1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "dwarf_reader.h"
36 #include "workqueue.h"
44 // Initialize fields in Symbol. This initializes everything except u_
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
75 // Return the demangled version of the symbol's name, but only
76 // if the --demangle flag was set.
79 demangle(const char* name)
81 if (!parameters->demangle())
84 // cplus_demangle allocates memory for the result it returns,
85 // and returns NULL if the name is already demangled.
86 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
87 if (demangled_name == NULL)
90 std::string retval(demangled_name);
96 Symbol::demangled_name() const
98 return demangle(this->name());
101 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103 template<int size, bool big_endian>
105 Symbol::init_base(const char* name, const char* version, Object* object,
106 const elfcpp::Sym<size, big_endian>& sym)
108 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
109 sym.get_st_visibility(), sym.get_st_nonvis());
110 this->u_.from_object.object = object;
111 // FIXME: Handle SHN_XINDEX.
112 this->u_.from_object.shndx = sym.get_st_shndx();
113 this->source_ = FROM_OBJECT;
114 this->in_reg_ = !object->is_dynamic();
115 this->in_dyn_ = object->is_dynamic();
118 // Initialize the fields in the base class Symbol for a symbol defined
119 // in an Output_data.
122 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
123 elfcpp::STB binding, elfcpp::STV visibility,
124 unsigned char nonvis, bool offset_is_from_end)
126 this->init_fields(name, NULL, type, binding, visibility, nonvis);
127 this->u_.in_output_data.output_data = od;
128 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
129 this->source_ = IN_OUTPUT_DATA;
130 this->in_reg_ = true;
133 // Initialize the fields in the base class Symbol for a symbol defined
134 // in an Output_segment.
137 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, Segment_offset_base offset_base)
141 this->init_fields(name, NULL, type, binding, visibility, nonvis);
142 this->u_.in_output_segment.output_segment = os;
143 this->u_.in_output_segment.offset_base = offset_base;
144 this->source_ = IN_OUTPUT_SEGMENT;
145 this->in_reg_ = true;
148 // Initialize the fields in the base class Symbol for a symbol defined
152 Symbol::init_base(const char* name, elfcpp::STT type,
153 elfcpp::STB binding, elfcpp::STV visibility,
154 unsigned char nonvis)
156 this->init_fields(name, NULL, type, binding, visibility, nonvis);
157 this->source_ = CONSTANT;
158 this->in_reg_ = true;
161 // Allocate a common symbol in the base.
164 Symbol::allocate_base_common(Output_data* od)
166 gold_assert(this->is_common());
167 this->source_ = IN_OUTPUT_DATA;
168 this->u_.in_output_data.output_data = od;
169 this->u_.in_output_data.offset_is_from_end = false;
172 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175 template<bool big_endian>
177 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
178 const elfcpp::Sym<size, big_endian>& sym)
180 this->init_base(name, version, object, sym);
181 this->value_ = sym.get_st_value();
182 this->symsize_ = sym.get_st_size();
185 // Initialize the fields in Sized_symbol for a symbol defined in an
190 Sized_symbol<size>::init(const char* name, Output_data* od,
191 Value_type value, Size_type symsize,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis,
194 bool offset_is_from_end)
196 this->init_base(name, od, type, binding, visibility, nonvis,
198 this->value_ = value;
199 this->symsize_ = symsize;
202 // Initialize the fields in Sized_symbol for a symbol defined in an
207 Sized_symbol<size>::init(const char* name, Output_segment* os,
208 Value_type value, Size_type symsize,
209 elfcpp::STT type, elfcpp::STB binding,
210 elfcpp::STV visibility, unsigned char nonvis,
211 Segment_offset_base offset_base)
213 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
214 this->value_ = value;
215 this->symsize_ = symsize;
218 // Initialize the fields in Sized_symbol for a symbol defined as a
223 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
224 elfcpp::STT type, elfcpp::STB binding,
225 elfcpp::STV visibility, unsigned char nonvis)
227 this->init_base(name, type, binding, visibility, nonvis);
228 this->value_ = value;
229 this->symsize_ = symsize;
232 // Allocate a common symbol.
236 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 this->allocate_base_common(od);
239 this->value_ = value;
242 // Return true if this symbol should be added to the dynamic symbol
246 Symbol::should_add_dynsym_entry() const
248 // If the symbol is used by a dynamic relocation, we need to add it.
249 if (this->needs_dynsym_entry())
252 // If exporting all symbols or building a shared library,
253 // and the symbol is defined in a regular object and is
254 // externally visible, we need to add it.
255 if ((parameters->export_dynamic() || parameters->output_is_shared())
256 && !this->is_from_dynobj()
257 && this->is_externally_visible())
263 // Return true if the final value of this symbol is known at link
267 Symbol::final_value_is_known() const
269 // If we are not generating an executable, then no final values are
270 // known, since they will change at runtime.
271 if (!parameters->output_is_executable())
274 // If the symbol is not from an object file, then it is defined, and
276 if (this->source_ != FROM_OBJECT)
279 // If the symbol is from a dynamic object, then the final value is
281 if (this->object()->is_dynamic())
284 // If the symbol is not undefined (it is defined or common), then
285 // the final value is known.
286 if (!this->is_undefined())
289 // If the symbol is undefined, then whether the final value is known
290 // depends on whether we are doing a static link. If we are doing a
291 // dynamic link, then the final value could be filled in at runtime.
292 // This could reasonably be the case for a weak undefined symbol.
293 return parameters->doing_static_link();
296 // Class Symbol_table.
298 Symbol_table::Symbol_table(unsigned int count)
299 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
300 forwarders_(), commons_(), warnings_()
302 namepool_.reserve(count);
305 Symbol_table::~Symbol_table()
309 // The hash function. The key values are Stringpool keys.
312 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
314 return key.first ^ key.second;
317 // The symbol table key equality function. This is called with
321 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
322 const Symbol_table_key& k2) const
324 return k1.first == k2.first && k1.second == k2.second;
327 // Make TO a symbol which forwards to FROM.
330 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
332 gold_assert(from != to);
333 gold_assert(!from->is_forwarder() && !to->is_forwarder());
334 this->forwarders_[from] = to;
335 from->set_forwarder();
338 // Resolve the forwards from FROM, returning the real symbol.
341 Symbol_table::resolve_forwards(const Symbol* from) const
343 gold_assert(from->is_forwarder());
344 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
345 this->forwarders_.find(from);
346 gold_assert(p != this->forwarders_.end());
350 // Look up a symbol by name.
353 Symbol_table::lookup(const char* name, const char* version) const
355 Stringpool::Key name_key;
356 name = this->namepool_.find(name, &name_key);
360 Stringpool::Key version_key = 0;
363 version = this->namepool_.find(version, &version_key);
368 Symbol_table_key key(name_key, version_key);
369 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
370 if (p == this->table_.end())
375 // Resolve a Symbol with another Symbol. This is only used in the
376 // unusual case where there are references to both an unversioned
377 // symbol and a symbol with a version, and we then discover that that
378 // version is the default version. Because this is unusual, we do
379 // this the slow way, by converting back to an ELF symbol.
381 template<int size, bool big_endian>
383 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
384 const char* version ACCEPT_SIZE_ENDIAN)
386 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
387 elfcpp::Sym_write<size, big_endian> esym(buf);
388 // We don't bother to set the st_name field.
389 esym.put_st_value(from->value());
390 esym.put_st_size(from->symsize());
391 esym.put_st_info(from->binding(), from->type());
392 esym.put_st_other(from->visibility(), from->nonvis());
393 esym.put_st_shndx(from->shndx());
394 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
401 // Add one symbol from OBJECT to the symbol table. NAME is symbol
402 // name and VERSION is the version; both are canonicalized. DEF is
403 // whether this is the default version.
405 // If DEF is true, then this is the definition of a default version of
406 // a symbol. That means that any lookup of NAME/NULL and any lookup
407 // of NAME/VERSION should always return the same symbol. This is
408 // obvious for references, but in particular we want to do this for
409 // definitions: overriding NAME/NULL should also override
410 // NAME/VERSION. If we don't do that, it would be very hard to
411 // override functions in a shared library which uses versioning.
413 // We implement this by simply making both entries in the hash table
414 // point to the same Symbol structure. That is easy enough if this is
415 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
416 // that we have seen both already, in which case they will both have
417 // independent entries in the symbol table. We can't simply change
418 // the symbol table entry, because we have pointers to the entries
419 // attached to the object files. So we mark the entry attached to the
420 // object file as a forwarder, and record it in the forwarders_ map.
421 // Note that entries in the hash table will never be marked as
424 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
425 // symbol exactly as it existed in the input file. SYM is usually
426 // that as well, but can be modified, for instance if we determine
427 // it's in a to-be-discarded section.
429 template<int size, bool big_endian>
431 Symbol_table::add_from_object(Object* object,
433 Stringpool::Key name_key,
435 Stringpool::Key version_key,
437 const elfcpp::Sym<size, big_endian>& sym,
438 const elfcpp::Sym<size, big_endian>& orig_sym)
440 Symbol* const snull = NULL;
441 std::pair<typename Symbol_table_type::iterator, bool> ins =
442 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
445 std::pair<typename Symbol_table_type::iterator, bool> insdef =
446 std::make_pair(this->table_.end(), false);
449 const Stringpool::Key vnull_key = 0;
450 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
455 // ins.first: an iterator, which is a pointer to a pair.
456 // ins.first->first: the key (a pair of name and version).
457 // ins.first->second: the value (Symbol*).
458 // ins.second: true if new entry was inserted, false if not.
460 Sized_symbol<size>* ret;
465 // We already have an entry for NAME/VERSION.
466 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
468 gold_assert(ret != NULL);
470 was_undefined = ret->is_undefined();
471 was_common = ret->is_common();
473 this->resolve(ret, sym, orig_sym, object, version);
479 // This is the first time we have seen NAME/NULL. Make
480 // NAME/NULL point to NAME/VERSION.
481 insdef.first->second = ret;
483 else if (insdef.first->second != ret)
485 // This is the unfortunate case where we already have
486 // entries for both NAME/VERSION and NAME/NULL.
487 const Sized_symbol<size>* sym2;
488 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
491 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
492 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
493 this->make_forwarder(insdef.first->second, ret);
494 insdef.first->second = ret;
500 // This is the first time we have seen NAME/VERSION.
501 gold_assert(ins.first->second == NULL);
503 was_undefined = false;
506 if (def && !insdef.second)
508 // We already have an entry for NAME/NULL. If we override
509 // it, then change it to NAME/VERSION.
510 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
513 this->resolve(ret, sym, orig_sym, object, version);
514 ins.first->second = ret;
518 Sized_target<size, big_endian>* target =
519 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
520 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
521 if (!target->has_make_symbol())
522 ret = new Sized_symbol<size>();
525 ret = target->make_symbol();
528 // This means that we don't want a symbol table
531 this->table_.erase(ins.first);
534 this->table_.erase(insdef.first);
535 // Inserting insdef invalidated ins.
536 this->table_.erase(std::make_pair(name_key,
543 ret->init(name, version, object, sym);
545 ins.first->second = ret;
548 // This is the first time we have seen NAME/NULL. Point
549 // it at the new entry for NAME/VERSION.
550 gold_assert(insdef.second);
551 insdef.first->second = ret;
556 // Record every time we see a new undefined symbol, to speed up
558 if (!was_undefined && ret->is_undefined())
559 ++this->saw_undefined_;
561 // Keep track of common symbols, to speed up common symbol
563 if (!was_common && ret->is_common())
564 this->commons_.push_back(ret);
569 // Add all the symbols in a relocatable object to the hash table.
571 template<int size, bool big_endian>
573 Symbol_table::add_from_relobj(
574 Sized_relobj<size, big_endian>* relobj,
575 const unsigned char* syms,
577 const char* sym_names,
578 size_t sym_name_size,
579 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
581 gold_assert(size == relobj->target()->get_size());
582 gold_assert(size == parameters->get_size());
584 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
586 const unsigned char* p = syms;
587 for (size_t i = 0; i < count; ++i, p += sym_size)
589 elfcpp::Sym<size, big_endian> sym(p);
590 elfcpp::Sym<size, big_endian>* psym = &sym;
592 unsigned int st_name = psym->get_st_name();
593 if (st_name >= sym_name_size)
595 relobj->error(_("bad global symbol name offset %u at %zu"),
600 const char* name = sym_names + st_name;
602 // A symbol defined in a section which we are not including must
603 // be treated as an undefined symbol.
604 unsigned char symbuf[sym_size];
605 elfcpp::Sym<size, big_endian> sym2(symbuf);
606 unsigned int st_shndx = psym->get_st_shndx();
607 if (st_shndx != elfcpp::SHN_UNDEF
608 && st_shndx < elfcpp::SHN_LORESERVE
609 && !relobj->is_section_included(st_shndx))
611 memcpy(symbuf, p, sym_size);
612 elfcpp::Sym_write<size, big_endian> sw(symbuf);
613 sw.put_st_shndx(elfcpp::SHN_UNDEF);
617 // In an object file, an '@' in the name separates the symbol
618 // name from the version name. If there are two '@' characters,
619 // this is the default version.
620 const char* ver = strchr(name, '@');
622 Sized_symbol<size>* res;
625 Stringpool::Key name_key;
626 name = this->namepool_.add(name, true, &name_key);
627 res = this->add_from_object(relobj, name, name_key, NULL, 0,
632 Stringpool::Key name_key;
633 name = this->namepool_.add_with_length(name, ver - name, true,
644 Stringpool::Key ver_key;
645 ver = this->namepool_.add(ver, true, &ver_key);
647 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
651 (*sympointers)[i] = res;
655 // Add all the symbols in a dynamic object to the hash table.
657 template<int size, bool big_endian>
659 Symbol_table::add_from_dynobj(
660 Sized_dynobj<size, big_endian>* dynobj,
661 const unsigned char* syms,
663 const char* sym_names,
664 size_t sym_name_size,
665 const unsigned char* versym,
667 const std::vector<const char*>* version_map)
669 gold_assert(size == dynobj->target()->get_size());
670 gold_assert(size == parameters->get_size());
672 if (versym != NULL && versym_size / 2 < count)
674 dynobj->error(_("too few symbol versions"));
678 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
680 // We keep a list of all STT_OBJECT symbols, so that we can resolve
681 // weak aliases. This is necessary because if the dynamic object
682 // provides the same variable under two names, one of which is a
683 // weak definition, and the regular object refers to the weak
684 // definition, we have to put both the weak definition and the
685 // strong definition into the dynamic symbol table. Given a weak
686 // definition, the only way that we can find the corresponding
687 // strong definition, if any, is to search the symbol table.
688 std::vector<Sized_symbol<size>*> object_symbols;
690 const unsigned char* p = syms;
691 const unsigned char* vs = versym;
692 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
694 elfcpp::Sym<size, big_endian> sym(p);
696 // Ignore symbols with local binding.
697 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
700 unsigned int st_name = sym.get_st_name();
701 if (st_name >= sym_name_size)
703 dynobj->error(_("bad symbol name offset %u at %zu"),
708 const char* name = sym_names + st_name;
710 Sized_symbol<size>* res;
714 Stringpool::Key name_key;
715 name = this->namepool_.add(name, true, &name_key);
716 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
721 // Read the version information.
723 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
725 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
726 v &= elfcpp::VERSYM_VERSION;
728 // The Sun documentation says that V can be VER_NDX_LOCAL,
729 // or VER_NDX_GLOBAL, or a version index. The meaning of
730 // VER_NDX_LOCAL is defined as "Symbol has local scope."
731 // The old GNU linker will happily generate VER_NDX_LOCAL
732 // for an undefined symbol. I don't know what the Sun
733 // linker will generate.
735 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
736 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
738 // This symbol should not be visible outside the object.
742 // At this point we are definitely going to add this symbol.
743 Stringpool::Key name_key;
744 name = this->namepool_.add(name, true, &name_key);
746 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
747 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
749 // This symbol does not have a version.
750 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
755 if (v >= version_map->size())
757 dynobj->error(_("versym for symbol %zu out of range: %u"),
762 const char* version = (*version_map)[v];
765 dynobj->error(_("versym for symbol %zu has no name: %u"),
770 Stringpool::Key version_key;
771 version = this->namepool_.add(version, true, &version_key);
773 // If this is an absolute symbol, and the version name
774 // and symbol name are the same, then this is the
775 // version definition symbol. These symbols exist to
776 // support using -u to pull in particular versions. We
777 // do not want to record a version for them.
778 if (sym.get_st_shndx() == elfcpp::SHN_ABS
779 && name_key == version_key)
780 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
784 const bool def = (!hidden
785 && (sym.get_st_shndx()
786 != elfcpp::SHN_UNDEF));
787 res = this->add_from_object(dynobj, name, name_key, version,
788 version_key, def, sym, sym);
793 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
794 && sym.get_st_type() == elfcpp::STT_OBJECT)
795 object_symbols.push_back(res);
798 this->record_weak_aliases(&object_symbols);
801 // This is used to sort weak aliases. We sort them first by section
802 // index, then by offset, then by weak ahead of strong.
805 class Weak_alias_sorter
808 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
813 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
814 const Sized_symbol<size>* s2) const
816 if (s1->shndx() != s2->shndx())
817 return s1->shndx() < s2->shndx();
818 if (s1->value() != s2->value())
819 return s1->value() < s2->value();
820 if (s1->binding() != s2->binding())
822 if (s1->binding() == elfcpp::STB_WEAK)
824 if (s2->binding() == elfcpp::STB_WEAK)
827 return std::string(s1->name()) < std::string(s2->name());
830 // SYMBOLS is a list of object symbols from a dynamic object. Look
831 // for any weak aliases, and record them so that if we add the weak
832 // alias to the dynamic symbol table, we also add the corresponding
837 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
839 // Sort the vector by section index, then by offset, then by weak
841 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
843 // Walk through the vector. For each weak definition, record
845 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
850 if ((*p)->binding() != elfcpp::STB_WEAK)
853 // Build a circular list of weak aliases. Each symbol points to
854 // the next one in the circular list.
856 Sized_symbol<size>* from_sym = *p;
857 typename std::vector<Sized_symbol<size>*>::const_iterator q;
858 for (q = p + 1; q != symbols->end(); ++q)
860 if ((*q)->shndx() != from_sym->shndx()
861 || (*q)->value() != from_sym->value())
864 this->weak_aliases_[from_sym] = *q;
865 from_sym->set_has_alias();
871 this->weak_aliases_[from_sym] = *p;
872 from_sym->set_has_alias();
879 // Create and return a specially defined symbol. If ONLY_IF_REF is
880 // true, then only create the symbol if there is a reference to it.
881 // If this does not return NULL, it sets *POLDSYM to the existing
882 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
884 template<int size, bool big_endian>
886 Symbol_table::define_special_symbol(const Target* target, const char** pname,
887 const char** pversion, bool only_if_ref,
888 Sized_symbol<size>** poldsym
892 Sized_symbol<size>* sym;
893 bool add_to_table = false;
894 typename Symbol_table_type::iterator add_loc = this->table_.end();
898 oldsym = this->lookup(*pname, *pversion);
899 if (oldsym == NULL || !oldsym->is_undefined())
902 *pname = oldsym->name();
903 *pversion = oldsym->version();
907 // Canonicalize NAME and VERSION.
908 Stringpool::Key name_key;
909 *pname = this->namepool_.add(*pname, true, &name_key);
911 Stringpool::Key version_key = 0;
912 if (*pversion != NULL)
913 *pversion = this->namepool_.add(*pversion, true, &version_key);
915 Symbol* const snull = NULL;
916 std::pair<typename Symbol_table_type::iterator, bool> ins =
917 this->table_.insert(std::make_pair(std::make_pair(name_key,
923 // We already have a symbol table entry for NAME/VERSION.
924 oldsym = ins.first->second;
925 gold_assert(oldsym != NULL);
929 // We haven't seen this symbol before.
930 gold_assert(ins.first->second == NULL);
937 if (!target->has_make_symbol())
938 sym = new Sized_symbol<size>();
941 gold_assert(target->get_size() == size);
942 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
943 typedef Sized_target<size, big_endian> My_target;
944 const My_target* sized_target =
945 static_cast<const My_target*>(target);
946 sym = sized_target->make_symbol();
952 add_loc->second = sym;
954 gold_assert(oldsym != NULL);
956 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
962 // Define a symbol based on an Output_data.
965 Symbol_table::define_in_output_data(const Target* target, const char* name,
966 const char* version, Output_data* od,
967 uint64_t value, uint64_t symsize,
968 elfcpp::STT type, elfcpp::STB binding,
969 elfcpp::STV visibility,
970 unsigned char nonvis,
971 bool offset_is_from_end,
974 if (parameters->get_size() == 32)
976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
977 return this->do_define_in_output_data<32>(target, name, version, od,
978 value, symsize, type, binding,
986 else if (parameters->get_size() == 64)
988 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
989 return this->do_define_in_output_data<64>(target, name, version, od,
990 value, symsize, type, binding,
1002 // Define a symbol in an Output_data, sized version.
1006 Symbol_table::do_define_in_output_data(
1007 const Target* target,
1009 const char* version,
1011 typename elfcpp::Elf_types<size>::Elf_Addr value,
1012 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1014 elfcpp::STB binding,
1015 elfcpp::STV visibility,
1016 unsigned char nonvis,
1017 bool offset_is_from_end,
1020 Sized_symbol<size>* sym;
1021 Sized_symbol<size>* oldsym;
1023 if (parameters->is_big_endian())
1025 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1026 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1027 target, &name, &version, only_if_ref, &oldsym
1028 SELECT_SIZE_ENDIAN(size, true));
1035 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1036 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1037 target, &name, &version, only_if_ref, &oldsym
1038 SELECT_SIZE_ENDIAN(size, false));
1047 gold_assert(version == NULL || oldsym != NULL);
1048 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1049 offset_is_from_end);
1052 && Symbol_table::should_override_with_special(oldsym))
1053 this->override_with_special(oldsym, sym);
1058 // Define a symbol based on an Output_segment.
1061 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1062 const char* version, Output_segment* os,
1063 uint64_t value, uint64_t symsize,
1064 elfcpp::STT type, elfcpp::STB binding,
1065 elfcpp::STV visibility,
1066 unsigned char nonvis,
1067 Symbol::Segment_offset_base offset_base,
1070 if (parameters->get_size() == 32)
1072 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1073 return this->do_define_in_output_segment<32>(target, name, version, os,
1074 value, symsize, type,
1075 binding, visibility, nonvis,
1076 offset_base, only_if_ref);
1081 else if (parameters->get_size() == 64)
1083 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1084 return this->do_define_in_output_segment<64>(target, name, version, os,
1085 value, symsize, type,
1086 binding, visibility, nonvis,
1087 offset_base, only_if_ref);
1096 // Define a symbol in an Output_segment, sized version.
1100 Symbol_table::do_define_in_output_segment(
1101 const Target* target,
1103 const char* version,
1105 typename elfcpp::Elf_types<size>::Elf_Addr value,
1106 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1108 elfcpp::STB binding,
1109 elfcpp::STV visibility,
1110 unsigned char nonvis,
1111 Symbol::Segment_offset_base offset_base,
1114 Sized_symbol<size>* sym;
1115 Sized_symbol<size>* oldsym;
1117 if (parameters->is_big_endian())
1119 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1120 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1121 target, &name, &version, only_if_ref, &oldsym
1122 SELECT_SIZE_ENDIAN(size, true));
1129 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1130 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1131 target, &name, &version, only_if_ref, &oldsym
1132 SELECT_SIZE_ENDIAN(size, false));
1141 gold_assert(version == NULL || oldsym != NULL);
1142 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1146 && Symbol_table::should_override_with_special(oldsym))
1147 this->override_with_special(oldsym, sym);
1152 // Define a special symbol with a constant value. It is a multiple
1153 // definition error if this symbol is already defined.
1156 Symbol_table::define_as_constant(const Target* target, const char* name,
1157 const char* version, uint64_t value,
1158 uint64_t symsize, elfcpp::STT type,
1159 elfcpp::STB binding, elfcpp::STV visibility,
1160 unsigned char nonvis, bool only_if_ref)
1162 if (parameters->get_size() == 32)
1164 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1165 return this->do_define_as_constant<32>(target, name, version, value,
1166 symsize, type, binding,
1167 visibility, nonvis, only_if_ref);
1172 else if (parameters->get_size() == 64)
1174 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1175 return this->do_define_as_constant<64>(target, name, version, value,
1176 symsize, type, binding,
1177 visibility, nonvis, only_if_ref);
1186 // Define a symbol as a constant, sized version.
1190 Symbol_table::do_define_as_constant(
1191 const Target* target,
1193 const char* version,
1194 typename elfcpp::Elf_types<size>::Elf_Addr value,
1195 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1197 elfcpp::STB binding,
1198 elfcpp::STV visibility,
1199 unsigned char nonvis,
1202 Sized_symbol<size>* sym;
1203 Sized_symbol<size>* oldsym;
1205 if (parameters->is_big_endian())
1207 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1208 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1209 target, &name, &version, only_if_ref, &oldsym
1210 SELECT_SIZE_ENDIAN(size, true));
1217 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1218 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1219 target, &name, &version, only_if_ref, &oldsym
1220 SELECT_SIZE_ENDIAN(size, false));
1229 gold_assert(version == NULL || oldsym != NULL);
1230 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1233 && Symbol_table::should_override_with_special(oldsym))
1234 this->override_with_special(oldsym, sym);
1239 // Define a set of symbols in output sections.
1242 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1243 int count, const Define_symbol_in_section* p)
1245 for (int i = 0; i < count; ++i, ++p)
1247 Output_section* os = layout->find_output_section(p->output_section);
1249 this->define_in_output_data(target, p->name, NULL, os, p->value,
1250 p->size, p->type, p->binding,
1251 p->visibility, p->nonvis,
1252 p->offset_is_from_end, p->only_if_ref);
1254 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1255 p->binding, p->visibility, p->nonvis,
1260 // Define a set of symbols in output segments.
1263 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1264 int count, const Define_symbol_in_segment* p)
1266 for (int i = 0; i < count; ++i, ++p)
1268 Output_segment* os = layout->find_output_segment(p->segment_type,
1269 p->segment_flags_set,
1270 p->segment_flags_clear);
1272 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1273 p->size, p->type, p->binding,
1274 p->visibility, p->nonvis,
1275 p->offset_base, p->only_if_ref);
1277 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1278 p->binding, p->visibility, p->nonvis,
1283 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1284 // symbol should be defined--typically a .dyn.bss section. VALUE is
1285 // the offset within POSD.
1289 Symbol_table::define_with_copy_reloc(const Target* target,
1290 Sized_symbol<size>* csym,
1291 Output_data* posd, uint64_t value)
1293 gold_assert(csym->is_from_dynobj());
1294 gold_assert(!csym->is_copied_from_dynobj());
1295 Object* object = csym->object();
1296 gold_assert(object->is_dynamic());
1297 Dynobj* dynobj = static_cast<Dynobj*>(object);
1299 // Our copied variable has to override any variable in a shared
1301 elfcpp::STB binding = csym->binding();
1302 if (binding == elfcpp::STB_WEAK)
1303 binding = elfcpp::STB_GLOBAL;
1305 this->define_in_output_data(target, csym->name(), csym->version(),
1306 posd, value, csym->symsize(),
1307 csym->type(), binding,
1308 csym->visibility(), csym->nonvis(),
1311 csym->set_is_copied_from_dynobj();
1312 csym->set_needs_dynsym_entry();
1314 this->copied_symbol_dynobjs_[csym] = dynobj;
1316 // We have now defined all aliases, but we have not entered them all
1317 // in the copied_symbol_dynobjs_ map.
1318 if (csym->has_alias())
1323 sym = this->weak_aliases_[sym];
1326 gold_assert(sym->output_data() == posd);
1328 sym->set_is_copied_from_dynobj();
1329 this->copied_symbol_dynobjs_[sym] = dynobj;
1334 // SYM is defined using a COPY reloc. Return the dynamic object where
1335 // the original definition was found.
1338 Symbol_table::get_copy_source(const Symbol* sym) const
1340 gold_assert(sym->is_copied_from_dynobj());
1341 Copied_symbol_dynobjs::const_iterator p =
1342 this->copied_symbol_dynobjs_.find(sym);
1343 gold_assert(p != this->copied_symbol_dynobjs_.end());
1347 // Set the dynamic symbol indexes. INDEX is the index of the first
1348 // global dynamic symbol. Pointers to the symbols are stored into the
1349 // vector SYMS. The names are added to DYNPOOL. This returns an
1350 // updated dynamic symbol index.
1353 Symbol_table::set_dynsym_indexes(const Target* target,
1355 std::vector<Symbol*>* syms,
1356 Stringpool* dynpool,
1359 for (Symbol_table_type::iterator p = this->table_.begin();
1360 p != this->table_.end();
1363 Symbol* sym = p->second;
1365 // Note that SYM may already have a dynamic symbol index, since
1366 // some symbols appear more than once in the symbol table, with
1367 // and without a version.
1369 if (!sym->should_add_dynsym_entry())
1370 sym->set_dynsym_index(-1U);
1371 else if (!sym->has_dynsym_index())
1373 sym->set_dynsym_index(index);
1375 syms->push_back(sym);
1376 dynpool->add(sym->name(), false, NULL);
1378 // Record any version information.
1379 if (sym->version() != NULL)
1380 versions->record_version(this, dynpool, sym);
1384 // Finish up the versions. In some cases this may add new dynamic
1386 index = versions->finalize(target, this, index, syms);
1391 // Set the final values for all the symbols. The index of the first
1392 // global symbol in the output file is INDEX. Record the file offset
1393 // OFF. Add their names to POOL. Return the new file offset.
1396 Symbol_table::finalize(const Task* task, unsigned int index, off_t off,
1397 off_t dynoff, size_t dyn_global_index, size_t dyncount,
1402 gold_assert(index != 0);
1403 this->first_global_index_ = index;
1405 this->dynamic_offset_ = dynoff;
1406 this->first_dynamic_global_index_ = dyn_global_index;
1407 this->dynamic_count_ = dyncount;
1409 if (parameters->get_size() == 32)
1411 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1412 ret = this->sized_finalize<32>(index, off, pool);
1417 else if (parameters->get_size() == 64)
1419 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1420 ret = this->sized_finalize<64>(index, off, pool);
1428 // Now that we have the final symbol table, we can reliably note
1429 // which symbols should get warnings.
1430 this->warnings_.note_warnings(this, task);
1435 // Set the final value for all the symbols. This is called after
1436 // Layout::finalize, so all the output sections have their final
1441 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1443 off = align_address(off, size >> 3);
1444 this->offset_ = off;
1446 size_t orig_index = index;
1448 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1449 for (Symbol_table_type::iterator p = this->table_.begin();
1450 p != this->table_.end();
1453 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1455 // FIXME: Here we need to decide which symbols should go into
1456 // the output file, based on --strip.
1458 // The default version of a symbol may appear twice in the
1459 // symbol table. We only need to finalize it once.
1460 if (sym->has_symtab_index())
1465 gold_assert(!sym->has_symtab_index());
1466 sym->set_symtab_index(-1U);
1467 gold_assert(sym->dynsym_index() == -1U);
1471 typename Sized_symbol<size>::Value_type value;
1473 switch (sym->source())
1475 case Symbol::FROM_OBJECT:
1477 unsigned int shndx = sym->shndx();
1479 // FIXME: We need some target specific support here.
1480 if (shndx >= elfcpp::SHN_LORESERVE
1481 && shndx != elfcpp::SHN_ABS)
1483 gold_error(_("%s: unsupported symbol section 0x%x"),
1484 sym->demangled_name().c_str(), shndx);
1485 shndx = elfcpp::SHN_UNDEF;
1488 Object* symobj = sym->object();
1489 if (symobj->is_dynamic())
1492 shndx = elfcpp::SHN_UNDEF;
1494 else if (shndx == elfcpp::SHN_UNDEF)
1496 else if (shndx == elfcpp::SHN_ABS)
1497 value = sym->value();
1500 Relobj* relobj = static_cast<Relobj*>(symobj);
1501 section_offset_type secoff;
1502 Output_section* os = relobj->output_section(shndx, &secoff);
1506 sym->set_symtab_index(-1U);
1507 gold_assert(sym->dynsym_index() == -1U);
1511 if (sym->type() == elfcpp::STT_TLS)
1512 value = sym->value() + os->tls_offset() + secoff;
1514 value = sym->value() + os->address() + secoff;
1519 case Symbol::IN_OUTPUT_DATA:
1521 Output_data* od = sym->output_data();
1522 value = sym->value() + od->address();
1523 if (sym->offset_is_from_end())
1524 value += od->data_size();
1528 case Symbol::IN_OUTPUT_SEGMENT:
1530 Output_segment* os = sym->output_segment();
1531 value = sym->value() + os->vaddr();
1532 switch (sym->offset_base())
1534 case Symbol::SEGMENT_START:
1536 case Symbol::SEGMENT_END:
1537 value += os->memsz();
1539 case Symbol::SEGMENT_BSS:
1540 value += os->filesz();
1548 case Symbol::CONSTANT:
1549 value = sym->value();
1556 sym->set_value(value);
1558 if (parameters->strip_all())
1559 sym->set_symtab_index(-1U);
1562 sym->set_symtab_index(index);
1563 pool->add(sym->name(), false, NULL);
1569 this->output_count_ = index - orig_index;
1574 // Write out the global symbols.
1577 Symbol_table::write_globals(const Input_objects* input_objects,
1578 const Stringpool* sympool,
1579 const Stringpool* dynpool, Output_file* of) const
1581 if (parameters->get_size() == 32)
1583 if (parameters->is_big_endian())
1585 #ifdef HAVE_TARGET_32_BIG
1586 this->sized_write_globals<32, true>(input_objects, sympool,
1594 #ifdef HAVE_TARGET_32_LITTLE
1595 this->sized_write_globals<32, false>(input_objects, sympool,
1602 else if (parameters->get_size() == 64)
1604 if (parameters->is_big_endian())
1606 #ifdef HAVE_TARGET_64_BIG
1607 this->sized_write_globals<64, true>(input_objects, sympool,
1615 #ifdef HAVE_TARGET_64_LITTLE
1616 this->sized_write_globals<64, false>(input_objects, sympool,
1627 // Write out the global symbols.
1629 template<int size, bool big_endian>
1631 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1632 const Stringpool* sympool,
1633 const Stringpool* dynpool,
1634 Output_file* of) const
1636 const Target* const target = input_objects->target();
1638 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1639 unsigned int index = this->first_global_index_;
1640 const off_t oview_size = this->output_count_ * sym_size;
1641 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1643 unsigned int dynamic_count = this->dynamic_count_;
1644 off_t dynamic_size = dynamic_count * sym_size;
1645 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1646 unsigned char* dynamic_view;
1647 if (this->dynamic_offset_ == 0)
1648 dynamic_view = NULL;
1650 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1652 unsigned char* ps = psyms;
1653 for (Symbol_table_type::const_iterator p = this->table_.begin();
1654 p != this->table_.end();
1657 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1659 // Possibly warn about unresolved symbols in shared libraries.
1660 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1662 unsigned int sym_index = sym->symtab_index();
1663 unsigned int dynsym_index;
1664 if (dynamic_view == NULL)
1667 dynsym_index = sym->dynsym_index();
1669 if (sym_index == -1U && dynsym_index == -1U)
1671 // This symbol is not included in the output file.
1675 if (sym_index == index)
1677 else if (sym_index != -1U)
1679 // We have already seen this symbol, because it has a
1681 gold_assert(sym_index < index);
1682 if (dynsym_index == -1U)
1688 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1689 switch (sym->source())
1691 case Symbol::FROM_OBJECT:
1693 unsigned int in_shndx = sym->shndx();
1695 // FIXME: We need some target specific support here.
1696 if (in_shndx >= elfcpp::SHN_LORESERVE
1697 && in_shndx != elfcpp::SHN_ABS)
1699 gold_error(_("%s: unsupported symbol section 0x%x"),
1700 sym->demangled_name().c_str(), in_shndx);
1705 Object* symobj = sym->object();
1706 if (symobj->is_dynamic())
1708 if (sym->needs_dynsym_value())
1709 value = target->dynsym_value(sym);
1710 shndx = elfcpp::SHN_UNDEF;
1712 else if (in_shndx == elfcpp::SHN_UNDEF
1713 || in_shndx == elfcpp::SHN_ABS)
1717 Relobj* relobj = static_cast<Relobj*>(symobj);
1718 section_offset_type secoff;
1719 Output_section* os = relobj->output_section(in_shndx,
1721 gold_assert(os != NULL);
1722 shndx = os->out_shndx();
1728 case Symbol::IN_OUTPUT_DATA:
1729 shndx = sym->output_data()->out_shndx();
1732 case Symbol::IN_OUTPUT_SEGMENT:
1733 shndx = elfcpp::SHN_ABS;
1736 case Symbol::CONSTANT:
1737 shndx = elfcpp::SHN_ABS;
1744 if (sym_index != -1U)
1746 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1747 sym, sym->value(), shndx, sympool, ps
1748 SELECT_SIZE_ENDIAN(size, big_endian));
1752 if (dynsym_index != -1U)
1754 dynsym_index -= first_dynamic_global_index;
1755 gold_assert(dynsym_index < dynamic_count);
1756 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1757 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1758 sym, value, shndx, dynpool, pd
1759 SELECT_SIZE_ENDIAN(size, big_endian));
1763 gold_assert(ps - psyms == oview_size);
1765 of->write_output_view(this->offset_, oview_size, psyms);
1766 if (dynamic_view != NULL)
1767 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1770 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1771 // strtab holding the name.
1773 template<int size, bool big_endian>
1775 Symbol_table::sized_write_symbol(
1776 Sized_symbol<size>* sym,
1777 typename elfcpp::Elf_types<size>::Elf_Addr value,
1779 const Stringpool* pool,
1781 ACCEPT_SIZE_ENDIAN) const
1783 elfcpp::Sym_write<size, big_endian> osym(p);
1784 osym.put_st_name(pool->get_offset(sym->name()));
1785 osym.put_st_value(value);
1786 osym.put_st_size(sym->symsize());
1787 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1788 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1789 osym.put_st_shndx(shndx);
1792 // Check for unresolved symbols in shared libraries. This is
1793 // controlled by the --allow-shlib-undefined option.
1795 // We only warn about libraries for which we have seen all the
1796 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1797 // which were not seen in this link. If we didn't see a DT_NEEDED
1798 // entry, we aren't going to be able to reliably report whether the
1799 // symbol is undefined.
1801 // We also don't warn about libraries found in the system library
1802 // directory (the directory were we find libc.so); we assume that
1803 // those libraries are OK. This heuristic avoids problems in
1804 // GNU/Linux, in which -ldl can have undefined references satisfied by
1808 Symbol_table::warn_about_undefined_dynobj_symbol(
1809 const Input_objects* input_objects,
1812 if (sym->source() == Symbol::FROM_OBJECT
1813 && sym->object()->is_dynamic()
1814 && sym->shndx() == elfcpp::SHN_UNDEF
1815 && sym->binding() != elfcpp::STB_WEAK
1816 && !parameters->allow_shlib_undefined()
1817 && !input_objects->target()->is_defined_by_abi(sym)
1818 && !input_objects->found_in_system_library_directory(sym->object()))
1820 // A very ugly cast.
1821 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1822 if (!dynobj->has_unknown_needed_entries())
1823 gold_error(_("%s: undefined reference to '%s'"),
1824 sym->object()->name().c_str(),
1825 sym->demangled_name().c_str());
1829 // Write out a section symbol. Return the update offset.
1832 Symbol_table::write_section_symbol(const Output_section *os,
1836 if (parameters->get_size() == 32)
1838 if (parameters->is_big_endian())
1840 #ifdef HAVE_TARGET_32_BIG
1841 this->sized_write_section_symbol<32, true>(os, of, offset);
1848 #ifdef HAVE_TARGET_32_LITTLE
1849 this->sized_write_section_symbol<32, false>(os, of, offset);
1855 else if (parameters->get_size() == 64)
1857 if (parameters->is_big_endian())
1859 #ifdef HAVE_TARGET_64_BIG
1860 this->sized_write_section_symbol<64, true>(os, of, offset);
1867 #ifdef HAVE_TARGET_64_LITTLE
1868 this->sized_write_section_symbol<64, false>(os, of, offset);
1878 // Write out a section symbol, specialized for size and endianness.
1880 template<int size, bool big_endian>
1882 Symbol_table::sized_write_section_symbol(const Output_section* os,
1886 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1888 unsigned char* pov = of->get_output_view(offset, sym_size);
1890 elfcpp::Sym_write<size, big_endian> osym(pov);
1891 osym.put_st_name(0);
1892 osym.put_st_value(os->address());
1893 osym.put_st_size(0);
1894 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1895 elfcpp::STT_SECTION));
1896 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1897 osym.put_st_shndx(os->out_shndx());
1899 of->write_output_view(offset, sym_size, pov);
1902 // Print statistical information to stderr. This is used for --stats.
1905 Symbol_table::print_stats() const
1907 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
1908 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
1909 program_name, this->table_.size(), this->table_.bucket_count());
1911 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
1912 program_name, this->table_.size());
1914 this->namepool_.print_stats("symbol table stringpool");
1917 // We check for ODR violations by looking for symbols with the same
1918 // name for which the debugging information reports that they were
1919 // defined in different source locations. When comparing the source
1920 // location, we consider instances with the same base filename and
1921 // line number to be the same. This is because different object
1922 // files/shared libraries can include the same header file using
1923 // different paths, and we don't want to report an ODR violation in
1926 // This struct is used to compare line information, as returned by
1927 // Dwarf_line_info::one_addr2line. It implements a < comparison
1928 // operator used with std::set.
1930 struct Odr_violation_compare
1933 operator()(const std::string& s1, const std::string& s2) const
1935 std::string::size_type pos1 = s1.rfind('/');
1936 std::string::size_type pos2 = s2.rfind('/');
1937 if (pos1 == std::string::npos
1938 || pos2 == std::string::npos)
1940 return s1.compare(pos1, std::string::npos,
1941 s2, pos2, std::string::npos) < 0;
1945 // Check candidate_odr_violations_ to find symbols with the same name
1946 // but apparently different definitions (different source-file/line-no).
1949 Symbol_table::detect_odr_violations(const Task* task,
1950 const char* output_file_name) const
1952 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1953 it != candidate_odr_violations_.end();
1956 const char* symbol_name = it->first;
1957 // We use a sorted set so the output is deterministic.
1958 std::set<std::string, Odr_violation_compare> line_nums;
1960 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1961 locs = it->second.begin();
1962 locs != it->second.end();
1965 // We need to lock the object in order to read it. This
1966 // means that we have to run in a singleton Task. If we
1967 // want to run this in a general Task for better
1968 // performance, we will need one Task for object, plus
1969 // appropriate locking to ensure that we don't conflict with
1970 // other uses of the object.
1971 Task_lock_obj<Object> tl(task, locs->object);
1972 std::string lineno = Dwarf_line_info::one_addr2line(
1973 locs->object, locs->shndx, locs->offset);
1974 if (!lineno.empty())
1975 line_nums.insert(lineno);
1978 if (line_nums.size() > 1)
1980 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1981 "places (possible ODR violation):"),
1982 output_file_name, demangle(symbol_name).c_str());
1983 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1984 it2 != line_nums.end();
1986 fprintf(stderr, " %s\n", it2->c_str());
1991 // Warnings functions.
1993 // Add a new warning.
1996 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1999 name = symtab->canonicalize_name(name);
2000 this->warnings_[name].set(obj, shndx);
2003 // Look through the warnings and mark the symbols for which we should
2004 // warn. This is called during Layout::finalize when we know the
2005 // sources for all the symbols.
2008 Warnings::note_warnings(Symbol_table* symtab, const Task* task)
2010 for (Warning_table::iterator p = this->warnings_.begin();
2011 p != this->warnings_.end();
2014 Symbol* sym = symtab->lookup(p->first, NULL);
2016 && sym->source() == Symbol::FROM_OBJECT
2017 && sym->object() == p->second.object)
2019 sym->set_has_warning();
2021 // Read the section contents to get the warning text. It
2022 // would be nicer if we only did this if we have to actually
2023 // issue a warning. Unfortunately, warnings are issued as
2024 // we relocate sections. That means that we can not lock
2025 // the object then, as we might try to issue the same
2026 // warning multiple times simultaneously.
2028 Task_lock_obj<Object> tl(task, p->second.object);
2029 const unsigned char* c;
2030 section_size_type len;
2031 c = p->second.object->section_contents(p->second.shndx, &len,
2033 p->second.set_text(reinterpret_cast<const char*>(c), len);
2039 // Issue a warning. This is called when we see a relocation against a
2040 // symbol for which has a warning.
2042 template<int size, bool big_endian>
2044 Warnings::issue_warning(const Symbol* sym,
2045 const Relocate_info<size, big_endian>* relinfo,
2046 size_t relnum, off_t reloffset) const
2048 gold_assert(sym->has_warning());
2049 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2050 gold_assert(p != this->warnings_.end());
2051 gold_warning_at_location(relinfo, relnum, reloffset,
2052 "%s", p->second.text.c_str());
2055 // Instantiate the templates we need. We could use the configure
2056 // script to restrict this to only the ones needed for implemented
2059 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2062 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2065 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2068 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2071 #ifdef HAVE_TARGET_32_LITTLE
2074 Symbol_table::add_from_relobj<32, false>(
2075 Sized_relobj<32, false>* relobj,
2076 const unsigned char* syms,
2078 const char* sym_names,
2079 size_t sym_name_size,
2080 Sized_relobj<32, true>::Symbols* sympointers);
2083 #ifdef HAVE_TARGET_32_BIG
2086 Symbol_table::add_from_relobj<32, true>(
2087 Sized_relobj<32, true>* relobj,
2088 const unsigned char* syms,
2090 const char* sym_names,
2091 size_t sym_name_size,
2092 Sized_relobj<32, false>::Symbols* sympointers);
2095 #ifdef HAVE_TARGET_64_LITTLE
2098 Symbol_table::add_from_relobj<64, false>(
2099 Sized_relobj<64, false>* relobj,
2100 const unsigned char* syms,
2102 const char* sym_names,
2103 size_t sym_name_size,
2104 Sized_relobj<64, true>::Symbols* sympointers);
2107 #ifdef HAVE_TARGET_64_BIG
2110 Symbol_table::add_from_relobj<64, true>(
2111 Sized_relobj<64, true>* relobj,
2112 const unsigned char* syms,
2114 const char* sym_names,
2115 size_t sym_name_size,
2116 Sized_relobj<64, false>::Symbols* sympointers);
2119 #ifdef HAVE_TARGET_32_LITTLE
2122 Symbol_table::add_from_dynobj<32, false>(
2123 Sized_dynobj<32, false>* dynobj,
2124 const unsigned char* syms,
2126 const char* sym_names,
2127 size_t sym_name_size,
2128 const unsigned char* versym,
2130 const std::vector<const char*>* version_map);
2133 #ifdef HAVE_TARGET_32_BIG
2136 Symbol_table::add_from_dynobj<32, true>(
2137 Sized_dynobj<32, true>* dynobj,
2138 const unsigned char* syms,
2140 const char* sym_names,
2141 size_t sym_name_size,
2142 const unsigned char* versym,
2144 const std::vector<const char*>* version_map);
2147 #ifdef HAVE_TARGET_64_LITTLE
2150 Symbol_table::add_from_dynobj<64, false>(
2151 Sized_dynobj<64, false>* dynobj,
2152 const unsigned char* syms,
2154 const char* sym_names,
2155 size_t sym_name_size,
2156 const unsigned char* versym,
2158 const std::vector<const char*>* version_map);
2161 #ifdef HAVE_TARGET_64_BIG
2164 Symbol_table::add_from_dynobj<64, true>(
2165 Sized_dynobj<64, true>* dynobj,
2166 const unsigned char* syms,
2168 const char* sym_names,
2169 size_t sym_name_size,
2170 const unsigned char* versym,
2172 const std::vector<const char*>* version_map);
2175 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2178 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2179 Sized_symbol<32>* sym,
2180 Output_data* posd, uint64_t value);
2183 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2186 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2187 Sized_symbol<64>* sym,
2188 Output_data* posd, uint64_t value);
2191 #ifdef HAVE_TARGET_32_LITTLE
2194 Warnings::issue_warning<32, false>(const Symbol* sym,
2195 const Relocate_info<32, false>* relinfo,
2196 size_t relnum, off_t reloffset) const;
2199 #ifdef HAVE_TARGET_32_BIG
2202 Warnings::issue_warning<32, true>(const Symbol* sym,
2203 const Relocate_info<32, true>* relinfo,
2204 size_t relnum, off_t reloffset) const;
2207 #ifdef HAVE_TARGET_64_LITTLE
2210 Warnings::issue_warning<64, false>(const Symbol* sym,
2211 const Relocate_info<64, false>* relinfo,
2212 size_t relnum, off_t reloffset) const;
2215 #ifdef HAVE_TARGET_64_BIG
2218 Warnings::issue_warning<64, true>(const Symbol* sym,
2219 const Relocate_info<64, true>* relinfo,
2220 size_t relnum, off_t reloffset) const;
2223 } // End namespace gold.