* merge.cc (Output_merge_string::do_add_input_section): Correct
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533                            const Version_script_info& version_script)
534   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535     forwarders_(), commons_(), tls_commons_(), small_commons_(),
536     large_commons_(), forced_locals_(), warnings_(),
537     version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539   namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function.  This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551                                           const Symbol_table_key& k2) const
552 {
553   return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559   return (parameters->options().icf_enabled()
560           && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void 
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569   for (options::String_set::const_iterator p =
570          parameters->options().undefined_begin();
571        p != parameters->options().undefined_end();
572        ++p)
573     {
574       const char* name = p->c_str();
575       Symbol* sym = this->lookup(name);
576       gold_assert(sym != NULL);
577       if (sym->source() == Symbol::FROM_OBJECT 
578           && !sym->object()->is_dynamic())
579         {
580           this->gc_mark_symbol(sym);
581         }
582     }
583
584   for (options::String_set::const_iterator p =
585          parameters->options().export_dynamic_symbol_begin();
586        p != parameters->options().export_dynamic_symbol_end();
587        ++p)
588     {
589       const char* name = p->c_str();
590       Symbol* sym = this->lookup(name);
591       // It's not an error if a symbol named by --export-dynamic-symbol
592       // is undefined.
593       if (sym != NULL
594           && sym->source() == Symbol::FROM_OBJECT 
595           && !sym->object()->is_dynamic())
596         {
597           this->gc_mark_symbol(sym);
598         }
599     }
600
601   for (Script_options::referenced_const_iterator p =
602          layout->script_options()->referenced_begin();
603        p != layout->script_options()->referenced_end();
604        ++p)
605     {
606       Symbol* sym = this->lookup(p->c_str());
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614 }
615
616 void
617 Symbol_table::gc_mark_symbol(Symbol* sym)
618 {
619   // Add the object and section to the work list.
620   bool is_ordinary;
621   unsigned int shndx = sym->shndx(&is_ordinary);
622   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
623     {
624       gold_assert(this->gc_!= NULL);
625       this->gc_->worklist().push(Section_id(sym->object(), shndx));
626     }
627   parameters->target().gc_mark_symbol(this, sym);
628 }
629
630 // When doing garbage collection, keep symbols that have been seen in
631 // dynamic objects.
632 inline void 
633 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
634 {
635   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
636       && !sym->object()->is_dynamic())
637     this->gc_mark_symbol(sym);
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645   gold_assert(from != to);
646   gold_assert(!from->is_forwarder() && !to->is_forwarder());
647   this->forwarders_[from] = to;
648   from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656   gold_assert(from->is_forwarder());
657   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658     this->forwarders_.find(from);
659   gold_assert(p != this->forwarders_.end());
660   return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668   Stringpool::Key name_key;
669   name = this->namepool_.find(name, &name_key);
670   if (name == NULL)
671     return NULL;
672
673   Stringpool::Key version_key = 0;
674   if (version != NULL)
675     {
676       version = this->namepool_.find(version, &version_key);
677       if (version == NULL)
678         return NULL;
679     }
680
681   Symbol_table_key key(name_key, version_key);
682   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683   if (p == this->table_.end())
684     return NULL;
685   return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol.  This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version.  Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699   elfcpp::Sym_write<size, big_endian> esym(buf);
700   // We don't bother to set the st_name or the st_shndx field.
701   esym.put_st_value(from->value());
702   esym.put_st_size(from->symsize());
703   esym.put_st_info(from->binding(), from->type());
704   esym.put_st_other(from->visibility(), from->nonvis());
705   bool is_ordinary;
706   unsigned int shndx = from->shndx(&is_ordinary);
707   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708                 from->version());
709   if (from->in_reg())
710     to->set_in_reg();
711   if (from->in_dyn())
712     to->set_in_dyn();
713   if (parameters->options().gc_sections())
714     this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723   if (!sym->is_defined() && !sym->is_common())
724     return;
725   if (sym->is_forced_local())
726     {
727       // We already got this one.
728       return;
729     }
730   sym->set_is_forced_local();
731   this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741   // For some targets, we need to ignore a specific character when
742   // wrapping, and add it back later.
743   char prefix = '\0';
744   if (name[0] == parameters->target().wrap_char())
745     {
746       prefix = name[0];
747       ++name;
748     }
749
750   if (parameters->options().is_wrap(name))
751     {
752       // Turn NAME into __wrap_NAME.
753       std::string s;
754       if (prefix != '\0')
755         s += prefix;
756       s += "__wrap_";
757       s += name;
758
759       // This will give us both the old and new name in NAMEPOOL_, but
760       // that is OK.  Only the versions we need will wind up in the
761       // real string table in the output file.
762       return this->namepool_.add(s.c_str(), true, name_key);
763     }
764
765   const char* const real_prefix = "__real_";
766   const size_t real_prefix_length = strlen(real_prefix);
767   if (strncmp(name, real_prefix, real_prefix_length) == 0
768       && parameters->options().is_wrap(name + real_prefix_length))
769     {
770       // Turn __real_NAME into NAME.
771       std::string s;
772       if (prefix != '\0')
773         s += prefix;
774       s += name + real_prefix_length;
775       return this->namepool_.add(s.c_str(), true, name_key);
776     }
777
778   return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version.  SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790                                      bool default_is_new,
791                                      Symbol_table_type::iterator pdef)
792 {
793   if (default_is_new)
794     {
795       // This is the first time we have seen NAME/NULL.  Make
796       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797       // version.
798       pdef->second = sym;
799       sym->set_is_default();
800     }
801   else if (pdef->second == sym)
802     {
803       // NAME/NULL already points to NAME/VERSION.  Don't mark the
804       // symbol as the default if it is not already the default.
805     }
806   else
807     {
808       // This is the unfortunate case where we already have entries
809       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
810       // NAME/VERSION where VERSION is the default version.  We have
811       // already resolved this new symbol with the existing
812       // NAME/VERSION symbol.
813
814       // It's possible that NAME/NULL and NAME/VERSION are both
815       // defined in regular objects.  This can only happen if one
816       // object file defines foo and another defines foo@@ver.  This
817       // is somewhat obscure, but we call it a multiple definition
818       // error.
819
820       // It's possible that NAME/NULL actually has a version, in which
821       // case it won't be the same as VERSION.  This happens with
822       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
823       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
824       // then see an unadorned t2_2 in an object file and give it
825       // version VER1 from the version script.  This looks like a
826       // default definition for VER1, so it looks like we should merge
827       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
828       // not obvious that this is an error, either.  So we just punt.
829
830       // If one of the symbols has non-default visibility, and the
831       // other is defined in a shared object, then they are different
832       // symbols.
833
834       // Otherwise, we just resolve the symbols as though they were
835       // the same.
836
837       if (pdef->second->version() != NULL)
838         gold_assert(pdef->second->version() != sym->version());
839       else if (sym->visibility() != elfcpp::STV_DEFAULT
840                && pdef->second->is_from_dynobj())
841         ;
842       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843                && sym->is_from_dynobj())
844         ;
845       else
846         {
847           const Sized_symbol<size>* symdef;
848           symdef = this->get_sized_symbol<size>(pdef->second);
849           Symbol_table::resolve<size, big_endian>(sym, symdef);
850           this->make_forwarder(pdef->second, sym);
851           pdef->second = sym;
852           sym->set_is_default();
853         }
854     }
855 }
856
857 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
858 // name and VERSION is the version; both are canonicalized.  DEF is
859 // whether this is the default version.  ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol.  That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol.  This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION.  If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure.  That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table.  We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files.  So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code.  ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890                               const char* name,
891                               Stringpool::Key name_key,
892                               const char* version,
893                               Stringpool::Key version_key,
894                               bool is_default_version,
895                               const elfcpp::Sym<size, big_endian>& sym,
896                               unsigned int st_shndx,
897                               bool is_ordinary,
898                               unsigned int orig_st_shndx)
899 {
900   // Print a message if this symbol is being traced.
901   if (parameters->options().is_trace_symbol(name))
902     {
903       if (orig_st_shndx == elfcpp::SHN_UNDEF)
904         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905       else
906         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907     }
908
909   // For an undefined symbol, we may need to adjust the name using
910   // --wrap.
911   if (orig_st_shndx == elfcpp::SHN_UNDEF
912       && parameters->options().any_wrap())
913     {
914       const char* wrap_name = this->wrap_symbol(name, &name_key);
915       if (wrap_name != name)
916         {
917           // If we see a reference to malloc with version GLIBC_2.0,
918           // and we turn it into a reference to __wrap_malloc, then we
919           // discard the version number.  Otherwise the user would be
920           // required to specify the correct version for
921           // __wrap_malloc.
922           version = NULL;
923           version_key = 0;
924           name = wrap_name;
925         }
926     }
927
928   Symbol* const snull = NULL;
929   std::pair<typename Symbol_table_type::iterator, bool> ins =
930     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931                                        snull));
932
933   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934     std::make_pair(this->table_.end(), false);
935   if (is_default_version)
936     {
937       const Stringpool::Key vnull_key = 0;
938       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939                                                                      vnull_key),
940                                                       snull));
941     }
942
943   // ins.first: an iterator, which is a pointer to a pair.
944   // ins.first->first: the key (a pair of name and version).
945   // ins.first->second: the value (Symbol*).
946   // ins.second: true if new entry was inserted, false if not.
947
948   Sized_symbol<size>* ret;
949   bool was_undefined;
950   bool was_common;
951   if (!ins.second)
952     {
953       // We already have an entry for NAME/VERSION.
954       ret = this->get_sized_symbol<size>(ins.first->second);
955       gold_assert(ret != NULL);
956
957       was_undefined = ret->is_undefined();
958       was_common = ret->is_common();
959
960       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961                     version);
962       if (parameters->options().gc_sections())
963         this->gc_mark_dyn_syms(ret);
964
965       if (is_default_version)
966         this->define_default_version<size, big_endian>(ret, insdefault.second,
967                                                        insdefault.first);
968     }
969   else
970     {
971       // This is the first time we have seen NAME/VERSION.
972       gold_assert(ins.first->second == NULL);
973
974       if (is_default_version && !insdefault.second)
975         {
976           // We already have an entry for NAME/NULL.  If we override
977           // it, then change it to NAME/VERSION.
978           ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980           was_undefined = ret->is_undefined();
981           was_common = ret->is_common();
982
983           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984                         version);
985           if (parameters->options().gc_sections())
986             this->gc_mark_dyn_syms(ret);
987           ins.first->second = ret;
988         }
989       else
990         {
991           was_undefined = false;
992           was_common = false;
993
994           Sized_target<size, big_endian>* target =
995             parameters->sized_target<size, big_endian>();
996           if (!target->has_make_symbol())
997             ret = new Sized_symbol<size>();
998           else
999             {
1000               ret = target->make_symbol();
1001               if (ret == NULL)
1002                 {
1003                   // This means that we don't want a symbol table
1004                   // entry after all.
1005                   if (!is_default_version)
1006                     this->table_.erase(ins.first);
1007                   else
1008                     {
1009                       this->table_.erase(insdefault.first);
1010                       // Inserting INSDEFAULT invalidated INS.
1011                       this->table_.erase(std::make_pair(name_key,
1012                                                         version_key));
1013                     }
1014                   return NULL;
1015                 }
1016             }
1017
1018           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020           ins.first->second = ret;
1021           if (is_default_version)
1022             {
1023               // This is the first time we have seen NAME/NULL.  Point
1024               // it at the new entry for NAME/VERSION.
1025               gold_assert(insdefault.second);
1026               insdefault.first->second = ret;
1027             }
1028         }
1029
1030       if (is_default_version)
1031         ret->set_is_default();
1032     }
1033
1034   // Record every time we see a new undefined symbol, to speed up
1035   // archive groups.
1036   if (!was_undefined && ret->is_undefined())
1037     {
1038       ++this->saw_undefined_;
1039       if (parameters->options().has_plugins())
1040         parameters->options().plugins()->new_undefined_symbol(ret);
1041     }
1042
1043   // Keep track of common symbols, to speed up common symbol
1044   // allocation.
1045   if (!was_common && ret->is_common())
1046     {
1047       if (ret->type() == elfcpp::STT_TLS)
1048         this->tls_commons_.push_back(ret);
1049       else if (!is_ordinary
1050                && st_shndx == parameters->target().small_common_shndx())
1051         this->small_commons_.push_back(ret);
1052       else if (!is_ordinary
1053                && st_shndx == parameters->target().large_common_shndx())
1054         this->large_commons_.push_back(ret);
1055       else
1056         this->commons_.push_back(ret);
1057     }
1058
1059   // If we're not doing a relocatable link, then any symbol with
1060   // hidden or internal visibility is local.
1061   if ((ret->visibility() == elfcpp::STV_HIDDEN
1062        || ret->visibility() == elfcpp::STV_INTERNAL)
1063       && (ret->binding() == elfcpp::STB_GLOBAL
1064           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065           || ret->binding() == elfcpp::STB_WEAK)
1066       && !parameters->options().relocatable())
1067     this->force_local(ret);
1068
1069   return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077     Sized_relobj_file<size, big_endian>* relobj,
1078     const unsigned char* syms,
1079     size_t count,
1080     size_t symndx_offset,
1081     const char* sym_names,
1082     size_t sym_name_size,
1083     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084     size_t* defined)
1085 {
1086   *defined = 0;
1087
1088   gold_assert(size == parameters->target().get_size());
1089
1090   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092   const bool just_symbols = relobj->just_symbols();
1093
1094   const unsigned char* p = syms;
1095   for (size_t i = 0; i < count; ++i, p += sym_size)
1096     {
1097       (*sympointers)[i] = NULL;
1098
1099       elfcpp::Sym<size, big_endian> sym(p);
1100
1101       unsigned int st_name = sym.get_st_name();
1102       if (st_name >= sym_name_size)
1103         {
1104           relobj->error(_("bad global symbol name offset %u at %zu"),
1105                         st_name, i);
1106           continue;
1107         }
1108
1109       const char* name = sym_names + st_name;
1110
1111       bool is_ordinary;
1112       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113                                                        sym.get_st_shndx(),
1114                                                        &is_ordinary);
1115       unsigned int orig_st_shndx = st_shndx;
1116       if (!is_ordinary)
1117         orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119       if (st_shndx != elfcpp::SHN_UNDEF)
1120         ++*defined;
1121
1122       // A symbol defined in a section which we are not including must
1123       // be treated as an undefined symbol.
1124       bool is_defined_in_discarded_section = false;
1125       if (st_shndx != elfcpp::SHN_UNDEF
1126           && is_ordinary
1127           && !relobj->is_section_included(st_shndx)
1128           && !this->is_section_folded(relobj, st_shndx))
1129         {
1130           st_shndx = elfcpp::SHN_UNDEF;
1131           is_defined_in_discarded_section = true;
1132         }
1133
1134       // In an object file, an '@' in the name separates the symbol
1135       // name from the version name.  If there are two '@' characters,
1136       // this is the default version.
1137       const char* ver = strchr(name, '@');
1138       Stringpool::Key ver_key = 0;
1139       int namelen = 0;
1140       // IS_DEFAULT_VERSION: is the version default?
1141       // IS_FORCED_LOCAL: is the symbol forced local?
1142       bool is_default_version = false;
1143       bool is_forced_local = false;
1144
1145       // FIXME: For incremental links, we don't store version information,
1146       // so we need to ignore version symbols for now.
1147       if (parameters->incremental_update() && ver != NULL)
1148         {
1149           namelen = ver - name;
1150           ver = NULL;
1151         }
1152
1153       if (ver != NULL)
1154         {
1155           // The symbol name is of the form foo@VERSION or foo@@VERSION
1156           namelen = ver - name;
1157           ++ver;
1158           if (*ver == '@')
1159             {
1160               is_default_version = true;
1161               ++ver;
1162             }
1163           ver = this->namepool_.add(ver, true, &ver_key);
1164         }
1165       // We don't want to assign a version to an undefined symbol,
1166       // even if it is listed in the version script.  FIXME: What
1167       // about a common symbol?
1168       else
1169         {
1170           namelen = strlen(name);
1171           if (!this->version_script_.empty()
1172               && st_shndx != elfcpp::SHN_UNDEF)
1173             {
1174               // The symbol name did not have a version, but the
1175               // version script may assign a version anyway.
1176               std::string version;
1177               bool is_global;
1178               if (this->version_script_.get_symbol_version(name, &version,
1179                                                            &is_global))
1180                 {
1181                   if (!is_global)
1182                     is_forced_local = true;
1183                   else if (!version.empty())
1184                     {
1185                       ver = this->namepool_.add_with_length(version.c_str(),
1186                                                             version.length(),
1187                                                             true,
1188                                                             &ver_key);
1189                       is_default_version = true;
1190                     }
1191                 }
1192             }
1193         }
1194
1195       elfcpp::Sym<size, big_endian>* psym = &sym;
1196       unsigned char symbuf[sym_size];
1197       elfcpp::Sym<size, big_endian> sym2(symbuf);
1198       if (just_symbols)
1199         {
1200           memcpy(symbuf, p, sym_size);
1201           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1202           if (orig_st_shndx != elfcpp::SHN_UNDEF
1203               && is_ordinary
1204               && relobj->e_type() == elfcpp::ET_REL)
1205             {
1206               // Symbol values in relocatable object files are section
1207               // relative.  This is normally what we want, but since here
1208               // we are converting the symbol to absolute we need to add
1209               // the section address.  The section address in an object
1210               // file is normally zero, but people can use a linker
1211               // script to change it.
1212               sw.put_st_value(sym.get_st_value()
1213                               + relobj->section_address(orig_st_shndx));
1214             }
1215           st_shndx = elfcpp::SHN_ABS;
1216           is_ordinary = false;
1217           psym = &sym2;
1218         }
1219
1220       // Fix up visibility if object has no-export set.
1221       if (relobj->no_export()
1222           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1223         {
1224           // We may have copied symbol already above.
1225           if (psym != &sym2)
1226             {
1227               memcpy(symbuf, p, sym_size);
1228               psym = &sym2;
1229             }
1230
1231           elfcpp::STV visibility = sym2.get_st_visibility();
1232           if (visibility == elfcpp::STV_DEFAULT
1233               || visibility == elfcpp::STV_PROTECTED)
1234             {
1235               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1236               unsigned char nonvis = sym2.get_st_nonvis();
1237               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1238             }
1239         }
1240
1241       Stringpool::Key name_key;
1242       name = this->namepool_.add_with_length(name, namelen, true,
1243                                              &name_key);
1244
1245       Sized_symbol<size>* res;
1246       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1247                                   is_default_version, *psym, st_shndx,
1248                                   is_ordinary, orig_st_shndx);
1249       
1250       if (is_forced_local)
1251         this->force_local(res);
1252
1253       // Do not treat this symbol as garbage if this symbol will be
1254       // exported to the dynamic symbol table.  This is true when
1255       // building a shared library or using --export-dynamic and
1256       // the symbol is externally visible.
1257       if (parameters->options().gc_sections()
1258           && res->is_externally_visible()
1259           && !res->is_from_dynobj()
1260           && (parameters->options().shared()
1261               || parameters->options().export_dynamic()))
1262         this->gc_mark_symbol(res);
1263
1264       if (is_defined_in_discarded_section)
1265         res->set_is_defined_in_discarded_section();
1266
1267       (*sympointers)[i] = res;
1268     }
1269 }
1270
1271 // Add a symbol from a plugin-claimed file.
1272
1273 template<int size, bool big_endian>
1274 Symbol*
1275 Symbol_table::add_from_pluginobj(
1276     Sized_pluginobj<size, big_endian>* obj,
1277     const char* name,
1278     const char* ver,
1279     elfcpp::Sym<size, big_endian>* sym)
1280 {
1281   unsigned int st_shndx = sym->get_st_shndx();
1282   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1283
1284   Stringpool::Key ver_key = 0;
1285   bool is_default_version = false;
1286   bool is_forced_local = false;
1287
1288   if (ver != NULL)
1289     {
1290       ver = this->namepool_.add(ver, true, &ver_key);
1291     }
1292   // We don't want to assign a version to an undefined symbol,
1293   // even if it is listed in the version script.  FIXME: What
1294   // about a common symbol?
1295   else
1296     {
1297       if (!this->version_script_.empty()
1298           && st_shndx != elfcpp::SHN_UNDEF)
1299         {
1300           // The symbol name did not have a version, but the
1301           // version script may assign a version anyway.
1302           std::string version;
1303           bool is_global;
1304           if (this->version_script_.get_symbol_version(name, &version,
1305                                                        &is_global))
1306             {
1307               if (!is_global)
1308                 is_forced_local = true;
1309               else if (!version.empty())
1310                 {
1311                   ver = this->namepool_.add_with_length(version.c_str(),
1312                                                         version.length(),
1313                                                         true,
1314                                                         &ver_key);
1315                   is_default_version = true;
1316                 }
1317             }
1318         }
1319     }
1320
1321   Stringpool::Key name_key;
1322   name = this->namepool_.add(name, true, &name_key);
1323
1324   Sized_symbol<size>* res;
1325   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1326                               is_default_version, *sym, st_shndx,
1327                               is_ordinary, st_shndx);
1328
1329   if (is_forced_local)
1330     this->force_local(res);
1331
1332   return res;
1333 }
1334
1335 // Add all the symbols in a dynamic object to the hash table.
1336
1337 template<int size, bool big_endian>
1338 void
1339 Symbol_table::add_from_dynobj(
1340     Sized_dynobj<size, big_endian>* dynobj,
1341     const unsigned char* syms,
1342     size_t count,
1343     const char* sym_names,
1344     size_t sym_name_size,
1345     const unsigned char* versym,
1346     size_t versym_size,
1347     const std::vector<const char*>* version_map,
1348     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1349     size_t* defined)
1350 {
1351   *defined = 0;
1352
1353   gold_assert(size == parameters->target().get_size());
1354
1355   if (dynobj->just_symbols())
1356     {
1357       gold_error(_("--just-symbols does not make sense with a shared object"));
1358       return;
1359     }
1360
1361   // FIXME: For incremental links, we don't store version information,
1362   // so we need to ignore version symbols for now.
1363   if (parameters->incremental_update())
1364     versym = NULL;
1365
1366   if (versym != NULL && versym_size / 2 < count)
1367     {
1368       dynobj->error(_("too few symbol versions"));
1369       return;
1370     }
1371
1372   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1373
1374   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1375   // weak aliases.  This is necessary because if the dynamic object
1376   // provides the same variable under two names, one of which is a
1377   // weak definition, and the regular object refers to the weak
1378   // definition, we have to put both the weak definition and the
1379   // strong definition into the dynamic symbol table.  Given a weak
1380   // definition, the only way that we can find the corresponding
1381   // strong definition, if any, is to search the symbol table.
1382   std::vector<Sized_symbol<size>*> object_symbols;
1383
1384   const unsigned char* p = syms;
1385   const unsigned char* vs = versym;
1386   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1387     {
1388       elfcpp::Sym<size, big_endian> sym(p);
1389
1390       if (sympointers != NULL)
1391         (*sympointers)[i] = NULL;
1392
1393       // Ignore symbols with local binding or that have
1394       // internal or hidden visibility.
1395       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1396           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1397           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1398         continue;
1399
1400       // A protected symbol in a shared library must be treated as a
1401       // normal symbol when viewed from outside the shared library.
1402       // Implement this by overriding the visibility here.
1403       elfcpp::Sym<size, big_endian>* psym = &sym;
1404       unsigned char symbuf[sym_size];
1405       elfcpp::Sym<size, big_endian> sym2(symbuf);
1406       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1407         {
1408           memcpy(symbuf, p, sym_size);
1409           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1410           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1411           psym = &sym2;
1412         }
1413
1414       unsigned int st_name = psym->get_st_name();
1415       if (st_name >= sym_name_size)
1416         {
1417           dynobj->error(_("bad symbol name offset %u at %zu"),
1418                         st_name, i);
1419           continue;
1420         }
1421
1422       const char* name = sym_names + st_name;
1423
1424       bool is_ordinary;
1425       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1426                                                        &is_ordinary);
1427
1428       if (st_shndx != elfcpp::SHN_UNDEF)
1429         ++*defined;
1430
1431       Sized_symbol<size>* res;
1432
1433       if (versym == NULL)
1434         {
1435           Stringpool::Key name_key;
1436           name = this->namepool_.add(name, true, &name_key);
1437           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1438                                       false, *psym, st_shndx, is_ordinary,
1439                                       st_shndx);
1440         }
1441       else
1442         {
1443           // Read the version information.
1444
1445           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1446
1447           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1448           v &= elfcpp::VERSYM_VERSION;
1449
1450           // The Sun documentation says that V can be VER_NDX_LOCAL,
1451           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1452           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1453           // The old GNU linker will happily generate VER_NDX_LOCAL
1454           // for an undefined symbol.  I don't know what the Sun
1455           // linker will generate.
1456
1457           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1458               && st_shndx != elfcpp::SHN_UNDEF)
1459             {
1460               // This symbol should not be visible outside the object.
1461               continue;
1462             }
1463
1464           // At this point we are definitely going to add this symbol.
1465           Stringpool::Key name_key;
1466           name = this->namepool_.add(name, true, &name_key);
1467
1468           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1469               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1470             {
1471               // This symbol does not have a version.
1472               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1473                                           false, *psym, st_shndx, is_ordinary,
1474                                           st_shndx);
1475             }
1476           else
1477             {
1478               if (v >= version_map->size())
1479                 {
1480                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1481                                 i, v);
1482                   continue;
1483                 }
1484
1485               const char* version = (*version_map)[v];
1486               if (version == NULL)
1487                 {
1488                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1489                                 i, v);
1490                   continue;
1491                 }
1492
1493               Stringpool::Key version_key;
1494               version = this->namepool_.add(version, true, &version_key);
1495
1496               // If this is an absolute symbol, and the version name
1497               // and symbol name are the same, then this is the
1498               // version definition symbol.  These symbols exist to
1499               // support using -u to pull in particular versions.  We
1500               // do not want to record a version for them.
1501               if (st_shndx == elfcpp::SHN_ABS
1502                   && !is_ordinary
1503                   && name_key == version_key)
1504                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1505                                             false, *psym, st_shndx, is_ordinary,
1506                                             st_shndx);
1507               else
1508                 {
1509                   const bool is_default_version =
1510                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1511                   res = this->add_from_object(dynobj, name, name_key, version,
1512                                               version_key, is_default_version,
1513                                               *psym, st_shndx,
1514                                               is_ordinary, st_shndx);
1515                 }
1516             }
1517         }
1518
1519       // Note that it is possible that RES was overridden by an
1520       // earlier object, in which case it can't be aliased here.
1521       if (st_shndx != elfcpp::SHN_UNDEF
1522           && is_ordinary
1523           && psym->get_st_type() == elfcpp::STT_OBJECT
1524           && res->source() == Symbol::FROM_OBJECT
1525           && res->object() == dynobj)
1526         object_symbols.push_back(res);
1527
1528       if (sympointers != NULL)
1529         (*sympointers)[i] = res;
1530     }
1531
1532   this->record_weak_aliases(&object_symbols);
1533 }
1534
1535 // Add a symbol from a incremental object file.
1536
1537 template<int size, bool big_endian>
1538 Sized_symbol<size>*
1539 Symbol_table::add_from_incrobj(
1540     Object* obj,
1541     const char* name,
1542     const char* ver,
1543     elfcpp::Sym<size, big_endian>* sym)
1544 {
1545   unsigned int st_shndx = sym->get_st_shndx();
1546   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1547
1548   Stringpool::Key ver_key = 0;
1549   bool is_default_version = false;
1550   bool is_forced_local = false;
1551
1552   Stringpool::Key name_key;
1553   name = this->namepool_.add(name, true, &name_key);
1554
1555   Sized_symbol<size>* res;
1556   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1557                               is_default_version, *sym, st_shndx,
1558                               is_ordinary, st_shndx);
1559
1560   if (is_forced_local)
1561     this->force_local(res);
1562
1563   return res;
1564 }
1565
1566 // This is used to sort weak aliases.  We sort them first by section
1567 // index, then by offset, then by weak ahead of strong.
1568
1569 template<int size>
1570 class Weak_alias_sorter
1571 {
1572  public:
1573   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1574 };
1575
1576 template<int size>
1577 bool
1578 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1579                                     const Sized_symbol<size>* s2) const
1580 {
1581   bool is_ordinary;
1582   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1583   gold_assert(is_ordinary);
1584   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1585   gold_assert(is_ordinary);
1586   if (s1_shndx != s2_shndx)
1587     return s1_shndx < s2_shndx;
1588
1589   if (s1->value() != s2->value())
1590     return s1->value() < s2->value();
1591   if (s1->binding() != s2->binding())
1592     {
1593       if (s1->binding() == elfcpp::STB_WEAK)
1594         return true;
1595       if (s2->binding() == elfcpp::STB_WEAK)
1596         return false;
1597     }
1598   return std::string(s1->name()) < std::string(s2->name());
1599 }
1600
1601 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1602 // for any weak aliases, and record them so that if we add the weak
1603 // alias to the dynamic symbol table, we also add the corresponding
1604 // strong symbol.
1605
1606 template<int size>
1607 void
1608 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1609 {
1610   // Sort the vector by section index, then by offset, then by weak
1611   // ahead of strong.
1612   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1613
1614   // Walk through the vector.  For each weak definition, record
1615   // aliases.
1616   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1617          symbols->begin();
1618        p != symbols->end();
1619        ++p)
1620     {
1621       if ((*p)->binding() != elfcpp::STB_WEAK)
1622         continue;
1623
1624       // Build a circular list of weak aliases.  Each symbol points to
1625       // the next one in the circular list.
1626
1627       Sized_symbol<size>* from_sym = *p;
1628       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1629       for (q = p + 1; q != symbols->end(); ++q)
1630         {
1631           bool dummy;
1632           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1633               || (*q)->value() != from_sym->value())
1634             break;
1635
1636           this->weak_aliases_[from_sym] = *q;
1637           from_sym->set_has_alias();
1638           from_sym = *q;
1639         }
1640
1641       if (from_sym != *p)
1642         {
1643           this->weak_aliases_[from_sym] = *p;
1644           from_sym->set_has_alias();
1645         }
1646
1647       p = q - 1;
1648     }
1649 }
1650
1651 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1652 // true, then only create the symbol if there is a reference to it.
1653 // If this does not return NULL, it sets *POLDSYM to the existing
1654 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1655 // resolve the newly created symbol to the old one.  This
1656 // canonicalizes *PNAME and *PVERSION.
1657
1658 template<int size, bool big_endian>
1659 Sized_symbol<size>*
1660 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1661                                     bool only_if_ref,
1662                                     Sized_symbol<size>** poldsym,
1663                                     bool* resolve_oldsym)
1664 {
1665   *resolve_oldsym = false;
1666   *poldsym = NULL;
1667
1668   // If the caller didn't give us a version, see if we get one from
1669   // the version script.
1670   std::string v;
1671   bool is_default_version = false;
1672   if (*pversion == NULL)
1673     {
1674       bool is_global;
1675       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1676         {
1677           if (is_global && !v.empty())
1678             {
1679               *pversion = v.c_str();
1680               // If we get the version from a version script, then we
1681               // are also the default version.
1682               is_default_version = true;
1683             }
1684         }
1685     }
1686
1687   Symbol* oldsym;
1688   Sized_symbol<size>* sym;
1689
1690   bool add_to_table = false;
1691   typename Symbol_table_type::iterator add_loc = this->table_.end();
1692   bool add_def_to_table = false;
1693   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1694
1695   if (only_if_ref)
1696     {
1697       oldsym = this->lookup(*pname, *pversion);
1698       if (oldsym == NULL && is_default_version)
1699         oldsym = this->lookup(*pname, NULL);
1700       if (oldsym == NULL || !oldsym->is_undefined())
1701         return NULL;
1702
1703       *pname = oldsym->name();
1704       if (is_default_version)
1705         *pversion = this->namepool_.add(*pversion, true, NULL);
1706       else
1707         *pversion = oldsym->version();
1708     }
1709   else
1710     {
1711       // Canonicalize NAME and VERSION.
1712       Stringpool::Key name_key;
1713       *pname = this->namepool_.add(*pname, true, &name_key);
1714
1715       Stringpool::Key version_key = 0;
1716       if (*pversion != NULL)
1717         *pversion = this->namepool_.add(*pversion, true, &version_key);
1718
1719       Symbol* const snull = NULL;
1720       std::pair<typename Symbol_table_type::iterator, bool> ins =
1721         this->table_.insert(std::make_pair(std::make_pair(name_key,
1722                                                           version_key),
1723                                            snull));
1724
1725       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1726         std::make_pair(this->table_.end(), false);
1727       if (is_default_version)
1728         {
1729           const Stringpool::Key vnull = 0;
1730           insdefault =
1731             this->table_.insert(std::make_pair(std::make_pair(name_key,
1732                                                               vnull),
1733                                                snull));
1734         }
1735
1736       if (!ins.second)
1737         {
1738           // We already have a symbol table entry for NAME/VERSION.
1739           oldsym = ins.first->second;
1740           gold_assert(oldsym != NULL);
1741
1742           if (is_default_version)
1743             {
1744               Sized_symbol<size>* soldsym =
1745                 this->get_sized_symbol<size>(oldsym);
1746               this->define_default_version<size, big_endian>(soldsym,
1747                                                              insdefault.second,
1748                                                              insdefault.first);
1749             }
1750         }
1751       else
1752         {
1753           // We haven't seen this symbol before.
1754           gold_assert(ins.first->second == NULL);
1755
1756           add_to_table = true;
1757           add_loc = ins.first;
1758
1759           if (is_default_version && !insdefault.second)
1760             {
1761               // We are adding NAME/VERSION, and it is the default
1762               // version.  We already have an entry for NAME/NULL.
1763               oldsym = insdefault.first->second;
1764               *resolve_oldsym = true;
1765             }
1766           else
1767             {
1768               oldsym = NULL;
1769
1770               if (is_default_version)
1771                 {
1772                   add_def_to_table = true;
1773                   add_def_loc = insdefault.first;
1774                 }
1775             }
1776         }
1777     }
1778
1779   const Target& target = parameters->target();
1780   if (!target.has_make_symbol())
1781     sym = new Sized_symbol<size>();
1782   else
1783     {
1784       Sized_target<size, big_endian>* sized_target =
1785         parameters->sized_target<size, big_endian>();
1786       sym = sized_target->make_symbol();
1787       if (sym == NULL)
1788         return NULL;
1789     }
1790
1791   if (add_to_table)
1792     add_loc->second = sym;
1793   else
1794     gold_assert(oldsym != NULL);
1795
1796   if (add_def_to_table)
1797     add_def_loc->second = sym;
1798
1799   *poldsym = this->get_sized_symbol<size>(oldsym);
1800
1801   return sym;
1802 }
1803
1804 // Define a symbol based on an Output_data.
1805
1806 Symbol*
1807 Symbol_table::define_in_output_data(const char* name,
1808                                     const char* version,
1809                                     Defined defined,
1810                                     Output_data* od,
1811                                     uint64_t value,
1812                                     uint64_t symsize,
1813                                     elfcpp::STT type,
1814                                     elfcpp::STB binding,
1815                                     elfcpp::STV visibility,
1816                                     unsigned char nonvis,
1817                                     bool offset_is_from_end,
1818                                     bool only_if_ref)
1819 {
1820   if (parameters->target().get_size() == 32)
1821     {
1822 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1823       return this->do_define_in_output_data<32>(name, version, defined, od,
1824                                                 value, symsize, type, binding,
1825                                                 visibility, nonvis,
1826                                                 offset_is_from_end,
1827                                                 only_if_ref);
1828 #else
1829       gold_unreachable();
1830 #endif
1831     }
1832   else if (parameters->target().get_size() == 64)
1833     {
1834 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1835       return this->do_define_in_output_data<64>(name, version, defined, od,
1836                                                 value, symsize, type, binding,
1837                                                 visibility, nonvis,
1838                                                 offset_is_from_end,
1839                                                 only_if_ref);
1840 #else
1841       gold_unreachable();
1842 #endif
1843     }
1844   else
1845     gold_unreachable();
1846 }
1847
1848 // Define a symbol in an Output_data, sized version.
1849
1850 template<int size>
1851 Sized_symbol<size>*
1852 Symbol_table::do_define_in_output_data(
1853     const char* name,
1854     const char* version,
1855     Defined defined,
1856     Output_data* od,
1857     typename elfcpp::Elf_types<size>::Elf_Addr value,
1858     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1859     elfcpp::STT type,
1860     elfcpp::STB binding,
1861     elfcpp::STV visibility,
1862     unsigned char nonvis,
1863     bool offset_is_from_end,
1864     bool only_if_ref)
1865 {
1866   Sized_symbol<size>* sym;
1867   Sized_symbol<size>* oldsym;
1868   bool resolve_oldsym;
1869
1870   if (parameters->target().is_big_endian())
1871     {
1872 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1873       sym = this->define_special_symbol<size, true>(&name, &version,
1874                                                     only_if_ref, &oldsym,
1875                                                     &resolve_oldsym);
1876 #else
1877       gold_unreachable();
1878 #endif
1879     }
1880   else
1881     {
1882 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1883       sym = this->define_special_symbol<size, false>(&name, &version,
1884                                                      only_if_ref, &oldsym,
1885                                                      &resolve_oldsym);
1886 #else
1887       gold_unreachable();
1888 #endif
1889     }
1890
1891   if (sym == NULL)
1892     return NULL;
1893
1894   sym->init_output_data(name, version, od, value, symsize, type, binding,
1895                         visibility, nonvis, offset_is_from_end,
1896                         defined == PREDEFINED);
1897
1898   if (oldsym == NULL)
1899     {
1900       if (binding == elfcpp::STB_LOCAL
1901           || this->version_script_.symbol_is_local(name))
1902         this->force_local(sym);
1903       else if (version != NULL)
1904         sym->set_is_default();
1905       return sym;
1906     }
1907
1908   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1909     this->override_with_special(oldsym, sym);
1910
1911   if (resolve_oldsym)
1912     return sym;
1913   else
1914     {
1915       delete sym;
1916       return oldsym;
1917     }
1918 }
1919
1920 // Define a symbol based on an Output_segment.
1921
1922 Symbol*
1923 Symbol_table::define_in_output_segment(const char* name,
1924                                        const char* version,
1925                                        Defined defined,
1926                                        Output_segment* os,
1927                                        uint64_t value,
1928                                        uint64_t symsize,
1929                                        elfcpp::STT type,
1930                                        elfcpp::STB binding,
1931                                        elfcpp::STV visibility,
1932                                        unsigned char nonvis,
1933                                        Symbol::Segment_offset_base offset_base,
1934                                        bool only_if_ref)
1935 {
1936   if (parameters->target().get_size() == 32)
1937     {
1938 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1939       return this->do_define_in_output_segment<32>(name, version, defined, os,
1940                                                    value, symsize, type,
1941                                                    binding, visibility, nonvis,
1942                                                    offset_base, only_if_ref);
1943 #else
1944       gold_unreachable();
1945 #endif
1946     }
1947   else if (parameters->target().get_size() == 64)
1948     {
1949 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1950       return this->do_define_in_output_segment<64>(name, version, defined, os,
1951                                                    value, symsize, type,
1952                                                    binding, visibility, nonvis,
1953                                                    offset_base, only_if_ref);
1954 #else
1955       gold_unreachable();
1956 #endif
1957     }
1958   else
1959     gold_unreachable();
1960 }
1961
1962 // Define a symbol in an Output_segment, sized version.
1963
1964 template<int size>
1965 Sized_symbol<size>*
1966 Symbol_table::do_define_in_output_segment(
1967     const char* name,
1968     const char* version,
1969     Defined defined,
1970     Output_segment* os,
1971     typename elfcpp::Elf_types<size>::Elf_Addr value,
1972     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1973     elfcpp::STT type,
1974     elfcpp::STB binding,
1975     elfcpp::STV visibility,
1976     unsigned char nonvis,
1977     Symbol::Segment_offset_base offset_base,
1978     bool only_if_ref)
1979 {
1980   Sized_symbol<size>* sym;
1981   Sized_symbol<size>* oldsym;
1982   bool resolve_oldsym;
1983
1984   if (parameters->target().is_big_endian())
1985     {
1986 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1987       sym = this->define_special_symbol<size, true>(&name, &version,
1988                                                     only_if_ref, &oldsym,
1989                                                     &resolve_oldsym);
1990 #else
1991       gold_unreachable();
1992 #endif
1993     }
1994   else
1995     {
1996 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1997       sym = this->define_special_symbol<size, false>(&name, &version,
1998                                                      only_if_ref, &oldsym,
1999                                                      &resolve_oldsym);
2000 #else
2001       gold_unreachable();
2002 #endif
2003     }
2004
2005   if (sym == NULL)
2006     return NULL;
2007
2008   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2009                            visibility, nonvis, offset_base,
2010                            defined == PREDEFINED);
2011
2012   if (oldsym == NULL)
2013     {
2014       if (binding == elfcpp::STB_LOCAL
2015           || this->version_script_.symbol_is_local(name))
2016         this->force_local(sym);
2017       else if (version != NULL)
2018         sym->set_is_default();
2019       return sym;
2020     }
2021
2022   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2023     this->override_with_special(oldsym, sym);
2024
2025   if (resolve_oldsym)
2026     return sym;
2027   else
2028     {
2029       delete sym;
2030       return oldsym;
2031     }
2032 }
2033
2034 // Define a special symbol with a constant value.  It is a multiple
2035 // definition error if this symbol is already defined.
2036
2037 Symbol*
2038 Symbol_table::define_as_constant(const char* name,
2039                                  const char* version,
2040                                  Defined defined,
2041                                  uint64_t value,
2042                                  uint64_t symsize,
2043                                  elfcpp::STT type,
2044                                  elfcpp::STB binding,
2045                                  elfcpp::STV visibility,
2046                                  unsigned char nonvis,
2047                                  bool only_if_ref,
2048                                  bool force_override)
2049 {
2050   if (parameters->target().get_size() == 32)
2051     {
2052 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2053       return this->do_define_as_constant<32>(name, version, defined, value,
2054                                              symsize, type, binding,
2055                                              visibility, nonvis, only_if_ref,
2056                                              force_override);
2057 #else
2058       gold_unreachable();
2059 #endif
2060     }
2061   else if (parameters->target().get_size() == 64)
2062     {
2063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2064       return this->do_define_as_constant<64>(name, version, defined, value,
2065                                              symsize, type, binding,
2066                                              visibility, nonvis, only_if_ref,
2067                                              force_override);
2068 #else
2069       gold_unreachable();
2070 #endif
2071     }
2072   else
2073     gold_unreachable();
2074 }
2075
2076 // Define a symbol as a constant, sized version.
2077
2078 template<int size>
2079 Sized_symbol<size>*
2080 Symbol_table::do_define_as_constant(
2081     const char* name,
2082     const char* version,
2083     Defined defined,
2084     typename elfcpp::Elf_types<size>::Elf_Addr value,
2085     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2086     elfcpp::STT type,
2087     elfcpp::STB binding,
2088     elfcpp::STV visibility,
2089     unsigned char nonvis,
2090     bool only_if_ref,
2091     bool force_override)
2092 {
2093   Sized_symbol<size>* sym;
2094   Sized_symbol<size>* oldsym;
2095   bool resolve_oldsym;
2096
2097   if (parameters->target().is_big_endian())
2098     {
2099 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2100       sym = this->define_special_symbol<size, true>(&name, &version,
2101                                                     only_if_ref, &oldsym,
2102                                                     &resolve_oldsym);
2103 #else
2104       gold_unreachable();
2105 #endif
2106     }
2107   else
2108     {
2109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2110       sym = this->define_special_symbol<size, false>(&name, &version,
2111                                                      only_if_ref, &oldsym,
2112                                                      &resolve_oldsym);
2113 #else
2114       gold_unreachable();
2115 #endif
2116     }
2117
2118   if (sym == NULL)
2119     return NULL;
2120
2121   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2122                      nonvis, defined == PREDEFINED);
2123
2124   if (oldsym == NULL)
2125     {
2126       // Version symbols are absolute symbols with name == version.
2127       // We don't want to force them to be local.
2128       if ((version == NULL
2129            || name != version
2130            || value != 0)
2131           && (binding == elfcpp::STB_LOCAL
2132               || this->version_script_.symbol_is_local(name)))
2133         this->force_local(sym);
2134       else if (version != NULL
2135                && (name != version || value != 0))
2136         sym->set_is_default();
2137       return sym;
2138     }
2139
2140   if (force_override
2141       || Symbol_table::should_override_with_special(oldsym, type, defined))
2142     this->override_with_special(oldsym, sym);
2143
2144   if (resolve_oldsym)
2145     return sym;
2146   else
2147     {
2148       delete sym;
2149       return oldsym;
2150     }
2151 }
2152
2153 // Define a set of symbols in output sections.
2154
2155 void
2156 Symbol_table::define_symbols(const Layout* layout, int count,
2157                              const Define_symbol_in_section* p,
2158                              bool only_if_ref)
2159 {
2160   for (int i = 0; i < count; ++i, ++p)
2161     {
2162       Output_section* os = layout->find_output_section(p->output_section);
2163       if (os != NULL)
2164         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2165                                     p->size, p->type, p->binding,
2166                                     p->visibility, p->nonvis,
2167                                     p->offset_is_from_end,
2168                                     only_if_ref || p->only_if_ref);
2169       else
2170         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2171                                  p->type, p->binding, p->visibility, p->nonvis,
2172                                  only_if_ref || p->only_if_ref,
2173                                  false);
2174     }
2175 }
2176
2177 // Define a set of symbols in output segments.
2178
2179 void
2180 Symbol_table::define_symbols(const Layout* layout, int count,
2181                              const Define_symbol_in_segment* p,
2182                              bool only_if_ref)
2183 {
2184   for (int i = 0; i < count; ++i, ++p)
2185     {
2186       Output_segment* os = layout->find_output_segment(p->segment_type,
2187                                                        p->segment_flags_set,
2188                                                        p->segment_flags_clear);
2189       if (os != NULL)
2190         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2191                                        p->size, p->type, p->binding,
2192                                        p->visibility, p->nonvis,
2193                                        p->offset_base,
2194                                        only_if_ref || p->only_if_ref);
2195       else
2196         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2197                                  p->type, p->binding, p->visibility, p->nonvis,
2198                                  only_if_ref || p->only_if_ref,
2199                                  false);
2200     }
2201 }
2202
2203 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2204 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2205 // the offset within POSD.
2206
2207 template<int size>
2208 void
2209 Symbol_table::define_with_copy_reloc(
2210     Sized_symbol<size>* csym,
2211     Output_data* posd,
2212     typename elfcpp::Elf_types<size>::Elf_Addr value)
2213 {
2214   gold_assert(csym->is_from_dynobj());
2215   gold_assert(!csym->is_copied_from_dynobj());
2216   Object* object = csym->object();
2217   gold_assert(object->is_dynamic());
2218   Dynobj* dynobj = static_cast<Dynobj*>(object);
2219
2220   // Our copied variable has to override any variable in a shared
2221   // library.
2222   elfcpp::STB binding = csym->binding();
2223   if (binding == elfcpp::STB_WEAK)
2224     binding = elfcpp::STB_GLOBAL;
2225
2226   this->define_in_output_data(csym->name(), csym->version(), COPY,
2227                               posd, value, csym->symsize(),
2228                               csym->type(), binding,
2229                               csym->visibility(), csym->nonvis(),
2230                               false, false);
2231
2232   csym->set_is_copied_from_dynobj();
2233   csym->set_needs_dynsym_entry();
2234
2235   this->copied_symbol_dynobjs_[csym] = dynobj;
2236
2237   // We have now defined all aliases, but we have not entered them all
2238   // in the copied_symbol_dynobjs_ map.
2239   if (csym->has_alias())
2240     {
2241       Symbol* sym = csym;
2242       while (true)
2243         {
2244           sym = this->weak_aliases_[sym];
2245           if (sym == csym)
2246             break;
2247           gold_assert(sym->output_data() == posd);
2248
2249           sym->set_is_copied_from_dynobj();
2250           this->copied_symbol_dynobjs_[sym] = dynobj;
2251         }
2252     }
2253 }
2254
2255 // SYM is defined using a COPY reloc.  Return the dynamic object where
2256 // the original definition was found.
2257
2258 Dynobj*
2259 Symbol_table::get_copy_source(const Symbol* sym) const
2260 {
2261   gold_assert(sym->is_copied_from_dynobj());
2262   Copied_symbol_dynobjs::const_iterator p =
2263     this->copied_symbol_dynobjs_.find(sym);
2264   gold_assert(p != this->copied_symbol_dynobjs_.end());
2265   return p->second;
2266 }
2267
2268 // Add any undefined symbols named on the command line.
2269
2270 void
2271 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2272 {
2273   if (parameters->options().any_undefined()
2274       || layout->script_options()->any_unreferenced())
2275     {
2276       if (parameters->target().get_size() == 32)
2277         {
2278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2279           this->do_add_undefined_symbols_from_command_line<32>(layout);
2280 #else
2281           gold_unreachable();
2282 #endif
2283         }
2284       else if (parameters->target().get_size() == 64)
2285         {
2286 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2287           this->do_add_undefined_symbols_from_command_line<64>(layout);
2288 #else
2289           gold_unreachable();
2290 #endif
2291         }
2292       else
2293         gold_unreachable();
2294     }
2295 }
2296
2297 template<int size>
2298 void
2299 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2300 {
2301   for (options::String_set::const_iterator p =
2302          parameters->options().undefined_begin();
2303        p != parameters->options().undefined_end();
2304        ++p)
2305     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2306
2307   for (options::String_set::const_iterator p =
2308          parameters->options().export_dynamic_symbol_begin();
2309        p != parameters->options().export_dynamic_symbol_end();
2310        ++p)
2311     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2312
2313   for (Script_options::referenced_const_iterator p =
2314          layout->script_options()->referenced_begin();
2315        p != layout->script_options()->referenced_end();
2316        ++p)
2317     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2318 }
2319
2320 template<int size>
2321 void
2322 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2323 {
2324   if (this->lookup(name) != NULL)
2325     return;
2326
2327   const char* version = NULL;
2328
2329   Sized_symbol<size>* sym;
2330   Sized_symbol<size>* oldsym;
2331   bool resolve_oldsym;
2332   if (parameters->target().is_big_endian())
2333     {
2334 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2335       sym = this->define_special_symbol<size, true>(&name, &version,
2336                                                     false, &oldsym,
2337                                                     &resolve_oldsym);
2338 #else
2339       gold_unreachable();
2340 #endif
2341     }
2342   else
2343     {
2344 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2345       sym = this->define_special_symbol<size, false>(&name, &version,
2346                                                      false, &oldsym,
2347                                                      &resolve_oldsym);
2348 #else
2349       gold_unreachable();
2350 #endif
2351     }
2352
2353   gold_assert(oldsym == NULL);
2354
2355   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2356                       elfcpp::STV_DEFAULT, 0);
2357   ++this->saw_undefined_;
2358 }
2359
2360 // Set the dynamic symbol indexes.  INDEX is the index of the first
2361 // global dynamic symbol.  Pointers to the symbols are stored into the
2362 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2363 // updated dynamic symbol index.
2364
2365 unsigned int
2366 Symbol_table::set_dynsym_indexes(unsigned int index,
2367                                  std::vector<Symbol*>* syms,
2368                                  Stringpool* dynpool,
2369                                  Versions* versions)
2370 {
2371   std::vector<Symbol*> as_needed_sym;
2372
2373   for (Symbol_table_type::iterator p = this->table_.begin();
2374        p != this->table_.end();
2375        ++p)
2376     {
2377       Symbol* sym = p->second;
2378
2379       // Note that SYM may already have a dynamic symbol index, since
2380       // some symbols appear more than once in the symbol table, with
2381       // and without a version.
2382
2383       if (!sym->should_add_dynsym_entry(this))
2384         sym->set_dynsym_index(-1U);
2385       else if (!sym->has_dynsym_index())
2386         {
2387           sym->set_dynsym_index(index);
2388           ++index;
2389           syms->push_back(sym);
2390           dynpool->add(sym->name(), false, NULL);
2391
2392           // If the symbol is defined in a dynamic object and is
2393           // referenced strongly in a regular object, then mark the
2394           // dynamic object as needed.  This is used to implement
2395           // --as-needed.
2396           if (sym->is_from_dynobj()
2397               && sym->in_reg()
2398               && !sym->is_undef_binding_weak())
2399             sym->object()->set_is_needed();
2400
2401           // Record any version information, except those from
2402           // as-needed libraries not seen to be needed.  Note that the
2403           // is_needed state for such libraries can change in this loop.
2404           if (sym->version() != NULL)
2405             {
2406               if (!sym->is_from_dynobj()
2407                   || !sym->object()->as_needed()
2408                   || sym->object()->is_needed())
2409                 versions->record_version(this, dynpool, sym);
2410               else
2411                 as_needed_sym.push_back(sym);
2412             }
2413         }
2414     }
2415
2416   // Process version information for symbols from as-needed libraries.
2417   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2418        p != as_needed_sym.end();
2419        ++p)
2420     {
2421       Symbol* sym = *p;
2422
2423       if (sym->object()->is_needed())
2424         versions->record_version(this, dynpool, sym);
2425       else
2426         sym->clear_version();
2427     }
2428
2429   // Finish up the versions.  In some cases this may add new dynamic
2430   // symbols.
2431   index = versions->finalize(this, index, syms);
2432
2433   return index;
2434 }
2435
2436 // Set the final values for all the symbols.  The index of the first
2437 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2438 // file offset OFF.  Add their names to POOL.  Return the new file
2439 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2440
2441 off_t
2442 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2443                        size_t dyncount, Stringpool* pool,
2444                        unsigned int* plocal_symcount)
2445 {
2446   off_t ret;
2447
2448   gold_assert(*plocal_symcount != 0);
2449   this->first_global_index_ = *plocal_symcount;
2450
2451   this->dynamic_offset_ = dynoff;
2452   this->first_dynamic_global_index_ = dyn_global_index;
2453   this->dynamic_count_ = dyncount;
2454
2455   if (parameters->target().get_size() == 32)
2456     {
2457 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2458       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2459 #else
2460       gold_unreachable();
2461 #endif
2462     }
2463   else if (parameters->target().get_size() == 64)
2464     {
2465 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2466       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2467 #else
2468       gold_unreachable();
2469 #endif
2470     }
2471   else
2472     gold_unreachable();
2473
2474   // Now that we have the final symbol table, we can reliably note
2475   // which symbols should get warnings.
2476   this->warnings_.note_warnings(this);
2477
2478   return ret;
2479 }
2480
2481 // SYM is going into the symbol table at *PINDEX.  Add the name to
2482 // POOL, update *PINDEX and *POFF.
2483
2484 template<int size>
2485 void
2486 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2487                                   unsigned int* pindex, off_t* poff)
2488 {
2489   sym->set_symtab_index(*pindex);
2490   if (sym->version() == NULL || !parameters->options().relocatable())
2491     pool->add(sym->name(), false, NULL);
2492   else
2493     pool->add(sym->versioned_name(), true, NULL);
2494   ++*pindex;
2495   *poff += elfcpp::Elf_sizes<size>::sym_size;
2496 }
2497
2498 // Set the final value for all the symbols.  This is called after
2499 // Layout::finalize, so all the output sections have their final
2500 // address.
2501
2502 template<int size>
2503 off_t
2504 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2505                              unsigned int* plocal_symcount)
2506 {
2507   off = align_address(off, size >> 3);
2508   this->offset_ = off;
2509
2510   unsigned int index = *plocal_symcount;
2511   const unsigned int orig_index = index;
2512
2513   // First do all the symbols which have been forced to be local, as
2514   // they must appear before all global symbols.
2515   for (Forced_locals::iterator p = this->forced_locals_.begin();
2516        p != this->forced_locals_.end();
2517        ++p)
2518     {
2519       Symbol* sym = *p;
2520       gold_assert(sym->is_forced_local());
2521       if (this->sized_finalize_symbol<size>(sym))
2522         {
2523           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2524           ++*plocal_symcount;
2525         }
2526     }
2527
2528   // Now do all the remaining symbols.
2529   for (Symbol_table_type::iterator p = this->table_.begin();
2530        p != this->table_.end();
2531        ++p)
2532     {
2533       Symbol* sym = p->second;
2534       if (this->sized_finalize_symbol<size>(sym))
2535         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2536     }
2537
2538   this->output_count_ = index - orig_index;
2539
2540   return off;
2541 }
2542
2543 // Compute the final value of SYM and store status in location PSTATUS.
2544 // During relaxation, this may be called multiple times for a symbol to
2545 // compute its would-be final value in each relaxation pass.
2546
2547 template<int size>
2548 typename Sized_symbol<size>::Value_type
2549 Symbol_table::compute_final_value(
2550     const Sized_symbol<size>* sym,
2551     Compute_final_value_status* pstatus) const
2552 {
2553   typedef typename Sized_symbol<size>::Value_type Value_type;
2554   Value_type value;
2555
2556   switch (sym->source())
2557     {
2558     case Symbol::FROM_OBJECT:
2559       {
2560         bool is_ordinary;
2561         unsigned int shndx = sym->shndx(&is_ordinary);
2562
2563         if (!is_ordinary
2564             && shndx != elfcpp::SHN_ABS
2565             && !Symbol::is_common_shndx(shndx))
2566           {
2567             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2568             return 0;
2569           }
2570
2571         Object* symobj = sym->object();
2572         if (symobj->is_dynamic())
2573           {
2574             value = 0;
2575             shndx = elfcpp::SHN_UNDEF;
2576           }
2577         else if (symobj->pluginobj() != NULL)
2578           {
2579             value = 0;
2580             shndx = elfcpp::SHN_UNDEF;
2581           }
2582         else if (shndx == elfcpp::SHN_UNDEF)
2583           value = 0;
2584         else if (!is_ordinary
2585                  && (shndx == elfcpp::SHN_ABS
2586                      || Symbol::is_common_shndx(shndx)))
2587           value = sym->value();
2588         else
2589           {
2590             Relobj* relobj = static_cast<Relobj*>(symobj);
2591             Output_section* os = relobj->output_section(shndx);
2592
2593             if (this->is_section_folded(relobj, shndx))
2594               {
2595                 gold_assert(os == NULL);
2596                 // Get the os of the section it is folded onto.
2597                 Section_id folded = this->icf_->get_folded_section(relobj,
2598                                                                    shndx);
2599                 gold_assert(folded.first != NULL);
2600                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2601                 unsigned folded_shndx = folded.second;
2602
2603                 os = folded_obj->output_section(folded_shndx);  
2604                 gold_assert(os != NULL);
2605
2606                 // Replace (relobj, shndx) with canonical ICF input section.
2607                 shndx = folded_shndx;
2608                 relobj = folded_obj;
2609               }
2610
2611             uint64_t secoff64 = relobj->output_section_offset(shndx);
2612             if (os == NULL)
2613               {
2614                 bool static_or_reloc = (parameters->doing_static_link() ||
2615                                         parameters->options().relocatable());
2616                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2617
2618                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2619                 return 0;
2620               }
2621
2622             if (secoff64 == -1ULL)
2623               {
2624                 // The section needs special handling (e.g., a merge section).
2625
2626                 value = os->output_address(relobj, shndx, sym->value());
2627               }
2628             else
2629               {
2630                 Value_type secoff =
2631                   convert_types<Value_type, uint64_t>(secoff64);
2632                 if (sym->type() == elfcpp::STT_TLS)
2633                   value = sym->value() + os->tls_offset() + secoff;
2634                 else
2635                   value = sym->value() + os->address() + secoff;
2636               }
2637           }
2638       }
2639       break;
2640
2641     case Symbol::IN_OUTPUT_DATA:
2642       {
2643         Output_data* od = sym->output_data();
2644         value = sym->value();
2645         if (sym->type() != elfcpp::STT_TLS)
2646           value += od->address();
2647         else
2648           {
2649             Output_section* os = od->output_section();
2650             gold_assert(os != NULL);
2651             value += os->tls_offset() + (od->address() - os->address());
2652           }
2653         if (sym->offset_is_from_end())
2654           value += od->data_size();
2655       }
2656       break;
2657
2658     case Symbol::IN_OUTPUT_SEGMENT:
2659       {
2660         Output_segment* os = sym->output_segment();
2661         value = sym->value();
2662         if (sym->type() != elfcpp::STT_TLS)
2663           value += os->vaddr();
2664         switch (sym->offset_base())
2665           {
2666           case Symbol::SEGMENT_START:
2667             break;
2668           case Symbol::SEGMENT_END:
2669             value += os->memsz();
2670             break;
2671           case Symbol::SEGMENT_BSS:
2672             value += os->filesz();
2673             break;
2674           default:
2675             gold_unreachable();
2676           }
2677       }
2678       break;
2679
2680     case Symbol::IS_CONSTANT:
2681       value = sym->value();
2682       break;
2683
2684     case Symbol::IS_UNDEFINED:
2685       value = 0;
2686       break;
2687
2688     default:
2689       gold_unreachable();
2690     }
2691
2692   *pstatus = CFVS_OK;
2693   return value;
2694 }
2695
2696 // Finalize the symbol SYM.  This returns true if the symbol should be
2697 // added to the symbol table, false otherwise.
2698
2699 template<int size>
2700 bool
2701 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2702 {
2703   typedef typename Sized_symbol<size>::Value_type Value_type;
2704
2705   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2706
2707   // The default version of a symbol may appear twice in the symbol
2708   // table.  We only need to finalize it once.
2709   if (sym->has_symtab_index())
2710     return false;
2711
2712   if (!sym->in_reg())
2713     {
2714       gold_assert(!sym->has_symtab_index());
2715       sym->set_symtab_index(-1U);
2716       gold_assert(sym->dynsym_index() == -1U);
2717       return false;
2718     }
2719
2720   // If the symbol is only present on plugin files, the plugin decided we
2721   // don't need it.
2722   if (!sym->in_real_elf())
2723     {
2724       gold_assert(!sym->has_symtab_index());
2725       sym->set_symtab_index(-1U);
2726       return false;
2727     }
2728
2729   // Compute final symbol value.
2730   Compute_final_value_status status;
2731   Value_type value = this->compute_final_value(sym, &status);
2732
2733   switch (status)
2734     {
2735     case CFVS_OK:
2736       break;
2737     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2738       {
2739         bool is_ordinary;
2740         unsigned int shndx = sym->shndx(&is_ordinary);
2741         gold_error(_("%s: unsupported symbol section 0x%x"),
2742                    sym->demangled_name().c_str(), shndx);
2743       }
2744       break;
2745     case CFVS_NO_OUTPUT_SECTION:
2746       sym->set_symtab_index(-1U);
2747       return false;
2748     default:
2749       gold_unreachable();
2750     }
2751
2752   sym->set_value(value);
2753
2754   if (parameters->options().strip_all()
2755       || !parameters->options().should_retain_symbol(sym->name()))
2756     {
2757       sym->set_symtab_index(-1U);
2758       return false;
2759     }
2760
2761   return true;
2762 }
2763
2764 // Write out the global symbols.
2765
2766 void
2767 Symbol_table::write_globals(const Stringpool* sympool,
2768                             const Stringpool* dynpool,
2769                             Output_symtab_xindex* symtab_xindex,
2770                             Output_symtab_xindex* dynsym_xindex,
2771                             Output_file* of) const
2772 {
2773   switch (parameters->size_and_endianness())
2774     {
2775 #ifdef HAVE_TARGET_32_LITTLE
2776     case Parameters::TARGET_32_LITTLE:
2777       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2778                                            dynsym_xindex, of);
2779       break;
2780 #endif
2781 #ifdef HAVE_TARGET_32_BIG
2782     case Parameters::TARGET_32_BIG:
2783       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2784                                           dynsym_xindex, of);
2785       break;
2786 #endif
2787 #ifdef HAVE_TARGET_64_LITTLE
2788     case Parameters::TARGET_64_LITTLE:
2789       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2790                                            dynsym_xindex, of);
2791       break;
2792 #endif
2793 #ifdef HAVE_TARGET_64_BIG
2794     case Parameters::TARGET_64_BIG:
2795       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2796                                           dynsym_xindex, of);
2797       break;
2798 #endif
2799     default:
2800       gold_unreachable();
2801     }
2802 }
2803
2804 // Write out the global symbols.
2805
2806 template<int size, bool big_endian>
2807 void
2808 Symbol_table::sized_write_globals(const Stringpool* sympool,
2809                                   const Stringpool* dynpool,
2810                                   Output_symtab_xindex* symtab_xindex,
2811                                   Output_symtab_xindex* dynsym_xindex,
2812                                   Output_file* of) const
2813 {
2814   const Target& target = parameters->target();
2815
2816   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2817
2818   const unsigned int output_count = this->output_count_;
2819   const section_size_type oview_size = output_count * sym_size;
2820   const unsigned int first_global_index = this->first_global_index_;
2821   unsigned char* psyms;
2822   if (this->offset_ == 0 || output_count == 0)
2823     psyms = NULL;
2824   else
2825     psyms = of->get_output_view(this->offset_, oview_size);
2826
2827   const unsigned int dynamic_count = this->dynamic_count_;
2828   const section_size_type dynamic_size = dynamic_count * sym_size;
2829   const unsigned int first_dynamic_global_index =
2830     this->first_dynamic_global_index_;
2831   unsigned char* dynamic_view;
2832   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2833     dynamic_view = NULL;
2834   else
2835     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2836
2837   for (Symbol_table_type::const_iterator p = this->table_.begin();
2838        p != this->table_.end();
2839        ++p)
2840     {
2841       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2842
2843       // Possibly warn about unresolved symbols in shared libraries.
2844       this->warn_about_undefined_dynobj_symbol(sym);
2845
2846       unsigned int sym_index = sym->symtab_index();
2847       unsigned int dynsym_index;
2848       if (dynamic_view == NULL)
2849         dynsym_index = -1U;
2850       else
2851         dynsym_index = sym->dynsym_index();
2852
2853       if (sym_index == -1U && dynsym_index == -1U)
2854         {
2855           // This symbol is not included in the output file.
2856           continue;
2857         }
2858
2859       unsigned int shndx;
2860       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2861       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2862       elfcpp::STB binding = sym->binding();
2863
2864       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2865       if (binding == elfcpp::STB_GNU_UNIQUE
2866           && !parameters->options().gnu_unique())
2867         binding = elfcpp::STB_GLOBAL;
2868
2869       switch (sym->source())
2870         {
2871         case Symbol::FROM_OBJECT:
2872           {
2873             bool is_ordinary;
2874             unsigned int in_shndx = sym->shndx(&is_ordinary);
2875
2876             if (!is_ordinary
2877                 && in_shndx != elfcpp::SHN_ABS
2878                 && !Symbol::is_common_shndx(in_shndx))
2879               {
2880                 gold_error(_("%s: unsupported symbol section 0x%x"),
2881                            sym->demangled_name().c_str(), in_shndx);
2882                 shndx = in_shndx;
2883               }
2884             else
2885               {
2886                 Object* symobj = sym->object();
2887                 if (symobj->is_dynamic())
2888                   {
2889                     if (sym->needs_dynsym_value())
2890                       dynsym_value = target.dynsym_value(sym);
2891                     shndx = elfcpp::SHN_UNDEF;
2892                     if (sym->is_undef_binding_weak())
2893                       binding = elfcpp::STB_WEAK;
2894                     else
2895                       binding = elfcpp::STB_GLOBAL;
2896                   }
2897                 else if (symobj->pluginobj() != NULL)
2898                   shndx = elfcpp::SHN_UNDEF;
2899                 else if (in_shndx == elfcpp::SHN_UNDEF
2900                          || (!is_ordinary
2901                              && (in_shndx == elfcpp::SHN_ABS
2902                                  || Symbol::is_common_shndx(in_shndx))))
2903                   shndx = in_shndx;
2904                 else
2905                   {
2906                     Relobj* relobj = static_cast<Relobj*>(symobj);
2907                     Output_section* os = relobj->output_section(in_shndx);
2908                     if (this->is_section_folded(relobj, in_shndx))
2909                       {
2910                         // This global symbol must be written out even though
2911                         // it is folded.
2912                         // Get the os of the section it is folded onto.
2913                         Section_id folded =
2914                              this->icf_->get_folded_section(relobj, in_shndx);
2915                         gold_assert(folded.first !=NULL);
2916                         Relobj* folded_obj = 
2917                           reinterpret_cast<Relobj*>(folded.first);
2918                         os = folded_obj->output_section(folded.second);  
2919                         gold_assert(os != NULL);
2920                       }
2921                     gold_assert(os != NULL);
2922                     shndx = os->out_shndx();
2923
2924                     if (shndx >= elfcpp::SHN_LORESERVE)
2925                       {
2926                         if (sym_index != -1U)
2927                           symtab_xindex->add(sym_index, shndx);
2928                         if (dynsym_index != -1U)
2929                           dynsym_xindex->add(dynsym_index, shndx);
2930                         shndx = elfcpp::SHN_XINDEX;
2931                       }
2932
2933                     // In object files symbol values are section
2934                     // relative.
2935                     if (parameters->options().relocatable())
2936                       sym_value -= os->address();
2937                   }
2938               }
2939           }
2940           break;
2941
2942         case Symbol::IN_OUTPUT_DATA:
2943           {
2944             Output_data* od = sym->output_data();
2945
2946             shndx = od->out_shndx();
2947             if (shndx >= elfcpp::SHN_LORESERVE)
2948               {
2949                 if (sym_index != -1U)
2950                   symtab_xindex->add(sym_index, shndx);
2951                 if (dynsym_index != -1U)
2952                   dynsym_xindex->add(dynsym_index, shndx);
2953                 shndx = elfcpp::SHN_XINDEX;
2954               }
2955
2956             // In object files symbol values are section
2957             // relative.
2958             if (parameters->options().relocatable())
2959               sym_value -= od->address();
2960           }
2961           break;
2962
2963         case Symbol::IN_OUTPUT_SEGMENT:
2964           shndx = elfcpp::SHN_ABS;
2965           break;
2966
2967         case Symbol::IS_CONSTANT:
2968           shndx = elfcpp::SHN_ABS;
2969           break;
2970
2971         case Symbol::IS_UNDEFINED:
2972           shndx = elfcpp::SHN_UNDEF;
2973           break;
2974
2975         default:
2976           gold_unreachable();
2977         }
2978
2979       if (sym_index != -1U)
2980         {
2981           sym_index -= first_global_index;
2982           gold_assert(sym_index < output_count);
2983           unsigned char* ps = psyms + (sym_index * sym_size);
2984           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2985                                                      binding, sympool, ps);
2986         }
2987
2988       if (dynsym_index != -1U)
2989         {
2990           dynsym_index -= first_dynamic_global_index;
2991           gold_assert(dynsym_index < dynamic_count);
2992           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2993           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2994                                                      binding, dynpool, pd);
2995         }
2996     }
2997
2998   of->write_output_view(this->offset_, oview_size, psyms);
2999   if (dynamic_view != NULL)
3000     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3001 }
3002
3003 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3004 // strtab holding the name.
3005
3006 template<int size, bool big_endian>
3007 void
3008 Symbol_table::sized_write_symbol(
3009     Sized_symbol<size>* sym,
3010     typename elfcpp::Elf_types<size>::Elf_Addr value,
3011     unsigned int shndx,
3012     elfcpp::STB binding,
3013     const Stringpool* pool,
3014     unsigned char* p) const
3015 {
3016   elfcpp::Sym_write<size, big_endian> osym(p);
3017   if (sym->version() == NULL || !parameters->options().relocatable())
3018     osym.put_st_name(pool->get_offset(sym->name()));
3019   else
3020     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3021   osym.put_st_value(value);
3022   // Use a symbol size of zero for undefined symbols from shared libraries.
3023   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3024     osym.put_st_size(0);
3025   else
3026     osym.put_st_size(sym->symsize());
3027   elfcpp::STT type = sym->type();
3028   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3029   if (type == elfcpp::STT_GNU_IFUNC
3030       && sym->is_from_dynobj())
3031     type = elfcpp::STT_FUNC;
3032   // A version script may have overridden the default binding.
3033   if (sym->is_forced_local())
3034     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3035   else
3036     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3037   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3038   osym.put_st_shndx(shndx);
3039 }
3040
3041 // Check for unresolved symbols in shared libraries.  This is
3042 // controlled by the --allow-shlib-undefined option.
3043
3044 // We only warn about libraries for which we have seen all the
3045 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3046 // which were not seen in this link.  If we didn't see a DT_NEEDED
3047 // entry, we aren't going to be able to reliably report whether the
3048 // symbol is undefined.
3049
3050 // We also don't warn about libraries found in a system library
3051 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3052 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3053 // can have undefined references satisfied by ld-linux.so.
3054
3055 inline void
3056 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3057 {
3058   bool dummy;
3059   if (sym->source() == Symbol::FROM_OBJECT
3060       && sym->object()->is_dynamic()
3061       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3062       && sym->binding() != elfcpp::STB_WEAK
3063       && !parameters->options().allow_shlib_undefined()
3064       && !parameters->target().is_defined_by_abi(sym)
3065       && !sym->object()->is_in_system_directory())
3066     {
3067       // A very ugly cast.
3068       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3069       if (!dynobj->has_unknown_needed_entries())
3070         gold_undefined_symbol(sym);
3071     }
3072 }
3073
3074 // Write out a section symbol.  Return the update offset.
3075
3076 void
3077 Symbol_table::write_section_symbol(const Output_section* os,
3078                                    Output_symtab_xindex* symtab_xindex,
3079                                    Output_file* of,
3080                                    off_t offset) const
3081 {
3082   switch (parameters->size_and_endianness())
3083     {
3084 #ifdef HAVE_TARGET_32_LITTLE
3085     case Parameters::TARGET_32_LITTLE:
3086       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3087                                                   offset);
3088       break;
3089 #endif
3090 #ifdef HAVE_TARGET_32_BIG
3091     case Parameters::TARGET_32_BIG:
3092       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3093                                                  offset);
3094       break;
3095 #endif
3096 #ifdef HAVE_TARGET_64_LITTLE
3097     case Parameters::TARGET_64_LITTLE:
3098       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3099                                                   offset);
3100       break;
3101 #endif
3102 #ifdef HAVE_TARGET_64_BIG
3103     case Parameters::TARGET_64_BIG:
3104       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3105                                                  offset);
3106       break;
3107 #endif
3108     default:
3109       gold_unreachable();
3110     }
3111 }
3112
3113 // Write out a section symbol, specialized for size and endianness.
3114
3115 template<int size, bool big_endian>
3116 void
3117 Symbol_table::sized_write_section_symbol(const Output_section* os,
3118                                          Output_symtab_xindex* symtab_xindex,
3119                                          Output_file* of,
3120                                          off_t offset) const
3121 {
3122   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3123
3124   unsigned char* pov = of->get_output_view(offset, sym_size);
3125
3126   elfcpp::Sym_write<size, big_endian> osym(pov);
3127   osym.put_st_name(0);
3128   if (parameters->options().relocatable())
3129     osym.put_st_value(0);
3130   else
3131     osym.put_st_value(os->address());
3132   osym.put_st_size(0);
3133   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3134                                        elfcpp::STT_SECTION));
3135   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3136
3137   unsigned int shndx = os->out_shndx();
3138   if (shndx >= elfcpp::SHN_LORESERVE)
3139     {
3140       symtab_xindex->add(os->symtab_index(), shndx);
3141       shndx = elfcpp::SHN_XINDEX;
3142     }
3143   osym.put_st_shndx(shndx);
3144
3145   of->write_output_view(offset, sym_size, pov);
3146 }
3147
3148 // Print statistical information to stderr.  This is used for --stats.
3149
3150 void
3151 Symbol_table::print_stats() const
3152 {
3153 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3154   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3155           program_name, this->table_.size(), this->table_.bucket_count());
3156 #else
3157   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3158           program_name, this->table_.size());
3159 #endif
3160   this->namepool_.print_stats("symbol table stringpool");
3161 }
3162
3163 // We check for ODR violations by looking for symbols with the same
3164 // name for which the debugging information reports that they were
3165 // defined in disjoint source locations.  When comparing the source
3166 // location, we consider instances with the same base filename to be
3167 // the same.  This is because different object files/shared libraries
3168 // can include the same header file using different paths, and
3169 // different optimization settings can make the line number appear to
3170 // be a couple lines off, and we don't want to report an ODR violation
3171 // in those cases.
3172
3173 // This struct is used to compare line information, as returned by
3174 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3175 // operator used with std::sort.
3176
3177 struct Odr_violation_compare
3178 {
3179   bool
3180   operator()(const std::string& s1, const std::string& s2) const
3181   {
3182     // Inputs should be of the form "dirname/filename:linenum" where
3183     // "dirname/" is optional.  We want to compare just the filename:linenum.
3184
3185     // Find the last '/' in each string.
3186     std::string::size_type s1begin = s1.rfind('/');
3187     std::string::size_type s2begin = s2.rfind('/');
3188     // If there was no '/' in a string, start at the beginning.
3189     if (s1begin == std::string::npos)
3190       s1begin = 0;
3191     if (s2begin == std::string::npos)
3192       s2begin = 0;
3193     return s1.compare(s1begin, std::string::npos,
3194                       s2, s2begin, std::string::npos) < 0;
3195   }
3196 };
3197
3198 // Returns all of the lines attached to LOC, not just the one the
3199 // instruction actually came from.
3200 std::vector<std::string>
3201 Symbol_table::linenos_from_loc(const Task* task,
3202                                const Symbol_location& loc)
3203 {
3204   // We need to lock the object in order to read it.  This
3205   // means that we have to run in a singleton Task.  If we
3206   // want to run this in a general Task for better
3207   // performance, we will need one Task for object, plus
3208   // appropriate locking to ensure that we don't conflict with
3209   // other uses of the object.  Also note, one_addr2line is not
3210   // currently thread-safe.
3211   Task_lock_obj<Object> tl(task, loc.object);
3212
3213   std::vector<std::string> result;
3214   Symbol_location code_loc = loc;
3215   parameters->target().function_location(&code_loc);
3216   // 16 is the size of the object-cache that one_addr2line should use.
3217   std::string canonical_result = Dwarf_line_info::one_addr2line(
3218       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3219   if (!canonical_result.empty())
3220     result.push_back(canonical_result);
3221   return result;
3222 }
3223
3224 // OutputIterator that records if it was ever assigned to.  This
3225 // allows it to be used with std::set_intersection() to check for
3226 // intersection rather than computing the intersection.
3227 struct Check_intersection
3228 {
3229   Check_intersection()
3230     : value_(false)
3231   {}
3232
3233   bool had_intersection() const
3234   { return this->value_; }
3235
3236   Check_intersection& operator++()
3237   { return *this; }
3238
3239   Check_intersection& operator*()
3240   { return *this; }
3241
3242   template<typename T>
3243   Check_intersection& operator=(const T&)
3244   {
3245     this->value_ = true;
3246     return *this;
3247   }
3248
3249  private:
3250   bool value_;
3251 };
3252
3253 // Check candidate_odr_violations_ to find symbols with the same name
3254 // but apparently different definitions (different source-file/line-no
3255 // for each line assigned to the first instruction).
3256
3257 void
3258 Symbol_table::detect_odr_violations(const Task* task,
3259                                     const char* output_file_name) const
3260 {
3261   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3262        it != candidate_odr_violations_.end();
3263        ++it)
3264     {
3265       const char* const symbol_name = it->first;
3266
3267       std::string first_object_name;
3268       std::vector<std::string> first_object_linenos;
3269
3270       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3271           locs = it->second.begin();
3272       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3273           locs_end = it->second.end();
3274       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3275         {
3276           // Save the line numbers from the first definition to
3277           // compare to the other definitions.  Ideally, we'd compare
3278           // every definition to every other, but we don't want to
3279           // take O(N^2) time to do this.  This shortcut may cause
3280           // false negatives that appear or disappear depending on the
3281           // link order, but it won't cause false positives.
3282           first_object_name = locs->object->name();
3283           first_object_linenos = this->linenos_from_loc(task, *locs);
3284         }
3285
3286       // Sort by Odr_violation_compare to make std::set_intersection work.
3287       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3288                 Odr_violation_compare());
3289
3290       for (; locs != locs_end; ++locs)
3291         {
3292           std::vector<std::string> linenos =
3293               this->linenos_from_loc(task, *locs);
3294           // linenos will be empty if we couldn't parse the debug info.
3295           if (linenos.empty())
3296             continue;
3297           // Sort by Odr_violation_compare to make std::set_intersection work.
3298           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3299
3300           Check_intersection intersection_result =
3301               std::set_intersection(first_object_linenos.begin(),
3302                                     first_object_linenos.end(),
3303                                     linenos.begin(),
3304                                     linenos.end(),
3305                                     Check_intersection(),
3306                                     Odr_violation_compare());
3307           if (!intersection_result.had_intersection())
3308             {
3309               gold_warning(_("while linking %s: symbol '%s' defined in "
3310                              "multiple places (possible ODR violation):"),
3311                            output_file_name, demangle(symbol_name).c_str());
3312               // This only prints one location from each definition,
3313               // which may not be the location we expect to intersect
3314               // with another definition.  We could print the whole
3315               // set of locations, but that seems too verbose.
3316               gold_assert(!first_object_linenos.empty());
3317               gold_assert(!linenos.empty());
3318               fprintf(stderr, _("  %s from %s\n"),
3319                       first_object_linenos[0].c_str(),
3320                       first_object_name.c_str());
3321               fprintf(stderr, _("  %s from %s\n"),
3322                       linenos[0].c_str(),
3323                       locs->object->name().c_str());
3324               // Only print one broken pair, to avoid needing to
3325               // compare against a list of the disjoint definition
3326               // locations we've found so far.  (If we kept comparing
3327               // against just the first one, we'd get a lot of
3328               // redundant complaints about the second definition
3329               // location.)
3330               break;
3331             }
3332         }
3333     }
3334   // We only call one_addr2line() in this function, so we can clear its cache.
3335   Dwarf_line_info::clear_addr2line_cache();
3336 }
3337
3338 // Warnings functions.
3339
3340 // Add a new warning.
3341
3342 void
3343 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3344                       const std::string& warning)
3345 {
3346   name = symtab->canonicalize_name(name);
3347   this->warnings_[name].set(obj, warning);
3348 }
3349
3350 // Look through the warnings and mark the symbols for which we should
3351 // warn.  This is called during Layout::finalize when we know the
3352 // sources for all the symbols.
3353
3354 void
3355 Warnings::note_warnings(Symbol_table* symtab)
3356 {
3357   for (Warning_table::iterator p = this->warnings_.begin();
3358        p != this->warnings_.end();
3359        ++p)
3360     {
3361       Symbol* sym = symtab->lookup(p->first, NULL);
3362       if (sym != NULL
3363           && sym->source() == Symbol::FROM_OBJECT
3364           && sym->object() == p->second.object)
3365         sym->set_has_warning();
3366     }
3367 }
3368
3369 // Issue a warning.  This is called when we see a relocation against a
3370 // symbol for which has a warning.
3371
3372 template<int size, bool big_endian>
3373 void
3374 Warnings::issue_warning(const Symbol* sym,
3375                         const Relocate_info<size, big_endian>* relinfo,
3376                         size_t relnum, off_t reloffset) const
3377 {
3378   gold_assert(sym->has_warning());
3379
3380   // We don't want to issue a warning for a relocation against the
3381   // symbol in the same object file in which the symbol is defined.
3382   if (sym->object() == relinfo->object)
3383     return;
3384
3385   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3386   gold_assert(p != this->warnings_.end());
3387   gold_warning_at_location(relinfo, relnum, reloffset,
3388                            "%s", p->second.text.c_str());
3389 }
3390
3391 // Instantiate the templates we need.  We could use the configure
3392 // script to restrict this to only the ones needed for implemented
3393 // targets.
3394
3395 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3396 template
3397 void
3398 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3399 #endif
3400
3401 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3402 template
3403 void
3404 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3405 #endif
3406
3407 #ifdef HAVE_TARGET_32_LITTLE
3408 template
3409 void
3410 Symbol_table::add_from_relobj<32, false>(
3411     Sized_relobj_file<32, false>* relobj,
3412     const unsigned char* syms,
3413     size_t count,
3414     size_t symndx_offset,
3415     const char* sym_names,
3416     size_t sym_name_size,
3417     Sized_relobj_file<32, false>::Symbols* sympointers,
3418     size_t* defined);
3419 #endif
3420
3421 #ifdef HAVE_TARGET_32_BIG
3422 template
3423 void
3424 Symbol_table::add_from_relobj<32, true>(
3425     Sized_relobj_file<32, true>* relobj,
3426     const unsigned char* syms,
3427     size_t count,
3428     size_t symndx_offset,
3429     const char* sym_names,
3430     size_t sym_name_size,
3431     Sized_relobj_file<32, true>::Symbols* sympointers,
3432     size_t* defined);
3433 #endif
3434
3435 #ifdef HAVE_TARGET_64_LITTLE
3436 template
3437 void
3438 Symbol_table::add_from_relobj<64, false>(
3439     Sized_relobj_file<64, false>* relobj,
3440     const unsigned char* syms,
3441     size_t count,
3442     size_t symndx_offset,
3443     const char* sym_names,
3444     size_t sym_name_size,
3445     Sized_relobj_file<64, false>::Symbols* sympointers,
3446     size_t* defined);
3447 #endif
3448
3449 #ifdef HAVE_TARGET_64_BIG
3450 template
3451 void
3452 Symbol_table::add_from_relobj<64, true>(
3453     Sized_relobj_file<64, true>* relobj,
3454     const unsigned char* syms,
3455     size_t count,
3456     size_t symndx_offset,
3457     const char* sym_names,
3458     size_t sym_name_size,
3459     Sized_relobj_file<64, true>::Symbols* sympointers,
3460     size_t* defined);
3461 #endif
3462
3463 #ifdef HAVE_TARGET_32_LITTLE
3464 template
3465 Symbol*
3466 Symbol_table::add_from_pluginobj<32, false>(
3467     Sized_pluginobj<32, false>* obj,
3468     const char* name,
3469     const char* ver,
3470     elfcpp::Sym<32, false>* sym);
3471 #endif
3472
3473 #ifdef HAVE_TARGET_32_BIG
3474 template
3475 Symbol*
3476 Symbol_table::add_from_pluginobj<32, true>(
3477     Sized_pluginobj<32, true>* obj,
3478     const char* name,
3479     const char* ver,
3480     elfcpp::Sym<32, true>* sym);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_64_LITTLE
3484 template
3485 Symbol*
3486 Symbol_table::add_from_pluginobj<64, false>(
3487     Sized_pluginobj<64, false>* obj,
3488     const char* name,
3489     const char* ver,
3490     elfcpp::Sym<64, false>* sym);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_64_BIG
3494 template
3495 Symbol*
3496 Symbol_table::add_from_pluginobj<64, true>(
3497     Sized_pluginobj<64, true>* obj,
3498     const char* name,
3499     const char* ver,
3500     elfcpp::Sym<64, true>* sym);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_32_LITTLE
3504 template
3505 void
3506 Symbol_table::add_from_dynobj<32, false>(
3507     Sized_dynobj<32, false>* dynobj,
3508     const unsigned char* syms,
3509     size_t count,
3510     const char* sym_names,
3511     size_t sym_name_size,
3512     const unsigned char* versym,
3513     size_t versym_size,
3514     const std::vector<const char*>* version_map,
3515     Sized_relobj_file<32, false>::Symbols* sympointers,
3516     size_t* defined);
3517 #endif
3518
3519 #ifdef HAVE_TARGET_32_BIG
3520 template
3521 void
3522 Symbol_table::add_from_dynobj<32, true>(
3523     Sized_dynobj<32, true>* dynobj,
3524     const unsigned char* syms,
3525     size_t count,
3526     const char* sym_names,
3527     size_t sym_name_size,
3528     const unsigned char* versym,
3529     size_t versym_size,
3530     const std::vector<const char*>* version_map,
3531     Sized_relobj_file<32, true>::Symbols* sympointers,
3532     size_t* defined);
3533 #endif
3534
3535 #ifdef HAVE_TARGET_64_LITTLE
3536 template
3537 void
3538 Symbol_table::add_from_dynobj<64, false>(
3539     Sized_dynobj<64, false>* dynobj,
3540     const unsigned char* syms,
3541     size_t count,
3542     const char* sym_names,
3543     size_t sym_name_size,
3544     const unsigned char* versym,
3545     size_t versym_size,
3546     const std::vector<const char*>* version_map,
3547     Sized_relobj_file<64, false>::Symbols* sympointers,
3548     size_t* defined);
3549 #endif
3550
3551 #ifdef HAVE_TARGET_64_BIG
3552 template
3553 void
3554 Symbol_table::add_from_dynobj<64, true>(
3555     Sized_dynobj<64, true>* dynobj,
3556     const unsigned char* syms,
3557     size_t count,
3558     const char* sym_names,
3559     size_t sym_name_size,
3560     const unsigned char* versym,
3561     size_t versym_size,
3562     const std::vector<const char*>* version_map,
3563     Sized_relobj_file<64, true>::Symbols* sympointers,
3564     size_t* defined);
3565 #endif
3566
3567 #ifdef HAVE_TARGET_32_LITTLE
3568 template
3569 Sized_symbol<32>*
3570 Symbol_table::add_from_incrobj(
3571     Object* obj,
3572     const char* name,
3573     const char* ver,
3574     elfcpp::Sym<32, false>* sym);
3575 #endif
3576
3577 #ifdef HAVE_TARGET_32_BIG
3578 template
3579 Sized_symbol<32>*
3580 Symbol_table::add_from_incrobj(
3581     Object* obj,
3582     const char* name,
3583     const char* ver,
3584     elfcpp::Sym<32, true>* sym);
3585 #endif
3586
3587 #ifdef HAVE_TARGET_64_LITTLE
3588 template
3589 Sized_symbol<64>*
3590 Symbol_table::add_from_incrobj(
3591     Object* obj,
3592     const char* name,
3593     const char* ver,
3594     elfcpp::Sym<64, false>* sym);
3595 #endif
3596
3597 #ifdef HAVE_TARGET_64_BIG
3598 template
3599 Sized_symbol<64>*
3600 Symbol_table::add_from_incrobj(
3601     Object* obj,
3602     const char* name,
3603     const char* ver,
3604     elfcpp::Sym<64, true>* sym);
3605 #endif
3606
3607 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3608 template
3609 void
3610 Symbol_table::define_with_copy_reloc<32>(
3611     Sized_symbol<32>* sym,
3612     Output_data* posd,
3613     elfcpp::Elf_types<32>::Elf_Addr value);
3614 #endif
3615
3616 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3617 template
3618 void
3619 Symbol_table::define_with_copy_reloc<64>(
3620     Sized_symbol<64>* sym,
3621     Output_data* posd,
3622     elfcpp::Elf_types<64>::Elf_Addr value);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_LITTLE
3626 template
3627 void
3628 Warnings::issue_warning<32, false>(const Symbol* sym,
3629                                    const Relocate_info<32, false>* relinfo,
3630                                    size_t relnum, off_t reloffset) const;
3631 #endif
3632
3633 #ifdef HAVE_TARGET_32_BIG
3634 template
3635 void
3636 Warnings::issue_warning<32, true>(const Symbol* sym,
3637                                   const Relocate_info<32, true>* relinfo,
3638                                   size_t relnum, off_t reloffset) const;
3639 #endif
3640
3641 #ifdef HAVE_TARGET_64_LITTLE
3642 template
3643 void
3644 Warnings::issue_warning<64, false>(const Symbol* sym,
3645                                    const Relocate_info<64, false>* relinfo,
3646                                    size_t relnum, off_t reloffset) const;
3647 #endif
3648
3649 #ifdef HAVE_TARGET_64_BIG
3650 template
3651 void
3652 Warnings::issue_warning<64, true>(const Symbol* sym,
3653                                   const Relocate_info<64, true>* relinfo,
3654                                   size_t relnum, off_t reloffset) const;
3655 #endif
3656
3657 } // End namespace gold.