Patch for gold internal error while fixing erratum 843419.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // or the symbol should be globally unique (GNU_UNIQUE),
423   // and the symbol is defined in a regular object and is
424   // externally visible, we need to add it.
425   if ((parameters->options().export_dynamic()
426        || parameters->options().shared()
427        || (parameters->options().gnu_unique()
428            && this->binding() == elfcpp::STB_GNU_UNIQUE))
429       && !this->is_from_dynobj()
430       && !this->is_undefined()
431       && this->is_externally_visible())
432     return true;
433
434   return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443   // If we are not generating an executable, then no final values are
444   // known, since they will change at runtime, with the exception of
445   // TLS symbols in a position-independent executable.
446   if ((parameters->options().output_is_position_independent()
447        || parameters->options().relocatable())
448       && !(this->type() == elfcpp::STT_TLS
449            && parameters->options().pie()))
450     return false;
451
452   // If the symbol is not from an object file, and is not undefined,
453   // then it is defined, and known.
454   if (this->source_ != FROM_OBJECT)
455     {
456       if (this->source_ != IS_UNDEFINED)
457         return true;
458     }
459   else
460     {
461       // If the symbol is from a dynamic object, then the final value
462       // is not known.
463       if (this->object()->is_dynamic())
464         return false;
465
466       // If the symbol is not undefined (it is defined or common),
467       // then the final value is known.
468       if (!this->is_undefined())
469         return true;
470     }
471
472   // If the symbol is undefined, then whether the final value is known
473   // depends on whether we are doing a static link.  If we are doing a
474   // dynamic link, then the final value could be filled in at runtime.
475   // This could reasonably be the case for a weak undefined symbol.
476   return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484   switch (this->source_)
485     {
486     case FROM_OBJECT:
487       {
488         unsigned int shndx = this->u_.from_object.shndx;
489         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490           {
491             gold_assert(!this->u_.from_object.object->is_dynamic());
492             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494             return relobj->output_section(shndx);
495           }
496         return NULL;
497       }
498
499     case IN_OUTPUT_DATA:
500       return this->u_.in_output_data.output_data->output_section();
501
502     case IN_OUTPUT_SEGMENT:
503     case IS_CONSTANT:
504     case IS_UNDEFINED:
505       return NULL;
506
507     default:
508       gold_unreachable();
509     }
510 }
511
512 // Set the symbol's output section.  This is used for symbols defined
513 // in scripts.  This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519   switch (this->source_)
520     {
521     case FROM_OBJECT:
522     case IN_OUTPUT_DATA:
523       gold_assert(this->output_section() == os);
524       break;
525     case IS_CONSTANT:
526       this->source_ = IN_OUTPUT_DATA;
527       this->u_.in_output_data.output_data = os;
528       this->u_.in_output_data.offset_is_from_end = false;
529       break;
530     case IN_OUTPUT_SEGMENT:
531     case IS_UNDEFINED:
532     default:
533       gold_unreachable();
534     }
535 }
536
537 // Set the symbol's output segment.  This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544   gold_assert(this->is_predefined_);
545   this->source_ = IN_OUTPUT_SEGMENT;
546   this->u_.in_output_segment.output_segment = os;
547   this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined.  This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557   this->source_ = IS_UNDEFINED;
558   this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564                            const Version_script_info& version_script)
565   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566     forwarders_(), commons_(), tls_commons_(), small_commons_(),
567     large_commons_(), forced_locals_(), warnings_(),
568     version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570   namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function.  This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582                                           const Symbol_table_key& k2) const
583 {
584   return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590   return (parameters->options().icf_enabled()
591           && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void 
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600   for (options::String_set::const_iterator p =
601          parameters->options().undefined_begin();
602        p != parameters->options().undefined_end();
603        ++p)
604     {
605       const char* name = p->c_str();
606       Symbol* sym = this->lookup(name);
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT 
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614
615   for (options::String_set::const_iterator p =
616          parameters->options().export_dynamic_symbol_begin();
617        p != parameters->options().export_dynamic_symbol_end();
618        ++p)
619     {
620       const char* name = p->c_str();
621       Symbol* sym = this->lookup(name);
622       // It's not an error if a symbol named by --export-dynamic-symbol
623       // is undefined.
624       if (sym != NULL
625           && sym->source() == Symbol::FROM_OBJECT 
626           && !sym->object()->is_dynamic())
627         {
628           this->gc_mark_symbol(sym);
629         }
630     }
631
632   for (Script_options::referenced_const_iterator p =
633          layout->script_options()->referenced_begin();
634        p != layout->script_options()->referenced_end();
635        ++p)
636     {
637       Symbol* sym = this->lookup(p->c_str());
638       gold_assert(sym != NULL);
639       if (sym->source() == Symbol::FROM_OBJECT
640           && !sym->object()->is_dynamic())
641         {
642           this->gc_mark_symbol(sym);
643         }
644     }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650   // Add the object and section to the work list.
651   bool is_ordinary;
652   unsigned int shndx = sym->shndx(&is_ordinary);
653   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654     {
655       gold_assert(this->gc_!= NULL);
656       Relobj* relobj = static_cast<Relobj*>(sym->object());
657       this->gc_->worklist().push_back(Section_id(relobj, shndx));
658     }
659   parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void 
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668       && !sym->object()->is_dynamic())
669     this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677   gold_assert(from != to);
678   gold_assert(!from->is_forwarder() && !to->is_forwarder());
679   this->forwarders_[from] = to;
680   from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688   gold_assert(from->is_forwarder());
689   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690     this->forwarders_.find(from);
691   gold_assert(p != this->forwarders_.end());
692   return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700   Stringpool::Key name_key;
701   name = this->namepool_.find(name, &name_key);
702   if (name == NULL)
703     return NULL;
704
705   Stringpool::Key version_key = 0;
706   if (version != NULL)
707     {
708       version = this->namepool_.find(version, &version_key);
709       if (version == NULL)
710         return NULL;
711     }
712
713   Symbol_table_key key(name_key, version_key);
714   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715   if (p == this->table_.end())
716     return NULL;
717   return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol.  This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version.  Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731   elfcpp::Sym_write<size, big_endian> esym(buf);
732   // We don't bother to set the st_name or the st_shndx field.
733   esym.put_st_value(from->value());
734   esym.put_st_size(from->symsize());
735   esym.put_st_info(from->binding(), from->type());
736   esym.put_st_other(from->visibility(), from->nonvis());
737   bool is_ordinary;
738   unsigned int shndx = from->shndx(&is_ordinary);
739   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740                 from->version());
741   if (from->in_reg())
742     to->set_in_reg();
743   if (from->in_dyn())
744     to->set_in_dyn();
745   if (parameters->options().gc_sections())
746     this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755   if (!sym->is_defined() && !sym->is_common())
756     return;
757   if (sym->is_forced_local())
758     {
759       // We already got this one.
760       return;
761     }
762   sym->set_is_forced_local();
763   this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773   // For some targets, we need to ignore a specific character when
774   // wrapping, and add it back later.
775   char prefix = '\0';
776   if (name[0] == parameters->target().wrap_char())
777     {
778       prefix = name[0];
779       ++name;
780     }
781
782   if (parameters->options().is_wrap(name))
783     {
784       // Turn NAME into __wrap_NAME.
785       std::string s;
786       if (prefix != '\0')
787         s += prefix;
788       s += "__wrap_";
789       s += name;
790
791       // This will give us both the old and new name in NAMEPOOL_, but
792       // that is OK.  Only the versions we need will wind up in the
793       // real string table in the output file.
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796
797   const char* const real_prefix = "__real_";
798   const size_t real_prefix_length = strlen(real_prefix);
799   if (strncmp(name, real_prefix, real_prefix_length) == 0
800       && parameters->options().is_wrap(name + real_prefix_length))
801     {
802       // Turn __real_NAME into NAME.
803       std::string s;
804       if (prefix != '\0')
805         s += prefix;
806       s += name + real_prefix_length;
807       return this->namepool_.add(s.c_str(), true, name_key);
808     }
809
810   return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version.  SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822                                      bool default_is_new,
823                                      Symbol_table_type::iterator pdef)
824 {
825   if (default_is_new)
826     {
827       // This is the first time we have seen NAME/NULL.  Make
828       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829       // version.
830       pdef->second = sym;
831       sym->set_is_default();
832     }
833   else if (pdef->second == sym)
834     {
835       // NAME/NULL already points to NAME/VERSION.  Don't mark the
836       // symbol as the default if it is not already the default.
837     }
838   else
839     {
840       // This is the unfortunate case where we already have entries
841       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
842       // NAME/VERSION where VERSION is the default version.  We have
843       // already resolved this new symbol with the existing
844       // NAME/VERSION symbol.
845
846       // It's possible that NAME/NULL and NAME/VERSION are both
847       // defined in regular objects.  This can only happen if one
848       // object file defines foo and another defines foo@@ver.  This
849       // is somewhat obscure, but we call it a multiple definition
850       // error.
851
852       // It's possible that NAME/NULL actually has a version, in which
853       // case it won't be the same as VERSION.  This happens with
854       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
855       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
856       // then see an unadorned t2_2 in an object file and give it
857       // version VER1 from the version script.  This looks like a
858       // default definition for VER1, so it looks like we should merge
859       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
860       // not obvious that this is an error, either.  So we just punt.
861
862       // If one of the symbols has non-default visibility, and the
863       // other is defined in a shared object, then they are different
864       // symbols.
865
866       // Otherwise, we just resolve the symbols as though they were
867       // the same.
868
869       if (pdef->second->version() != NULL)
870         gold_assert(pdef->second->version() != sym->version());
871       else if (sym->visibility() != elfcpp::STV_DEFAULT
872                && pdef->second->is_from_dynobj())
873         ;
874       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875                && sym->is_from_dynobj())
876         ;
877       else
878         {
879           const Sized_symbol<size>* symdef;
880           symdef = this->get_sized_symbol<size>(pdef->second);
881           Symbol_table::resolve<size, big_endian>(sym, symdef);
882           this->make_forwarder(pdef->second, sym);
883           pdef->second = sym;
884           sym->set_is_default();
885         }
886     }
887 }
888
889 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
890 // name and VERSION is the version; both are canonicalized.  DEF is
891 // whether this is the default version.  ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol.  That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol.  This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION.  If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure.  That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table.  We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files.  So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code.  ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922                               const char* name,
923                               Stringpool::Key name_key,
924                               const char* version,
925                               Stringpool::Key version_key,
926                               bool is_default_version,
927                               const elfcpp::Sym<size, big_endian>& sym,
928                               unsigned int st_shndx,
929                               bool is_ordinary,
930                               unsigned int orig_st_shndx)
931 {
932   // Print a message if this symbol is being traced.
933   if (parameters->options().is_trace_symbol(name))
934     {
935       if (orig_st_shndx == elfcpp::SHN_UNDEF)
936         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937       else
938         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939     }
940
941   // For an undefined symbol, we may need to adjust the name using
942   // --wrap.
943   if (orig_st_shndx == elfcpp::SHN_UNDEF
944       && parameters->options().any_wrap())
945     {
946       const char* wrap_name = this->wrap_symbol(name, &name_key);
947       if (wrap_name != name)
948         {
949           // If we see a reference to malloc with version GLIBC_2.0,
950           // and we turn it into a reference to __wrap_malloc, then we
951           // discard the version number.  Otherwise the user would be
952           // required to specify the correct version for
953           // __wrap_malloc.
954           version = NULL;
955           version_key = 0;
956           name = wrap_name;
957         }
958     }
959
960   Symbol* const snull = NULL;
961   std::pair<typename Symbol_table_type::iterator, bool> ins =
962     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963                                        snull));
964
965   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966     std::make_pair(this->table_.end(), false);
967   if (is_default_version)
968     {
969       const Stringpool::Key vnull_key = 0;
970       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971                                                                      vnull_key),
972                                                       snull));
973     }
974
975   // ins.first: an iterator, which is a pointer to a pair.
976   // ins.first->first: the key (a pair of name and version).
977   // ins.first->second: the value (Symbol*).
978   // ins.second: true if new entry was inserted, false if not.
979
980   Sized_symbol<size>* ret;
981   bool was_undefined;
982   bool was_common;
983   if (!ins.second)
984     {
985       // We already have an entry for NAME/VERSION.
986       ret = this->get_sized_symbol<size>(ins.first->second);
987       gold_assert(ret != NULL);
988
989       was_undefined = ret->is_undefined();
990       // Commons from plugins are just placeholders.
991       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994                     version);
995       if (parameters->options().gc_sections())
996         this->gc_mark_dyn_syms(ret);
997
998       if (is_default_version)
999         this->define_default_version<size, big_endian>(ret, insdefault.second,
1000                                                        insdefault.first);
1001     }
1002   else
1003     {
1004       // This is the first time we have seen NAME/VERSION.
1005       gold_assert(ins.first->second == NULL);
1006
1007       if (is_default_version && !insdefault.second)
1008         {
1009           // We already have an entry for NAME/NULL.  If we override
1010           // it, then change it to NAME/VERSION.
1011           ret = this->get_sized_symbol<size>(insdefault.first->second);
1012
1013           was_undefined = ret->is_undefined();
1014           // Commons from plugins are just placeholders.
1015           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1016
1017           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1018                         version);
1019           if (parameters->options().gc_sections())
1020             this->gc_mark_dyn_syms(ret);
1021           ins.first->second = ret;
1022         }
1023       else
1024         {
1025           was_undefined = false;
1026           was_common = false;
1027
1028           Sized_target<size, big_endian>* target =
1029             parameters->sized_target<size, big_endian>();
1030           if (!target->has_make_symbol())
1031             ret = new Sized_symbol<size>();
1032           else
1033             {
1034               ret = target->make_symbol();
1035               if (ret == NULL)
1036                 {
1037                   // This means that we don't want a symbol table
1038                   // entry after all.
1039                   if (!is_default_version)
1040                     this->table_.erase(ins.first);
1041                   else
1042                     {
1043                       this->table_.erase(insdefault.first);
1044                       // Inserting INSDEFAULT invalidated INS.
1045                       this->table_.erase(std::make_pair(name_key,
1046                                                         version_key));
1047                     }
1048                   return NULL;
1049                 }
1050             }
1051
1052           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1053
1054           ins.first->second = ret;
1055           if (is_default_version)
1056             {
1057               // This is the first time we have seen NAME/NULL.  Point
1058               // it at the new entry for NAME/VERSION.
1059               gold_assert(insdefault.second);
1060               insdefault.first->second = ret;
1061             }
1062         }
1063
1064       if (is_default_version)
1065         ret->set_is_default();
1066     }
1067
1068   // Record every time we see a new undefined symbol, to speed up
1069   // archive groups.
1070   if (!was_undefined && ret->is_undefined())
1071     {
1072       ++this->saw_undefined_;
1073       if (parameters->options().has_plugins())
1074         parameters->options().plugins()->new_undefined_symbol(ret);
1075     }
1076
1077   // Keep track of common symbols, to speed up common symbol
1078   // allocation.  Don't record commons from plugin objects;
1079   // we need to wait until we see the real symbol in the
1080   // replacement file.
1081   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1082     {
1083       if (ret->type() == elfcpp::STT_TLS)
1084         this->tls_commons_.push_back(ret);
1085       else if (!is_ordinary
1086                && st_shndx == parameters->target().small_common_shndx())
1087         this->small_commons_.push_back(ret);
1088       else if (!is_ordinary
1089                && st_shndx == parameters->target().large_common_shndx())
1090         this->large_commons_.push_back(ret);
1091       else
1092         this->commons_.push_back(ret);
1093     }
1094
1095   // If we're not doing a relocatable link, then any symbol with
1096   // hidden or internal visibility is local.
1097   if ((ret->visibility() == elfcpp::STV_HIDDEN
1098        || ret->visibility() == elfcpp::STV_INTERNAL)
1099       && (ret->binding() == elfcpp::STB_GLOBAL
1100           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1101           || ret->binding() == elfcpp::STB_WEAK)
1102       && !parameters->options().relocatable())
1103     this->force_local(ret);
1104
1105   return ret;
1106 }
1107
1108 // Add all the symbols in a relocatable object to the hash table.
1109
1110 template<int size, bool big_endian>
1111 void
1112 Symbol_table::add_from_relobj(
1113     Sized_relobj_file<size, big_endian>* relobj,
1114     const unsigned char* syms,
1115     size_t count,
1116     size_t symndx_offset,
1117     const char* sym_names,
1118     size_t sym_name_size,
1119     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1120     size_t* defined)
1121 {
1122   *defined = 0;
1123
1124   gold_assert(size == parameters->target().get_size());
1125
1126   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1127
1128   const bool just_symbols = relobj->just_symbols();
1129
1130   const unsigned char* p = syms;
1131   for (size_t i = 0; i < count; ++i, p += sym_size)
1132     {
1133       (*sympointers)[i] = NULL;
1134
1135       elfcpp::Sym<size, big_endian> sym(p);
1136
1137       unsigned int st_name = sym.get_st_name();
1138       if (st_name >= sym_name_size)
1139         {
1140           relobj->error(_("bad global symbol name offset %u at %zu"),
1141                         st_name, i);
1142           continue;
1143         }
1144
1145       const char* name = sym_names + st_name;
1146
1147       if (strcmp (name, "__gnu_lto_slim") == 0)
1148         gold_info(_("%s: plugin needed to handle lto object"),
1149                   relobj->name().c_str());
1150
1151       bool is_ordinary;
1152       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1153                                                        sym.get_st_shndx(),
1154                                                        &is_ordinary);
1155       unsigned int orig_st_shndx = st_shndx;
1156       if (!is_ordinary)
1157         orig_st_shndx = elfcpp::SHN_UNDEF;
1158
1159       if (st_shndx != elfcpp::SHN_UNDEF)
1160         ++*defined;
1161
1162       // A symbol defined in a section which we are not including must
1163       // be treated as an undefined symbol.
1164       bool is_defined_in_discarded_section = false;
1165       if (st_shndx != elfcpp::SHN_UNDEF
1166           && is_ordinary
1167           && !relobj->is_section_included(st_shndx)
1168           && !this->is_section_folded(relobj, st_shndx))
1169         {
1170           st_shndx = elfcpp::SHN_UNDEF;
1171           is_defined_in_discarded_section = true;
1172         }
1173
1174       // In an object file, an '@' in the name separates the symbol
1175       // name from the version name.  If there are two '@' characters,
1176       // this is the default version.
1177       const char* ver = strchr(name, '@');
1178       Stringpool::Key ver_key = 0;
1179       int namelen = 0;
1180       // IS_DEFAULT_VERSION: is the version default?
1181       // IS_FORCED_LOCAL: is the symbol forced local?
1182       bool is_default_version = false;
1183       bool is_forced_local = false;
1184
1185       // FIXME: For incremental links, we don't store version information,
1186       // so we need to ignore version symbols for now.
1187       if (parameters->incremental_update() && ver != NULL)
1188         {
1189           namelen = ver - name;
1190           ver = NULL;
1191         }
1192
1193       if (ver != NULL)
1194         {
1195           // The symbol name is of the form foo@VERSION or foo@@VERSION
1196           namelen = ver - name;
1197           ++ver;
1198           if (*ver == '@')
1199             {
1200               is_default_version = true;
1201               ++ver;
1202             }
1203           ver = this->namepool_.add(ver, true, &ver_key);
1204         }
1205       // We don't want to assign a version to an undefined symbol,
1206       // even if it is listed in the version script.  FIXME: What
1207       // about a common symbol?
1208       else
1209         {
1210           namelen = strlen(name);
1211           if (!this->version_script_.empty()
1212               && st_shndx != elfcpp::SHN_UNDEF)
1213             {
1214               // The symbol name did not have a version, but the
1215               // version script may assign a version anyway.
1216               std::string version;
1217               bool is_global;
1218               if (this->version_script_.get_symbol_version(name, &version,
1219                                                            &is_global))
1220                 {
1221                   if (!is_global)
1222                     is_forced_local = true;
1223                   else if (!version.empty())
1224                     {
1225                       ver = this->namepool_.add_with_length(version.c_str(),
1226                                                             version.length(),
1227                                                             true,
1228                                                             &ver_key);
1229                       is_default_version = true;
1230                     }
1231                 }
1232             }
1233         }
1234
1235       elfcpp::Sym<size, big_endian>* psym = &sym;
1236       unsigned char symbuf[sym_size];
1237       elfcpp::Sym<size, big_endian> sym2(symbuf);
1238       if (just_symbols)
1239         {
1240           memcpy(symbuf, p, sym_size);
1241           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1242           if (orig_st_shndx != elfcpp::SHN_UNDEF
1243               && is_ordinary
1244               && relobj->e_type() == elfcpp::ET_REL)
1245             {
1246               // Symbol values in relocatable object files are section
1247               // relative.  This is normally what we want, but since here
1248               // we are converting the symbol to absolute we need to add
1249               // the section address.  The section address in an object
1250               // file is normally zero, but people can use a linker
1251               // script to change it.
1252               sw.put_st_value(sym.get_st_value()
1253                               + relobj->section_address(orig_st_shndx));
1254             }
1255           st_shndx = elfcpp::SHN_ABS;
1256           is_ordinary = false;
1257           psym = &sym2;
1258         }
1259
1260       // Fix up visibility if object has no-export set.
1261       if (relobj->no_export()
1262           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1263         {
1264           // We may have copied symbol already above.
1265           if (psym != &sym2)
1266             {
1267               memcpy(symbuf, p, sym_size);
1268               psym = &sym2;
1269             }
1270
1271           elfcpp::STV visibility = sym2.get_st_visibility();
1272           if (visibility == elfcpp::STV_DEFAULT
1273               || visibility == elfcpp::STV_PROTECTED)
1274             {
1275               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1276               unsigned char nonvis = sym2.get_st_nonvis();
1277               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1278             }
1279         }
1280
1281       Stringpool::Key name_key;
1282       name = this->namepool_.add_with_length(name, namelen, true,
1283                                              &name_key);
1284
1285       Sized_symbol<size>* res;
1286       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1287                                   is_default_version, *psym, st_shndx,
1288                                   is_ordinary, orig_st_shndx);
1289       
1290       if (is_forced_local)
1291         this->force_local(res);
1292
1293       // Do not treat this symbol as garbage if this symbol will be
1294       // exported to the dynamic symbol table.  This is true when
1295       // building a shared library or using --export-dynamic and
1296       // the symbol is externally visible.
1297       if (parameters->options().gc_sections()
1298           && res->is_externally_visible()
1299           && !res->is_from_dynobj()
1300           && (parameters->options().shared()
1301               || parameters->options().export_dynamic()
1302               || parameters->options().in_dynamic_list(res->name())))
1303         this->gc_mark_symbol(res);
1304
1305       if (is_defined_in_discarded_section)
1306         res->set_is_defined_in_discarded_section();
1307
1308       (*sympointers)[i] = res;
1309     }
1310 }
1311
1312 // Add a symbol from a plugin-claimed file.
1313
1314 template<int size, bool big_endian>
1315 Symbol*
1316 Symbol_table::add_from_pluginobj(
1317     Sized_pluginobj<size, big_endian>* obj,
1318     const char* name,
1319     const char* ver,
1320     elfcpp::Sym<size, big_endian>* sym)
1321 {
1322   unsigned int st_shndx = sym->get_st_shndx();
1323   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1324
1325   Stringpool::Key ver_key = 0;
1326   bool is_default_version = false;
1327   bool is_forced_local = false;
1328
1329   if (ver != NULL)
1330     {
1331       ver = this->namepool_.add(ver, true, &ver_key);
1332     }
1333   // We don't want to assign a version to an undefined symbol,
1334   // even if it is listed in the version script.  FIXME: What
1335   // about a common symbol?
1336   else
1337     {
1338       if (!this->version_script_.empty()
1339           && st_shndx != elfcpp::SHN_UNDEF)
1340         {
1341           // The symbol name did not have a version, but the
1342           // version script may assign a version anyway.
1343           std::string version;
1344           bool is_global;
1345           if (this->version_script_.get_symbol_version(name, &version,
1346                                                        &is_global))
1347             {
1348               if (!is_global)
1349                 is_forced_local = true;
1350               else if (!version.empty())
1351                 {
1352                   ver = this->namepool_.add_with_length(version.c_str(),
1353                                                         version.length(),
1354                                                         true,
1355                                                         &ver_key);
1356                   is_default_version = true;
1357                 }
1358             }
1359         }
1360     }
1361
1362   Stringpool::Key name_key;
1363   name = this->namepool_.add(name, true, &name_key);
1364
1365   Sized_symbol<size>* res;
1366   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1367                               is_default_version, *sym, st_shndx,
1368                               is_ordinary, st_shndx);
1369
1370   if (is_forced_local)
1371     this->force_local(res);
1372
1373   return res;
1374 }
1375
1376 // Add all the symbols in a dynamic object to the hash table.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::add_from_dynobj(
1381     Sized_dynobj<size, big_endian>* dynobj,
1382     const unsigned char* syms,
1383     size_t count,
1384     const char* sym_names,
1385     size_t sym_name_size,
1386     const unsigned char* versym,
1387     size_t versym_size,
1388     const std::vector<const char*>* version_map,
1389     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1390     size_t* defined)
1391 {
1392   *defined = 0;
1393
1394   gold_assert(size == parameters->target().get_size());
1395
1396   if (dynobj->just_symbols())
1397     {
1398       gold_error(_("--just-symbols does not make sense with a shared object"));
1399       return;
1400     }
1401
1402   // FIXME: For incremental links, we don't store version information,
1403   // so we need to ignore version symbols for now.
1404   if (parameters->incremental_update())
1405     versym = NULL;
1406
1407   if (versym != NULL && versym_size / 2 < count)
1408     {
1409       dynobj->error(_("too few symbol versions"));
1410       return;
1411     }
1412
1413   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1414
1415   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1416   // weak aliases.  This is necessary because if the dynamic object
1417   // provides the same variable under two names, one of which is a
1418   // weak definition, and the regular object refers to the weak
1419   // definition, we have to put both the weak definition and the
1420   // strong definition into the dynamic symbol table.  Given a weak
1421   // definition, the only way that we can find the corresponding
1422   // strong definition, if any, is to search the symbol table.
1423   std::vector<Sized_symbol<size>*> object_symbols;
1424
1425   const unsigned char* p = syms;
1426   const unsigned char* vs = versym;
1427   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1428     {
1429       elfcpp::Sym<size, big_endian> sym(p);
1430
1431       if (sympointers != NULL)
1432         (*sympointers)[i] = NULL;
1433
1434       // Ignore symbols with local binding or that have
1435       // internal or hidden visibility.
1436       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1437           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1438           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1439         continue;
1440
1441       // A protected symbol in a shared library must be treated as a
1442       // normal symbol when viewed from outside the shared library.
1443       // Implement this by overriding the visibility here.
1444       elfcpp::Sym<size, big_endian>* psym = &sym;
1445       unsigned char symbuf[sym_size];
1446       elfcpp::Sym<size, big_endian> sym2(symbuf);
1447       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1448         {
1449           memcpy(symbuf, p, sym_size);
1450           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1451           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1452           psym = &sym2;
1453         }
1454
1455       unsigned int st_name = psym->get_st_name();
1456       if (st_name >= sym_name_size)
1457         {
1458           dynobj->error(_("bad symbol name offset %u at %zu"),
1459                         st_name, i);
1460           continue;
1461         }
1462
1463       const char* name = sym_names + st_name;
1464
1465       bool is_ordinary;
1466       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1467                                                        &is_ordinary);
1468
1469       if (st_shndx != elfcpp::SHN_UNDEF)
1470         ++*defined;
1471
1472       Sized_symbol<size>* res;
1473
1474       if (versym == NULL)
1475         {
1476           Stringpool::Key name_key;
1477           name = this->namepool_.add(name, true, &name_key);
1478           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1479                                       false, *psym, st_shndx, is_ordinary,
1480                                       st_shndx);
1481         }
1482       else
1483         {
1484           // Read the version information.
1485
1486           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1487
1488           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1489           v &= elfcpp::VERSYM_VERSION;
1490
1491           // The Sun documentation says that V can be VER_NDX_LOCAL,
1492           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1493           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1494           // The old GNU linker will happily generate VER_NDX_LOCAL
1495           // for an undefined symbol.  I don't know what the Sun
1496           // linker will generate.
1497
1498           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499               && st_shndx != elfcpp::SHN_UNDEF)
1500             {
1501               // This symbol should not be visible outside the object.
1502               continue;
1503             }
1504
1505           // At this point we are definitely going to add this symbol.
1506           Stringpool::Key name_key;
1507           name = this->namepool_.add(name, true, &name_key);
1508
1509           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1510               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1511             {
1512               // This symbol does not have a version.
1513               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1514                                           false, *psym, st_shndx, is_ordinary,
1515                                           st_shndx);
1516             }
1517           else
1518             {
1519               if (v >= version_map->size())
1520                 {
1521                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1522                                 i, v);
1523                   continue;
1524                 }
1525
1526               const char* version = (*version_map)[v];
1527               if (version == NULL)
1528                 {
1529                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1530                                 i, v);
1531                   continue;
1532                 }
1533
1534               Stringpool::Key version_key;
1535               version = this->namepool_.add(version, true, &version_key);
1536
1537               // If this is an absolute symbol, and the version name
1538               // and symbol name are the same, then this is the
1539               // version definition symbol.  These symbols exist to
1540               // support using -u to pull in particular versions.  We
1541               // do not want to record a version for them.
1542               if (st_shndx == elfcpp::SHN_ABS
1543                   && !is_ordinary
1544                   && name_key == version_key)
1545                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1546                                             false, *psym, st_shndx, is_ordinary,
1547                                             st_shndx);
1548               else
1549                 {
1550                   const bool is_default_version =
1551                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1552                   res = this->add_from_object(dynobj, name, name_key, version,
1553                                               version_key, is_default_version,
1554                                               *psym, st_shndx,
1555                                               is_ordinary, st_shndx);
1556                 }
1557             }
1558         }
1559
1560       // Note that it is possible that RES was overridden by an
1561       // earlier object, in which case it can't be aliased here.
1562       if (st_shndx != elfcpp::SHN_UNDEF
1563           && is_ordinary
1564           && psym->get_st_type() == elfcpp::STT_OBJECT
1565           && res->source() == Symbol::FROM_OBJECT
1566           && res->object() == dynobj)
1567         object_symbols.push_back(res);
1568
1569       if (sympointers != NULL)
1570         (*sympointers)[i] = res;
1571     }
1572
1573   this->record_weak_aliases(&object_symbols);
1574 }
1575
1576 // Add a symbol from a incremental object file.
1577
1578 template<int size, bool big_endian>
1579 Sized_symbol<size>*
1580 Symbol_table::add_from_incrobj(
1581     Object* obj,
1582     const char* name,
1583     const char* ver,
1584     elfcpp::Sym<size, big_endian>* sym)
1585 {
1586   unsigned int st_shndx = sym->get_st_shndx();
1587   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1588
1589   Stringpool::Key ver_key = 0;
1590   bool is_default_version = false;
1591   bool is_forced_local = false;
1592
1593   Stringpool::Key name_key;
1594   name = this->namepool_.add(name, true, &name_key);
1595
1596   Sized_symbol<size>* res;
1597   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1598                               is_default_version, *sym, st_shndx,
1599                               is_ordinary, st_shndx);
1600
1601   if (is_forced_local)
1602     this->force_local(res);
1603
1604   return res;
1605 }
1606
1607 // This is used to sort weak aliases.  We sort them first by section
1608 // index, then by offset, then by weak ahead of strong.
1609
1610 template<int size>
1611 class Weak_alias_sorter
1612 {
1613  public:
1614   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1615 };
1616
1617 template<int size>
1618 bool
1619 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1620                                     const Sized_symbol<size>* s2) const
1621 {
1622   bool is_ordinary;
1623   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1624   gold_assert(is_ordinary);
1625   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1626   gold_assert(is_ordinary);
1627   if (s1_shndx != s2_shndx)
1628     return s1_shndx < s2_shndx;
1629
1630   if (s1->value() != s2->value())
1631     return s1->value() < s2->value();
1632   if (s1->binding() != s2->binding())
1633     {
1634       if (s1->binding() == elfcpp::STB_WEAK)
1635         return true;
1636       if (s2->binding() == elfcpp::STB_WEAK)
1637         return false;
1638     }
1639   return std::string(s1->name()) < std::string(s2->name());
1640 }
1641
1642 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1643 // for any weak aliases, and record them so that if we add the weak
1644 // alias to the dynamic symbol table, we also add the corresponding
1645 // strong symbol.
1646
1647 template<int size>
1648 void
1649 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1650 {
1651   // Sort the vector by section index, then by offset, then by weak
1652   // ahead of strong.
1653   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1654
1655   // Walk through the vector.  For each weak definition, record
1656   // aliases.
1657   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1658          symbols->begin();
1659        p != symbols->end();
1660        ++p)
1661     {
1662       if ((*p)->binding() != elfcpp::STB_WEAK)
1663         continue;
1664
1665       // Build a circular list of weak aliases.  Each symbol points to
1666       // the next one in the circular list.
1667
1668       Sized_symbol<size>* from_sym = *p;
1669       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1670       for (q = p + 1; q != symbols->end(); ++q)
1671         {
1672           bool dummy;
1673           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1674               || (*q)->value() != from_sym->value())
1675             break;
1676
1677           this->weak_aliases_[from_sym] = *q;
1678           from_sym->set_has_alias();
1679           from_sym = *q;
1680         }
1681
1682       if (from_sym != *p)
1683         {
1684           this->weak_aliases_[from_sym] = *p;
1685           from_sym->set_has_alias();
1686         }
1687
1688       p = q - 1;
1689     }
1690 }
1691
1692 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1693 // true, then only create the symbol if there is a reference to it.
1694 // If this does not return NULL, it sets *POLDSYM to the existing
1695 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1696 // resolve the newly created symbol to the old one.  This
1697 // canonicalizes *PNAME and *PVERSION.
1698
1699 template<int size, bool big_endian>
1700 Sized_symbol<size>*
1701 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1702                                     bool only_if_ref,
1703                                     Sized_symbol<size>** poldsym,
1704                                     bool* resolve_oldsym)
1705 {
1706   *resolve_oldsym = false;
1707   *poldsym = NULL;
1708
1709   // If the caller didn't give us a version, see if we get one from
1710   // the version script.
1711   std::string v;
1712   bool is_default_version = false;
1713   if (*pversion == NULL)
1714     {
1715       bool is_global;
1716       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1717         {
1718           if (is_global && !v.empty())
1719             {
1720               *pversion = v.c_str();
1721               // If we get the version from a version script, then we
1722               // are also the default version.
1723               is_default_version = true;
1724             }
1725         }
1726     }
1727
1728   Symbol* oldsym;
1729   Sized_symbol<size>* sym;
1730
1731   bool add_to_table = false;
1732   typename Symbol_table_type::iterator add_loc = this->table_.end();
1733   bool add_def_to_table = false;
1734   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1735
1736   if (only_if_ref)
1737     {
1738       oldsym = this->lookup(*pname, *pversion);
1739       if (oldsym == NULL && is_default_version)
1740         oldsym = this->lookup(*pname, NULL);
1741       if (oldsym == NULL || !oldsym->is_undefined())
1742         return NULL;
1743
1744       *pname = oldsym->name();
1745       if (is_default_version)
1746         *pversion = this->namepool_.add(*pversion, true, NULL);
1747       else
1748         *pversion = oldsym->version();
1749     }
1750   else
1751     {
1752       // Canonicalize NAME and VERSION.
1753       Stringpool::Key name_key;
1754       *pname = this->namepool_.add(*pname, true, &name_key);
1755
1756       Stringpool::Key version_key = 0;
1757       if (*pversion != NULL)
1758         *pversion = this->namepool_.add(*pversion, true, &version_key);
1759
1760       Symbol* const snull = NULL;
1761       std::pair<typename Symbol_table_type::iterator, bool> ins =
1762         this->table_.insert(std::make_pair(std::make_pair(name_key,
1763                                                           version_key),
1764                                            snull));
1765
1766       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1767         std::make_pair(this->table_.end(), false);
1768       if (is_default_version)
1769         {
1770           const Stringpool::Key vnull = 0;
1771           insdefault =
1772             this->table_.insert(std::make_pair(std::make_pair(name_key,
1773                                                               vnull),
1774                                                snull));
1775         }
1776
1777       if (!ins.second)
1778         {
1779           // We already have a symbol table entry for NAME/VERSION.
1780           oldsym = ins.first->second;
1781           gold_assert(oldsym != NULL);
1782
1783           if (is_default_version)
1784             {
1785               Sized_symbol<size>* soldsym =
1786                 this->get_sized_symbol<size>(oldsym);
1787               this->define_default_version<size, big_endian>(soldsym,
1788                                                              insdefault.second,
1789                                                              insdefault.first);
1790             }
1791         }
1792       else
1793         {
1794           // We haven't seen this symbol before.
1795           gold_assert(ins.first->second == NULL);
1796
1797           add_to_table = true;
1798           add_loc = ins.first;
1799
1800           if (is_default_version && !insdefault.second)
1801             {
1802               // We are adding NAME/VERSION, and it is the default
1803               // version.  We already have an entry for NAME/NULL.
1804               oldsym = insdefault.first->second;
1805               *resolve_oldsym = true;
1806             }
1807           else
1808             {
1809               oldsym = NULL;
1810
1811               if (is_default_version)
1812                 {
1813                   add_def_to_table = true;
1814                   add_def_loc = insdefault.first;
1815                 }
1816             }
1817         }
1818     }
1819
1820   const Target& target = parameters->target();
1821   if (!target.has_make_symbol())
1822     sym = new Sized_symbol<size>();
1823   else
1824     {
1825       Sized_target<size, big_endian>* sized_target =
1826         parameters->sized_target<size, big_endian>();
1827       sym = sized_target->make_symbol();
1828       if (sym == NULL)
1829         return NULL;
1830     }
1831
1832   if (add_to_table)
1833     add_loc->second = sym;
1834   else
1835     gold_assert(oldsym != NULL);
1836
1837   if (add_def_to_table)
1838     add_def_loc->second = sym;
1839
1840   *poldsym = this->get_sized_symbol<size>(oldsym);
1841
1842   return sym;
1843 }
1844
1845 // Define a symbol based on an Output_data.
1846
1847 Symbol*
1848 Symbol_table::define_in_output_data(const char* name,
1849                                     const char* version,
1850                                     Defined defined,
1851                                     Output_data* od,
1852                                     uint64_t value,
1853                                     uint64_t symsize,
1854                                     elfcpp::STT type,
1855                                     elfcpp::STB binding,
1856                                     elfcpp::STV visibility,
1857                                     unsigned char nonvis,
1858                                     bool offset_is_from_end,
1859                                     bool only_if_ref)
1860 {
1861   if (parameters->target().get_size() == 32)
1862     {
1863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1864       return this->do_define_in_output_data<32>(name, version, defined, od,
1865                                                 value, symsize, type, binding,
1866                                                 visibility, nonvis,
1867                                                 offset_is_from_end,
1868                                                 only_if_ref);
1869 #else
1870       gold_unreachable();
1871 #endif
1872     }
1873   else if (parameters->target().get_size() == 64)
1874     {
1875 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1876       return this->do_define_in_output_data<64>(name, version, defined, od,
1877                                                 value, symsize, type, binding,
1878                                                 visibility, nonvis,
1879                                                 offset_is_from_end,
1880                                                 only_if_ref);
1881 #else
1882       gold_unreachable();
1883 #endif
1884     }
1885   else
1886     gold_unreachable();
1887 }
1888
1889 // Define a symbol in an Output_data, sized version.
1890
1891 template<int size>
1892 Sized_symbol<size>*
1893 Symbol_table::do_define_in_output_data(
1894     const char* name,
1895     const char* version,
1896     Defined defined,
1897     Output_data* od,
1898     typename elfcpp::Elf_types<size>::Elf_Addr value,
1899     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1900     elfcpp::STT type,
1901     elfcpp::STB binding,
1902     elfcpp::STV visibility,
1903     unsigned char nonvis,
1904     bool offset_is_from_end,
1905     bool only_if_ref)
1906 {
1907   Sized_symbol<size>* sym;
1908   Sized_symbol<size>* oldsym;
1909   bool resolve_oldsym;
1910
1911   if (parameters->target().is_big_endian())
1912     {
1913 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1914       sym = this->define_special_symbol<size, true>(&name, &version,
1915                                                     only_if_ref, &oldsym,
1916                                                     &resolve_oldsym);
1917 #else
1918       gold_unreachable();
1919 #endif
1920     }
1921   else
1922     {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1924       sym = this->define_special_symbol<size, false>(&name, &version,
1925                                                      only_if_ref, &oldsym,
1926                                                      &resolve_oldsym);
1927 #else
1928       gold_unreachable();
1929 #endif
1930     }
1931
1932   if (sym == NULL)
1933     return NULL;
1934
1935   sym->init_output_data(name, version, od, value, symsize, type, binding,
1936                         visibility, nonvis, offset_is_from_end,
1937                         defined == PREDEFINED);
1938
1939   if (oldsym == NULL)
1940     {
1941       if (binding == elfcpp::STB_LOCAL
1942           || this->version_script_.symbol_is_local(name))
1943         this->force_local(sym);
1944       else if (version != NULL)
1945         sym->set_is_default();
1946       return sym;
1947     }
1948
1949   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1950     this->override_with_special(oldsym, sym);
1951
1952   if (resolve_oldsym)
1953     return sym;
1954   else
1955     {
1956       delete sym;
1957       return oldsym;
1958     }
1959 }
1960
1961 // Define a symbol based on an Output_segment.
1962
1963 Symbol*
1964 Symbol_table::define_in_output_segment(const char* name,
1965                                        const char* version,
1966                                        Defined defined,
1967                                        Output_segment* os,
1968                                        uint64_t value,
1969                                        uint64_t symsize,
1970                                        elfcpp::STT type,
1971                                        elfcpp::STB binding,
1972                                        elfcpp::STV visibility,
1973                                        unsigned char nonvis,
1974                                        Symbol::Segment_offset_base offset_base,
1975                                        bool only_if_ref)
1976 {
1977   if (parameters->target().get_size() == 32)
1978     {
1979 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1980       return this->do_define_in_output_segment<32>(name, version, defined, os,
1981                                                    value, symsize, type,
1982                                                    binding, visibility, nonvis,
1983                                                    offset_base, only_if_ref);
1984 #else
1985       gold_unreachable();
1986 #endif
1987     }
1988   else if (parameters->target().get_size() == 64)
1989     {
1990 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1991       return this->do_define_in_output_segment<64>(name, version, defined, os,
1992                                                    value, symsize, type,
1993                                                    binding, visibility, nonvis,
1994                                                    offset_base, only_if_ref);
1995 #else
1996       gold_unreachable();
1997 #endif
1998     }
1999   else
2000     gold_unreachable();
2001 }
2002
2003 // Define a symbol in an Output_segment, sized version.
2004
2005 template<int size>
2006 Sized_symbol<size>*
2007 Symbol_table::do_define_in_output_segment(
2008     const char* name,
2009     const char* version,
2010     Defined defined,
2011     Output_segment* os,
2012     typename elfcpp::Elf_types<size>::Elf_Addr value,
2013     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2014     elfcpp::STT type,
2015     elfcpp::STB binding,
2016     elfcpp::STV visibility,
2017     unsigned char nonvis,
2018     Symbol::Segment_offset_base offset_base,
2019     bool only_if_ref)
2020 {
2021   Sized_symbol<size>* sym;
2022   Sized_symbol<size>* oldsym;
2023   bool resolve_oldsym;
2024
2025   if (parameters->target().is_big_endian())
2026     {
2027 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2028       sym = this->define_special_symbol<size, true>(&name, &version,
2029                                                     only_if_ref, &oldsym,
2030                                                     &resolve_oldsym);
2031 #else
2032       gold_unreachable();
2033 #endif
2034     }
2035   else
2036     {
2037 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2038       sym = this->define_special_symbol<size, false>(&name, &version,
2039                                                      only_if_ref, &oldsym,
2040                                                      &resolve_oldsym);
2041 #else
2042       gold_unreachable();
2043 #endif
2044     }
2045
2046   if (sym == NULL)
2047     return NULL;
2048
2049   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2050                            visibility, nonvis, offset_base,
2051                            defined == PREDEFINED);
2052
2053   if (oldsym == NULL)
2054     {
2055       if (binding == elfcpp::STB_LOCAL
2056           || this->version_script_.symbol_is_local(name))
2057         this->force_local(sym);
2058       else if (version != NULL)
2059         sym->set_is_default();
2060       return sym;
2061     }
2062
2063   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2064     this->override_with_special(oldsym, sym);
2065
2066   if (resolve_oldsym)
2067     return sym;
2068   else
2069     {
2070       delete sym;
2071       return oldsym;
2072     }
2073 }
2074
2075 // Define a special symbol with a constant value.  It is a multiple
2076 // definition error if this symbol is already defined.
2077
2078 Symbol*
2079 Symbol_table::define_as_constant(const char* name,
2080                                  const char* version,
2081                                  Defined defined,
2082                                  uint64_t value,
2083                                  uint64_t symsize,
2084                                  elfcpp::STT type,
2085                                  elfcpp::STB binding,
2086                                  elfcpp::STV visibility,
2087                                  unsigned char nonvis,
2088                                  bool only_if_ref,
2089                                  bool force_override)
2090 {
2091   if (parameters->target().get_size() == 32)
2092     {
2093 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2094       return this->do_define_as_constant<32>(name, version, defined, value,
2095                                              symsize, type, binding,
2096                                              visibility, nonvis, only_if_ref,
2097                                              force_override);
2098 #else
2099       gold_unreachable();
2100 #endif
2101     }
2102   else if (parameters->target().get_size() == 64)
2103     {
2104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2105       return this->do_define_as_constant<64>(name, version, defined, value,
2106                                              symsize, type, binding,
2107                                              visibility, nonvis, only_if_ref,
2108                                              force_override);
2109 #else
2110       gold_unreachable();
2111 #endif
2112     }
2113   else
2114     gold_unreachable();
2115 }
2116
2117 // Define a symbol as a constant, sized version.
2118
2119 template<int size>
2120 Sized_symbol<size>*
2121 Symbol_table::do_define_as_constant(
2122     const char* name,
2123     const char* version,
2124     Defined defined,
2125     typename elfcpp::Elf_types<size>::Elf_Addr value,
2126     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2127     elfcpp::STT type,
2128     elfcpp::STB binding,
2129     elfcpp::STV visibility,
2130     unsigned char nonvis,
2131     bool only_if_ref,
2132     bool force_override)
2133 {
2134   Sized_symbol<size>* sym;
2135   Sized_symbol<size>* oldsym;
2136   bool resolve_oldsym;
2137
2138   if (parameters->target().is_big_endian())
2139     {
2140 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2141       sym = this->define_special_symbol<size, true>(&name, &version,
2142                                                     only_if_ref, &oldsym,
2143                                                     &resolve_oldsym);
2144 #else
2145       gold_unreachable();
2146 #endif
2147     }
2148   else
2149     {
2150 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2151       sym = this->define_special_symbol<size, false>(&name, &version,
2152                                                      only_if_ref, &oldsym,
2153                                                      &resolve_oldsym);
2154 #else
2155       gold_unreachable();
2156 #endif
2157     }
2158
2159   if (sym == NULL)
2160     return NULL;
2161
2162   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2163                      nonvis, defined == PREDEFINED);
2164
2165   if (oldsym == NULL)
2166     {
2167       // Version symbols are absolute symbols with name == version.
2168       // We don't want to force them to be local.
2169       if ((version == NULL
2170            || name != version
2171            || value != 0)
2172           && (binding == elfcpp::STB_LOCAL
2173               || this->version_script_.symbol_is_local(name)))
2174         this->force_local(sym);
2175       else if (version != NULL
2176                && (name != version || value != 0))
2177         sym->set_is_default();
2178       return sym;
2179     }
2180
2181   if (force_override
2182       || Symbol_table::should_override_with_special(oldsym, type, defined))
2183     this->override_with_special(oldsym, sym);
2184
2185   if (resolve_oldsym)
2186     return sym;
2187   else
2188     {
2189       delete sym;
2190       return oldsym;
2191     }
2192 }
2193
2194 // Define a set of symbols in output sections.
2195
2196 void
2197 Symbol_table::define_symbols(const Layout* layout, int count,
2198                              const Define_symbol_in_section* p,
2199                              bool only_if_ref)
2200 {
2201   for (int i = 0; i < count; ++i, ++p)
2202     {
2203       Output_section* os = layout->find_output_section(p->output_section);
2204       if (os != NULL)
2205         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2206                                     p->size, p->type, p->binding,
2207                                     p->visibility, p->nonvis,
2208                                     p->offset_is_from_end,
2209                                     only_if_ref || p->only_if_ref);
2210       else
2211         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2212                                  p->type, p->binding, p->visibility, p->nonvis,
2213                                  only_if_ref || p->only_if_ref,
2214                                  false);
2215     }
2216 }
2217
2218 // Define a set of symbols in output segments.
2219
2220 void
2221 Symbol_table::define_symbols(const Layout* layout, int count,
2222                              const Define_symbol_in_segment* p,
2223                              bool only_if_ref)
2224 {
2225   for (int i = 0; i < count; ++i, ++p)
2226     {
2227       Output_segment* os = layout->find_output_segment(p->segment_type,
2228                                                        p->segment_flags_set,
2229                                                        p->segment_flags_clear);
2230       if (os != NULL)
2231         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2232                                        p->size, p->type, p->binding,
2233                                        p->visibility, p->nonvis,
2234                                        p->offset_base,
2235                                        only_if_ref || p->only_if_ref);
2236       else
2237         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2238                                  p->type, p->binding, p->visibility, p->nonvis,
2239                                  only_if_ref || p->only_if_ref,
2240                                  false);
2241     }
2242 }
2243
2244 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2245 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2246 // the offset within POSD.
2247
2248 template<int size>
2249 void
2250 Symbol_table::define_with_copy_reloc(
2251     Sized_symbol<size>* csym,
2252     Output_data* posd,
2253     typename elfcpp::Elf_types<size>::Elf_Addr value)
2254 {
2255   gold_assert(csym->is_from_dynobj());
2256   gold_assert(!csym->is_copied_from_dynobj());
2257   Object* object = csym->object();
2258   gold_assert(object->is_dynamic());
2259   Dynobj* dynobj = static_cast<Dynobj*>(object);
2260
2261   // Our copied variable has to override any variable in a shared
2262   // library.
2263   elfcpp::STB binding = csym->binding();
2264   if (binding == elfcpp::STB_WEAK)
2265     binding = elfcpp::STB_GLOBAL;
2266
2267   this->define_in_output_data(csym->name(), csym->version(), COPY,
2268                               posd, value, csym->symsize(),
2269                               csym->type(), binding,
2270                               csym->visibility(), csym->nonvis(),
2271                               false, false);
2272
2273   csym->set_is_copied_from_dynobj();
2274   csym->set_needs_dynsym_entry();
2275
2276   this->copied_symbol_dynobjs_[csym] = dynobj;
2277
2278   // We have now defined all aliases, but we have not entered them all
2279   // in the copied_symbol_dynobjs_ map.
2280   if (csym->has_alias())
2281     {
2282       Symbol* sym = csym;
2283       while (true)
2284         {
2285           sym = this->weak_aliases_[sym];
2286           if (sym == csym)
2287             break;
2288           gold_assert(sym->output_data() == posd);
2289
2290           sym->set_is_copied_from_dynobj();
2291           this->copied_symbol_dynobjs_[sym] = dynobj;
2292         }
2293     }
2294 }
2295
2296 // SYM is defined using a COPY reloc.  Return the dynamic object where
2297 // the original definition was found.
2298
2299 Dynobj*
2300 Symbol_table::get_copy_source(const Symbol* sym) const
2301 {
2302   gold_assert(sym->is_copied_from_dynobj());
2303   Copied_symbol_dynobjs::const_iterator p =
2304     this->copied_symbol_dynobjs_.find(sym);
2305   gold_assert(p != this->copied_symbol_dynobjs_.end());
2306   return p->second;
2307 }
2308
2309 // Add any undefined symbols named on the command line.
2310
2311 void
2312 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2313 {
2314   if (parameters->options().any_undefined()
2315       || layout->script_options()->any_unreferenced())
2316     {
2317       if (parameters->target().get_size() == 32)
2318         {
2319 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2320           this->do_add_undefined_symbols_from_command_line<32>(layout);
2321 #else
2322           gold_unreachable();
2323 #endif
2324         }
2325       else if (parameters->target().get_size() == 64)
2326         {
2327 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2328           this->do_add_undefined_symbols_from_command_line<64>(layout);
2329 #else
2330           gold_unreachable();
2331 #endif
2332         }
2333       else
2334         gold_unreachable();
2335     }
2336 }
2337
2338 template<int size>
2339 void
2340 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2341 {
2342   for (options::String_set::const_iterator p =
2343          parameters->options().undefined_begin();
2344        p != parameters->options().undefined_end();
2345        ++p)
2346     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2347
2348   for (options::String_set::const_iterator p =
2349          parameters->options().export_dynamic_symbol_begin();
2350        p != parameters->options().export_dynamic_symbol_end();
2351        ++p)
2352     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2353
2354   for (Script_options::referenced_const_iterator p =
2355          layout->script_options()->referenced_begin();
2356        p != layout->script_options()->referenced_end();
2357        ++p)
2358     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2359 }
2360
2361 template<int size>
2362 void
2363 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2364 {
2365   if (this->lookup(name) != NULL)
2366     return;
2367
2368   const char* version = NULL;
2369
2370   Sized_symbol<size>* sym;
2371   Sized_symbol<size>* oldsym;
2372   bool resolve_oldsym;
2373   if (parameters->target().is_big_endian())
2374     {
2375 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2376       sym = this->define_special_symbol<size, true>(&name, &version,
2377                                                     false, &oldsym,
2378                                                     &resolve_oldsym);
2379 #else
2380       gold_unreachable();
2381 #endif
2382     }
2383   else
2384     {
2385 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2386       sym = this->define_special_symbol<size, false>(&name, &version,
2387                                                      false, &oldsym,
2388                                                      &resolve_oldsym);
2389 #else
2390       gold_unreachable();
2391 #endif
2392     }
2393
2394   gold_assert(oldsym == NULL);
2395
2396   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2397                       elfcpp::STV_DEFAULT, 0);
2398   ++this->saw_undefined_;
2399 }
2400
2401 // Set the dynamic symbol indexes.  INDEX is the index of the first
2402 // global dynamic symbol.  Pointers to the symbols are stored into the
2403 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2404 // updated dynamic symbol index.
2405
2406 unsigned int
2407 Symbol_table::set_dynsym_indexes(unsigned int index,
2408                                  std::vector<Symbol*>* syms,
2409                                  Stringpool* dynpool,
2410                                  Versions* versions)
2411 {
2412   std::vector<Symbol*> as_needed_sym;
2413
2414   // Allow a target to set dynsym indexes.
2415   if (parameters->target().has_custom_set_dynsym_indexes())
2416     {
2417       std::vector<Symbol*> dyn_symbols;
2418       for (Symbol_table_type::iterator p = this->table_.begin();
2419            p != this->table_.end();
2420            ++p)
2421         {
2422           Symbol* sym = p->second;
2423           if (!sym->should_add_dynsym_entry(this))
2424             sym->set_dynsym_index(-1U);
2425           else
2426             dyn_symbols.push_back(sym);
2427         }
2428
2429       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2430                                                      dynpool, versions, this);
2431     }
2432
2433   for (Symbol_table_type::iterator p = this->table_.begin();
2434        p != this->table_.end();
2435        ++p)
2436     {
2437       Symbol* sym = p->second;
2438
2439       // Note that SYM may already have a dynamic symbol index, since
2440       // some symbols appear more than once in the symbol table, with
2441       // and without a version.
2442
2443       if (!sym->should_add_dynsym_entry(this))
2444         sym->set_dynsym_index(-1U);
2445       else if (!sym->has_dynsym_index())
2446         {
2447           sym->set_dynsym_index(index);
2448           ++index;
2449           syms->push_back(sym);
2450           dynpool->add(sym->name(), false, NULL);
2451
2452           // If the symbol is defined in a dynamic object and is
2453           // referenced strongly in a regular object, then mark the
2454           // dynamic object as needed.  This is used to implement
2455           // --as-needed.
2456           if (sym->is_from_dynobj()
2457               && sym->in_reg()
2458               && !sym->is_undef_binding_weak())
2459             sym->object()->set_is_needed();
2460
2461           // Record any version information, except those from
2462           // as-needed libraries not seen to be needed.  Note that the
2463           // is_needed state for such libraries can change in this loop.
2464           if (sym->version() != NULL)
2465             {
2466               if (!sym->is_from_dynobj()
2467                   || !sym->object()->as_needed()
2468                   || sym->object()->is_needed())
2469                 versions->record_version(this, dynpool, sym);
2470               else
2471                 as_needed_sym.push_back(sym);
2472             }
2473         }
2474     }
2475
2476   // Process version information for symbols from as-needed libraries.
2477   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2478        p != as_needed_sym.end();
2479        ++p)
2480     {
2481       Symbol* sym = *p;
2482
2483       if (sym->object()->is_needed())
2484         versions->record_version(this, dynpool, sym);
2485       else
2486         sym->clear_version();
2487     }
2488
2489   // Finish up the versions.  In some cases this may add new dynamic
2490   // symbols.
2491   index = versions->finalize(this, index, syms);
2492
2493   return index;
2494 }
2495
2496 // Set the final values for all the symbols.  The index of the first
2497 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2498 // file offset OFF.  Add their names to POOL.  Return the new file
2499 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2500
2501 off_t
2502 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2503                        size_t dyncount, Stringpool* pool,
2504                        unsigned int* plocal_symcount)
2505 {
2506   off_t ret;
2507
2508   gold_assert(*plocal_symcount != 0);
2509   this->first_global_index_ = *plocal_symcount;
2510
2511   this->dynamic_offset_ = dynoff;
2512   this->first_dynamic_global_index_ = dyn_global_index;
2513   this->dynamic_count_ = dyncount;
2514
2515   if (parameters->target().get_size() == 32)
2516     {
2517 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2518       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2519 #else
2520       gold_unreachable();
2521 #endif
2522     }
2523   else if (parameters->target().get_size() == 64)
2524     {
2525 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2526       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2527 #else
2528       gold_unreachable();
2529 #endif
2530     }
2531   else
2532     gold_unreachable();
2533
2534   // Now that we have the final symbol table, we can reliably note
2535   // which symbols should get warnings.
2536   this->warnings_.note_warnings(this);
2537
2538   return ret;
2539 }
2540
2541 // SYM is going into the symbol table at *PINDEX.  Add the name to
2542 // POOL, update *PINDEX and *POFF.
2543
2544 template<int size>
2545 void
2546 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2547                                   unsigned int* pindex, off_t* poff)
2548 {
2549   sym->set_symtab_index(*pindex);
2550   if (sym->version() == NULL || !parameters->options().relocatable())
2551     pool->add(sym->name(), false, NULL);
2552   else
2553     pool->add(sym->versioned_name(), true, NULL);
2554   ++*pindex;
2555   *poff += elfcpp::Elf_sizes<size>::sym_size;
2556 }
2557
2558 // Set the final value for all the symbols.  This is called after
2559 // Layout::finalize, so all the output sections have their final
2560 // address.
2561
2562 template<int size>
2563 off_t
2564 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2565                              unsigned int* plocal_symcount)
2566 {
2567   off = align_address(off, size >> 3);
2568   this->offset_ = off;
2569
2570   unsigned int index = *plocal_symcount;
2571   const unsigned int orig_index = index;
2572
2573   // First do all the symbols which have been forced to be local, as
2574   // they must appear before all global symbols.
2575   for (Forced_locals::iterator p = this->forced_locals_.begin();
2576        p != this->forced_locals_.end();
2577        ++p)
2578     {
2579       Symbol* sym = *p;
2580       gold_assert(sym->is_forced_local());
2581       if (this->sized_finalize_symbol<size>(sym))
2582         {
2583           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2584           ++*plocal_symcount;
2585         }
2586     }
2587
2588   // Now do all the remaining symbols.
2589   for (Symbol_table_type::iterator p = this->table_.begin();
2590        p != this->table_.end();
2591        ++p)
2592     {
2593       Symbol* sym = p->second;
2594       if (this->sized_finalize_symbol<size>(sym))
2595         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2596     }
2597
2598   this->output_count_ = index - orig_index;
2599
2600   return off;
2601 }
2602
2603 // Compute the final value of SYM and store status in location PSTATUS.
2604 // During relaxation, this may be called multiple times for a symbol to
2605 // compute its would-be final value in each relaxation pass.
2606
2607 template<int size>
2608 typename Sized_symbol<size>::Value_type
2609 Symbol_table::compute_final_value(
2610     const Sized_symbol<size>* sym,
2611     Compute_final_value_status* pstatus) const
2612 {
2613   typedef typename Sized_symbol<size>::Value_type Value_type;
2614   Value_type value;
2615
2616   switch (sym->source())
2617     {
2618     case Symbol::FROM_OBJECT:
2619       {
2620         bool is_ordinary;
2621         unsigned int shndx = sym->shndx(&is_ordinary);
2622
2623         if (!is_ordinary
2624             && shndx != elfcpp::SHN_ABS
2625             && !Symbol::is_common_shndx(shndx))
2626           {
2627             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2628             return 0;
2629           }
2630
2631         Object* symobj = sym->object();
2632         if (symobj->is_dynamic())
2633           {
2634             value = 0;
2635             shndx = elfcpp::SHN_UNDEF;
2636           }
2637         else if (symobj->pluginobj() != NULL)
2638           {
2639             value = 0;
2640             shndx = elfcpp::SHN_UNDEF;
2641           }
2642         else if (shndx == elfcpp::SHN_UNDEF)
2643           value = 0;
2644         else if (!is_ordinary
2645                  && (shndx == elfcpp::SHN_ABS
2646                      || Symbol::is_common_shndx(shndx)))
2647           value = sym->value();
2648         else
2649           {
2650             Relobj* relobj = static_cast<Relobj*>(symobj);
2651             Output_section* os = relobj->output_section(shndx);
2652
2653             if (this->is_section_folded(relobj, shndx))
2654               {
2655                 gold_assert(os == NULL);
2656                 // Get the os of the section it is folded onto.
2657                 Section_id folded = this->icf_->get_folded_section(relobj,
2658                                                                    shndx);
2659                 gold_assert(folded.first != NULL);
2660                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2661                 unsigned folded_shndx = folded.second;
2662
2663                 os = folded_obj->output_section(folded_shndx);  
2664                 gold_assert(os != NULL);
2665
2666                 // Replace (relobj, shndx) with canonical ICF input section.
2667                 shndx = folded_shndx;
2668                 relobj = folded_obj;
2669               }
2670
2671             uint64_t secoff64 = relobj->output_section_offset(shndx);
2672             if (os == NULL)
2673               {
2674                 bool static_or_reloc = (parameters->doing_static_link() ||
2675                                         parameters->options().relocatable());
2676                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2677
2678                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2679                 return 0;
2680               }
2681
2682             if (secoff64 == -1ULL)
2683               {
2684                 // The section needs special handling (e.g., a merge section).
2685
2686                 value = os->output_address(relobj, shndx, sym->value());
2687               }
2688             else
2689               {
2690                 Value_type secoff =
2691                   convert_types<Value_type, uint64_t>(secoff64);
2692                 if (sym->type() == elfcpp::STT_TLS)
2693                   value = sym->value() + os->tls_offset() + secoff;
2694                 else
2695                   value = sym->value() + os->address() + secoff;
2696               }
2697           }
2698       }
2699       break;
2700
2701     case Symbol::IN_OUTPUT_DATA:
2702       {
2703         Output_data* od = sym->output_data();
2704         value = sym->value();
2705         if (sym->type() != elfcpp::STT_TLS)
2706           value += od->address();
2707         else
2708           {
2709             Output_section* os = od->output_section();
2710             gold_assert(os != NULL);
2711             value += os->tls_offset() + (od->address() - os->address());
2712           }
2713         if (sym->offset_is_from_end())
2714           value += od->data_size();
2715       }
2716       break;
2717
2718     case Symbol::IN_OUTPUT_SEGMENT:
2719       {
2720         Output_segment* os = sym->output_segment();
2721         value = sym->value();
2722         if (sym->type() != elfcpp::STT_TLS)
2723           value += os->vaddr();
2724         switch (sym->offset_base())
2725           {
2726           case Symbol::SEGMENT_START:
2727             break;
2728           case Symbol::SEGMENT_END:
2729             value += os->memsz();
2730             break;
2731           case Symbol::SEGMENT_BSS:
2732             value += os->filesz();
2733             break;
2734           default:
2735             gold_unreachable();
2736           }
2737       }
2738       break;
2739
2740     case Symbol::IS_CONSTANT:
2741       value = sym->value();
2742       break;
2743
2744     case Symbol::IS_UNDEFINED:
2745       value = 0;
2746       break;
2747
2748     default:
2749       gold_unreachable();
2750     }
2751
2752   *pstatus = CFVS_OK;
2753   return value;
2754 }
2755
2756 // Finalize the symbol SYM.  This returns true if the symbol should be
2757 // added to the symbol table, false otherwise.
2758
2759 template<int size>
2760 bool
2761 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2762 {
2763   typedef typename Sized_symbol<size>::Value_type Value_type;
2764
2765   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2766
2767   // The default version of a symbol may appear twice in the symbol
2768   // table.  We only need to finalize it once.
2769   if (sym->has_symtab_index())
2770     return false;
2771
2772   if (!sym->in_reg())
2773     {
2774       gold_assert(!sym->has_symtab_index());
2775       sym->set_symtab_index(-1U);
2776       gold_assert(sym->dynsym_index() == -1U);
2777       return false;
2778     }
2779
2780   // If the symbol is only present on plugin files, the plugin decided we
2781   // don't need it.
2782   if (!sym->in_real_elf())
2783     {
2784       gold_assert(!sym->has_symtab_index());
2785       sym->set_symtab_index(-1U);
2786       return false;
2787     }
2788
2789   // Compute final symbol value.
2790   Compute_final_value_status status;
2791   Value_type value = this->compute_final_value(sym, &status);
2792
2793   switch (status)
2794     {
2795     case CFVS_OK:
2796       break;
2797     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2798       {
2799         bool is_ordinary;
2800         unsigned int shndx = sym->shndx(&is_ordinary);
2801         gold_error(_("%s: unsupported symbol section 0x%x"),
2802                    sym->demangled_name().c_str(), shndx);
2803       }
2804       break;
2805     case CFVS_NO_OUTPUT_SECTION:
2806       sym->set_symtab_index(-1U);
2807       return false;
2808     default:
2809       gold_unreachable();
2810     }
2811
2812   sym->set_value(value);
2813
2814   if (parameters->options().strip_all()
2815       || !parameters->options().should_retain_symbol(sym->name()))
2816     {
2817       sym->set_symtab_index(-1U);
2818       return false;
2819     }
2820
2821   return true;
2822 }
2823
2824 // Write out the global symbols.
2825
2826 void
2827 Symbol_table::write_globals(const Stringpool* sympool,
2828                             const Stringpool* dynpool,
2829                             Output_symtab_xindex* symtab_xindex,
2830                             Output_symtab_xindex* dynsym_xindex,
2831                             Output_file* of) const
2832 {
2833   switch (parameters->size_and_endianness())
2834     {
2835 #ifdef HAVE_TARGET_32_LITTLE
2836     case Parameters::TARGET_32_LITTLE:
2837       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2838                                            dynsym_xindex, of);
2839       break;
2840 #endif
2841 #ifdef HAVE_TARGET_32_BIG
2842     case Parameters::TARGET_32_BIG:
2843       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2844                                           dynsym_xindex, of);
2845       break;
2846 #endif
2847 #ifdef HAVE_TARGET_64_LITTLE
2848     case Parameters::TARGET_64_LITTLE:
2849       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2850                                            dynsym_xindex, of);
2851       break;
2852 #endif
2853 #ifdef HAVE_TARGET_64_BIG
2854     case Parameters::TARGET_64_BIG:
2855       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2856                                           dynsym_xindex, of);
2857       break;
2858 #endif
2859     default:
2860       gold_unreachable();
2861     }
2862 }
2863
2864 // Write out the global symbols.
2865
2866 template<int size, bool big_endian>
2867 void
2868 Symbol_table::sized_write_globals(const Stringpool* sympool,
2869                                   const Stringpool* dynpool,
2870                                   Output_symtab_xindex* symtab_xindex,
2871                                   Output_symtab_xindex* dynsym_xindex,
2872                                   Output_file* of) const
2873 {
2874   const Target& target = parameters->target();
2875
2876   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2877
2878   const unsigned int output_count = this->output_count_;
2879   const section_size_type oview_size = output_count * sym_size;
2880   const unsigned int first_global_index = this->first_global_index_;
2881   unsigned char* psyms;
2882   if (this->offset_ == 0 || output_count == 0)
2883     psyms = NULL;
2884   else
2885     psyms = of->get_output_view(this->offset_, oview_size);
2886
2887   const unsigned int dynamic_count = this->dynamic_count_;
2888   const section_size_type dynamic_size = dynamic_count * sym_size;
2889   const unsigned int first_dynamic_global_index =
2890     this->first_dynamic_global_index_;
2891   unsigned char* dynamic_view;
2892   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2893     dynamic_view = NULL;
2894   else
2895     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2896
2897   for (Symbol_table_type::const_iterator p = this->table_.begin();
2898        p != this->table_.end();
2899        ++p)
2900     {
2901       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2902
2903       // Possibly warn about unresolved symbols in shared libraries.
2904       this->warn_about_undefined_dynobj_symbol(sym);
2905
2906       unsigned int sym_index = sym->symtab_index();
2907       unsigned int dynsym_index;
2908       if (dynamic_view == NULL)
2909         dynsym_index = -1U;
2910       else
2911         dynsym_index = sym->dynsym_index();
2912
2913       if (sym_index == -1U && dynsym_index == -1U)
2914         {
2915           // This symbol is not included in the output file.
2916           continue;
2917         }
2918
2919       unsigned int shndx;
2920       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2921       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2922       elfcpp::STB binding = sym->binding();
2923
2924       // If --weak-unresolved-symbols is set, change binding of unresolved
2925       // global symbols to STB_WEAK.
2926       if (parameters->options().weak_unresolved_symbols()
2927           && binding == elfcpp::STB_GLOBAL
2928           && sym->is_undefined())
2929         binding = elfcpp::STB_WEAK;
2930
2931       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2932       if (binding == elfcpp::STB_GNU_UNIQUE
2933           && !parameters->options().gnu_unique())
2934         binding = elfcpp::STB_GLOBAL;
2935
2936       switch (sym->source())
2937         {
2938         case Symbol::FROM_OBJECT:
2939           {
2940             bool is_ordinary;
2941             unsigned int in_shndx = sym->shndx(&is_ordinary);
2942
2943             if (!is_ordinary
2944                 && in_shndx != elfcpp::SHN_ABS
2945                 && !Symbol::is_common_shndx(in_shndx))
2946               {
2947                 gold_error(_("%s: unsupported symbol section 0x%x"),
2948                            sym->demangled_name().c_str(), in_shndx);
2949                 shndx = in_shndx;
2950               }
2951             else
2952               {
2953                 Object* symobj = sym->object();
2954                 if (symobj->is_dynamic())
2955                   {
2956                     if (sym->needs_dynsym_value())
2957                       dynsym_value = target.dynsym_value(sym);
2958                     shndx = elfcpp::SHN_UNDEF;
2959                     if (sym->is_undef_binding_weak())
2960                       binding = elfcpp::STB_WEAK;
2961                     else
2962                       binding = elfcpp::STB_GLOBAL;
2963                   }
2964                 else if (symobj->pluginobj() != NULL)
2965                   shndx = elfcpp::SHN_UNDEF;
2966                 else if (in_shndx == elfcpp::SHN_UNDEF
2967                          || (!is_ordinary
2968                              && (in_shndx == elfcpp::SHN_ABS
2969                                  || Symbol::is_common_shndx(in_shndx))))
2970                   shndx = in_shndx;
2971                 else
2972                   {
2973                     Relobj* relobj = static_cast<Relobj*>(symobj);
2974                     Output_section* os = relobj->output_section(in_shndx);
2975                     if (this->is_section_folded(relobj, in_shndx))
2976                       {
2977                         // This global symbol must be written out even though
2978                         // it is folded.
2979                         // Get the os of the section it is folded onto.
2980                         Section_id folded =
2981                              this->icf_->get_folded_section(relobj, in_shndx);
2982                         gold_assert(folded.first !=NULL);
2983                         Relobj* folded_obj = 
2984                           reinterpret_cast<Relobj*>(folded.first);
2985                         os = folded_obj->output_section(folded.second);  
2986                         gold_assert(os != NULL);
2987                       }
2988                     gold_assert(os != NULL);
2989                     shndx = os->out_shndx();
2990
2991                     if (shndx >= elfcpp::SHN_LORESERVE)
2992                       {
2993                         if (sym_index != -1U)
2994                           symtab_xindex->add(sym_index, shndx);
2995                         if (dynsym_index != -1U)
2996                           dynsym_xindex->add(dynsym_index, shndx);
2997                         shndx = elfcpp::SHN_XINDEX;
2998                       }
2999
3000                     // In object files symbol values are section
3001                     // relative.
3002                     if (parameters->options().relocatable())
3003                       sym_value -= os->address();
3004                   }
3005               }
3006           }
3007           break;
3008
3009         case Symbol::IN_OUTPUT_DATA:
3010           {
3011             Output_data* od = sym->output_data();
3012
3013             shndx = od->out_shndx();
3014             if (shndx >= elfcpp::SHN_LORESERVE)
3015               {
3016                 if (sym_index != -1U)
3017                   symtab_xindex->add(sym_index, shndx);
3018                 if (dynsym_index != -1U)
3019                   dynsym_xindex->add(dynsym_index, shndx);
3020                 shndx = elfcpp::SHN_XINDEX;
3021               }
3022
3023             // In object files symbol values are section
3024             // relative.
3025             if (parameters->options().relocatable())
3026               sym_value -= od->address();
3027           }
3028           break;
3029
3030         case Symbol::IN_OUTPUT_SEGMENT:
3031           shndx = elfcpp::SHN_ABS;
3032           break;
3033
3034         case Symbol::IS_CONSTANT:
3035           shndx = elfcpp::SHN_ABS;
3036           break;
3037
3038         case Symbol::IS_UNDEFINED:
3039           shndx = elfcpp::SHN_UNDEF;
3040           break;
3041
3042         default:
3043           gold_unreachable();
3044         }
3045
3046       if (sym_index != -1U)
3047         {
3048           sym_index -= first_global_index;
3049           gold_assert(sym_index < output_count);
3050           unsigned char* ps = psyms + (sym_index * sym_size);
3051           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3052                                                      binding, sympool, ps);
3053         }
3054
3055       if (dynsym_index != -1U)
3056         {
3057           dynsym_index -= first_dynamic_global_index;
3058           gold_assert(dynsym_index < dynamic_count);
3059           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3060           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3061                                                      binding, dynpool, pd);
3062           // Allow a target to adjust dynamic symbol value.
3063           parameters->target().adjust_dyn_symbol(sym, pd);
3064         }
3065     }
3066
3067   of->write_output_view(this->offset_, oview_size, psyms);
3068   if (dynamic_view != NULL)
3069     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3070 }
3071
3072 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3073 // strtab holding the name.
3074
3075 template<int size, bool big_endian>
3076 void
3077 Symbol_table::sized_write_symbol(
3078     Sized_symbol<size>* sym,
3079     typename elfcpp::Elf_types<size>::Elf_Addr value,
3080     unsigned int shndx,
3081     elfcpp::STB binding,
3082     const Stringpool* pool,
3083     unsigned char* p) const
3084 {
3085   elfcpp::Sym_write<size, big_endian> osym(p);
3086   if (sym->version() == NULL || !parameters->options().relocatable())
3087     osym.put_st_name(pool->get_offset(sym->name()));
3088   else
3089     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3090   osym.put_st_value(value);
3091   // Use a symbol size of zero for undefined symbols from shared libraries.
3092   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3093     osym.put_st_size(0);
3094   else
3095     osym.put_st_size(sym->symsize());
3096   elfcpp::STT type = sym->type();
3097   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3098   if (type == elfcpp::STT_GNU_IFUNC
3099       && sym->is_from_dynobj())
3100     type = elfcpp::STT_FUNC;
3101   // A version script may have overridden the default binding.
3102   if (sym->is_forced_local())
3103     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3104   else
3105     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3106   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3107   osym.put_st_shndx(shndx);
3108 }
3109
3110 // Check for unresolved symbols in shared libraries.  This is
3111 // controlled by the --allow-shlib-undefined option.
3112
3113 // We only warn about libraries for which we have seen all the
3114 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3115 // which were not seen in this link.  If we didn't see a DT_NEEDED
3116 // entry, we aren't going to be able to reliably report whether the
3117 // symbol is undefined.
3118
3119 // We also don't warn about libraries found in a system library
3120 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3121 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3122 // can have undefined references satisfied by ld-linux.so.
3123
3124 inline void
3125 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3126 {
3127   bool dummy;
3128   if (sym->source() == Symbol::FROM_OBJECT
3129       && sym->object()->is_dynamic()
3130       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3131       && sym->binding() != elfcpp::STB_WEAK
3132       && !parameters->options().allow_shlib_undefined()
3133       && !parameters->target().is_defined_by_abi(sym)
3134       && !sym->object()->is_in_system_directory())
3135     {
3136       // A very ugly cast.
3137       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3138       if (!dynobj->has_unknown_needed_entries())
3139         gold_undefined_symbol(sym);
3140     }
3141 }
3142
3143 // Write out a section symbol.  Return the update offset.
3144
3145 void
3146 Symbol_table::write_section_symbol(const Output_section* os,
3147                                    Output_symtab_xindex* symtab_xindex,
3148                                    Output_file* of,
3149                                    off_t offset) const
3150 {
3151   switch (parameters->size_and_endianness())
3152     {
3153 #ifdef HAVE_TARGET_32_LITTLE
3154     case Parameters::TARGET_32_LITTLE:
3155       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3156                                                   offset);
3157       break;
3158 #endif
3159 #ifdef HAVE_TARGET_32_BIG
3160     case Parameters::TARGET_32_BIG:
3161       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3162                                                  offset);
3163       break;
3164 #endif
3165 #ifdef HAVE_TARGET_64_LITTLE
3166     case Parameters::TARGET_64_LITTLE:
3167       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3168                                                   offset);
3169       break;
3170 #endif
3171 #ifdef HAVE_TARGET_64_BIG
3172     case Parameters::TARGET_64_BIG:
3173       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3174                                                  offset);
3175       break;
3176 #endif
3177     default:
3178       gold_unreachable();
3179     }
3180 }
3181
3182 // Write out a section symbol, specialized for size and endianness.
3183
3184 template<int size, bool big_endian>
3185 void
3186 Symbol_table::sized_write_section_symbol(const Output_section* os,
3187                                          Output_symtab_xindex* symtab_xindex,
3188                                          Output_file* of,
3189                                          off_t offset) const
3190 {
3191   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3192
3193   unsigned char* pov = of->get_output_view(offset, sym_size);
3194
3195   elfcpp::Sym_write<size, big_endian> osym(pov);
3196   osym.put_st_name(0);
3197   if (parameters->options().relocatable())
3198     osym.put_st_value(0);
3199   else
3200     osym.put_st_value(os->address());
3201   osym.put_st_size(0);
3202   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3203                                        elfcpp::STT_SECTION));
3204   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3205
3206   unsigned int shndx = os->out_shndx();
3207   if (shndx >= elfcpp::SHN_LORESERVE)
3208     {
3209       symtab_xindex->add(os->symtab_index(), shndx);
3210       shndx = elfcpp::SHN_XINDEX;
3211     }
3212   osym.put_st_shndx(shndx);
3213
3214   of->write_output_view(offset, sym_size, pov);
3215 }
3216
3217 // Print statistical information to stderr.  This is used for --stats.
3218
3219 void
3220 Symbol_table::print_stats() const
3221 {
3222 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3223   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3224           program_name, this->table_.size(), this->table_.bucket_count());
3225 #else
3226   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3227           program_name, this->table_.size());
3228 #endif
3229   this->namepool_.print_stats("symbol table stringpool");
3230 }
3231
3232 // We check for ODR violations by looking for symbols with the same
3233 // name for which the debugging information reports that they were
3234 // defined in disjoint source locations.  When comparing the source
3235 // location, we consider instances with the same base filename to be
3236 // the same.  This is because different object files/shared libraries
3237 // can include the same header file using different paths, and
3238 // different optimization settings can make the line number appear to
3239 // be a couple lines off, and we don't want to report an ODR violation
3240 // in those cases.
3241
3242 // This struct is used to compare line information, as returned by
3243 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3244 // operator used with std::sort.
3245
3246 struct Odr_violation_compare
3247 {
3248   bool
3249   operator()(const std::string& s1, const std::string& s2) const
3250   {
3251     // Inputs should be of the form "dirname/filename:linenum" where
3252     // "dirname/" is optional.  We want to compare just the filename:linenum.
3253
3254     // Find the last '/' in each string.
3255     std::string::size_type s1begin = s1.rfind('/');
3256     std::string::size_type s2begin = s2.rfind('/');
3257     // If there was no '/' in a string, start at the beginning.
3258     if (s1begin == std::string::npos)
3259       s1begin = 0;
3260     if (s2begin == std::string::npos)
3261       s2begin = 0;
3262     return s1.compare(s1begin, std::string::npos,
3263                       s2, s2begin, std::string::npos) < 0;
3264   }
3265 };
3266
3267 // Returns all of the lines attached to LOC, not just the one the
3268 // instruction actually came from.
3269 std::vector<std::string>
3270 Symbol_table::linenos_from_loc(const Task* task,
3271                                const Symbol_location& loc)
3272 {
3273   // We need to lock the object in order to read it.  This
3274   // means that we have to run in a singleton Task.  If we
3275   // want to run this in a general Task for better
3276   // performance, we will need one Task for object, plus
3277   // appropriate locking to ensure that we don't conflict with
3278   // other uses of the object.  Also note, one_addr2line is not
3279   // currently thread-safe.
3280   Task_lock_obj<Object> tl(task, loc.object);
3281
3282   std::vector<std::string> result;
3283   Symbol_location code_loc = loc;
3284   parameters->target().function_location(&code_loc);
3285   // 16 is the size of the object-cache that one_addr2line should use.
3286   std::string canonical_result = Dwarf_line_info::one_addr2line(
3287       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3288   if (!canonical_result.empty())
3289     result.push_back(canonical_result);
3290   return result;
3291 }
3292
3293 // OutputIterator that records if it was ever assigned to.  This
3294 // allows it to be used with std::set_intersection() to check for
3295 // intersection rather than computing the intersection.
3296 struct Check_intersection
3297 {
3298   Check_intersection()
3299     : value_(false)
3300   {}
3301
3302   bool had_intersection() const
3303   { return this->value_; }
3304
3305   Check_intersection& operator++()
3306   { return *this; }
3307
3308   Check_intersection& operator*()
3309   { return *this; }
3310
3311   template<typename T>
3312   Check_intersection& operator=(const T&)
3313   {
3314     this->value_ = true;
3315     return *this;
3316   }
3317
3318  private:
3319   bool value_;
3320 };
3321
3322 // Check candidate_odr_violations_ to find symbols with the same name
3323 // but apparently different definitions (different source-file/line-no
3324 // for each line assigned to the first instruction).
3325
3326 void
3327 Symbol_table::detect_odr_violations(const Task* task,
3328                                     const char* output_file_name) const
3329 {
3330   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3331        it != candidate_odr_violations_.end();
3332        ++it)
3333     {
3334       const char* const symbol_name = it->first;
3335
3336       std::string first_object_name;
3337       std::vector<std::string> first_object_linenos;
3338
3339       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3340           locs = it->second.begin();
3341       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3342           locs_end = it->second.end();
3343       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3344         {
3345           // Save the line numbers from the first definition to
3346           // compare to the other definitions.  Ideally, we'd compare
3347           // every definition to every other, but we don't want to
3348           // take O(N^2) time to do this.  This shortcut may cause
3349           // false negatives that appear or disappear depending on the
3350           // link order, but it won't cause false positives.
3351           first_object_name = locs->object->name();
3352           first_object_linenos = this->linenos_from_loc(task, *locs);
3353         }
3354       if (first_object_linenos.empty())
3355         continue;
3356
3357       // Sort by Odr_violation_compare to make std::set_intersection work.
3358       std::string first_object_canonical_result = first_object_linenos.back();
3359       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3360                 Odr_violation_compare());
3361
3362       for (; locs != locs_end; ++locs)
3363         {
3364           std::vector<std::string> linenos =
3365               this->linenos_from_loc(task, *locs);
3366           // linenos will be empty if we couldn't parse the debug info.
3367           if (linenos.empty())
3368             continue;
3369           // Sort by Odr_violation_compare to make std::set_intersection work.
3370           gold_assert(!linenos.empty());
3371           std::string second_object_canonical_result = linenos.back();
3372           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3373
3374           Check_intersection intersection_result =
3375               std::set_intersection(first_object_linenos.begin(),
3376                                     first_object_linenos.end(),
3377                                     linenos.begin(),
3378                                     linenos.end(),
3379                                     Check_intersection(),
3380                                     Odr_violation_compare());
3381           if (!intersection_result.had_intersection())
3382             {
3383               gold_warning(_("while linking %s: symbol '%s' defined in "
3384                              "multiple places (possible ODR violation):"),
3385                            output_file_name, demangle(symbol_name).c_str());
3386               // This only prints one location from each definition,
3387               // which may not be the location we expect to intersect
3388               // with another definition.  We could print the whole
3389               // set of locations, but that seems too verbose.
3390               fprintf(stderr, _("  %s from %s\n"),
3391                       first_object_canonical_result.c_str(),
3392                       first_object_name.c_str());
3393               fprintf(stderr, _("  %s from %s\n"),
3394                       second_object_canonical_result.c_str(),
3395                       locs->object->name().c_str());
3396               // Only print one broken pair, to avoid needing to
3397               // compare against a list of the disjoint definition
3398               // locations we've found so far.  (If we kept comparing
3399               // against just the first one, we'd get a lot of
3400               // redundant complaints about the second definition
3401               // location.)
3402               break;
3403             }
3404         }
3405     }
3406   // We only call one_addr2line() in this function, so we can clear its cache.
3407   Dwarf_line_info::clear_addr2line_cache();
3408 }
3409
3410 // Warnings functions.
3411
3412 // Add a new warning.
3413
3414 void
3415 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3416                       const std::string& warning)
3417 {
3418   name = symtab->canonicalize_name(name);
3419   this->warnings_[name].set(obj, warning);
3420 }
3421
3422 // Look through the warnings and mark the symbols for which we should
3423 // warn.  This is called during Layout::finalize when we know the
3424 // sources for all the symbols.
3425
3426 void
3427 Warnings::note_warnings(Symbol_table* symtab)
3428 {
3429   for (Warning_table::iterator p = this->warnings_.begin();
3430        p != this->warnings_.end();
3431        ++p)
3432     {
3433       Symbol* sym = symtab->lookup(p->first, NULL);
3434       if (sym != NULL
3435           && sym->source() == Symbol::FROM_OBJECT
3436           && sym->object() == p->second.object)
3437         sym->set_has_warning();
3438     }
3439 }
3440
3441 // Issue a warning.  This is called when we see a relocation against a
3442 // symbol for which has a warning.
3443
3444 template<int size, bool big_endian>
3445 void
3446 Warnings::issue_warning(const Symbol* sym,
3447                         const Relocate_info<size, big_endian>* relinfo,
3448                         size_t relnum, off_t reloffset) const
3449 {
3450   gold_assert(sym->has_warning());
3451
3452   // We don't want to issue a warning for a relocation against the
3453   // symbol in the same object file in which the symbol is defined.
3454   if (sym->object() == relinfo->object)
3455     return;
3456
3457   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3458   gold_assert(p != this->warnings_.end());
3459   gold_warning_at_location(relinfo, relnum, reloffset,
3460                            "%s", p->second.text.c_str());
3461 }
3462
3463 // Instantiate the templates we need.  We could use the configure
3464 // script to restrict this to only the ones needed for implemented
3465 // targets.
3466
3467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3468 template
3469 void
3470 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3471 #endif
3472
3473 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3474 template
3475 void
3476 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3477 #endif
3478
3479 #ifdef HAVE_TARGET_32_LITTLE
3480 template
3481 void
3482 Symbol_table::add_from_relobj<32, false>(
3483     Sized_relobj_file<32, false>* relobj,
3484     const unsigned char* syms,
3485     size_t count,
3486     size_t symndx_offset,
3487     const char* sym_names,
3488     size_t sym_name_size,
3489     Sized_relobj_file<32, false>::Symbols* sympointers,
3490     size_t* defined);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_32_BIG
3494 template
3495 void
3496 Symbol_table::add_from_relobj<32, true>(
3497     Sized_relobj_file<32, true>* relobj,
3498     const unsigned char* syms,
3499     size_t count,
3500     size_t symndx_offset,
3501     const char* sym_names,
3502     size_t sym_name_size,
3503     Sized_relobj_file<32, true>::Symbols* sympointers,
3504     size_t* defined);
3505 #endif
3506
3507 #ifdef HAVE_TARGET_64_LITTLE
3508 template
3509 void
3510 Symbol_table::add_from_relobj<64, false>(
3511     Sized_relobj_file<64, false>* relobj,
3512     const unsigned char* syms,
3513     size_t count,
3514     size_t symndx_offset,
3515     const char* sym_names,
3516     size_t sym_name_size,
3517     Sized_relobj_file<64, false>::Symbols* sympointers,
3518     size_t* defined);
3519 #endif
3520
3521 #ifdef HAVE_TARGET_64_BIG
3522 template
3523 void
3524 Symbol_table::add_from_relobj<64, true>(
3525     Sized_relobj_file<64, true>* relobj,
3526     const unsigned char* syms,
3527     size_t count,
3528     size_t symndx_offset,
3529     const char* sym_names,
3530     size_t sym_name_size,
3531     Sized_relobj_file<64, true>::Symbols* sympointers,
3532     size_t* defined);
3533 #endif
3534
3535 #ifdef HAVE_TARGET_32_LITTLE
3536 template
3537 Symbol*
3538 Symbol_table::add_from_pluginobj<32, false>(
3539     Sized_pluginobj<32, false>* obj,
3540     const char* name,
3541     const char* ver,
3542     elfcpp::Sym<32, false>* sym);
3543 #endif
3544
3545 #ifdef HAVE_TARGET_32_BIG
3546 template
3547 Symbol*
3548 Symbol_table::add_from_pluginobj<32, true>(
3549     Sized_pluginobj<32, true>* obj,
3550     const char* name,
3551     const char* ver,
3552     elfcpp::Sym<32, true>* sym);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_LITTLE
3556 template
3557 Symbol*
3558 Symbol_table::add_from_pluginobj<64, false>(
3559     Sized_pluginobj<64, false>* obj,
3560     const char* name,
3561     const char* ver,
3562     elfcpp::Sym<64, false>* sym);
3563 #endif
3564
3565 #ifdef HAVE_TARGET_64_BIG
3566 template
3567 Symbol*
3568 Symbol_table::add_from_pluginobj<64, true>(
3569     Sized_pluginobj<64, true>* obj,
3570     const char* name,
3571     const char* ver,
3572     elfcpp::Sym<64, true>* sym);
3573 #endif
3574
3575 #ifdef HAVE_TARGET_32_LITTLE
3576 template
3577 void
3578 Symbol_table::add_from_dynobj<32, false>(
3579     Sized_dynobj<32, false>* dynobj,
3580     const unsigned char* syms,
3581     size_t count,
3582     const char* sym_names,
3583     size_t sym_name_size,
3584     const unsigned char* versym,
3585     size_t versym_size,
3586     const std::vector<const char*>* version_map,
3587     Sized_relobj_file<32, false>::Symbols* sympointers,
3588     size_t* defined);
3589 #endif
3590
3591 #ifdef HAVE_TARGET_32_BIG
3592 template
3593 void
3594 Symbol_table::add_from_dynobj<32, true>(
3595     Sized_dynobj<32, true>* dynobj,
3596     const unsigned char* syms,
3597     size_t count,
3598     const char* sym_names,
3599     size_t sym_name_size,
3600     const unsigned char* versym,
3601     size_t versym_size,
3602     const std::vector<const char*>* version_map,
3603     Sized_relobj_file<32, true>::Symbols* sympointers,
3604     size_t* defined);
3605 #endif
3606
3607 #ifdef HAVE_TARGET_64_LITTLE
3608 template
3609 void
3610 Symbol_table::add_from_dynobj<64, false>(
3611     Sized_dynobj<64, false>* dynobj,
3612     const unsigned char* syms,
3613     size_t count,
3614     const char* sym_names,
3615     size_t sym_name_size,
3616     const unsigned char* versym,
3617     size_t versym_size,
3618     const std::vector<const char*>* version_map,
3619     Sized_relobj_file<64, false>::Symbols* sympointers,
3620     size_t* defined);
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_BIG
3624 template
3625 void
3626 Symbol_table::add_from_dynobj<64, true>(
3627     Sized_dynobj<64, true>* dynobj,
3628     const unsigned char* syms,
3629     size_t count,
3630     const char* sym_names,
3631     size_t sym_name_size,
3632     const unsigned char* versym,
3633     size_t versym_size,
3634     const std::vector<const char*>* version_map,
3635     Sized_relobj_file<64, true>::Symbols* sympointers,
3636     size_t* defined);
3637 #endif
3638
3639 #ifdef HAVE_TARGET_32_LITTLE
3640 template
3641 Sized_symbol<32>*
3642 Symbol_table::add_from_incrobj(
3643     Object* obj,
3644     const char* name,
3645     const char* ver,
3646     elfcpp::Sym<32, false>* sym);
3647 #endif
3648
3649 #ifdef HAVE_TARGET_32_BIG
3650 template
3651 Sized_symbol<32>*
3652 Symbol_table::add_from_incrobj(
3653     Object* obj,
3654     const char* name,
3655     const char* ver,
3656     elfcpp::Sym<32, true>* sym);
3657 #endif
3658
3659 #ifdef HAVE_TARGET_64_LITTLE
3660 template
3661 Sized_symbol<64>*
3662 Symbol_table::add_from_incrobj(
3663     Object* obj,
3664     const char* name,
3665     const char* ver,
3666     elfcpp::Sym<64, false>* sym);
3667 #endif
3668
3669 #ifdef HAVE_TARGET_64_BIG
3670 template
3671 Sized_symbol<64>*
3672 Symbol_table::add_from_incrobj(
3673     Object* obj,
3674     const char* name,
3675     const char* ver,
3676     elfcpp::Sym<64, true>* sym);
3677 #endif
3678
3679 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3680 template
3681 void
3682 Symbol_table::define_with_copy_reloc<32>(
3683     Sized_symbol<32>* sym,
3684     Output_data* posd,
3685     elfcpp::Elf_types<32>::Elf_Addr value);
3686 #endif
3687
3688 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3689 template
3690 void
3691 Symbol_table::define_with_copy_reloc<64>(
3692     Sized_symbol<64>* sym,
3693     Output_data* posd,
3694     elfcpp::Elf_types<64>::Elf_Addr value);
3695 #endif
3696
3697 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3698 template
3699 void
3700 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3701                                    Output_data* od, Value_type value,
3702                                    Size_type symsize, elfcpp::STT type,
3703                                    elfcpp::STB binding,
3704                                    elfcpp::STV visibility,
3705                                    unsigned char nonvis,
3706                                    bool offset_is_from_end,
3707                                    bool is_predefined);
3708 #endif
3709
3710 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3711 template
3712 void
3713 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3714                                    Output_data* od, Value_type value,
3715                                    Size_type symsize, elfcpp::STT type,
3716                                    elfcpp::STB binding,
3717                                    elfcpp::STV visibility,
3718                                    unsigned char nonvis,
3719                                    bool offset_is_from_end,
3720                                    bool is_predefined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_32_LITTLE
3724 template
3725 void
3726 Warnings::issue_warning<32, false>(const Symbol* sym,
3727                                    const Relocate_info<32, false>* relinfo,
3728                                    size_t relnum, off_t reloffset) const;
3729 #endif
3730
3731 #ifdef HAVE_TARGET_32_BIG
3732 template
3733 void
3734 Warnings::issue_warning<32, true>(const Symbol* sym,
3735                                   const Relocate_info<32, true>* relinfo,
3736                                   size_t relnum, off_t reloffset) const;
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 void
3742 Warnings::issue_warning<64, false>(const Symbol* sym,
3743                                    const Relocate_info<64, false>* relinfo,
3744                                    size_t relnum, off_t reloffset) const;
3745 #endif
3746
3747 #ifdef HAVE_TARGET_64_BIG
3748 template
3749 void
3750 Warnings::issue_warning<64, true>(const Symbol* sym,
3751                                   const Relocate_info<64, true>* relinfo,
3752                                   size_t relnum, off_t reloffset) const;
3753 #endif
3754
3755 } // End namespace gold.