
1353                               is_ordinary, st_shndx);
1354
1355   if (is_forced_local)
1356     this->force_local(res);
1357
1358   return res;
1359 }
1360
1361 // Add all the symbols in a dynamic object to the hash table.
1362
1363 template<int size, bool big_endian>
1364 void
1365 Symbol_table::add_from_dynobj(
1366     Sized_dynobj<size, big_endian>* dynobj,
1367     const unsigned char* syms,
1368     size_t count,
1369     const char* sym_names,
1370     size_t sym_name_size,
1371     const unsigned char* versym,
1372     size_t versym_size,
1373     const std::vector<const char*>* version_map,
1374     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1375     size_t* defined)
1376 {
1377   *defined = 0;
1378
1379   gold_assert(size == parameters->target().get_size());
1380
1381   if (dynobj->just_symbols())
1382     {
1383       gold_error(_("--just-symbols does not make sense with a shared object"));
1384       return;
1385     }
1386
1387   // FIXME: For incremental links, we don't store version information,
1388   // so we need to ignore version symbols for now.
1389   if (parameters->incremental_update())
1390     versym = NULL;
1391
1392   if (versym != NULL && versym_size / 2 < count)
1393     {
1394       dynobj->error(_("too few symbol versions"));
1395       return;
1396     }
1397
1398   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1399
1400   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1401   // weak aliases.  This is necessary because if the dynamic object
1402   // provides the same variable under two names, one of which is a
1403   // weak definition, and the regular object refers to the weak
1404   // definition, we have to put both the weak definition and the
1405   // strong definition into the dynamic symbol table.  Given a weak
1406   // definition, the only way that we can find the corresponding
1407   // strong definition, if any, is to search the symbol table.
1408   std::vector<Sized_symbol<size>*> object_symbols;
1409
1410   const unsigned char* p = syms;
1411   const unsigned char* vs = versym;
1412   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1413     {
1414       elfcpp::Sym<size, big_endian> sym(p);
1415
1416       if (sympointers != NULL)
1417         (*sympointers)[i] = NULL;
1418
1419       // Ignore symbols with local binding or that have
1420       // internal or hidden visibility.
1421       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1422           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1423           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1424         continue;
1425
1426       // A protected symbol in a shared library must be treated as a
1427       // normal symbol when viewed from outside the shared library.
1428       // Implement this by overriding the visibility here.
1429       elfcpp::Sym<size, big_endian>* psym = &sym;
1430       unsigned char symbuf[sym_size];
1431       elfcpp::Sym<size, big_endian> sym2(symbuf);
1432       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1433         {
1434           memcpy(symbuf, p, sym_size);
1435           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1436           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1437           psym = &sym2;
1438         }
1439
1440       unsigned int st_name = psym->get_st_name();
1441       if (st_name >= sym_name_size)
1442         {
1443           dynobj->error(_("bad symbol name offset %u at %zu"),
1444                         st_name, i);
1445           continue;
1446         }
1447
1448       const char* name = sym_names + st_name;
1449
1450       bool is_ordinary;
1451       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1452                                                        &is_ordinary);
1453
1454       if (st_shndx != elfcpp::SHN_UNDEF)
1455         ++*defined;
1456
1457       Sized_symbol<size>* res;
1458
1459       if (versym == NULL)
1460         {
1461           Stringpool::Key name_key;
1462           name = this->namepool_.add(name, true, &name_key);
1463           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1464                                       false, *psym, st_shndx, is_ordinary,
1465                                       st_shndx);
1466         }
1467       else
1468         {
1469           // Read the version information.
1470
1471           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1472
1473           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1474           v &= elfcpp::VERSYM_VERSION;
1475
1476           // The Sun documentation says that V can be VER_NDX_LOCAL,
1477           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1478           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1479           // The old GNU linker will happily generate VER_NDX_LOCAL
1480           // for an undefined symbol.  I don't know what the Sun
1481           // linker will generate.
1482
1483           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1484               && st_shndx != elfcpp::SHN_UNDEF)
1485             {
1486               // This symbol should not be visible outside the object.
1487               continue;
1488             }
1489
1490           // At this point we are definitely going to add this symbol.
1491           Stringpool::Key name_key;
1492           name = this->namepool_.add(name, true, &name_key);
1493
1494           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1495               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1496             {
1497               // This symbol does not have a version.
1498               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1499                                           false, *psym, st_shndx, is_ordinary,
1500                                           st_shndx);
1501             }
1502           else
1503             {
1504               if (v >= version_map->size())
1505                 {
1506                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1507                                 i, v);
1508                   continue;
1509                 }
1510
1511               const char* version = (*version_map)[v];
1512               if (version == NULL)
1513                 {
1514                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1515                                 i, v);
1516                   continue;
1517                 }
1518
1519               Stringpool::Key version_key;
1520               version = this->namepool_.add(version, true, &version_key);
1521
1522               // If this is an absolute symbol, and the version name
1523               // and symbol name are the same, then this is the
1524               // version definition symbol.  These symbols exist to
1525               // support using -u to pull in particular versions.  We
1526               // do not want to record a version for them.
1527               if (st_shndx == elfcpp::SHN_ABS
1528                   && !is_ordinary
1529                   && name_key == version_key)
1530                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531                                             false, *psym, st_shndx, is_ordinary,
1532                                             st_shndx);
1533               else
1534                 {
1535                   const bool is_default_version =
1536                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1537                   res = this->add_from_object(dynobj, name, name_key, version,
1538                                               version_key, is_default_version,
1539                                               *psym, st_shndx,
1540                                               is_ordinary, st_shndx);
1541                 }
1542             }
1543         }
1544
1545       // Note that it is possible that RES was overridden by an
1546       // earlier object, in which case it can't be aliased here.
1547       if (st_shndx != elfcpp::SHN_UNDEF
1548           && is_ordinary
1549           && psym->get_st_type() == elfcpp::STT_OBJECT
1550           && res->source() == Symbol::FROM_OBJECT
1551           && res->object() == dynobj)
1552         object_symbols.push_back(res);
1553
1554       if (sympointers != NULL)
1555         (*sympointers)[i] = res;
1556     }
1557
1558   this->record_weak_aliases(&object_symbols);
1559 }
1560
1561 // Add a symbol from a incremental object file.
1562
1563 template<int size, bool big_endian>
1564 Sized_symbol<size>*
1565 Symbol_table::add_from_incrobj(
1566     Object* obj,
1567     const char* name,
1568     const char* ver,
1569     elfcpp::Sym<size, big_endian>* sym)
1570 {
1571   unsigned int st_shndx = sym->get_st_shndx();
1572   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1573
1574   Stringpool::Key ver_key = 0;
1575   bool is_default_version = false;
1576   bool is_forced_local = false;
1577
1578   Stringpool::Key name_key;
1579   name = this->namepool_.add(name, true, &name_key);
1580
1581   Sized_symbol<size>* res;
1582   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1583                               is_default_version, *sym, st_shndx,
1584                               is_ordinary, st_shndx);
1585
1586   if (is_forced_local)
1587     this->force_local(res);
1588
1589   return res;
1590 }
1591
1592 // This is used to sort weak aliases.  We sort them first by section
1593 // index, then by offset, then by weak ahead of strong.
1594
1595 template<int size>
1596 class Weak_alias_sorter
1597 {
1598  public:
1599   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1600 };
1601
1602 template<int size>
1603 bool
1604 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1605                                     const Sized_symbol<size>* s2) const
1606 {
1607   bool is_ordinary;
1608   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1609   gold_assert(is_ordinary);
1610   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1611   gold_assert(is_ordinary);
1612   if (s1_shndx != s2_shndx)
1613     return s1_shndx < s2_shndx;
1614
1615   if (s1->value() != s2->value())
1616     return s1->value() < s2->value();
1617   if (s1->binding() != s2->binding())
1618     {
1619       if (s1->binding() == elfcpp::STB_WEAK)
1620         return true;
1621       if (s2->binding() == elfcpp::STB_WEAK)
1622         return false;
1623     }
1624   return std::string(s1->name()) < std::string(s2->name());
1625 }
1626
1627 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1628 // for any weak aliases, and record them so that if we add the weak
1629 // alias to the dynamic symbol table, we also add the corresponding
1630 // strong symbol.
1631
1632 template<int size>
1633 void
1634 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1635 {
1636   // Sort the vector by section index, then by offset, then by weak
1637   // ahead of strong.
1638   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1639
1640   // Walk through the vector.  For each weak definition, record
1641   // aliases.
1642   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1643          symbols->begin();
1644        p != symbols->end();
1645        ++p)
1646     {
1647       if ((*p)->binding() != elfcpp::STB_WEAK)
1648         continue;
1649
1650       // Build a circular list of weak aliases.  Each symbol points to
1651       // the next one in the circular list.
1652
1653       Sized_symbol<size>* from_sym = *p;
1654       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1655       for (q = p + 1; q != symbols->end(); ++q)
1656         {
1657           bool dummy;
1658           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1659               || (*q)->value() != from_sym->value())
1660             break;
1661
1662           this->weak_aliases_[from_sym] = *q;
1663           from_sym->set_has_alias();
1664           from_sym = *q;
1665         }
1666
1667       if (from_sym != *p)
1668         {
1669           this->weak_aliases_[from_sym] = *p;
1670           from_sym->set_has_alias();
1671         }
1672
1673       p = q - 1;
1674     }
1675 }
1676
1677 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1678 // true, then only create the symbol if there is a reference to it.
1679 // If this does not return NULL, it sets *POLDSYM to the existing
1680 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1681 // resolve the newly created symbol to the old one.  This
1682 // canonicalizes *PNAME and *PVERSION.
1683
1684 template<int size, bool big_endian>
1685 Sized_symbol<size>*
1686 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1687                                     bool only_if_ref,
1688                                     Sized_symbol<size>** poldsym,
1689                                     bool* resolve_oldsym)
1690 {
1691   *resolve_oldsym = false;
1692   *poldsym = NULL;
1693
1694   // If the caller didn't give us a version, see if we get one from
1695   // the version script.
1696   std::string v;
1697   bool is_default_version = false;
1698   if (*pversion == NULL)
1699     {
1700       bool is_global;
1701       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1702         {
1703           if (is_global && !v.empty())
1704             {
1705               *pversion = v.c_str();
1706               // If we get the version from a version script, then we
1707               // are also the default version.
1708               is_default_version = true;
1709             }
1710         }
1711     }
1712
1713   Symbol* oldsym;
1714   Sized_symbol<size>* sym;
1715
1716   bool add_to_table = false;
1717   typename Symbol_table_type::iterator add_loc = this->table_.end();
1718   bool add_def_to_table = false;
1719   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1720
1721   if (only_if_ref)
1722     {
1723       oldsym = this->lookup(*pname, *pversion);
1724       if (oldsym == NULL && is_default_version)
1725         oldsym = this->lookup(*pname, NULL);
1726       if (oldsym == NULL || !oldsym->is_undefined())
1727         return NULL;
1728
1729       *pname = oldsym->name();
1730       if (is_default_version)
1731         *pversion = this->namepool_.add(*pversion, true, NULL);
1732       else
1733         *pversion = oldsym->version();
1734     }
1735   else
1736     {
1737       // Canonicalize NAME and VERSION.
1738       Stringpool::Key name_key;
1739       *pname = this->namepool_.add(*pname, true, &name_key);
1740
1741       Stringpool::Key version_key = 0;
1742       if (*pversion != NULL)
1743         *pversion = this->namepool_.add(*pversion, true, &version_key);
1744
1745       Symbol* const snull = NULL;
1746       std::pair<typename Symbol_table_type::iterator, bool> ins =
1747         this->table_.insert(std::make_pair(std::make_pair(name_key,
1748                                                           version_key),
1749                                            snull));
1750
1751       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1752         std::make_pair(this->table_.end(), false);
1753       if (is_default_version)
1754         {
1755           const Stringpool::Key vnull = 0;
1756           insdefault =
1757             this->table_.insert(std::make_pair(std::make_pair(name_key,
1758                                                               vnull),
1759                                                snull));
1760         }
1761
1762       if (!ins.second)
1763         {
1764           // We already have a symbol table entry for NAME/VERSION.
1765           oldsym = ins.first->second;
1766           gold_assert(oldsym != NULL);
1767
1768           if (is_default_version)
1769             {
1770               Sized_symbol<size>* soldsym =
1771                 this->get_sized_symbol<size>(oldsym);
1772               this->define_default_version<size, big_endian>(soldsym,
1773                                                              insdefault.second,
1774                                                              insdefault.first);
1775             }
1776         }
1777       else
1778         {
1779           // We haven't seen this symbol before.
1780           gold_assert(ins.first->second == NULL);
1781
1782           add_to_table = true;
1783           add_loc = ins.first;
1784
1785           if (is_default_version && !insdefault.second)
1786             {
1787               // We are adding NAME/VERSION, and it is the default
1788               // version.  We already have an entry for NAME/NULL.
1789               oldsym = insdefault.first->second;
1790               *resolve_oldsym = true;
1791             }
1792           else
1793             {
1794               oldsym = NULL;
1795
1796               if (is_default_version)
1797                 {
1798                   add_def_to_table = true;
1799                   add_def_loc = insdefault.first;
1800                 }
1801             }
1802         }
1803     }
1804
1805   const Target& target = parameters->target();
1806   if (!target.has_make_symbol())
1807     sym = new Sized_symbol<size>();
1808   else
1809     {
1810       Sized_target<size, big_endian>* sized_target =
1811         parameters->sized_target<size, big_endian>();
1812       sym = sized_target->make_symbol();
1813       if (sym == NULL)
1814         return NULL;
1815     }
1816
1817   if (add_to_table)
1818     add_loc->second = sym;
1819   else
1820     gold_assert(oldsym != NULL);
1821
1822   if (add_def_to_table)
1823     add_def_loc->second = sym;
1824
1825   *poldsym = this->get_sized_symbol<size>(oldsym);
1826
1827   return sym;
1828 }
1829
1830 // Define a symbol based on an Output_data.
1831
1832 Symbol*
1833 Symbol_table::define_in_output_data(const char* name,
1834                                     const char* version,
1835                                     Defined defined,
1836                                     Output_data* od,
1837                                     uint64_t value,
1838                                     uint64_t symsize,
1839                                     elfcpp::STT type,
1840                                     elfcpp::STB binding,
1841                                     elfcpp::STV visibility,
1842                                     unsigned char nonvis,
1843                                     bool offset_is_from_end,
1844                                     bool only_if_ref)
1845 {
1846   if (parameters->target().get_size() == 32)
1847     {
1848 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1849       return this->do_define_in_output_data<32>(name, version, defined, od,
1850                                                 value, symsize, type, binding,
1851                                                 visibility, nonvis,
1852                                                 offset_is_from_end,
1853                                                 only_if_ref);
1854 #else
1855       gold_unreachable();
1856 #endif
1857     }
1858   else if (parameters->target().get_size() == 64)
1859     {
1860 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1861       return this->do_define_in_output_data<64>(name, version, defined, od,
1862                                                 value, symsize, type, binding,
1863                                                 visibility, nonvis,
1864                                                 offset_is_from_end,
1865                                                 only_if_ref);
1866 #else
1867       gold_unreachable();
1868 #endif
1869     }
1870   else
1871     gold_unreachable();
1872 }
1873
1874 // Define a symbol in an Output_data, sized version.
1875
1876 template<int size>
1877 Sized_symbol<size>*
1878 Symbol_table::do_define_in_output_data(
1879     const char* name,
1880     const char* version,
1881     Defined defined,
1882     Output_data* od,
1883     typename elfcpp::Elf_types<size>::Elf_Addr value,
1884     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1885     elfcpp::STT type,
1886     elfcpp::STB binding,
1887     elfcpp::STV visibility,
1888     unsigned char nonvis,
1889     bool offset_is_from_end,
1890     bool only_if_ref)
1891 {
1892   Sized_symbol<size>* sym;
1893   Sized_symbol<size>* oldsym;
1894   bool resolve_oldsym;
1895
1896   if (parameters->target().is_big_endian())
1897     {
1898 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1899       sym = this->define_special_symbol<size, true>(&name, &version,
1900                                                     only_if_ref, &oldsym,
1901                                                     &resolve_oldsym);
1902 #else
1903       gold_unreachable();
1904 #endif
1905     }
1906   else
1907     {
1908 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1909       sym = this->define_special_symbol<size, false>(&name, &version,
1910                                                      only_if_ref, &oldsym,
1911                                                      &resolve_oldsym);
1912 #else
1913       gold_unreachable();
1914 #endif
1915     }
1916
1917   if (sym == NULL)
1918     return NULL;
1919
1920   sym->init_output_data(name, version, od, value, symsize, type, binding,
1921                         visibility, nonvis, offset_is_from_end,
1922                         defined == PREDEFINED);
1923
1924   if (oldsym == NULL)
1925     {
1926       if (binding == elfcpp::STB_LOCAL
1927           || this->version_script_.symbol_is_local(name))
1928         this->force_local(sym);
1929       else if (version != NULL)
1930         sym->set_is_default();
1931       return sym;
1932     }
1933
1934   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1935     this->override_with_special(oldsym, sym);
1936
1937   if (resolve_oldsym)
1938     return sym;
1939   else
1940     {
1941       delete sym;
1942       return oldsym;
1943     }
1944 }
1945
1946 // Define a symbol based on an Output_segment.
1947
1948 Symbol*
1949 Symbol_table::define_in_output_segment(const char* name,
1950                                        const char* version,
1951                                        Defined defined,
1952                                        Output_segment* os,
1953                                        uint64_t value,
1954                                        uint64_t symsize,
1955                                        elfcpp::STT type,
1956                                        elfcpp::STB binding,
1957                                        elfcpp::STV visibility,
1958                                        unsigned char nonvis,
1959                                        Symbol::Segment_offset_base offset_base,
1960                                        bool only_if_ref)
1961 {
1962   if (parameters->target().get_size() == 32)
1963     {
1964 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1965       return this->do_define_in_output_segment<32>(name, version, defined, os,
1966                                                    value, symsize, type,
1967                                                    binding, visibility, nonvis,
1968                                                    offset_base, only_if_ref);
1969 #else
1970       gold_unreachable();
1971 #endif
1972     }
1973   else if (parameters->target().get_size() == 64)
1974     {
1975 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1976       return this->do_define_in_output_segment<64>(name, version, defined, os,
1977                                                    value, symsize, type,
1978                                                    binding, visibility, nonvis,
1979                                                    offset_base, only_if_ref);
1980 #else
1981       gold_unreachable();
1982 #endif
1983     }
1984   else
1985     gold_unreachable();
1986 }
1987
1988 // Define a symbol in an Output_segment, sized version.
1989
1990 template<int size>
1991 Sized_symbol<size>*
1992 Symbol_table::do_define_in_output_segment(
1993     const char* name,
1994     const char* version,
1995     Defined defined,
1996     Output_segment* os,
1997     typename elfcpp::Elf_types<size>::Elf_Addr value,
1998     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1999     elfcpp::STT type,
2000     elfcpp::STB binding,
2001     elfcpp::STV visibility,
2002     unsigned char nonvis,
2003     Symbol::Segment_offset_base offset_base,
2004     bool only_if_ref)
2005 {
2006   Sized_symbol<size>* sym;
2007   Sized_symbol<size>* oldsym;
2008   bool resolve_oldsym;
2009
2010   if (parameters->target().is_big_endian())
2011     {
2012 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2013       sym = this->define_special_symbol<size, true>(&name, &version,
2014                                                     only_if_ref, &oldsym,
2015                                                     &resolve_oldsym);
2016 #else
2017       gold_unreachable();
2018 #endif
2019     }
2020   else
2021     {
2022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2023       sym = this->define_special_symbol<size, false>(&name, &version,
2024                                                      only_if_ref, &oldsym,
2025                                                      &resolve_oldsym);
2026 #else
2027       gold_unreachable();
2028 #endif
2029     }
2030
2031   if (sym == NULL)
2032     return NULL;
2033
2034   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2035                            visibility, nonvis, offset_base,
2036                            defined == PREDEFINED);
2037
2038   if (oldsym == NULL)
2039     {
2040       if (binding == elfcpp::STB_LOCAL
2041           || this->version_script_.symbol_is_local(name))
2042         this->force_local(sym);
2043       else if (version != NULL)
2044         sym->set_is_default();
2045       return sym;
2046     }
2047
2048   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2049     this->override_with_special(oldsym, sym);
2050
2051   if (resolve_oldsym)
2052     return sym;
2053   else
2054     {
2055       delete sym;
2056       return oldsym;
2057     }
2058 }
2059
2060 // Define a special symbol with a constant value.  It is a multiple
2061 // definition error if this symbol is already defined.
2062
2063 Symbol*
2064 Symbol_table::define_as_constant(const char* name,
2065                                  const char* version,
2066                                  Defined defined,
2067                                  uint64_t value,
2068                                  uint64_t symsize,
2069                                  elfcpp::STT type,
2070                                  elfcpp::STB binding,
2071                                  elfcpp::STV visibility,
2072                                  unsigned char nonvis,
2073                                  bool only_if_ref,
2074                                  bool force_override)
2075 {
2076   if (parameters->target().get_size() == 32)
2077     {
2078 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2079       return this->do_define_as_constant<32>(name, version, defined, value,
2080                                              symsize, type, binding,
2081                                              visibility, nonvis, only_if_ref,
2082                                              force_override);
2083 #else
2084       gold_unreachable();
2085 #endif
2086     }
2087   else if (parameters->target().get_size() == 64)
2088     {
2089 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2090       return this->do_define_as_constant<64>(name, version, defined, value,
2091                                              symsize, type, binding,
2092                                              visibility, nonvis, only_if_ref,
2093                                              force_override);
2094 #else
2095       gold_unreachable();
2096 #endif
2097     }
2098   else
2099     gold_unreachable();
2100 }
2101
2102 // Define a symbol as a constant, sized version.
2103
2104 template<int size>
2105 Sized_symbol<size>*
2106 Symbol_table::do_define_as_constant(
2107     const char* name,
2108     const char* version,
2109     Defined defined,
2110     typename elfcpp::Elf_types<size>::Elf_Addr value,
2111     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2112     elfcpp::STT type,
2113     elfcpp::STB binding,
2114     elfcpp::STV visibility,
2115     unsigned char nonvis,
2116     bool only_if_ref,
2117     bool force_override)
2118 {
2119   Sized_symbol<size>* sym;
2120   Sized_symbol<size>* oldsym;
2121   bool resolve_oldsym;
2122
2123   if (parameters->target().is_big_endian())
2124     {
2125 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2126       sym = this->define_special_symbol<size, true>(&name, &version,
2127                                                     only_if_ref, &oldsym,
2128                                                     &resolve_oldsym);
2129 #else
2130       gold_unreachable();
2131 #endif
2132     }
2133   else
2134     {
2135 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2136       sym = this->define_special_symbol<size, false>(&name, &version,
2137                                                      only_if_ref, &oldsym,
2138                                                      &resolve_oldsym);
2139 #else
2140       gold_unreachable();
2141 #endif
2142     }
2143
2144   if (sym == NULL)
2145     return NULL;
2146
2147   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2148                      nonvis, defined == PREDEFINED);
2149
2150   if (oldsym == NULL)
2151     {
2152       // Version symbols are absolute symbols with name == version.
2153       // We don't want to force them to be local.
2154       if ((version == NULL
2155            || name != version
2156            || value != 0)
2157           && (binding == elfcpp::STB_LOCAL
2158               || this->version_script_.symbol_is_local(name)))
2159         this->force_local(sym);
2160       else if (version != NULL
2161                && (name != version || value != 0))
2162         sym->set_is_default();
2163       return sym;
2164     }
2165
2166   if (force_override
2167       || Symbol_table::should_override_with_special(oldsym, type, defined))
2168     this->override_with_special(oldsym, sym);
2169
2170   if (resolve_oldsym)
2171     return sym;
2172   else
2173     {
2174       delete sym;
2175       return oldsym;
2176     }
2177 }
2178
2179 // Define a set of symbols in output sections.
2180
2181 void
2182 Symbol_table::define_symbols(const Layout* layout, int count,
2183                              const Define_symbol_in_section* p,
2184                              bool only_if_ref)
2185 {
2186   for (int i = 0; i < count; ++i, ++p)
2187     {
2188       Output_section* os = layout->find_output_section(p->output_section);
2189       if (os != NULL)
2190         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2191                                     p->size, p->type, p->binding,
2192                                     p->visibility, p->nonvis,
2193                                     p->offset_is_from_end,
2194                                     only_if_ref || p->only_if_ref);
2195       else
2196         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2197                                  p->type, p->binding, p->visibility, p->nonvis,
2198                                  only_if_ref || p->only_if_ref,
2199                                  false);
2200     }
2201 }
2202
2203 // Define a set of symbols in output segments.
2204
2205 void
2206 Symbol_table::define_symbols(const Layout* layout, int count,
2207                              const Define_symbol_in_segment* p,
2208                              bool only_if_ref)
2209 {
2210   for (int i = 0; i < count; ++i, ++p)
2211     {
2212       Output_segment* os = layout->find_output_segment(p->segment_type,
2213                                                        p->segment_flags_set,
2214                                                        p->segment_flags_clear);
2215       if (os != NULL)
2216         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2217                                        p->size, p->type, p->binding,
2218                                        p->visibility, p->nonvis,
2219                                        p->offset_base,
2220                                        only_if_ref || p->only_if_ref);
2221       else
2222         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2223                                  p->type, p->binding, p->visibility, p->nonvis,
2224                                  only_if_ref || p->only_if_ref,
2225                                  false);
2226     }
2227 }
2228
2229 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2230 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2231 // the offset within POSD.
2232
2233 template<int size>
2234 void
2235 Symbol_table::define_with_copy_reloc(
2236     Sized_symbol<size>* csym,
2237     Output_data* posd,
2238     typename elfcpp::Elf_types<size>::Elf_Addr value)
2239 {
2240   gold_assert(csym->is_from_dynobj());
2241   gold_assert(!csym->is_copied_from_dynobj());
2242   Object* object = csym->object();
2243   gold_assert(object->is_dynamic());
2244   Dynobj* dynobj = static_cast<Dynobj*>(object);
2245
2246   // Our copied variable has to override any variable in a shared
2247   // library.
2248   elfcpp::STB binding = csym->binding();
2249   if (binding == elfcpp::STB_WEAK)
2250     binding = elfcpp::STB_GLOBAL;
2251
2252   this->define_in_output_data(csym->name(), csym->version(), COPY,
2253                               posd, value, csym->symsize(),
2254                               csym->type(), binding,
2255                               csym->visibility(), csym->nonvis(),
2256                               false, false);
2257
2258   csym->set_is_copied_from_dynobj();
2259   csym->set_needs_dynsym_entry();
2260
2261   this->copied_symbol_dynobjs_[csym] = dynobj;
2262
2263   // We have now defined all aliases, but we have not entered them all
2264   // in the copied_symbol_dynobjs_ map.
2265   if (csym->has_alias())
2266     {
2267       Symbol* sym = csym;
2268       while (true)
2269         {
2270           sym = this->weak_aliases_[sym];
2271           if (sym == csym)
2272             break;
2273           gold_assert(sym->output_data() == posd);
2274
2275           sym->set_is_copied_from_dynobj();
2276           this->copied_symbol_dynobjs_[sym] = dynobj;
2277         }
2278     }
2279 }
2280
2281 // SYM is defined using a COPY reloc.  Return the dynamic object where
2282 // the original definition was found.
2283
2284 Dynobj*
2285 Symbol_table::get_copy_source(const Symbol* sym) const
2286 {
2287   gold_assert(sym->is_copied_from_dynobj());
2288   Copied_symbol_dynobjs::const_iterator p =
2289     this->copied_symbol_dynobjs_.find(sym);
2290   gold_assert(p != this->copied_symbol_dynobjs_.end());
2291   return p->second;
2292 }
2293
2294 // Add any undefined symbols named on the command line.
2295
2296 void
2297 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2298 {
2299   if (parameters->options().any_undefined()
2300       || layout->script_options()->any_unreferenced())
2301     {
2302       if (parameters->target().get_size() == 32)
2303         {
2304 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2305           this->do_add_undefined_symbols_from_command_line<32>(layout);
2306 #else
2307           gold_unreachable();
2308 #endif
2309         }
2310       else if (parameters->target().get_size() == 64)
2311         {
2312 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2313           this->do_add_undefined_symbols_from_command_line<64>(layout);
2314 #else
2315           gold_unreachable();
2316 #endif
2317         }
2318       else
2319         gold_unreachable();
2320     }
2321 }
2322
2323 template<int size>
2324 void
2325 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2326 {
2327   for (options::String_set::const_iterator p =
2328          parameters->options().undefined_begin();
2329        p != parameters->options().undefined_end();
2330        ++p)
2331     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2332
2333   for (options::String_set::const_iterator p =
2334          parameters->options().export_dynamic_symbol_begin();
2335        p != parameters->options().export_dynamic_symbol_end();
2336        ++p)
2337     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2338
2339   for (Script_options::referenced_const_iterator p =
2340          layout->script_options()->referenced_begin();
2341        p != layout->script_options()->referenced_end();
2342        ++p)
2343     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2344 }
2345
2346 template<int size>
2347 void
2348 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2349 {
2350   if (this->lookup(name) != NULL)
2351     return;
2352
2353   const char* version = NULL;
2354
2355   Sized_symbol<size>* sym;
2356   Sized_symbol<size>* oldsym;
2357   bool resolve_oldsym;
2358   if (parameters->target().is_big_endian())
2359     {
2360 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2361       sym = this->define_special_symbol<size, true>(&name, &version,
2362                                                     false, &oldsym,
2363                                                     &resolve_oldsym);
2364 #else
2365       gold_unreachable();
2366 #endif
2367     }
2368   else
2369     {
2370 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2371       sym = this->define_special_symbol<size, false>(&name, &version,
2372                                                      false, &oldsym,
2373                                                      &resolve_oldsym);
2374 #else
2375       gold_unreachable();
2376 #endif
2377     }
2378
2379   gold_assert(oldsym == NULL);
2380
2381   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2382                       elfcpp::STV_DEFAULT, 0);
2383   ++this->saw_undefined_;
2384 }
2385
2386 // Set the dynamic symbol indexes.  INDEX is the index of the first
2387 // global dynamic symbol.  Pointers to the symbols are stored into the
2388 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2389 // updated dynamic symbol index.
2390
2391 unsigned int
2392 Symbol_table::set_dynsym_indexes(unsigned int index,
2393                                  std::vector<Symbol*>* syms,
2394                                  Stringpool* dynpool,
2395                                  Versions* versions)
2396 {
2397   std::vector<Symbol*> as_needed_sym;
2398
2399   // Allow a target to set dynsym indexes.
2400   if (parameters->target().has_custom_set_dynsym_indexes())
2401     {
2402       std::vector<Symbol*> dyn_symbols;
2403       for (Symbol_table_type::iterator p = this->table_.begin();
2404            p != this->table_.end();
2405            ++p)
2406         {
2407           Symbol* sym = p->second;
2408           if (!sym->should_add_dynsym_entry(this))
2409             sym->set_dynsym_index(-1U);
2410           else
2411             dyn_symbols.push_back(sym);
2412         }
2413
2414       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2415                                                      dynpool, versions, this);
2416     }
2417
2418   for (Symbol_table_type::iterator p = this->table_.begin();
2419        p != this->table_.end();
2420        ++p)
2421     {
2422       Symbol* sym = p->second;
2423
2424       // Note that SYM may already have a dynamic symbol index, since
2425       // some symbols appear more than once in the symbol table, with
2426       // and without a version.
2427
2428       if (!sym->should_add_dynsym_entry(this))
2429         sym->set_dynsym_index(-1U);
2430       else if (!sym->has_dynsym_index())
2431         {
2432           sym->set_dynsym_index(index);
2433           ++index;
2434           syms->push_back(sym);
2435           dynpool->add(sym->name(), false, NULL);
2436
2437           // If the symbol is defined in a dynamic object and is
2438           // referenced strongly in a regular object, then mark the
2439           // dynamic object as needed.  This is used to implement
2440           // --as-needed.
2441           if (sym->is_from_dynobj()
2442               && sym->in_reg()
2443               && !sym->is_undef_binding_weak())
2444             sym->object()->set_is_needed();
2445
2446           // Record any version information, except those from
2447           // as-needed libraries not seen to be needed.  Note that the
2448           // is_needed state for such libraries can change in this loop.
2449           if (sym->version() != NULL)
2450             {
2451               if (!sym->is_from_dynobj()
2452                   || !sym->object()->as_needed()
2453                   || sym->object()->is_needed())
2454                 versions->record_version(this, dynpool, sym);
2455               else
2456                 as_needed_sym.push_back(sym);
2457             }
2458         }
2459     }
2460
2461   // Process version information for symbols from as-needed libraries.
2462   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2463        p != as_needed_sym.end();
2464        ++p)
2465     {
2466       Symbol* sym = *p;
2467
2468       if (sym->object()->is_needed())
2469         versions->record_version(this, dynpool, sym);
2470       else
2471         sym->clear_version();
2472     }
2473
2474   // Finish up the versions.  In some cases this may add new dynamic
2475   // symbols.
2476   index = versions->finalize(this, index, syms);
2477
2478   return index;
2479 }
2480
2481 // Set the final values for all the symbols.  The index of the first
2482 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2483 // file offset OFF.  Add their names to POOL.  Return the new file
2484 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2485
2486 off_t
2487 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2488                        size_t dyncount, Stringpool* pool,
2489                        unsigned int* plocal_symcount)
2490 {
2491   off_t ret;
2492
2493   gold_assert(*plocal_symcount != 0);
2494   this->first_global_index_ = *plocal_symcount;
2495
2496   this->dynamic_offset_ = dynoff;
2497   this->first_dynamic_global_index_ = dyn_global_index;
2498   this->dynamic_count_ = dyncount;
2499
2500   if (parameters->target().get_size() == 32)
2501     {
2502 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2503       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2504 #else
2505       gold_unreachable();
2506 #endif
2507     }
2508   else if (parameters->target().get_size() == 64)
2509     {
2510 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2511       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2512 #else
2513       gold_unreachable();
2514 #endif
2515     }
2516   else
2517     gold_unreachable();
2518
2519   // Now that we have the final symbol table, we can reliably note
2520   // which symbols should get warnings.
2521   this->warnings_.note_warnings(this);
2522
2523   return ret;
2524 }
2525
2526 // SYM is going into the symbol table at *PINDEX.  Add the name to
2527 // POOL, update *PINDEX and *POFF.
2528
2529 template<int size>
2530 void
2531 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2532                                   unsigned int* pindex, off_t* poff)
2533 {
2534   sym->set_symtab_index(*pindex);
2535   if (sym->version() == NULL || !parameters->options().relocatable())
2536     pool->add(sym->name(), false, NULL);
2537   else
2538     pool->add(sym->versioned_name(), true, NULL);
2539   ++*pindex;
2540   *poff += elfcpp::Elf_sizes<size>::sym_size;
2541 }
2542
2543 // Set the final value for all the symbols.  This is called after
2544 // Layout::finalize, so all the output sections have their final
2545 // address.
2546
2547 template<int size>
2548 off_t
2549 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2550                              unsigned int* plocal_symcount)
2551 {
2552   off = align_address(off, size >> 3);
2553   this->offset_ = off;
2554
2555   unsigned int index = *plocal_symcount;
2556   const unsigned int orig_index = index;
2557
2558   // First do all the symbols which have been forced to be local, as
2559   // they must appear before all global symbols.
2560   for (Forced_locals::iterator p = this->forced_locals_.begin();
2561        p != this->forced_locals_.end();
2562        ++p)
2563     {
2564       Symbol* sym = *p;
2565       gold_assert(sym->is_forced_local());
2566       if (this->sized_finalize_symbol<size>(sym))
2567         {
2568           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2569           ++*plocal_symcount;
2570         }
2571     }
2572
2573   // Now do all the remaining symbols.
2574   for (Symbol_table_type::iterator p = this->table_.begin();
2575        p != this->table_.end();
2576        ++p)
2577     {
2578       Symbol* sym = p->second;
2579       if (this->sized_finalize_symbol<size>(sym))
2580         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2581     }
2582
2583   this->output_count_ = index - orig_index;
2584
2585   return off;
2586 }
2587
2588 // Compute the final value of SYM and store status in location PSTATUS.
2589 // During relaxation, this may be called multiple times for a symbol to
2590 // compute its would-be final value in each relaxation pass.
2591
2592 template<int size>
2593 typename Sized_symbol<size>::Value_type
2594 Symbol_table::compute_final_value(
2595     const Sized_symbol<size>* sym,
2596     Compute_final_value_status* pstatus) const
2597 {
2598   typedef typename Sized_symbol<size>::Value_type Value_type;
2599   Value_type value;
2600
2601   switch (sym->source())
2602     {
2603     case Symbol::FROM_OBJECT:
2604       {
2605         bool is_ordinary;
2606         unsigned int shndx = sym->shndx(&is_ordinary);
2607
2608         if (!is_ordinary
2609             && shndx != elfcpp::SHN_ABS
2610             && !Symbol::is_common_shndx(shndx))
2611           {
2612             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2613             return 0;
2614           }
2615
2616         Object* symobj = sym->object();
2617         if (symobj->is_dynamic())
2618           {
2619             value = 0;
2620             shndx = elfcpp::SHN_UNDEF;
2621           }
2622         else if (symobj->pluginobj() != NULL)
2623           {
2624             value = 0;
2625             shndx = elfcpp::SHN_UNDEF;
2626           }
2627         else if (shndx == elfcpp::SHN_UNDEF)
2628           value = 0;
2629         else if (!is_ordinary
2630                  && (shndx == elfcpp::SHN_ABS
2631                      || Symbol::is_common_shndx(shndx)))
2632           value = sym->value();
2633         else
2634           {
2635             Relobj* relobj = static_cast<Relobj*>(symobj);
2636             Output_section* os = relobj->output_section(shndx);
2637
2638             if (this->is_section_folded(relobj, shndx))
2639               {
2640                 gold_assert(os == NULL);
2641                 // Get the os of the section it is folded onto.
2642                 Section_id folded = this->icf_->get_folded_section(relobj,
2643                                                                    shndx);
2644                 gold_assert(folded.first != NULL);
2645                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2646                 unsigned folded_shndx = folded.second;
2647
2648                 os = folded_obj->output_section(folded_shndx);  
2649                 gold_assert(os != NULL);
2650
2651                 // Replace (relobj, shndx) with canonical ICF input section.
2652                 shndx = folded_shndx;
2653                 relobj = folded_obj;
2654               }
2655
2656             uint64_t secoff64 = relobj->output_section_offset(shndx);
2657             if (os == NULL)
2658               {
2659                 bool static_or_reloc = (parameters->doing_static_link() ||
2660                                         parameters->options().relocatable());
2661                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2662
2663                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2664                 return 0;
2665               }
2666
2667             if (secoff64 == -1ULL)
2668               {
2669                 // The section needs special handling (e.g., a merge section).
2670
2671                 value = os->output_address(relobj, shndx, sym->value());
2672               }
2673             else
2674               {
2675                 Value_type secoff =
2676                   convert_types<Value_type, uint64_t>(secoff64);
2677                 if (sym->type() == elfcpp::STT_TLS)
2678                   value = sym->value() + os->tls_offset() + secoff;
2679                 else
2680                   value = sym->value() + os->address() + secoff;
2681               }
2682           }
2683       }
2684       break;
2685
2686     case Symbol::IN_OUTPUT_DATA:
2687       {
2688         Output_data* od = sym->output_data();
2689         value = sym->value();
2690         if (sym->type() != elfcpp::STT_TLS)
2691           value += od->address();
2692         else
2693           {
2694             Output_section* os = od->output_section();
2695             gold_assert(os != NULL);
2696             value += os->tls_offset() + (od->address() - os->address());
2697           }
2698         if (sym->offset_is_from_end())
2699           value += od->data_size();
2700       }
2701       break;
2702
2703     case Symbol::IN_OUTPUT_SEGMENT:
2704       {
2705         Output_segment* os = sym->output_segment();
2706         value = sym->value();
2707         if (sym->type() != elfcpp::STT_TLS)
2708           value += os->vaddr();
2709         switch (sym->offset_base())
2710           {
2711           case Symbol::SEGMENT_START:
2712             break;
2713           case Symbol::SEGMENT_END:
2714             value += os->memsz();
2715             break;
2716           case Symbol::SEGMENT_BSS:
2717             value += os->filesz();
2718             break;
2719           default:
2720             gold_unreachable();
2721           }
2722       }
2723       break;
2724
2725     case Symbol::IS_CONSTANT:
2726       value = sym->value();
2727       break;
2728
2729     case Symbol::IS_UNDEFINED:
2730       value = 0;
2731       break;
2732
2733     default:
2734       gold_unreachable();
2735     }
2736
2737   *pstatus = CFVS_OK;
2738   return value;
2739 }
2740
2741 // Finalize the symbol SYM.  This returns true if the symbol should be
2742 // added to the symbol table, false otherwise.
2743
2744 template<int size>
2745 bool
2746 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2747 {
2748   typedef typename Sized_symbol<size>::Value_type Value_type;
2749
2750   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2751
2752   // The default version of a symbol may appear twice in the symbol
2753   // table.  We only need to finalize it once.
2754   if (sym->has_symtab_index())
2755     return false;
2756
2757   if (!sym->in_reg())
2758     {
2759       gold_assert(!sym->has_symtab_index());
2760       sym->set_symtab_index(-1U);
2761       gold_assert(sym->dynsym_index() == -1U);
2762       return false;
2763     }
2764
2765   // If the symbol is only present on plugin files, the plugin decided we
2766   // don't need it.
2767   if (!sym->in_real_elf())
2768     {
2769       gold_assert(!sym->has_symtab_index());
2770       sym->set_symtab_index(-1U);
2771       return false;
2772     }
2773
2774   // Compute final symbol value.
2775   Compute_final_value_status status;
2776   Value_type value = this->compute_final_value(sym, &status);
2777
2778   switch (status)
2779     {
2780     case CFVS_OK:
2781       break;
2782     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2783       {
2784         bool is_ordinary;
2785         unsigned int shndx = sym->shndx(&is_ordinary);
2786         gold_error(_("%s: unsupported symbol section 0x%x"),
2787                    sym->demangled_name().c_str(), shndx);
2788       }
2789       break;
2790     case CFVS_NO_OUTPUT_SECTION:
2791       sym->set_symtab_index(-1U);
2792       return false;
2793     default:
2794       gold_unreachable();
2795     }
2796
2797   sym->set_value(value);
2798
2799   if (parameters->options().strip_all()
2800       || !parameters->options().should_retain_symbol(sym->name()))
2801     {
2802       sym->set_symtab_index(-1U);
2803       return false;
2804     }
2805
2806   return true;
2807 }
2808
2809 // Write out the global symbols.
2810
2811 void
2812 Symbol_table::write_globals(const Stringpool* sympool,
2813                             const Stringpool* dynpool,
2814                             Output_symtab_xindex* symtab_xindex,
2815                             Output_symtab_xindex* dynsym_xindex,
2816                             Output_file* of) const
2817 {
2818   switch (parameters->size_and_endianness())
2819     {
2820 #ifdef HAVE_TARGET_32_LITTLE
2821     case Parameters::TARGET_32_LITTLE:
2822       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2823                                            dynsym_xindex, of);
2824       break;
2825 #endif
2826 #ifdef HAVE_TARGET_32_BIG
2827     case Parameters::TARGET_32_BIG:
2828       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2829                                           dynsym_xindex, of);
2830       break;
2831 #endif
2832 #ifdef HAVE_TARGET_64_LITTLE
2833     case Parameters::TARGET_64_LITTLE:
2834       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2835                                            dynsym_xindex, of);
2836       break;
2837 #endif
2838 #ifdef HAVE_TARGET_64_BIG
2839     case Parameters::TARGET_64_BIG:
2840       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2841                                           dynsym_xindex, of);
2842       break;
2843 #endif
2844     default:
2845       gold_unreachable();
2846     }
2847 }
2848
2849 // Write out the global symbols.
2850
2851 template<int size, bool big_endian>
2852 void
2853 Symbol_table::sized_write_globals(const Stringpool* sympool,
2854                                   const Stringpool* dynpool,
2855                                   Output_symtab_xindex* symtab_xindex,
2856                                   Output_symtab_xindex* dynsym_xindex,
2857                                   Output_file* of) const
2858 {
2859   const Target& target = parameters->target();
2860
2861   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2862
2863   const unsigned int output_count = this->output_count_;
2864   const section_size_type oview_size = output_count * sym_size;
2865   const unsigned int first_global_index = this->first_global_index_;
2866   unsigned char* psyms;
2867   if (this->offset_ == 0 || output_count == 0)
2868     psyms = NULL;
2869   else
2870     psyms = of->get_output_view(this->offset_, oview_size);
2871
2872   const unsigned int dynamic_count = this->dynamic_count_;
2873   const section_size_type dynamic_size = dynamic_count * sym_size;
2874   const unsigned int first_dynamic_global_index =
2875     this->first_dynamic_global_index_;
2876   unsigned char* dynamic_view;
2877   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2878     dynamic_view = NULL;
2879   else
2880     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2881
2882   for (Symbol_table_type::const_iterator p = this->table_.begin();
2883        p != this->table_.end();
2884        ++p)
2885     {
2886       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2887
2888       // Possibly warn about unresolved symbols in shared libraries.
2889       this->warn_about_undefined_dynobj_symbol(sym);
2890
2891       unsigned int sym_index = sym->symtab_index();
2892       unsigned int dynsym_index;
2893       if (dynamic_view == NULL)
2894         dynsym_index = -1U;
2895       else
2896         dynsym_index = sym->dynsym_index();
2897
2898       if (sym_index == -1U && dynsym_index == -1U)
2899         {
2900           // This symbol is not included in the output file.
2901           continue;
2902         }
2903
2904       unsigned int shndx;
2905       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2906       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2907       elfcpp::STB binding = sym->binding();
2908
2909       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2910       if (binding == elfcpp::STB_GNU_UNIQUE
2911           && !parameters->options().gnu_unique())
2912         binding = elfcpp::STB_GLOBAL;
2913
2914       switch (sym->source())
2915         {
2916         case Symbol::FROM_OBJECT:
2917           {
2918             bool is_ordinary;
2919             unsigned int in_shndx = sym->shndx(&is_ordinary);
2920
2921             if (!is_ordinary
2922                 && in_shndx != elfcpp::SHN_ABS
2923                 && !Symbol::is_common_shndx(in_shndx))
2924               {
2925                 gold_error(_("%s: unsupported symbol section 0x%x"),
2926                            sym->demangled_name().c_str(), in_shndx);
2927                 shndx = in_shndx;
2928               }
2929             else
2930               {
2931                 Object* symobj = sym->object();
2932                 if (symobj->is_dynamic())
2933                   {
2934                     if (sym->needs_dynsym_value())
2935                       dynsym_value = target.dynsym_value(sym);
2936                     shndx = elfcpp::SHN_UNDEF;
2937                     if (sym->is_undef_binding_weak())
2938                       binding = elfcpp::STB_WEAK;
2939                     else
2940                       binding = elfcpp::STB_GLOBAL;
2941                   }
2942                 else if (symobj->pluginobj() != NULL)
2943                   shndx = elfcpp::SHN_UNDEF;
2944                 else if (in_shndx == elfcpp::SHN_UNDEF
2945                          || (!is_ordinary
2946                              && (in_shndx == elfcpp::SHN_ABS
2947                                  || Symbol::is_common_shndx(in_shndx))))
2948                   shndx = in_shndx;
2949                 else
2950                   {
2951                     Relobj* relobj = static_cast<Relobj*>(symobj);
2952                     Output_section* os = relobj->output_section(in_shndx);
2953                     if (this->is_section_folded(relobj, in_shndx))
2954                       {
2955                         // This global symbol must be written out even though
2956                         // it is folded.
2957                         // Get the os of the section it is folded onto.
2958                         Section_id folded =
2959                              this->icf_->get_folded_section(relobj, in_shndx);
2960                         gold_assert(folded.first !=NULL);
2961                         Relobj* folded_obj = 
2962                           reinterpret_cast<Relobj*>(folded.first);
2963                         os = folded_obj->output_section(folded.second);  
2964                         gold_assert(os != NULL);
2965                       }
2966                     gold_assert(os != NULL);
2967                     shndx = os->out_shndx();
2968
2969                     if (shndx >= elfcpp::SHN_LORESERVE)
2970                       {
2971                         if (sym_index != -1U)
2972                           symtab_xindex->add(sym_index, shndx);
2973                         if (dynsym_index != -1U)
2974                           dynsym_xindex->add(dynsym_index, shndx);
2975                         shndx = elfcpp::SHN_XINDEX;
2976                       }
2977
2978                     // In object files symbol values are section
2979                     // relative.
2980                     if (parameters->options().relocatable())
2981                       sym_value -= os->address();
2982                   }
2983               }
2984           }
2985           break;
2986
2987         case Symbol::IN_OUTPUT_DATA:
2988           {
2989             Output_data* od = sym->output_data();
2990
2991             shndx = od->out_shndx();
2992             if (shndx >= elfcpp::SHN_LORESERVE)
2993               {
2994                 if (sym_index != -1U)
2995                   symtab_xindex->add(sym_index, shndx);
2996                 if (dynsym_index != -1U)
2997                   dynsym_xindex->add(dynsym_index, shndx);
2998                 shndx = elfcpp::SHN_XINDEX;
2999               }
3000
3001             // In object files symbol values are section
3002             // relative.
3003             if (parameters->options().relocatable())
3004               sym_value -= od->address();
3005           }
3006           break;
3007
3008         case Symbol::IN_OUTPUT_SEGMENT:
3009           shndx = elfcpp::SHN_ABS;
3010           break;
3011
3012         case Symbol::IS_CONSTANT:
3013           shndx = elfcpp::SHN_ABS;
3014           break;
3015
3016         case Symbol::IS_UNDEFINED:
3017           shndx = elfcpp::SHN_UNDEF;
3018           break;
3019
3020         default:
3021           gold_unreachable();
3022         }
3023
3024       if (sym_index != -1U)
3025         {
3026           sym_index -= first_global_index;
3027           gold_assert(sym_index < output_count);
3028           unsigned char* ps = psyms + (sym_index * sym_size);
3029           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3030                                                      binding, sympool, ps);
3031         }
3032
3033       if (dynsym_index != -1U)
3034         {
3035           dynsym_index -= first_dynamic_global_index;
3036           gold_assert(dynsym_index < dynamic_count);
3037           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3038           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3039                                                      binding, dynpool, pd);
3040           // Allow a target to adjust dynamic symbol value.
3041           parameters->target().adjust_dyn_symbol(sym, pd);
3042         }
3043     }
3044
3045   of->write_output_view(this->offset_, oview_size, psyms);
3046   if (dynamic_view != NULL)
3047     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3048 }
3049
3050 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3051 // strtab holding the name.
3052
3053 template<int size, bool big_endian>
3054 void
3055 Symbol_table::sized_write_symbol(
3056     Sized_symbol<size>* sym,
3057     typename elfcpp::Elf_types<size>::Elf_Addr value,
3058     unsigned int shndx,
3059     elfcpp::STB binding,
3060     const Stringpool* pool,
3061     unsigned char* p) const
3062 {
3063   elfcpp::Sym_write<size, big_endian> osym(p);
3064   if (sym->version() == NULL || !parameters->options().relocatable())
3065     osym.put_st_name(pool->get_offset(sym->name()));
3066   else
3067     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3068   osym.put_st_value(value);
3069   // Use a symbol size of zero for undefined symbols from shared libraries.
3070   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3071     osym.put_st_size(0);
3072   else
3073     osym.put_st_size(sym->symsize());
3074   elfcpp::STT type = sym->type();
3075   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3076   if (type == elfcpp::STT_GNU_IFUNC
3077       && sym->is_from_dynobj())
3078     type = elfcpp::STT_FUNC;
3079   // A version script may have overridden the default binding.
3080   if (sym->is_forced_local())
3081     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3082   else
3083     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3084   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3085   osym.put_st_shndx(shndx);
3086 }
3087
3088 // Check for unresolved symbols in shared libraries.  This is
3089 // controlled by the --allow-shlib-undefined option.
3090
3091 // We only warn about libraries for which we have seen all the
3092 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3093 // which were not seen in this link.  If we didn't see a DT_NEEDED
3094 // entry, we aren't going to be able to reliably report whether the
3095 // symbol is undefined.
3096
3097 // We also don't warn about libraries found in a system library
3098 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3099 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3100 // can have undefined references satisfied by ld-linux.so.
3101
3102 inline void
3103 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3104 {
3105   bool dummy;
3106   if (sym->source() == Symbol::FROM_OBJECT
3107       && sym->object()->is_dynamic()
3108       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3109       && sym->binding() != elfcpp::STB_WEAK
3110       && !parameters->options().allow_shlib_undefined()
3111       && !parameters->target().is_defined_by_abi(sym)
3112       && !sym->object()->is_in_system_directory())
3113     {
3114       // A very ugly cast.
3115       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3116       if (!dynobj->has_unknown_needed_entries())
3117         gold_undefined_symbol(sym);
3118     }
3119 }
3120
3121 // Write out a section symbol.  Return the update offset.
3122
3123 void
3124 Symbol_table::write_section_symbol(const Output_section* os,
3125                                    Output_symtab_xindex* symtab_xindex,
3126                                    Output_file* of,
3127                                    off_t offset) const
3128 {
3129   switch (parameters->size_and_endianness())
3130     {
3131 #ifdef HAVE_TARGET_32_LITTLE
3132     case Parameters::TARGET_32_LITTLE:
3133       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3134                                                   offset);
3135       break;
3136 #endif
3137 #ifdef HAVE_TARGET_32_BIG
3138     case Parameters::TARGET_32_BIG:
3139       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3140                                                  offset);
3141       break;
3142 #endif
3143 #ifdef HAVE_TARGET_64_LITTLE
3144     case Parameters::TARGET_64_LITTLE:
3145       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3146                                                   offset);
3147       break;
3148 #endif
3149 #ifdef HAVE_TARGET_64_BIG
3150     case Parameters::TARGET_64_BIG:
3151       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3152                                                  offset);
3153       break;
3154 #endif
3155     default:
3156       gold_unreachable();
3157     }
3158 }
3159
3160 // Write out a section symbol, specialized for size and endianness.
3161
3162 template<int size, bool big_endian>
3163 void
3164 Symbol_table::sized_write_section_symbol(const Output_section* os,
3165                                          Output_symtab_xindex* symtab_xindex,
3166                                          Output_file* of,
3167                                          off_t offset) const
3168 {
3169   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3170
3171   unsigned char* pov = of->get_output_view(offset, sym_size);
3172
3173   elfcpp::Sym_write<size, big_endian> osym(pov);
3174   osym.put_st_name(0);
3175   if (parameters->options().relocatable())
3176     osym.put_st_value(0);
3177   else
3178     osym.put_st_value(os->address());
3179   osym.put_st_size(0);
3180   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3181                                        elfcpp::STT_SECTION));
3182   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3183
3184   unsigned int shndx = os->out_shndx();
3185   if (shndx >= elfcpp::SHN_LORESERVE)
3186     {
3187       symtab_xindex->add(os->symtab_index(), shndx);
3188       shndx = elfcpp::SHN_XINDEX;
3189     }
3190   osym.put_st_shndx(shndx);
3191
3192   of->write_output_view(offset, sym_size, pov);
3193 }
3194
3195 // Print statistical information to stderr.  This is used for --stats.
3196
3197 void
3198 Symbol_table::print_stats() const
3199 {
3200 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3201   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3202           program_name, this->table_.size(), this->table_.bucket_count());
3203 #else
3204   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3205           program_name, this->table_.size());
3206 #endif
3207   this->namepool_.print_stats("symbol table stringpool");
3208 }
3209
3210 // We check for ODR violations by looking for symbols with the same
3211 // name for which the debugging information reports that they were
3212 // defined in disjoint source locations.  When comparing the source
3213 // location, we consider instances with the same base filename to be
3214 // the same.  This is because different object files/shared libraries
3215 // can include the same header file using different paths, and
3216 // different optimization settings can make the line number appear to
3217 // be a couple lines off, and we don't want to report an ODR violation
3218 // in those cases.
3219
3220 // This struct is used to compare line information, as returned by
3221 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3222 // operator used with std::sort.
3223
3224 struct Odr_violation_compare
3225 {
3226   bool
3227   operator()(const std::string& s1, const std::string& s2) const
3228   {
3229     // Inputs should be of the form "dirname/filename:linenum" where
3230     // "dirname/" is optional.  We want to compare just the filename:linenum.
3231
3232     // Find the last '/' in each string.
3233     std::string::size_type s1begin = s1.rfind('/');
3234     std::string::size_type s2begin = s2.rfind('/');
3235     // If there was no '/' in a string, start at the beginning.
3236     if (s1begin == std::string::npos)
3237       s1begin = 0;
3238     if (s2begin == std::string::npos)
3239       s2begin = 0;
3240     return s1.compare(s1begin, std::string::npos,
3241                       s2, s2begin, std::string::npos) < 0;
3242   }
3243 };
3244
3245 // Returns all of the lines attached to LOC, not just the one the
3246 // instruction actually came from.
3247 std::vector<std::string>
3248 Symbol_table::linenos_from_loc(const Task* task,
3249                                const Symbol_location& loc)
3250 {
3251   // We need to lock the object in order to read it.  This
3252   // means that we have to run in a singleton Task.  If we
3253   // want to run this in a general Task for better
3254   // performance, we will need one Task for object, plus
3255   // appropriate locking to ensure that we don't conflict with
3256   // other uses of the object.  Also note, one_addr2line is not
3257   // currently thread-safe.
3258   Task_lock_obj<Object> tl(task, loc.object);
3259
3260   std::vector<std::string> result;
3261   Symbol_location code_loc = loc;
3262   parameters->target().function_location(&code_loc);
3263   // 16 is the size of the object-cache that one_addr2line should use.
3264   std::string canonical_result = Dwarf_line_info::one_addr2line(
3265       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3266   if (!canonical_result.empty())
3267     result.push_back(canonical_result);
3268   return result;
3269 }
3270
3271 // OutputIterator that records if it was ever assigned to.  This
3272 // allows it to be used with std::set_intersection() to check for
3273 // intersection rather than computing the intersection.
3274 struct Check_intersection
3275 {
3276   Check_intersection()
3277     : value_(false)
3278   {}
3279
3280   bool had_intersection() const
3281   { return this->value_; }
3282
3283   Check_intersection& operator++()
3284   { return *this; }
3285
3286   Check_intersection& operator*()
3287   { return *this; }
3288
3289   template<typename T>
3290   Check_intersection& operator=(const T&)
3291   {
3292     this->value_ = true;
3293     return *this;
3294   }
3295
3296  private:
3297   bool value_;
3298 };
3299
3300 // Check candidate_odr_violations_ to find symbols with the same name
3301 // but apparently different definitions (different source-file/line-no
3302 // for each line assigned to the first instruction).
3303
3304 void
3305 Symbol_table::detect_odr_violations(const Task* task,
3306                                     const char* output_file_name) const
3307 {
3308   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3309        it != candidate_odr_violations_.end();
3310        ++it)
3311     {
3312       const char* const symbol_name = it->first;
3313
3314       std::string first_object_name;
3315       std::vector<std::string> first_object_linenos;
3316
3317       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3318           locs = it->second.begin();
3319       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3320           locs_end = it->second.end();
3321       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3322         {
3323           // Save the line numbers from the first definition to
3324           // compare to the other definitions.  Ideally, we'd compare
3325           // every definition to every other, but we don't want to
3326           // take O(N^2) time to do this.  This shortcut may cause
3327           // false negatives that appear or disappear depending on the
3328           // link order, but it won't cause false positives.
3329           first_object_name = locs->object->name();
3330           first_object_linenos = this->linenos_from_loc(task, *locs);
3331         }
3332
3333       // Sort by Odr_violation_compare to make std::set_intersection work.
3334       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3335                 Odr_violation_compare());
3336
3337       for (; locs != locs_end; ++locs)
3338         {
3339           std::vector<std::string> linenos =
3340               this->linenos_from_loc(task, *locs);
3341           // linenos will be empty if we couldn't parse the debug info.
3342           if (linenos.empty())
3343             continue;
3344           // Sort by Odr_violation_compare to make std::set_intersection work.
3345           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3346
3347           Check_intersection intersection_result =
3348               std::set_intersection(first_object_linenos.begin(),
3349                                     first_object_linenos.end(),
3350                                     linenos.begin(),
3351                                     linenos.end(),
3352                                     Check_intersection(),
3353                                     Odr_violation_compare());
3354           if (!intersection_result.had_intersection())
3355             {
3356               gold_warning(_("while linking %s: symbol '%s' defined in "
3357                              "multiple places (possible ODR violation):"),
3358                            output_file_name, demangle(symbol_name).c_str());
3359               // This only prints one location from each definition,
3360               // which may not be the location we expect to intersect
3361               // with another definition.  We could print the whole
3362               // set of locations, but that seems too verbose.
3363               gold_assert(!first_object_linenos.empty());
3364               gold_assert(!linenos.empty());
3365               fprintf(stderr, _("  %s from %s\n"),
3366                       first_object_linenos[0].c_str(),
3367                       first_object_name.c_str());
3368               fprintf(stderr, _("  %s from %s\n"),
3369                       linenos[0].c_str(),
3370                       locs->object->name().c_str());
3371               // Only print one broken pair, to avoid needing to
3372               // compare against a list of the disjoint definition
3373               // locations we've found so far.  (If we kept comparing
3374               // against just the first one, we'd get a lot of
3375               // redundant complaints about the second definition
3376               // location.)
3377               break;
3378             }
3379         }
3380     }
3381   // We only call one_addr2line() in this function, so we can clear its cache.
3382   Dwarf_line_info::clear_addr2line_cache();
3383 }
3384
3385 // Warnings functions.
3386
3387 // Add a new warning.
3388
3389 void
3390 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3391                       const std::string& warning)
3392 {
3393   name = symtab->canonicalize_name(name);
3394   this->warnings_[name].set(obj, warning);
3395 }
3396
3397 // Look through the warnings and mark the symbols for which we should
3398 // warn.  This is called during Layout::finalize when we know the
3399 // sources for all the symbols.
3400
3401 void
3402 Warnings::note_warnings(Symbol_table* symtab)
3403 {
3404   for (Warning_table::iterator p = this->warnings_.begin();
3405        p != this->warnings_.end();
3406        ++p)
3407     {
3408       Symbol* sym = symtab->lookup(p->first, NULL);
3409       if (sym != NULL
3410           && sym->source() == Symbol::FROM_OBJECT
3411           && sym->object() == p->second.object)
3412         sym->set_has_warning();
3413     }
3414 }
3415
3416 // Issue a warning.  This is called when we see a relocation against a
3417 // symbol for which has a warning.
3418
3419 template<int size, bool big_endian>
3420 void
3421 Warnings::issue_warning(const Symbol* sym,
3422                         const Relocate_info<size, big_endian>* relinfo,
3423                         size_t relnum, off_t reloffset) const
3424 {
3425   gold_assert(sym->has_warning());
3426
3427   // We don't want to issue a warning for a relocation against the
3428   // symbol in the same object file in which the symbol is defined.
3429   if (sym->object() == relinfo->object)
3430     return;
3431
3432   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3433   gold_assert(p != this->warnings_.end());
3434   gold_warning_at_location(relinfo, relnum, reloffset,
3435                            "%s", p->second.text.c_str());
3436 }
3437
3438 // Instantiate the templates we need.  We could use the configure
3439 // script to restrict this to only the ones needed for implemented
3440 // targets.
3441
3442 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3443 template
3444 void
3445 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3446 #endif
3447
3448 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3449 template
3450 void
3451 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3452 #endif
3453
3454 #ifdef HAVE_TARGET_32_LITTLE
3455 template
3456 void
3457 Symbol_table::add_from_relobj<32, false>(
3458     Sized_relobj_file<32, false>* relobj,
3459     const unsigned char* syms,
3460     size_t count,
3461     size_t symndx_offset,
3462     const char* sym_names,
3463     size_t sym_name_size,
3464     Sized_relobj_file<32, false>::Symbols* sympointers,
3465     size_t* defined);
3466 #endif
3467
3468 #ifdef HAVE_TARGET_32_BIG
3469 template
3470 void
3471 Symbol_table::add_from_relobj<32, true>(
3472     Sized_relobj_file<32, true>* relobj,
3473     const unsigned char* syms,
3474     size_t count,
3475     size_t symndx_offset,
3476     const char* sym_names,
3477     size_t sym_name_size,
3478     Sized_relobj_file<32, true>::Symbols* sympointers,
3479     size_t* defined);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_64_LITTLE
3483 template
3484 void
3485 Symbol_table::add_from_relobj<64, false>(
3486     Sized_relobj_file<64, false>* relobj,
3487     const unsigned char* syms,
3488     size_t count,
3489     size_t symndx_offset,
3490     const char* sym_names,
3491     size_t sym_name_size,
3492     Sized_relobj_file<64, false>::Symbols* sympointers,
3493     size_t* defined);
3494 #endif
3495
3496 #ifdef HAVE_TARGET_64_BIG
3497 template
3498 void
3499 Symbol_table::add_from_relobj<64, true>(
3500     Sized_relobj_file<64, true>* relobj,
3501     const unsigned char* syms,
3502     size_t count,
3503     size_t symndx_offset,
3504     const char* sym_names,
3505     size_t sym_name_size,
3506     Sized_relobj_file<64, true>::Symbols* sympointers,
3507     size_t* defined);
3508 #endif
3509
3510 #ifdef HAVE_TARGET_32_LITTLE
3511 template
3512 Symbol*
3513 Symbol_table::add_from_pluginobj<32, false>(
3514     Sized_pluginobj<32, false>* obj,
3515     const char* name,
3516     const char* ver,
3517     elfcpp::Sym<32, false>* sym);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_BIG
3521 template
3522 Symbol*
3523 Symbol_table::add_from_pluginobj<32, true>(
3524     Sized_pluginobj<32, true>* obj,
3525     const char* name,
3526     const char* ver,
3527     elfcpp::Sym<32, true>* sym);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_LITTLE
3531 template
3532 Symbol*
3533 Symbol_table::add_from_pluginobj<64, false>(
3534     Sized_pluginobj<64, false>* obj,
3535     const char* name,
3536     const char* ver,
3537     elfcpp::Sym<64, false>* sym);
3538 #endif
3539
3540 #ifdef HAVE_TARGET_64_BIG
3541 template
3542 Symbol*
3543 Symbol_table::add_from_pluginobj<64, true>(
3544     Sized_pluginobj<64, true>* obj,
3545     const char* name,
3546     const char* ver,
3547     elfcpp::Sym<64, true>* sym);
3548 #endif
3549
3550 #ifdef HAVE_TARGET_32_LITTLE
3551 template
3552 void
3553 Symbol_table::add_from_dynobj<32, false>(
3554     Sized_dynobj<32, false>* dynobj,
3555     const unsigned char* syms,
3556     size_t count,
3557     const char* sym_names,
3558     size_t sym_name_size,
3559     const unsigned char* versym,
3560     size_t versym_size,
3561     const std::vector<const char*>* version_map,
3562     Sized_relobj_file<32, false>::Symbols* sympointers,
3563     size_t* defined);
3564 #endif
3565
3566 #ifdef HAVE_TARGET_32_BIG
3567 template
3568 void
3569 Symbol_table::add_from_dynobj<32, true>(
3570     Sized_dynobj<32, true>* dynobj,
3571     const unsigned char* syms,
3572     size_t count,
3573     const char* sym_names,
3574     size_t sym_name_size,
3575     const unsigned char* versym,
3576     size_t versym_size,
3577     const std::vector<const char*>* version_map,
3578     Sized_relobj_file<32, true>::Symbols* sympointers,
3579     size_t* defined);
3580 #endif
3581
3582 #ifdef HAVE_TARGET_64_LITTLE
3583 template
3584 void
3585 Symbol_table::add_from_dynobj<64, false>(
3586     Sized_dynobj<64, false>* dynobj,
3587     const unsigned char* syms,
3588     size_t count,
3589     const char* sym_names,
3590     size_t sym_name_size,
3591     const unsigned char* versym,
3592     size_t versym_size,
3593     const std::vector<const char*>* version_map,
3594     Sized_relobj_file<64, false>::Symbols* sympointers,
3595     size_t* defined);
3596 #endif
3597
3598 #ifdef HAVE_TARGET_64_BIG
3599 template
3600 void
3601 Symbol_table::add_from_dynobj<64, true>(
3602     Sized_dynobj<64, true>* dynobj,
3603     const unsigned char* syms,
3604     size_t count,
3605     const char* sym_names,
3606     size_t sym_name_size,
3607     const unsigned char* versym,
3608     size_t versym_size,
3609     const std::vector<const char*>* version_map,
3610     Sized_relobj_file<64, true>::Symbols* sympointers,
3611     size_t* defined);
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_LITTLE
3615 template
3616 Sized_symbol<32>*
3617 Symbol_table::add_from_incrobj(
3618     Object* obj,
3619     const char* name,
3620     const char* ver,
3621     elfcpp::Sym<32, false>* sym);
3622 #endif
3623
3624 #ifdef HAVE_TARGET_32_BIG
3625 template
3626 Sized_symbol<32>*
3627 Symbol_table::add_from_incrobj(
3628     Object* obj,
3629     const char* name,
3630     const char* ver,
3631     elfcpp::Sym<32, true>* sym);
3632 #endif
3633
3634 #ifdef HAVE_TARGET_64_LITTLE
3635 template
3636 Sized_symbol<64>*
3637 Symbol_table::add_from_incrobj(
3638     Object* obj,
3639     const char* name,
3640     const char* ver,
3641     elfcpp::Sym<64, false>* sym);
3642 #endif
3643
3644 #ifdef HAVE_TARGET_64_BIG
3645 template
3646 Sized_symbol<64>*
3647 Symbol_table::add_from_incrobj(
3648     Object* obj,
3649     const char* name,
3650     const char* ver,
3651     elfcpp::Sym<64, true>* sym);
3652 #endif
3653
3654 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3655 template
3656 void
3657 Symbol_table::define_with_copy_reloc<32>(
3658     Sized_symbol<32>* sym,
3659     Output_data* posd,
3660     elfcpp::Elf_types<32>::Elf_Addr value);
3661 #endif
3662
3663 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3664 template
3665 void
3666 Symbol_table::define_with_copy_reloc<64>(
3667     Sized_symbol<64>* sym,
3668     Output_data* posd,
3669     elfcpp::Elf_types<64>::Elf_Addr value);
3670 #endif
3671
3672 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3673 template
3674 void
3675 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3676                                    Output_data* od, Value_type value,
3677                                    Size_type symsize, elfcpp::STT type,
3678                                    elfcpp::STB binding,
3679                                    elfcpp::STV visibility,
3680                                    unsigned char nonvis,
3681                                    bool offset_is_from_end,
3682                                    bool is_predefined);
3683 #endif
3684
3685 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3686 template
3687 void
3688 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3689                                    Output_data* od, Value_type value,
3690                                    Size_type symsize, elfcpp::STT type,
3691                                    elfcpp::STB binding,
3692                                    elfcpp::STV visibility,
3693                                    unsigned char nonvis,
3694                                    bool offset_is_from_end,
3695                                    bool is_predefined);
3696 #endif
3697
3698 #ifdef HAVE_TARGET_32_LITTLE
3699 template
3700 void
3701 Warnings::issue_warning<32, false>(const Symbol* sym,
3702                                    const Relocate_info<32, false>* relinfo,
3703                                    size_t relnum, off_t reloffset) const;
3704 #endif
3705
3706 #ifdef HAVE_TARGET_32_BIG
3707 template
3708 void
3709 Warnings::issue_warning<32, true>(const Symbol* sym,
3710                                   const Relocate_info<32, true>* relinfo,
3711                                   size_t relnum, off_t reloffset) const;
3712 #endif
3713
3714 #ifdef HAVE_TARGET_64_LITTLE
3715 template
3716 void
3717 Warnings::issue_warning<64, false>(const Symbol* sym,
3718                                    const Relocate_info<64, false>* relinfo,
3719                                    size_t relnum, off_t reloffset) const;
3720 #endif
3721
3722 #ifdef HAVE_TARGET_64_BIG
3723 template
3724 void
3725 Warnings::issue_warning<64, true>(const Symbol* sym,
3726                                   const Relocate_info<64, true>* relinfo,
3727                                   size_t relnum, off_t reloffset) const;
3728 #endif
3729
3730 } // End namespace gold.