Update year range in copyright notice of all files.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84 }
85
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88
89 static std::string
90 demangle(const char* name)
91 {
92   if (!parameters->options().do_demangle())
93     return name;
94
95   // cplus_demangle allocates memory for the result it returns,
96   // and returns NULL if the name is already demangled.
97   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98   if (demangled_name == NULL)
99     return name;
100
101   std::string retval(demangled_name);
102   free(demangled_name);
103   return retval;
104 }
105
106 std::string
107 Symbol::demangled_name() const
108 {
109   return demangle(this->name());
110 }
111
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114 template<int size, bool big_endian>
115 void
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117                          const elfcpp::Sym<size, big_endian>& sym,
118                          unsigned int st_shndx, bool is_ordinary)
119 {
120   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121                     sym.get_st_visibility(), sym.get_st_nonvis());
122   this->u_.from_object.object = object;
123   this->u_.from_object.shndx = st_shndx;
124   this->is_ordinary_shndx_ = is_ordinary;
125   this->source_ = FROM_OBJECT;
126   this->in_reg_ = !object->is_dynamic();
127   this->in_dyn_ = object->is_dynamic();
128   this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133
134 void
135 Symbol::init_base_output_data(const char* name, const char* version,
136                               Output_data* od, elfcpp::STT type,
137                               elfcpp::STB binding, elfcpp::STV visibility,
138                               unsigned char nonvis, bool offset_is_from_end,
139                               bool is_predefined)
140 {
141   this->init_fields(name, version, type, binding, visibility, nonvis);
142   this->u_.in_output_data.output_data = od;
143   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144   this->source_ = IN_OUTPUT_DATA;
145   this->in_reg_ = true;
146   this->in_real_elf_ = true;
147   this->is_predefined_ = is_predefined;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152
153 void
154 Symbol::init_base_output_segment(const char* name, const char* version,
155                                  Output_segment* os, elfcpp::STT type,
156                                  elfcpp::STB binding, elfcpp::STV visibility,
157                                  unsigned char nonvis,
158                                  Segment_offset_base offset_base,
159                                  bool is_predefined)
160 {
161   this->init_fields(name, version, type, binding, visibility, nonvis);
162   this->u_.in_output_segment.output_segment = os;
163   this->u_.in_output_segment.offset_base = offset_base;
164   this->source_ = IN_OUTPUT_SEGMENT;
165   this->in_reg_ = true;
166   this->in_real_elf_ = true;
167   this->is_predefined_ = is_predefined;
168 }
169
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172
173 void
174 Symbol::init_base_constant(const char* name, const char* version,
175                            elfcpp::STT type, elfcpp::STB binding,
176                            elfcpp::STV visibility, unsigned char nonvis,
177                            bool is_predefined)
178 {
179   this->init_fields(name, version, type, binding, visibility, nonvis);
180   this->source_ = IS_CONSTANT;
181   this->in_reg_ = true;
182   this->in_real_elf_ = true;
183   this->is_predefined_ = is_predefined;
184 }
185
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188
189 void
190 Symbol::init_base_undefined(const char* name, const char* version,
191                             elfcpp::STT type, elfcpp::STB binding,
192                             elfcpp::STV visibility, unsigned char nonvis)
193 {
194   this->init_fields(name, version, type, binding, visibility, nonvis);
195   this->dynsym_index_ = -1U;
196   this->source_ = IS_UNDEFINED;
197   this->in_reg_ = true;
198   this->in_real_elf_ = true;
199 }
200
201 // Allocate a common symbol in the base.
202
203 void
204 Symbol::allocate_base_common(Output_data* od)
205 {
206   gold_assert(this->is_common());
207   this->source_ = IN_OUTPUT_DATA;
208   this->u_.in_output_data.output_data = od;
209   this->u_.in_output_data.offset_is_from_end = false;
210 }
211
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214 template<int size>
215 template<bool big_endian>
216 void
217 Sized_symbol<size>::init_object(const char* name, const char* version,
218                                 Object* object,
219                                 const elfcpp::Sym<size, big_endian>& sym,
220                                 unsigned int st_shndx, bool is_ordinary)
221 {
222   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223   this->value_ = sym.get_st_value();
224   this->symsize_ = sym.get_st_size();
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233                                      Output_data* od, Value_type value,
234                                      Size_type symsize, elfcpp::STT type,
235                                      elfcpp::STB binding,
236                                      elfcpp::STV visibility,
237                                      unsigned char nonvis,
238                                      bool offset_is_from_end,
239                                      bool is_predefined)
240 {
241   this->init_base_output_data(name, version, od, type, binding, visibility,
242                               nonvis, offset_is_from_end, is_predefined);
243   this->value_ = value;
244   this->symsize_ = symsize;
245 }
246
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249
250 template<int size>
251 void
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253                                         Output_segment* os, Value_type value,
254                                         Size_type symsize, elfcpp::STT type,
255                                         elfcpp::STB binding,
256                                         elfcpp::STV visibility,
257                                         unsigned char nonvis,
258                                         Segment_offset_base offset_base,
259                                         bool is_predefined)
260 {
261   this->init_base_output_segment(name, version, os, type, binding, visibility,
262                                  nonvis, offset_base, is_predefined);
263   this->value_ = value;
264   this->symsize_ = symsize;
265 }
266
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273                                   Value_type value, Size_type symsize,
274                                   elfcpp::STT type, elfcpp::STB binding,
275                                   elfcpp::STV visibility, unsigned char nonvis,
276                                   bool is_predefined)
277 {
278   this->init_base_constant(name, version, type, binding, visibility, nonvis,
279                            is_predefined);
280   this->value_ = value;
281   this->symsize_ = symsize;
282 }
283
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285
286 template<int size>
287 void
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289                                    Value_type value, elfcpp::STT type,
290                                    elfcpp::STB binding, elfcpp::STV visibility,
291                                    unsigned char nonvis)
292 {
293   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294   this->value_ = value;
295   this->symsize_ = 0;
296 }
297
298 // Return an allocated string holding the symbol's name as
299 // name@version.  This is used for relocatable links.
300
301 std::string
302 Symbol::versioned_name() const
303 {
304   gold_assert(this->version_ != NULL);
305   std::string ret = this->name_;
306   ret.push_back('@');
307   if (this->is_def_)
308     ret.push_back('@');
309   ret += this->version_;
310   return ret;
311 }
312
313 // Return true if SHNDX represents a common symbol.
314
315 bool
316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318   return (shndx == elfcpp::SHN_COMMON
319           || shndx == parameters->target().small_common_shndx()
320           || shndx == parameters->target().large_common_shndx());
321 }
322
323 // Allocate a common symbol.
324
325 template<int size>
326 void
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329   this->allocate_base_common(od);
330   this->value_ = value;
331 }
332
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338
339 bool
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342   // If the symbol is only present on plugin files, the plugin decided we
343   // don't need it.
344   if (!this->in_real_elf())
345     return false;
346
347   // If the symbol is used by a dynamic relocation, we need to add it.
348   if (this->needs_dynsym_entry())
349     return true;
350
351   // If this symbol's section is not added, the symbol need not be added. 
352   // The section may have been GCed.  Note that export_dynamic is being 
353   // overridden here.  This should not be done for shared objects.
354   if (parameters->options().gc_sections() 
355       && !parameters->options().shared()
356       && this->source() == Symbol::FROM_OBJECT
357       && !this->object()->is_dynamic())
358     {
359       Relobj* relobj = static_cast<Relobj*>(this->object());
360       bool is_ordinary;
361       unsigned int shndx = this->shndx(&is_ordinary);
362       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363           && !relobj->is_section_included(shndx)
364           && !symtab->is_section_folded(relobj, shndx))
365         return false;
366     }
367
368   // If the symbol was forced dynamic in a --dynamic-list file
369   // or an --export-dynamic-symbol option, add it.
370   if (!this->is_from_dynobj()
371       && (parameters->options().in_dynamic_list(this->name())
372           || parameters->options().is_export_dynamic_symbol(this->name())))
373     {
374       if (!this->is_forced_local())
375         return true;
376       gold_warning(_("Cannot export local symbol '%s'"),
377                    this->demangled_name().c_str());
378       return false;
379     }
380
381   // If the symbol was forced local in a version script, do not add it.
382   if (this->is_forced_local())
383     return false;
384
385   // If dynamic-list-data was specified, add any STT_OBJECT.
386   if (parameters->options().dynamic_list_data()
387       && !this->is_from_dynobj()
388       && this->type() == elfcpp::STT_OBJECT)
389     return true;
390
391   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393   if ((parameters->options().dynamic_list_cpp_new()
394        || parameters->options().dynamic_list_cpp_typeinfo())
395       && !this->is_from_dynobj())
396     {
397       // TODO(csilvers): We could probably figure out if we're an operator
398       //                 new/delete or typeinfo without the need to demangle.
399       char* demangled_name = cplus_demangle(this->name(),
400                                             DMGL_ANSI | DMGL_PARAMS);
401       if (demangled_name == NULL)
402         {
403           // Not a C++ symbol, so it can't satisfy these flags
404         }
405       else if (parameters->options().dynamic_list_cpp_new()
406                && (strprefix(demangled_name, "operator new")
407                    || strprefix(demangled_name, "operator delete")))
408         {
409           free(demangled_name);
410           return true;
411         }
412       else if (parameters->options().dynamic_list_cpp_typeinfo()
413                && (strprefix(demangled_name, "typeinfo name for")
414                    || strprefix(demangled_name, "typeinfo for")))
415         {
416           free(demangled_name);
417           return true;
418         }
419       else
420         free(demangled_name);
421     }
422
423   // If exporting all symbols or building a shared library,
424   // or the symbol should be globally unique (GNU_UNIQUE),
425   // and the symbol is defined in a regular object and is
426   // externally visible, we need to add it.
427   if ((parameters->options().export_dynamic()
428        || parameters->options().shared()
429        || (parameters->options().gnu_unique()
430            && this->binding() == elfcpp::STB_GNU_UNIQUE))
431       && !this->is_from_dynobj()
432       && !this->is_undefined()
433       && this->is_externally_visible())
434     return true;
435
436   return false;
437 }
438
439 // Return true if the final value of this symbol is known at link
440 // time.
441
442 bool
443 Symbol::final_value_is_known() const
444 {
445   // If we are not generating an executable, then no final values are
446   // known, since they will change at runtime, with the exception of
447   // TLS symbols in a position-independent executable.
448   if ((parameters->options().output_is_position_independent()
449        || parameters->options().relocatable())
450       && !(this->type() == elfcpp::STT_TLS
451            && parameters->options().pie()))
452     return false;
453
454   // If the symbol is not from an object file, and is not undefined,
455   // then it is defined, and known.
456   if (this->source_ != FROM_OBJECT)
457     {
458       if (this->source_ != IS_UNDEFINED)
459         return true;
460     }
461   else
462     {
463       // If the symbol is from a dynamic object, then the final value
464       // is not known.
465       if (this->object()->is_dynamic())
466         return false;
467
468       // If the symbol is not undefined (it is defined or common),
469       // then the final value is known.
470       if (!this->is_undefined())
471         return true;
472     }
473
474   // If the symbol is undefined, then whether the final value is known
475   // depends on whether we are doing a static link.  If we are doing a
476   // dynamic link, then the final value could be filled in at runtime.
477   // This could reasonably be the case for a weak undefined symbol.
478   return parameters->doing_static_link();
479 }
480
481 // Return the output section where this symbol is defined.
482
483 Output_section*
484 Symbol::output_section() const
485 {
486   switch (this->source_)
487     {
488     case FROM_OBJECT:
489       {
490         unsigned int shndx = this->u_.from_object.shndx;
491         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492           {
493             gold_assert(!this->u_.from_object.object->is_dynamic());
494             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496             return relobj->output_section(shndx);
497           }
498         return NULL;
499       }
500
501     case IN_OUTPUT_DATA:
502       return this->u_.in_output_data.output_data->output_section();
503
504     case IN_OUTPUT_SEGMENT:
505     case IS_CONSTANT:
506     case IS_UNDEFINED:
507       return NULL;
508
509     default:
510       gold_unreachable();
511     }
512 }
513
514 // Set the symbol's output section.  This is used for symbols defined
515 // in scripts.  This should only be called after the symbol table has
516 // been finalized.
517
518 void
519 Symbol::set_output_section(Output_section* os)
520 {
521   switch (this->source_)
522     {
523     case FROM_OBJECT:
524     case IN_OUTPUT_DATA:
525       gold_assert(this->output_section() == os);
526       break;
527     case IS_CONSTANT:
528       this->source_ = IN_OUTPUT_DATA;
529       this->u_.in_output_data.output_data = os;
530       this->u_.in_output_data.offset_is_from_end = false;
531       break;
532     case IN_OUTPUT_SEGMENT:
533     case IS_UNDEFINED:
534     default:
535       gold_unreachable();
536     }
537 }
538
539 // Set the symbol's output segment.  This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542
543 void
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546   gold_assert(this->is_predefined_);
547   this->source_ = IN_OUTPUT_SEGMENT;
548   this->u_.in_output_segment.output_segment = os;
549   this->u_.in_output_segment.offset_base = base;
550 }
551
552 // Set the symbol to undefined.  This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555
556 void
557 Symbol::set_undefined()
558 {
559   this->source_ = IS_UNDEFINED;
560   this->is_predefined_ = false;
561 }
562
563 // Class Symbol_table.
564
565 Symbol_table::Symbol_table(unsigned int count,
566                            const Version_script_info& version_script)
567   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568     forwarders_(), commons_(), tls_commons_(), small_commons_(),
569     large_commons_(), forced_locals_(), warnings_(),
570     version_script_(version_script), gc_(NULL), icf_(NULL),
571     target_symbols_()
572 {
573   namepool_.reserve(count);
574 }
575
576 Symbol_table::~Symbol_table()
577 {
578 }
579
580 // The symbol table key equality function.  This is called with
581 // Stringpool keys.
582
583 inline bool
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585                                           const Symbol_table_key& k2) const
586 {
587   return k1.first == k2.first && k1.second == k2.second;
588 }
589
590 bool
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593   return (parameters->options().icf_enabled()
594           && this->icf_->is_section_folded(obj, shndx));
595 }
596
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599
600 void 
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603   for (options::String_set::const_iterator p =
604          parameters->options().undefined_begin();
605        p != parameters->options().undefined_end();
606        ++p)
607     {
608       const char* name = p->c_str();
609       Symbol* sym = this->lookup(name);
610       gold_assert(sym != NULL);
611       if (sym->source() == Symbol::FROM_OBJECT 
612           && !sym->object()->is_dynamic())
613         {
614           this->gc_mark_symbol(sym);
615         }
616     }
617
618   for (options::String_set::const_iterator p =
619          parameters->options().export_dynamic_symbol_begin();
620        p != parameters->options().export_dynamic_symbol_end();
621        ++p)
622     {
623       const char* name = p->c_str();
624       Symbol* sym = this->lookup(name);
625       // It's not an error if a symbol named by --export-dynamic-symbol
626       // is undefined.
627       if (sym != NULL
628           && sym->source() == Symbol::FROM_OBJECT 
629           && !sym->object()->is_dynamic())
630         {
631           this->gc_mark_symbol(sym);
632         }
633     }
634
635   for (Script_options::referenced_const_iterator p =
636          layout->script_options()->referenced_begin();
637        p != layout->script_options()->referenced_end();
638        ++p)
639     {
640       Symbol* sym = this->lookup(p->c_str());
641       gold_assert(sym != NULL);
642       if (sym->source() == Symbol::FROM_OBJECT
643           && !sym->object()->is_dynamic())
644         {
645           this->gc_mark_symbol(sym);
646         }
647     }
648 }
649
650 void
651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653   // Add the object and section to the work list.
654   bool is_ordinary;
655   unsigned int shndx = sym->shndx(&is_ordinary);
656   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657     {
658       gold_assert(this->gc_!= NULL);
659       Relobj* relobj = static_cast<Relobj*>(sym->object());
660       this->gc_->worklist().push_back(Section_id(relobj, shndx));
661     }
662   parameters->target().gc_mark_symbol(this, sym);
663 }
664
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void 
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671       && !sym->object()->is_dynamic())
672     this->gc_mark_symbol(sym);
673 }
674
675 // Make TO a symbol which forwards to FROM.
676
677 void
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680   gold_assert(from != to);
681   gold_assert(!from->is_forwarder() && !to->is_forwarder());
682   this->forwarders_[from] = to;
683   from->set_forwarder();
684 }
685
686 // Resolve the forwards from FROM, returning the real symbol.
687
688 Symbol*
689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691   gold_assert(from->is_forwarder());
692   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693     this->forwarders_.find(from);
694   gold_assert(p != this->forwarders_.end());
695   return p->second;
696 }
697
698 // Look up a symbol by name.
699
700 Symbol*
701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703   Stringpool::Key name_key;
704   name = this->namepool_.find(name, &name_key);
705   if (name == NULL)
706     return NULL;
707
708   Stringpool::Key version_key = 0;
709   if (version != NULL)
710     {
711       version = this->namepool_.find(version, &version_key);
712       if (version == NULL)
713         return NULL;
714     }
715
716   Symbol_table_key key(name_key, version_key);
717   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718   if (p == this->table_.end())
719     return NULL;
720   return p->second;
721 }
722
723 // Resolve a Symbol with another Symbol.  This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version.  Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728
729 template<int size, bool big_endian>
730 void
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734   elfcpp::Sym_write<size, big_endian> esym(buf);
735   // We don't bother to set the st_name or the st_shndx field.
736   esym.put_st_value(from->value());
737   esym.put_st_size(from->symsize());
738   esym.put_st_info(from->binding(), from->type());
739   esym.put_st_other(from->visibility(), from->nonvis());
740   bool is_ordinary;
741   unsigned int shndx = from->shndx(&is_ordinary);
742   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743                 from->version(), true);
744   if (from->in_reg())
745     to->set_in_reg();
746   if (from->in_dyn())
747     to->set_in_dyn();
748   if (parameters->options().gc_sections())
749     this->gc_mark_dyn_syms(to);
750 }
751
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754
755 void
756 Symbol_table::force_local(Symbol* sym)
757 {
758   if (!sym->is_defined() && !sym->is_common())
759     return;
760   if (sym->is_forced_local())
761     {
762       // We already got this one.
763       return;
764     }
765   sym->set_is_forced_local();
766   this->forced_locals_.push_back(sym);
767 }
768
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772
773 const char*
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776   // For some targets, we need to ignore a specific character when
777   // wrapping, and add it back later.
778   char prefix = '\0';
779   if (name[0] == parameters->target().wrap_char())
780     {
781       prefix = name[0];
782       ++name;
783     }
784
785   if (parameters->options().is_wrap(name))
786     {
787       // Turn NAME into __wrap_NAME.
788       std::string s;
789       if (prefix != '\0')
790         s += prefix;
791       s += "__wrap_";
792       s += name;
793
794       // This will give us both the old and new name in NAMEPOOL_, but
795       // that is OK.  Only the versions we need will wind up in the
796       // real string table in the output file.
797       return this->namepool_.add(s.c_str(), true, name_key);
798     }
799
800   const char* const real_prefix = "__real_";
801   const size_t real_prefix_length = strlen(real_prefix);
802   if (strncmp(name, real_prefix, real_prefix_length) == 0
803       && parameters->options().is_wrap(name + real_prefix_length))
804     {
805       // Turn __real_NAME into NAME.
806       std::string s;
807       if (prefix != '\0')
808         s += prefix;
809       s += name + real_prefix_length;
810       return this->namepool_.add(s.c_str(), true, name_key);
811     }
812
813   return name;
814 }
815
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version.  SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
821
822 template<int size, bool big_endian>
823 void
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825                                      bool default_is_new,
826                                      Symbol_table_type::iterator pdef)
827 {
828   if (default_is_new)
829     {
830       // This is the first time we have seen NAME/NULL.  Make
831       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832       // version.
833       pdef->second = sym;
834       sym->set_is_default();
835     }
836   else if (pdef->second == sym)
837     {
838       // NAME/NULL already points to NAME/VERSION.  Don't mark the
839       // symbol as the default if it is not already the default.
840     }
841   else
842     {
843       // This is the unfortunate case where we already have entries
844       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
845       // NAME/VERSION where VERSION is the default version.  We have
846       // already resolved this new symbol with the existing
847       // NAME/VERSION symbol.
848
849       // It's possible that NAME/NULL and NAME/VERSION are both
850       // defined in regular objects.  This can only happen if one
851       // object file defines foo and another defines foo@@ver.  This
852       // is somewhat obscure, but we call it a multiple definition
853       // error.
854
855       // It's possible that NAME/NULL actually has a version, in which
856       // case it won't be the same as VERSION.  This happens with
857       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
858       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
859       // then see an unadorned t2_2 in an object file and give it
860       // version VER1 from the version script.  This looks like a
861       // default definition for VER1, so it looks like we should merge
862       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
863       // not obvious that this is an error, either.  So we just punt.
864
865       // If one of the symbols has non-default visibility, and the
866       // other is defined in a shared object, then they are different
867       // symbols.
868
869       // If the two symbols are from different shared objects,
870       // they are different symbols.
871
872       // Otherwise, we just resolve the symbols as though they were
873       // the same.
874
875       if (pdef->second->version() != NULL)
876         gold_assert(pdef->second->version() != sym->version());
877       else if (sym->visibility() != elfcpp::STV_DEFAULT
878                && pdef->second->is_from_dynobj())
879         ;
880       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881                && sym->is_from_dynobj())
882         ;
883       else if (pdef->second->is_from_dynobj()
884                && sym->is_from_dynobj()
885                && pdef->second->is_defined()
886                && pdef->second->object() != sym->object())
887         ;
888       else
889         {
890           const Sized_symbol<size>* symdef;
891           symdef = this->get_sized_symbol<size>(pdef->second);
892           Symbol_table::resolve<size, big_endian>(sym, symdef);
893           this->make_forwarder(pdef->second, sym);
894           pdef->second = sym;
895           sym->set_is_default();
896         }
897     }
898 }
899
900 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
901 // name and VERSION is the version; both are canonicalized.  DEF is
902 // whether this is the default version.  ST_SHNDX is the symbol's
903 // section index; IS_ORDINARY is whether this is a normal section
904 // rather than a special code.
905
906 // If IS_DEFAULT_VERSION is true, then this is the definition of a
907 // default version of a symbol.  That means that any lookup of
908 // NAME/NULL and any lookup of NAME/VERSION should always return the
909 // same symbol.  This is obvious for references, but in particular we
910 // want to do this for definitions: overriding NAME/NULL should also
911 // override NAME/VERSION.  If we don't do that, it would be very hard
912 // to override functions in a shared library which uses versioning.
913
914 // We implement this by simply making both entries in the hash table
915 // point to the same Symbol structure.  That is easy enough if this is
916 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
917 // that we have seen both already, in which case they will both have
918 // independent entries in the symbol table.  We can't simply change
919 // the symbol table entry, because we have pointers to the entries
920 // attached to the object files.  So we mark the entry attached to the
921 // object file as a forwarder, and record it in the forwarders_ map.
922 // Note that entries in the hash table will never be marked as
923 // forwarders.
924 //
925 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
926 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
927 // for a special section code.  ST_SHNDX may be modified if the symbol
928 // is defined in a section being discarded.
929
930 template<int size, bool big_endian>
931 Sized_symbol<size>*
932 Symbol_table::add_from_object(Object* object,
933                               const char* name,
934                               Stringpool::Key name_key,
935                               const char* version,
936                               Stringpool::Key version_key,
937                               bool is_default_version,
938                               const elfcpp::Sym<size, big_endian>& sym,
939                               unsigned int st_shndx,
940                               bool is_ordinary,
941                               unsigned int orig_st_shndx)
942 {
943   // Print a message if this symbol is being traced.
944   if (parameters->options().is_trace_symbol(name))
945     {
946       if (orig_st_shndx == elfcpp::SHN_UNDEF)
947         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
948       else
949         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
950     }
951
952   // For an undefined symbol, we may need to adjust the name using
953   // --wrap.
954   if (orig_st_shndx == elfcpp::SHN_UNDEF
955       && parameters->options().any_wrap())
956     {
957       const char* wrap_name = this->wrap_symbol(name, &name_key);
958       if (wrap_name != name)
959         {
960           // If we see a reference to malloc with version GLIBC_2.0,
961           // and we turn it into a reference to __wrap_malloc, then we
962           // discard the version number.  Otherwise the user would be
963           // required to specify the correct version for
964           // __wrap_malloc.
965           version = NULL;
966           version_key = 0;
967           name = wrap_name;
968         }
969     }
970
971   Symbol* const snull = NULL;
972   std::pair<typename Symbol_table_type::iterator, bool> ins =
973     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
974                                        snull));
975
976   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
977     std::make_pair(this->table_.end(), false);
978   if (is_default_version)
979     {
980       const Stringpool::Key vnull_key = 0;
981       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
982                                                                      vnull_key),
983                                                       snull));
984     }
985
986   // ins.first: an iterator, which is a pointer to a pair.
987   // ins.first->first: the key (a pair of name and version).
988   // ins.first->second: the value (Symbol*).
989   // ins.second: true if new entry was inserted, false if not.
990
991   Sized_symbol<size>* ret;
992   bool was_undefined;
993   bool was_common;
994   if (!ins.second)
995     {
996       // We already have an entry for NAME/VERSION.
997       ret = this->get_sized_symbol<size>(ins.first->second);
998       gold_assert(ret != NULL);
999
1000       was_undefined = ret->is_undefined();
1001       // Commons from plugins are just placeholders.
1002       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1003
1004       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005                     version, is_default_version);
1006       if (parameters->options().gc_sections())
1007         this->gc_mark_dyn_syms(ret);
1008
1009       if (is_default_version)
1010         this->define_default_version<size, big_endian>(ret, insdefault.second,
1011                                                        insdefault.first);
1012       else
1013         {
1014           bool dummy;
1015           if (version != NULL
1016               && ret->source() == Symbol::FROM_OBJECT
1017               && ret->object() == object
1018               && is_ordinary
1019               && ret->shndx(&dummy) == st_shndx
1020               && ret->is_default())
1021             {
1022               // We have seen NAME/VERSION already, and marked it as the
1023               // default version, but now we see a definition for
1024               // NAME/VERSION that is not the default version. This can
1025               // happen when the assembler generates two symbols for
1026               // a symbol as a result of a ".symver foo,foo@VER"
1027               // directive. We see the first unversioned symbol and
1028               // we may mark it as the default version (from a
1029               // version script); then we see the second versioned
1030               // symbol and we need to override the first.
1031               // In any other case, the two symbols should have generated
1032               // a multiple definition error.
1033               // (See PR gold/18703.)
1034               ret->set_is_not_default();
1035               const Stringpool::Key vnull_key = 0;
1036               this->table_.erase(std::make_pair(name_key, vnull_key));
1037             }
1038         }
1039     }
1040   else
1041     {
1042       // This is the first time we have seen NAME/VERSION.
1043       gold_assert(ins.first->second == NULL);
1044
1045       if (is_default_version && !insdefault.second)
1046         {
1047           // We already have an entry for NAME/NULL.  If we override
1048           // it, then change it to NAME/VERSION.
1049           ret = this->get_sized_symbol<size>(insdefault.first->second);
1050
1051           was_undefined = ret->is_undefined();
1052           // Commons from plugins are just placeholders.
1053           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1054
1055           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1056                         version, is_default_version);
1057           if (parameters->options().gc_sections())
1058             this->gc_mark_dyn_syms(ret);
1059           ins.first->second = ret;
1060         }
1061       else
1062         {
1063           was_undefined = false;
1064           was_common = false;
1065
1066           Sized_target<size, big_endian>* target =
1067             parameters->sized_target<size, big_endian>();
1068           if (!target->has_make_symbol())
1069             ret = new Sized_symbol<size>();
1070           else
1071             {
1072               ret = target->make_symbol(name, sym.get_st_type(), object,
1073                                         st_shndx, sym.get_st_value());
1074               if (ret == NULL)
1075                 {
1076                   // This means that we don't want a symbol table
1077                   // entry after all.
1078                   if (!is_default_version)
1079                     this->table_.erase(ins.first);
1080                   else
1081                     {
1082                       this->table_.erase(insdefault.first);
1083                       // Inserting INSDEFAULT invalidated INS.
1084                       this->table_.erase(std::make_pair(name_key,
1085                                                         version_key));
1086                     }
1087                   return NULL;
1088                 }
1089             }
1090
1091           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1092
1093           ins.first->second = ret;
1094           if (is_default_version)
1095             {
1096               // This is the first time we have seen NAME/NULL.  Point
1097               // it at the new entry for NAME/VERSION.
1098               gold_assert(insdefault.second);
1099               insdefault.first->second = ret;
1100             }
1101         }
1102
1103       if (is_default_version)
1104         ret->set_is_default();
1105     }
1106
1107   // Record every time we see a new undefined symbol, to speed up
1108   // archive groups.
1109   if (!was_undefined && ret->is_undefined())
1110     {
1111       ++this->saw_undefined_;
1112       if (parameters->options().has_plugins())
1113         parameters->options().plugins()->new_undefined_symbol(ret);
1114     }
1115
1116   // Keep track of common symbols, to speed up common symbol
1117   // allocation.  Don't record commons from plugin objects;
1118   // we need to wait until we see the real symbol in the
1119   // replacement file.
1120   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1121     {
1122       if (ret->type() == elfcpp::STT_TLS)
1123         this->tls_commons_.push_back(ret);
1124       else if (!is_ordinary
1125                && st_shndx == parameters->target().small_common_shndx())
1126         this->small_commons_.push_back(ret);
1127       else if (!is_ordinary
1128                && st_shndx == parameters->target().large_common_shndx())
1129         this->large_commons_.push_back(ret);
1130       else
1131         this->commons_.push_back(ret);
1132     }
1133
1134   // If we're not doing a relocatable link, then any symbol with
1135   // hidden or internal visibility is local.
1136   if ((ret->visibility() == elfcpp::STV_HIDDEN
1137        || ret->visibility() == elfcpp::STV_INTERNAL)
1138       && (ret->binding() == elfcpp::STB_GLOBAL
1139           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1140           || ret->binding() == elfcpp::STB_WEAK)
1141       && !parameters->options().relocatable())
1142     this->force_local(ret);
1143
1144   return ret;
1145 }
1146
1147 // Add all the symbols in a relocatable object to the hash table.
1148
1149 template<int size, bool big_endian>
1150 void
1151 Symbol_table::add_from_relobj(
1152     Sized_relobj_file<size, big_endian>* relobj,
1153     const unsigned char* syms,
1154     size_t count,
1155     size_t symndx_offset,
1156     const char* sym_names,
1157     size_t sym_name_size,
1158     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1159     size_t* defined)
1160 {
1161   *defined = 0;
1162
1163   gold_assert(size == parameters->target().get_size());
1164
1165   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1166
1167   const bool just_symbols = relobj->just_symbols();
1168
1169   const unsigned char* p = syms;
1170   for (size_t i = 0; i < count; ++i, p += sym_size)
1171     {
1172       (*sympointers)[i] = NULL;
1173
1174       elfcpp::Sym<size, big_endian> sym(p);
1175
1176       unsigned int st_name = sym.get_st_name();
1177       if (st_name >= sym_name_size)
1178         {
1179           relobj->error(_("bad global symbol name offset %u at %zu"),
1180                         st_name, i);
1181           continue;
1182         }
1183
1184       const char* name = sym_names + st_name;
1185
1186       if (!parameters->options().relocatable()
1187           && strcmp (name, "__gnu_lto_slim") == 0)
1188         gold_info(_("%s: plugin needed to handle lto object"),
1189                   relobj->name().c_str());
1190
1191       bool is_ordinary;
1192       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1193                                                        sym.get_st_shndx(),
1194                                                        &is_ordinary);
1195       unsigned int orig_st_shndx = st_shndx;
1196       if (!is_ordinary)
1197         orig_st_shndx = elfcpp::SHN_UNDEF;
1198
1199       if (st_shndx != elfcpp::SHN_UNDEF)
1200         ++*defined;
1201
1202       // A symbol defined in a section which we are not including must
1203       // be treated as an undefined symbol.
1204       bool is_defined_in_discarded_section = false;
1205       if (st_shndx != elfcpp::SHN_UNDEF
1206           && is_ordinary
1207           && !relobj->is_section_included(st_shndx)
1208           && !this->is_section_folded(relobj, st_shndx))
1209         {
1210           st_shndx = elfcpp::SHN_UNDEF;
1211           is_defined_in_discarded_section = true;
1212         }
1213
1214       // In an object file, an '@' in the name separates the symbol
1215       // name from the version name.  If there are two '@' characters,
1216       // this is the default version.
1217       const char* ver = strchr(name, '@');
1218       Stringpool::Key ver_key = 0;
1219       int namelen = 0;
1220       // IS_DEFAULT_VERSION: is the version default?
1221       // IS_FORCED_LOCAL: is the symbol forced local?
1222       bool is_default_version = false;
1223       bool is_forced_local = false;
1224
1225       // FIXME: For incremental links, we don't store version information,
1226       // so we need to ignore version symbols for now.
1227       if (parameters->incremental_update() && ver != NULL)
1228         {
1229           namelen = ver - name;
1230           ver = NULL;
1231         }
1232
1233       if (ver != NULL)
1234         {
1235           // The symbol name is of the form foo@VERSION or foo@@VERSION
1236           namelen = ver - name;
1237           ++ver;
1238           if (*ver == '@')
1239             {
1240               is_default_version = true;
1241               ++ver;
1242             }
1243           ver = this->namepool_.add(ver, true, &ver_key);
1244         }
1245       // We don't want to assign a version to an undefined symbol,
1246       // even if it is listed in the version script.  FIXME: What
1247       // about a common symbol?
1248       else
1249         {
1250           namelen = strlen(name);
1251           if (!this->version_script_.empty()
1252               && st_shndx != elfcpp::SHN_UNDEF)
1253             {
1254               // The symbol name did not have a version, but the
1255               // version script may assign a version anyway.
1256               std::string version;
1257               bool is_global;
1258               if (this->version_script_.get_symbol_version(name, &version,
1259                                                            &is_global))
1260                 {
1261                   if (!is_global)
1262                     is_forced_local = true;
1263                   else if (!version.empty())
1264                     {
1265                       ver = this->namepool_.add_with_length(version.c_str(),
1266                                                             version.length(),
1267                                                             true,
1268                                                             &ver_key);
1269                       is_default_version = true;
1270                     }
1271                 }
1272             }
1273         }
1274
1275       elfcpp::Sym<size, big_endian>* psym = &sym;
1276       unsigned char symbuf[sym_size];
1277       elfcpp::Sym<size, big_endian> sym2(symbuf);
1278       if (just_symbols)
1279         {
1280           memcpy(symbuf, p, sym_size);
1281           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1282           if (orig_st_shndx != elfcpp::SHN_UNDEF
1283               && is_ordinary
1284               && relobj->e_type() == elfcpp::ET_REL)
1285             {
1286               // Symbol values in relocatable object files are section
1287               // relative.  This is normally what we want, but since here
1288               // we are converting the symbol to absolute we need to add
1289               // the section address.  The section address in an object
1290               // file is normally zero, but people can use a linker
1291               // script to change it.
1292               sw.put_st_value(sym.get_st_value()
1293                               + relobj->section_address(orig_st_shndx));
1294             }
1295           st_shndx = elfcpp::SHN_ABS;
1296           is_ordinary = false;
1297           psym = &sym2;
1298         }
1299
1300       // Fix up visibility if object has no-export set.
1301       if (relobj->no_export()
1302           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1303         {
1304           // We may have copied symbol already above.
1305           if (psym != &sym2)
1306             {
1307               memcpy(symbuf, p, sym_size);
1308               psym = &sym2;
1309             }
1310
1311           elfcpp::STV visibility = sym2.get_st_visibility();
1312           if (visibility == elfcpp::STV_DEFAULT
1313               || visibility == elfcpp::STV_PROTECTED)
1314             {
1315               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1316               unsigned char nonvis = sym2.get_st_nonvis();
1317               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1318             }
1319         }
1320
1321       Stringpool::Key name_key;
1322       name = this->namepool_.add_with_length(name, namelen, true,
1323                                              &name_key);
1324
1325       Sized_symbol<size>* res;
1326       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1327                                   is_default_version, *psym, st_shndx,
1328                                   is_ordinary, orig_st_shndx);
1329
1330       if (res == NULL)
1331         continue;
1332       
1333       if (is_forced_local)
1334         this->force_local(res);
1335
1336       // Do not treat this symbol as garbage if this symbol will be
1337       // exported to the dynamic symbol table.  This is true when
1338       // building a shared library or using --export-dynamic and
1339       // the symbol is externally visible.
1340       if (parameters->options().gc_sections()
1341           && res->is_externally_visible()
1342           && !res->is_from_dynobj()
1343           && (parameters->options().shared()
1344               || parameters->options().export_dynamic()
1345               || parameters->options().in_dynamic_list(res->name())))
1346         this->gc_mark_symbol(res);
1347
1348       if (is_defined_in_discarded_section)
1349         res->set_is_defined_in_discarded_section();
1350
1351       (*sympointers)[i] = res;
1352     }
1353 }
1354
1355 // Add a symbol from a plugin-claimed file.
1356
1357 template<int size, bool big_endian>
1358 Symbol*
1359 Symbol_table::add_from_pluginobj(
1360     Sized_pluginobj<size, big_endian>* obj,
1361     const char* name,
1362     const char* ver,
1363     elfcpp::Sym<size, big_endian>* sym)
1364 {
1365   unsigned int st_shndx = sym->get_st_shndx();
1366   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1367
1368   Stringpool::Key ver_key = 0;
1369   bool is_default_version = false;
1370   bool is_forced_local = false;
1371
1372   if (ver != NULL)
1373     {
1374       ver = this->namepool_.add(ver, true, &ver_key);
1375     }
1376   // We don't want to assign a version to an undefined symbol,
1377   // even if it is listed in the version script.  FIXME: What
1378   // about a common symbol?
1379   else
1380     {
1381       if (!this->version_script_.empty()
1382           && st_shndx != elfcpp::SHN_UNDEF)
1383         {
1384           // The symbol name did not have a version, but the
1385           // version script may assign a version anyway.
1386           std::string version;
1387           bool is_global;
1388           if (this->version_script_.get_symbol_version(name, &version,
1389                                                        &is_global))
1390             {
1391               if (!is_global)
1392                 is_forced_local = true;
1393               else if (!version.empty())
1394                 {
1395                   ver = this->namepool_.add_with_length(version.c_str(),
1396                                                         version.length(),
1397                                                         true,
1398                                                         &ver_key);
1399                   is_default_version = true;
1400                 }
1401             }
1402         }
1403     }
1404
1405   Stringpool::Key name_key;
1406   name = this->namepool_.add(name, true, &name_key);
1407
1408   Sized_symbol<size>* res;
1409   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1410                               is_default_version, *sym, st_shndx,
1411                               is_ordinary, st_shndx);
1412
1413   if (res == NULL)
1414     return NULL;
1415
1416   if (is_forced_local)
1417     this->force_local(res);
1418
1419   return res;
1420 }
1421
1422 // Add all the symbols in a dynamic object to the hash table.
1423
1424 template<int size, bool big_endian>
1425 void
1426 Symbol_table::add_from_dynobj(
1427     Sized_dynobj<size, big_endian>* dynobj,
1428     const unsigned char* syms,
1429     size_t count,
1430     const char* sym_names,
1431     size_t sym_name_size,
1432     const unsigned char* versym,
1433     size_t versym_size,
1434     const std::vector<const char*>* version_map,
1435     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1436     size_t* defined)
1437 {
1438   *defined = 0;
1439
1440   gold_assert(size == parameters->target().get_size());
1441
1442   if (dynobj->just_symbols())
1443     {
1444       gold_error(_("--just-symbols does not make sense with a shared object"));
1445       return;
1446     }
1447
1448   // FIXME: For incremental links, we don't store version information,
1449   // so we need to ignore version symbols for now.
1450   if (parameters->incremental_update())
1451     versym = NULL;
1452
1453   if (versym != NULL && versym_size / 2 < count)
1454     {
1455       dynobj->error(_("too few symbol versions"));
1456       return;
1457     }
1458
1459   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1460
1461   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1462   // weak aliases.  This is necessary because if the dynamic object
1463   // provides the same variable under two names, one of which is a
1464   // weak definition, and the regular object refers to the weak
1465   // definition, we have to put both the weak definition and the
1466   // strong definition into the dynamic symbol table.  Given a weak
1467   // definition, the only way that we can find the corresponding
1468   // strong definition, if any, is to search the symbol table.
1469   std::vector<Sized_symbol<size>*> object_symbols;
1470
1471   const unsigned char* p = syms;
1472   const unsigned char* vs = versym;
1473   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1474     {
1475       elfcpp::Sym<size, big_endian> sym(p);
1476
1477       if (sympointers != NULL)
1478         (*sympointers)[i] = NULL;
1479
1480       // Ignore symbols with local binding or that have
1481       // internal or hidden visibility.
1482       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1483           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1484           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1485         continue;
1486
1487       // A protected symbol in a shared library must be treated as a
1488       // normal symbol when viewed from outside the shared library.
1489       // Implement this by overriding the visibility here.
1490       // Likewise, an IFUNC symbol in a shared library must be treated
1491       // as a normal FUNC symbol.
1492       elfcpp::Sym<size, big_endian>* psym = &sym;
1493       unsigned char symbuf[sym_size];
1494       elfcpp::Sym<size, big_endian> sym2(symbuf);
1495       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1496           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1497         {
1498           memcpy(symbuf, p, sym_size);
1499           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1500           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1501             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1502           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1503             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1504           psym = &sym2;
1505         }
1506
1507       unsigned int st_name = psym->get_st_name();
1508       if (st_name >= sym_name_size)
1509         {
1510           dynobj->error(_("bad symbol name offset %u at %zu"),
1511                         st_name, i);
1512           continue;
1513         }
1514
1515       const char* name = sym_names + st_name;
1516
1517       bool is_ordinary;
1518       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1519                                                        &is_ordinary);
1520
1521       if (st_shndx != elfcpp::SHN_UNDEF)
1522         ++*defined;
1523
1524       Sized_symbol<size>* res;
1525
1526       if (versym == NULL)
1527         {
1528           Stringpool::Key name_key;
1529           name = this->namepool_.add(name, true, &name_key);
1530           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531                                       false, *psym, st_shndx, is_ordinary,
1532                                       st_shndx);
1533         }
1534       else
1535         {
1536           // Read the version information.
1537
1538           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1539
1540           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1541           v &= elfcpp::VERSYM_VERSION;
1542
1543           // The Sun documentation says that V can be VER_NDX_LOCAL,
1544           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1545           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1546           // The old GNU linker will happily generate VER_NDX_LOCAL
1547           // for an undefined symbol.  I don't know what the Sun
1548           // linker will generate.
1549
1550           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1551               && st_shndx != elfcpp::SHN_UNDEF)
1552             {
1553               // This symbol should not be visible outside the object.
1554               continue;
1555             }
1556
1557           // At this point we are definitely going to add this symbol.
1558           Stringpool::Key name_key;
1559           name = this->namepool_.add(name, true, &name_key);
1560
1561           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1562               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1563             {
1564               // This symbol does not have a version.
1565               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1566                                           false, *psym, st_shndx, is_ordinary,
1567                                           st_shndx);
1568             }
1569           else
1570             {
1571               if (v >= version_map->size())
1572                 {
1573                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1574                                 i, v);
1575                   continue;
1576                 }
1577
1578               const char* version = (*version_map)[v];
1579               if (version == NULL)
1580                 {
1581                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1582                                 i, v);
1583                   continue;
1584                 }
1585
1586               Stringpool::Key version_key;
1587               version = this->namepool_.add(version, true, &version_key);
1588
1589               // If this is an absolute symbol, and the version name
1590               // and symbol name are the same, then this is the
1591               // version definition symbol.  These symbols exist to
1592               // support using -u to pull in particular versions.  We
1593               // do not want to record a version for them.
1594               if (st_shndx == elfcpp::SHN_ABS
1595                   && !is_ordinary
1596                   && name_key == version_key)
1597                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1598                                             false, *psym, st_shndx, is_ordinary,
1599                                             st_shndx);
1600               else
1601                 {
1602                   const bool is_default_version =
1603                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1604                   res = this->add_from_object(dynobj, name, name_key, version,
1605                                               version_key, is_default_version,
1606                                               *psym, st_shndx,
1607                                               is_ordinary, st_shndx);
1608                 }
1609             }
1610         }
1611
1612       if (res == NULL)
1613         continue;
1614
1615       // Note that it is possible that RES was overridden by an
1616       // earlier object, in which case it can't be aliased here.
1617       if (st_shndx != elfcpp::SHN_UNDEF
1618           && is_ordinary
1619           && psym->get_st_type() == elfcpp::STT_OBJECT
1620           && res->source() == Symbol::FROM_OBJECT
1621           && res->object() == dynobj)
1622         object_symbols.push_back(res);
1623
1624       // If the symbol has protected visibility in the dynobj,
1625       // mark it as such if it was not overridden.
1626       if (res->source() == Symbol::FROM_OBJECT
1627           && res->object() == dynobj
1628           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1629         res->set_is_protected();
1630
1631       if (sympointers != NULL)
1632         (*sympointers)[i] = res;
1633     }
1634
1635   this->record_weak_aliases(&object_symbols);
1636 }
1637
1638 // Add a symbol from a incremental object file.
1639
1640 template<int size, bool big_endian>
1641 Sized_symbol<size>*
1642 Symbol_table::add_from_incrobj(
1643     Object* obj,
1644     const char* name,
1645     const char* ver,
1646     elfcpp::Sym<size, big_endian>* sym)
1647 {
1648   unsigned int st_shndx = sym->get_st_shndx();
1649   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1650
1651   Stringpool::Key ver_key = 0;
1652   bool is_default_version = false;
1653
1654   Stringpool::Key name_key;
1655   name = this->namepool_.add(name, true, &name_key);
1656
1657   Sized_symbol<size>* res;
1658   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1659                               is_default_version, *sym, st_shndx,
1660                               is_ordinary, st_shndx);
1661
1662   return res;
1663 }
1664
1665 // This is used to sort weak aliases.  We sort them first by section
1666 // index, then by offset, then by weak ahead of strong.
1667
1668 template<int size>
1669 class Weak_alias_sorter
1670 {
1671  public:
1672   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1673 };
1674
1675 template<int size>
1676 bool
1677 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1678                                     const Sized_symbol<size>* s2) const
1679 {
1680   bool is_ordinary;
1681   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1682   gold_assert(is_ordinary);
1683   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1684   gold_assert(is_ordinary);
1685   if (s1_shndx != s2_shndx)
1686     return s1_shndx < s2_shndx;
1687
1688   if (s1->value() != s2->value())
1689     return s1->value() < s2->value();
1690   if (s1->binding() != s2->binding())
1691     {
1692       if (s1->binding() == elfcpp::STB_WEAK)
1693         return true;
1694       if (s2->binding() == elfcpp::STB_WEAK)
1695         return false;
1696     }
1697   return std::string(s1->name()) < std::string(s2->name());
1698 }
1699
1700 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1701 // for any weak aliases, and record them so that if we add the weak
1702 // alias to the dynamic symbol table, we also add the corresponding
1703 // strong symbol.
1704
1705 template<int size>
1706 void
1707 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1708 {
1709   // Sort the vector by section index, then by offset, then by weak
1710   // ahead of strong.
1711   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1712
1713   // Walk through the vector.  For each weak definition, record
1714   // aliases.
1715   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1716          symbols->begin();
1717        p != symbols->end();
1718        ++p)
1719     {
1720       if ((*p)->binding() != elfcpp::STB_WEAK)
1721         continue;
1722
1723       // Build a circular list of weak aliases.  Each symbol points to
1724       // the next one in the circular list.
1725
1726       Sized_symbol<size>* from_sym = *p;
1727       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1728       for (q = p + 1; q != symbols->end(); ++q)
1729         {
1730           bool dummy;
1731           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1732               || (*q)->value() != from_sym->value())
1733             break;
1734
1735           this->weak_aliases_[from_sym] = *q;
1736           from_sym->set_has_alias();
1737           from_sym = *q;
1738         }
1739
1740       if (from_sym != *p)
1741         {
1742           this->weak_aliases_[from_sym] = *p;
1743           from_sym->set_has_alias();
1744         }
1745
1746       p = q - 1;
1747     }
1748 }
1749
1750 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1751 // true, then only create the symbol if there is a reference to it.
1752 // If this does not return NULL, it sets *POLDSYM to the existing
1753 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1754 // resolve the newly created symbol to the old one.  This
1755 // canonicalizes *PNAME and *PVERSION.
1756
1757 template<int size, bool big_endian>
1758 Sized_symbol<size>*
1759 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1760                                     bool only_if_ref,
1761                                     Sized_symbol<size>** poldsym,
1762                                     bool* resolve_oldsym, bool is_forced_local)
1763 {
1764   *resolve_oldsym = false;
1765   *poldsym = NULL;
1766
1767   // If the caller didn't give us a version, see if we get one from
1768   // the version script.
1769   std::string v;
1770   bool is_default_version = false;
1771   if (!is_forced_local && *pversion == NULL)
1772     {
1773       bool is_global;
1774       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1775         {
1776           if (is_global && !v.empty())
1777             {
1778               *pversion = v.c_str();
1779               // If we get the version from a version script, then we
1780               // are also the default version.
1781               is_default_version = true;
1782             }
1783         }
1784     }
1785
1786   Symbol* oldsym;
1787   Sized_symbol<size>* sym;
1788
1789   bool add_to_table = false;
1790   typename Symbol_table_type::iterator add_loc = this->table_.end();
1791   bool add_def_to_table = false;
1792   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1793
1794   if (only_if_ref)
1795     {
1796       oldsym = this->lookup(*pname, *pversion);
1797       if (oldsym == NULL && is_default_version)
1798         oldsym = this->lookup(*pname, NULL);
1799       if (oldsym == NULL || !oldsym->is_undefined())
1800         return NULL;
1801
1802       *pname = oldsym->name();
1803       if (is_default_version)
1804         *pversion = this->namepool_.add(*pversion, true, NULL);
1805       else
1806         *pversion = oldsym->version();
1807     }
1808   else
1809     {
1810       // Canonicalize NAME and VERSION.
1811       Stringpool::Key name_key;
1812       *pname = this->namepool_.add(*pname, true, &name_key);
1813
1814       Stringpool::Key version_key = 0;
1815       if (*pversion != NULL)
1816         *pversion = this->namepool_.add(*pversion, true, &version_key);
1817
1818       Symbol* const snull = NULL;
1819       std::pair<typename Symbol_table_type::iterator, bool> ins =
1820         this->table_.insert(std::make_pair(std::make_pair(name_key,
1821                                                           version_key),
1822                                            snull));
1823
1824       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1825         std::make_pair(this->table_.end(), false);
1826       if (is_default_version)
1827         {
1828           const Stringpool::Key vnull = 0;
1829           insdefault =
1830             this->table_.insert(std::make_pair(std::make_pair(name_key,
1831                                                               vnull),
1832                                                snull));
1833         }
1834
1835       if (!ins.second)
1836         {
1837           // We already have a symbol table entry for NAME/VERSION.
1838           oldsym = ins.first->second;
1839           gold_assert(oldsym != NULL);
1840
1841           if (is_default_version)
1842             {
1843               Sized_symbol<size>* soldsym =
1844                 this->get_sized_symbol<size>(oldsym);
1845               this->define_default_version<size, big_endian>(soldsym,
1846                                                              insdefault.second,
1847                                                              insdefault.first);
1848             }
1849         }
1850       else
1851         {
1852           // We haven't seen this symbol before.
1853           gold_assert(ins.first->second == NULL);
1854
1855           add_to_table = true;
1856           add_loc = ins.first;
1857
1858           if (is_default_version && !insdefault.second)
1859             {
1860               // We are adding NAME/VERSION, and it is the default
1861               // version.  We already have an entry for NAME/NULL.
1862               oldsym = insdefault.first->second;
1863               *resolve_oldsym = true;
1864             }
1865           else
1866             {
1867               oldsym = NULL;
1868
1869               if (is_default_version)
1870                 {
1871                   add_def_to_table = true;
1872                   add_def_loc = insdefault.first;
1873                 }
1874             }
1875         }
1876     }
1877
1878   const Target& target = parameters->target();
1879   if (!target.has_make_symbol())
1880     sym = new Sized_symbol<size>();
1881   else
1882     {
1883       Sized_target<size, big_endian>* sized_target =
1884         parameters->sized_target<size, big_endian>();
1885       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1886                                       NULL, elfcpp::SHN_UNDEF, 0);
1887       if (sym == NULL)
1888         return NULL;
1889     }
1890
1891   if (add_to_table)
1892     add_loc->second = sym;
1893   else
1894     gold_assert(oldsym != NULL);
1895
1896   if (add_def_to_table)
1897     add_def_loc->second = sym;
1898
1899   *poldsym = this->get_sized_symbol<size>(oldsym);
1900
1901   return sym;
1902 }
1903
1904 // Define a symbol based on an Output_data.
1905
1906 Symbol*
1907 Symbol_table::define_in_output_data(const char* name,
1908                                     const char* version,
1909                                     Defined defined,
1910                                     Output_data* od,
1911                                     uint64_t value,
1912                                     uint64_t symsize,
1913                                     elfcpp::STT type,
1914                                     elfcpp::STB binding,
1915                                     elfcpp::STV visibility,
1916                                     unsigned char nonvis,
1917                                     bool offset_is_from_end,
1918                                     bool only_if_ref)
1919 {
1920   if (parameters->target().get_size() == 32)
1921     {
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1923       return this->do_define_in_output_data<32>(name, version, defined, od,
1924                                                 value, symsize, type, binding,
1925                                                 visibility, nonvis,
1926                                                 offset_is_from_end,
1927                                                 only_if_ref);
1928 #else
1929       gold_unreachable();
1930 #endif
1931     }
1932   else if (parameters->target().get_size() == 64)
1933     {
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935       return this->do_define_in_output_data<64>(name, version, defined, od,
1936                                                 value, symsize, type, binding,
1937                                                 visibility, nonvis,
1938                                                 offset_is_from_end,
1939                                                 only_if_ref);
1940 #else
1941       gold_unreachable();
1942 #endif
1943     }
1944   else
1945     gold_unreachable();
1946 }
1947
1948 // Define a symbol in an Output_data, sized version.
1949
1950 template<int size>
1951 Sized_symbol<size>*
1952 Symbol_table::do_define_in_output_data(
1953     const char* name,
1954     const char* version,
1955     Defined defined,
1956     Output_data* od,
1957     typename elfcpp::Elf_types<size>::Elf_Addr value,
1958     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1959     elfcpp::STT type,
1960     elfcpp::STB binding,
1961     elfcpp::STV visibility,
1962     unsigned char nonvis,
1963     bool offset_is_from_end,
1964     bool only_if_ref)
1965 {
1966   Sized_symbol<size>* sym;
1967   Sized_symbol<size>* oldsym;
1968   bool resolve_oldsym;
1969   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1970
1971   if (parameters->target().is_big_endian())
1972     {
1973 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974       sym = this->define_special_symbol<size, true>(&name, &version,
1975                                                     only_if_ref, &oldsym,
1976                                                     &resolve_oldsym,
1977                                                     is_forced_local);
1978 #else
1979       gold_unreachable();
1980 #endif
1981     }
1982   else
1983     {
1984 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1985       sym = this->define_special_symbol<size, false>(&name, &version,
1986                                                      only_if_ref, &oldsym,
1987                                                      &resolve_oldsym,
1988                                                      is_forced_local);
1989 #else
1990       gold_unreachable();
1991 #endif
1992     }
1993
1994   if (sym == NULL)
1995     return NULL;
1996
1997   sym->init_output_data(name, version, od, value, symsize, type, binding,
1998                         visibility, nonvis, offset_is_from_end,
1999                         defined == PREDEFINED);
2000
2001   if (oldsym == NULL)
2002     {
2003       if (is_forced_local || this->version_script_.symbol_is_local(name))
2004         this->force_local(sym);
2005       else if (version != NULL)
2006         sym->set_is_default();
2007       return sym;
2008     }
2009
2010   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2011     this->override_with_special(oldsym, sym);
2012
2013   if (resolve_oldsym)
2014     return sym;
2015   else
2016     {
2017       if (defined == PREDEFINED
2018           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2019         this->force_local(oldsym);
2020       delete sym;
2021       return oldsym;
2022     }
2023 }
2024
2025 // Define a symbol based on an Output_segment.
2026
2027 Symbol*
2028 Symbol_table::define_in_output_segment(const char* name,
2029                                        const char* version,
2030                                        Defined defined,
2031                                        Output_segment* os,
2032                                        uint64_t value,
2033                                        uint64_t symsize,
2034                                        elfcpp::STT type,
2035                                        elfcpp::STB binding,
2036                                        elfcpp::STV visibility,
2037                                        unsigned char nonvis,
2038                                        Symbol::Segment_offset_base offset_base,
2039                                        bool only_if_ref)
2040 {
2041   if (parameters->target().get_size() == 32)
2042     {
2043 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2044       return this->do_define_in_output_segment<32>(name, version, defined, os,
2045                                                    value, symsize, type,
2046                                                    binding, visibility, nonvis,
2047                                                    offset_base, only_if_ref);
2048 #else
2049       gold_unreachable();
2050 #endif
2051     }
2052   else if (parameters->target().get_size() == 64)
2053     {
2054 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2055       return this->do_define_in_output_segment<64>(name, version, defined, os,
2056                                                    value, symsize, type,
2057                                                    binding, visibility, nonvis,
2058                                                    offset_base, only_if_ref);
2059 #else
2060       gold_unreachable();
2061 #endif
2062     }
2063   else
2064     gold_unreachable();
2065 }
2066
2067 // Define a symbol in an Output_segment, sized version.
2068
2069 template<int size>
2070 Sized_symbol<size>*
2071 Symbol_table::do_define_in_output_segment(
2072     const char* name,
2073     const char* version,
2074     Defined defined,
2075     Output_segment* os,
2076     typename elfcpp::Elf_types<size>::Elf_Addr value,
2077     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2078     elfcpp::STT type,
2079     elfcpp::STB binding,
2080     elfcpp::STV visibility,
2081     unsigned char nonvis,
2082     Symbol::Segment_offset_base offset_base,
2083     bool only_if_ref)
2084 {
2085   Sized_symbol<size>* sym;
2086   Sized_symbol<size>* oldsym;
2087   bool resolve_oldsym;
2088   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2089
2090   if (parameters->target().is_big_endian())
2091     {
2092 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2093       sym = this->define_special_symbol<size, true>(&name, &version,
2094                                                     only_if_ref, &oldsym,
2095                                                     &resolve_oldsym,
2096                                                     is_forced_local);
2097 #else
2098       gold_unreachable();
2099 #endif
2100     }
2101   else
2102     {
2103 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2104       sym = this->define_special_symbol<size, false>(&name, &version,
2105                                                      only_if_ref, &oldsym,
2106                                                      &resolve_oldsym,
2107                                                      is_forced_local);
2108 #else
2109       gold_unreachable();
2110 #endif
2111     }
2112
2113   if (sym == NULL)
2114     return NULL;
2115
2116   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2117                            visibility, nonvis, offset_base,
2118                            defined == PREDEFINED);
2119
2120   if (oldsym == NULL)
2121     {
2122       if (is_forced_local || this->version_script_.symbol_is_local(name))
2123         this->force_local(sym);
2124       else if (version != NULL)
2125         sym->set_is_default();
2126       return sym;
2127     }
2128
2129   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2130     this->override_with_special(oldsym, sym);
2131
2132   if (resolve_oldsym)
2133     return sym;
2134   else
2135     {
2136       if (is_forced_local || this->version_script_.symbol_is_local(name))
2137         this->force_local(oldsym);
2138       delete sym;
2139       return oldsym;
2140     }
2141 }
2142
2143 // Define a special symbol with a constant value.  It is a multiple
2144 // definition error if this symbol is already defined.
2145
2146 Symbol*
2147 Symbol_table::define_as_constant(const char* name,
2148                                  const char* version,
2149                                  Defined defined,
2150                                  uint64_t value,
2151                                  uint64_t symsize,
2152                                  elfcpp::STT type,
2153                                  elfcpp::STB binding,
2154                                  elfcpp::STV visibility,
2155                                  unsigned char nonvis,
2156                                  bool only_if_ref,
2157                                  bool force_override)
2158 {
2159   if (parameters->target().get_size() == 32)
2160     {
2161 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2162       return this->do_define_as_constant<32>(name, version, defined, value,
2163                                              symsize, type, binding,
2164                                              visibility, nonvis, only_if_ref,
2165                                              force_override);
2166 #else
2167       gold_unreachable();
2168 #endif
2169     }
2170   else if (parameters->target().get_size() == 64)
2171     {
2172 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2173       return this->do_define_as_constant<64>(name, version, defined, value,
2174                                              symsize, type, binding,
2175                                              visibility, nonvis, only_if_ref,
2176                                              force_override);
2177 #else
2178       gold_unreachable();
2179 #endif
2180     }
2181   else
2182     gold_unreachable();
2183 }
2184
2185 // Define a symbol as a constant, sized version.
2186
2187 template<int size>
2188 Sized_symbol<size>*
2189 Symbol_table::do_define_as_constant(
2190     const char* name,
2191     const char* version,
2192     Defined defined,
2193     typename elfcpp::Elf_types<size>::Elf_Addr value,
2194     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2195     elfcpp::STT type,
2196     elfcpp::STB binding,
2197     elfcpp::STV visibility,
2198     unsigned char nonvis,
2199     bool only_if_ref,
2200     bool force_override)
2201 {
2202   Sized_symbol<size>* sym;
2203   Sized_symbol<size>* oldsym;
2204   bool resolve_oldsym;
2205   const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2206
2207   if (parameters->target().is_big_endian())
2208     {
2209 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2210       sym = this->define_special_symbol<size, true>(&name, &version,
2211                                                     only_if_ref, &oldsym,
2212                                                     &resolve_oldsym,
2213                                                     is_forced_local);
2214 #else
2215       gold_unreachable();
2216 #endif
2217     }
2218   else
2219     {
2220 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2221       sym = this->define_special_symbol<size, false>(&name, &version,
2222                                                      only_if_ref, &oldsym,
2223                                                      &resolve_oldsym,
2224                                                      is_forced_local);
2225 #else
2226       gold_unreachable();
2227 #endif
2228     }
2229
2230   if (sym == NULL)
2231     return NULL;
2232
2233   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2234                      nonvis, defined == PREDEFINED);
2235
2236   if (oldsym == NULL)
2237     {
2238       // Version symbols are absolute symbols with name == version.
2239       // We don't want to force them to be local.
2240       if ((version == NULL
2241            || name != version
2242            || value != 0)
2243           && (is_forced_local || this->version_script_.symbol_is_local(name)))
2244         this->force_local(sym);
2245       else if (version != NULL
2246                && (name != version || value != 0))
2247         sym->set_is_default();
2248       return sym;
2249     }
2250
2251   if (force_override
2252       || Symbol_table::should_override_with_special(oldsym, type, defined))
2253     this->override_with_special(oldsym, sym);
2254
2255   if (resolve_oldsym)
2256     return sym;
2257   else
2258     {
2259       if (is_forced_local || this->version_script_.symbol_is_local(name))
2260         this->force_local(oldsym);
2261       delete sym;
2262       return oldsym;
2263     }
2264 }
2265
2266 // Define a set of symbols in output sections.
2267
2268 void
2269 Symbol_table::define_symbols(const Layout* layout, int count,
2270                              const Define_symbol_in_section* p,
2271                              bool only_if_ref)
2272 {
2273   for (int i = 0; i < count; ++i, ++p)
2274     {
2275       Output_section* os = layout->find_output_section(p->output_section);
2276       if (os != NULL)
2277         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2278                                     p->size, p->type, p->binding,
2279                                     p->visibility, p->nonvis,
2280                                     p->offset_is_from_end,
2281                                     only_if_ref || p->only_if_ref);
2282       else
2283         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2284                                  p->type, p->binding, p->visibility, p->nonvis,
2285                                  only_if_ref || p->only_if_ref,
2286                                  false);
2287     }
2288 }
2289
2290 // Define a set of symbols in output segments.
2291
2292 void
2293 Symbol_table::define_symbols(const Layout* layout, int count,
2294                              const Define_symbol_in_segment* p,
2295                              bool only_if_ref)
2296 {
2297   for (int i = 0; i < count; ++i, ++p)
2298     {
2299       Output_segment* os = layout->find_output_segment(p->segment_type,
2300                                                        p->segment_flags_set,
2301                                                        p->segment_flags_clear);
2302       if (os != NULL)
2303         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2304                                        p->size, p->type, p->binding,
2305                                        p->visibility, p->nonvis,
2306                                        p->offset_base,
2307                                        only_if_ref || p->only_if_ref);
2308       else
2309         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2310                                  p->type, p->binding, p->visibility, p->nonvis,
2311                                  only_if_ref || p->only_if_ref,
2312                                  false);
2313     }
2314 }
2315
2316 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2317 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2318 // the offset within POSD.
2319
2320 template<int size>
2321 void
2322 Symbol_table::define_with_copy_reloc(
2323     Sized_symbol<size>* csym,
2324     Output_data* posd,
2325     typename elfcpp::Elf_types<size>::Elf_Addr value)
2326 {
2327   gold_assert(csym->is_from_dynobj());
2328   gold_assert(!csym->is_copied_from_dynobj());
2329   Object* object = csym->object();
2330   gold_assert(object->is_dynamic());
2331   Dynobj* dynobj = static_cast<Dynobj*>(object);
2332
2333   // Our copied variable has to override any variable in a shared
2334   // library.
2335   elfcpp::STB binding = csym->binding();
2336   if (binding == elfcpp::STB_WEAK)
2337     binding = elfcpp::STB_GLOBAL;
2338
2339   this->define_in_output_data(csym->name(), csym->version(), COPY,
2340                               posd, value, csym->symsize(),
2341                               csym->type(), binding,
2342                               csym->visibility(), csym->nonvis(),
2343                               false, false);
2344
2345   csym->set_is_copied_from_dynobj();
2346   csym->set_needs_dynsym_entry();
2347
2348   this->copied_symbol_dynobjs_[csym] = dynobj;
2349
2350   // We have now defined all aliases, but we have not entered them all
2351   // in the copied_symbol_dynobjs_ map.
2352   if (csym->has_alias())
2353     {
2354       Symbol* sym = csym;
2355       while (true)
2356         {
2357           sym = this->weak_aliases_[sym];
2358           if (sym == csym)
2359             break;
2360           gold_assert(sym->output_data() == posd);
2361
2362           sym->set_is_copied_from_dynobj();
2363           this->copied_symbol_dynobjs_[sym] = dynobj;
2364         }
2365     }
2366 }
2367
2368 // SYM is defined using a COPY reloc.  Return the dynamic object where
2369 // the original definition was found.
2370
2371 Dynobj*
2372 Symbol_table::get_copy_source(const Symbol* sym) const
2373 {
2374   gold_assert(sym->is_copied_from_dynobj());
2375   Copied_symbol_dynobjs::const_iterator p =
2376     this->copied_symbol_dynobjs_.find(sym);
2377   gold_assert(p != this->copied_symbol_dynobjs_.end());
2378   return p->second;
2379 }
2380
2381 // Add any undefined symbols named on the command line.
2382
2383 void
2384 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2385 {
2386   if (parameters->options().any_undefined()
2387       || layout->script_options()->any_unreferenced())
2388     {
2389       if (parameters->target().get_size() == 32)
2390         {
2391 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2392           this->do_add_undefined_symbols_from_command_line<32>(layout);
2393 #else
2394           gold_unreachable();
2395 #endif
2396         }
2397       else if (parameters->target().get_size() == 64)
2398         {
2399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2400           this->do_add_undefined_symbols_from_command_line<64>(layout);
2401 #else
2402           gold_unreachable();
2403 #endif
2404         }
2405       else
2406         gold_unreachable();
2407     }
2408 }
2409
2410 template<int size>
2411 void
2412 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2413 {
2414   for (options::String_set::const_iterator p =
2415          parameters->options().undefined_begin();
2416        p != parameters->options().undefined_end();
2417        ++p)
2418     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2419
2420   for (options::String_set::const_iterator p =
2421          parameters->options().export_dynamic_symbol_begin();
2422        p != parameters->options().export_dynamic_symbol_end();
2423        ++p)
2424     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2425
2426   for (Script_options::referenced_const_iterator p =
2427          layout->script_options()->referenced_begin();
2428        p != layout->script_options()->referenced_end();
2429        ++p)
2430     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2431 }
2432
2433 template<int size>
2434 void
2435 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2436 {
2437   if (this->lookup(name) != NULL)
2438     return;
2439
2440   const char* version = NULL;
2441
2442   Sized_symbol<size>* sym;
2443   Sized_symbol<size>* oldsym;
2444   bool resolve_oldsym;
2445   if (parameters->target().is_big_endian())
2446     {
2447 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2448       sym = this->define_special_symbol<size, true>(&name, &version,
2449                                                     false, &oldsym,
2450                                                     &resolve_oldsym,
2451                                                     false);
2452 #else
2453       gold_unreachable();
2454 #endif
2455     }
2456   else
2457     {
2458 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2459       sym = this->define_special_symbol<size, false>(&name, &version,
2460                                                      false, &oldsym,
2461                                                      &resolve_oldsym,
2462                                                      false);
2463 #else
2464       gold_unreachable();
2465 #endif
2466     }
2467
2468   gold_assert(oldsym == NULL);
2469
2470   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2471                       elfcpp::STV_DEFAULT, 0);
2472   ++this->saw_undefined_;
2473 }
2474
2475 // Set the dynamic symbol indexes.  INDEX is the index of the first
2476 // global dynamic symbol.  Pointers to the global symbols are stored
2477 // into the vector SYMS.  The names are added to DYNPOOL.
2478 // This returns an updated dynamic symbol index.
2479
2480 unsigned int
2481 Symbol_table::set_dynsym_indexes(unsigned int index,
2482                                  unsigned int* pforced_local_count,
2483                                  std::vector<Symbol*>* syms,
2484                                  Stringpool* dynpool,
2485                                  Versions* versions)
2486 {
2487   std::vector<Symbol*> as_needed_sym;
2488
2489   // First process all the symbols which have been forced to be local,
2490   // as they must appear before all global symbols.
2491   unsigned int forced_local_count = 0;
2492   for (Forced_locals::iterator p = this->forced_locals_.begin();
2493        p != this->forced_locals_.end();
2494        ++p)
2495     {
2496       Symbol* sym = *p;
2497       gold_assert(sym->is_forced_local());
2498       if (sym->has_dynsym_index())
2499         continue;
2500       if (!sym->should_add_dynsym_entry(this))
2501         sym->set_dynsym_index(-1U);
2502       else
2503         {
2504           sym->set_dynsym_index(index);
2505           ++index;
2506           ++forced_local_count;
2507           dynpool->add(sym->name(), false, NULL);
2508         }
2509     }
2510   *pforced_local_count = forced_local_count;
2511
2512   // Allow a target to set dynsym indexes.
2513   if (parameters->target().has_custom_set_dynsym_indexes())
2514     {
2515       std::vector<Symbol*> dyn_symbols;
2516       for (Symbol_table_type::iterator p = this->table_.begin();
2517            p != this->table_.end();
2518            ++p)
2519         {
2520           Symbol* sym = p->second;
2521           if (sym->is_forced_local())
2522             continue;
2523           if (!sym->should_add_dynsym_entry(this))
2524             sym->set_dynsym_index(-1U);
2525           else
2526             dyn_symbols.push_back(sym);
2527         }
2528
2529       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2530                                                      dynpool, versions, this);
2531     }
2532
2533   for (Symbol_table_type::iterator p = this->table_.begin();
2534        p != this->table_.end();
2535        ++p)
2536     {
2537       Symbol* sym = p->second;
2538
2539       if (sym->is_forced_local())
2540         continue;
2541
2542       // Note that SYM may already have a dynamic symbol index, since
2543       // some symbols appear more than once in the symbol table, with
2544       // and without a version.
2545
2546       if (!sym->should_add_dynsym_entry(this))
2547         sym->set_dynsym_index(-1U);
2548       else if (!sym->has_dynsym_index())
2549         {
2550           sym->set_dynsym_index(index);
2551           ++index;
2552           syms->push_back(sym);
2553           dynpool->add(sym->name(), false, NULL);
2554
2555           // If the symbol is defined in a dynamic object and is
2556           // referenced strongly in a regular object, then mark the
2557           // dynamic object as needed.  This is used to implement
2558           // --as-needed.
2559           if (sym->is_from_dynobj()
2560               && sym->in_reg()
2561               && !sym->is_undef_binding_weak())
2562             sym->object()->set_is_needed();
2563
2564           // Record any version information, except those from
2565           // as-needed libraries not seen to be needed.  Note that the
2566           // is_needed state for such libraries can change in this loop.
2567           if (sym->version() != NULL)
2568             {
2569               if (!sym->is_from_dynobj()
2570                   || !sym->object()->as_needed()
2571                   || sym->object()->is_needed())
2572                 versions->record_version(this, dynpool, sym);
2573               else
2574                 as_needed_sym.push_back(sym);
2575             }
2576         }
2577     }
2578
2579   // Process version information for symbols from as-needed libraries.
2580   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2581        p != as_needed_sym.end();
2582        ++p)
2583     {
2584       Symbol* sym = *p;
2585
2586       if (sym->object()->is_needed())
2587         versions->record_version(this, dynpool, sym);
2588       else
2589         sym->clear_version();
2590     }
2591
2592   // Finish up the versions.  In some cases this may add new dynamic
2593   // symbols.
2594   index = versions->finalize(this, index, syms);
2595
2596   // Process target-specific symbols.
2597   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2598        p != this->target_symbols_.end();
2599        ++p)
2600     {
2601       (*p)->set_dynsym_index(index);
2602       ++index;
2603       syms->push_back(*p);
2604       dynpool->add((*p)->name(), false, NULL);
2605     }
2606
2607   return index;
2608 }
2609
2610 // Set the final values for all the symbols.  The index of the first
2611 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2612 // file offset OFF.  Add their names to POOL.  Return the new file
2613 // offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
2614 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2615 // written from the global symbol table in Symtab::write_globals(),
2616 // which will include forced-local symbols.  DYN_GLOBAL_INDEX is
2617 // not necessarily the same as the sh_info field for the .dynsym
2618 // section, which will point to the first real global symbol.
2619
2620 off_t
2621 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2622                        size_t dyncount, Stringpool* pool,
2623                        unsigned int* plocal_symcount)
2624 {
2625   off_t ret;
2626
2627   gold_assert(*plocal_symcount != 0);
2628   this->first_global_index_ = *plocal_symcount;
2629
2630   this->dynamic_offset_ = dynoff;
2631   this->first_dynamic_global_index_ = dyn_global_index;
2632   this->dynamic_count_ = dyncount;
2633
2634   if (parameters->target().get_size() == 32)
2635     {
2636 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2637       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2638 #else
2639       gold_unreachable();
2640 #endif
2641     }
2642   else if (parameters->target().get_size() == 64)
2643     {
2644 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2645       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2646 #else
2647       gold_unreachable();
2648 #endif
2649     }
2650   else
2651     gold_unreachable();
2652
2653   // Now that we have the final symbol table, we can reliably note
2654   // which symbols should get warnings.
2655   this->warnings_.note_warnings(this);
2656
2657   return ret;
2658 }
2659
2660 // SYM is going into the symbol table at *PINDEX.  Add the name to
2661 // POOL, update *PINDEX and *POFF.
2662
2663 template<int size>
2664 void
2665 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2666                                   unsigned int* pindex, off_t* poff)
2667 {
2668   sym->set_symtab_index(*pindex);
2669   if (sym->version() == NULL || !parameters->options().relocatable())
2670     pool->add(sym->name(), false, NULL);
2671   else
2672     pool->add(sym->versioned_name(), true, NULL);
2673   ++*pindex;
2674   *poff += elfcpp::Elf_sizes<size>::sym_size;
2675 }
2676
2677 // Set the final value for all the symbols.  This is called after
2678 // Layout::finalize, so all the output sections have their final
2679 // address.
2680
2681 template<int size>
2682 off_t
2683 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2684                              unsigned int* plocal_symcount)
2685 {
2686   off = align_address(off, size >> 3);
2687   this->offset_ = off;
2688
2689   unsigned int index = *plocal_symcount;
2690   const unsigned int orig_index = index;
2691
2692   // First do all the symbols which have been forced to be local, as
2693   // they must appear before all global symbols.
2694   for (Forced_locals::iterator p = this->forced_locals_.begin();
2695        p != this->forced_locals_.end();
2696        ++p)
2697     {
2698       Symbol* sym = *p;
2699       gold_assert(sym->is_forced_local());
2700       if (this->sized_finalize_symbol<size>(sym))
2701         {
2702           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2703           ++*plocal_symcount;
2704         }
2705     }
2706
2707   // Now do all the remaining symbols.
2708   for (Symbol_table_type::iterator p = this->table_.begin();
2709        p != this->table_.end();
2710        ++p)
2711     {
2712       Symbol* sym = p->second;
2713       if (this->sized_finalize_symbol<size>(sym))
2714         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2715     }
2716
2717   // Now do target-specific symbols.
2718   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2719        p != this->target_symbols_.end();
2720        ++p)
2721     {
2722       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2723     }
2724
2725   this->output_count_ = index - orig_index;
2726
2727   return off;
2728 }
2729
2730 // Compute the final value of SYM and store status in location PSTATUS.
2731 // During relaxation, this may be called multiple times for a symbol to
2732 // compute its would-be final value in each relaxation pass.
2733
2734 template<int size>
2735 typename Sized_symbol<size>::Value_type
2736 Symbol_table::compute_final_value(
2737     const Sized_symbol<size>* sym,
2738     Compute_final_value_status* pstatus) const
2739 {
2740   typedef typename Sized_symbol<size>::Value_type Value_type;
2741   Value_type value;
2742
2743   switch (sym->source())
2744     {
2745     case Symbol::FROM_OBJECT:
2746       {
2747         bool is_ordinary;
2748         unsigned int shndx = sym->shndx(&is_ordinary);
2749
2750         if (!is_ordinary
2751             && shndx != elfcpp::SHN_ABS
2752             && !Symbol::is_common_shndx(shndx))
2753           {
2754             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2755             return 0;
2756           }
2757
2758         Object* symobj = sym->object();
2759         if (symobj->is_dynamic())
2760           {
2761             value = 0;
2762             shndx = elfcpp::SHN_UNDEF;
2763           }
2764         else if (symobj->pluginobj() != NULL)
2765           {
2766             value = 0;
2767             shndx = elfcpp::SHN_UNDEF;
2768           }
2769         else if (shndx == elfcpp::SHN_UNDEF)
2770           value = 0;
2771         else if (!is_ordinary
2772                  && (shndx == elfcpp::SHN_ABS
2773                      || Symbol::is_common_shndx(shndx)))
2774           value = sym->value();
2775         else
2776           {
2777             Relobj* relobj = static_cast<Relobj*>(symobj);
2778             Output_section* os = relobj->output_section(shndx);
2779
2780             if (this->is_section_folded(relobj, shndx))
2781               {
2782                 gold_assert(os == NULL);
2783                 // Get the os of the section it is folded onto.
2784                 Section_id folded = this->icf_->get_folded_section(relobj,
2785                                                                    shndx);
2786                 gold_assert(folded.first != NULL);
2787                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2788                 unsigned folded_shndx = folded.second;
2789
2790                 os = folded_obj->output_section(folded_shndx);  
2791                 gold_assert(os != NULL);
2792
2793                 // Replace (relobj, shndx) with canonical ICF input section.
2794                 shndx = folded_shndx;
2795                 relobj = folded_obj;
2796               }
2797
2798             uint64_t secoff64 = relobj->output_section_offset(shndx);
2799             if (os == NULL)
2800               {
2801                 bool static_or_reloc = (parameters->doing_static_link() ||
2802                                         parameters->options().relocatable());
2803                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2804
2805                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2806                 return 0;
2807               }
2808
2809             if (secoff64 == -1ULL)
2810               {
2811                 // The section needs special handling (e.g., a merge section).
2812
2813                 value = os->output_address(relobj, shndx, sym->value());
2814               }
2815             else
2816               {
2817                 Value_type secoff =
2818                   convert_types<Value_type, uint64_t>(secoff64);
2819                 if (sym->type() == elfcpp::STT_TLS)
2820                   value = sym->value() + os->tls_offset() + secoff;
2821                 else
2822                   value = sym->value() + os->address() + secoff;
2823               }
2824           }
2825       }
2826       break;
2827
2828     case Symbol::IN_OUTPUT_DATA:
2829       {
2830         Output_data* od = sym->output_data();
2831         value = sym->value();
2832         if (sym->type() != elfcpp::STT_TLS)
2833           value += od->address();
2834         else
2835           {
2836             Output_section* os = od->output_section();
2837             gold_assert(os != NULL);
2838             value += os->tls_offset() + (od->address() - os->address());
2839           }
2840         if (sym->offset_is_from_end())
2841           value += od->data_size();
2842       }
2843       break;
2844
2845     case Symbol::IN_OUTPUT_SEGMENT:
2846       {
2847         Output_segment* os = sym->output_segment();
2848         value = sym->value();
2849         if (sym->type() != elfcpp::STT_TLS)
2850           value += os->vaddr();
2851         switch (sym->offset_base())
2852           {
2853           case Symbol::SEGMENT_START:
2854             break;
2855           case Symbol::SEGMENT_END:
2856             value += os->memsz();
2857             break;
2858           case Symbol::SEGMENT_BSS:
2859             value += os->filesz();
2860             break;
2861           default:
2862             gold_unreachable();
2863           }
2864       }
2865       break;
2866
2867     case Symbol::IS_CONSTANT:
2868       value = sym->value();
2869       break;
2870
2871     case Symbol::IS_UNDEFINED:
2872       value = 0;
2873       break;
2874
2875     default:
2876       gold_unreachable();
2877     }
2878
2879   *pstatus = CFVS_OK;
2880   return value;
2881 }
2882
2883 // Finalize the symbol SYM.  This returns true if the symbol should be
2884 // added to the symbol table, false otherwise.
2885
2886 template<int size>
2887 bool
2888 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2889 {
2890   typedef typename Sized_symbol<size>::Value_type Value_type;
2891
2892   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2893
2894   // The default version of a symbol may appear twice in the symbol
2895   // table.  We only need to finalize it once.
2896   if (sym->has_symtab_index())
2897     return false;
2898
2899   if (!sym->in_reg())
2900     {
2901       gold_assert(!sym->has_symtab_index());
2902       sym->set_symtab_index(-1U);
2903       gold_assert(sym->dynsym_index() == -1U);
2904       return false;
2905     }
2906
2907   // If the symbol is only present on plugin files, the plugin decided we
2908   // don't need it.
2909   if (!sym->in_real_elf())
2910     {
2911       gold_assert(!sym->has_symtab_index());
2912       sym->set_symtab_index(-1U);
2913       return false;
2914     }
2915
2916   // Compute final symbol value.
2917   Compute_final_value_status status;
2918   Value_type value = this->compute_final_value(sym, &status);
2919
2920   switch (status)
2921     {
2922     case CFVS_OK:
2923       break;
2924     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2925       {
2926         bool is_ordinary;
2927         unsigned int shndx = sym->shndx(&is_ordinary);
2928         gold_error(_("%s: unsupported symbol section 0x%x"),
2929                    sym->demangled_name().c_str(), shndx);
2930       }
2931       break;
2932     case CFVS_NO_OUTPUT_SECTION:
2933       sym->set_symtab_index(-1U);
2934       return false;
2935     default:
2936       gold_unreachable();
2937     }
2938
2939   sym->set_value(value);
2940
2941   if (parameters->options().strip_all()
2942       || !parameters->options().should_retain_symbol(sym->name()))
2943     {
2944       sym->set_symtab_index(-1U);
2945       return false;
2946     }
2947
2948   return true;
2949 }
2950
2951 // Write out the global symbols.
2952
2953 void
2954 Symbol_table::write_globals(const Stringpool* sympool,
2955                             const Stringpool* dynpool,
2956                             Output_symtab_xindex* symtab_xindex,
2957                             Output_symtab_xindex* dynsym_xindex,
2958                             Output_file* of) const
2959 {
2960   switch (parameters->size_and_endianness())
2961     {
2962 #ifdef HAVE_TARGET_32_LITTLE
2963     case Parameters::TARGET_32_LITTLE:
2964       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2965                                            dynsym_xindex, of);
2966       break;
2967 #endif
2968 #ifdef HAVE_TARGET_32_BIG
2969     case Parameters::TARGET_32_BIG:
2970       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2971                                           dynsym_xindex, of);
2972       break;
2973 #endif
2974 #ifdef HAVE_TARGET_64_LITTLE
2975     case Parameters::TARGET_64_LITTLE:
2976       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2977                                            dynsym_xindex, of);
2978       break;
2979 #endif
2980 #ifdef HAVE_TARGET_64_BIG
2981     case Parameters::TARGET_64_BIG:
2982       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2983                                           dynsym_xindex, of);
2984       break;
2985 #endif
2986     default:
2987       gold_unreachable();
2988     }
2989 }
2990
2991 // Write out the global symbols.
2992
2993 template<int size, bool big_endian>
2994 void
2995 Symbol_table::sized_write_globals(const Stringpool* sympool,
2996                                   const Stringpool* dynpool,
2997                                   Output_symtab_xindex* symtab_xindex,
2998                                   Output_symtab_xindex* dynsym_xindex,
2999                                   Output_file* of) const
3000 {
3001   const Target& target = parameters->target();
3002
3003   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3004
3005   const unsigned int output_count = this->output_count_;
3006   const section_size_type oview_size = output_count * sym_size;
3007   const unsigned int first_global_index = this->first_global_index_;
3008   unsigned char* psyms;
3009   if (this->offset_ == 0 || output_count == 0)
3010     psyms = NULL;
3011   else
3012     psyms = of->get_output_view(this->offset_, oview_size);
3013
3014   const unsigned int dynamic_count = this->dynamic_count_;
3015   const section_size_type dynamic_size = dynamic_count * sym_size;
3016   const unsigned int first_dynamic_global_index =
3017     this->first_dynamic_global_index_;
3018   unsigned char* dynamic_view;
3019   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3020     dynamic_view = NULL;
3021   else
3022     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3023
3024   for (Symbol_table_type::const_iterator p = this->table_.begin();
3025        p != this->table_.end();
3026        ++p)
3027     {
3028       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3029
3030       // Possibly warn about unresolved symbols in shared libraries.
3031       this->warn_about_undefined_dynobj_symbol(sym);
3032
3033       unsigned int sym_index = sym->symtab_index();
3034       unsigned int dynsym_index;
3035       if (dynamic_view == NULL)
3036         dynsym_index = -1U;
3037       else
3038         dynsym_index = sym->dynsym_index();
3039
3040       if (sym_index == -1U && dynsym_index == -1U)
3041         {
3042           // This symbol is not included in the output file.
3043           continue;
3044         }
3045
3046       unsigned int shndx;
3047       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3048       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3049       elfcpp::STB binding = sym->binding();
3050
3051       // If --weak-unresolved-symbols is set, change binding of unresolved
3052       // global symbols to STB_WEAK.
3053       if (parameters->options().weak_unresolved_symbols()
3054           && binding == elfcpp::STB_GLOBAL
3055           && sym->is_undefined())
3056         binding = elfcpp::STB_WEAK;
3057
3058       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3059       if (binding == elfcpp::STB_GNU_UNIQUE
3060           && !parameters->options().gnu_unique())
3061         binding = elfcpp::STB_GLOBAL;
3062
3063       switch (sym->source())
3064         {
3065         case Symbol::FROM_OBJECT:
3066           {
3067             bool is_ordinary;
3068             unsigned int in_shndx = sym->shndx(&is_ordinary);
3069
3070             if (!is_ordinary
3071                 && in_shndx != elfcpp::SHN_ABS
3072                 && !Symbol::is_common_shndx(in_shndx))
3073               {
3074                 gold_error(_("%s: unsupported symbol section 0x%x"),
3075                            sym->demangled_name().c_str(), in_shndx);
3076                 shndx = in_shndx;
3077               }
3078             else
3079               {
3080                 Object* symobj = sym->object();
3081                 if (symobj->is_dynamic())
3082                   {
3083                     if (sym->needs_dynsym_value())
3084                       dynsym_value = target.dynsym_value(sym);
3085                     shndx = elfcpp::SHN_UNDEF;
3086                     if (sym->is_undef_binding_weak())
3087                       binding = elfcpp::STB_WEAK;
3088                     else
3089                       binding = elfcpp::STB_GLOBAL;
3090                   }
3091                 else if (symobj->pluginobj() != NULL)
3092                   shndx = elfcpp::SHN_UNDEF;
3093                 else if (in_shndx == elfcpp::SHN_UNDEF
3094                          || (!is_ordinary
3095                              && (in_shndx == elfcpp::SHN_ABS
3096                                  || Symbol::is_common_shndx(in_shndx))))
3097                   shndx = in_shndx;
3098                 else
3099                   {
3100                     Relobj* relobj = static_cast<Relobj*>(symobj);
3101                     Output_section* os = relobj->output_section(in_shndx);
3102                     if (this->is_section_folded(relobj, in_shndx))
3103                       {
3104                         // This global symbol must be written out even though
3105                         // it is folded.
3106                         // Get the os of the section it is folded onto.
3107                         Section_id folded =
3108                              this->icf_->get_folded_section(relobj, in_shndx);
3109                         gold_assert(folded.first !=NULL);
3110                         Relobj* folded_obj = 
3111                           reinterpret_cast<Relobj*>(folded.first);
3112                         os = folded_obj->output_section(folded.second);  
3113                         gold_assert(os != NULL);
3114                       }
3115                     gold_assert(os != NULL);
3116                     shndx = os->out_shndx();
3117
3118                     if (shndx >= elfcpp::SHN_LORESERVE)
3119                       {
3120                         if (sym_index != -1U)
3121                           symtab_xindex->add(sym_index, shndx);
3122                         if (dynsym_index != -1U)
3123                           dynsym_xindex->add(dynsym_index, shndx);
3124                         shndx = elfcpp::SHN_XINDEX;
3125                       }
3126
3127                     // In object files symbol values are section
3128                     // relative.
3129                     if (parameters->options().relocatable())
3130                       sym_value -= os->address();
3131                   }
3132               }
3133           }
3134           break;
3135
3136         case Symbol::IN_OUTPUT_DATA:
3137           {
3138             Output_data* od = sym->output_data();
3139
3140             shndx = od->out_shndx();
3141             if (shndx >= elfcpp::SHN_LORESERVE)
3142               {
3143                 if (sym_index != -1U)
3144                   symtab_xindex->add(sym_index, shndx);
3145                 if (dynsym_index != -1U)
3146                   dynsym_xindex->add(dynsym_index, shndx);
3147                 shndx = elfcpp::SHN_XINDEX;
3148               }
3149
3150             // In object files symbol values are section
3151             // relative.
3152             if (parameters->options().relocatable())
3153               {
3154                 Output_section* os = od->output_section();
3155                 gold_assert(os != NULL);
3156                 sym_value -= os->address();
3157               }
3158           }
3159           break;
3160
3161         case Symbol::IN_OUTPUT_SEGMENT:
3162           {
3163             Output_segment* oseg = sym->output_segment();
3164             Output_section* osect = oseg->first_section();
3165             if (osect == NULL)
3166               shndx = elfcpp::SHN_ABS;
3167             else
3168               shndx = osect->out_shndx();
3169           }
3170           break;
3171
3172         case Symbol::IS_CONSTANT:
3173           shndx = elfcpp::SHN_ABS;
3174           break;
3175
3176         case Symbol::IS_UNDEFINED:
3177           shndx = elfcpp::SHN_UNDEF;
3178           break;
3179
3180         default:
3181           gold_unreachable();
3182         }
3183
3184       if (sym_index != -1U)
3185         {
3186           sym_index -= first_global_index;
3187           gold_assert(sym_index < output_count);
3188           unsigned char* ps = psyms + (sym_index * sym_size);
3189           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3190                                                      binding, sympool, ps);
3191         }
3192
3193       if (dynsym_index != -1U)
3194         {
3195           dynsym_index -= first_dynamic_global_index;
3196           gold_assert(dynsym_index < dynamic_count);
3197           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3198           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3199                                                      binding, dynpool, pd);
3200           // Allow a target to adjust dynamic symbol value.
3201           parameters->target().adjust_dyn_symbol(sym, pd);
3202         }
3203     }
3204
3205   // Write the target-specific symbols.
3206   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3207        p != this->target_symbols_.end();
3208        ++p)
3209     {
3210       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3211
3212       unsigned int sym_index = sym->symtab_index();
3213       unsigned int dynsym_index;
3214       if (dynamic_view == NULL)
3215         dynsym_index = -1U;
3216       else
3217         dynsym_index = sym->dynsym_index();
3218
3219       unsigned int shndx;
3220       switch (sym->source())
3221         {
3222         case Symbol::IS_CONSTANT:
3223           shndx = elfcpp::SHN_ABS;
3224           break;
3225         case Symbol::IS_UNDEFINED:
3226           shndx = elfcpp::SHN_UNDEF;
3227           break;
3228         default:
3229           gold_unreachable();
3230         }
3231
3232       if (sym_index != -1U)
3233         {
3234           sym_index -= first_global_index;
3235           gold_assert(sym_index < output_count);
3236           unsigned char* ps = psyms + (sym_index * sym_size);
3237           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3238                                                      sym->binding(), sympool,
3239                                                      ps);
3240         }
3241
3242       if (dynsym_index != -1U)
3243         {
3244           dynsym_index -= first_dynamic_global_index;
3245           gold_assert(dynsym_index < dynamic_count);
3246           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3247           this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3248                                                      sym->binding(), dynpool,
3249                                                      pd);
3250         }
3251     }
3252
3253   of->write_output_view(this->offset_, oview_size, psyms);
3254   if (dynamic_view != NULL)
3255     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3256 }
3257
3258 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3259 // strtab holding the name.
3260
3261 template<int size, bool big_endian>
3262 void
3263 Symbol_table::sized_write_symbol(
3264     Sized_symbol<size>* sym,
3265     typename elfcpp::Elf_types<size>::Elf_Addr value,
3266     unsigned int shndx,
3267     elfcpp::STB binding,
3268     const Stringpool* pool,
3269     unsigned char* p) const
3270 {
3271   elfcpp::Sym_write<size, big_endian> osym(p);
3272   if (sym->version() == NULL || !parameters->options().relocatable())
3273     osym.put_st_name(pool->get_offset(sym->name()));
3274   else
3275     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3276   osym.put_st_value(value);
3277   // Use a symbol size of zero for undefined symbols from shared libraries.
3278   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3279     osym.put_st_size(0);
3280   else
3281     osym.put_st_size(sym->symsize());
3282   elfcpp::STT type = sym->type();
3283   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3284   // A version script may have overridden the default binding.
3285   if (sym->is_forced_local())
3286     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3287   else
3288     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3289   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3290   osym.put_st_shndx(shndx);
3291 }
3292
3293 // Check for unresolved symbols in shared libraries.  This is
3294 // controlled by the --allow-shlib-undefined option.
3295
3296 // We only warn about libraries for which we have seen all the
3297 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3298 // which were not seen in this link.  If we didn't see a DT_NEEDED
3299 // entry, we aren't going to be able to reliably report whether the
3300 // symbol is undefined.
3301
3302 // We also don't warn about libraries found in a system library
3303 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3304 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3305 // can have undefined references satisfied by ld-linux.so.
3306
3307 inline void
3308 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3309 {
3310   bool dummy;
3311   if (sym->source() == Symbol::FROM_OBJECT
3312       && sym->object()->is_dynamic()
3313       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3314       && sym->binding() != elfcpp::STB_WEAK
3315       && !parameters->options().allow_shlib_undefined()
3316       && !parameters->target().is_defined_by_abi(sym)
3317       && !sym->object()->is_in_system_directory())
3318     {
3319       // A very ugly cast.
3320       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3321       if (!dynobj->has_unknown_needed_entries())
3322         gold_undefined_symbol(sym);
3323     }
3324 }
3325
3326 // Write out a section symbol.  Return the update offset.
3327
3328 void
3329 Symbol_table::write_section_symbol(const Output_section* os,
3330                                    Output_symtab_xindex* symtab_xindex,
3331                                    Output_file* of,
3332                                    off_t offset) const
3333 {
3334   switch (parameters->size_and_endianness())
3335     {
3336 #ifdef HAVE_TARGET_32_LITTLE
3337     case Parameters::TARGET_32_LITTLE:
3338       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3339                                                   offset);
3340       break;
3341 #endif
3342 #ifdef HAVE_TARGET_32_BIG
3343     case Parameters::TARGET_32_BIG:
3344       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3345                                                  offset);
3346       break;
3347 #endif
3348 #ifdef HAVE_TARGET_64_LITTLE
3349     case Parameters::TARGET_64_LITTLE:
3350       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3351                                                   offset);
3352       break;
3353 #endif
3354 #ifdef HAVE_TARGET_64_BIG
3355     case Parameters::TARGET_64_BIG:
3356       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3357                                                  offset);
3358       break;
3359 #endif
3360     default:
3361       gold_unreachable();
3362     }
3363 }
3364
3365 // Write out a section symbol, specialized for size and endianness.
3366
3367 template<int size, bool big_endian>
3368 void
3369 Symbol_table::sized_write_section_symbol(const Output_section* os,
3370                                          Output_symtab_xindex* symtab_xindex,
3371                                          Output_file* of,
3372                                          off_t offset) const
3373 {
3374   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3375
3376   unsigned char* pov = of->get_output_view(offset, sym_size);
3377
3378   elfcpp::Sym_write<size, big_endian> osym(pov);
3379   osym.put_st_name(0);
3380   if (parameters->options().relocatable())
3381     osym.put_st_value(0);
3382   else
3383     osym.put_st_value(os->address());
3384   osym.put_st_size(0);
3385   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3386                                        elfcpp::STT_SECTION));
3387   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3388
3389   unsigned int shndx = os->out_shndx();
3390   if (shndx >= elfcpp::SHN_LORESERVE)
3391     {
3392       symtab_xindex->add(os->symtab_index(), shndx);
3393       shndx = elfcpp::SHN_XINDEX;
3394     }
3395   osym.put_st_shndx(shndx);
3396
3397   of->write_output_view(offset, sym_size, pov);
3398 }
3399
3400 // Print statistical information to stderr.  This is used for --stats.
3401
3402 void
3403 Symbol_table::print_stats() const
3404 {
3405 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3406   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3407           program_name, this->table_.size(), this->table_.bucket_count());
3408 #else
3409   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3410           program_name, this->table_.size());
3411 #endif
3412   this->namepool_.print_stats("symbol table stringpool");
3413 }
3414
3415 // We check for ODR violations by looking for symbols with the same
3416 // name for which the debugging information reports that they were
3417 // defined in disjoint source locations.  When comparing the source
3418 // location, we consider instances with the same base filename to be
3419 // the same.  This is because different object files/shared libraries
3420 // can include the same header file using different paths, and
3421 // different optimization settings can make the line number appear to
3422 // be a couple lines off, and we don't want to report an ODR violation
3423 // in those cases.
3424
3425 // This struct is used to compare line information, as returned by
3426 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3427 // operator used with std::sort.
3428
3429 struct Odr_violation_compare
3430 {
3431   bool
3432   operator()(const std::string& s1, const std::string& s2) const
3433   {
3434     // Inputs should be of the form "dirname/filename:linenum" where
3435     // "dirname/" is optional.  We want to compare just the filename:linenum.
3436
3437     // Find the last '/' in each string.
3438     std::string::size_type s1begin = s1.rfind('/');
3439     std::string::size_type s2begin = s2.rfind('/');
3440     // If there was no '/' in a string, start at the beginning.
3441     if (s1begin == std::string::npos)
3442       s1begin = 0;
3443     if (s2begin == std::string::npos)
3444       s2begin = 0;
3445     return s1.compare(s1begin, std::string::npos,
3446                       s2, s2begin, std::string::npos) < 0;
3447   }
3448 };
3449
3450 // Returns all of the lines attached to LOC, not just the one the
3451 // instruction actually came from.
3452 std::vector<std::string>
3453 Symbol_table::linenos_from_loc(const Task* task,
3454                                const Symbol_location& loc)
3455 {
3456   // We need to lock the object in order to read it.  This
3457   // means that we have to run in a singleton Task.  If we
3458   // want to run this in a general Task for better
3459   // performance, we will need one Task for object, plus
3460   // appropriate locking to ensure that we don't conflict with
3461   // other uses of the object.  Also note, one_addr2line is not
3462   // currently thread-safe.
3463   Task_lock_obj<Object> tl(task, loc.object);
3464
3465   std::vector<std::string> result;
3466   Symbol_location code_loc = loc;
3467   parameters->target().function_location(&code_loc);
3468   // 16 is the size of the object-cache that one_addr2line should use.
3469   std::string canonical_result = Dwarf_line_info::one_addr2line(
3470       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3471   if (!canonical_result.empty())
3472     result.push_back(canonical_result);
3473   return result;
3474 }
3475
3476 // OutputIterator that records if it was ever assigned to.  This
3477 // allows it to be used with std::set_intersection() to check for
3478 // intersection rather than computing the intersection.
3479 struct Check_intersection
3480 {
3481   Check_intersection()
3482     : value_(false)
3483   {}
3484
3485   bool had_intersection() const
3486   { return this->value_; }
3487
3488   Check_intersection& operator++()
3489   { return *this; }
3490
3491   Check_intersection& operator*()
3492   { return *this; }
3493
3494   template<typename T>
3495   Check_intersection& operator=(const T&)
3496   {
3497     this->value_ = true;
3498     return *this;
3499   }
3500
3501  private:
3502   bool value_;
3503 };
3504
3505 // Check candidate_odr_violations_ to find symbols with the same name
3506 // but apparently different definitions (different source-file/line-no
3507 // for each line assigned to the first instruction).
3508
3509 void
3510 Symbol_table::detect_odr_violations(const Task* task,
3511                                     const char* output_file_name) const
3512 {
3513   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3514        it != candidate_odr_violations_.end();
3515        ++it)
3516     {
3517       const char* const symbol_name = it->first;
3518
3519       std::string first_object_name;
3520       std::vector<std::string> first_object_linenos;
3521
3522       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3523           locs = it->second.begin();
3524       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3525           locs_end = it->second.end();
3526       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3527         {
3528           // Save the line numbers from the first definition to
3529           // compare to the other definitions.  Ideally, we'd compare
3530           // every definition to every other, but we don't want to
3531           // take O(N^2) time to do this.  This shortcut may cause
3532           // false negatives that appear or disappear depending on the
3533           // link order, but it won't cause false positives.
3534           first_object_name = locs->object->name();
3535           first_object_linenos = this->linenos_from_loc(task, *locs);
3536         }
3537       if (first_object_linenos.empty())
3538         continue;
3539
3540       // Sort by Odr_violation_compare to make std::set_intersection work.
3541       std::string first_object_canonical_result = first_object_linenos.back();
3542       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3543                 Odr_violation_compare());
3544
3545       for (; locs != locs_end; ++locs)
3546         {
3547           std::vector<std::string> linenos =
3548               this->linenos_from_loc(task, *locs);
3549           // linenos will be empty if we couldn't parse the debug info.
3550           if (linenos.empty())
3551             continue;
3552           // Sort by Odr_violation_compare to make std::set_intersection work.
3553           gold_assert(!linenos.empty());
3554           std::string second_object_canonical_result = linenos.back();
3555           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3556
3557           Check_intersection intersection_result =
3558               std::set_intersection(first_object_linenos.begin(),
3559                                     first_object_linenos.end(),
3560                                     linenos.begin(),
3561                                     linenos.end(),
3562                                     Check_intersection(),
3563                                     Odr_violation_compare());
3564           if (!intersection_result.had_intersection())
3565             {
3566               gold_warning(_("while linking %s: symbol '%s' defined in "
3567                              "multiple places (possible ODR violation):"),
3568                            output_file_name, demangle(symbol_name).c_str());
3569               // This only prints one location from each definition,
3570               // which may not be the location we expect to intersect
3571               // with another definition.  We could print the whole
3572               // set of locations, but that seems too verbose.
3573               fprintf(stderr, _("  %s from %s\n"),
3574                       first_object_canonical_result.c_str(),
3575                       first_object_name.c_str());
3576               fprintf(stderr, _("  %s from %s\n"),
3577                       second_object_canonical_result.c_str(),
3578                       locs->object->name().c_str());
3579               // Only print one broken pair, to avoid needing to
3580               // compare against a list of the disjoint definition
3581               // locations we've found so far.  (If we kept comparing
3582               // against just the first one, we'd get a lot of
3583               // redundant complaints about the second definition
3584               // location.)
3585               break;
3586             }
3587         }
3588     }
3589   // We only call one_addr2line() in this function, so we can clear its cache.
3590   Dwarf_line_info::clear_addr2line_cache();
3591 }
3592
3593 // Warnings functions.
3594
3595 // Add a new warning.
3596
3597 void
3598 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3599                       const std::string& warning)
3600 {
3601   name = symtab->canonicalize_name(name);
3602   this->warnings_[name].set(obj, warning);
3603 }
3604
3605 // Look through the warnings and mark the symbols for which we should
3606 // warn.  This is called during Layout::finalize when we know the
3607 // sources for all the symbols.
3608
3609 void
3610 Warnings::note_warnings(Symbol_table* symtab)
3611 {
3612   for (Warning_table::iterator p = this->warnings_.begin();
3613        p != this->warnings_.end();
3614        ++p)
3615     {
3616       Symbol* sym = symtab->lookup(p->first, NULL);
3617       if (sym != NULL
3618           && sym->source() == Symbol::FROM_OBJECT
3619           && sym->object() == p->second.object)
3620         sym->set_has_warning();
3621     }
3622 }
3623
3624 // Issue a warning.  This is called when we see a relocation against a
3625 // symbol for which has a warning.
3626
3627 template<int size, bool big_endian>
3628 void
3629 Warnings::issue_warning(const Symbol* sym,
3630                         const Relocate_info<size, big_endian>* relinfo,
3631                         size_t relnum, off_t reloffset) const
3632 {
3633   gold_assert(sym->has_warning());
3634
3635   // We don't want to issue a warning for a relocation against the
3636   // symbol in the same object file in which the symbol is defined.
3637   if (sym->object() == relinfo->object)
3638     return;
3639
3640   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3641   gold_assert(p != this->warnings_.end());
3642   gold_warning_at_location(relinfo, relnum, reloffset,
3643                            "%s", p->second.text.c_str());
3644 }
3645
3646 // Instantiate the templates we need.  We could use the configure
3647 // script to restrict this to only the ones needed for implemented
3648 // targets.
3649
3650 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3651 template
3652 void
3653 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3654 #endif
3655
3656 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3657 template
3658 void
3659 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3660 #endif
3661
3662 #ifdef HAVE_TARGET_32_LITTLE
3663 template
3664 void
3665 Symbol_table::add_from_relobj<32, false>(
3666     Sized_relobj_file<32, false>* relobj,
3667     const unsigned char* syms,
3668     size_t count,
3669     size_t symndx_offset,
3670     const char* sym_names,
3671     size_t sym_name_size,
3672     Sized_relobj_file<32, false>::Symbols* sympointers,
3673     size_t* defined);
3674 #endif
3675
3676 #ifdef HAVE_TARGET_32_BIG
3677 template
3678 void
3679 Symbol_table::add_from_relobj<32, true>(
3680     Sized_relobj_file<32, true>* relobj,
3681     const unsigned char* syms,
3682     size_t count,
3683     size_t symndx_offset,
3684     const char* sym_names,
3685     size_t sym_name_size,
3686     Sized_relobj_file<32, true>::Symbols* sympointers,
3687     size_t* defined);
3688 #endif
3689
3690 #ifdef HAVE_TARGET_64_LITTLE
3691 template
3692 void
3693 Symbol_table::add_from_relobj<64, false>(
3694     Sized_relobj_file<64, false>* relobj,
3695     const unsigned char* syms,
3696     size_t count,
3697     size_t symndx_offset,
3698     const char* sym_names,
3699     size_t sym_name_size,
3700     Sized_relobj_file<64, false>::Symbols* sympointers,
3701     size_t* defined);
3702 #endif
3703
3704 #ifdef HAVE_TARGET_64_BIG
3705 template
3706 void
3707 Symbol_table::add_from_relobj<64, true>(
3708     Sized_relobj_file<64, true>* relobj,
3709     const unsigned char* syms,
3710     size_t count,
3711     size_t symndx_offset,
3712     const char* sym_names,
3713     size_t sym_name_size,
3714     Sized_relobj_file<64, true>::Symbols* sympointers,
3715     size_t* defined);
3716 #endif
3717
3718 #ifdef HAVE_TARGET_32_LITTLE
3719 template
3720 Symbol*
3721 Symbol_table::add_from_pluginobj<32, false>(
3722     Sized_pluginobj<32, false>* obj,
3723     const char* name,
3724     const char* ver,
3725     elfcpp::Sym<32, false>* sym);
3726 #endif
3727
3728 #ifdef HAVE_TARGET_32_BIG
3729 template
3730 Symbol*
3731 Symbol_table::add_from_pluginobj<32, true>(
3732     Sized_pluginobj<32, true>* obj,
3733     const char* name,
3734     const char* ver,
3735     elfcpp::Sym<32, true>* sym);
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_LITTLE
3739 template
3740 Symbol*
3741 Symbol_table::add_from_pluginobj<64, false>(
3742     Sized_pluginobj<64, false>* obj,
3743     const char* name,
3744     const char* ver,
3745     elfcpp::Sym<64, false>* sym);
3746 #endif
3747
3748 #ifdef HAVE_TARGET_64_BIG
3749 template
3750 Symbol*
3751 Symbol_table::add_from_pluginobj<64, true>(
3752     Sized_pluginobj<64, true>* obj,
3753     const char* name,
3754     const char* ver,
3755     elfcpp::Sym<64, true>* sym);
3756 #endif
3757
3758 #ifdef HAVE_TARGET_32_LITTLE
3759 template
3760 void
3761 Symbol_table::add_from_dynobj<32, false>(
3762     Sized_dynobj<32, false>* dynobj,
3763     const unsigned char* syms,
3764     size_t count,
3765     const char* sym_names,
3766     size_t sym_name_size,
3767     const unsigned char* versym,
3768     size_t versym_size,
3769     const std::vector<const char*>* version_map,
3770     Sized_relobj_file<32, false>::Symbols* sympointers,
3771     size_t* defined);
3772 #endif
3773
3774 #ifdef HAVE_TARGET_32_BIG
3775 template
3776 void
3777 Symbol_table::add_from_dynobj<32, true>(
3778     Sized_dynobj<32, true>* dynobj,
3779     const unsigned char* syms,
3780     size_t count,
3781     const char* sym_names,
3782     size_t sym_name_size,
3783     const unsigned char* versym,
3784     size_t versym_size,
3785     const std::vector<const char*>* version_map,
3786     Sized_relobj_file<32, true>::Symbols* sympointers,
3787     size_t* defined);
3788 #endif
3789
3790 #ifdef HAVE_TARGET_64_LITTLE
3791 template
3792 void
3793 Symbol_table::add_from_dynobj<64, false>(
3794     Sized_dynobj<64, false>* dynobj,
3795     const unsigned char* syms,
3796     size_t count,
3797     const char* sym_names,
3798     size_t sym_name_size,
3799     const unsigned char* versym,
3800     size_t versym_size,
3801     const std::vector<const char*>* version_map,
3802     Sized_relobj_file<64, false>::Symbols* sympointers,
3803     size_t* defined);
3804 #endif
3805
3806 #ifdef HAVE_TARGET_64_BIG
3807 template
3808 void
3809 Symbol_table::add_from_dynobj<64, true>(
3810     Sized_dynobj<64, true>* dynobj,
3811     const unsigned char* syms,
3812     size_t count,
3813     const char* sym_names,
3814     size_t sym_name_size,
3815     const unsigned char* versym,
3816     size_t versym_size,
3817     const std::vector<const char*>* version_map,
3818     Sized_relobj_file<64, true>::Symbols* sympointers,
3819     size_t* defined);
3820 #endif
3821
3822 #ifdef HAVE_TARGET_32_LITTLE
3823 template
3824 Sized_symbol<32>*
3825 Symbol_table::add_from_incrobj(
3826     Object* obj,
3827     const char* name,
3828     const char* ver,
3829     elfcpp::Sym<32, false>* sym);
3830 #endif
3831
3832 #ifdef HAVE_TARGET_32_BIG
3833 template
3834 Sized_symbol<32>*
3835 Symbol_table::add_from_incrobj(
3836     Object* obj,
3837     const char* name,
3838     const char* ver,
3839     elfcpp::Sym<32, true>* sym);
3840 #endif
3841
3842 #ifdef HAVE_TARGET_64_LITTLE
3843 template
3844 Sized_symbol<64>*
3845 Symbol_table::add_from_incrobj(
3846     Object* obj,
3847     const char* name,
3848     const char* ver,
3849     elfcpp::Sym<64, false>* sym);
3850 #endif
3851
3852 #ifdef HAVE_TARGET_64_BIG
3853 template
3854 Sized_symbol<64>*
3855 Symbol_table::add_from_incrobj(
3856     Object* obj,
3857     const char* name,
3858     const char* ver,
3859     elfcpp::Sym<64, true>* sym);
3860 #endif
3861
3862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3863 template
3864 void
3865 Symbol_table::define_with_copy_reloc<32>(
3866     Sized_symbol<32>* sym,
3867     Output_data* posd,
3868     elfcpp::Elf_types<32>::Elf_Addr value);
3869 #endif
3870
3871 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3872 template
3873 void
3874 Symbol_table::define_with_copy_reloc<64>(
3875     Sized_symbol<64>* sym,
3876     Output_data* posd,
3877     elfcpp::Elf_types<64>::Elf_Addr value);
3878 #endif
3879
3880 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3881 template
3882 void
3883 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3884                                    Output_data* od, Value_type value,
3885                                    Size_type symsize, elfcpp::STT type,
3886                                    elfcpp::STB binding,
3887                                    elfcpp::STV visibility,
3888                                    unsigned char nonvis,
3889                                    bool offset_is_from_end,
3890                                    bool is_predefined);
3891
3892 template
3893 void
3894 Sized_symbol<32>::init_constant(const char* name, const char* version,
3895                                 Value_type value, Size_type symsize,
3896                                 elfcpp::STT type, elfcpp::STB binding,
3897                                 elfcpp::STV visibility, unsigned char nonvis,
3898                                 bool is_predefined);
3899
3900 template
3901 void
3902 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3903                                  Value_type value, elfcpp::STT type,
3904                                  elfcpp::STB binding, elfcpp::STV visibility,
3905                                  unsigned char nonvis);
3906 #endif
3907
3908 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3909 template
3910 void
3911 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3912                                    Output_data* od, Value_type value,
3913                                    Size_type symsize, elfcpp::STT type,
3914                                    elfcpp::STB binding,
3915                                    elfcpp::STV visibility,
3916                                    unsigned char nonvis,
3917                                    bool offset_is_from_end,
3918                                    bool is_predefined);
3919
3920 template
3921 void
3922 Sized_symbol<64>::init_constant(const char* name, const char* version,
3923                                 Value_type value, Size_type symsize,
3924                                 elfcpp::STT type, elfcpp::STB binding,
3925                                 elfcpp::STV visibility, unsigned char nonvis,
3926                                 bool is_predefined);
3927
3928 template
3929 void
3930 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3931                                  Value_type value, elfcpp::STT type,
3932                                  elfcpp::STB binding, elfcpp::STV visibility,
3933                                  unsigned char nonvis);
3934 #endif
3935
3936 #ifdef HAVE_TARGET_32_LITTLE
3937 template
3938 void
3939 Warnings::issue_warning<32, false>(const Symbol* sym,
3940                                    const Relocate_info<32, false>* relinfo,
3941                                    size_t relnum, off_t reloffset) const;
3942 #endif
3943
3944 #ifdef HAVE_TARGET_32_BIG
3945 template
3946 void
3947 Warnings::issue_warning<32, true>(const Symbol* sym,
3948                                   const Relocate_info<32, true>* relinfo,
3949                                   size_t relnum, off_t reloffset) const;
3950 #endif
3951
3952 #ifdef HAVE_TARGET_64_LITTLE
3953 template
3954 void
3955 Warnings::issue_warning<64, false>(const Symbol* sym,
3956                                    const Relocate_info<64, false>* relinfo,
3957                                    size_t relnum, off_t reloffset) const;
3958 #endif
3959
3960 #ifdef HAVE_TARGET_64_BIG
3961 template
3962 void
3963 Warnings::issue_warning<64, true>(const Symbol* sym,
3964                                   const Relocate_info<64, true>* relinfo,
3965                                   size_t relnum, off_t reloffset) const;
3966 #endif
3967
3968 } // End namespace gold.