1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
90 demangle(const char* name)
92 if (!parameters->options().do_demangle())
95 // cplus_demangle allocates memory for the result it returns,
96 // and returns NULL if the name is already demangled.
97 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98 if (demangled_name == NULL)
101 std::string retval(demangled_name);
102 free(demangled_name);
107 Symbol::demangled_name() const
109 return demangle(this->name());
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114 template<int size, bool big_endian>
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117 const elfcpp::Sym<size, big_endian>& sym,
118 unsigned int st_shndx, bool is_ordinary)
120 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121 sym.get_st_visibility(), sym.get_st_nonvis());
122 this->u_.from_object.object = object;
123 this->u_.from_object.shndx = st_shndx;
124 this->is_ordinary_shndx_ = is_ordinary;
125 this->source_ = FROM_OBJECT;
126 this->in_reg_ = !object->is_dynamic();
127 this->in_dyn_ = object->is_dynamic();
128 this->in_real_elf_ = object->pluginobj() == NULL;
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
135 Symbol::init_base_output_data(const char* name, const char* version,
136 Output_data* od, elfcpp::STT type,
137 elfcpp::STB binding, elfcpp::STV visibility,
138 unsigned char nonvis, bool offset_is_from_end,
141 this->init_fields(name, version, type, binding, visibility, nonvis);
142 this->u_.in_output_data.output_data = od;
143 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144 this->source_ = IN_OUTPUT_DATA;
145 this->in_reg_ = true;
146 this->in_real_elf_ = true;
147 this->is_predefined_ = is_predefined;
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
154 Symbol::init_base_output_segment(const char* name, const char* version,
155 Output_segment* os, elfcpp::STT type,
156 elfcpp::STB binding, elfcpp::STV visibility,
157 unsigned char nonvis,
158 Segment_offset_base offset_base,
161 this->init_fields(name, version, type, binding, visibility, nonvis);
162 this->u_.in_output_segment.output_segment = os;
163 this->u_.in_output_segment.offset_base = offset_base;
164 this->source_ = IN_OUTPUT_SEGMENT;
165 this->in_reg_ = true;
166 this->in_real_elf_ = true;
167 this->is_predefined_ = is_predefined;
170 // Initialize the fields in the base class Symbol for a symbol defined
174 Symbol::init_base_constant(const char* name, const char* version,
175 elfcpp::STT type, elfcpp::STB binding,
176 elfcpp::STV visibility, unsigned char nonvis,
179 this->init_fields(name, version, type, binding, visibility, nonvis);
180 this->source_ = IS_CONSTANT;
181 this->in_reg_ = true;
182 this->in_real_elf_ = true;
183 this->is_predefined_ = is_predefined;
186 // Initialize the fields in the base class Symbol for an undefined
190 Symbol::init_base_undefined(const char* name, const char* version,
191 elfcpp::STT type, elfcpp::STB binding,
192 elfcpp::STV visibility, unsigned char nonvis)
194 this->init_fields(name, version, type, binding, visibility, nonvis);
195 this->dynsym_index_ = -1U;
196 this->source_ = IS_UNDEFINED;
197 this->in_reg_ = true;
198 this->in_real_elf_ = true;
201 // Allocate a common symbol in the base.
204 Symbol::allocate_base_common(Output_data* od)
206 gold_assert(this->is_common());
207 this->source_ = IN_OUTPUT_DATA;
208 this->u_.in_output_data.output_data = od;
209 this->u_.in_output_data.offset_is_from_end = false;
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
215 template<bool big_endian>
217 Sized_symbol<size>::init_object(const char* name, const char* version,
219 const elfcpp::Sym<size, big_endian>& sym,
220 unsigned int st_shndx, bool is_ordinary)
222 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223 this->value_ = sym.get_st_value();
224 this->symsize_ = sym.get_st_size();
227 // Initialize the fields in Sized_symbol for a symbol defined in an
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233 Output_data* od, Value_type value,
234 Size_type symsize, elfcpp::STT type,
236 elfcpp::STV visibility,
237 unsigned char nonvis,
238 bool offset_is_from_end,
241 this->init_base_output_data(name, version, od, type, binding, visibility,
242 nonvis, offset_is_from_end, is_predefined);
243 this->value_ = value;
244 this->symsize_ = symsize;
247 // Initialize the fields in Sized_symbol for a symbol defined in an
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253 Output_segment* os, Value_type value,
254 Size_type symsize, elfcpp::STT type,
256 elfcpp::STV visibility,
257 unsigned char nonvis,
258 Segment_offset_base offset_base,
261 this->init_base_output_segment(name, version, os, type, binding, visibility,
262 nonvis, offset_base, is_predefined);
263 this->value_ = value;
264 this->symsize_ = symsize;
267 // Initialize the fields in Sized_symbol for a symbol defined as a
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273 Value_type value, Size_type symsize,
274 elfcpp::STT type, elfcpp::STB binding,
275 elfcpp::STV visibility, unsigned char nonvis,
278 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 this->value_ = value;
281 this->symsize_ = symsize;
284 // Initialize the fields in Sized_symbol for an undefined symbol.
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289 Value_type value, elfcpp::STT type,
290 elfcpp::STB binding, elfcpp::STV visibility,
291 unsigned char nonvis)
293 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294 this->value_ = value;
298 // Return an allocated string holding the symbol's name as
299 // name@version. This is used for relocatable links.
302 Symbol::versioned_name() const
304 gold_assert(this->version_ != NULL);
305 std::string ret = this->name_;
309 ret += this->version_;
313 // Return true if SHNDX represents a common symbol.
316 Symbol::is_common_shndx(unsigned int shndx)
318 return (shndx == elfcpp::SHN_COMMON
319 || shndx == parameters->target().small_common_shndx()
320 || shndx == parameters->target().large_common_shndx());
323 // Allocate a common symbol.
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 this->allocate_base_common(od);
330 this->value_ = value;
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336 // Return true if this symbol should be added to the dynamic symbol
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 // If the symbol is only present on plugin files, the plugin decided we
344 if (!this->in_real_elf())
347 // If the symbol is used by a dynamic relocation, we need to add it.
348 if (this->needs_dynsym_entry())
351 // If this symbol's section is not added, the symbol need not be added.
352 // The section may have been GCed. Note that export_dynamic is being
353 // overridden here. This should not be done for shared objects.
354 if (parameters->options().gc_sections()
355 && !parameters->options().shared()
356 && this->source() == Symbol::FROM_OBJECT
357 && !this->object()->is_dynamic())
359 Relobj* relobj = static_cast<Relobj*>(this->object());
361 unsigned int shndx = this->shndx(&is_ordinary);
362 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363 && !relobj->is_section_included(shndx)
364 && !symtab->is_section_folded(relobj, shndx))
368 // If the symbol was forced dynamic in a --dynamic-list file
369 // or an --export-dynamic-symbol option, add it.
370 if (!this->is_from_dynobj()
371 && (parameters->options().in_dynamic_list(this->name())
372 || parameters->options().is_export_dynamic_symbol(this->name())))
374 if (!this->is_forced_local())
376 gold_warning(_("Cannot export local symbol '%s'"),
377 this->demangled_name().c_str());
381 // If the symbol was forced local in a version script, do not add it.
382 if (this->is_forced_local())
385 // If dynamic-list-data was specified, add any STT_OBJECT.
386 if (parameters->options().dynamic_list_data()
387 && !this->is_from_dynobj()
388 && this->type() == elfcpp::STT_OBJECT)
391 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393 if ((parameters->options().dynamic_list_cpp_new()
394 || parameters->options().dynamic_list_cpp_typeinfo())
395 && !this->is_from_dynobj())
397 // TODO(csilvers): We could probably figure out if we're an operator
398 // new/delete or typeinfo without the need to demangle.
399 char* demangled_name = cplus_demangle(this->name(),
400 DMGL_ANSI | DMGL_PARAMS);
401 if (demangled_name == NULL)
403 // Not a C++ symbol, so it can't satisfy these flags
405 else if (parameters->options().dynamic_list_cpp_new()
406 && (strprefix(demangled_name, "operator new")
407 || strprefix(demangled_name, "operator delete")))
409 free(demangled_name);
412 else if (parameters->options().dynamic_list_cpp_typeinfo()
413 && (strprefix(demangled_name, "typeinfo name for")
414 || strprefix(demangled_name, "typeinfo for")))
416 free(demangled_name);
420 free(demangled_name);
423 // If exporting all symbols or building a shared library,
424 // or the symbol should be globally unique (GNU_UNIQUE),
425 // and the symbol is defined in a regular object and is
426 // externally visible, we need to add it.
427 if ((parameters->options().export_dynamic()
428 || parameters->options().shared()
429 || (parameters->options().gnu_unique()
430 && this->binding() == elfcpp::STB_GNU_UNIQUE))
431 && !this->is_from_dynobj()
432 && !this->is_undefined()
433 && this->is_externally_visible())
439 // Return true if the final value of this symbol is known at link
443 Symbol::final_value_is_known() const
445 // If we are not generating an executable, then no final values are
446 // known, since they will change at runtime, with the exception of
447 // TLS symbols in a position-independent executable.
448 if ((parameters->options().output_is_position_independent()
449 || parameters->options().relocatable())
450 && !(this->type() == elfcpp::STT_TLS
451 && parameters->options().pie()))
454 // If the symbol is not from an object file, and is not undefined,
455 // then it is defined, and known.
456 if (this->source_ != FROM_OBJECT)
458 if (this->source_ != IS_UNDEFINED)
463 // If the symbol is from a dynamic object, then the final value
465 if (this->object()->is_dynamic())
468 // If the symbol is not undefined (it is defined or common),
469 // then the final value is known.
470 if (!this->is_undefined())
474 // If the symbol is undefined, then whether the final value is known
475 // depends on whether we are doing a static link. If we are doing a
476 // dynamic link, then the final value could be filled in at runtime.
477 // This could reasonably be the case for a weak undefined symbol.
478 return parameters->doing_static_link();
481 // Return the output section where this symbol is defined.
484 Symbol::output_section() const
486 switch (this->source_)
490 unsigned int shndx = this->u_.from_object.shndx;
491 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 gold_assert(!this->u_.from_object.object->is_dynamic());
494 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496 return relobj->output_section(shndx);
502 return this->u_.in_output_data.output_data->output_section();
504 case IN_OUTPUT_SEGMENT:
514 // Set the symbol's output section. This is used for symbols defined
515 // in scripts. This should only be called after the symbol table has
519 Symbol::set_output_section(Output_section* os)
521 switch (this->source_)
525 gold_assert(this->output_section() == os);
528 this->source_ = IN_OUTPUT_DATA;
529 this->u_.in_output_data.output_data = os;
530 this->u_.in_output_data.offset_is_from_end = false;
532 case IN_OUTPUT_SEGMENT:
539 // Set the symbol's output segment. This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 gold_assert(this->is_predefined_);
547 this->source_ = IN_OUTPUT_SEGMENT;
548 this->u_.in_output_segment.output_segment = os;
549 this->u_.in_output_segment.offset_base = base;
552 // Set the symbol to undefined. This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
557 Symbol::set_undefined()
559 this->source_ = IS_UNDEFINED;
560 this->is_predefined_ = false;
563 // Class Symbol_table.
565 Symbol_table::Symbol_table(unsigned int count,
566 const Version_script_info& version_script)
567 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568 forwarders_(), commons_(), tls_commons_(), small_commons_(),
569 large_commons_(), forced_locals_(), warnings_(),
570 version_script_(version_script), gc_(NULL), icf_(NULL),
573 namepool_.reserve(count);
576 Symbol_table::~Symbol_table()
580 // The symbol table key equality function. This is called with
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585 const Symbol_table_key& k2) const
587 return k1.first == k2.first && k1.second == k2.second;
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 return (parameters->options().icf_enabled()
594 && this->icf_->is_section_folded(obj, shndx));
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 for (options::String_set::const_iterator p =
604 parameters->options().undefined_begin();
605 p != parameters->options().undefined_end();
608 const char* name = p->c_str();
609 Symbol* sym = this->lookup(name);
610 gold_assert(sym != NULL);
611 if (sym->source() == Symbol::FROM_OBJECT
612 && !sym->object()->is_dynamic())
614 this->gc_mark_symbol(sym);
618 for (options::String_set::const_iterator p =
619 parameters->options().export_dynamic_symbol_begin();
620 p != parameters->options().export_dynamic_symbol_end();
623 const char* name = p->c_str();
624 Symbol* sym = this->lookup(name);
625 // It's not an error if a symbol named by --export-dynamic-symbol
628 && sym->source() == Symbol::FROM_OBJECT
629 && !sym->object()->is_dynamic())
631 this->gc_mark_symbol(sym);
635 for (Script_options::referenced_const_iterator p =
636 layout->script_options()->referenced_begin();
637 p != layout->script_options()->referenced_end();
640 Symbol* sym = this->lookup(p->c_str());
641 gold_assert(sym != NULL);
642 if (sym->source() == Symbol::FROM_OBJECT
643 && !sym->object()->is_dynamic())
645 this->gc_mark_symbol(sym);
651 Symbol_table::gc_mark_symbol(Symbol* sym)
653 // Add the object and section to the work list.
655 unsigned int shndx = sym->shndx(&is_ordinary);
656 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 gold_assert(this->gc_!= NULL);
659 Relobj* relobj = static_cast<Relobj*>(sym->object());
660 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 parameters->target().gc_mark_symbol(this, sym);
665 // When doing garbage collection, keep symbols that have been seen in
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671 && !sym->object()->is_dynamic())
672 this->gc_mark_symbol(sym);
675 // Make TO a symbol which forwards to FROM.
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 gold_assert(from != to);
681 gold_assert(!from->is_forwarder() && !to->is_forwarder());
682 this->forwarders_[from] = to;
683 from->set_forwarder();
686 // Resolve the forwards from FROM, returning the real symbol.
689 Symbol_table::resolve_forwards(const Symbol* from) const
691 gold_assert(from->is_forwarder());
692 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693 this->forwarders_.find(from);
694 gold_assert(p != this->forwarders_.end());
698 // Look up a symbol by name.
701 Symbol_table::lookup(const char* name, const char* version) const
703 Stringpool::Key name_key;
704 name = this->namepool_.find(name, &name_key);
708 Stringpool::Key version_key = 0;
711 version = this->namepool_.find(version, &version_key);
716 Symbol_table_key key(name_key, version_key);
717 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718 if (p == this->table_.end())
723 // Resolve a Symbol with another Symbol. This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version. Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
729 template<int size, bool big_endian>
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734 elfcpp::Sym_write<size, big_endian> esym(buf);
735 // We don't bother to set the st_name or the st_shndx field.
736 esym.put_st_value(from->value());
737 esym.put_st_size(from->symsize());
738 esym.put_st_info(from->binding(), from->type());
739 esym.put_st_other(from->visibility(), from->nonvis());
741 unsigned int shndx = from->shndx(&is_ordinary);
742 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743 from->version(), true);
748 if (parameters->options().gc_sections())
749 this->gc_mark_dyn_syms(to);
752 // Record that a symbol is forced to be local by a version script or
756 Symbol_table::force_local(Symbol* sym)
758 if (!sym->is_defined() && !sym->is_common())
760 if (sym->is_forced_local())
762 // We already got this one.
765 sym->set_is_forced_local();
766 this->forced_locals_.push_back(sym);
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
770 // is only called for undefined symbols, when at least one --wrap
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 // For some targets, we need to ignore a specific character when
777 // wrapping, and add it back later.
779 if (name[0] == parameters->target().wrap_char())
785 if (parameters->options().is_wrap(name))
787 // Turn NAME into __wrap_NAME.
794 // This will give us both the old and new name in NAMEPOOL_, but
795 // that is OK. Only the versions we need will wind up in the
796 // real string table in the output file.
797 return this->namepool_.add(s.c_str(), true, name_key);
800 const char* const real_prefix = "__real_";
801 const size_t real_prefix_length = strlen(real_prefix);
802 if (strncmp(name, real_prefix, real_prefix_length) == 0
803 && parameters->options().is_wrap(name + real_prefix_length))
805 // Turn __real_NAME into NAME.
809 s += name + real_prefix_length;
810 return this->namepool_.add(s.c_str(), true, name_key);
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version. SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822 template<int size, bool big_endian>
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 Symbol_table_type::iterator pdef)
830 // This is the first time we have seen NAME/NULL. Make
831 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
834 sym->set_is_default();
836 else if (pdef->second == sym)
838 // NAME/NULL already points to NAME/VERSION. Don't mark the
839 // symbol as the default if it is not already the default.
843 // This is the unfortunate case where we already have entries
844 // for both NAME/VERSION and NAME/NULL. We now see a symbol
845 // NAME/VERSION where VERSION is the default version. We have
846 // already resolved this new symbol with the existing
847 // NAME/VERSION symbol.
849 // It's possible that NAME/NULL and NAME/VERSION are both
850 // defined in regular objects. This can only happen if one
851 // object file defines foo and another defines foo@@ver. This
852 // is somewhat obscure, but we call it a multiple definition
855 // It's possible that NAME/NULL actually has a version, in which
856 // case it won't be the same as VERSION. This happens with
857 // ver_test_7.so in the testsuite for the symbol t2_2. We see
858 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
859 // then see an unadorned t2_2 in an object file and give it
860 // version VER1 from the version script. This looks like a
861 // default definition for VER1, so it looks like we should merge
862 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
863 // not obvious that this is an error, either. So we just punt.
865 // If one of the symbols has non-default visibility, and the
866 // other is defined in a shared object, then they are different
869 // If the two symbols are from different shared objects,
870 // they are different symbols.
872 // Otherwise, we just resolve the symbols as though they were
875 if (pdef->second->version() != NULL)
876 gold_assert(pdef->second->version() != sym->version());
877 else if (sym->visibility() != elfcpp::STV_DEFAULT
878 && pdef->second->is_from_dynobj())
880 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881 && sym->is_from_dynobj())
883 else if (pdef->second->is_from_dynobj()
884 && sym->is_from_dynobj()
885 && pdef->second->is_defined()
886 && pdef->second->object() != sym->object())
890 const Sized_symbol<size>* symdef;
891 symdef = this->get_sized_symbol<size>(pdef->second);
892 Symbol_table::resolve<size, big_endian>(sym, symdef);
893 this->make_forwarder(pdef->second, sym);
895 sym->set_is_default();
900 // Add one symbol from OBJECT to the symbol table. NAME is symbol
901 // name and VERSION is the version; both are canonicalized. DEF is
902 // whether this is the default version. ST_SHNDX is the symbol's
903 // section index; IS_ORDINARY is whether this is a normal section
904 // rather than a special code.
906 // If IS_DEFAULT_VERSION is true, then this is the definition of a
907 // default version of a symbol. That means that any lookup of
908 // NAME/NULL and any lookup of NAME/VERSION should always return the
909 // same symbol. This is obvious for references, but in particular we
910 // want to do this for definitions: overriding NAME/NULL should also
911 // override NAME/VERSION. If we don't do that, it would be very hard
912 // to override functions in a shared library which uses versioning.
914 // We implement this by simply making both entries in the hash table
915 // point to the same Symbol structure. That is easy enough if this is
916 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
917 // that we have seen both already, in which case they will both have
918 // independent entries in the symbol table. We can't simply change
919 // the symbol table entry, because we have pointers to the entries
920 // attached to the object files. So we mark the entry attached to the
921 // object file as a forwarder, and record it in the forwarders_ map.
922 // Note that entries in the hash table will never be marked as
925 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
926 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
927 // for a special section code. ST_SHNDX may be modified if the symbol
928 // is defined in a section being discarded.
930 template<int size, bool big_endian>
932 Symbol_table::add_from_object(Object* object,
934 Stringpool::Key name_key,
936 Stringpool::Key version_key,
937 bool is_default_version,
938 const elfcpp::Sym<size, big_endian>& sym,
939 unsigned int st_shndx,
941 unsigned int orig_st_shndx)
943 // Print a message if this symbol is being traced.
944 if (parameters->options().is_trace_symbol(name))
946 if (orig_st_shndx == elfcpp::SHN_UNDEF)
947 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
952 // For an undefined symbol, we may need to adjust the name using
954 if (orig_st_shndx == elfcpp::SHN_UNDEF
955 && parameters->options().any_wrap())
957 const char* wrap_name = this->wrap_symbol(name, &name_key);
958 if (wrap_name != name)
960 // If we see a reference to malloc with version GLIBC_2.0,
961 // and we turn it into a reference to __wrap_malloc, then we
962 // discard the version number. Otherwise the user would be
963 // required to specify the correct version for
971 Symbol* const snull = NULL;
972 std::pair<typename Symbol_table_type::iterator, bool> ins =
973 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
976 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
977 std::make_pair(this->table_.end(), false);
978 if (is_default_version)
980 const Stringpool::Key vnull_key = 0;
981 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
986 // ins.first: an iterator, which is a pointer to a pair.
987 // ins.first->first: the key (a pair of name and version).
988 // ins.first->second: the value (Symbol*).
989 // ins.second: true if new entry was inserted, false if not.
991 Sized_symbol<size>* ret;
996 // We already have an entry for NAME/VERSION.
997 ret = this->get_sized_symbol<size>(ins.first->second);
998 gold_assert(ret != NULL);
1000 was_undefined = ret->is_undefined();
1001 // Commons from plugins are just placeholders.
1002 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005 version, is_default_version);
1006 if (parameters->options().gc_sections())
1007 this->gc_mark_dyn_syms(ret);
1009 if (is_default_version)
1010 this->define_default_version<size, big_endian>(ret, insdefault.second,
1016 && ret->source() == Symbol::FROM_OBJECT
1017 && ret->object() == object
1019 && ret->shndx(&dummy) == st_shndx
1020 && ret->is_default())
1022 // We have seen NAME/VERSION already, and marked it as the
1023 // default version, but now we see a definition for
1024 // NAME/VERSION that is not the default version. This can
1025 // happen when the assembler generates two symbols for
1026 // a symbol as a result of a ".symver foo,foo@VER"
1027 // directive. We see the first unversioned symbol and
1028 // we may mark it as the default version (from a
1029 // version script); then we see the second versioned
1030 // symbol and we need to override the first.
1031 // In any other case, the two symbols should have generated
1032 // a multiple definition error.
1033 // (See PR gold/18703.)
1034 ret->set_is_not_default();
1035 const Stringpool::Key vnull_key = 0;
1036 this->table_.erase(std::make_pair(name_key, vnull_key));
1042 // This is the first time we have seen NAME/VERSION.
1043 gold_assert(ins.first->second == NULL);
1045 if (is_default_version && !insdefault.second)
1047 // We already have an entry for NAME/NULL. If we override
1048 // it, then change it to NAME/VERSION.
1049 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051 was_undefined = ret->is_undefined();
1052 // Commons from plugins are just placeholders.
1053 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1056 version, is_default_version);
1057 if (parameters->options().gc_sections())
1058 this->gc_mark_dyn_syms(ret);
1059 ins.first->second = ret;
1063 was_undefined = false;
1066 Sized_target<size, big_endian>* target =
1067 parameters->sized_target<size, big_endian>();
1068 if (!target->has_make_symbol())
1069 ret = new Sized_symbol<size>();
1072 ret = target->make_symbol(name, sym.get_st_type(), object,
1073 st_shndx, sym.get_st_value());
1076 // This means that we don't want a symbol table
1078 if (!is_default_version)
1079 this->table_.erase(ins.first);
1082 this->table_.erase(insdefault.first);
1083 // Inserting INSDEFAULT invalidated INS.
1084 this->table_.erase(std::make_pair(name_key,
1091 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093 ins.first->second = ret;
1094 if (is_default_version)
1096 // This is the first time we have seen NAME/NULL. Point
1097 // it at the new entry for NAME/VERSION.
1098 gold_assert(insdefault.second);
1099 insdefault.first->second = ret;
1103 if (is_default_version)
1104 ret->set_is_default();
1107 // Record every time we see a new undefined symbol, to speed up
1109 if (!was_undefined && ret->is_undefined())
1111 ++this->saw_undefined_;
1112 if (parameters->options().has_plugins())
1113 parameters->options().plugins()->new_undefined_symbol(ret);
1116 // Keep track of common symbols, to speed up common symbol
1117 // allocation. Don't record commons from plugin objects;
1118 // we need to wait until we see the real symbol in the
1119 // replacement file.
1120 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122 if (ret->type() == elfcpp::STT_TLS)
1123 this->tls_commons_.push_back(ret);
1124 else if (!is_ordinary
1125 && st_shndx == parameters->target().small_common_shndx())
1126 this->small_commons_.push_back(ret);
1127 else if (!is_ordinary
1128 && st_shndx == parameters->target().large_common_shndx())
1129 this->large_commons_.push_back(ret);
1131 this->commons_.push_back(ret);
1134 // If we're not doing a relocatable link, then any symbol with
1135 // hidden or internal visibility is local.
1136 if ((ret->visibility() == elfcpp::STV_HIDDEN
1137 || ret->visibility() == elfcpp::STV_INTERNAL)
1138 && (ret->binding() == elfcpp::STB_GLOBAL
1139 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1140 || ret->binding() == elfcpp::STB_WEAK)
1141 && !parameters->options().relocatable())
1142 this->force_local(ret);
1147 // Add all the symbols in a relocatable object to the hash table.
1149 template<int size, bool big_endian>
1151 Symbol_table::add_from_relobj(
1152 Sized_relobj_file<size, big_endian>* relobj,
1153 const unsigned char* syms,
1155 size_t symndx_offset,
1156 const char* sym_names,
1157 size_t sym_name_size,
1158 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1163 gold_assert(size == parameters->target().get_size());
1165 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167 const bool just_symbols = relobj->just_symbols();
1169 const unsigned char* p = syms;
1170 for (size_t i = 0; i < count; ++i, p += sym_size)
1172 (*sympointers)[i] = NULL;
1174 elfcpp::Sym<size, big_endian> sym(p);
1176 unsigned int st_name = sym.get_st_name();
1177 if (st_name >= sym_name_size)
1179 relobj->error(_("bad global symbol name offset %u at %zu"),
1184 const char* name = sym_names + st_name;
1186 if (!parameters->options().relocatable()
1187 && strcmp (name, "__gnu_lto_slim") == 0)
1188 gold_info(_("%s: plugin needed to handle lto object"),
1189 relobj->name().c_str());
1192 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1195 unsigned int orig_st_shndx = st_shndx;
1197 orig_st_shndx = elfcpp::SHN_UNDEF;
1199 if (st_shndx != elfcpp::SHN_UNDEF)
1202 // A symbol defined in a section which we are not including must
1203 // be treated as an undefined symbol.
1204 bool is_defined_in_discarded_section = false;
1205 if (st_shndx != elfcpp::SHN_UNDEF
1207 && !relobj->is_section_included(st_shndx)
1208 && !this->is_section_folded(relobj, st_shndx))
1210 st_shndx = elfcpp::SHN_UNDEF;
1211 is_defined_in_discarded_section = true;
1214 // In an object file, an '@' in the name separates the symbol
1215 // name from the version name. If there are two '@' characters,
1216 // this is the default version.
1217 const char* ver = strchr(name, '@');
1218 Stringpool::Key ver_key = 0;
1220 // IS_DEFAULT_VERSION: is the version default?
1221 // IS_FORCED_LOCAL: is the symbol forced local?
1222 bool is_default_version = false;
1223 bool is_forced_local = false;
1225 // FIXME: For incremental links, we don't store version information,
1226 // so we need to ignore version symbols for now.
1227 if (parameters->incremental_update() && ver != NULL)
1229 namelen = ver - name;
1235 // The symbol name is of the form foo@VERSION or foo@@VERSION
1236 namelen = ver - name;
1240 is_default_version = true;
1243 ver = this->namepool_.add(ver, true, &ver_key);
1245 // We don't want to assign a version to an undefined symbol,
1246 // even if it is listed in the version script. FIXME: What
1247 // about a common symbol?
1250 namelen = strlen(name);
1251 if (!this->version_script_.empty()
1252 && st_shndx != elfcpp::SHN_UNDEF)
1254 // The symbol name did not have a version, but the
1255 // version script may assign a version anyway.
1256 std::string version;
1258 if (this->version_script_.get_symbol_version(name, &version,
1262 is_forced_local = true;
1263 else if (!version.empty())
1265 ver = this->namepool_.add_with_length(version.c_str(),
1269 is_default_version = true;
1275 elfcpp::Sym<size, big_endian>* psym = &sym;
1276 unsigned char symbuf[sym_size];
1277 elfcpp::Sym<size, big_endian> sym2(symbuf);
1280 memcpy(symbuf, p, sym_size);
1281 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1282 if (orig_st_shndx != elfcpp::SHN_UNDEF
1284 && relobj->e_type() == elfcpp::ET_REL)
1286 // Symbol values in relocatable object files are section
1287 // relative. This is normally what we want, but since here
1288 // we are converting the symbol to absolute we need to add
1289 // the section address. The section address in an object
1290 // file is normally zero, but people can use a linker
1291 // script to change it.
1292 sw.put_st_value(sym.get_st_value()
1293 + relobj->section_address(orig_st_shndx));
1295 st_shndx = elfcpp::SHN_ABS;
1296 is_ordinary = false;
1300 // Fix up visibility if object has no-export set.
1301 if (relobj->no_export()
1302 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1304 // We may have copied symbol already above.
1307 memcpy(symbuf, p, sym_size);
1311 elfcpp::STV visibility = sym2.get_st_visibility();
1312 if (visibility == elfcpp::STV_DEFAULT
1313 || visibility == elfcpp::STV_PROTECTED)
1315 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1316 unsigned char nonvis = sym2.get_st_nonvis();
1317 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1321 Stringpool::Key name_key;
1322 name = this->namepool_.add_with_length(name, namelen, true,
1325 Sized_symbol<size>* res;
1326 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1327 is_default_version, *psym, st_shndx,
1328 is_ordinary, orig_st_shndx);
1333 if (is_forced_local)
1334 this->force_local(res);
1336 // Do not treat this symbol as garbage if this symbol will be
1337 // exported to the dynamic symbol table. This is true when
1338 // building a shared library or using --export-dynamic and
1339 // the symbol is externally visible.
1340 if (parameters->options().gc_sections()
1341 && res->is_externally_visible()
1342 && !res->is_from_dynobj()
1343 && (parameters->options().shared()
1344 || parameters->options().export_dynamic()
1345 || parameters->options().in_dynamic_list(res->name())))
1346 this->gc_mark_symbol(res);
1348 if (is_defined_in_discarded_section)
1349 res->set_is_defined_in_discarded_section();
1351 (*sympointers)[i] = res;
1355 // Add a symbol from a plugin-claimed file.
1357 template<int size, bool big_endian>
1359 Symbol_table::add_from_pluginobj(
1360 Sized_pluginobj<size, big_endian>* obj,
1363 elfcpp::Sym<size, big_endian>* sym)
1365 unsigned int st_shndx = sym->get_st_shndx();
1366 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1368 Stringpool::Key ver_key = 0;
1369 bool is_default_version = false;
1370 bool is_forced_local = false;
1374 ver = this->namepool_.add(ver, true, &ver_key);
1376 // We don't want to assign a version to an undefined symbol,
1377 // even if it is listed in the version script. FIXME: What
1378 // about a common symbol?
1381 if (!this->version_script_.empty()
1382 && st_shndx != elfcpp::SHN_UNDEF)
1384 // The symbol name did not have a version, but the
1385 // version script may assign a version anyway.
1386 std::string version;
1388 if (this->version_script_.get_symbol_version(name, &version,
1392 is_forced_local = true;
1393 else if (!version.empty())
1395 ver = this->namepool_.add_with_length(version.c_str(),
1399 is_default_version = true;
1405 Stringpool::Key name_key;
1406 name = this->namepool_.add(name, true, &name_key);
1408 Sized_symbol<size>* res;
1409 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1410 is_default_version, *sym, st_shndx,
1411 is_ordinary, st_shndx);
1416 if (is_forced_local)
1417 this->force_local(res);
1422 // Add all the symbols in a dynamic object to the hash table.
1424 template<int size, bool big_endian>
1426 Symbol_table::add_from_dynobj(
1427 Sized_dynobj<size, big_endian>* dynobj,
1428 const unsigned char* syms,
1430 const char* sym_names,
1431 size_t sym_name_size,
1432 const unsigned char* versym,
1434 const std::vector<const char*>* version_map,
1435 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1440 gold_assert(size == parameters->target().get_size());
1442 if (dynobj->just_symbols())
1444 gold_error(_("--just-symbols does not make sense with a shared object"));
1448 // FIXME: For incremental links, we don't store version information,
1449 // so we need to ignore version symbols for now.
1450 if (parameters->incremental_update())
1453 if (versym != NULL && versym_size / 2 < count)
1455 dynobj->error(_("too few symbol versions"));
1459 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1461 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1462 // weak aliases. This is necessary because if the dynamic object
1463 // provides the same variable under two names, one of which is a
1464 // weak definition, and the regular object refers to the weak
1465 // definition, we have to put both the weak definition and the
1466 // strong definition into the dynamic symbol table. Given a weak
1467 // definition, the only way that we can find the corresponding
1468 // strong definition, if any, is to search the symbol table.
1469 std::vector<Sized_symbol<size>*> object_symbols;
1471 const unsigned char* p = syms;
1472 const unsigned char* vs = versym;
1473 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1475 elfcpp::Sym<size, big_endian> sym(p);
1477 if (sympointers != NULL)
1478 (*sympointers)[i] = NULL;
1480 // Ignore symbols with local binding or that have
1481 // internal or hidden visibility.
1482 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1483 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1484 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1487 // A protected symbol in a shared library must be treated as a
1488 // normal symbol when viewed from outside the shared library.
1489 // Implement this by overriding the visibility here.
1490 // Likewise, an IFUNC symbol in a shared library must be treated
1491 // as a normal FUNC symbol.
1492 elfcpp::Sym<size, big_endian>* psym = &sym;
1493 unsigned char symbuf[sym_size];
1494 elfcpp::Sym<size, big_endian> sym2(symbuf);
1495 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1496 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1498 memcpy(symbuf, p, sym_size);
1499 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1500 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1501 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1502 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1503 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1507 unsigned int st_name = psym->get_st_name();
1508 if (st_name >= sym_name_size)
1510 dynobj->error(_("bad symbol name offset %u at %zu"),
1515 const char* name = sym_names + st_name;
1518 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1521 if (st_shndx != elfcpp::SHN_UNDEF)
1524 Sized_symbol<size>* res;
1528 Stringpool::Key name_key;
1529 name = this->namepool_.add(name, true, &name_key);
1530 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531 false, *psym, st_shndx, is_ordinary,
1536 // Read the version information.
1538 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1540 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1541 v &= elfcpp::VERSYM_VERSION;
1543 // The Sun documentation says that V can be VER_NDX_LOCAL,
1544 // or VER_NDX_GLOBAL, or a version index. The meaning of
1545 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1546 // The old GNU linker will happily generate VER_NDX_LOCAL
1547 // for an undefined symbol. I don't know what the Sun
1548 // linker will generate.
1550 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1551 && st_shndx != elfcpp::SHN_UNDEF)
1553 // This symbol should not be visible outside the object.
1557 // At this point we are definitely going to add this symbol.
1558 Stringpool::Key name_key;
1559 name = this->namepool_.add(name, true, &name_key);
1561 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1562 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1564 // This symbol does not have a version.
1565 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1566 false, *psym, st_shndx, is_ordinary,
1571 if (v >= version_map->size())
1573 dynobj->error(_("versym for symbol %zu out of range: %u"),
1578 const char* version = (*version_map)[v];
1579 if (version == NULL)
1581 dynobj->error(_("versym for symbol %zu has no name: %u"),
1586 Stringpool::Key version_key;
1587 version = this->namepool_.add(version, true, &version_key);
1589 // If this is an absolute symbol, and the version name
1590 // and symbol name are the same, then this is the
1591 // version definition symbol. These symbols exist to
1592 // support using -u to pull in particular versions. We
1593 // do not want to record a version for them.
1594 if (st_shndx == elfcpp::SHN_ABS
1596 && name_key == version_key)
1597 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1598 false, *psym, st_shndx, is_ordinary,
1602 const bool is_default_version =
1603 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1604 res = this->add_from_object(dynobj, name, name_key, version,
1605 version_key, is_default_version,
1607 is_ordinary, st_shndx);
1615 // Note that it is possible that RES was overridden by an
1616 // earlier object, in which case it can't be aliased here.
1617 if (st_shndx != elfcpp::SHN_UNDEF
1619 && psym->get_st_type() == elfcpp::STT_OBJECT
1620 && res->source() == Symbol::FROM_OBJECT
1621 && res->object() == dynobj)
1622 object_symbols.push_back(res);
1624 // If the symbol has protected visibility in the dynobj,
1625 // mark it as such if it was not overridden.
1626 if (res->source() == Symbol::FROM_OBJECT
1627 && res->object() == dynobj
1628 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1629 res->set_is_protected();
1631 if (sympointers != NULL)
1632 (*sympointers)[i] = res;
1635 this->record_weak_aliases(&object_symbols);
1638 // Add a symbol from a incremental object file.
1640 template<int size, bool big_endian>
1642 Symbol_table::add_from_incrobj(
1646 elfcpp::Sym<size, big_endian>* sym)
1648 unsigned int st_shndx = sym->get_st_shndx();
1649 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1651 Stringpool::Key ver_key = 0;
1652 bool is_default_version = false;
1654 Stringpool::Key name_key;
1655 name = this->namepool_.add(name, true, &name_key);
1657 Sized_symbol<size>* res;
1658 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1659 is_default_version, *sym, st_shndx,
1660 is_ordinary, st_shndx);
1665 // This is used to sort weak aliases. We sort them first by section
1666 // index, then by offset, then by weak ahead of strong.
1669 class Weak_alias_sorter
1672 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1677 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1678 const Sized_symbol<size>* s2) const
1681 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1682 gold_assert(is_ordinary);
1683 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1684 gold_assert(is_ordinary);
1685 if (s1_shndx != s2_shndx)
1686 return s1_shndx < s2_shndx;
1688 if (s1->value() != s2->value())
1689 return s1->value() < s2->value();
1690 if (s1->binding() != s2->binding())
1692 if (s1->binding() == elfcpp::STB_WEAK)
1694 if (s2->binding() == elfcpp::STB_WEAK)
1697 return std::string(s1->name()) < std::string(s2->name());
1700 // SYMBOLS is a list of object symbols from a dynamic object. Look
1701 // for any weak aliases, and record them so that if we add the weak
1702 // alias to the dynamic symbol table, we also add the corresponding
1707 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1709 // Sort the vector by section index, then by offset, then by weak
1711 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1713 // Walk through the vector. For each weak definition, record
1715 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1717 p != symbols->end();
1720 if ((*p)->binding() != elfcpp::STB_WEAK)
1723 // Build a circular list of weak aliases. Each symbol points to
1724 // the next one in the circular list.
1726 Sized_symbol<size>* from_sym = *p;
1727 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1728 for (q = p + 1; q != symbols->end(); ++q)
1731 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1732 || (*q)->value() != from_sym->value())
1735 this->weak_aliases_[from_sym] = *q;
1736 from_sym->set_has_alias();
1742 this->weak_aliases_[from_sym] = *p;
1743 from_sym->set_has_alias();
1750 // Create and return a specially defined symbol. If ONLY_IF_REF is
1751 // true, then only create the symbol if there is a reference to it.
1752 // If this does not return NULL, it sets *POLDSYM to the existing
1753 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1754 // resolve the newly created symbol to the old one. This
1755 // canonicalizes *PNAME and *PVERSION.
1757 template<int size, bool big_endian>
1759 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1761 Sized_symbol<size>** poldsym,
1762 bool* resolve_oldsym, bool is_forced_local)
1764 *resolve_oldsym = false;
1767 // If the caller didn't give us a version, see if we get one from
1768 // the version script.
1770 bool is_default_version = false;
1771 if (!is_forced_local && *pversion == NULL)
1774 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1776 if (is_global && !v.empty())
1778 *pversion = v.c_str();
1779 // If we get the version from a version script, then we
1780 // are also the default version.
1781 is_default_version = true;
1787 Sized_symbol<size>* sym;
1789 bool add_to_table = false;
1790 typename Symbol_table_type::iterator add_loc = this->table_.end();
1791 bool add_def_to_table = false;
1792 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1796 oldsym = this->lookup(*pname, *pversion);
1797 if (oldsym == NULL && is_default_version)
1798 oldsym = this->lookup(*pname, NULL);
1799 if (oldsym == NULL || !oldsym->is_undefined())
1802 *pname = oldsym->name();
1803 if (is_default_version)
1804 *pversion = this->namepool_.add(*pversion, true, NULL);
1806 *pversion = oldsym->version();
1810 // Canonicalize NAME and VERSION.
1811 Stringpool::Key name_key;
1812 *pname = this->namepool_.add(*pname, true, &name_key);
1814 Stringpool::Key version_key = 0;
1815 if (*pversion != NULL)
1816 *pversion = this->namepool_.add(*pversion, true, &version_key);
1818 Symbol* const snull = NULL;
1819 std::pair<typename Symbol_table_type::iterator, bool> ins =
1820 this->table_.insert(std::make_pair(std::make_pair(name_key,
1824 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1825 std::make_pair(this->table_.end(), false);
1826 if (is_default_version)
1828 const Stringpool::Key vnull = 0;
1830 this->table_.insert(std::make_pair(std::make_pair(name_key,
1837 // We already have a symbol table entry for NAME/VERSION.
1838 oldsym = ins.first->second;
1839 gold_assert(oldsym != NULL);
1841 if (is_default_version)
1843 Sized_symbol<size>* soldsym =
1844 this->get_sized_symbol<size>(oldsym);
1845 this->define_default_version<size, big_endian>(soldsym,
1852 // We haven't seen this symbol before.
1853 gold_assert(ins.first->second == NULL);
1855 add_to_table = true;
1856 add_loc = ins.first;
1858 if (is_default_version && !insdefault.second)
1860 // We are adding NAME/VERSION, and it is the default
1861 // version. We already have an entry for NAME/NULL.
1862 oldsym = insdefault.first->second;
1863 *resolve_oldsym = true;
1869 if (is_default_version)
1871 add_def_to_table = true;
1872 add_def_loc = insdefault.first;
1878 const Target& target = parameters->target();
1879 if (!target.has_make_symbol())
1880 sym = new Sized_symbol<size>();
1883 Sized_target<size, big_endian>* sized_target =
1884 parameters->sized_target<size, big_endian>();
1885 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1886 NULL, elfcpp::SHN_UNDEF, 0);
1892 add_loc->second = sym;
1894 gold_assert(oldsym != NULL);
1896 if (add_def_to_table)
1897 add_def_loc->second = sym;
1899 *poldsym = this->get_sized_symbol<size>(oldsym);
1904 // Define a symbol based on an Output_data.
1907 Symbol_table::define_in_output_data(const char* name,
1908 const char* version,
1914 elfcpp::STB binding,
1915 elfcpp::STV visibility,
1916 unsigned char nonvis,
1917 bool offset_is_from_end,
1920 if (parameters->target().get_size() == 32)
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1923 return this->do_define_in_output_data<32>(name, version, defined, od,
1924 value, symsize, type, binding,
1932 else if (parameters->target().get_size() == 64)
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935 return this->do_define_in_output_data<64>(name, version, defined, od,
1936 value, symsize, type, binding,
1948 // Define a symbol in an Output_data, sized version.
1952 Symbol_table::do_define_in_output_data(
1954 const char* version,
1957 typename elfcpp::Elf_types<size>::Elf_Addr value,
1958 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1960 elfcpp::STB binding,
1961 elfcpp::STV visibility,
1962 unsigned char nonvis,
1963 bool offset_is_from_end,
1966 Sized_symbol<size>* sym;
1967 Sized_symbol<size>* oldsym;
1968 bool resolve_oldsym;
1969 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1971 if (parameters->target().is_big_endian())
1973 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974 sym = this->define_special_symbol<size, true>(&name, &version,
1975 only_if_ref, &oldsym,
1984 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1985 sym = this->define_special_symbol<size, false>(&name, &version,
1986 only_if_ref, &oldsym,
1997 sym->init_output_data(name, version, od, value, symsize, type, binding,
1998 visibility, nonvis, offset_is_from_end,
1999 defined == PREDEFINED);
2003 if (is_forced_local || this->version_script_.symbol_is_local(name))
2004 this->force_local(sym);
2005 else if (version != NULL)
2006 sym->set_is_default();
2010 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2011 this->override_with_special(oldsym, sym);
2017 if (defined == PREDEFINED
2018 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2019 this->force_local(oldsym);
2025 // Define a symbol based on an Output_segment.
2028 Symbol_table::define_in_output_segment(const char* name,
2029 const char* version,
2035 elfcpp::STB binding,
2036 elfcpp::STV visibility,
2037 unsigned char nonvis,
2038 Symbol::Segment_offset_base offset_base,
2041 if (parameters->target().get_size() == 32)
2043 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2044 return this->do_define_in_output_segment<32>(name, version, defined, os,
2045 value, symsize, type,
2046 binding, visibility, nonvis,
2047 offset_base, only_if_ref);
2052 else if (parameters->target().get_size() == 64)
2054 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2055 return this->do_define_in_output_segment<64>(name, version, defined, os,
2056 value, symsize, type,
2057 binding, visibility, nonvis,
2058 offset_base, only_if_ref);
2067 // Define a symbol in an Output_segment, sized version.
2071 Symbol_table::do_define_in_output_segment(
2073 const char* version,
2076 typename elfcpp::Elf_types<size>::Elf_Addr value,
2077 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2079 elfcpp::STB binding,
2080 elfcpp::STV visibility,
2081 unsigned char nonvis,
2082 Symbol::Segment_offset_base offset_base,
2085 Sized_symbol<size>* sym;
2086 Sized_symbol<size>* oldsym;
2087 bool resolve_oldsym;
2088 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2090 if (parameters->target().is_big_endian())
2092 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2093 sym = this->define_special_symbol<size, true>(&name, &version,
2094 only_if_ref, &oldsym,
2103 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2104 sym = this->define_special_symbol<size, false>(&name, &version,
2105 only_if_ref, &oldsym,
2116 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2117 visibility, nonvis, offset_base,
2118 defined == PREDEFINED);
2122 if (is_forced_local || this->version_script_.symbol_is_local(name))
2123 this->force_local(sym);
2124 else if (version != NULL)
2125 sym->set_is_default();
2129 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2130 this->override_with_special(oldsym, sym);
2136 if (is_forced_local || this->version_script_.symbol_is_local(name))
2137 this->force_local(oldsym);
2143 // Define a special symbol with a constant value. It is a multiple
2144 // definition error if this symbol is already defined.
2147 Symbol_table::define_as_constant(const char* name,
2148 const char* version,
2153 elfcpp::STB binding,
2154 elfcpp::STV visibility,
2155 unsigned char nonvis,
2157 bool force_override)
2159 if (parameters->target().get_size() == 32)
2161 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2162 return this->do_define_as_constant<32>(name, version, defined, value,
2163 symsize, type, binding,
2164 visibility, nonvis, only_if_ref,
2170 else if (parameters->target().get_size() == 64)
2172 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2173 return this->do_define_as_constant<64>(name, version, defined, value,
2174 symsize, type, binding,
2175 visibility, nonvis, only_if_ref,
2185 // Define a symbol as a constant, sized version.
2189 Symbol_table::do_define_as_constant(
2191 const char* version,
2193 typename elfcpp::Elf_types<size>::Elf_Addr value,
2194 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2196 elfcpp::STB binding,
2197 elfcpp::STV visibility,
2198 unsigned char nonvis,
2200 bool force_override)
2202 Sized_symbol<size>* sym;
2203 Sized_symbol<size>* oldsym;
2204 bool resolve_oldsym;
2205 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2207 if (parameters->target().is_big_endian())
2209 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2210 sym = this->define_special_symbol<size, true>(&name, &version,
2211 only_if_ref, &oldsym,
2220 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2221 sym = this->define_special_symbol<size, false>(&name, &version,
2222 only_if_ref, &oldsym,
2233 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2234 nonvis, defined == PREDEFINED);
2238 // Version symbols are absolute symbols with name == version.
2239 // We don't want to force them to be local.
2240 if ((version == NULL
2243 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2244 this->force_local(sym);
2245 else if (version != NULL
2246 && (name != version || value != 0))
2247 sym->set_is_default();
2252 || Symbol_table::should_override_with_special(oldsym, type, defined))
2253 this->override_with_special(oldsym, sym);
2259 if (is_forced_local || this->version_script_.symbol_is_local(name))
2260 this->force_local(oldsym);
2266 // Define a set of symbols in output sections.
2269 Symbol_table::define_symbols(const Layout* layout, int count,
2270 const Define_symbol_in_section* p,
2273 for (int i = 0; i < count; ++i, ++p)
2275 Output_section* os = layout->find_output_section(p->output_section);
2277 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2278 p->size, p->type, p->binding,
2279 p->visibility, p->nonvis,
2280 p->offset_is_from_end,
2281 only_if_ref || p->only_if_ref);
2283 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2284 p->type, p->binding, p->visibility, p->nonvis,
2285 only_if_ref || p->only_if_ref,
2290 // Define a set of symbols in output segments.
2293 Symbol_table::define_symbols(const Layout* layout, int count,
2294 const Define_symbol_in_segment* p,
2297 for (int i = 0; i < count; ++i, ++p)
2299 Output_segment* os = layout->find_output_segment(p->segment_type,
2300 p->segment_flags_set,
2301 p->segment_flags_clear);
2303 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2304 p->size, p->type, p->binding,
2305 p->visibility, p->nonvis,
2307 only_if_ref || p->only_if_ref);
2309 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2310 p->type, p->binding, p->visibility, p->nonvis,
2311 only_if_ref || p->only_if_ref,
2316 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2317 // symbol should be defined--typically a .dyn.bss section. VALUE is
2318 // the offset within POSD.
2322 Symbol_table::define_with_copy_reloc(
2323 Sized_symbol<size>* csym,
2325 typename elfcpp::Elf_types<size>::Elf_Addr value)
2327 gold_assert(csym->is_from_dynobj());
2328 gold_assert(!csym->is_copied_from_dynobj());
2329 Object* object = csym->object();
2330 gold_assert(object->is_dynamic());
2331 Dynobj* dynobj = static_cast<Dynobj*>(object);
2333 // Our copied variable has to override any variable in a shared
2335 elfcpp::STB binding = csym->binding();
2336 if (binding == elfcpp::STB_WEAK)
2337 binding = elfcpp::STB_GLOBAL;
2339 this->define_in_output_data(csym->name(), csym->version(), COPY,
2340 posd, value, csym->symsize(),
2341 csym->type(), binding,
2342 csym->visibility(), csym->nonvis(),
2345 csym->set_is_copied_from_dynobj();
2346 csym->set_needs_dynsym_entry();
2348 this->copied_symbol_dynobjs_[csym] = dynobj;
2350 // We have now defined all aliases, but we have not entered them all
2351 // in the copied_symbol_dynobjs_ map.
2352 if (csym->has_alias())
2357 sym = this->weak_aliases_[sym];
2360 gold_assert(sym->output_data() == posd);
2362 sym->set_is_copied_from_dynobj();
2363 this->copied_symbol_dynobjs_[sym] = dynobj;
2368 // SYM is defined using a COPY reloc. Return the dynamic object where
2369 // the original definition was found.
2372 Symbol_table::get_copy_source(const Symbol* sym) const
2374 gold_assert(sym->is_copied_from_dynobj());
2375 Copied_symbol_dynobjs::const_iterator p =
2376 this->copied_symbol_dynobjs_.find(sym);
2377 gold_assert(p != this->copied_symbol_dynobjs_.end());
2381 // Add any undefined symbols named on the command line.
2384 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2386 if (parameters->options().any_undefined()
2387 || layout->script_options()->any_unreferenced())
2389 if (parameters->target().get_size() == 32)
2391 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2392 this->do_add_undefined_symbols_from_command_line<32>(layout);
2397 else if (parameters->target().get_size() == 64)
2399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2400 this->do_add_undefined_symbols_from_command_line<64>(layout);
2412 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2414 for (options::String_set::const_iterator p =
2415 parameters->options().undefined_begin();
2416 p != parameters->options().undefined_end();
2418 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2420 for (options::String_set::const_iterator p =
2421 parameters->options().export_dynamic_symbol_begin();
2422 p != parameters->options().export_dynamic_symbol_end();
2424 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2426 for (Script_options::referenced_const_iterator p =
2427 layout->script_options()->referenced_begin();
2428 p != layout->script_options()->referenced_end();
2430 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2435 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2437 if (this->lookup(name) != NULL)
2440 const char* version = NULL;
2442 Sized_symbol<size>* sym;
2443 Sized_symbol<size>* oldsym;
2444 bool resolve_oldsym;
2445 if (parameters->target().is_big_endian())
2447 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2448 sym = this->define_special_symbol<size, true>(&name, &version,
2458 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2459 sym = this->define_special_symbol<size, false>(&name, &version,
2468 gold_assert(oldsym == NULL);
2470 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2471 elfcpp::STV_DEFAULT, 0);
2472 ++this->saw_undefined_;
2475 // Set the dynamic symbol indexes. INDEX is the index of the first
2476 // global dynamic symbol. Pointers to the global symbols are stored
2477 // into the vector SYMS. The names are added to DYNPOOL.
2478 // This returns an updated dynamic symbol index.
2481 Symbol_table::set_dynsym_indexes(unsigned int index,
2482 unsigned int* pforced_local_count,
2483 std::vector<Symbol*>* syms,
2484 Stringpool* dynpool,
2487 std::vector<Symbol*> as_needed_sym;
2489 // First process all the symbols which have been forced to be local,
2490 // as they must appear before all global symbols.
2491 unsigned int forced_local_count = 0;
2492 for (Forced_locals::iterator p = this->forced_locals_.begin();
2493 p != this->forced_locals_.end();
2497 gold_assert(sym->is_forced_local());
2498 if (sym->has_dynsym_index())
2500 if (!sym->should_add_dynsym_entry(this))
2501 sym->set_dynsym_index(-1U);
2504 sym->set_dynsym_index(index);
2506 ++forced_local_count;
2507 dynpool->add(sym->name(), false, NULL);
2510 *pforced_local_count = forced_local_count;
2512 // Allow a target to set dynsym indexes.
2513 if (parameters->target().has_custom_set_dynsym_indexes())
2515 std::vector<Symbol*> dyn_symbols;
2516 for (Symbol_table_type::iterator p = this->table_.begin();
2517 p != this->table_.end();
2520 Symbol* sym = p->second;
2521 if (sym->is_forced_local())
2523 if (!sym->should_add_dynsym_entry(this))
2524 sym->set_dynsym_index(-1U);
2526 dyn_symbols.push_back(sym);
2529 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2530 dynpool, versions, this);
2533 for (Symbol_table_type::iterator p = this->table_.begin();
2534 p != this->table_.end();
2537 Symbol* sym = p->second;
2539 if (sym->is_forced_local())
2542 // Note that SYM may already have a dynamic symbol index, since
2543 // some symbols appear more than once in the symbol table, with
2544 // and without a version.
2546 if (!sym->should_add_dynsym_entry(this))
2547 sym->set_dynsym_index(-1U);
2548 else if (!sym->has_dynsym_index())
2550 sym->set_dynsym_index(index);
2552 syms->push_back(sym);
2553 dynpool->add(sym->name(), false, NULL);
2555 // If the symbol is defined in a dynamic object and is
2556 // referenced strongly in a regular object, then mark the
2557 // dynamic object as needed. This is used to implement
2559 if (sym->is_from_dynobj()
2561 && !sym->is_undef_binding_weak())
2562 sym->object()->set_is_needed();
2564 // Record any version information, except those from
2565 // as-needed libraries not seen to be needed. Note that the
2566 // is_needed state for such libraries can change in this loop.
2567 if (sym->version() != NULL)
2569 if (!sym->is_from_dynobj()
2570 || !sym->object()->as_needed()
2571 || sym->object()->is_needed())
2572 versions->record_version(this, dynpool, sym);
2574 as_needed_sym.push_back(sym);
2579 // Process version information for symbols from as-needed libraries.
2580 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2581 p != as_needed_sym.end();
2586 if (sym->object()->is_needed())
2587 versions->record_version(this, dynpool, sym);
2589 sym->clear_version();
2592 // Finish up the versions. In some cases this may add new dynamic
2594 index = versions->finalize(this, index, syms);
2596 // Process target-specific symbols.
2597 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2598 p != this->target_symbols_.end();
2601 (*p)->set_dynsym_index(index);
2603 syms->push_back(*p);
2604 dynpool->add((*p)->name(), false, NULL);
2610 // Set the final values for all the symbols. The index of the first
2611 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2612 // file offset OFF. Add their names to POOL. Return the new file
2613 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2614 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2615 // written from the global symbol table in Symtab::write_globals(),
2616 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2617 // not necessarily the same as the sh_info field for the .dynsym
2618 // section, which will point to the first real global symbol.
2621 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2622 size_t dyncount, Stringpool* pool,
2623 unsigned int* plocal_symcount)
2627 gold_assert(*plocal_symcount != 0);
2628 this->first_global_index_ = *plocal_symcount;
2630 this->dynamic_offset_ = dynoff;
2631 this->first_dynamic_global_index_ = dyn_global_index;
2632 this->dynamic_count_ = dyncount;
2634 if (parameters->target().get_size() == 32)
2636 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2637 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2642 else if (parameters->target().get_size() == 64)
2644 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2645 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2653 // Now that we have the final symbol table, we can reliably note
2654 // which symbols should get warnings.
2655 this->warnings_.note_warnings(this);
2660 // SYM is going into the symbol table at *PINDEX. Add the name to
2661 // POOL, update *PINDEX and *POFF.
2665 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2666 unsigned int* pindex, off_t* poff)
2668 sym->set_symtab_index(*pindex);
2669 if (sym->version() == NULL || !parameters->options().relocatable())
2670 pool->add(sym->name(), false, NULL);
2672 pool->add(sym->versioned_name(), true, NULL);
2674 *poff += elfcpp::Elf_sizes<size>::sym_size;
2677 // Set the final value for all the symbols. This is called after
2678 // Layout::finalize, so all the output sections have their final
2683 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2684 unsigned int* plocal_symcount)
2686 off = align_address(off, size >> 3);
2687 this->offset_ = off;
2689 unsigned int index = *plocal_symcount;
2690 const unsigned int orig_index = index;
2692 // First do all the symbols which have been forced to be local, as
2693 // they must appear before all global symbols.
2694 for (Forced_locals::iterator p = this->forced_locals_.begin();
2695 p != this->forced_locals_.end();
2699 gold_assert(sym->is_forced_local());
2700 if (this->sized_finalize_symbol<size>(sym))
2702 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2707 // Now do all the remaining symbols.
2708 for (Symbol_table_type::iterator p = this->table_.begin();
2709 p != this->table_.end();
2712 Symbol* sym = p->second;
2713 if (this->sized_finalize_symbol<size>(sym))
2714 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2717 // Now do target-specific symbols.
2718 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2719 p != this->target_symbols_.end();
2722 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2725 this->output_count_ = index - orig_index;
2730 // Compute the final value of SYM and store status in location PSTATUS.
2731 // During relaxation, this may be called multiple times for a symbol to
2732 // compute its would-be final value in each relaxation pass.
2735 typename Sized_symbol<size>::Value_type
2736 Symbol_table::compute_final_value(
2737 const Sized_symbol<size>* sym,
2738 Compute_final_value_status* pstatus) const
2740 typedef typename Sized_symbol<size>::Value_type Value_type;
2743 switch (sym->source())
2745 case Symbol::FROM_OBJECT:
2748 unsigned int shndx = sym->shndx(&is_ordinary);
2751 && shndx != elfcpp::SHN_ABS
2752 && !Symbol::is_common_shndx(shndx))
2754 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2758 Object* symobj = sym->object();
2759 if (symobj->is_dynamic())
2762 shndx = elfcpp::SHN_UNDEF;
2764 else if (symobj->pluginobj() != NULL)
2767 shndx = elfcpp::SHN_UNDEF;
2769 else if (shndx == elfcpp::SHN_UNDEF)
2771 else if (!is_ordinary
2772 && (shndx == elfcpp::SHN_ABS
2773 || Symbol::is_common_shndx(shndx)))
2774 value = sym->value();
2777 Relobj* relobj = static_cast<Relobj*>(symobj);
2778 Output_section* os = relobj->output_section(shndx);
2780 if (this->is_section_folded(relobj, shndx))
2782 gold_assert(os == NULL);
2783 // Get the os of the section it is folded onto.
2784 Section_id folded = this->icf_->get_folded_section(relobj,
2786 gold_assert(folded.first != NULL);
2787 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2788 unsigned folded_shndx = folded.second;
2790 os = folded_obj->output_section(folded_shndx);
2791 gold_assert(os != NULL);
2793 // Replace (relobj, shndx) with canonical ICF input section.
2794 shndx = folded_shndx;
2795 relobj = folded_obj;
2798 uint64_t secoff64 = relobj->output_section_offset(shndx);
2801 bool static_or_reloc = (parameters->doing_static_link() ||
2802 parameters->options().relocatable());
2803 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2805 *pstatus = CFVS_NO_OUTPUT_SECTION;
2809 if (secoff64 == -1ULL)
2811 // The section needs special handling (e.g., a merge section).
2813 value = os->output_address(relobj, shndx, sym->value());
2818 convert_types<Value_type, uint64_t>(secoff64);
2819 if (sym->type() == elfcpp::STT_TLS)
2820 value = sym->value() + os->tls_offset() + secoff;
2822 value = sym->value() + os->address() + secoff;
2828 case Symbol::IN_OUTPUT_DATA:
2830 Output_data* od = sym->output_data();
2831 value = sym->value();
2832 if (sym->type() != elfcpp::STT_TLS)
2833 value += od->address();
2836 Output_section* os = od->output_section();
2837 gold_assert(os != NULL);
2838 value += os->tls_offset() + (od->address() - os->address());
2840 if (sym->offset_is_from_end())
2841 value += od->data_size();
2845 case Symbol::IN_OUTPUT_SEGMENT:
2847 Output_segment* os = sym->output_segment();
2848 value = sym->value();
2849 if (sym->type() != elfcpp::STT_TLS)
2850 value += os->vaddr();
2851 switch (sym->offset_base())
2853 case Symbol::SEGMENT_START:
2855 case Symbol::SEGMENT_END:
2856 value += os->memsz();
2858 case Symbol::SEGMENT_BSS:
2859 value += os->filesz();
2867 case Symbol::IS_CONSTANT:
2868 value = sym->value();
2871 case Symbol::IS_UNDEFINED:
2883 // Finalize the symbol SYM. This returns true if the symbol should be
2884 // added to the symbol table, false otherwise.
2888 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2890 typedef typename Sized_symbol<size>::Value_type Value_type;
2892 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2894 // The default version of a symbol may appear twice in the symbol
2895 // table. We only need to finalize it once.
2896 if (sym->has_symtab_index())
2901 gold_assert(!sym->has_symtab_index());
2902 sym->set_symtab_index(-1U);
2903 gold_assert(sym->dynsym_index() == -1U);
2907 // If the symbol is only present on plugin files, the plugin decided we
2909 if (!sym->in_real_elf())
2911 gold_assert(!sym->has_symtab_index());
2912 sym->set_symtab_index(-1U);
2916 // Compute final symbol value.
2917 Compute_final_value_status status;
2918 Value_type value = this->compute_final_value(sym, &status);
2924 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2927 unsigned int shndx = sym->shndx(&is_ordinary);
2928 gold_error(_("%s: unsupported symbol section 0x%x"),
2929 sym->demangled_name().c_str(), shndx);
2932 case CFVS_NO_OUTPUT_SECTION:
2933 sym->set_symtab_index(-1U);
2939 sym->set_value(value);
2941 if (parameters->options().strip_all()
2942 || !parameters->options().should_retain_symbol(sym->name()))
2944 sym->set_symtab_index(-1U);
2951 // Write out the global symbols.
2954 Symbol_table::write_globals(const Stringpool* sympool,
2955 const Stringpool* dynpool,
2956 Output_symtab_xindex* symtab_xindex,
2957 Output_symtab_xindex* dynsym_xindex,
2958 Output_file* of) const
2960 switch (parameters->size_and_endianness())
2962 #ifdef HAVE_TARGET_32_LITTLE
2963 case Parameters::TARGET_32_LITTLE:
2964 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2968 #ifdef HAVE_TARGET_32_BIG
2969 case Parameters::TARGET_32_BIG:
2970 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2974 #ifdef HAVE_TARGET_64_LITTLE
2975 case Parameters::TARGET_64_LITTLE:
2976 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2980 #ifdef HAVE_TARGET_64_BIG
2981 case Parameters::TARGET_64_BIG:
2982 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2991 // Write out the global symbols.
2993 template<int size, bool big_endian>
2995 Symbol_table::sized_write_globals(const Stringpool* sympool,
2996 const Stringpool* dynpool,
2997 Output_symtab_xindex* symtab_xindex,
2998 Output_symtab_xindex* dynsym_xindex,
2999 Output_file* of) const
3001 const Target& target = parameters->target();
3003 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3005 const unsigned int output_count = this->output_count_;
3006 const section_size_type oview_size = output_count * sym_size;
3007 const unsigned int first_global_index = this->first_global_index_;
3008 unsigned char* psyms;
3009 if (this->offset_ == 0 || output_count == 0)
3012 psyms = of->get_output_view(this->offset_, oview_size);
3014 const unsigned int dynamic_count = this->dynamic_count_;
3015 const section_size_type dynamic_size = dynamic_count * sym_size;
3016 const unsigned int first_dynamic_global_index =
3017 this->first_dynamic_global_index_;
3018 unsigned char* dynamic_view;
3019 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3020 dynamic_view = NULL;
3022 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3024 for (Symbol_table_type::const_iterator p = this->table_.begin();
3025 p != this->table_.end();
3028 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3030 // Possibly warn about unresolved symbols in shared libraries.
3031 this->warn_about_undefined_dynobj_symbol(sym);
3033 unsigned int sym_index = sym->symtab_index();
3034 unsigned int dynsym_index;
3035 if (dynamic_view == NULL)
3038 dynsym_index = sym->dynsym_index();
3040 if (sym_index == -1U && dynsym_index == -1U)
3042 // This symbol is not included in the output file.
3047 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3048 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3049 elfcpp::STB binding = sym->binding();
3051 // If --weak-unresolved-symbols is set, change binding of unresolved
3052 // global symbols to STB_WEAK.
3053 if (parameters->options().weak_unresolved_symbols()
3054 && binding == elfcpp::STB_GLOBAL
3055 && sym->is_undefined())
3056 binding = elfcpp::STB_WEAK;
3058 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3059 if (binding == elfcpp::STB_GNU_UNIQUE
3060 && !parameters->options().gnu_unique())
3061 binding = elfcpp::STB_GLOBAL;
3063 switch (sym->source())
3065 case Symbol::FROM_OBJECT:
3068 unsigned int in_shndx = sym->shndx(&is_ordinary);
3071 && in_shndx != elfcpp::SHN_ABS
3072 && !Symbol::is_common_shndx(in_shndx))
3074 gold_error(_("%s: unsupported symbol section 0x%x"),
3075 sym->demangled_name().c_str(), in_shndx);
3080 Object* symobj = sym->object();
3081 if (symobj->is_dynamic())
3083 if (sym->needs_dynsym_value())
3084 dynsym_value = target.dynsym_value(sym);
3085 shndx = elfcpp::SHN_UNDEF;
3086 if (sym->is_undef_binding_weak())
3087 binding = elfcpp::STB_WEAK;
3089 binding = elfcpp::STB_GLOBAL;
3091 else if (symobj->pluginobj() != NULL)
3092 shndx = elfcpp::SHN_UNDEF;
3093 else if (in_shndx == elfcpp::SHN_UNDEF
3095 && (in_shndx == elfcpp::SHN_ABS
3096 || Symbol::is_common_shndx(in_shndx))))
3100 Relobj* relobj = static_cast<Relobj*>(symobj);
3101 Output_section* os = relobj->output_section(in_shndx);
3102 if (this->is_section_folded(relobj, in_shndx))
3104 // This global symbol must be written out even though
3106 // Get the os of the section it is folded onto.
3108 this->icf_->get_folded_section(relobj, in_shndx);
3109 gold_assert(folded.first !=NULL);
3110 Relobj* folded_obj =
3111 reinterpret_cast<Relobj*>(folded.first);
3112 os = folded_obj->output_section(folded.second);
3113 gold_assert(os != NULL);
3115 gold_assert(os != NULL);
3116 shndx = os->out_shndx();
3118 if (shndx >= elfcpp::SHN_LORESERVE)
3120 if (sym_index != -1U)
3121 symtab_xindex->add(sym_index, shndx);
3122 if (dynsym_index != -1U)
3123 dynsym_xindex->add(dynsym_index, shndx);
3124 shndx = elfcpp::SHN_XINDEX;
3127 // In object files symbol values are section
3129 if (parameters->options().relocatable())
3130 sym_value -= os->address();
3136 case Symbol::IN_OUTPUT_DATA:
3138 Output_data* od = sym->output_data();
3140 shndx = od->out_shndx();
3141 if (shndx >= elfcpp::SHN_LORESERVE)
3143 if (sym_index != -1U)
3144 symtab_xindex->add(sym_index, shndx);
3145 if (dynsym_index != -1U)
3146 dynsym_xindex->add(dynsym_index, shndx);
3147 shndx = elfcpp::SHN_XINDEX;
3150 // In object files symbol values are section
3152 if (parameters->options().relocatable())
3154 Output_section* os = od->output_section();
3155 gold_assert(os != NULL);
3156 sym_value -= os->address();
3161 case Symbol::IN_OUTPUT_SEGMENT:
3163 Output_segment* oseg = sym->output_segment();
3164 Output_section* osect = oseg->first_section();
3166 shndx = elfcpp::SHN_ABS;
3168 shndx = osect->out_shndx();
3172 case Symbol::IS_CONSTANT:
3173 shndx = elfcpp::SHN_ABS;
3176 case Symbol::IS_UNDEFINED:
3177 shndx = elfcpp::SHN_UNDEF;
3184 if (sym_index != -1U)
3186 sym_index -= first_global_index;
3187 gold_assert(sym_index < output_count);
3188 unsigned char* ps = psyms + (sym_index * sym_size);
3189 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3190 binding, sympool, ps);
3193 if (dynsym_index != -1U)
3195 dynsym_index -= first_dynamic_global_index;
3196 gold_assert(dynsym_index < dynamic_count);
3197 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3198 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3199 binding, dynpool, pd);
3200 // Allow a target to adjust dynamic symbol value.
3201 parameters->target().adjust_dyn_symbol(sym, pd);
3205 // Write the target-specific symbols.
3206 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3207 p != this->target_symbols_.end();
3210 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3212 unsigned int sym_index = sym->symtab_index();
3213 unsigned int dynsym_index;
3214 if (dynamic_view == NULL)
3217 dynsym_index = sym->dynsym_index();
3220 switch (sym->source())
3222 case Symbol::IS_CONSTANT:
3223 shndx = elfcpp::SHN_ABS;
3225 case Symbol::IS_UNDEFINED:
3226 shndx = elfcpp::SHN_UNDEF;
3232 if (sym_index != -1U)
3234 sym_index -= first_global_index;
3235 gold_assert(sym_index < output_count);
3236 unsigned char* ps = psyms + (sym_index * sym_size);
3237 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3238 sym->binding(), sympool,
3242 if (dynsym_index != -1U)
3244 dynsym_index -= first_dynamic_global_index;
3245 gold_assert(dynsym_index < dynamic_count);
3246 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3247 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3248 sym->binding(), dynpool,
3253 of->write_output_view(this->offset_, oview_size, psyms);
3254 if (dynamic_view != NULL)
3255 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3258 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3259 // strtab holding the name.
3261 template<int size, bool big_endian>
3263 Symbol_table::sized_write_symbol(
3264 Sized_symbol<size>* sym,
3265 typename elfcpp::Elf_types<size>::Elf_Addr value,
3267 elfcpp::STB binding,
3268 const Stringpool* pool,
3269 unsigned char* p) const
3271 elfcpp::Sym_write<size, big_endian> osym(p);
3272 if (sym->version() == NULL || !parameters->options().relocatable())
3273 osym.put_st_name(pool->get_offset(sym->name()));
3275 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3276 osym.put_st_value(value);
3277 // Use a symbol size of zero for undefined symbols from shared libraries.
3278 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3279 osym.put_st_size(0);
3281 osym.put_st_size(sym->symsize());
3282 elfcpp::STT type = sym->type();
3283 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3284 // A version script may have overridden the default binding.
3285 if (sym->is_forced_local())
3286 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3288 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3289 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3290 osym.put_st_shndx(shndx);
3293 // Check for unresolved symbols in shared libraries. This is
3294 // controlled by the --allow-shlib-undefined option.
3296 // We only warn about libraries for which we have seen all the
3297 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3298 // which were not seen in this link. If we didn't see a DT_NEEDED
3299 // entry, we aren't going to be able to reliably report whether the
3300 // symbol is undefined.
3302 // We also don't warn about libraries found in a system library
3303 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3304 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3305 // can have undefined references satisfied by ld-linux.so.
3308 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3311 if (sym->source() == Symbol::FROM_OBJECT
3312 && sym->object()->is_dynamic()
3313 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3314 && sym->binding() != elfcpp::STB_WEAK
3315 && !parameters->options().allow_shlib_undefined()
3316 && !parameters->target().is_defined_by_abi(sym)
3317 && !sym->object()->is_in_system_directory())
3319 // A very ugly cast.
3320 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3321 if (!dynobj->has_unknown_needed_entries())
3322 gold_undefined_symbol(sym);
3326 // Write out a section symbol. Return the update offset.
3329 Symbol_table::write_section_symbol(const Output_section* os,
3330 Output_symtab_xindex* symtab_xindex,
3334 switch (parameters->size_and_endianness())
3336 #ifdef HAVE_TARGET_32_LITTLE
3337 case Parameters::TARGET_32_LITTLE:
3338 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3342 #ifdef HAVE_TARGET_32_BIG
3343 case Parameters::TARGET_32_BIG:
3344 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3348 #ifdef HAVE_TARGET_64_LITTLE
3349 case Parameters::TARGET_64_LITTLE:
3350 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3354 #ifdef HAVE_TARGET_64_BIG
3355 case Parameters::TARGET_64_BIG:
3356 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3365 // Write out a section symbol, specialized for size and endianness.
3367 template<int size, bool big_endian>
3369 Symbol_table::sized_write_section_symbol(const Output_section* os,
3370 Output_symtab_xindex* symtab_xindex,
3374 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3376 unsigned char* pov = of->get_output_view(offset, sym_size);
3378 elfcpp::Sym_write<size, big_endian> osym(pov);
3379 osym.put_st_name(0);
3380 if (parameters->options().relocatable())
3381 osym.put_st_value(0);
3383 osym.put_st_value(os->address());
3384 osym.put_st_size(0);
3385 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3386 elfcpp::STT_SECTION));
3387 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3389 unsigned int shndx = os->out_shndx();
3390 if (shndx >= elfcpp::SHN_LORESERVE)
3392 symtab_xindex->add(os->symtab_index(), shndx);
3393 shndx = elfcpp::SHN_XINDEX;
3395 osym.put_st_shndx(shndx);
3397 of->write_output_view(offset, sym_size, pov);
3400 // Print statistical information to stderr. This is used for --stats.
3403 Symbol_table::print_stats() const
3405 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3406 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3407 program_name, this->table_.size(), this->table_.bucket_count());
3409 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3410 program_name, this->table_.size());
3412 this->namepool_.print_stats("symbol table stringpool");
3415 // We check for ODR violations by looking for symbols with the same
3416 // name for which the debugging information reports that they were
3417 // defined in disjoint source locations. When comparing the source
3418 // location, we consider instances with the same base filename to be
3419 // the same. This is because different object files/shared libraries
3420 // can include the same header file using different paths, and
3421 // different optimization settings can make the line number appear to
3422 // be a couple lines off, and we don't want to report an ODR violation
3425 // This struct is used to compare line information, as returned by
3426 // Dwarf_line_info::one_addr2line. It implements a < comparison
3427 // operator used with std::sort.
3429 struct Odr_violation_compare
3432 operator()(const std::string& s1, const std::string& s2) const
3434 // Inputs should be of the form "dirname/filename:linenum" where
3435 // "dirname/" is optional. We want to compare just the filename:linenum.
3437 // Find the last '/' in each string.
3438 std::string::size_type s1begin = s1.rfind('/');
3439 std::string::size_type s2begin = s2.rfind('/');
3440 // If there was no '/' in a string, start at the beginning.
3441 if (s1begin == std::string::npos)
3443 if (s2begin == std::string::npos)
3445 return s1.compare(s1begin, std::string::npos,
3446 s2, s2begin, std::string::npos) < 0;
3450 // Returns all of the lines attached to LOC, not just the one the
3451 // instruction actually came from.
3452 std::vector<std::string>
3453 Symbol_table::linenos_from_loc(const Task* task,
3454 const Symbol_location& loc)
3456 // We need to lock the object in order to read it. This
3457 // means that we have to run in a singleton Task. If we
3458 // want to run this in a general Task for better
3459 // performance, we will need one Task for object, plus
3460 // appropriate locking to ensure that we don't conflict with
3461 // other uses of the object. Also note, one_addr2line is not
3462 // currently thread-safe.
3463 Task_lock_obj<Object> tl(task, loc.object);
3465 std::vector<std::string> result;
3466 Symbol_location code_loc = loc;
3467 parameters->target().function_location(&code_loc);
3468 // 16 is the size of the object-cache that one_addr2line should use.
3469 std::string canonical_result = Dwarf_line_info::one_addr2line(
3470 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3471 if (!canonical_result.empty())
3472 result.push_back(canonical_result);
3476 // OutputIterator that records if it was ever assigned to. This
3477 // allows it to be used with std::set_intersection() to check for
3478 // intersection rather than computing the intersection.
3479 struct Check_intersection
3481 Check_intersection()
3485 bool had_intersection() const
3486 { return this->value_; }
3488 Check_intersection& operator++()
3491 Check_intersection& operator*()
3494 template<typename T>
3495 Check_intersection& operator=(const T&)
3497 this->value_ = true;
3505 // Check candidate_odr_violations_ to find symbols with the same name
3506 // but apparently different definitions (different source-file/line-no
3507 // for each line assigned to the first instruction).
3510 Symbol_table::detect_odr_violations(const Task* task,
3511 const char* output_file_name) const
3513 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3514 it != candidate_odr_violations_.end();
3517 const char* const symbol_name = it->first;
3519 std::string first_object_name;
3520 std::vector<std::string> first_object_linenos;
3522 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3523 locs = it->second.begin();
3524 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3525 locs_end = it->second.end();
3526 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3528 // Save the line numbers from the first definition to
3529 // compare to the other definitions. Ideally, we'd compare
3530 // every definition to every other, but we don't want to
3531 // take O(N^2) time to do this. This shortcut may cause
3532 // false negatives that appear or disappear depending on the
3533 // link order, but it won't cause false positives.
3534 first_object_name = locs->object->name();
3535 first_object_linenos = this->linenos_from_loc(task, *locs);
3537 if (first_object_linenos.empty())
3540 // Sort by Odr_violation_compare to make std::set_intersection work.
3541 std::string first_object_canonical_result = first_object_linenos.back();
3542 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3543 Odr_violation_compare());
3545 for (; locs != locs_end; ++locs)
3547 std::vector<std::string> linenos =
3548 this->linenos_from_loc(task, *locs);
3549 // linenos will be empty if we couldn't parse the debug info.
3550 if (linenos.empty())
3552 // Sort by Odr_violation_compare to make std::set_intersection work.
3553 gold_assert(!linenos.empty());
3554 std::string second_object_canonical_result = linenos.back();
3555 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3557 Check_intersection intersection_result =
3558 std::set_intersection(first_object_linenos.begin(),
3559 first_object_linenos.end(),
3562 Check_intersection(),
3563 Odr_violation_compare());
3564 if (!intersection_result.had_intersection())
3566 gold_warning(_("while linking %s: symbol '%s' defined in "
3567 "multiple places (possible ODR violation):"),
3568 output_file_name, demangle(symbol_name).c_str());
3569 // This only prints one location from each definition,
3570 // which may not be the location we expect to intersect
3571 // with another definition. We could print the whole
3572 // set of locations, but that seems too verbose.
3573 fprintf(stderr, _(" %s from %s\n"),
3574 first_object_canonical_result.c_str(),
3575 first_object_name.c_str());
3576 fprintf(stderr, _(" %s from %s\n"),
3577 second_object_canonical_result.c_str(),
3578 locs->object->name().c_str());
3579 // Only print one broken pair, to avoid needing to
3580 // compare against a list of the disjoint definition
3581 // locations we've found so far. (If we kept comparing
3582 // against just the first one, we'd get a lot of
3583 // redundant complaints about the second definition
3589 // We only call one_addr2line() in this function, so we can clear its cache.
3590 Dwarf_line_info::clear_addr2line_cache();
3593 // Warnings functions.
3595 // Add a new warning.
3598 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3599 const std::string& warning)
3601 name = symtab->canonicalize_name(name);
3602 this->warnings_[name].set(obj, warning);
3605 // Look through the warnings and mark the symbols for which we should
3606 // warn. This is called during Layout::finalize when we know the
3607 // sources for all the symbols.
3610 Warnings::note_warnings(Symbol_table* symtab)
3612 for (Warning_table::iterator p = this->warnings_.begin();
3613 p != this->warnings_.end();
3616 Symbol* sym = symtab->lookup(p->first, NULL);
3618 && sym->source() == Symbol::FROM_OBJECT
3619 && sym->object() == p->second.object)
3620 sym->set_has_warning();
3624 // Issue a warning. This is called when we see a relocation against a
3625 // symbol for which has a warning.
3627 template<int size, bool big_endian>
3629 Warnings::issue_warning(const Symbol* sym,
3630 const Relocate_info<size, big_endian>* relinfo,
3631 size_t relnum, off_t reloffset) const
3633 gold_assert(sym->has_warning());
3635 // We don't want to issue a warning for a relocation against the
3636 // symbol in the same object file in which the symbol is defined.
3637 if (sym->object() == relinfo->object)
3640 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3641 gold_assert(p != this->warnings_.end());
3642 gold_warning_at_location(relinfo, relnum, reloffset,
3643 "%s", p->second.text.c_str());
3646 // Instantiate the templates we need. We could use the configure
3647 // script to restrict this to only the ones needed for implemented
3650 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3653 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3656 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3659 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3662 #ifdef HAVE_TARGET_32_LITTLE
3665 Symbol_table::add_from_relobj<32, false>(
3666 Sized_relobj_file<32, false>* relobj,
3667 const unsigned char* syms,
3669 size_t symndx_offset,
3670 const char* sym_names,
3671 size_t sym_name_size,
3672 Sized_relobj_file<32, false>::Symbols* sympointers,
3676 #ifdef HAVE_TARGET_32_BIG
3679 Symbol_table::add_from_relobj<32, true>(
3680 Sized_relobj_file<32, true>* relobj,
3681 const unsigned char* syms,
3683 size_t symndx_offset,
3684 const char* sym_names,
3685 size_t sym_name_size,
3686 Sized_relobj_file<32, true>::Symbols* sympointers,
3690 #ifdef HAVE_TARGET_64_LITTLE
3693 Symbol_table::add_from_relobj<64, false>(
3694 Sized_relobj_file<64, false>* relobj,
3695 const unsigned char* syms,
3697 size_t symndx_offset,
3698 const char* sym_names,
3699 size_t sym_name_size,
3700 Sized_relobj_file<64, false>::Symbols* sympointers,
3704 #ifdef HAVE_TARGET_64_BIG
3707 Symbol_table::add_from_relobj<64, true>(
3708 Sized_relobj_file<64, true>* relobj,
3709 const unsigned char* syms,
3711 size_t symndx_offset,
3712 const char* sym_names,
3713 size_t sym_name_size,
3714 Sized_relobj_file<64, true>::Symbols* sympointers,
3718 #ifdef HAVE_TARGET_32_LITTLE
3721 Symbol_table::add_from_pluginobj<32, false>(
3722 Sized_pluginobj<32, false>* obj,
3725 elfcpp::Sym<32, false>* sym);
3728 #ifdef HAVE_TARGET_32_BIG
3731 Symbol_table::add_from_pluginobj<32, true>(
3732 Sized_pluginobj<32, true>* obj,
3735 elfcpp::Sym<32, true>* sym);
3738 #ifdef HAVE_TARGET_64_LITTLE
3741 Symbol_table::add_from_pluginobj<64, false>(
3742 Sized_pluginobj<64, false>* obj,
3745 elfcpp::Sym<64, false>* sym);
3748 #ifdef HAVE_TARGET_64_BIG
3751 Symbol_table::add_from_pluginobj<64, true>(
3752 Sized_pluginobj<64, true>* obj,
3755 elfcpp::Sym<64, true>* sym);
3758 #ifdef HAVE_TARGET_32_LITTLE
3761 Symbol_table::add_from_dynobj<32, false>(
3762 Sized_dynobj<32, false>* dynobj,
3763 const unsigned char* syms,
3765 const char* sym_names,
3766 size_t sym_name_size,
3767 const unsigned char* versym,
3769 const std::vector<const char*>* version_map,
3770 Sized_relobj_file<32, false>::Symbols* sympointers,
3774 #ifdef HAVE_TARGET_32_BIG
3777 Symbol_table::add_from_dynobj<32, true>(
3778 Sized_dynobj<32, true>* dynobj,
3779 const unsigned char* syms,
3781 const char* sym_names,
3782 size_t sym_name_size,
3783 const unsigned char* versym,
3785 const std::vector<const char*>* version_map,
3786 Sized_relobj_file<32, true>::Symbols* sympointers,
3790 #ifdef HAVE_TARGET_64_LITTLE
3793 Symbol_table::add_from_dynobj<64, false>(
3794 Sized_dynobj<64, false>* dynobj,
3795 const unsigned char* syms,
3797 const char* sym_names,
3798 size_t sym_name_size,
3799 const unsigned char* versym,
3801 const std::vector<const char*>* version_map,
3802 Sized_relobj_file<64, false>::Symbols* sympointers,
3806 #ifdef HAVE_TARGET_64_BIG
3809 Symbol_table::add_from_dynobj<64, true>(
3810 Sized_dynobj<64, true>* dynobj,
3811 const unsigned char* syms,
3813 const char* sym_names,
3814 size_t sym_name_size,
3815 const unsigned char* versym,
3817 const std::vector<const char*>* version_map,
3818 Sized_relobj_file<64, true>::Symbols* sympointers,
3822 #ifdef HAVE_TARGET_32_LITTLE
3825 Symbol_table::add_from_incrobj(
3829 elfcpp::Sym<32, false>* sym);
3832 #ifdef HAVE_TARGET_32_BIG
3835 Symbol_table::add_from_incrobj(
3839 elfcpp::Sym<32, true>* sym);
3842 #ifdef HAVE_TARGET_64_LITTLE
3845 Symbol_table::add_from_incrobj(
3849 elfcpp::Sym<64, false>* sym);
3852 #ifdef HAVE_TARGET_64_BIG
3855 Symbol_table::add_from_incrobj(
3859 elfcpp::Sym<64, true>* sym);
3862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3865 Symbol_table::define_with_copy_reloc<32>(
3866 Sized_symbol<32>* sym,
3868 elfcpp::Elf_types<32>::Elf_Addr value);
3871 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3874 Symbol_table::define_with_copy_reloc<64>(
3875 Sized_symbol<64>* sym,
3877 elfcpp::Elf_types<64>::Elf_Addr value);
3880 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3883 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3884 Output_data* od, Value_type value,
3885 Size_type symsize, elfcpp::STT type,
3886 elfcpp::STB binding,
3887 elfcpp::STV visibility,
3888 unsigned char nonvis,
3889 bool offset_is_from_end,
3890 bool is_predefined);
3894 Sized_symbol<32>::init_constant(const char* name, const char* version,
3895 Value_type value, Size_type symsize,
3896 elfcpp::STT type, elfcpp::STB binding,
3897 elfcpp::STV visibility, unsigned char nonvis,
3898 bool is_predefined);
3902 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3903 Value_type value, elfcpp::STT type,
3904 elfcpp::STB binding, elfcpp::STV visibility,
3905 unsigned char nonvis);
3908 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3911 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3912 Output_data* od, Value_type value,
3913 Size_type symsize, elfcpp::STT type,
3914 elfcpp::STB binding,
3915 elfcpp::STV visibility,
3916 unsigned char nonvis,
3917 bool offset_is_from_end,
3918 bool is_predefined);
3922 Sized_symbol<64>::init_constant(const char* name, const char* version,
3923 Value_type value, Size_type symsize,
3924 elfcpp::STT type, elfcpp::STB binding,
3925 elfcpp::STV visibility, unsigned char nonvis,
3926 bool is_predefined);
3930 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3931 Value_type value, elfcpp::STT type,
3932 elfcpp::STB binding, elfcpp::STV visibility,
3933 unsigned char nonvis);
3936 #ifdef HAVE_TARGET_32_LITTLE
3939 Warnings::issue_warning<32, false>(const Symbol* sym,
3940 const Relocate_info<32, false>* relinfo,
3941 size_t relnum, off_t reloffset) const;
3944 #ifdef HAVE_TARGET_32_BIG
3947 Warnings::issue_warning<32, true>(const Symbol* sym,
3948 const Relocate_info<32, true>* relinfo,
3949 size_t relnum, off_t reloffset) const;
3952 #ifdef HAVE_TARGET_64_LITTLE
3955 Warnings::issue_warning<64, false>(const Symbol* sym,
3956 const Relocate_info<64, false>* relinfo,
3957 size_t relnum, off_t reloffset) const;
3960 #ifdef HAVE_TARGET_64_BIG
3963 Warnings::issue_warning<64, true>(const Symbol* sym,
3964 const Relocate_info<64, true>* relinfo,
3965 size_t relnum, off_t reloffset) const;
3968 } // End namespace gold.