Automatic date update in version.in
[platform/upstream/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Set the symbol's output segment.  This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537   gold_assert(this->is_predefined_);
538   this->source_ = IN_OUTPUT_SEGMENT;
539   this->u_.in_output_segment.output_segment = os;
540   this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined.  This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550   gold_assert(this->is_predefined_);
551   this->source_ = IS_UNDEFINED;
552   this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558                            const Version_script_info& version_script)
559   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560     forwarders_(), commons_(), tls_commons_(), small_commons_(),
561     large_commons_(), forced_locals_(), warnings_(),
562     version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564   namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function.  This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576                                           const Symbol_table_key& k2) const
577 {
578   return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584   return (parameters->options().icf_enabled()
585           && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void 
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594   for (options::String_set::const_iterator p =
595          parameters->options().undefined_begin();
596        p != parameters->options().undefined_end();
597        ++p)
598     {
599       const char* name = p->c_str();
600       Symbol* sym = this->lookup(name);
601       gold_assert(sym != NULL);
602       if (sym->source() == Symbol::FROM_OBJECT 
603           && !sym->object()->is_dynamic())
604         {
605           this->gc_mark_symbol(sym);
606         }
607     }
608
609   for (options::String_set::const_iterator p =
610          parameters->options().export_dynamic_symbol_begin();
611        p != parameters->options().export_dynamic_symbol_end();
612        ++p)
613     {
614       const char* name = p->c_str();
615       Symbol* sym = this->lookup(name);
616       // It's not an error if a symbol named by --export-dynamic-symbol
617       // is undefined.
618       if (sym != NULL
619           && sym->source() == Symbol::FROM_OBJECT 
620           && !sym->object()->is_dynamic())
621         {
622           this->gc_mark_symbol(sym);
623         }
624     }
625
626   for (Script_options::referenced_const_iterator p =
627          layout->script_options()->referenced_begin();
628        p != layout->script_options()->referenced_end();
629        ++p)
630     {
631       Symbol* sym = this->lookup(p->c_str());
632       gold_assert(sym != NULL);
633       if (sym->source() == Symbol::FROM_OBJECT
634           && !sym->object()->is_dynamic())
635         {
636           this->gc_mark_symbol(sym);
637         }
638     }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644   // Add the object and section to the work list.
645   bool is_ordinary;
646   unsigned int shndx = sym->shndx(&is_ordinary);
647   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648     {
649       gold_assert(this->gc_!= NULL);
650       this->gc_->worklist().push(Section_id(sym->object(), shndx));
651     }
652   parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void 
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661       && !sym->object()->is_dynamic())
662     this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670   gold_assert(from != to);
671   gold_assert(!from->is_forwarder() && !to->is_forwarder());
672   this->forwarders_[from] = to;
673   from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681   gold_assert(from->is_forwarder());
682   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683     this->forwarders_.find(from);
684   gold_assert(p != this->forwarders_.end());
685   return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693   Stringpool::Key name_key;
694   name = this->namepool_.find(name, &name_key);
695   if (name == NULL)
696     return NULL;
697
698   Stringpool::Key version_key = 0;
699   if (version != NULL)
700     {
701       version = this->namepool_.find(version, &version_key);
702       if (version == NULL)
703         return NULL;
704     }
705
706   Symbol_table_key key(name_key, version_key);
707   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708   if (p == this->table_.end())
709     return NULL;
710   return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol.  This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version.  Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724   elfcpp::Sym_write<size, big_endian> esym(buf);
725   // We don't bother to set the st_name or the st_shndx field.
726   esym.put_st_value(from->value());
727   esym.put_st_size(from->symsize());
728   esym.put_st_info(from->binding(), from->type());
729   esym.put_st_other(from->visibility(), from->nonvis());
730   bool is_ordinary;
731   unsigned int shndx = from->shndx(&is_ordinary);
732   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733                 from->version());
734   if (from->in_reg())
735     to->set_in_reg();
736   if (from->in_dyn())
737     to->set_in_dyn();
738   if (parameters->options().gc_sections())
739     this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748   if (!sym->is_defined() && !sym->is_common())
749     return;
750   if (sym->is_forced_local())
751     {
752       // We already got this one.
753       return;
754     }
755   sym->set_is_forced_local();
756   this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766   // For some targets, we need to ignore a specific character when
767   // wrapping, and add it back later.
768   char prefix = '\0';
769   if (name[0] == parameters->target().wrap_char())
770     {
771       prefix = name[0];
772       ++name;
773     }
774
775   if (parameters->options().is_wrap(name))
776     {
777       // Turn NAME into __wrap_NAME.
778       std::string s;
779       if (prefix != '\0')
780         s += prefix;
781       s += "__wrap_";
782       s += name;
783
784       // This will give us both the old and new name in NAMEPOOL_, but
785       // that is OK.  Only the versions we need will wind up in the
786       // real string table in the output file.
787       return this->namepool_.add(s.c_str(), true, name_key);
788     }
789
790   const char* const real_prefix = "__real_";
791   const size_t real_prefix_length = strlen(real_prefix);
792   if (strncmp(name, real_prefix, real_prefix_length) == 0
793       && parameters->options().is_wrap(name + real_prefix_length))
794     {
795       // Turn __real_NAME into NAME.
796       std::string s;
797       if (prefix != '\0')
798         s += prefix;
799       s += name + real_prefix_length;
800       return this->namepool_.add(s.c_str(), true, name_key);
801     }
802
803   return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version.  SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815                                      bool default_is_new,
816                                      Symbol_table_type::iterator pdef)
817 {
818   if (default_is_new)
819     {
820       // This is the first time we have seen NAME/NULL.  Make
821       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822       // version.
823       pdef->second = sym;
824       sym->set_is_default();
825     }
826   else if (pdef->second == sym)
827     {
828       // NAME/NULL already points to NAME/VERSION.  Don't mark the
829       // symbol as the default if it is not already the default.
830     }
831   else
832     {
833       // This is the unfortunate case where we already have entries
834       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
835       // NAME/VERSION where VERSION is the default version.  We have
836       // already resolved this new symbol with the existing
837       // NAME/VERSION symbol.
838
839       // It's possible that NAME/NULL and NAME/VERSION are both
840       // defined in regular objects.  This can only happen if one
841       // object file defines foo and another defines foo@@ver.  This
842       // is somewhat obscure, but we call it a multiple definition
843       // error.
844
845       // It's possible that NAME/NULL actually has a version, in which
846       // case it won't be the same as VERSION.  This happens with
847       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
848       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
849       // then see an unadorned t2_2 in an object file and give it
850       // version VER1 from the version script.  This looks like a
851       // default definition for VER1, so it looks like we should merge
852       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
853       // not obvious that this is an error, either.  So we just punt.
854
855       // If one of the symbols has non-default visibility, and the
856       // other is defined in a shared object, then they are different
857       // symbols.
858
859       // Otherwise, we just resolve the symbols as though they were
860       // the same.
861
862       if (pdef->second->version() != NULL)
863         gold_assert(pdef->second->version() != sym->version());
864       else if (sym->visibility() != elfcpp::STV_DEFAULT
865                && pdef->second->is_from_dynobj())
866         ;
867       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868                && sym->is_from_dynobj())
869         ;
870       else
871         {
872           const Sized_symbol<size>* symdef;
873           symdef = this->get_sized_symbol<size>(pdef->second);
874           Symbol_table::resolve<size, big_endian>(sym, symdef);
875           this->make_forwarder(pdef->second, sym);
876           pdef->second = sym;
877           sym->set_is_default();
878         }
879     }
880 }
881
882 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
883 // name and VERSION is the version; both are canonicalized.  DEF is
884 // whether this is the default version.  ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol.  That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol.  This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION.  If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure.  That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table.  We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files.  So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code.  ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915                               const char* name,
916                               Stringpool::Key name_key,
917                               const char* version,
918                               Stringpool::Key version_key,
919                               bool is_default_version,
920                               const elfcpp::Sym<size, big_endian>& sym,
921                               unsigned int st_shndx,
922                               bool is_ordinary,
923                               unsigned int orig_st_shndx)
924 {
925   // Print a message if this symbol is being traced.
926   if (parameters->options().is_trace_symbol(name))
927     {
928       if (orig_st_shndx == elfcpp::SHN_UNDEF)
929         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930       else
931         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932     }
933
934   // For an undefined symbol, we may need to adjust the name using
935   // --wrap.
936   if (orig_st_shndx == elfcpp::SHN_UNDEF
937       && parameters->options().any_wrap())
938     {
939       const char* wrap_name = this->wrap_symbol(name, &name_key);
940       if (wrap_name != name)
941         {
942           // If we see a reference to malloc with version GLIBC_2.0,
943           // and we turn it into a reference to __wrap_malloc, then we
944           // discard the version number.  Otherwise the user would be
945           // required to specify the correct version for
946           // __wrap_malloc.
947           version = NULL;
948           version_key = 0;
949           name = wrap_name;
950         }
951     }
952
953   Symbol* const snull = NULL;
954   std::pair<typename Symbol_table_type::iterator, bool> ins =
955     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956                                        snull));
957
958   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959     std::make_pair(this->table_.end(), false);
960   if (is_default_version)
961     {
962       const Stringpool::Key vnull_key = 0;
963       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964                                                                      vnull_key),
965                                                       snull));
966     }
967
968   // ins.first: an iterator, which is a pointer to a pair.
969   // ins.first->first: the key (a pair of name and version).
970   // ins.first->second: the value (Symbol*).
971   // ins.second: true if new entry was inserted, false if not.
972
973   Sized_symbol<size>* ret;
974   bool was_undefined;
975   bool was_common;
976   if (!ins.second)
977     {
978       // We already have an entry for NAME/VERSION.
979       ret = this->get_sized_symbol<size>(ins.first->second);
980       gold_assert(ret != NULL);
981
982       was_undefined = ret->is_undefined();
983       // Commons from plugins are just placeholders.
984       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
985
986       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
987                     version);
988       if (parameters->options().gc_sections())
989         this->gc_mark_dyn_syms(ret);
990
991       if (is_default_version)
992         this->define_default_version<size, big_endian>(ret, insdefault.second,
993                                                        insdefault.first);
994     }
995   else
996     {
997       // This is the first time we have seen NAME/VERSION.
998       gold_assert(ins.first->second == NULL);
999
1000       if (is_default_version && !insdefault.second)
1001         {
1002           // We already have an entry for NAME/NULL.  If we override
1003           // it, then change it to NAME/VERSION.
1004           ret = this->get_sized_symbol<size>(insdefault.first->second);
1005
1006           was_undefined = ret->is_undefined();
1007           // Commons from plugins are just placeholders.
1008           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1009
1010           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1011                         version);
1012           if (parameters->options().gc_sections())
1013             this->gc_mark_dyn_syms(ret);
1014           ins.first->second = ret;
1015         }
1016       else
1017         {
1018           was_undefined = false;
1019           was_common = false;
1020
1021           Sized_target<size, big_endian>* target =
1022             parameters->sized_target<size, big_endian>();
1023           if (!target->has_make_symbol())
1024             ret = new Sized_symbol<size>();
1025           else
1026             {
1027               ret = target->make_symbol();
1028               if (ret == NULL)
1029                 {
1030                   // This means that we don't want a symbol table
1031                   // entry after all.
1032                   if (!is_default_version)
1033                     this->table_.erase(ins.first);
1034                   else
1035                     {
1036                       this->table_.erase(insdefault.first);
1037                       // Inserting INSDEFAULT invalidated INS.
1038                       this->table_.erase(std::make_pair(name_key,
1039                                                         version_key));
1040                     }
1041                   return NULL;
1042                 }
1043             }
1044
1045           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1046
1047           ins.first->second = ret;
1048           if (is_default_version)
1049             {
1050               // This is the first time we have seen NAME/NULL.  Point
1051               // it at the new entry for NAME/VERSION.
1052               gold_assert(insdefault.second);
1053               insdefault.first->second = ret;
1054             }
1055         }
1056
1057       if (is_default_version)
1058         ret->set_is_default();
1059     }
1060
1061   // Record every time we see a new undefined symbol, to speed up
1062   // archive groups.
1063   if (!was_undefined && ret->is_undefined())
1064     {
1065       ++this->saw_undefined_;
1066       if (parameters->options().has_plugins())
1067         parameters->options().plugins()->new_undefined_symbol(ret);
1068     }
1069
1070   // Keep track of common symbols, to speed up common symbol
1071   // allocation.  Don't record commons from plugin objects;
1072   // we need to wait until we see the real symbol in the
1073   // replacement file.
1074   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1075     {
1076       if (ret->type() == elfcpp::STT_TLS)
1077         this->tls_commons_.push_back(ret);
1078       else if (!is_ordinary
1079                && st_shndx == parameters->target().small_common_shndx())
1080         this->small_commons_.push_back(ret);
1081       else if (!is_ordinary
1082                && st_shndx == parameters->target().large_common_shndx())
1083         this->large_commons_.push_back(ret);
1084       else
1085         this->commons_.push_back(ret);
1086     }
1087
1088   // If we're not doing a relocatable link, then any symbol with
1089   // hidden or internal visibility is local.
1090   if ((ret->visibility() == elfcpp::STV_HIDDEN
1091        || ret->visibility() == elfcpp::STV_INTERNAL)
1092       && (ret->binding() == elfcpp::STB_GLOBAL
1093           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1094           || ret->binding() == elfcpp::STB_WEAK)
1095       && !parameters->options().relocatable())
1096     this->force_local(ret);
1097
1098   return ret;
1099 }
1100
1101 // Add all the symbols in a relocatable object to the hash table.
1102
1103 template<int size, bool big_endian>
1104 void
1105 Symbol_table::add_from_relobj(
1106     Sized_relobj_file<size, big_endian>* relobj,
1107     const unsigned char* syms,
1108     size_t count,
1109     size_t symndx_offset,
1110     const char* sym_names,
1111     size_t sym_name_size,
1112     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1113     size_t* defined)
1114 {
1115   *defined = 0;
1116
1117   gold_assert(size == parameters->target().get_size());
1118
1119   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1120
1121   const bool just_symbols = relobj->just_symbols();
1122
1123   const unsigned char* p = syms;
1124   for (size_t i = 0; i < count; ++i, p += sym_size)
1125     {
1126       (*sympointers)[i] = NULL;
1127
1128       elfcpp::Sym<size, big_endian> sym(p);
1129
1130       unsigned int st_name = sym.get_st_name();
1131       if (st_name >= sym_name_size)
1132         {
1133           relobj->error(_("bad global symbol name offset %u at %zu"),
1134                         st_name, i);
1135           continue;
1136         }
1137
1138       const char* name = sym_names + st_name;
1139
1140       if (strcmp (name, "__gnu_lto_slim") == 0)
1141         gold_info(_("%s: plugin needed to handle lto object"),
1142                   relobj->name().c_str());
1143
1144       bool is_ordinary;
1145       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1146                                                        sym.get_st_shndx(),
1147                                                        &is_ordinary);
1148       unsigned int orig_st_shndx = st_shndx;
1149       if (!is_ordinary)
1150         orig_st_shndx = elfcpp::SHN_UNDEF;
1151
1152       if (st_shndx != elfcpp::SHN_UNDEF)
1153         ++*defined;
1154
1155       // A symbol defined in a section which we are not including must
1156       // be treated as an undefined symbol.
1157       bool is_defined_in_discarded_section = false;
1158       if (st_shndx != elfcpp::SHN_UNDEF
1159           && is_ordinary
1160           && !relobj->is_section_included(st_shndx)
1161           && !this->is_section_folded(relobj, st_shndx))
1162         {
1163           st_shndx = elfcpp::SHN_UNDEF;
1164           is_defined_in_discarded_section = true;
1165         }
1166
1167       // In an object file, an '@' in the name separates the symbol
1168       // name from the version name.  If there are two '@' characters,
1169       // this is the default version.
1170       const char* ver = strchr(name, '@');
1171       Stringpool::Key ver_key = 0;
1172       int namelen = 0;
1173       // IS_DEFAULT_VERSION: is the version default?
1174       // IS_FORCED_LOCAL: is the symbol forced local?
1175       bool is_default_version = false;
1176       bool is_forced_local = false;
1177
1178       // FIXME: For incremental links, we don't store version information,
1179       // so we need to ignore version symbols for now.
1180       if (parameters->incremental_update() && ver != NULL)
1181         {
1182           namelen = ver - name;
1183           ver = NULL;
1184         }
1185
1186       if (ver != NULL)
1187         {
1188           // The symbol name is of the form foo@VERSION or foo@@VERSION
1189           namelen = ver - name;
1190           ++ver;
1191           if (*ver == '@')
1192             {
1193               is_default_version = true;
1194               ++ver;
1195             }
1196           ver = this->namepool_.add(ver, true, &ver_key);
1197         }
1198       // We don't want to assign a version to an undefined symbol,
1199       // even if it is listed in the version script.  FIXME: What
1200       // about a common symbol?
1201       else
1202         {
1203           namelen = strlen(name);
1204           if (!this->version_script_.empty()
1205               && st_shndx != elfcpp::SHN_UNDEF)
1206             {
1207               // The symbol name did not have a version, but the
1208               // version script may assign a version anyway.
1209               std::string version;
1210               bool is_global;
1211               if (this->version_script_.get_symbol_version(name, &version,
1212                                                            &is_global))
1213                 {
1214                   if (!is_global)
1215                     is_forced_local = true;
1216                   else if (!version.empty())
1217                     {
1218                       ver = this->namepool_.add_with_length(version.c_str(),
1219                                                             version.length(),
1220                                                             true,
1221                                                             &ver_key);
1222                       is_default_version = true;
1223                     }
1224                 }
1225             }
1226         }
1227
1228       elfcpp::Sym<size, big_endian>* psym = &sym;
1229       unsigned char symbuf[sym_size];
1230       elfcpp::Sym<size, big_endian> sym2(symbuf);
1231       if (just_symbols)
1232         {
1233           memcpy(symbuf, p, sym_size);
1234           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1235           if (orig_st_shndx != elfcpp::SHN_UNDEF
1236               && is_ordinary
1237               && relobj->e_type() == elfcpp::ET_REL)
1238             {
1239               // Symbol values in relocatable object files are section
1240               // relative.  This is normally what we want, but since here
1241               // we are converting the symbol to absolute we need to add
1242               // the section address.  The section address in an object
1243               // file is normally zero, but people can use a linker
1244               // script to change it.
1245               sw.put_st_value(sym.get_st_value()
1246                               + relobj->section_address(orig_st_shndx));
1247             }
1248           st_shndx = elfcpp::SHN_ABS;
1249           is_ordinary = false;
1250           psym = &sym2;
1251         }
1252
1253       // Fix up visibility if object has no-export set.
1254       if (relobj->no_export()
1255           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1256         {
1257           // We may have copied symbol already above.
1258           if (psym != &sym2)
1259             {
1260               memcpy(symbuf, p, sym_size);
1261               psym = &sym2;
1262             }
1263
1264           elfcpp::STV visibility = sym2.get_st_visibility();
1265           if (visibility == elfcpp::STV_DEFAULT
1266               || visibility == elfcpp::STV_PROTECTED)
1267             {
1268               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1269               unsigned char nonvis = sym2.get_st_nonvis();
1270               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1271             }
1272         }
1273
1274       Stringpool::Key name_key;
1275       name = this->namepool_.add_with_length(name, namelen, true,
1276                                              &name_key);
1277
1278       Sized_symbol<size>* res;
1279       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1280                                   is_default_version, *psym, st_shndx,
1281                                   is_ordinary, orig_st_shndx);
1282       
1283       if (is_forced_local)
1284         this->force_local(res);
1285
1286       // Do not treat this symbol as garbage if this symbol will be
1287       // exported to the dynamic symbol table.  This is true when
1288       // building a shared library or using --export-dynamic and
1289       // the symbol is externally visible.
1290       if (parameters->options().gc_sections()
1291           && res->is_externally_visible()
1292           && !res->is_from_dynobj()
1293           && (parameters->options().shared()
1294               || parameters->options().export_dynamic()
1295               || parameters->options().in_dynamic_list(res->name())))
1296         this->gc_mark_symbol(res);
1297
1298       if (is_defined_in_discarded_section)
1299         res->set_is_defined_in_discarded_section();
1300
1301       (*sympointers)[i] = res;
1302     }
1303 }
1304
1305 // Add a symbol from a plugin-claimed file.
1306
1307 template<int size, bool big_endian>
1308 Symbol*
1309 Symbol_table::add_from_pluginobj(
1310     Sized_pluginobj<size, big_endian>* obj,
1311     const char* name,
1312     const char* ver,
1313     elfcpp::Sym<size, big_endian>* sym)
1314 {
1315   unsigned int st_shndx = sym->get_st_shndx();
1316   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1317
1318   Stringpool::Key ver_key = 0;
1319   bool is_default_version = false;
1320   bool is_forced_local = false;
1321
1322   if (ver != NULL)
1323     {
1324       ver = this->namepool_.add(ver, true, &ver_key);
1325     }
1326   // We don't want to assign a version to an undefined symbol,
1327   // even if it is listed in the version script.  FIXME: What
1328   // about a common symbol?
1329   else
1330     {
1331       if (!this->version_script_.empty()
1332           && st_shndx != elfcpp::SHN_UNDEF)
1333         {
1334           // The symbol name did not have a version, but the
1335           // version script may assign a version anyway.
1336           std::string version;
1337           bool is_global;
1338           if (this->version_script_.get_symbol_version(name, &version,
1339                                                        &is_global))
1340             {
1341               if (!is_global)
1342                 is_forced_local = true;
1343               else if (!version.empty())
1344                 {
1345                   ver = this->namepool_.add_with_length(version.c_str(),
1346                                                         version.length(),
1347                                                         true,
1348                                                         &ver_key);
1349                   is_default_version = true;
1350                 }
1351             }
1352         }
1353     }
1354
1355   Stringpool::Key name_key;
1356   name = this->namepool_.add(name, true, &name_key);
1357
1358   Sized_symbol<size>* res;
1359   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1360                               is_default_version, *sym, st_shndx,
1361                               is_ordinary, st_shndx);
1362
1363   if (is_forced_local)
1364     this->force_local(res);
1365
1366   return res;
1367 }
1368
1369 // Add all the symbols in a dynamic object to the hash table.
1370
1371 template<int size, bool big_endian>
1372 void
1373 Symbol_table::add_from_dynobj(
1374     Sized_dynobj<size, big_endian>* dynobj,
1375     const unsigned char* syms,
1376     size_t count,
1377     const char* sym_names,
1378     size_t sym_name_size,
1379     const unsigned char* versym,
1380     size_t versym_size,
1381     const std::vector<const char*>* version_map,
1382     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1383     size_t* defined)
1384 {
1385   *defined = 0;
1386
1387   gold_assert(size == parameters->target().get_size());
1388
1389   if (dynobj->just_symbols())
1390     {
1391       gold_error(_("--just-symbols does not make sense with a shared object"));
1392       return;
1393     }
1394
1395   // FIXME: For incremental links, we don't store version information,
1396   // so we need to ignore version symbols for now.
1397   if (parameters->incremental_update())
1398     versym = NULL;
1399
1400   if (versym != NULL && versym_size / 2 < count)
1401     {
1402       dynobj->error(_("too few symbol versions"));
1403       return;
1404     }
1405
1406   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1407
1408   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1409   // weak aliases.  This is necessary because if the dynamic object
1410   // provides the same variable under two names, one of which is a
1411   // weak definition, and the regular object refers to the weak
1412   // definition, we have to put both the weak definition and the
1413   // strong definition into the dynamic symbol table.  Given a weak
1414   // definition, the only way that we can find the corresponding
1415   // strong definition, if any, is to search the symbol table.
1416   std::vector<Sized_symbol<size>*> object_symbols;
1417
1418   const unsigned char* p = syms;
1419   const unsigned char* vs = versym;
1420   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1421     {
1422       elfcpp::Sym<size, big_endian> sym(p);
1423
1424       if (sympointers != NULL)
1425         (*sympointers)[i] = NULL;
1426
1427       // Ignore symbols with local binding or that have
1428       // internal or hidden visibility.
1429       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1430           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1431           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1432         continue;
1433
1434       // A protected symbol in a shared library must be treated as a
1435       // normal symbol when viewed from outside the shared library.
1436       // Implement this by overriding the visibility here.
1437       elfcpp::Sym<size, big_endian>* psym = &sym;
1438       unsigned char symbuf[sym_size];
1439       elfcpp::Sym<size, big_endian> sym2(symbuf);
1440       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1441         {
1442           memcpy(symbuf, p, sym_size);
1443           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1444           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1445           psym = &sym2;
1446         }
1447
1448       unsigned int st_name = psym->get_st_name();
1449       if (st_name >= sym_name_size)
1450         {
1451           dynobj->error(_("bad symbol name offset %u at %zu"),
1452                         st_name, i);
1453           continue;
1454         }
1455
1456       const char* name = sym_names + st_name;
1457
1458       bool is_ordinary;
1459       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1460                                                        &is_ordinary);
1461
1462       if (st_shndx != elfcpp::SHN_UNDEF)
1463         ++*defined;
1464
1465       Sized_symbol<size>* res;
1466
1467       if (versym == NULL)
1468         {
1469           Stringpool::Key name_key;
1470           name = this->namepool_.add(name, true, &name_key);
1471           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1472                                       false, *psym, st_shndx, is_ordinary,
1473                                       st_shndx);
1474         }
1475       else
1476         {
1477           // Read the version information.
1478
1479           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1480
1481           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1482           v &= elfcpp::VERSYM_VERSION;
1483
1484           // The Sun documentation says that V can be VER_NDX_LOCAL,
1485           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1486           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1487           // The old GNU linker will happily generate VER_NDX_LOCAL
1488           // for an undefined symbol.  I don't know what the Sun
1489           // linker will generate.
1490
1491           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1492               && st_shndx != elfcpp::SHN_UNDEF)
1493             {
1494               // This symbol should not be visible outside the object.
1495               continue;
1496             }
1497
1498           // At this point we are definitely going to add this symbol.
1499           Stringpool::Key name_key;
1500           name = this->namepool_.add(name, true, &name_key);
1501
1502           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1503               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1504             {
1505               // This symbol does not have a version.
1506               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1507                                           false, *psym, st_shndx, is_ordinary,
1508                                           st_shndx);
1509             }
1510           else
1511             {
1512               if (v >= version_map->size())
1513                 {
1514                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1515                                 i, v);
1516                   continue;
1517                 }
1518
1519               const char* version = (*version_map)[v];
1520               if (version == NULL)
1521                 {
1522                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1523                                 i, v);
1524                   continue;
1525                 }
1526
1527               Stringpool::Key version_key;
1528               version = this->namepool_.add(version, true, &version_key);
1529
1530               // If this is an absolute symbol, and the version name
1531               // and symbol name are the same, then this is the
1532               // version definition symbol.  These symbols exist to
1533               // support using -u to pull in particular versions.  We
1534               // do not want to record a version for them.
1535               if (st_shndx == elfcpp::SHN_ABS
1536                   && !is_ordinary
1537                   && name_key == version_key)
1538                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1539                                             false, *psym, st_shndx, is_ordinary,
1540                                             st_shndx);
1541               else
1542                 {
1543                   const bool is_default_version =
1544                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1545                   res = this->add_from_object(dynobj, name, name_key, version,
1546                                               version_key, is_default_version,
1547                                               *psym, st_shndx,
1548                                               is_ordinary, st_shndx);
1549                 }
1550             }
1551         }
1552
1553       // Note that it is possible that RES was overridden by an
1554       // earlier object, in which case it can't be aliased here.
1555       if (st_shndx != elfcpp::SHN_UNDEF
1556           && is_ordinary
1557           && psym->get_st_type() == elfcpp::STT_OBJECT
1558           && res->source() == Symbol::FROM_OBJECT
1559           && res->object() == dynobj)
1560         object_symbols.push_back(res);
1561
1562       if (sympointers != NULL)
1563         (*sympointers)[i] = res;
1564     }
1565
1566   this->record_weak_aliases(&object_symbols);
1567 }
1568
1569 // Add a symbol from a incremental object file.
1570
1571 template<int size, bool big_endian>
1572 Sized_symbol<size>*
1573 Symbol_table::add_from_incrobj(
1574     Object* obj,
1575     const char* name,
1576     const char* ver,
1577     elfcpp::Sym<size, big_endian>* sym)
1578 {
1579   unsigned int st_shndx = sym->get_st_shndx();
1580   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1581
1582   Stringpool::Key ver_key = 0;
1583   bool is_default_version = false;
1584   bool is_forced_local = false;
1585
1586   Stringpool::Key name_key;
1587   name = this->namepool_.add(name, true, &name_key);
1588
1589   Sized_symbol<size>* res;
1590   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1591                               is_default_version, *sym, st_shndx,
1592                               is_ordinary, st_shndx);
1593
1594   if (is_forced_local)
1595     this->force_local(res);
1596
1597   return res;
1598 }
1599
1600 // This is used to sort weak aliases.  We sort them first by section
1601 // index, then by offset, then by weak ahead of strong.
1602
1603 template<int size>
1604 class Weak_alias_sorter
1605 {
1606  public:
1607   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1608 };
1609
1610 template<int size>
1611 bool
1612 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1613                                     const Sized_symbol<size>* s2) const
1614 {
1615   bool is_ordinary;
1616   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1617   gold_assert(is_ordinary);
1618   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1619   gold_assert(is_ordinary);
1620   if (s1_shndx != s2_shndx)
1621     return s1_shndx < s2_shndx;
1622
1623   if (s1->value() != s2->value())
1624     return s1->value() < s2->value();
1625   if (s1->binding() != s2->binding())
1626     {
1627       if (s1->binding() == elfcpp::STB_WEAK)
1628         return true;
1629       if (s2->binding() == elfcpp::STB_WEAK)
1630         return false;
1631     }
1632   return std::string(s1->name()) < std::string(s2->name());
1633 }
1634
1635 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1636 // for any weak aliases, and record them so that if we add the weak
1637 // alias to the dynamic symbol table, we also add the corresponding
1638 // strong symbol.
1639
1640 template<int size>
1641 void
1642 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1643 {
1644   // Sort the vector by section index, then by offset, then by weak
1645   // ahead of strong.
1646   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1647
1648   // Walk through the vector.  For each weak definition, record
1649   // aliases.
1650   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1651          symbols->begin();
1652        p != symbols->end();
1653        ++p)
1654     {
1655       if ((*p)->binding() != elfcpp::STB_WEAK)
1656         continue;
1657
1658       // Build a circular list of weak aliases.  Each symbol points to
1659       // the next one in the circular list.
1660
1661       Sized_symbol<size>* from_sym = *p;
1662       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1663       for (q = p + 1; q != symbols->end(); ++q)
1664         {
1665           bool dummy;
1666           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1667               || (*q)->value() != from_sym->value())
1668             break;
1669
1670           this->weak_aliases_[from_sym] = *q;
1671           from_sym->set_has_alias();
1672           from_sym = *q;
1673         }
1674
1675       if (from_sym != *p)
1676         {
1677           this->weak_aliases_[from_sym] = *p;
1678           from_sym->set_has_alias();
1679         }
1680
1681       p = q - 1;
1682     }
1683 }
1684
1685 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1686 // true, then only create the symbol if there is a reference to it.
1687 // If this does not return NULL, it sets *POLDSYM to the existing
1688 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1689 // resolve the newly created symbol to the old one.  This
1690 // canonicalizes *PNAME and *PVERSION.
1691
1692 template<int size, bool big_endian>
1693 Sized_symbol<size>*
1694 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1695                                     bool only_if_ref,
1696                                     Sized_symbol<size>** poldsym,
1697                                     bool* resolve_oldsym)
1698 {
1699   *resolve_oldsym = false;
1700   *poldsym = NULL;
1701
1702   // If the caller didn't give us a version, see if we get one from
1703   // the version script.
1704   std::string v;
1705   bool is_default_version = false;
1706   if (*pversion == NULL)
1707     {
1708       bool is_global;
1709       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1710         {
1711           if (is_global && !v.empty())
1712             {
1713               *pversion = v.c_str();
1714               // If we get the version from a version script, then we
1715               // are also the default version.
1716               is_default_version = true;
1717             }
1718         }
1719     }
1720
1721   Symbol* oldsym;
1722   Sized_symbol<size>* sym;
1723
1724   bool add_to_table = false;
1725   typename Symbol_table_type::iterator add_loc = this->table_.end();
1726   bool add_def_to_table = false;
1727   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1728
1729   if (only_if_ref)
1730     {
1731       oldsym = this->lookup(*pname, *pversion);
1732       if (oldsym == NULL && is_default_version)
1733         oldsym = this->lookup(*pname, NULL);
1734       if (oldsym == NULL || !oldsym->is_undefined())
1735         return NULL;
1736
1737       *pname = oldsym->name();
1738       if (is_default_version)
1739         *pversion = this->namepool_.add(*pversion, true, NULL);
1740       else
1741         *pversion = oldsym->version();
1742     }
1743   else
1744     {
1745       // Canonicalize NAME and VERSION.
1746       Stringpool::Key name_key;
1747       *pname = this->namepool_.add(*pname, true, &name_key);
1748
1749       Stringpool::Key version_key = 0;
1750       if (*pversion != NULL)
1751         *pversion = this->namepool_.add(*pversion, true, &version_key);
1752
1753       Symbol* const snull = NULL;
1754       std::pair<typename Symbol_table_type::iterator, bool> ins =
1755         this->table_.insert(std::make_pair(std::make_pair(name_key,
1756                                                           version_key),
1757                                            snull));
1758
1759       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1760         std::make_pair(this->table_.end(), false);
1761       if (is_default_version)
1762         {
1763           const Stringpool::Key vnull = 0;
1764           insdefault =
1765             this->table_.insert(std::make_pair(std::make_pair(name_key,
1766                                                               vnull),
1767                                                snull));
1768         }
1769
1770       if (!ins.second)
1771         {
1772           // We already have a symbol table entry for NAME/VERSION.
1773           oldsym = ins.first->second;
1774           gold_assert(oldsym != NULL);
1775
1776           if (is_default_version)
1777             {
1778               Sized_symbol<size>* soldsym =
1779                 this->get_sized_symbol<size>(oldsym);
1780               this->define_default_version<size, big_endian>(soldsym,
1781                                                              insdefault.second,
1782                                                              insdefault.first);
1783             }
1784         }
1785       else
1786         {
1787           // We haven't seen this symbol before.
1788           gold_assert(ins.first->second == NULL);
1789
1790           add_to_table = true;
1791           add_loc = ins.first;
1792
1793           if (is_default_version && !insdefault.second)
1794             {
1795               // We are adding NAME/VERSION, and it is the default
1796               // version.  We already have an entry for NAME/NULL.
1797               oldsym = insdefault.first->second;
1798               *resolve_oldsym = true;
1799             }
1800           else
1801             {
1802               oldsym = NULL;
1803
1804               if (is_default_version)
1805                 {
1806                   add_def_to_table = true;
1807                   add_def_loc = insdefault.first;
1808                 }
1809             }
1810         }
1811     }
1812
1813   const Target& target = parameters->target();
1814   if (!target.has_make_symbol())
1815     sym = new Sized_symbol<size>();
1816   else
1817     {
1818       Sized_target<size, big_endian>* sized_target =
1819         parameters->sized_target<size, big_endian>();
1820       sym = sized_target->make_symbol();
1821       if (sym == NULL)
1822         return NULL;
1823     }
1824
1825   if (add_to_table)
1826     add_loc->second = sym;
1827   else
1828     gold_assert(oldsym != NULL);
1829
1830   if (add_def_to_table)
1831     add_def_loc->second = sym;
1832
1833   *poldsym = this->get_sized_symbol<size>(oldsym);
1834
1835   return sym;
1836 }
1837
1838 // Define a symbol based on an Output_data.
1839
1840 Symbol*
1841 Symbol_table::define_in_output_data(const char* name,
1842                                     const char* version,
1843                                     Defined defined,
1844                                     Output_data* od,
1845                                     uint64_t value,
1846                                     uint64_t symsize,
1847                                     elfcpp::STT type,
1848                                     elfcpp::STB binding,
1849                                     elfcpp::STV visibility,
1850                                     unsigned char nonvis,
1851                                     bool offset_is_from_end,
1852                                     bool only_if_ref)
1853 {
1854   if (parameters->target().get_size() == 32)
1855     {
1856 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1857       return this->do_define_in_output_data<32>(name, version, defined, od,
1858                                                 value, symsize, type, binding,
1859                                                 visibility, nonvis,
1860                                                 offset_is_from_end,
1861                                                 only_if_ref);
1862 #else
1863       gold_unreachable();
1864 #endif
1865     }
1866   else if (parameters->target().get_size() == 64)
1867     {
1868 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1869       return this->do_define_in_output_data<64>(name, version, defined, od,
1870                                                 value, symsize, type, binding,
1871                                                 visibility, nonvis,
1872                                                 offset_is_from_end,
1873                                                 only_if_ref);
1874 #else
1875       gold_unreachable();
1876 #endif
1877     }
1878   else
1879     gold_unreachable();
1880 }
1881
1882 // Define a symbol in an Output_data, sized version.
1883
1884 template<int size>
1885 Sized_symbol<size>*
1886 Symbol_table::do_define_in_output_data(
1887     const char* name,
1888     const char* version,
1889     Defined defined,
1890     Output_data* od,
1891     typename elfcpp::Elf_types<size>::Elf_Addr value,
1892     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1893     elfcpp::STT type,
1894     elfcpp::STB binding,
1895     elfcpp::STV visibility,
1896     unsigned char nonvis,
1897     bool offset_is_from_end,
1898     bool only_if_ref)
1899 {
1900   Sized_symbol<size>* sym;
1901   Sized_symbol<size>* oldsym;
1902   bool resolve_oldsym;
1903
1904   if (parameters->target().is_big_endian())
1905     {
1906 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1907       sym = this->define_special_symbol<size, true>(&name, &version,
1908                                                     only_if_ref, &oldsym,
1909                                                     &resolve_oldsym);
1910 #else
1911       gold_unreachable();
1912 #endif
1913     }
1914   else
1915     {
1916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1917       sym = this->define_special_symbol<size, false>(&name, &version,
1918                                                      only_if_ref, &oldsym,
1919                                                      &resolve_oldsym);
1920 #else
1921       gold_unreachable();
1922 #endif
1923     }
1924
1925   if (sym == NULL)
1926     return NULL;
1927
1928   sym->init_output_data(name, version, od, value, symsize, type, binding,
1929                         visibility, nonvis, offset_is_from_end,
1930                         defined == PREDEFINED);
1931
1932   if (oldsym == NULL)
1933     {
1934       if (binding == elfcpp::STB_LOCAL
1935           || this->version_script_.symbol_is_local(name))
1936         this->force_local(sym);
1937       else if (version != NULL)
1938         sym->set_is_default();
1939       return sym;
1940     }
1941
1942   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1943     this->override_with_special(oldsym, sym);
1944
1945   if (resolve_oldsym)
1946     return sym;
1947   else
1948     {
1949       delete sym;
1950       return oldsym;
1951     }
1952 }
1953
1954 // Define a symbol based on an Output_segment.
1955
1956 Symbol*
1957 Symbol_table::define_in_output_segment(const char* name,
1958                                        const char* version,
1959                                        Defined defined,
1960                                        Output_segment* os,
1961                                        uint64_t value,
1962                                        uint64_t symsize,
1963                                        elfcpp::STT type,
1964                                        elfcpp::STB binding,
1965                                        elfcpp::STV visibility,
1966                                        unsigned char nonvis,
1967                                        Symbol::Segment_offset_base offset_base,
1968                                        bool only_if_ref)
1969 {
1970   if (parameters->target().get_size() == 32)
1971     {
1972 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1973       return this->do_define_in_output_segment<32>(name, version, defined, os,
1974                                                    value, symsize, type,
1975                                                    binding, visibility, nonvis,
1976                                                    offset_base, only_if_ref);
1977 #else
1978       gold_unreachable();
1979 #endif
1980     }
1981   else if (parameters->target().get_size() == 64)
1982     {
1983 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1984       return this->do_define_in_output_segment<64>(name, version, defined, os,
1985                                                    value, symsize, type,
1986                                                    binding, visibility, nonvis,
1987                                                    offset_base, only_if_ref);
1988 #else
1989       gold_unreachable();
1990 #endif
1991     }
1992   else
1993     gold_unreachable();
1994 }
1995
1996 // Define a symbol in an Output_segment, sized version.
1997
1998 template<int size>
1999 Sized_symbol<size>*
2000 Symbol_table::do_define_in_output_segment(
2001     const char* name,
2002     const char* version,
2003     Defined defined,
2004     Output_segment* os,
2005     typename elfcpp::Elf_types<size>::Elf_Addr value,
2006     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2007     elfcpp::STT type,
2008     elfcpp::STB binding,
2009     elfcpp::STV visibility,
2010     unsigned char nonvis,
2011     Symbol::Segment_offset_base offset_base,
2012     bool only_if_ref)
2013 {
2014   Sized_symbol<size>* sym;
2015   Sized_symbol<size>* oldsym;
2016   bool resolve_oldsym;
2017
2018   if (parameters->target().is_big_endian())
2019     {
2020 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2021       sym = this->define_special_symbol<size, true>(&name, &version,
2022                                                     only_if_ref, &oldsym,
2023                                                     &resolve_oldsym);
2024 #else
2025       gold_unreachable();
2026 #endif
2027     }
2028   else
2029     {
2030 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2031       sym = this->define_special_symbol<size, false>(&name, &version,
2032                                                      only_if_ref, &oldsym,
2033                                                      &resolve_oldsym);
2034 #else
2035       gold_unreachable();
2036 #endif
2037     }
2038
2039   if (sym == NULL)
2040     return NULL;
2041
2042   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2043                            visibility, nonvis, offset_base,
2044                            defined == PREDEFINED);
2045
2046   if (oldsym == NULL)
2047     {
2048       if (binding == elfcpp::STB_LOCAL
2049           || this->version_script_.symbol_is_local(name))
2050         this->force_local(sym);
2051       else if (version != NULL)
2052         sym->set_is_default();
2053       return sym;
2054     }
2055
2056   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2057     this->override_with_special(oldsym, sym);
2058
2059   if (resolve_oldsym)
2060     return sym;
2061   else
2062     {
2063       delete sym;
2064       return oldsym;
2065     }
2066 }
2067
2068 // Define a special symbol with a constant value.  It is a multiple
2069 // definition error if this symbol is already defined.
2070
2071 Symbol*
2072 Symbol_table::define_as_constant(const char* name,
2073                                  const char* version,
2074                                  Defined defined,
2075                                  uint64_t value,
2076                                  uint64_t symsize,
2077                                  elfcpp::STT type,
2078                                  elfcpp::STB binding,
2079                                  elfcpp::STV visibility,
2080                                  unsigned char nonvis,
2081                                  bool only_if_ref,
2082                                  bool force_override)
2083 {
2084   if (parameters->target().get_size() == 32)
2085     {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2087       return this->do_define_as_constant<32>(name, version, defined, value,
2088                                              symsize, type, binding,
2089                                              visibility, nonvis, only_if_ref,
2090                                              force_override);
2091 #else
2092       gold_unreachable();
2093 #endif
2094     }
2095   else if (parameters->target().get_size() == 64)
2096     {
2097 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2098       return this->do_define_as_constant<64>(name, version, defined, value,
2099                                              symsize, type, binding,
2100                                              visibility, nonvis, only_if_ref,
2101                                              force_override);
2102 #else
2103       gold_unreachable();
2104 #endif
2105     }
2106   else
2107     gold_unreachable();
2108 }
2109
2110 // Define a symbol as a constant, sized version.
2111
2112 template<int size>
2113 Sized_symbol<size>*
2114 Symbol_table::do_define_as_constant(
2115     const char* name,
2116     const char* version,
2117     Defined defined,
2118     typename elfcpp::Elf_types<size>::Elf_Addr value,
2119     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2120     elfcpp::STT type,
2121     elfcpp::STB binding,
2122     elfcpp::STV visibility,
2123     unsigned char nonvis,
2124     bool only_if_ref,
2125     bool force_override)
2126 {
2127   Sized_symbol<size>* sym;
2128   Sized_symbol<size>* oldsym;
2129   bool resolve_oldsym;
2130
2131   if (parameters->target().is_big_endian())
2132     {
2133 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2134       sym = this->define_special_symbol<size, true>(&name, &version,
2135                                                     only_if_ref, &oldsym,
2136                                                     &resolve_oldsym);
2137 #else
2138       gold_unreachable();
2139 #endif
2140     }
2141   else
2142     {
2143 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2144       sym = this->define_special_symbol<size, false>(&name, &version,
2145                                                      only_if_ref, &oldsym,
2146                                                      &resolve_oldsym);
2147 #else
2148       gold_unreachable();
2149 #endif
2150     }
2151
2152   if (sym == NULL)
2153     return NULL;
2154
2155   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2156                      nonvis, defined == PREDEFINED);
2157
2158   if (oldsym == NULL)
2159     {
2160       // Version symbols are absolute symbols with name == version.
2161       // We don't want to force them to be local.
2162       if ((version == NULL
2163            || name != version
2164            || value != 0)
2165           && (binding == elfcpp::STB_LOCAL
2166               || this->version_script_.symbol_is_local(name)))
2167         this->force_local(sym);
2168       else if (version != NULL
2169                && (name != version || value != 0))
2170         sym->set_is_default();
2171       return sym;
2172     }
2173
2174   if (force_override
2175       || Symbol_table::should_override_with_special(oldsym, type, defined))
2176     this->override_with_special(oldsym, sym);
2177
2178   if (resolve_oldsym)
2179     return sym;
2180   else
2181     {
2182       delete sym;
2183       return oldsym;
2184     }
2185 }
2186
2187 // Define a set of symbols in output sections.
2188
2189 void
2190 Symbol_table::define_symbols(const Layout* layout, int count,
2191                              const Define_symbol_in_section* p,
2192                              bool only_if_ref)
2193 {
2194   for (int i = 0; i < count; ++i, ++p)
2195     {
2196       Output_section* os = layout->find_output_section(p->output_section);
2197       if (os != NULL)
2198         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2199                                     p->size, p->type, p->binding,
2200                                     p->visibility, p->nonvis,
2201                                     p->offset_is_from_end,
2202                                     only_if_ref || p->only_if_ref);
2203       else
2204         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2205                                  p->type, p->binding, p->visibility, p->nonvis,
2206                                  only_if_ref || p->only_if_ref,
2207                                  false);
2208     }
2209 }
2210
2211 // Define a set of symbols in output segments.
2212
2213 void
2214 Symbol_table::define_symbols(const Layout* layout, int count,
2215                              const Define_symbol_in_segment* p,
2216                              bool only_if_ref)
2217 {
2218   for (int i = 0; i < count; ++i, ++p)
2219     {
2220       Output_segment* os = layout->find_output_segment(p->segment_type,
2221                                                        p->segment_flags_set,
2222                                                        p->segment_flags_clear);
2223       if (os != NULL)
2224         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2225                                        p->size, p->type, p->binding,
2226                                        p->visibility, p->nonvis,
2227                                        p->offset_base,
2228                                        only_if_ref || p->only_if_ref);
2229       else
2230         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2231                                  p->type, p->binding, p->visibility, p->nonvis,
2232                                  only_if_ref || p->only_if_ref,
2233                                  false);
2234     }
2235 }
2236
2237 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2238 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2239 // the offset within POSD.
2240
2241 template<int size>
2242 void
2243 Symbol_table::define_with_copy_reloc(
2244     Sized_symbol<size>* csym,
2245     Output_data* posd,
2246     typename elfcpp::Elf_types<size>::Elf_Addr value)
2247 {
2248   gold_assert(csym->is_from_dynobj());
2249   gold_assert(!csym->is_copied_from_dynobj());
2250   Object* object = csym->object();
2251   gold_assert(object->is_dynamic());
2252   Dynobj* dynobj = static_cast<Dynobj*>(object);
2253
2254   // Our copied variable has to override any variable in a shared
2255   // library.
2256   elfcpp::STB binding = csym->binding();
2257   if (binding == elfcpp::STB_WEAK)
2258     binding = elfcpp::STB_GLOBAL;
2259
2260   this->define_in_output_data(csym->name(), csym->version(), COPY,
2261                               posd, value, csym->symsize(),
2262                               csym->type(), binding,
2263                               csym->visibility(), csym->nonvis(),
2264                               false, false);
2265
2266   csym->set_is_copied_from_dynobj();
2267   csym->set_needs_dynsym_entry();
2268
2269   this->copied_symbol_dynobjs_[csym] = dynobj;
2270
2271   // We have now defined all aliases, but we have not entered them all
2272   // in the copied_symbol_dynobjs_ map.
2273   if (csym->has_alias())
2274     {
2275       Symbol* sym = csym;
2276       while (true)
2277         {
2278           sym = this->weak_aliases_[sym];
2279           if (sym == csym)
2280             break;
2281           gold_assert(sym->output_data() == posd);
2282
2283           sym->set_is_copied_from_dynobj();
2284           this->copied_symbol_dynobjs_[sym] = dynobj;
2285         }
2286     }
2287 }
2288
2289 // SYM is defined using a COPY reloc.  Return the dynamic object where
2290 // the original definition was found.
2291
2292 Dynobj*
2293 Symbol_table::get_copy_source(const Symbol* sym) const
2294 {
2295   gold_assert(sym->is_copied_from_dynobj());
2296   Copied_symbol_dynobjs::const_iterator p =
2297     this->copied_symbol_dynobjs_.find(sym);
2298   gold_assert(p != this->copied_symbol_dynobjs_.end());
2299   return p->second;
2300 }
2301
2302 // Add any undefined symbols named on the command line.
2303
2304 void
2305 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2306 {
2307   if (parameters->options().any_undefined()
2308       || layout->script_options()->any_unreferenced())
2309     {
2310       if (parameters->target().get_size() == 32)
2311         {
2312 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2313           this->do_add_undefined_symbols_from_command_line<32>(layout);
2314 #else
2315           gold_unreachable();
2316 #endif
2317         }
2318       else if (parameters->target().get_size() == 64)
2319         {
2320 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2321           this->do_add_undefined_symbols_from_command_line<64>(layout);
2322 #else
2323           gold_unreachable();
2324 #endif
2325         }
2326       else
2327         gold_unreachable();
2328     }
2329 }
2330
2331 template<int size>
2332 void
2333 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2334 {
2335   for (options::String_set::const_iterator p =
2336          parameters->options().undefined_begin();
2337        p != parameters->options().undefined_end();
2338        ++p)
2339     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2340
2341   for (options::String_set::const_iterator p =
2342          parameters->options().export_dynamic_symbol_begin();
2343        p != parameters->options().export_dynamic_symbol_end();
2344        ++p)
2345     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2346
2347   for (Script_options::referenced_const_iterator p =
2348          layout->script_options()->referenced_begin();
2349        p != layout->script_options()->referenced_end();
2350        ++p)
2351     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2352 }
2353
2354 template<int size>
2355 void
2356 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2357 {
2358   if (this->lookup(name) != NULL)
2359     return;
2360
2361   const char* version = NULL;
2362
2363   Sized_symbol<size>* sym;
2364   Sized_symbol<size>* oldsym;
2365   bool resolve_oldsym;
2366   if (parameters->target().is_big_endian())
2367     {
2368 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2369       sym = this->define_special_symbol<size, true>(&name, &version,
2370                                                     false, &oldsym,
2371                                                     &resolve_oldsym);
2372 #else
2373       gold_unreachable();
2374 #endif
2375     }
2376   else
2377     {
2378 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2379       sym = this->define_special_symbol<size, false>(&name, &version,
2380                                                      false, &oldsym,
2381                                                      &resolve_oldsym);
2382 #else
2383       gold_unreachable();
2384 #endif
2385     }
2386
2387   gold_assert(oldsym == NULL);
2388
2389   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2390                       elfcpp::STV_DEFAULT, 0);
2391   ++this->saw_undefined_;
2392 }
2393
2394 // Set the dynamic symbol indexes.  INDEX is the index of the first
2395 // global dynamic symbol.  Pointers to the symbols are stored into the
2396 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2397 // updated dynamic symbol index.
2398
2399 unsigned int
2400 Symbol_table::set_dynsym_indexes(unsigned int index,
2401                                  std::vector<Symbol*>* syms,
2402                                  Stringpool* dynpool,
2403                                  Versions* versions)
2404 {
2405   std::vector<Symbol*> as_needed_sym;
2406
2407   // Allow a target to set dynsym indexes.
2408   if (parameters->target().has_custom_set_dynsym_indexes())
2409     {
2410       std::vector<Symbol*> dyn_symbols;
2411       for (Symbol_table_type::iterator p = this->table_.begin();
2412            p != this->table_.end();
2413            ++p)
2414         {
2415           Symbol* sym = p->second;
2416           if (!sym->should_add_dynsym_entry(this))
2417             sym->set_dynsym_index(-1U);
2418           else
2419             dyn_symbols.push_back(sym);
2420         }
2421
2422       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2423                                                      dynpool, versions, this);
2424     }
2425
2426   for (Symbol_table_type::iterator p = this->table_.begin();
2427        p != this->table_.end();
2428        ++p)
2429     {
2430       Symbol* sym = p->second;
2431
2432       // Note that SYM may already have a dynamic symbol index, since
2433       // some symbols appear more than once in the symbol table, with
2434       // and without a version.
2435
2436       if (!sym->should_add_dynsym_entry(this))
2437         sym->set_dynsym_index(-1U);
2438       else if (!sym->has_dynsym_index())
2439         {
2440           sym->set_dynsym_index(index);
2441           ++index;
2442           syms->push_back(sym);
2443           dynpool->add(sym->name(), false, NULL);
2444
2445           // If the symbol is defined in a dynamic object and is
2446           // referenced strongly in a regular object, then mark the
2447           // dynamic object as needed.  This is used to implement
2448           // --as-needed.
2449           if (sym->is_from_dynobj()
2450               && sym->in_reg()
2451               && !sym->is_undef_binding_weak())
2452             sym->object()->set_is_needed();
2453
2454           // Record any version information, except those from
2455           // as-needed libraries not seen to be needed.  Note that the
2456           // is_needed state for such libraries can change in this loop.
2457           if (sym->version() != NULL)
2458             {
2459               if (!sym->is_from_dynobj()
2460                   || !sym->object()->as_needed()
2461                   || sym->object()->is_needed())
2462                 versions->record_version(this, dynpool, sym);
2463               else
2464                 as_needed_sym.push_back(sym);
2465             }
2466         }
2467     }
2468
2469   // Process version information for symbols from as-needed libraries.
2470   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2471        p != as_needed_sym.end();
2472        ++p)
2473     {
2474       Symbol* sym = *p;
2475
2476       if (sym->object()->is_needed())
2477         versions->record_version(this, dynpool, sym);
2478       else
2479         sym->clear_version();
2480     }
2481
2482   // Finish up the versions.  In some cases this may add new dynamic
2483   // symbols.
2484   index = versions->finalize(this, index, syms);
2485
2486   return index;
2487 }
2488
2489 // Set the final values for all the symbols.  The index of the first
2490 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2491 // file offset OFF.  Add their names to POOL.  Return the new file
2492 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2493
2494 off_t
2495 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2496                        size_t dyncount, Stringpool* pool,
2497                        unsigned int* plocal_symcount)
2498 {
2499   off_t ret;
2500
2501   gold_assert(*plocal_symcount != 0);
2502   this->first_global_index_ = *plocal_symcount;
2503
2504   this->dynamic_offset_ = dynoff;
2505   this->first_dynamic_global_index_ = dyn_global_index;
2506   this->dynamic_count_ = dyncount;
2507
2508   if (parameters->target().get_size() == 32)
2509     {
2510 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2511       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2512 #else
2513       gold_unreachable();
2514 #endif
2515     }
2516   else if (parameters->target().get_size() == 64)
2517     {
2518 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2519       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2520 #else
2521       gold_unreachable();
2522 #endif
2523     }
2524   else
2525     gold_unreachable();
2526
2527   // Now that we have the final symbol table, we can reliably note
2528   // which symbols should get warnings.
2529   this->warnings_.note_warnings(this);
2530
2531   return ret;
2532 }
2533
2534 // SYM is going into the symbol table at *PINDEX.  Add the name to
2535 // POOL, update *PINDEX and *POFF.
2536
2537 template<int size>
2538 void
2539 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2540                                   unsigned int* pindex, off_t* poff)
2541 {
2542   sym->set_symtab_index(*pindex);
2543   if (sym->version() == NULL || !parameters->options().relocatable())
2544     pool->add(sym->name(), false, NULL);
2545   else
2546     pool->add(sym->versioned_name(), true, NULL);
2547   ++*pindex;
2548   *poff += elfcpp::Elf_sizes<size>::sym_size;
2549 }
2550
2551 // Set the final value for all the symbols.  This is called after
2552 // Layout::finalize, so all the output sections have their final
2553 // address.
2554
2555 template<int size>
2556 off_t
2557 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2558                              unsigned int* plocal_symcount)
2559 {
2560   off = align_address(off, size >> 3);
2561   this->offset_ = off;
2562
2563   unsigned int index = *plocal_symcount;
2564   const unsigned int orig_index = index;
2565
2566   // First do all the symbols which have been forced to be local, as
2567   // they must appear before all global symbols.
2568   for (Forced_locals::iterator p = this->forced_locals_.begin();
2569        p != this->forced_locals_.end();
2570        ++p)
2571     {
2572       Symbol* sym = *p;
2573       gold_assert(sym->is_forced_local());
2574       if (this->sized_finalize_symbol<size>(sym))
2575         {
2576           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2577           ++*plocal_symcount;
2578         }
2579     }
2580
2581   // Now do all the remaining symbols.
2582   for (Symbol_table_type::iterator p = this->table_.begin();
2583        p != this->table_.end();
2584        ++p)
2585     {
2586       Symbol* sym = p->second;
2587       if (this->sized_finalize_symbol<size>(sym))
2588         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2589     }
2590
2591   this->output_count_ = index - orig_index;
2592
2593   return off;
2594 }
2595
2596 // Compute the final value of SYM and store status in location PSTATUS.
2597 // During relaxation, this may be called multiple times for a symbol to
2598 // compute its would-be final value in each relaxation pass.
2599
2600 template<int size>
2601 typename Sized_symbol<size>::Value_type
2602 Symbol_table::compute_final_value(
2603     const Sized_symbol<size>* sym,
2604     Compute_final_value_status* pstatus) const
2605 {
2606   typedef typename Sized_symbol<size>::Value_type Value_type;
2607   Value_type value;
2608
2609   switch (sym->source())
2610     {
2611     case Symbol::FROM_OBJECT:
2612       {
2613         bool is_ordinary;
2614         unsigned int shndx = sym->shndx(&is_ordinary);
2615
2616         if (!is_ordinary
2617             && shndx != elfcpp::SHN_ABS
2618             && !Symbol::is_common_shndx(shndx))
2619           {
2620             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2621             return 0;
2622           }
2623
2624         Object* symobj = sym->object();
2625         if (symobj->is_dynamic())
2626           {
2627             value = 0;
2628             shndx = elfcpp::SHN_UNDEF;
2629           }
2630         else if (symobj->pluginobj() != NULL)
2631           {
2632             value = 0;
2633             shndx = elfcpp::SHN_UNDEF;
2634           }
2635         else if (shndx == elfcpp::SHN_UNDEF)
2636           value = 0;
2637         else if (!is_ordinary
2638                  && (shndx == elfcpp::SHN_ABS
2639                      || Symbol::is_common_shndx(shndx)))
2640           value = sym->value();
2641         else
2642           {
2643             Relobj* relobj = static_cast<Relobj*>(symobj);
2644             Output_section* os = relobj->output_section(shndx);
2645
2646             if (this->is_section_folded(relobj, shndx))
2647               {
2648                 gold_assert(os == NULL);
2649                 // Get the os of the section it is folded onto.
2650                 Section_id folded = this->icf_->get_folded_section(relobj,
2651                                                                    shndx);
2652                 gold_assert(folded.first != NULL);
2653                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2654                 unsigned folded_shndx = folded.second;
2655
2656                 os = folded_obj->output_section(folded_shndx);  
2657                 gold_assert(os != NULL);
2658
2659                 // Replace (relobj, shndx) with canonical ICF input section.
2660                 shndx = folded_shndx;
2661                 relobj = folded_obj;
2662               }
2663
2664             uint64_t secoff64 = relobj->output_section_offset(shndx);
2665             if (os == NULL)
2666               {
2667                 bool static_or_reloc = (parameters->doing_static_link() ||
2668                                         parameters->options().relocatable());
2669                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2670
2671                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2672                 return 0;
2673               }
2674
2675             if (secoff64 == -1ULL)
2676               {
2677                 // The section needs special handling (e.g., a merge section).
2678
2679                 value = os->output_address(relobj, shndx, sym->value());
2680               }
2681             else
2682               {
2683                 Value_type secoff =
2684                   convert_types<Value_type, uint64_t>(secoff64);
2685                 if (sym->type() == elfcpp::STT_TLS)
2686                   value = sym->value() + os->tls_offset() + secoff;
2687                 else
2688                   value = sym->value() + os->address() + secoff;
2689               }
2690           }
2691       }
2692       break;
2693
2694     case Symbol::IN_OUTPUT_DATA:
2695       {
2696         Output_data* od = sym->output_data();
2697         value = sym->value();
2698         if (sym->type() != elfcpp::STT_TLS)
2699           value += od->address();
2700         else
2701           {
2702             Output_section* os = od->output_section();
2703             gold_assert(os != NULL);
2704             value += os->tls_offset() + (od->address() - os->address());
2705           }
2706         if (sym->offset_is_from_end())
2707           value += od->data_size();
2708       }
2709       break;
2710
2711     case Symbol::IN_OUTPUT_SEGMENT:
2712       {
2713         Output_segment* os = sym->output_segment();
2714         value = sym->value();
2715         if (sym->type() != elfcpp::STT_TLS)
2716           value += os->vaddr();
2717         switch (sym->offset_base())
2718           {
2719           case Symbol::SEGMENT_START:
2720             break;
2721           case Symbol::SEGMENT_END:
2722             value += os->memsz();
2723             break;
2724           case Symbol::SEGMENT_BSS:
2725             value += os->filesz();
2726             break;
2727           default:
2728             gold_unreachable();
2729           }
2730       }
2731       break;
2732
2733     case Symbol::IS_CONSTANT:
2734       value = sym->value();
2735       break;
2736
2737     case Symbol::IS_UNDEFINED:
2738       value = 0;
2739       break;
2740
2741     default:
2742       gold_unreachable();
2743     }
2744
2745   *pstatus = CFVS_OK;
2746   return value;
2747 }
2748
2749 // Finalize the symbol SYM.  This returns true if the symbol should be
2750 // added to the symbol table, false otherwise.
2751
2752 template<int size>
2753 bool
2754 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2755 {
2756   typedef typename Sized_symbol<size>::Value_type Value_type;
2757
2758   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2759
2760   // The default version of a symbol may appear twice in the symbol
2761   // table.  We only need to finalize it once.
2762   if (sym->has_symtab_index())
2763     return false;
2764
2765   if (!sym->in_reg())
2766     {
2767       gold_assert(!sym->has_symtab_index());
2768       sym->set_symtab_index(-1U);
2769       gold_assert(sym->dynsym_index() == -1U);
2770       return false;
2771     }
2772
2773   // If the symbol is only present on plugin files, the plugin decided we
2774   // don't need it.
2775   if (!sym->in_real_elf())
2776     {
2777       gold_assert(!sym->has_symtab_index());
2778       sym->set_symtab_index(-1U);
2779       return false;
2780     }
2781
2782   // Compute final symbol value.
2783   Compute_final_value_status status;
2784   Value_type value = this->compute_final_value(sym, &status);
2785
2786   switch (status)
2787     {
2788     case CFVS_OK:
2789       break;
2790     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2791       {
2792         bool is_ordinary;
2793         unsigned int shndx = sym->shndx(&is_ordinary);
2794         gold_error(_("%s: unsupported symbol section 0x%x"),
2795                    sym->demangled_name().c_str(), shndx);
2796       }
2797       break;
2798     case CFVS_NO_OUTPUT_SECTION:
2799       sym->set_symtab_index(-1U);
2800       return false;
2801     default:
2802       gold_unreachable();
2803     }
2804
2805   sym->set_value(value);
2806
2807   if (parameters->options().strip_all()
2808       || !parameters->options().should_retain_symbol(sym->name()))
2809     {
2810       sym->set_symtab_index(-1U);
2811       return false;
2812     }
2813
2814   return true;
2815 }
2816
2817 // Write out the global symbols.
2818
2819 void
2820 Symbol_table::write_globals(const Stringpool* sympool,
2821                             const Stringpool* dynpool,
2822                             Output_symtab_xindex* symtab_xindex,
2823                             Output_symtab_xindex* dynsym_xindex,
2824                             Output_file* of) const
2825 {
2826   switch (parameters->size_and_endianness())
2827     {
2828 #ifdef HAVE_TARGET_32_LITTLE
2829     case Parameters::TARGET_32_LITTLE:
2830       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2831                                            dynsym_xindex, of);
2832       break;
2833 #endif
2834 #ifdef HAVE_TARGET_32_BIG
2835     case Parameters::TARGET_32_BIG:
2836       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2837                                           dynsym_xindex, of);
2838       break;
2839 #endif
2840 #ifdef HAVE_TARGET_64_LITTLE
2841     case Parameters::TARGET_64_LITTLE:
2842       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2843                                            dynsym_xindex, of);
2844       break;
2845 #endif
2846 #ifdef HAVE_TARGET_64_BIG
2847     case Parameters::TARGET_64_BIG:
2848       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2849                                           dynsym_xindex, of);
2850       break;
2851 #endif
2852     default:
2853       gold_unreachable();
2854     }
2855 }
2856
2857 // Write out the global symbols.
2858
2859 template<int size, bool big_endian>
2860 void
2861 Symbol_table::sized_write_globals(const Stringpool* sympool,
2862                                   const Stringpool* dynpool,
2863                                   Output_symtab_xindex* symtab_xindex,
2864                                   Output_symtab_xindex* dynsym_xindex,
2865                                   Output_file* of) const
2866 {
2867   const Target& target = parameters->target();
2868
2869   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2870
2871   const unsigned int output_count = this->output_count_;
2872   const section_size_type oview_size = output_count * sym_size;
2873   const unsigned int first_global_index = this->first_global_index_;
2874   unsigned char* psyms;
2875   if (this->offset_ == 0 || output_count == 0)
2876     psyms = NULL;
2877   else
2878     psyms = of->get_output_view(this->offset_, oview_size);
2879
2880   const unsigned int dynamic_count = this->dynamic_count_;
2881   const section_size_type dynamic_size = dynamic_count * sym_size;
2882   const unsigned int first_dynamic_global_index =
2883     this->first_dynamic_global_index_;
2884   unsigned char* dynamic_view;
2885   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2886     dynamic_view = NULL;
2887   else
2888     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2889
2890   for (Symbol_table_type::const_iterator p = this->table_.begin();
2891        p != this->table_.end();
2892        ++p)
2893     {
2894       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2895
2896       // Possibly warn about unresolved symbols in shared libraries.
2897       this->warn_about_undefined_dynobj_symbol(sym);
2898
2899       unsigned int sym_index = sym->symtab_index();
2900       unsigned int dynsym_index;
2901       if (dynamic_view == NULL)
2902         dynsym_index = -1U;
2903       else
2904         dynsym_index = sym->dynsym_index();
2905
2906       if (sym_index == -1U && dynsym_index == -1U)
2907         {
2908           // This symbol is not included in the output file.
2909           continue;
2910         }
2911
2912       unsigned int shndx;
2913       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2914       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2915       elfcpp::STB binding = sym->binding();
2916
2917       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2918       if (binding == elfcpp::STB_GNU_UNIQUE
2919           && !parameters->options().gnu_unique())
2920         binding = elfcpp::STB_GLOBAL;
2921
2922       switch (sym->source())
2923         {
2924         case Symbol::FROM_OBJECT:
2925           {
2926             bool is_ordinary;
2927             unsigned int in_shndx = sym->shndx(&is_ordinary);
2928
2929             if (!is_ordinary
2930                 && in_shndx != elfcpp::SHN_ABS
2931                 && !Symbol::is_common_shndx(in_shndx))
2932               {
2933                 gold_error(_("%s: unsupported symbol section 0x%x"),
2934                            sym->demangled_name().c_str(), in_shndx);
2935                 shndx = in_shndx;
2936               }
2937             else
2938               {
2939                 Object* symobj = sym->object();
2940                 if (symobj->is_dynamic())
2941                   {
2942                     if (sym->needs_dynsym_value())
2943                       dynsym_value = target.dynsym_value(sym);
2944                     shndx = elfcpp::SHN_UNDEF;
2945                     if (sym->is_undef_binding_weak())
2946                       binding = elfcpp::STB_WEAK;
2947                     else
2948                       binding = elfcpp::STB_GLOBAL;
2949                   }
2950                 else if (symobj->pluginobj() != NULL)
2951                   shndx = elfcpp::SHN_UNDEF;
2952                 else if (in_shndx == elfcpp::SHN_UNDEF
2953                          || (!is_ordinary
2954                              && (in_shndx == elfcpp::SHN_ABS
2955                                  || Symbol::is_common_shndx(in_shndx))))
2956                   shndx = in_shndx;
2957                 else
2958                   {
2959                     Relobj* relobj = static_cast<Relobj*>(symobj);
2960                     Output_section* os = relobj->output_section(in_shndx);
2961                     if (this->is_section_folded(relobj, in_shndx))
2962                       {
2963                         // This global symbol must be written out even though
2964                         // it is folded.
2965                         // Get the os of the section it is folded onto.
2966                         Section_id folded =
2967                              this->icf_->get_folded_section(relobj, in_shndx);
2968                         gold_assert(folded.first !=NULL);
2969                         Relobj* folded_obj = 
2970                           reinterpret_cast<Relobj*>(folded.first);
2971                         os = folded_obj->output_section(folded.second);  
2972                         gold_assert(os != NULL);
2973                       }
2974                     gold_assert(os != NULL);
2975                     shndx = os->out_shndx();
2976
2977                     if (shndx >= elfcpp::SHN_LORESERVE)
2978                       {
2979                         if (sym_index != -1U)
2980                           symtab_xindex->add(sym_index, shndx);
2981                         if (dynsym_index != -1U)
2982                           dynsym_xindex->add(dynsym_index, shndx);
2983                         shndx = elfcpp::SHN_XINDEX;
2984                       }
2985
2986                     // In object files symbol values are section
2987                     // relative.
2988                     if (parameters->options().relocatable())
2989                       sym_value -= os->address();
2990                   }
2991               }
2992           }
2993           break;
2994
2995         case Symbol::IN_OUTPUT_DATA:
2996           {
2997             Output_data* od = sym->output_data();
2998
2999             shndx = od->out_shndx();
3000             if (shndx >= elfcpp::SHN_LORESERVE)
3001               {
3002                 if (sym_index != -1U)
3003                   symtab_xindex->add(sym_index, shndx);
3004                 if (dynsym_index != -1U)
3005                   dynsym_xindex->add(dynsym_index, shndx);
3006                 shndx = elfcpp::SHN_XINDEX;
3007               }
3008
3009             // In object files symbol values are section
3010             // relative.
3011             if (parameters->options().relocatable())
3012               sym_value -= od->address();
3013           }
3014           break;
3015
3016         case Symbol::IN_OUTPUT_SEGMENT:
3017           shndx = elfcpp::SHN_ABS;
3018           break;
3019
3020         case Symbol::IS_CONSTANT:
3021           shndx = elfcpp::SHN_ABS;
3022           break;
3023
3024         case Symbol::IS_UNDEFINED:
3025           shndx = elfcpp::SHN_UNDEF;
3026           break;
3027
3028         default:
3029           gold_unreachable();
3030         }
3031
3032       if (sym_index != -1U)
3033         {
3034           sym_index -= first_global_index;
3035           gold_assert(sym_index < output_count);
3036           unsigned char* ps = psyms + (sym_index * sym_size);
3037           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3038                                                      binding, sympool, ps);
3039         }
3040
3041       if (dynsym_index != -1U)
3042         {
3043           dynsym_index -= first_dynamic_global_index;
3044           gold_assert(dynsym_index < dynamic_count);
3045           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3046           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3047                                                      binding, dynpool, pd);
3048           // Allow a target to adjust dynamic symbol value.
3049           parameters->target().adjust_dyn_symbol(sym, pd);
3050         }
3051     }
3052
3053   of->write_output_view(this->offset_, oview_size, psyms);
3054   if (dynamic_view != NULL)
3055     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3056 }
3057
3058 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3059 // strtab holding the name.
3060
3061 template<int size, bool big_endian>
3062 void
3063 Symbol_table::sized_write_symbol(
3064     Sized_symbol<size>* sym,
3065     typename elfcpp::Elf_types<size>::Elf_Addr value,
3066     unsigned int shndx,
3067     elfcpp::STB binding,
3068     const Stringpool* pool,
3069     unsigned char* p) const
3070 {
3071   elfcpp::Sym_write<size, big_endian> osym(p);
3072   if (sym->version() == NULL || !parameters->options().relocatable())
3073     osym.put_st_name(pool->get_offset(sym->name()));
3074   else
3075     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3076   osym.put_st_value(value);
3077   // Use a symbol size of zero for undefined symbols from shared libraries.
3078   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3079     osym.put_st_size(0);
3080   else
3081     osym.put_st_size(sym->symsize());
3082   elfcpp::STT type = sym->type();
3083   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3084   if (type == elfcpp::STT_GNU_IFUNC
3085       && sym->is_from_dynobj())
3086     type = elfcpp::STT_FUNC;
3087   // A version script may have overridden the default binding.
3088   if (sym->is_forced_local())
3089     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3090   else
3091     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3092   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3093   osym.put_st_shndx(shndx);
3094 }
3095
3096 // Check for unresolved symbols in shared libraries.  This is
3097 // controlled by the --allow-shlib-undefined option.
3098
3099 // We only warn about libraries for which we have seen all the
3100 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3101 // which were not seen in this link.  If we didn't see a DT_NEEDED
3102 // entry, we aren't going to be able to reliably report whether the
3103 // symbol is undefined.
3104
3105 // We also don't warn about libraries found in a system library
3106 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3107 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3108 // can have undefined references satisfied by ld-linux.so.
3109
3110 inline void
3111 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3112 {
3113   bool dummy;
3114   if (sym->source() == Symbol::FROM_OBJECT
3115       && sym->object()->is_dynamic()
3116       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3117       && sym->binding() != elfcpp::STB_WEAK
3118       && !parameters->options().allow_shlib_undefined()
3119       && !parameters->target().is_defined_by_abi(sym)
3120       && !sym->object()->is_in_system_directory())
3121     {
3122       // A very ugly cast.
3123       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3124       if (!dynobj->has_unknown_needed_entries())
3125         gold_undefined_symbol(sym);
3126     }
3127 }
3128
3129 // Write out a section symbol.  Return the update offset.
3130
3131 void
3132 Symbol_table::write_section_symbol(const Output_section* os,
3133                                    Output_symtab_xindex* symtab_xindex,
3134                                    Output_file* of,
3135                                    off_t offset) const
3136 {
3137   switch (parameters->size_and_endianness())
3138     {
3139 #ifdef HAVE_TARGET_32_LITTLE
3140     case Parameters::TARGET_32_LITTLE:
3141       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3142                                                   offset);
3143       break;
3144 #endif
3145 #ifdef HAVE_TARGET_32_BIG
3146     case Parameters::TARGET_32_BIG:
3147       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3148                                                  offset);
3149       break;
3150 #endif
3151 #ifdef HAVE_TARGET_64_LITTLE
3152     case Parameters::TARGET_64_LITTLE:
3153       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3154                                                   offset);
3155       break;
3156 #endif
3157 #ifdef HAVE_TARGET_64_BIG
3158     case Parameters::TARGET_64_BIG:
3159       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3160                                                  offset);
3161       break;
3162 #endif
3163     default:
3164       gold_unreachable();
3165     }
3166 }
3167
3168 // Write out a section symbol, specialized for size and endianness.
3169
3170 template<int size, bool big_endian>
3171 void
3172 Symbol_table::sized_write_section_symbol(const Output_section* os,
3173                                          Output_symtab_xindex* symtab_xindex,
3174                                          Output_file* of,
3175                                          off_t offset) const
3176 {
3177   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3178
3179   unsigned char* pov = of->get_output_view(offset, sym_size);
3180
3181   elfcpp::Sym_write<size, big_endian> osym(pov);
3182   osym.put_st_name(0);
3183   if (parameters->options().relocatable())
3184     osym.put_st_value(0);
3185   else
3186     osym.put_st_value(os->address());
3187   osym.put_st_size(0);
3188   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3189                                        elfcpp::STT_SECTION));
3190   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3191
3192   unsigned int shndx = os->out_shndx();
3193   if (shndx >= elfcpp::SHN_LORESERVE)
3194     {
3195       symtab_xindex->add(os->symtab_index(), shndx);
3196       shndx = elfcpp::SHN_XINDEX;
3197     }
3198   osym.put_st_shndx(shndx);
3199
3200   of->write_output_view(offset, sym_size, pov);
3201 }
3202
3203 // Print statistical information to stderr.  This is used for --stats.
3204
3205 void
3206 Symbol_table::print_stats() const
3207 {
3208 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3209   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3210           program_name, this->table_.size(), this->table_.bucket_count());
3211 #else
3212   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3213           program_name, this->table_.size());
3214 #endif
3215   this->namepool_.print_stats("symbol table stringpool");
3216 }
3217
3218 // We check for ODR violations by looking for symbols with the same
3219 // name for which the debugging information reports that they were
3220 // defined in disjoint source locations.  When comparing the source
3221 // location, we consider instances with the same base filename to be
3222 // the same.  This is because different object files/shared libraries
3223 // can include the same header file using different paths, and
3224 // different optimization settings can make the line number appear to
3225 // be a couple lines off, and we don't want to report an ODR violation
3226 // in those cases.
3227
3228 // This struct is used to compare line information, as returned by
3229 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3230 // operator used with std::sort.
3231
3232 struct Odr_violation_compare
3233 {
3234   bool
3235   operator()(const std::string& s1, const std::string& s2) const
3236   {
3237     // Inputs should be of the form "dirname/filename:linenum" where
3238     // "dirname/" is optional.  We want to compare just the filename:linenum.
3239
3240     // Find the last '/' in each string.
3241     std::string::size_type s1begin = s1.rfind('/');
3242     std::string::size_type s2begin = s2.rfind('/');
3243     // If there was no '/' in a string, start at the beginning.
3244     if (s1begin == std::string::npos)
3245       s1begin = 0;
3246     if (s2begin == std::string::npos)
3247       s2begin = 0;
3248     return s1.compare(s1begin, std::string::npos,
3249                       s2, s2begin, std::string::npos) < 0;
3250   }
3251 };
3252
3253 // Returns all of the lines attached to LOC, not just the one the
3254 // instruction actually came from.
3255 std::vector<std::string>
3256 Symbol_table::linenos_from_loc(const Task* task,
3257                                const Symbol_location& loc)
3258 {
3259   // We need to lock the object in order to read it.  This
3260   // means that we have to run in a singleton Task.  If we
3261   // want to run this in a general Task for better
3262   // performance, we will need one Task for object, plus
3263   // appropriate locking to ensure that we don't conflict with
3264   // other uses of the object.  Also note, one_addr2line is not
3265   // currently thread-safe.
3266   Task_lock_obj<Object> tl(task, loc.object);
3267
3268   std::vector<std::string> result;
3269   Symbol_location code_loc = loc;
3270   parameters->target().function_location(&code_loc);
3271   // 16 is the size of the object-cache that one_addr2line should use.
3272   std::string canonical_result = Dwarf_line_info::one_addr2line(
3273       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3274   if (!canonical_result.empty())
3275     result.push_back(canonical_result);
3276   return result;
3277 }
3278
3279 // OutputIterator that records if it was ever assigned to.  This
3280 // allows it to be used with std::set_intersection() to check for
3281 // intersection rather than computing the intersection.
3282 struct Check_intersection
3283 {
3284   Check_intersection()
3285     : value_(false)
3286   {}
3287
3288   bool had_intersection() const
3289   { return this->value_; }
3290
3291   Check_intersection& operator++()
3292   { return *this; }
3293
3294   Check_intersection& operator*()
3295   { return *this; }
3296
3297   template<typename T>
3298   Check_intersection& operator=(const T&)
3299   {
3300     this->value_ = true;
3301     return *this;
3302   }
3303
3304  private:
3305   bool value_;
3306 };
3307
3308 // Check candidate_odr_violations_ to find symbols with the same name
3309 // but apparently different definitions (different source-file/line-no
3310 // for each line assigned to the first instruction).
3311
3312 void
3313 Symbol_table::detect_odr_violations(const Task* task,
3314                                     const char* output_file_name) const
3315 {
3316   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3317        it != candidate_odr_violations_.end();
3318        ++it)
3319     {
3320       const char* const symbol_name = it->first;
3321
3322       std::string first_object_name;
3323       std::vector<std::string> first_object_linenos;
3324
3325       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3326           locs = it->second.begin();
3327       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3328           locs_end = it->second.end();
3329       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3330         {
3331           // Save the line numbers from the first definition to
3332           // compare to the other definitions.  Ideally, we'd compare
3333           // every definition to every other, but we don't want to
3334           // take O(N^2) time to do this.  This shortcut may cause
3335           // false negatives that appear or disappear depending on the
3336           // link order, but it won't cause false positives.
3337           first_object_name = locs->object->name();
3338           first_object_linenos = this->linenos_from_loc(task, *locs);
3339         }
3340
3341       // Sort by Odr_violation_compare to make std::set_intersection work.
3342       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3343                 Odr_violation_compare());
3344
3345       for (; locs != locs_end; ++locs)
3346         {
3347           std::vector<std::string> linenos =
3348               this->linenos_from_loc(task, *locs);
3349           // linenos will be empty if we couldn't parse the debug info.
3350           if (linenos.empty())
3351             continue;
3352           // Sort by Odr_violation_compare to make std::set_intersection work.
3353           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3354
3355           Check_intersection intersection_result =
3356               std::set_intersection(first_object_linenos.begin(),
3357                                     first_object_linenos.end(),
3358                                     linenos.begin(),
3359                                     linenos.end(),
3360                                     Check_intersection(),
3361                                     Odr_violation_compare());
3362           if (!intersection_result.had_intersection())
3363             {
3364               gold_warning(_("while linking %s: symbol '%s' defined in "
3365                              "multiple places (possible ODR violation):"),
3366                            output_file_name, demangle(symbol_name).c_str());
3367               // This only prints one location from each definition,
3368               // which may not be the location we expect to intersect
3369               // with another definition.  We could print the whole
3370               // set of locations, but that seems too verbose.
3371               gold_assert(!first_object_linenos.empty());
3372               gold_assert(!linenos.empty());
3373               fprintf(stderr, _("  %s from %s\n"),
3374                       first_object_linenos[0].c_str(),
3375                       first_object_name.c_str());
3376               fprintf(stderr, _("  %s from %s\n"),
3377                       linenos[0].c_str(),
3378                       locs->object->name().c_str());
3379               // Only print one broken pair, to avoid needing to
3380               // compare against a list of the disjoint definition
3381               // locations we've found so far.  (If we kept comparing
3382               // against just the first one, we'd get a lot of
3383               // redundant complaints about the second definition
3384               // location.)
3385               break;
3386             }
3387         }
3388     }
3389   // We only call one_addr2line() in this function, so we can clear its cache.
3390   Dwarf_line_info::clear_addr2line_cache();
3391 }
3392
3393 // Warnings functions.
3394
3395 // Add a new warning.
3396
3397 void
3398 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3399                       const std::string& warning)
3400 {
3401   name = symtab->canonicalize_name(name);
3402   this->warnings_[name].set(obj, warning);
3403 }
3404
3405 // Look through the warnings and mark the symbols for which we should
3406 // warn.  This is called during Layout::finalize when we know the
3407 // sources for all the symbols.
3408
3409 void
3410 Warnings::note_warnings(Symbol_table* symtab)
3411 {
3412   for (Warning_table::iterator p = this->warnings_.begin();
3413        p != this->warnings_.end();
3414        ++p)
3415     {
3416       Symbol* sym = symtab->lookup(p->first, NULL);
3417       if (sym != NULL
3418           && sym->source() == Symbol::FROM_OBJECT
3419           && sym->object() == p->second.object)
3420         sym->set_has_warning();
3421     }
3422 }
3423
3424 // Issue a warning.  This is called when we see a relocation against a
3425 // symbol for which has a warning.
3426
3427 template<int size, bool big_endian>
3428 void
3429 Warnings::issue_warning(const Symbol* sym,
3430                         const Relocate_info<size, big_endian>* relinfo,
3431                         size_t relnum, off_t reloffset) const
3432 {
3433   gold_assert(sym->has_warning());
3434
3435   // We don't want to issue a warning for a relocation against the
3436   // symbol in the same object file in which the symbol is defined.
3437   if (sym->object() == relinfo->object)
3438     return;
3439
3440   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3441   gold_assert(p != this->warnings_.end());
3442   gold_warning_at_location(relinfo, relnum, reloffset,
3443                            "%s", p->second.text.c_str());
3444 }
3445
3446 // Instantiate the templates we need.  We could use the configure
3447 // script to restrict this to only the ones needed for implemented
3448 // targets.
3449
3450 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3451 template
3452 void
3453 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3454 #endif
3455
3456 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3457 template
3458 void
3459 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_32_LITTLE
3463 template
3464 void
3465 Symbol_table::add_from_relobj<32, false>(
3466     Sized_relobj_file<32, false>* relobj,
3467     const unsigned char* syms,
3468     size_t count,
3469     size_t symndx_offset,
3470     const char* sym_names,
3471     size_t sym_name_size,
3472     Sized_relobj_file<32, false>::Symbols* sympointers,
3473     size_t* defined);
3474 #endif
3475
3476 #ifdef HAVE_TARGET_32_BIG
3477 template
3478 void
3479 Symbol_table::add_from_relobj<32, true>(
3480     Sized_relobj_file<32, true>* relobj,
3481     const unsigned char* syms,
3482     size_t count,
3483     size_t symndx_offset,
3484     const char* sym_names,
3485     size_t sym_name_size,
3486     Sized_relobj_file<32, true>::Symbols* sympointers,
3487     size_t* defined);
3488 #endif
3489
3490 #ifdef HAVE_TARGET_64_LITTLE
3491 template
3492 void
3493 Symbol_table::add_from_relobj<64, false>(
3494     Sized_relobj_file<64, false>* relobj,
3495     const unsigned char* syms,
3496     size_t count,
3497     size_t symndx_offset,
3498     const char* sym_names,
3499     size_t sym_name_size,
3500     Sized_relobj_file<64, false>::Symbols* sympointers,
3501     size_t* defined);
3502 #endif
3503
3504 #ifdef HAVE_TARGET_64_BIG
3505 template
3506 void
3507 Symbol_table::add_from_relobj<64, true>(
3508     Sized_relobj_file<64, true>* relobj,
3509     const unsigned char* syms,
3510     size_t count,
3511     size_t symndx_offset,
3512     const char* sym_names,
3513     size_t sym_name_size,
3514     Sized_relobj_file<64, true>::Symbols* sympointers,
3515     size_t* defined);
3516 #endif
3517
3518 #ifdef HAVE_TARGET_32_LITTLE
3519 template
3520 Symbol*
3521 Symbol_table::add_from_pluginobj<32, false>(
3522     Sized_pluginobj<32, false>* obj,
3523     const char* name,
3524     const char* ver,
3525     elfcpp::Sym<32, false>* sym);
3526 #endif
3527
3528 #ifdef HAVE_TARGET_32_BIG
3529 template
3530 Symbol*
3531 Symbol_table::add_from_pluginobj<32, true>(
3532     Sized_pluginobj<32, true>* obj,
3533     const char* name,
3534     const char* ver,
3535     elfcpp::Sym<32, true>* sym);
3536 #endif
3537
3538 #ifdef HAVE_TARGET_64_LITTLE
3539 template
3540 Symbol*
3541 Symbol_table::add_from_pluginobj<64, false>(
3542     Sized_pluginobj<64, false>* obj,
3543     const char* name,
3544     const char* ver,
3545     elfcpp::Sym<64, false>* sym);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_64_BIG
3549 template
3550 Symbol*
3551 Symbol_table::add_from_pluginobj<64, true>(
3552     Sized_pluginobj<64, true>* obj,
3553     const char* name,
3554     const char* ver,
3555     elfcpp::Sym<64, true>* sym);
3556 #endif
3557
3558 #ifdef HAVE_TARGET_32_LITTLE
3559 template
3560 void
3561 Symbol_table::add_from_dynobj<32, false>(
3562     Sized_dynobj<32, false>* dynobj,
3563     const unsigned char* syms,
3564     size_t count,
3565     const char* sym_names,
3566     size_t sym_name_size,
3567     const unsigned char* versym,
3568     size_t versym_size,
3569     const std::vector<const char*>* version_map,
3570     Sized_relobj_file<32, false>::Symbols* sympointers,
3571     size_t* defined);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_BIG
3575 template
3576 void
3577 Symbol_table::add_from_dynobj<32, true>(
3578     Sized_dynobj<32, true>* dynobj,
3579     const unsigned char* syms,
3580     size_t count,
3581     const char* sym_names,
3582     size_t sym_name_size,
3583     const unsigned char* versym,
3584     size_t versym_size,
3585     const std::vector<const char*>* version_map,
3586     Sized_relobj_file<32, true>::Symbols* sympointers,
3587     size_t* defined);
3588 #endif
3589
3590 #ifdef HAVE_TARGET_64_LITTLE
3591 template
3592 void
3593 Symbol_table::add_from_dynobj<64, false>(
3594     Sized_dynobj<64, false>* dynobj,
3595     const unsigned char* syms,
3596     size_t count,
3597     const char* sym_names,
3598     size_t sym_name_size,
3599     const unsigned char* versym,
3600     size_t versym_size,
3601     const std::vector<const char*>* version_map,
3602     Sized_relobj_file<64, false>::Symbols* sympointers,
3603     size_t* defined);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_BIG
3607 template
3608 void
3609 Symbol_table::add_from_dynobj<64, true>(
3610     Sized_dynobj<64, true>* dynobj,
3611     const unsigned char* syms,
3612     size_t count,
3613     const char* sym_names,
3614     size_t sym_name_size,
3615     const unsigned char* versym,
3616     size_t versym_size,
3617     const std::vector<const char*>* version_map,
3618     Sized_relobj_file<64, true>::Symbols* sympointers,
3619     size_t* defined);
3620 #endif
3621
3622 #ifdef HAVE_TARGET_32_LITTLE
3623 template
3624 Sized_symbol<32>*
3625 Symbol_table::add_from_incrobj(
3626     Object* obj,
3627     const char* name,
3628     const char* ver,
3629     elfcpp::Sym<32, false>* sym);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_32_BIG
3633 template
3634 Sized_symbol<32>*
3635 Symbol_table::add_from_incrobj(
3636     Object* obj,
3637     const char* name,
3638     const char* ver,
3639     elfcpp::Sym<32, true>* sym);
3640 #endif
3641
3642 #ifdef HAVE_TARGET_64_LITTLE
3643 template
3644 Sized_symbol<64>*
3645 Symbol_table::add_from_incrobj(
3646     Object* obj,
3647     const char* name,
3648     const char* ver,
3649     elfcpp::Sym<64, false>* sym);
3650 #endif
3651
3652 #ifdef HAVE_TARGET_64_BIG
3653 template
3654 Sized_symbol<64>*
3655 Symbol_table::add_from_incrobj(
3656     Object* obj,
3657     const char* name,
3658     const char* ver,
3659     elfcpp::Sym<64, true>* sym);
3660 #endif
3661
3662 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3663 template
3664 void
3665 Symbol_table::define_with_copy_reloc<32>(
3666     Sized_symbol<32>* sym,
3667     Output_data* posd,
3668     elfcpp::Elf_types<32>::Elf_Addr value);
3669 #endif
3670
3671 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3672 template
3673 void
3674 Symbol_table::define_with_copy_reloc<64>(
3675     Sized_symbol<64>* sym,
3676     Output_data* posd,
3677     elfcpp::Elf_types<64>::Elf_Addr value);
3678 #endif
3679
3680 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3681 template
3682 void
3683 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3684                                    Output_data* od, Value_type value,
3685                                    Size_type symsize, elfcpp::STT type,
3686                                    elfcpp::STB binding,
3687                                    elfcpp::STV visibility,
3688                                    unsigned char nonvis,
3689                                    bool offset_is_from_end,
3690                                    bool is_predefined);
3691 #endif
3692
3693 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3694 template
3695 void
3696 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3697                                    Output_data* od, Value_type value,
3698                                    Size_type symsize, elfcpp::STT type,
3699                                    elfcpp::STB binding,
3700                                    elfcpp::STV visibility,
3701                                    unsigned char nonvis,
3702                                    bool offset_is_from_end,
3703                                    bool is_predefined);
3704 #endif
3705
3706 #ifdef HAVE_TARGET_32_LITTLE
3707 template
3708 void
3709 Warnings::issue_warning<32, false>(const Symbol* sym,
3710                                    const Relocate_info<32, false>* relinfo,
3711                                    size_t relnum, off_t reloffset) const;
3712 #endif
3713
3714 #ifdef HAVE_TARGET_32_BIG
3715 template
3716 void
3717 Warnings::issue_warning<32, true>(const Symbol* sym,
3718                                   const Relocate_info<32, true>* relinfo,
3719                                   size_t relnum, off_t reloffset) const;
3720 #endif
3721
3722 #ifdef HAVE_TARGET_64_LITTLE
3723 template
3724 void
3725 Warnings::issue_warning<64, false>(const Symbol* sym,
3726                                    const Relocate_info<64, false>* relinfo,
3727                                    size_t relnum, off_t reloffset) const;
3728 #endif
3729
3730 #ifdef HAVE_TARGET_64_BIG
3731 template
3732 void
3733 Warnings::issue_warning<64, true>(const Symbol* sym,
3734                                   const Relocate_info<64, true>* relinfo,
3735                                   size_t relnum, off_t reloffset) const;
3736 #endif
3737
3738 } // End namespace gold.