[GOLD] PowerPC style fix
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // or the symbol should be globally unique (GNU_UNIQUE),
423   // and the symbol is defined in a regular object and is
424   // externally visible, we need to add it.
425   if ((parameters->options().export_dynamic()
426        || parameters->options().shared()
427        || (parameters->options().gnu_unique()
428            && this->binding() == elfcpp::STB_GNU_UNIQUE))
429       && !this->is_from_dynobj()
430       && !this->is_undefined()
431       && this->is_externally_visible())
432     return true;
433
434   return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443   // If we are not generating an executable, then no final values are
444   // known, since they will change at runtime, with the exception of
445   // TLS symbols in a position-independent executable.
446   if ((parameters->options().output_is_position_independent()
447        || parameters->options().relocatable())
448       && !(this->type() == elfcpp::STT_TLS
449            && parameters->options().pie()))
450     return false;
451
452   // If the symbol is not from an object file, and is not undefined,
453   // then it is defined, and known.
454   if (this->source_ != FROM_OBJECT)
455     {
456       if (this->source_ != IS_UNDEFINED)
457         return true;
458     }
459   else
460     {
461       // If the symbol is from a dynamic object, then the final value
462       // is not known.
463       if (this->object()->is_dynamic())
464         return false;
465
466       // If the symbol is not undefined (it is defined or common),
467       // then the final value is known.
468       if (!this->is_undefined())
469         return true;
470     }
471
472   // If the symbol is undefined, then whether the final value is known
473   // depends on whether we are doing a static link.  If we are doing a
474   // dynamic link, then the final value could be filled in at runtime.
475   // This could reasonably be the case for a weak undefined symbol.
476   return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484   switch (this->source_)
485     {
486     case FROM_OBJECT:
487       {
488         unsigned int shndx = this->u_.from_object.shndx;
489         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490           {
491             gold_assert(!this->u_.from_object.object->is_dynamic());
492             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494             return relobj->output_section(shndx);
495           }
496         return NULL;
497       }
498
499     case IN_OUTPUT_DATA:
500       return this->u_.in_output_data.output_data->output_section();
501
502     case IN_OUTPUT_SEGMENT:
503     case IS_CONSTANT:
504     case IS_UNDEFINED:
505       return NULL;
506
507     default:
508       gold_unreachable();
509     }
510 }
511
512 // Set the symbol's output section.  This is used for symbols defined
513 // in scripts.  This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519   switch (this->source_)
520     {
521     case FROM_OBJECT:
522     case IN_OUTPUT_DATA:
523       gold_assert(this->output_section() == os);
524       break;
525     case IS_CONSTANT:
526       this->source_ = IN_OUTPUT_DATA;
527       this->u_.in_output_data.output_data = os;
528       this->u_.in_output_data.offset_is_from_end = false;
529       break;
530     case IN_OUTPUT_SEGMENT:
531     case IS_UNDEFINED:
532     default:
533       gold_unreachable();
534     }
535 }
536
537 // Set the symbol's output segment.  This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544   gold_assert(this->is_predefined_);
545   this->source_ = IN_OUTPUT_SEGMENT;
546   this->u_.in_output_segment.output_segment = os;
547   this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined.  This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557   this->source_ = IS_UNDEFINED;
558   this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564                            const Version_script_info& version_script)
565   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566     forwarders_(), commons_(), tls_commons_(), small_commons_(),
567     large_commons_(), forced_locals_(), warnings_(),
568     version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570   namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function.  This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582                                           const Symbol_table_key& k2) const
583 {
584   return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590   return (parameters->options().icf_enabled()
591           && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void 
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600   for (options::String_set::const_iterator p =
601          parameters->options().undefined_begin();
602        p != parameters->options().undefined_end();
603        ++p)
604     {
605       const char* name = p->c_str();
606       Symbol* sym = this->lookup(name);
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT 
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614
615   for (options::String_set::const_iterator p =
616          parameters->options().export_dynamic_symbol_begin();
617        p != parameters->options().export_dynamic_symbol_end();
618        ++p)
619     {
620       const char* name = p->c_str();
621       Symbol* sym = this->lookup(name);
622       // It's not an error if a symbol named by --export-dynamic-symbol
623       // is undefined.
624       if (sym != NULL
625           && sym->source() == Symbol::FROM_OBJECT 
626           && !sym->object()->is_dynamic())
627         {
628           this->gc_mark_symbol(sym);
629         }
630     }
631
632   for (Script_options::referenced_const_iterator p =
633          layout->script_options()->referenced_begin();
634        p != layout->script_options()->referenced_end();
635        ++p)
636     {
637       Symbol* sym = this->lookup(p->c_str());
638       gold_assert(sym != NULL);
639       if (sym->source() == Symbol::FROM_OBJECT
640           && !sym->object()->is_dynamic())
641         {
642           this->gc_mark_symbol(sym);
643         }
644     }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650   // Add the object and section to the work list.
651   bool is_ordinary;
652   unsigned int shndx = sym->shndx(&is_ordinary);
653   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654     {
655       gold_assert(this->gc_!= NULL);
656       Relobj* relobj = static_cast<Relobj*>(sym->object());
657       this->gc_->worklist().push_back(Section_id(relobj, shndx));
658     }
659   parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void 
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668       && !sym->object()->is_dynamic())
669     this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677   gold_assert(from != to);
678   gold_assert(!from->is_forwarder() && !to->is_forwarder());
679   this->forwarders_[from] = to;
680   from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688   gold_assert(from->is_forwarder());
689   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690     this->forwarders_.find(from);
691   gold_assert(p != this->forwarders_.end());
692   return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700   Stringpool::Key name_key;
701   name = this->namepool_.find(name, &name_key);
702   if (name == NULL)
703     return NULL;
704
705   Stringpool::Key version_key = 0;
706   if (version != NULL)
707     {
708       version = this->namepool_.find(version, &version_key);
709       if (version == NULL)
710         return NULL;
711     }
712
713   Symbol_table_key key(name_key, version_key);
714   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715   if (p == this->table_.end())
716     return NULL;
717   return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol.  This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version.  Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731   elfcpp::Sym_write<size, big_endian> esym(buf);
732   // We don't bother to set the st_name or the st_shndx field.
733   esym.put_st_value(from->value());
734   esym.put_st_size(from->symsize());
735   esym.put_st_info(from->binding(), from->type());
736   esym.put_st_other(from->visibility(), from->nonvis());
737   bool is_ordinary;
738   unsigned int shndx = from->shndx(&is_ordinary);
739   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740                 from->version(), true);
741   if (from->in_reg())
742     to->set_in_reg();
743   if (from->in_dyn())
744     to->set_in_dyn();
745   if (parameters->options().gc_sections())
746     this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755   if (!sym->is_defined() && !sym->is_common())
756     return;
757   if (sym->is_forced_local())
758     {
759       // We already got this one.
760       return;
761     }
762   sym->set_is_forced_local();
763   this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773   // For some targets, we need to ignore a specific character when
774   // wrapping, and add it back later.
775   char prefix = '\0';
776   if (name[0] == parameters->target().wrap_char())
777     {
778       prefix = name[0];
779       ++name;
780     }
781
782   if (parameters->options().is_wrap(name))
783     {
784       // Turn NAME into __wrap_NAME.
785       std::string s;
786       if (prefix != '\0')
787         s += prefix;
788       s += "__wrap_";
789       s += name;
790
791       // This will give us both the old and new name in NAMEPOOL_, but
792       // that is OK.  Only the versions we need will wind up in the
793       // real string table in the output file.
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796
797   const char* const real_prefix = "__real_";
798   const size_t real_prefix_length = strlen(real_prefix);
799   if (strncmp(name, real_prefix, real_prefix_length) == 0
800       && parameters->options().is_wrap(name + real_prefix_length))
801     {
802       // Turn __real_NAME into NAME.
803       std::string s;
804       if (prefix != '\0')
805         s += prefix;
806       s += name + real_prefix_length;
807       return this->namepool_.add(s.c_str(), true, name_key);
808     }
809
810   return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version.  SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822                                      bool default_is_new,
823                                      Symbol_table_type::iterator pdef)
824 {
825   if (default_is_new)
826     {
827       // This is the first time we have seen NAME/NULL.  Make
828       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829       // version.
830       pdef->second = sym;
831       sym->set_is_default();
832     }
833   else if (pdef->second == sym)
834     {
835       // NAME/NULL already points to NAME/VERSION.  Don't mark the
836       // symbol as the default if it is not already the default.
837     }
838   else
839     {
840       // This is the unfortunate case where we already have entries
841       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
842       // NAME/VERSION where VERSION is the default version.  We have
843       // already resolved this new symbol with the existing
844       // NAME/VERSION symbol.
845
846       // It's possible that NAME/NULL and NAME/VERSION are both
847       // defined in regular objects.  This can only happen if one
848       // object file defines foo and another defines foo@@ver.  This
849       // is somewhat obscure, but we call it a multiple definition
850       // error.
851
852       // It's possible that NAME/NULL actually has a version, in which
853       // case it won't be the same as VERSION.  This happens with
854       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
855       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
856       // then see an unadorned t2_2 in an object file and give it
857       // version VER1 from the version script.  This looks like a
858       // default definition for VER1, so it looks like we should merge
859       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
860       // not obvious that this is an error, either.  So we just punt.
861
862       // If one of the symbols has non-default visibility, and the
863       // other is defined in a shared object, then they are different
864       // symbols.
865
866       // Otherwise, we just resolve the symbols as though they were
867       // the same.
868
869       if (pdef->second->version() != NULL)
870         gold_assert(pdef->second->version() != sym->version());
871       else if (sym->visibility() != elfcpp::STV_DEFAULT
872                && pdef->second->is_from_dynobj())
873         ;
874       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875                && sym->is_from_dynobj())
876         ;
877       else
878         {
879           const Sized_symbol<size>* symdef;
880           symdef = this->get_sized_symbol<size>(pdef->second);
881           Symbol_table::resolve<size, big_endian>(sym, symdef);
882           this->make_forwarder(pdef->second, sym);
883           pdef->second = sym;
884           sym->set_is_default();
885         }
886     }
887 }
888
889 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
890 // name and VERSION is the version; both are canonicalized.  DEF is
891 // whether this is the default version.  ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol.  That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol.  This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION.  If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure.  That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table.  We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files.  So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code.  ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922                               const char* name,
923                               Stringpool::Key name_key,
924                               const char* version,
925                               Stringpool::Key version_key,
926                               bool is_default_version,
927                               const elfcpp::Sym<size, big_endian>& sym,
928                               unsigned int st_shndx,
929                               bool is_ordinary,
930                               unsigned int orig_st_shndx)
931 {
932   // Print a message if this symbol is being traced.
933   if (parameters->options().is_trace_symbol(name))
934     {
935       if (orig_st_shndx == elfcpp::SHN_UNDEF)
936         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937       else
938         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939     }
940
941   // For an undefined symbol, we may need to adjust the name using
942   // --wrap.
943   if (orig_st_shndx == elfcpp::SHN_UNDEF
944       && parameters->options().any_wrap())
945     {
946       const char* wrap_name = this->wrap_symbol(name, &name_key);
947       if (wrap_name != name)
948         {
949           // If we see a reference to malloc with version GLIBC_2.0,
950           // and we turn it into a reference to __wrap_malloc, then we
951           // discard the version number.  Otherwise the user would be
952           // required to specify the correct version for
953           // __wrap_malloc.
954           version = NULL;
955           version_key = 0;
956           name = wrap_name;
957         }
958     }
959
960   Symbol* const snull = NULL;
961   std::pair<typename Symbol_table_type::iterator, bool> ins =
962     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963                                        snull));
964
965   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966     std::make_pair(this->table_.end(), false);
967   if (is_default_version)
968     {
969       const Stringpool::Key vnull_key = 0;
970       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971                                                                      vnull_key),
972                                                       snull));
973     }
974
975   // ins.first: an iterator, which is a pointer to a pair.
976   // ins.first->first: the key (a pair of name and version).
977   // ins.first->second: the value (Symbol*).
978   // ins.second: true if new entry was inserted, false if not.
979
980   Sized_symbol<size>* ret;
981   bool was_undefined;
982   bool was_common;
983   if (!ins.second)
984     {
985       // We already have an entry for NAME/VERSION.
986       ret = this->get_sized_symbol<size>(ins.first->second);
987       gold_assert(ret != NULL);
988
989       was_undefined = ret->is_undefined();
990       // Commons from plugins are just placeholders.
991       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994                     version, is_default_version);
995       if (parameters->options().gc_sections())
996         this->gc_mark_dyn_syms(ret);
997
998       if (is_default_version)
999         this->define_default_version<size, big_endian>(ret, insdefault.second,
1000                                                        insdefault.first);
1001       else
1002         {
1003           bool dummy;
1004           if (version != NULL
1005               && ret->source() == Symbol::FROM_OBJECT
1006               && ret->object() == object
1007               && is_ordinary
1008               && ret->shndx(&dummy) == st_shndx
1009               && ret->is_default())
1010             {
1011               // We have seen NAME/VERSION already, and marked it as the
1012               // default version, but now we see a definition for
1013               // NAME/VERSION that is not the default version. This can
1014               // happen when the assembler generates two symbols for
1015               // a symbol as a result of a ".symver foo,foo@VER"
1016               // directive. We see the first unversioned symbol and
1017               // we may mark it as the default version (from a
1018               // version script); then we see the second versioned
1019               // symbol and we need to override the first.
1020               // In any other case, the two symbols should have generated
1021               // a multiple definition error.
1022               // (See PR gold/18703.)
1023               ret->set_is_not_default();
1024               const Stringpool::Key vnull_key = 0;
1025               this->table_.erase(std::make_pair(name_key, vnull_key));
1026             }
1027         }
1028     }
1029   else
1030     {
1031       // This is the first time we have seen NAME/VERSION.
1032       gold_assert(ins.first->second == NULL);
1033
1034       if (is_default_version && !insdefault.second)
1035         {
1036           // We already have an entry for NAME/NULL.  If we override
1037           // it, then change it to NAME/VERSION.
1038           ret = this->get_sized_symbol<size>(insdefault.first->second);
1039
1040           was_undefined = ret->is_undefined();
1041           // Commons from plugins are just placeholders.
1042           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1043
1044           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1045                         version, is_default_version);
1046           if (parameters->options().gc_sections())
1047             this->gc_mark_dyn_syms(ret);
1048           ins.first->second = ret;
1049         }
1050       else
1051         {
1052           was_undefined = false;
1053           was_common = false;
1054
1055           Sized_target<size, big_endian>* target =
1056             parameters->sized_target<size, big_endian>();
1057           if (!target->has_make_symbol())
1058             ret = new Sized_symbol<size>();
1059           else
1060             {
1061               ret = target->make_symbol();
1062               if (ret == NULL)
1063                 {
1064                   // This means that we don't want a symbol table
1065                   // entry after all.
1066                   if (!is_default_version)
1067                     this->table_.erase(ins.first);
1068                   else
1069                     {
1070                       this->table_.erase(insdefault.first);
1071                       // Inserting INSDEFAULT invalidated INS.
1072                       this->table_.erase(std::make_pair(name_key,
1073                                                         version_key));
1074                     }
1075                   return NULL;
1076                 }
1077             }
1078
1079           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1080
1081           ins.first->second = ret;
1082           if (is_default_version)
1083             {
1084               // This is the first time we have seen NAME/NULL.  Point
1085               // it at the new entry for NAME/VERSION.
1086               gold_assert(insdefault.second);
1087               insdefault.first->second = ret;
1088             }
1089         }
1090
1091       if (is_default_version)
1092         ret->set_is_default();
1093     }
1094
1095   // Record every time we see a new undefined symbol, to speed up
1096   // archive groups.
1097   if (!was_undefined && ret->is_undefined())
1098     {
1099       ++this->saw_undefined_;
1100       if (parameters->options().has_plugins())
1101         parameters->options().plugins()->new_undefined_symbol(ret);
1102     }
1103
1104   // Keep track of common symbols, to speed up common symbol
1105   // allocation.  Don't record commons from plugin objects;
1106   // we need to wait until we see the real symbol in the
1107   // replacement file.
1108   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1109     {
1110       if (ret->type() == elfcpp::STT_TLS)
1111         this->tls_commons_.push_back(ret);
1112       else if (!is_ordinary
1113                && st_shndx == parameters->target().small_common_shndx())
1114         this->small_commons_.push_back(ret);
1115       else if (!is_ordinary
1116                && st_shndx == parameters->target().large_common_shndx())
1117         this->large_commons_.push_back(ret);
1118       else
1119         this->commons_.push_back(ret);
1120     }
1121
1122   // If we're not doing a relocatable link, then any symbol with
1123   // hidden or internal visibility is local.
1124   if ((ret->visibility() == elfcpp::STV_HIDDEN
1125        || ret->visibility() == elfcpp::STV_INTERNAL)
1126       && (ret->binding() == elfcpp::STB_GLOBAL
1127           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1128           || ret->binding() == elfcpp::STB_WEAK)
1129       && !parameters->options().relocatable())
1130     this->force_local(ret);
1131
1132   return ret;
1133 }
1134
1135 // Add all the symbols in a relocatable object to the hash table.
1136
1137 template<int size, bool big_endian>
1138 void
1139 Symbol_table::add_from_relobj(
1140     Sized_relobj_file<size, big_endian>* relobj,
1141     const unsigned char* syms,
1142     size_t count,
1143     size_t symndx_offset,
1144     const char* sym_names,
1145     size_t sym_name_size,
1146     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1147     size_t* defined)
1148 {
1149   *defined = 0;
1150
1151   gold_assert(size == parameters->target().get_size());
1152
1153   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1154
1155   const bool just_symbols = relobj->just_symbols();
1156
1157   const unsigned char* p = syms;
1158   for (size_t i = 0; i < count; ++i, p += sym_size)
1159     {
1160       (*sympointers)[i] = NULL;
1161
1162       elfcpp::Sym<size, big_endian> sym(p);
1163
1164       unsigned int st_name = sym.get_st_name();
1165       if (st_name >= sym_name_size)
1166         {
1167           relobj->error(_("bad global symbol name offset %u at %zu"),
1168                         st_name, i);
1169           continue;
1170         }
1171
1172       const char* name = sym_names + st_name;
1173
1174       if (strcmp (name, "__gnu_lto_slim") == 0)
1175         gold_info(_("%s: plugin needed to handle lto object"),
1176                   relobj->name().c_str());
1177
1178       bool is_ordinary;
1179       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1180                                                        sym.get_st_shndx(),
1181                                                        &is_ordinary);
1182       unsigned int orig_st_shndx = st_shndx;
1183       if (!is_ordinary)
1184         orig_st_shndx = elfcpp::SHN_UNDEF;
1185
1186       if (st_shndx != elfcpp::SHN_UNDEF)
1187         ++*defined;
1188
1189       // A symbol defined in a section which we are not including must
1190       // be treated as an undefined symbol.
1191       bool is_defined_in_discarded_section = false;
1192       if (st_shndx != elfcpp::SHN_UNDEF
1193           && is_ordinary
1194           && !relobj->is_section_included(st_shndx)
1195           && !this->is_section_folded(relobj, st_shndx))
1196         {
1197           st_shndx = elfcpp::SHN_UNDEF;
1198           is_defined_in_discarded_section = true;
1199         }
1200
1201       // In an object file, an '@' in the name separates the symbol
1202       // name from the version name.  If there are two '@' characters,
1203       // this is the default version.
1204       const char* ver = strchr(name, '@');
1205       Stringpool::Key ver_key = 0;
1206       int namelen = 0;
1207       // IS_DEFAULT_VERSION: is the version default?
1208       // IS_FORCED_LOCAL: is the symbol forced local?
1209       bool is_default_version = false;
1210       bool is_forced_local = false;
1211
1212       // FIXME: For incremental links, we don't store version information,
1213       // so we need to ignore version symbols for now.
1214       if (parameters->incremental_update() && ver != NULL)
1215         {
1216           namelen = ver - name;
1217           ver = NULL;
1218         }
1219
1220       if (ver != NULL)
1221         {
1222           // The symbol name is of the form foo@VERSION or foo@@VERSION
1223           namelen = ver - name;
1224           ++ver;
1225           if (*ver == '@')
1226             {
1227               is_default_version = true;
1228               ++ver;
1229             }
1230           ver = this->namepool_.add(ver, true, &ver_key);
1231         }
1232       // We don't want to assign a version to an undefined symbol,
1233       // even if it is listed in the version script.  FIXME: What
1234       // about a common symbol?
1235       else
1236         {
1237           namelen = strlen(name);
1238           if (!this->version_script_.empty()
1239               && st_shndx != elfcpp::SHN_UNDEF)
1240             {
1241               // The symbol name did not have a version, but the
1242               // version script may assign a version anyway.
1243               std::string version;
1244               bool is_global;
1245               if (this->version_script_.get_symbol_version(name, &version,
1246                                                            &is_global))
1247                 {
1248                   if (!is_global)
1249                     is_forced_local = true;
1250                   else if (!version.empty())
1251                     {
1252                       ver = this->namepool_.add_with_length(version.c_str(),
1253                                                             version.length(),
1254                                                             true,
1255                                                             &ver_key);
1256                       is_default_version = true;
1257                     }
1258                 }
1259             }
1260         }
1261
1262       elfcpp::Sym<size, big_endian>* psym = &sym;
1263       unsigned char symbuf[sym_size];
1264       elfcpp::Sym<size, big_endian> sym2(symbuf);
1265       if (just_symbols)
1266         {
1267           memcpy(symbuf, p, sym_size);
1268           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1269           if (orig_st_shndx != elfcpp::SHN_UNDEF
1270               && is_ordinary
1271               && relobj->e_type() == elfcpp::ET_REL)
1272             {
1273               // Symbol values in relocatable object files are section
1274               // relative.  This is normally what we want, but since here
1275               // we are converting the symbol to absolute we need to add
1276               // the section address.  The section address in an object
1277               // file is normally zero, but people can use a linker
1278               // script to change it.
1279               sw.put_st_value(sym.get_st_value()
1280                               + relobj->section_address(orig_st_shndx));
1281             }
1282           st_shndx = elfcpp::SHN_ABS;
1283           is_ordinary = false;
1284           psym = &sym2;
1285         }
1286
1287       // Fix up visibility if object has no-export set.
1288       if (relobj->no_export()
1289           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1290         {
1291           // We may have copied symbol already above.
1292           if (psym != &sym2)
1293             {
1294               memcpy(symbuf, p, sym_size);
1295               psym = &sym2;
1296             }
1297
1298           elfcpp::STV visibility = sym2.get_st_visibility();
1299           if (visibility == elfcpp::STV_DEFAULT
1300               || visibility == elfcpp::STV_PROTECTED)
1301             {
1302               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1303               unsigned char nonvis = sym2.get_st_nonvis();
1304               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1305             }
1306         }
1307
1308       Stringpool::Key name_key;
1309       name = this->namepool_.add_with_length(name, namelen, true,
1310                                              &name_key);
1311
1312       Sized_symbol<size>* res;
1313       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1314                                   is_default_version, *psym, st_shndx,
1315                                   is_ordinary, orig_st_shndx);
1316       
1317       if (is_forced_local)
1318         this->force_local(res);
1319
1320       // Do not treat this symbol as garbage if this symbol will be
1321       // exported to the dynamic symbol table.  This is true when
1322       // building a shared library or using --export-dynamic and
1323       // the symbol is externally visible.
1324       if (parameters->options().gc_sections()
1325           && res->is_externally_visible()
1326           && !res->is_from_dynobj()
1327           && (parameters->options().shared()
1328               || parameters->options().export_dynamic()
1329               || parameters->options().in_dynamic_list(res->name())))
1330         this->gc_mark_symbol(res);
1331
1332       if (is_defined_in_discarded_section)
1333         res->set_is_defined_in_discarded_section();
1334
1335       (*sympointers)[i] = res;
1336     }
1337 }
1338
1339 // Add a symbol from a plugin-claimed file.
1340
1341 template<int size, bool big_endian>
1342 Symbol*
1343 Symbol_table::add_from_pluginobj(
1344     Sized_pluginobj<size, big_endian>* obj,
1345     const char* name,
1346     const char* ver,
1347     elfcpp::Sym<size, big_endian>* sym)
1348 {
1349   unsigned int st_shndx = sym->get_st_shndx();
1350   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1351
1352   Stringpool::Key ver_key = 0;
1353   bool is_default_version = false;
1354   bool is_forced_local = false;
1355
1356   if (ver != NULL)
1357     {
1358       ver = this->namepool_.add(ver, true, &ver_key);
1359     }
1360   // We don't want to assign a version to an undefined symbol,
1361   // even if it is listed in the version script.  FIXME: What
1362   // about a common symbol?
1363   else
1364     {
1365       if (!this->version_script_.empty()
1366           && st_shndx != elfcpp::SHN_UNDEF)
1367         {
1368           // The symbol name did not have a version, but the
1369           // version script may assign a version anyway.
1370           std::string version;
1371           bool is_global;
1372           if (this->version_script_.get_symbol_version(name, &version,
1373                                                        &is_global))
1374             {
1375               if (!is_global)
1376                 is_forced_local = true;
1377               else if (!version.empty())
1378                 {
1379                   ver = this->namepool_.add_with_length(version.c_str(),
1380                                                         version.length(),
1381                                                         true,
1382                                                         &ver_key);
1383                   is_default_version = true;
1384                 }
1385             }
1386         }
1387     }
1388
1389   Stringpool::Key name_key;
1390   name = this->namepool_.add(name, true, &name_key);
1391
1392   Sized_symbol<size>* res;
1393   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1394                               is_default_version, *sym, st_shndx,
1395                               is_ordinary, st_shndx);
1396
1397   if (is_forced_local)
1398     this->force_local(res);
1399
1400   return res;
1401 }
1402
1403 // Add all the symbols in a dynamic object to the hash table.
1404
1405 template<int size, bool big_endian>
1406 void
1407 Symbol_table::add_from_dynobj(
1408     Sized_dynobj<size, big_endian>* dynobj,
1409     const unsigned char* syms,
1410     size_t count,
1411     const char* sym_names,
1412     size_t sym_name_size,
1413     const unsigned char* versym,
1414     size_t versym_size,
1415     const std::vector<const char*>* version_map,
1416     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1417     size_t* defined)
1418 {
1419   *defined = 0;
1420
1421   gold_assert(size == parameters->target().get_size());
1422
1423   if (dynobj->just_symbols())
1424     {
1425       gold_error(_("--just-symbols does not make sense with a shared object"));
1426       return;
1427     }
1428
1429   // FIXME: For incremental links, we don't store version information,
1430   // so we need to ignore version symbols for now.
1431   if (parameters->incremental_update())
1432     versym = NULL;
1433
1434   if (versym != NULL && versym_size / 2 < count)
1435     {
1436       dynobj->error(_("too few symbol versions"));
1437       return;
1438     }
1439
1440   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1441
1442   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1443   // weak aliases.  This is necessary because if the dynamic object
1444   // provides the same variable under two names, one of which is a
1445   // weak definition, and the regular object refers to the weak
1446   // definition, we have to put both the weak definition and the
1447   // strong definition into the dynamic symbol table.  Given a weak
1448   // definition, the only way that we can find the corresponding
1449   // strong definition, if any, is to search the symbol table.
1450   std::vector<Sized_symbol<size>*> object_symbols;
1451
1452   const unsigned char* p = syms;
1453   const unsigned char* vs = versym;
1454   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1455     {
1456       elfcpp::Sym<size, big_endian> sym(p);
1457
1458       if (sympointers != NULL)
1459         (*sympointers)[i] = NULL;
1460
1461       // Ignore symbols with local binding or that have
1462       // internal or hidden visibility.
1463       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1464           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1465           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1466         continue;
1467
1468       // A protected symbol in a shared library must be treated as a
1469       // normal symbol when viewed from outside the shared library.
1470       // Implement this by overriding the visibility here.
1471       // Likewise, an IFUNC symbol in a shared library must be treated
1472       // as a normal FUNC symbol.
1473       elfcpp::Sym<size, big_endian>* psym = &sym;
1474       unsigned char symbuf[sym_size];
1475       elfcpp::Sym<size, big_endian> sym2(symbuf);
1476       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1477           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1478         {
1479           memcpy(symbuf, p, sym_size);
1480           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1481           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1482             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1483           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1484             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1485           psym = &sym2;
1486         }
1487
1488       unsigned int st_name = psym->get_st_name();
1489       if (st_name >= sym_name_size)
1490         {
1491           dynobj->error(_("bad symbol name offset %u at %zu"),
1492                         st_name, i);
1493           continue;
1494         }
1495
1496       const char* name = sym_names + st_name;
1497
1498       bool is_ordinary;
1499       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1500                                                        &is_ordinary);
1501
1502       if (st_shndx != elfcpp::SHN_UNDEF)
1503         ++*defined;
1504
1505       Sized_symbol<size>* res;
1506
1507       if (versym == NULL)
1508         {
1509           Stringpool::Key name_key;
1510           name = this->namepool_.add(name, true, &name_key);
1511           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1512                                       false, *psym, st_shndx, is_ordinary,
1513                                       st_shndx);
1514         }
1515       else
1516         {
1517           // Read the version information.
1518
1519           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1520
1521           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1522           v &= elfcpp::VERSYM_VERSION;
1523
1524           // The Sun documentation says that V can be VER_NDX_LOCAL,
1525           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1526           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1527           // The old GNU linker will happily generate VER_NDX_LOCAL
1528           // for an undefined symbol.  I don't know what the Sun
1529           // linker will generate.
1530
1531           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1532               && st_shndx != elfcpp::SHN_UNDEF)
1533             {
1534               // This symbol should not be visible outside the object.
1535               continue;
1536             }
1537
1538           // At this point we are definitely going to add this symbol.
1539           Stringpool::Key name_key;
1540           name = this->namepool_.add(name, true, &name_key);
1541
1542           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1543               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1544             {
1545               // This symbol does not have a version.
1546               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1547                                           false, *psym, st_shndx, is_ordinary,
1548                                           st_shndx);
1549             }
1550           else
1551             {
1552               if (v >= version_map->size())
1553                 {
1554                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1555                                 i, v);
1556                   continue;
1557                 }
1558
1559               const char* version = (*version_map)[v];
1560               if (version == NULL)
1561                 {
1562                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1563                                 i, v);
1564                   continue;
1565                 }
1566
1567               Stringpool::Key version_key;
1568               version = this->namepool_.add(version, true, &version_key);
1569
1570               // If this is an absolute symbol, and the version name
1571               // and symbol name are the same, then this is the
1572               // version definition symbol.  These symbols exist to
1573               // support using -u to pull in particular versions.  We
1574               // do not want to record a version for them.
1575               if (st_shndx == elfcpp::SHN_ABS
1576                   && !is_ordinary
1577                   && name_key == version_key)
1578                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1579                                             false, *psym, st_shndx, is_ordinary,
1580                                             st_shndx);
1581               else
1582                 {
1583                   const bool is_default_version =
1584                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1585                   res = this->add_from_object(dynobj, name, name_key, version,
1586                                               version_key, is_default_version,
1587                                               *psym, st_shndx,
1588                                               is_ordinary, st_shndx);
1589                 }
1590             }
1591         }
1592
1593       // Note that it is possible that RES was overridden by an
1594       // earlier object, in which case it can't be aliased here.
1595       if (st_shndx != elfcpp::SHN_UNDEF
1596           && is_ordinary
1597           && psym->get_st_type() == elfcpp::STT_OBJECT
1598           && res->source() == Symbol::FROM_OBJECT
1599           && res->object() == dynobj)
1600         object_symbols.push_back(res);
1601
1602       if (sympointers != NULL)
1603         (*sympointers)[i] = res;
1604     }
1605
1606   this->record_weak_aliases(&object_symbols);
1607 }
1608
1609 // Add a symbol from a incremental object file.
1610
1611 template<int size, bool big_endian>
1612 Sized_symbol<size>*
1613 Symbol_table::add_from_incrobj(
1614     Object* obj,
1615     const char* name,
1616     const char* ver,
1617     elfcpp::Sym<size, big_endian>* sym)
1618 {
1619   unsigned int st_shndx = sym->get_st_shndx();
1620   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1621
1622   Stringpool::Key ver_key = 0;
1623   bool is_default_version = false;
1624   bool is_forced_local = false;
1625
1626   Stringpool::Key name_key;
1627   name = this->namepool_.add(name, true, &name_key);
1628
1629   Sized_symbol<size>* res;
1630   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1631                               is_default_version, *sym, st_shndx,
1632                               is_ordinary, st_shndx);
1633
1634   if (is_forced_local)
1635     this->force_local(res);
1636
1637   return res;
1638 }
1639
1640 // This is used to sort weak aliases.  We sort them first by section
1641 // index, then by offset, then by weak ahead of strong.
1642
1643 template<int size>
1644 class Weak_alias_sorter
1645 {
1646  public:
1647   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1648 };
1649
1650 template<int size>
1651 bool
1652 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1653                                     const Sized_symbol<size>* s2) const
1654 {
1655   bool is_ordinary;
1656   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1657   gold_assert(is_ordinary);
1658   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1659   gold_assert(is_ordinary);
1660   if (s1_shndx != s2_shndx)
1661     return s1_shndx < s2_shndx;
1662
1663   if (s1->value() != s2->value())
1664     return s1->value() < s2->value();
1665   if (s1->binding() != s2->binding())
1666     {
1667       if (s1->binding() == elfcpp::STB_WEAK)
1668         return true;
1669       if (s2->binding() == elfcpp::STB_WEAK)
1670         return false;
1671     }
1672   return std::string(s1->name()) < std::string(s2->name());
1673 }
1674
1675 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1676 // for any weak aliases, and record them so that if we add the weak
1677 // alias to the dynamic symbol table, we also add the corresponding
1678 // strong symbol.
1679
1680 template<int size>
1681 void
1682 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1683 {
1684   // Sort the vector by section index, then by offset, then by weak
1685   // ahead of strong.
1686   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1687
1688   // Walk through the vector.  For each weak definition, record
1689   // aliases.
1690   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1691          symbols->begin();
1692        p != symbols->end();
1693        ++p)
1694     {
1695       if ((*p)->binding() != elfcpp::STB_WEAK)
1696         continue;
1697
1698       // Build a circular list of weak aliases.  Each symbol points to
1699       // the next one in the circular list.
1700
1701       Sized_symbol<size>* from_sym = *p;
1702       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1703       for (q = p + 1; q != symbols->end(); ++q)
1704         {
1705           bool dummy;
1706           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1707               || (*q)->value() != from_sym->value())
1708             break;
1709
1710           this->weak_aliases_[from_sym] = *q;
1711           from_sym->set_has_alias();
1712           from_sym = *q;
1713         }
1714
1715       if (from_sym != *p)
1716         {
1717           this->weak_aliases_[from_sym] = *p;
1718           from_sym->set_has_alias();
1719         }
1720
1721       p = q - 1;
1722     }
1723 }
1724
1725 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1726 // true, then only create the symbol if there is a reference to it.
1727 // If this does not return NULL, it sets *POLDSYM to the existing
1728 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1729 // resolve the newly created symbol to the old one.  This
1730 // canonicalizes *PNAME and *PVERSION.
1731
1732 template<int size, bool big_endian>
1733 Sized_symbol<size>*
1734 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1735                                     bool only_if_ref,
1736                                     Sized_symbol<size>** poldsym,
1737                                     bool* resolve_oldsym)
1738 {
1739   *resolve_oldsym = false;
1740   *poldsym = NULL;
1741
1742   // If the caller didn't give us a version, see if we get one from
1743   // the version script.
1744   std::string v;
1745   bool is_default_version = false;
1746   if (*pversion == NULL)
1747     {
1748       bool is_global;
1749       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1750         {
1751           if (is_global && !v.empty())
1752             {
1753               *pversion = v.c_str();
1754               // If we get the version from a version script, then we
1755               // are also the default version.
1756               is_default_version = true;
1757             }
1758         }
1759     }
1760
1761   Symbol* oldsym;
1762   Sized_symbol<size>* sym;
1763
1764   bool add_to_table = false;
1765   typename Symbol_table_type::iterator add_loc = this->table_.end();
1766   bool add_def_to_table = false;
1767   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1768
1769   if (only_if_ref)
1770     {
1771       oldsym = this->lookup(*pname, *pversion);
1772       if (oldsym == NULL && is_default_version)
1773         oldsym = this->lookup(*pname, NULL);
1774       if (oldsym == NULL || !oldsym->is_undefined())
1775         return NULL;
1776
1777       *pname = oldsym->name();
1778       if (is_default_version)
1779         *pversion = this->namepool_.add(*pversion, true, NULL);
1780       else
1781         *pversion = oldsym->version();
1782     }
1783   else
1784     {
1785       // Canonicalize NAME and VERSION.
1786       Stringpool::Key name_key;
1787       *pname = this->namepool_.add(*pname, true, &name_key);
1788
1789       Stringpool::Key version_key = 0;
1790       if (*pversion != NULL)
1791         *pversion = this->namepool_.add(*pversion, true, &version_key);
1792
1793       Symbol* const snull = NULL;
1794       std::pair<typename Symbol_table_type::iterator, bool> ins =
1795         this->table_.insert(std::make_pair(std::make_pair(name_key,
1796                                                           version_key),
1797                                            snull));
1798
1799       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1800         std::make_pair(this->table_.end(), false);
1801       if (is_default_version)
1802         {
1803           const Stringpool::Key vnull = 0;
1804           insdefault =
1805             this->table_.insert(std::make_pair(std::make_pair(name_key,
1806                                                               vnull),
1807                                                snull));
1808         }
1809
1810       if (!ins.second)
1811         {
1812           // We already have a symbol table entry for NAME/VERSION.
1813           oldsym = ins.first->second;
1814           gold_assert(oldsym != NULL);
1815
1816           if (is_default_version)
1817             {
1818               Sized_symbol<size>* soldsym =
1819                 this->get_sized_symbol<size>(oldsym);
1820               this->define_default_version<size, big_endian>(soldsym,
1821                                                              insdefault.second,
1822                                                              insdefault.first);
1823             }
1824         }
1825       else
1826         {
1827           // We haven't seen this symbol before.
1828           gold_assert(ins.first->second == NULL);
1829
1830           add_to_table = true;
1831           add_loc = ins.first;
1832
1833           if (is_default_version && !insdefault.second)
1834             {
1835               // We are adding NAME/VERSION, and it is the default
1836               // version.  We already have an entry for NAME/NULL.
1837               oldsym = insdefault.first->second;
1838               *resolve_oldsym = true;
1839             }
1840           else
1841             {
1842               oldsym = NULL;
1843
1844               if (is_default_version)
1845                 {
1846                   add_def_to_table = true;
1847                   add_def_loc = insdefault.first;
1848                 }
1849             }
1850         }
1851     }
1852
1853   const Target& target = parameters->target();
1854   if (!target.has_make_symbol())
1855     sym = new Sized_symbol<size>();
1856   else
1857     {
1858       Sized_target<size, big_endian>* sized_target =
1859         parameters->sized_target<size, big_endian>();
1860       sym = sized_target->make_symbol();
1861       if (sym == NULL)
1862         return NULL;
1863     }
1864
1865   if (add_to_table)
1866     add_loc->second = sym;
1867   else
1868     gold_assert(oldsym != NULL);
1869
1870   if (add_def_to_table)
1871     add_def_loc->second = sym;
1872
1873   *poldsym = this->get_sized_symbol<size>(oldsym);
1874
1875   return sym;
1876 }
1877
1878 // Define a symbol based on an Output_data.
1879
1880 Symbol*
1881 Symbol_table::define_in_output_data(const char* name,
1882                                     const char* version,
1883                                     Defined defined,
1884                                     Output_data* od,
1885                                     uint64_t value,
1886                                     uint64_t symsize,
1887                                     elfcpp::STT type,
1888                                     elfcpp::STB binding,
1889                                     elfcpp::STV visibility,
1890                                     unsigned char nonvis,
1891                                     bool offset_is_from_end,
1892                                     bool only_if_ref)
1893 {
1894   if (parameters->target().get_size() == 32)
1895     {
1896 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1897       return this->do_define_in_output_data<32>(name, version, defined, od,
1898                                                 value, symsize, type, binding,
1899                                                 visibility, nonvis,
1900                                                 offset_is_from_end,
1901                                                 only_if_ref);
1902 #else
1903       gold_unreachable();
1904 #endif
1905     }
1906   else if (parameters->target().get_size() == 64)
1907     {
1908 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1909       return this->do_define_in_output_data<64>(name, version, defined, od,
1910                                                 value, symsize, type, binding,
1911                                                 visibility, nonvis,
1912                                                 offset_is_from_end,
1913                                                 only_if_ref);
1914 #else
1915       gold_unreachable();
1916 #endif
1917     }
1918   else
1919     gold_unreachable();
1920 }
1921
1922 // Define a symbol in an Output_data, sized version.
1923
1924 template<int size>
1925 Sized_symbol<size>*
1926 Symbol_table::do_define_in_output_data(
1927     const char* name,
1928     const char* version,
1929     Defined defined,
1930     Output_data* od,
1931     typename elfcpp::Elf_types<size>::Elf_Addr value,
1932     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1933     elfcpp::STT type,
1934     elfcpp::STB binding,
1935     elfcpp::STV visibility,
1936     unsigned char nonvis,
1937     bool offset_is_from_end,
1938     bool only_if_ref)
1939 {
1940   Sized_symbol<size>* sym;
1941   Sized_symbol<size>* oldsym;
1942   bool resolve_oldsym;
1943
1944   if (parameters->target().is_big_endian())
1945     {
1946 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1947       sym = this->define_special_symbol<size, true>(&name, &version,
1948                                                     only_if_ref, &oldsym,
1949                                                     &resolve_oldsym);
1950 #else
1951       gold_unreachable();
1952 #endif
1953     }
1954   else
1955     {
1956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1957       sym = this->define_special_symbol<size, false>(&name, &version,
1958                                                      only_if_ref, &oldsym,
1959                                                      &resolve_oldsym);
1960 #else
1961       gold_unreachable();
1962 #endif
1963     }
1964
1965   if (sym == NULL)
1966     return NULL;
1967
1968   sym->init_output_data(name, version, od, value, symsize, type, binding,
1969                         visibility, nonvis, offset_is_from_end,
1970                         defined == PREDEFINED);
1971
1972   if (oldsym == NULL)
1973     {
1974       if (binding == elfcpp::STB_LOCAL
1975           || this->version_script_.symbol_is_local(name))
1976         this->force_local(sym);
1977       else if (version != NULL)
1978         sym->set_is_default();
1979       return sym;
1980     }
1981
1982   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1983     this->override_with_special(oldsym, sym);
1984
1985   if (resolve_oldsym)
1986     return sym;
1987   else
1988     {
1989       if (defined == PREDEFINED
1990           && (binding == elfcpp::STB_LOCAL
1991               || this->version_script_.symbol_is_local(name)))
1992         this->force_local(oldsym);
1993       delete sym;
1994       return oldsym;
1995     }
1996 }
1997
1998 // Define a symbol based on an Output_segment.
1999
2000 Symbol*
2001 Symbol_table::define_in_output_segment(const char* name,
2002                                        const char* version,
2003                                        Defined defined,
2004                                        Output_segment* os,
2005                                        uint64_t value,
2006                                        uint64_t symsize,
2007                                        elfcpp::STT type,
2008                                        elfcpp::STB binding,
2009                                        elfcpp::STV visibility,
2010                                        unsigned char nonvis,
2011                                        Symbol::Segment_offset_base offset_base,
2012                                        bool only_if_ref)
2013 {
2014   if (parameters->target().get_size() == 32)
2015     {
2016 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2017       return this->do_define_in_output_segment<32>(name, version, defined, os,
2018                                                    value, symsize, type,
2019                                                    binding, visibility, nonvis,
2020                                                    offset_base, only_if_ref);
2021 #else
2022       gold_unreachable();
2023 #endif
2024     }
2025   else if (parameters->target().get_size() == 64)
2026     {
2027 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2028       return this->do_define_in_output_segment<64>(name, version, defined, os,
2029                                                    value, symsize, type,
2030                                                    binding, visibility, nonvis,
2031                                                    offset_base, only_if_ref);
2032 #else
2033       gold_unreachable();
2034 #endif
2035     }
2036   else
2037     gold_unreachable();
2038 }
2039
2040 // Define a symbol in an Output_segment, sized version.
2041
2042 template<int size>
2043 Sized_symbol<size>*
2044 Symbol_table::do_define_in_output_segment(
2045     const char* name,
2046     const char* version,
2047     Defined defined,
2048     Output_segment* os,
2049     typename elfcpp::Elf_types<size>::Elf_Addr value,
2050     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2051     elfcpp::STT type,
2052     elfcpp::STB binding,
2053     elfcpp::STV visibility,
2054     unsigned char nonvis,
2055     Symbol::Segment_offset_base offset_base,
2056     bool only_if_ref)
2057 {
2058   Sized_symbol<size>* sym;
2059   Sized_symbol<size>* oldsym;
2060   bool resolve_oldsym;
2061
2062   if (parameters->target().is_big_endian())
2063     {
2064 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2065       sym = this->define_special_symbol<size, true>(&name, &version,
2066                                                     only_if_ref, &oldsym,
2067                                                     &resolve_oldsym);
2068 #else
2069       gold_unreachable();
2070 #endif
2071     }
2072   else
2073     {
2074 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2075       sym = this->define_special_symbol<size, false>(&name, &version,
2076                                                      only_if_ref, &oldsym,
2077                                                      &resolve_oldsym);
2078 #else
2079       gold_unreachable();
2080 #endif
2081     }
2082
2083   if (sym == NULL)
2084     return NULL;
2085
2086   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2087                            visibility, nonvis, offset_base,
2088                            defined == PREDEFINED);
2089
2090   if (oldsym == NULL)
2091     {
2092       if (binding == elfcpp::STB_LOCAL
2093           || this->version_script_.symbol_is_local(name))
2094         this->force_local(sym);
2095       else if (version != NULL)
2096         sym->set_is_default();
2097       return sym;
2098     }
2099
2100   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2101     this->override_with_special(oldsym, sym);
2102
2103   if (resolve_oldsym)
2104     return sym;
2105   else
2106     {
2107       if (binding == elfcpp::STB_LOCAL
2108           || this->version_script_.symbol_is_local(name))
2109         this->force_local(oldsym);
2110       delete sym;
2111       return oldsym;
2112     }
2113 }
2114
2115 // Define a special symbol with a constant value.  It is a multiple
2116 // definition error if this symbol is already defined.
2117
2118 Symbol*
2119 Symbol_table::define_as_constant(const char* name,
2120                                  const char* version,
2121                                  Defined defined,
2122                                  uint64_t value,
2123                                  uint64_t symsize,
2124                                  elfcpp::STT type,
2125                                  elfcpp::STB binding,
2126                                  elfcpp::STV visibility,
2127                                  unsigned char nonvis,
2128                                  bool only_if_ref,
2129                                  bool force_override)
2130 {
2131   if (parameters->target().get_size() == 32)
2132     {
2133 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2134       return this->do_define_as_constant<32>(name, version, defined, value,
2135                                              symsize, type, binding,
2136                                              visibility, nonvis, only_if_ref,
2137                                              force_override);
2138 #else
2139       gold_unreachable();
2140 #endif
2141     }
2142   else if (parameters->target().get_size() == 64)
2143     {
2144 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2145       return this->do_define_as_constant<64>(name, version, defined, value,
2146                                              symsize, type, binding,
2147                                              visibility, nonvis, only_if_ref,
2148                                              force_override);
2149 #else
2150       gold_unreachable();
2151 #endif
2152     }
2153   else
2154     gold_unreachable();
2155 }
2156
2157 // Define a symbol as a constant, sized version.
2158
2159 template<int size>
2160 Sized_symbol<size>*
2161 Symbol_table::do_define_as_constant(
2162     const char* name,
2163     const char* version,
2164     Defined defined,
2165     typename elfcpp::Elf_types<size>::Elf_Addr value,
2166     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2167     elfcpp::STT type,
2168     elfcpp::STB binding,
2169     elfcpp::STV visibility,
2170     unsigned char nonvis,
2171     bool only_if_ref,
2172     bool force_override)
2173 {
2174   Sized_symbol<size>* sym;
2175   Sized_symbol<size>* oldsym;
2176   bool resolve_oldsym;
2177
2178   if (parameters->target().is_big_endian())
2179     {
2180 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2181       sym = this->define_special_symbol<size, true>(&name, &version,
2182                                                     only_if_ref, &oldsym,
2183                                                     &resolve_oldsym);
2184 #else
2185       gold_unreachable();
2186 #endif
2187     }
2188   else
2189     {
2190 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2191       sym = this->define_special_symbol<size, false>(&name, &version,
2192                                                      only_if_ref, &oldsym,
2193                                                      &resolve_oldsym);
2194 #else
2195       gold_unreachable();
2196 #endif
2197     }
2198
2199   if (sym == NULL)
2200     return NULL;
2201
2202   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2203                      nonvis, defined == PREDEFINED);
2204
2205   if (oldsym == NULL)
2206     {
2207       // Version symbols are absolute symbols with name == version.
2208       // We don't want to force them to be local.
2209       if ((version == NULL
2210            || name != version
2211            || value != 0)
2212           && (binding == elfcpp::STB_LOCAL
2213               || this->version_script_.symbol_is_local(name)))
2214         this->force_local(sym);
2215       else if (version != NULL
2216                && (name != version || value != 0))
2217         sym->set_is_default();
2218       return sym;
2219     }
2220
2221   if (force_override
2222       || Symbol_table::should_override_with_special(oldsym, type, defined))
2223     this->override_with_special(oldsym, sym);
2224
2225   if (resolve_oldsym)
2226     return sym;
2227   else
2228     {
2229       if (binding == elfcpp::STB_LOCAL
2230           || this->version_script_.symbol_is_local(name))
2231         this->force_local(oldsym);
2232       delete sym;
2233       return oldsym;
2234     }
2235 }
2236
2237 // Define a set of symbols in output sections.
2238
2239 void
2240 Symbol_table::define_symbols(const Layout* layout, int count,
2241                              const Define_symbol_in_section* p,
2242                              bool only_if_ref)
2243 {
2244   for (int i = 0; i < count; ++i, ++p)
2245     {
2246       Output_section* os = layout->find_output_section(p->output_section);
2247       if (os != NULL)
2248         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2249                                     p->size, p->type, p->binding,
2250                                     p->visibility, p->nonvis,
2251                                     p->offset_is_from_end,
2252                                     only_if_ref || p->only_if_ref);
2253       else
2254         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2255                                  p->type, p->binding, p->visibility, p->nonvis,
2256                                  only_if_ref || p->only_if_ref,
2257                                  false);
2258     }
2259 }
2260
2261 // Define a set of symbols in output segments.
2262
2263 void
2264 Symbol_table::define_symbols(const Layout* layout, int count,
2265                              const Define_symbol_in_segment* p,
2266                              bool only_if_ref)
2267 {
2268   for (int i = 0; i < count; ++i, ++p)
2269     {
2270       Output_segment* os = layout->find_output_segment(p->segment_type,
2271                                                        p->segment_flags_set,
2272                                                        p->segment_flags_clear);
2273       if (os != NULL)
2274         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2275                                        p->size, p->type, p->binding,
2276                                        p->visibility, p->nonvis,
2277                                        p->offset_base,
2278                                        only_if_ref || p->only_if_ref);
2279       else
2280         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2281                                  p->type, p->binding, p->visibility, p->nonvis,
2282                                  only_if_ref || p->only_if_ref,
2283                                  false);
2284     }
2285 }
2286
2287 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2288 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2289 // the offset within POSD.
2290
2291 template<int size>
2292 void
2293 Symbol_table::define_with_copy_reloc(
2294     Sized_symbol<size>* csym,
2295     Output_data* posd,
2296     typename elfcpp::Elf_types<size>::Elf_Addr value)
2297 {
2298   gold_assert(csym->is_from_dynobj());
2299   gold_assert(!csym->is_copied_from_dynobj());
2300   Object* object = csym->object();
2301   gold_assert(object->is_dynamic());
2302   Dynobj* dynobj = static_cast<Dynobj*>(object);
2303
2304   // Our copied variable has to override any variable in a shared
2305   // library.
2306   elfcpp::STB binding = csym->binding();
2307   if (binding == elfcpp::STB_WEAK)
2308     binding = elfcpp::STB_GLOBAL;
2309
2310   this->define_in_output_data(csym->name(), csym->version(), COPY,
2311                               posd, value, csym->symsize(),
2312                               csym->type(), binding,
2313                               csym->visibility(), csym->nonvis(),
2314                               false, false);
2315
2316   csym->set_is_copied_from_dynobj();
2317   csym->set_needs_dynsym_entry();
2318
2319   this->copied_symbol_dynobjs_[csym] = dynobj;
2320
2321   // We have now defined all aliases, but we have not entered them all
2322   // in the copied_symbol_dynobjs_ map.
2323   if (csym->has_alias())
2324     {
2325       Symbol* sym = csym;
2326       while (true)
2327         {
2328           sym = this->weak_aliases_[sym];
2329           if (sym == csym)
2330             break;
2331           gold_assert(sym->output_data() == posd);
2332
2333           sym->set_is_copied_from_dynobj();
2334           this->copied_symbol_dynobjs_[sym] = dynobj;
2335         }
2336     }
2337 }
2338
2339 // SYM is defined using a COPY reloc.  Return the dynamic object where
2340 // the original definition was found.
2341
2342 Dynobj*
2343 Symbol_table::get_copy_source(const Symbol* sym) const
2344 {
2345   gold_assert(sym->is_copied_from_dynobj());
2346   Copied_symbol_dynobjs::const_iterator p =
2347     this->copied_symbol_dynobjs_.find(sym);
2348   gold_assert(p != this->copied_symbol_dynobjs_.end());
2349   return p->second;
2350 }
2351
2352 // Add any undefined symbols named on the command line.
2353
2354 void
2355 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2356 {
2357   if (parameters->options().any_undefined()
2358       || layout->script_options()->any_unreferenced())
2359     {
2360       if (parameters->target().get_size() == 32)
2361         {
2362 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2363           this->do_add_undefined_symbols_from_command_line<32>(layout);
2364 #else
2365           gold_unreachable();
2366 #endif
2367         }
2368       else if (parameters->target().get_size() == 64)
2369         {
2370 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2371           this->do_add_undefined_symbols_from_command_line<64>(layout);
2372 #else
2373           gold_unreachable();
2374 #endif
2375         }
2376       else
2377         gold_unreachable();
2378     }
2379 }
2380
2381 template<int size>
2382 void
2383 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2384 {
2385   for (options::String_set::const_iterator p =
2386          parameters->options().undefined_begin();
2387        p != parameters->options().undefined_end();
2388        ++p)
2389     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2390
2391   for (options::String_set::const_iterator p =
2392          parameters->options().export_dynamic_symbol_begin();
2393        p != parameters->options().export_dynamic_symbol_end();
2394        ++p)
2395     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2396
2397   for (Script_options::referenced_const_iterator p =
2398          layout->script_options()->referenced_begin();
2399        p != layout->script_options()->referenced_end();
2400        ++p)
2401     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2402 }
2403
2404 template<int size>
2405 void
2406 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2407 {
2408   if (this->lookup(name) != NULL)
2409     return;
2410
2411   const char* version = NULL;
2412
2413   Sized_symbol<size>* sym;
2414   Sized_symbol<size>* oldsym;
2415   bool resolve_oldsym;
2416   if (parameters->target().is_big_endian())
2417     {
2418 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2419       sym = this->define_special_symbol<size, true>(&name, &version,
2420                                                     false, &oldsym,
2421                                                     &resolve_oldsym);
2422 #else
2423       gold_unreachable();
2424 #endif
2425     }
2426   else
2427     {
2428 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2429       sym = this->define_special_symbol<size, false>(&name, &version,
2430                                                      false, &oldsym,
2431                                                      &resolve_oldsym);
2432 #else
2433       gold_unreachable();
2434 #endif
2435     }
2436
2437   gold_assert(oldsym == NULL);
2438
2439   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2440                       elfcpp::STV_DEFAULT, 0);
2441   ++this->saw_undefined_;
2442 }
2443
2444 // Set the dynamic symbol indexes.  INDEX is the index of the first
2445 // global dynamic symbol.  Pointers to the symbols are stored into the
2446 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2447 // updated dynamic symbol index.
2448
2449 unsigned int
2450 Symbol_table::set_dynsym_indexes(unsigned int index,
2451                                  std::vector<Symbol*>* syms,
2452                                  Stringpool* dynpool,
2453                                  Versions* versions)
2454 {
2455   std::vector<Symbol*> as_needed_sym;
2456
2457   // Allow a target to set dynsym indexes.
2458   if (parameters->target().has_custom_set_dynsym_indexes())
2459     {
2460       std::vector<Symbol*> dyn_symbols;
2461       for (Symbol_table_type::iterator p = this->table_.begin();
2462            p != this->table_.end();
2463            ++p)
2464         {
2465           Symbol* sym = p->second;
2466           if (!sym->should_add_dynsym_entry(this))
2467             sym->set_dynsym_index(-1U);
2468           else
2469             dyn_symbols.push_back(sym);
2470         }
2471
2472       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2473                                                      dynpool, versions, this);
2474     }
2475
2476   for (Symbol_table_type::iterator p = this->table_.begin();
2477        p != this->table_.end();
2478        ++p)
2479     {
2480       Symbol* sym = p->second;
2481
2482       // Note that SYM may already have a dynamic symbol index, since
2483       // some symbols appear more than once in the symbol table, with
2484       // and without a version.
2485
2486       if (!sym->should_add_dynsym_entry(this))
2487         sym->set_dynsym_index(-1U);
2488       else if (!sym->has_dynsym_index())
2489         {
2490           sym->set_dynsym_index(index);
2491           ++index;
2492           syms->push_back(sym);
2493           dynpool->add(sym->name(), false, NULL);
2494
2495           // If the symbol is defined in a dynamic object and is
2496           // referenced strongly in a regular object, then mark the
2497           // dynamic object as needed.  This is used to implement
2498           // --as-needed.
2499           if (sym->is_from_dynobj()
2500               && sym->in_reg()
2501               && !sym->is_undef_binding_weak())
2502             sym->object()->set_is_needed();
2503
2504           // Record any version information, except those from
2505           // as-needed libraries not seen to be needed.  Note that the
2506           // is_needed state for such libraries can change in this loop.
2507           if (sym->version() != NULL)
2508             {
2509               if (!sym->is_from_dynobj()
2510                   || !sym->object()->as_needed()
2511                   || sym->object()->is_needed())
2512                 versions->record_version(this, dynpool, sym);
2513               else
2514                 as_needed_sym.push_back(sym);
2515             }
2516         }
2517     }
2518
2519   // Process version information for symbols from as-needed libraries.
2520   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2521        p != as_needed_sym.end();
2522        ++p)
2523     {
2524       Symbol* sym = *p;
2525
2526       if (sym->object()->is_needed())
2527         versions->record_version(this, dynpool, sym);
2528       else
2529         sym->clear_version();
2530     }
2531
2532   // Finish up the versions.  In some cases this may add new dynamic
2533   // symbols.
2534   index = versions->finalize(this, index, syms);
2535
2536   return index;
2537 }
2538
2539 // Set the final values for all the symbols.  The index of the first
2540 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2541 // file offset OFF.  Add their names to POOL.  Return the new file
2542 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2543
2544 off_t
2545 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2546                        size_t dyncount, Stringpool* pool,
2547                        unsigned int* plocal_symcount)
2548 {
2549   off_t ret;
2550
2551   gold_assert(*plocal_symcount != 0);
2552   this->first_global_index_ = *plocal_symcount;
2553
2554   this->dynamic_offset_ = dynoff;
2555   this->first_dynamic_global_index_ = dyn_global_index;
2556   this->dynamic_count_ = dyncount;
2557
2558   if (parameters->target().get_size() == 32)
2559     {
2560 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2561       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2562 #else
2563       gold_unreachable();
2564 #endif
2565     }
2566   else if (parameters->target().get_size() == 64)
2567     {
2568 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2569       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2570 #else
2571       gold_unreachable();
2572 #endif
2573     }
2574   else
2575     gold_unreachable();
2576
2577   // Now that we have the final symbol table, we can reliably note
2578   // which symbols should get warnings.
2579   this->warnings_.note_warnings(this);
2580
2581   return ret;
2582 }
2583
2584 // SYM is going into the symbol table at *PINDEX.  Add the name to
2585 // POOL, update *PINDEX and *POFF.
2586
2587 template<int size>
2588 void
2589 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2590                                   unsigned int* pindex, off_t* poff)
2591 {
2592   sym->set_symtab_index(*pindex);
2593   if (sym->version() == NULL || !parameters->options().relocatable())
2594     pool->add(sym->name(), false, NULL);
2595   else
2596     pool->add(sym->versioned_name(), true, NULL);
2597   ++*pindex;
2598   *poff += elfcpp::Elf_sizes<size>::sym_size;
2599 }
2600
2601 // Set the final value for all the symbols.  This is called after
2602 // Layout::finalize, so all the output sections have their final
2603 // address.
2604
2605 template<int size>
2606 off_t
2607 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2608                              unsigned int* plocal_symcount)
2609 {
2610   off = align_address(off, size >> 3);
2611   this->offset_ = off;
2612
2613   unsigned int index = *plocal_symcount;
2614   const unsigned int orig_index = index;
2615
2616   // First do all the symbols which have been forced to be local, as
2617   // they must appear before all global symbols.
2618   for (Forced_locals::iterator p = this->forced_locals_.begin();
2619        p != this->forced_locals_.end();
2620        ++p)
2621     {
2622       Symbol* sym = *p;
2623       gold_assert(sym->is_forced_local());
2624       if (this->sized_finalize_symbol<size>(sym))
2625         {
2626           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2627           ++*plocal_symcount;
2628         }
2629     }
2630
2631   // Now do all the remaining symbols.
2632   for (Symbol_table_type::iterator p = this->table_.begin();
2633        p != this->table_.end();
2634        ++p)
2635     {
2636       Symbol* sym = p->second;
2637       if (this->sized_finalize_symbol<size>(sym))
2638         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2639     }
2640
2641   this->output_count_ = index - orig_index;
2642
2643   return off;
2644 }
2645
2646 // Compute the final value of SYM and store status in location PSTATUS.
2647 // During relaxation, this may be called multiple times for a symbol to
2648 // compute its would-be final value in each relaxation pass.
2649
2650 template<int size>
2651 typename Sized_symbol<size>::Value_type
2652 Symbol_table::compute_final_value(
2653     const Sized_symbol<size>* sym,
2654     Compute_final_value_status* pstatus) const
2655 {
2656   typedef typename Sized_symbol<size>::Value_type Value_type;
2657   Value_type value;
2658
2659   switch (sym->source())
2660     {
2661     case Symbol::FROM_OBJECT:
2662       {
2663         bool is_ordinary;
2664         unsigned int shndx = sym->shndx(&is_ordinary);
2665
2666         if (!is_ordinary
2667             && shndx != elfcpp::SHN_ABS
2668             && !Symbol::is_common_shndx(shndx))
2669           {
2670             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2671             return 0;
2672           }
2673
2674         Object* symobj = sym->object();
2675         if (symobj->is_dynamic())
2676           {
2677             value = 0;
2678             shndx = elfcpp::SHN_UNDEF;
2679           }
2680         else if (symobj->pluginobj() != NULL)
2681           {
2682             value = 0;
2683             shndx = elfcpp::SHN_UNDEF;
2684           }
2685         else if (shndx == elfcpp::SHN_UNDEF)
2686           value = 0;
2687         else if (!is_ordinary
2688                  && (shndx == elfcpp::SHN_ABS
2689                      || Symbol::is_common_shndx(shndx)))
2690           value = sym->value();
2691         else
2692           {
2693             Relobj* relobj = static_cast<Relobj*>(symobj);
2694             Output_section* os = relobj->output_section(shndx);
2695
2696             if (this->is_section_folded(relobj, shndx))
2697               {
2698                 gold_assert(os == NULL);
2699                 // Get the os of the section it is folded onto.
2700                 Section_id folded = this->icf_->get_folded_section(relobj,
2701                                                                    shndx);
2702                 gold_assert(folded.first != NULL);
2703                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2704                 unsigned folded_shndx = folded.second;
2705
2706                 os = folded_obj->output_section(folded_shndx);  
2707                 gold_assert(os != NULL);
2708
2709                 // Replace (relobj, shndx) with canonical ICF input section.
2710                 shndx = folded_shndx;
2711                 relobj = folded_obj;
2712               }
2713
2714             uint64_t secoff64 = relobj->output_section_offset(shndx);
2715             if (os == NULL)
2716               {
2717                 bool static_or_reloc = (parameters->doing_static_link() ||
2718                                         parameters->options().relocatable());
2719                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2720
2721                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2722                 return 0;
2723               }
2724
2725             if (secoff64 == -1ULL)
2726               {
2727                 // The section needs special handling (e.g., a merge section).
2728
2729                 value = os->output_address(relobj, shndx, sym->value());
2730               }
2731             else
2732               {
2733                 Value_type secoff =
2734                   convert_types<Value_type, uint64_t>(secoff64);
2735                 if (sym->type() == elfcpp::STT_TLS)
2736                   value = sym->value() + os->tls_offset() + secoff;
2737                 else
2738                   value = sym->value() + os->address() + secoff;
2739               }
2740           }
2741       }
2742       break;
2743
2744     case Symbol::IN_OUTPUT_DATA:
2745       {
2746         Output_data* od = sym->output_data();
2747         value = sym->value();
2748         if (sym->type() != elfcpp::STT_TLS)
2749           value += od->address();
2750         else
2751           {
2752             Output_section* os = od->output_section();
2753             gold_assert(os != NULL);
2754             value += os->tls_offset() + (od->address() - os->address());
2755           }
2756         if (sym->offset_is_from_end())
2757           value += od->data_size();
2758       }
2759       break;
2760
2761     case Symbol::IN_OUTPUT_SEGMENT:
2762       {
2763         Output_segment* os = sym->output_segment();
2764         value = sym->value();
2765         if (sym->type() != elfcpp::STT_TLS)
2766           value += os->vaddr();
2767         switch (sym->offset_base())
2768           {
2769           case Symbol::SEGMENT_START:
2770             break;
2771           case Symbol::SEGMENT_END:
2772             value += os->memsz();
2773             break;
2774           case Symbol::SEGMENT_BSS:
2775             value += os->filesz();
2776             break;
2777           default:
2778             gold_unreachable();
2779           }
2780       }
2781       break;
2782
2783     case Symbol::IS_CONSTANT:
2784       value = sym->value();
2785       break;
2786
2787     case Symbol::IS_UNDEFINED:
2788       value = 0;
2789       break;
2790
2791     default:
2792       gold_unreachable();
2793     }
2794
2795   *pstatus = CFVS_OK;
2796   return value;
2797 }
2798
2799 // Finalize the symbol SYM.  This returns true if the symbol should be
2800 // added to the symbol table, false otherwise.
2801
2802 template<int size>
2803 bool
2804 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2805 {
2806   typedef typename Sized_symbol<size>::Value_type Value_type;
2807
2808   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2809
2810   // The default version of a symbol may appear twice in the symbol
2811   // table.  We only need to finalize it once.
2812   if (sym->has_symtab_index())
2813     return false;
2814
2815   if (!sym->in_reg())
2816     {
2817       gold_assert(!sym->has_symtab_index());
2818       sym->set_symtab_index(-1U);
2819       gold_assert(sym->dynsym_index() == -1U);
2820       return false;
2821     }
2822
2823   // If the symbol is only present on plugin files, the plugin decided we
2824   // don't need it.
2825   if (!sym->in_real_elf())
2826     {
2827       gold_assert(!sym->has_symtab_index());
2828       sym->set_symtab_index(-1U);
2829       return false;
2830     }
2831
2832   // Compute final symbol value.
2833   Compute_final_value_status status;
2834   Value_type value = this->compute_final_value(sym, &status);
2835
2836   switch (status)
2837     {
2838     case CFVS_OK:
2839       break;
2840     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2841       {
2842         bool is_ordinary;
2843         unsigned int shndx = sym->shndx(&is_ordinary);
2844         gold_error(_("%s: unsupported symbol section 0x%x"),
2845                    sym->demangled_name().c_str(), shndx);
2846       }
2847       break;
2848     case CFVS_NO_OUTPUT_SECTION:
2849       sym->set_symtab_index(-1U);
2850       return false;
2851     default:
2852       gold_unreachable();
2853     }
2854
2855   sym->set_value(value);
2856
2857   if (parameters->options().strip_all()
2858       || !parameters->options().should_retain_symbol(sym->name()))
2859     {
2860       sym->set_symtab_index(-1U);
2861       return false;
2862     }
2863
2864   return true;
2865 }
2866
2867 // Write out the global symbols.
2868
2869 void
2870 Symbol_table::write_globals(const Stringpool* sympool,
2871                             const Stringpool* dynpool,
2872                             Output_symtab_xindex* symtab_xindex,
2873                             Output_symtab_xindex* dynsym_xindex,
2874                             Output_file* of) const
2875 {
2876   switch (parameters->size_and_endianness())
2877     {
2878 #ifdef HAVE_TARGET_32_LITTLE
2879     case Parameters::TARGET_32_LITTLE:
2880       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2881                                            dynsym_xindex, of);
2882       break;
2883 #endif
2884 #ifdef HAVE_TARGET_32_BIG
2885     case Parameters::TARGET_32_BIG:
2886       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2887                                           dynsym_xindex, of);
2888       break;
2889 #endif
2890 #ifdef HAVE_TARGET_64_LITTLE
2891     case Parameters::TARGET_64_LITTLE:
2892       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2893                                            dynsym_xindex, of);
2894       break;
2895 #endif
2896 #ifdef HAVE_TARGET_64_BIG
2897     case Parameters::TARGET_64_BIG:
2898       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2899                                           dynsym_xindex, of);
2900       break;
2901 #endif
2902     default:
2903       gold_unreachable();
2904     }
2905 }
2906
2907 // Write out the global symbols.
2908
2909 template<int size, bool big_endian>
2910 void
2911 Symbol_table::sized_write_globals(const Stringpool* sympool,
2912                                   const Stringpool* dynpool,
2913                                   Output_symtab_xindex* symtab_xindex,
2914                                   Output_symtab_xindex* dynsym_xindex,
2915                                   Output_file* of) const
2916 {
2917   const Target& target = parameters->target();
2918
2919   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2920
2921   const unsigned int output_count = this->output_count_;
2922   const section_size_type oview_size = output_count * sym_size;
2923   const unsigned int first_global_index = this->first_global_index_;
2924   unsigned char* psyms;
2925   if (this->offset_ == 0 || output_count == 0)
2926     psyms = NULL;
2927   else
2928     psyms = of->get_output_view(this->offset_, oview_size);
2929
2930   const unsigned int dynamic_count = this->dynamic_count_;
2931   const section_size_type dynamic_size = dynamic_count * sym_size;
2932   const unsigned int first_dynamic_global_index =
2933     this->first_dynamic_global_index_;
2934   unsigned char* dynamic_view;
2935   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2936     dynamic_view = NULL;
2937   else
2938     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2939
2940   for (Symbol_table_type::const_iterator p = this->table_.begin();
2941        p != this->table_.end();
2942        ++p)
2943     {
2944       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2945
2946       // Possibly warn about unresolved symbols in shared libraries.
2947       this->warn_about_undefined_dynobj_symbol(sym);
2948
2949       unsigned int sym_index = sym->symtab_index();
2950       unsigned int dynsym_index;
2951       if (dynamic_view == NULL)
2952         dynsym_index = -1U;
2953       else
2954         dynsym_index = sym->dynsym_index();
2955
2956       if (sym_index == -1U && dynsym_index == -1U)
2957         {
2958           // This symbol is not included in the output file.
2959           continue;
2960         }
2961
2962       unsigned int shndx;
2963       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2964       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2965       elfcpp::STB binding = sym->binding();
2966
2967       // If --weak-unresolved-symbols is set, change binding of unresolved
2968       // global symbols to STB_WEAK.
2969       if (parameters->options().weak_unresolved_symbols()
2970           && binding == elfcpp::STB_GLOBAL
2971           && sym->is_undefined())
2972         binding = elfcpp::STB_WEAK;
2973
2974       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2975       if (binding == elfcpp::STB_GNU_UNIQUE
2976           && !parameters->options().gnu_unique())
2977         binding = elfcpp::STB_GLOBAL;
2978
2979       switch (sym->source())
2980         {
2981         case Symbol::FROM_OBJECT:
2982           {
2983             bool is_ordinary;
2984             unsigned int in_shndx = sym->shndx(&is_ordinary);
2985
2986             if (!is_ordinary
2987                 && in_shndx != elfcpp::SHN_ABS
2988                 && !Symbol::is_common_shndx(in_shndx))
2989               {
2990                 gold_error(_("%s: unsupported symbol section 0x%x"),
2991                            sym->demangled_name().c_str(), in_shndx);
2992                 shndx = in_shndx;
2993               }
2994             else
2995               {
2996                 Object* symobj = sym->object();
2997                 if (symobj->is_dynamic())
2998                   {
2999                     if (sym->needs_dynsym_value())
3000                       dynsym_value = target.dynsym_value(sym);
3001                     shndx = elfcpp::SHN_UNDEF;
3002                     if (sym->is_undef_binding_weak())
3003                       binding = elfcpp::STB_WEAK;
3004                     else
3005                       binding = elfcpp::STB_GLOBAL;
3006                   }
3007                 else if (symobj->pluginobj() != NULL)
3008                   shndx = elfcpp::SHN_UNDEF;
3009                 else if (in_shndx == elfcpp::SHN_UNDEF
3010                          || (!is_ordinary
3011                              && (in_shndx == elfcpp::SHN_ABS
3012                                  || Symbol::is_common_shndx(in_shndx))))
3013                   shndx = in_shndx;
3014                 else
3015                   {
3016                     Relobj* relobj = static_cast<Relobj*>(symobj);
3017                     Output_section* os = relobj->output_section(in_shndx);
3018                     if (this->is_section_folded(relobj, in_shndx))
3019                       {
3020                         // This global symbol must be written out even though
3021                         // it is folded.
3022                         // Get the os of the section it is folded onto.
3023                         Section_id folded =
3024                              this->icf_->get_folded_section(relobj, in_shndx);
3025                         gold_assert(folded.first !=NULL);
3026                         Relobj* folded_obj = 
3027                           reinterpret_cast<Relobj*>(folded.first);
3028                         os = folded_obj->output_section(folded.second);  
3029                         gold_assert(os != NULL);
3030                       }
3031                     gold_assert(os != NULL);
3032                     shndx = os->out_shndx();
3033
3034                     if (shndx >= elfcpp::SHN_LORESERVE)
3035                       {
3036                         if (sym_index != -1U)
3037                           symtab_xindex->add(sym_index, shndx);
3038                         if (dynsym_index != -1U)
3039                           dynsym_xindex->add(dynsym_index, shndx);
3040                         shndx = elfcpp::SHN_XINDEX;
3041                       }
3042
3043                     // In object files symbol values are section
3044                     // relative.
3045                     if (parameters->options().relocatable())
3046                       sym_value -= os->address();
3047                   }
3048               }
3049           }
3050           break;
3051
3052         case Symbol::IN_OUTPUT_DATA:
3053           {
3054             Output_data* od = sym->output_data();
3055
3056             shndx = od->out_shndx();
3057             if (shndx >= elfcpp::SHN_LORESERVE)
3058               {
3059                 if (sym_index != -1U)
3060                   symtab_xindex->add(sym_index, shndx);
3061                 if (dynsym_index != -1U)
3062                   dynsym_xindex->add(dynsym_index, shndx);
3063                 shndx = elfcpp::SHN_XINDEX;
3064               }
3065
3066             // In object files symbol values are section
3067             // relative.
3068             if (parameters->options().relocatable())
3069               sym_value -= od->address();
3070           }
3071           break;
3072
3073         case Symbol::IN_OUTPUT_SEGMENT:
3074           shndx = elfcpp::SHN_ABS;
3075           break;
3076
3077         case Symbol::IS_CONSTANT:
3078           shndx = elfcpp::SHN_ABS;
3079           break;
3080
3081         case Symbol::IS_UNDEFINED:
3082           shndx = elfcpp::SHN_UNDEF;
3083           break;
3084
3085         default:
3086           gold_unreachable();
3087         }
3088
3089       if (sym_index != -1U)
3090         {
3091           sym_index -= first_global_index;
3092           gold_assert(sym_index < output_count);
3093           unsigned char* ps = psyms + (sym_index * sym_size);
3094           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3095                                                      binding, sympool, ps);
3096         }
3097
3098       if (dynsym_index != -1U)
3099         {
3100           dynsym_index -= first_dynamic_global_index;
3101           gold_assert(dynsym_index < dynamic_count);
3102           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3103           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3104                                                      binding, dynpool, pd);
3105           // Allow a target to adjust dynamic symbol value.
3106           parameters->target().adjust_dyn_symbol(sym, pd);
3107         }
3108     }
3109
3110   of->write_output_view(this->offset_, oview_size, psyms);
3111   if (dynamic_view != NULL)
3112     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3113 }
3114
3115 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3116 // strtab holding the name.
3117
3118 template<int size, bool big_endian>
3119 void
3120 Symbol_table::sized_write_symbol(
3121     Sized_symbol<size>* sym,
3122     typename elfcpp::Elf_types<size>::Elf_Addr value,
3123     unsigned int shndx,
3124     elfcpp::STB binding,
3125     const Stringpool* pool,
3126     unsigned char* p) const
3127 {
3128   elfcpp::Sym_write<size, big_endian> osym(p);
3129   if (sym->version() == NULL || !parameters->options().relocatable())
3130     osym.put_st_name(pool->get_offset(sym->name()));
3131   else
3132     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3133   osym.put_st_value(value);
3134   // Use a symbol size of zero for undefined symbols from shared libraries.
3135   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3136     osym.put_st_size(0);
3137   else
3138     osym.put_st_size(sym->symsize());
3139   elfcpp::STT type = sym->type();
3140   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3141   // A version script may have overridden the default binding.
3142   if (sym->is_forced_local())
3143     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3144   else
3145     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3146   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3147   osym.put_st_shndx(shndx);
3148 }
3149
3150 // Check for unresolved symbols in shared libraries.  This is
3151 // controlled by the --allow-shlib-undefined option.
3152
3153 // We only warn about libraries for which we have seen all the
3154 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3155 // which were not seen in this link.  If we didn't see a DT_NEEDED
3156 // entry, we aren't going to be able to reliably report whether the
3157 // symbol is undefined.
3158
3159 // We also don't warn about libraries found in a system library
3160 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3161 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3162 // can have undefined references satisfied by ld-linux.so.
3163
3164 inline void
3165 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3166 {
3167   bool dummy;
3168   if (sym->source() == Symbol::FROM_OBJECT
3169       && sym->object()->is_dynamic()
3170       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3171       && sym->binding() != elfcpp::STB_WEAK
3172       && !parameters->options().allow_shlib_undefined()
3173       && !parameters->target().is_defined_by_abi(sym)
3174       && !sym->object()->is_in_system_directory())
3175     {
3176       // A very ugly cast.
3177       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3178       if (!dynobj->has_unknown_needed_entries())
3179         gold_undefined_symbol(sym);
3180     }
3181 }
3182
3183 // Write out a section symbol.  Return the update offset.
3184
3185 void
3186 Symbol_table::write_section_symbol(const Output_section* os,
3187                                    Output_symtab_xindex* symtab_xindex,
3188                                    Output_file* of,
3189                                    off_t offset) const
3190 {
3191   switch (parameters->size_and_endianness())
3192     {
3193 #ifdef HAVE_TARGET_32_LITTLE
3194     case Parameters::TARGET_32_LITTLE:
3195       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3196                                                   offset);
3197       break;
3198 #endif
3199 #ifdef HAVE_TARGET_32_BIG
3200     case Parameters::TARGET_32_BIG:
3201       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3202                                                  offset);
3203       break;
3204 #endif
3205 #ifdef HAVE_TARGET_64_LITTLE
3206     case Parameters::TARGET_64_LITTLE:
3207       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3208                                                   offset);
3209       break;
3210 #endif
3211 #ifdef HAVE_TARGET_64_BIG
3212     case Parameters::TARGET_64_BIG:
3213       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3214                                                  offset);
3215       break;
3216 #endif
3217     default:
3218       gold_unreachable();
3219     }
3220 }
3221
3222 // Write out a section symbol, specialized for size and endianness.
3223
3224 template<int size, bool big_endian>
3225 void
3226 Symbol_table::sized_write_section_symbol(const Output_section* os,
3227                                          Output_symtab_xindex* symtab_xindex,
3228                                          Output_file* of,
3229                                          off_t offset) const
3230 {
3231   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3232
3233   unsigned char* pov = of->get_output_view(offset, sym_size);
3234
3235   elfcpp::Sym_write<size, big_endian> osym(pov);
3236   osym.put_st_name(0);
3237   if (parameters->options().relocatable())
3238     osym.put_st_value(0);
3239   else
3240     osym.put_st_value(os->address());
3241   osym.put_st_size(0);
3242   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3243                                        elfcpp::STT_SECTION));
3244   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3245
3246   unsigned int shndx = os->out_shndx();
3247   if (shndx >= elfcpp::SHN_LORESERVE)
3248     {
3249       symtab_xindex->add(os->symtab_index(), shndx);
3250       shndx = elfcpp::SHN_XINDEX;
3251     }
3252   osym.put_st_shndx(shndx);
3253
3254   of->write_output_view(offset, sym_size, pov);
3255 }
3256
3257 // Print statistical information to stderr.  This is used for --stats.
3258
3259 void
3260 Symbol_table::print_stats() const
3261 {
3262 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3263   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3264           program_name, this->table_.size(), this->table_.bucket_count());
3265 #else
3266   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3267           program_name, this->table_.size());
3268 #endif
3269   this->namepool_.print_stats("symbol table stringpool");
3270 }
3271
3272 // We check for ODR violations by looking for symbols with the same
3273 // name for which the debugging information reports that they were
3274 // defined in disjoint source locations.  When comparing the source
3275 // location, we consider instances with the same base filename to be
3276 // the same.  This is because different object files/shared libraries
3277 // can include the same header file using different paths, and
3278 // different optimization settings can make the line number appear to
3279 // be a couple lines off, and we don't want to report an ODR violation
3280 // in those cases.
3281
3282 // This struct is used to compare line information, as returned by
3283 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3284 // operator used with std::sort.
3285
3286 struct Odr_violation_compare
3287 {
3288   bool
3289   operator()(const std::string& s1, const std::string& s2) const
3290   {
3291     // Inputs should be of the form "dirname/filename:linenum" where
3292     // "dirname/" is optional.  We want to compare just the filename:linenum.
3293
3294     // Find the last '/' in each string.
3295     std::string::size_type s1begin = s1.rfind('/');
3296     std::string::size_type s2begin = s2.rfind('/');
3297     // If there was no '/' in a string, start at the beginning.
3298     if (s1begin == std::string::npos)
3299       s1begin = 0;
3300     if (s2begin == std::string::npos)
3301       s2begin = 0;
3302     return s1.compare(s1begin, std::string::npos,
3303                       s2, s2begin, std::string::npos) < 0;
3304   }
3305 };
3306
3307 // Returns all of the lines attached to LOC, not just the one the
3308 // instruction actually came from.
3309 std::vector<std::string>
3310 Symbol_table::linenos_from_loc(const Task* task,
3311                                const Symbol_location& loc)
3312 {
3313   // We need to lock the object in order to read it.  This
3314   // means that we have to run in a singleton Task.  If we
3315   // want to run this in a general Task for better
3316   // performance, we will need one Task for object, plus
3317   // appropriate locking to ensure that we don't conflict with
3318   // other uses of the object.  Also note, one_addr2line is not
3319   // currently thread-safe.
3320   Task_lock_obj<Object> tl(task, loc.object);
3321
3322   std::vector<std::string> result;
3323   Symbol_location code_loc = loc;
3324   parameters->target().function_location(&code_loc);
3325   // 16 is the size of the object-cache that one_addr2line should use.
3326   std::string canonical_result = Dwarf_line_info::one_addr2line(
3327       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3328   if (!canonical_result.empty())
3329     result.push_back(canonical_result);
3330   return result;
3331 }
3332
3333 // OutputIterator that records if it was ever assigned to.  This
3334 // allows it to be used with std::set_intersection() to check for
3335 // intersection rather than computing the intersection.
3336 struct Check_intersection
3337 {
3338   Check_intersection()
3339     : value_(false)
3340   {}
3341
3342   bool had_intersection() const
3343   { return this->value_; }
3344
3345   Check_intersection& operator++()
3346   { return *this; }
3347
3348   Check_intersection& operator*()
3349   { return *this; }
3350
3351   template<typename T>
3352   Check_intersection& operator=(const T&)
3353   {
3354     this->value_ = true;
3355     return *this;
3356   }
3357
3358  private:
3359   bool value_;
3360 };
3361
3362 // Check candidate_odr_violations_ to find symbols with the same name
3363 // but apparently different definitions (different source-file/line-no
3364 // for each line assigned to the first instruction).
3365
3366 void
3367 Symbol_table::detect_odr_violations(const Task* task,
3368                                     const char* output_file_name) const
3369 {
3370   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3371        it != candidate_odr_violations_.end();
3372        ++it)
3373     {
3374       const char* const symbol_name = it->first;
3375
3376       std::string first_object_name;
3377       std::vector<std::string> first_object_linenos;
3378
3379       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3380           locs = it->second.begin();
3381       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3382           locs_end = it->second.end();
3383       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3384         {
3385           // Save the line numbers from the first definition to
3386           // compare to the other definitions.  Ideally, we'd compare
3387           // every definition to every other, but we don't want to
3388           // take O(N^2) time to do this.  This shortcut may cause
3389           // false negatives that appear or disappear depending on the
3390           // link order, but it won't cause false positives.
3391           first_object_name = locs->object->name();
3392           first_object_linenos = this->linenos_from_loc(task, *locs);
3393         }
3394       if (first_object_linenos.empty())
3395         continue;
3396
3397       // Sort by Odr_violation_compare to make std::set_intersection work.
3398       std::string first_object_canonical_result = first_object_linenos.back();
3399       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3400                 Odr_violation_compare());
3401
3402       for (; locs != locs_end; ++locs)
3403         {
3404           std::vector<std::string> linenos =
3405               this->linenos_from_loc(task, *locs);
3406           // linenos will be empty if we couldn't parse the debug info.
3407           if (linenos.empty())
3408             continue;
3409           // Sort by Odr_violation_compare to make std::set_intersection work.
3410           gold_assert(!linenos.empty());
3411           std::string second_object_canonical_result = linenos.back();
3412           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3413
3414           Check_intersection intersection_result =
3415               std::set_intersection(first_object_linenos.begin(),
3416                                     first_object_linenos.end(),
3417                                     linenos.begin(),
3418                                     linenos.end(),
3419                                     Check_intersection(),
3420                                     Odr_violation_compare());
3421           if (!intersection_result.had_intersection())
3422             {
3423               gold_warning(_("while linking %s: symbol '%s' defined in "
3424                              "multiple places (possible ODR violation):"),
3425                            output_file_name, demangle(symbol_name).c_str());
3426               // This only prints one location from each definition,
3427               // which may not be the location we expect to intersect
3428               // with another definition.  We could print the whole
3429               // set of locations, but that seems too verbose.
3430               fprintf(stderr, _("  %s from %s\n"),
3431                       first_object_canonical_result.c_str(),
3432                       first_object_name.c_str());
3433               fprintf(stderr, _("  %s from %s\n"),
3434                       second_object_canonical_result.c_str(),
3435                       locs->object->name().c_str());
3436               // Only print one broken pair, to avoid needing to
3437               // compare against a list of the disjoint definition
3438               // locations we've found so far.  (If we kept comparing
3439               // against just the first one, we'd get a lot of
3440               // redundant complaints about the second definition
3441               // location.)
3442               break;
3443             }
3444         }
3445     }
3446   // We only call one_addr2line() in this function, so we can clear its cache.
3447   Dwarf_line_info::clear_addr2line_cache();
3448 }
3449
3450 // Warnings functions.
3451
3452 // Add a new warning.
3453
3454 void
3455 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3456                       const std::string& warning)
3457 {
3458   name = symtab->canonicalize_name(name);
3459   this->warnings_[name].set(obj, warning);
3460 }
3461
3462 // Look through the warnings and mark the symbols for which we should
3463 // warn.  This is called during Layout::finalize when we know the
3464 // sources for all the symbols.
3465
3466 void
3467 Warnings::note_warnings(Symbol_table* symtab)
3468 {
3469   for (Warning_table::iterator p = this->warnings_.begin();
3470        p != this->warnings_.end();
3471        ++p)
3472     {
3473       Symbol* sym = symtab->lookup(p->first, NULL);
3474       if (sym != NULL
3475           && sym->source() == Symbol::FROM_OBJECT
3476           && sym->object() == p->second.object)
3477         sym->set_has_warning();
3478     }
3479 }
3480
3481 // Issue a warning.  This is called when we see a relocation against a
3482 // symbol for which has a warning.
3483
3484 template<int size, bool big_endian>
3485 void
3486 Warnings::issue_warning(const Symbol* sym,
3487                         const Relocate_info<size, big_endian>* relinfo,
3488                         size_t relnum, off_t reloffset) const
3489 {
3490   gold_assert(sym->has_warning());
3491
3492   // We don't want to issue a warning for a relocation against the
3493   // symbol in the same object file in which the symbol is defined.
3494   if (sym->object() == relinfo->object)
3495     return;
3496
3497   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3498   gold_assert(p != this->warnings_.end());
3499   gold_warning_at_location(relinfo, relnum, reloffset,
3500                            "%s", p->second.text.c_str());
3501 }
3502
3503 // Instantiate the templates we need.  We could use the configure
3504 // script to restrict this to only the ones needed for implemented
3505 // targets.
3506
3507 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3508 template
3509 void
3510 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3511 #endif
3512
3513 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3514 template
3515 void
3516 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3517 #endif
3518
3519 #ifdef HAVE_TARGET_32_LITTLE
3520 template
3521 void
3522 Symbol_table::add_from_relobj<32, false>(
3523     Sized_relobj_file<32, false>* relobj,
3524     const unsigned char* syms,
3525     size_t count,
3526     size_t symndx_offset,
3527     const char* sym_names,
3528     size_t sym_name_size,
3529     Sized_relobj_file<32, false>::Symbols* sympointers,
3530     size_t* defined);
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_BIG
3534 template
3535 void
3536 Symbol_table::add_from_relobj<32, true>(
3537     Sized_relobj_file<32, true>* relobj,
3538     const unsigned char* syms,
3539     size_t count,
3540     size_t symndx_offset,
3541     const char* sym_names,
3542     size_t sym_name_size,
3543     Sized_relobj_file<32, true>::Symbols* sympointers,
3544     size_t* defined);
3545 #endif
3546
3547 #ifdef HAVE_TARGET_64_LITTLE
3548 template
3549 void
3550 Symbol_table::add_from_relobj<64, false>(
3551     Sized_relobj_file<64, false>* relobj,
3552     const unsigned char* syms,
3553     size_t count,
3554     size_t symndx_offset,
3555     const char* sym_names,
3556     size_t sym_name_size,
3557     Sized_relobj_file<64, false>::Symbols* sympointers,
3558     size_t* defined);
3559 #endif
3560
3561 #ifdef HAVE_TARGET_64_BIG
3562 template
3563 void
3564 Symbol_table::add_from_relobj<64, true>(
3565     Sized_relobj_file<64, true>* relobj,
3566     const unsigned char* syms,
3567     size_t count,
3568     size_t symndx_offset,
3569     const char* sym_names,
3570     size_t sym_name_size,
3571     Sized_relobj_file<64, true>::Symbols* sympointers,
3572     size_t* defined);
3573 #endif
3574
3575 #ifdef HAVE_TARGET_32_LITTLE
3576 template
3577 Symbol*
3578 Symbol_table::add_from_pluginobj<32, false>(
3579     Sized_pluginobj<32, false>* obj,
3580     const char* name,
3581     const char* ver,
3582     elfcpp::Sym<32, false>* sym);
3583 #endif
3584
3585 #ifdef HAVE_TARGET_32_BIG
3586 template
3587 Symbol*
3588 Symbol_table::add_from_pluginobj<32, true>(
3589     Sized_pluginobj<32, true>* obj,
3590     const char* name,
3591     const char* ver,
3592     elfcpp::Sym<32, true>* sym);
3593 #endif
3594
3595 #ifdef HAVE_TARGET_64_LITTLE
3596 template
3597 Symbol*
3598 Symbol_table::add_from_pluginobj<64, false>(
3599     Sized_pluginobj<64, false>* obj,
3600     const char* name,
3601     const char* ver,
3602     elfcpp::Sym<64, false>* sym);
3603 #endif
3604
3605 #ifdef HAVE_TARGET_64_BIG
3606 template
3607 Symbol*
3608 Symbol_table::add_from_pluginobj<64, true>(
3609     Sized_pluginobj<64, true>* obj,
3610     const char* name,
3611     const char* ver,
3612     elfcpp::Sym<64, true>* sym);
3613 #endif
3614
3615 #ifdef HAVE_TARGET_32_LITTLE
3616 template
3617 void
3618 Symbol_table::add_from_dynobj<32, false>(
3619     Sized_dynobj<32, false>* dynobj,
3620     const unsigned char* syms,
3621     size_t count,
3622     const char* sym_names,
3623     size_t sym_name_size,
3624     const unsigned char* versym,
3625     size_t versym_size,
3626     const std::vector<const char*>* version_map,
3627     Sized_relobj_file<32, false>::Symbols* sympointers,
3628     size_t* defined);
3629 #endif
3630
3631 #ifdef HAVE_TARGET_32_BIG
3632 template
3633 void
3634 Symbol_table::add_from_dynobj<32, true>(
3635     Sized_dynobj<32, true>* dynobj,
3636     const unsigned char* syms,
3637     size_t count,
3638     const char* sym_names,
3639     size_t sym_name_size,
3640     const unsigned char* versym,
3641     size_t versym_size,
3642     const std::vector<const char*>* version_map,
3643     Sized_relobj_file<32, true>::Symbols* sympointers,
3644     size_t* defined);
3645 #endif
3646
3647 #ifdef HAVE_TARGET_64_LITTLE
3648 template
3649 void
3650 Symbol_table::add_from_dynobj<64, false>(
3651     Sized_dynobj<64, false>* dynobj,
3652     const unsigned char* syms,
3653     size_t count,
3654     const char* sym_names,
3655     size_t sym_name_size,
3656     const unsigned char* versym,
3657     size_t versym_size,
3658     const std::vector<const char*>* version_map,
3659     Sized_relobj_file<64, false>::Symbols* sympointers,
3660     size_t* defined);
3661 #endif
3662
3663 #ifdef HAVE_TARGET_64_BIG
3664 template
3665 void
3666 Symbol_table::add_from_dynobj<64, true>(
3667     Sized_dynobj<64, true>* dynobj,
3668     const unsigned char* syms,
3669     size_t count,
3670     const char* sym_names,
3671     size_t sym_name_size,
3672     const unsigned char* versym,
3673     size_t versym_size,
3674     const std::vector<const char*>* version_map,
3675     Sized_relobj_file<64, true>::Symbols* sympointers,
3676     size_t* defined);
3677 #endif
3678
3679 #ifdef HAVE_TARGET_32_LITTLE
3680 template
3681 Sized_symbol<32>*
3682 Symbol_table::add_from_incrobj(
3683     Object* obj,
3684     const char* name,
3685     const char* ver,
3686     elfcpp::Sym<32, false>* sym);
3687 #endif
3688
3689 #ifdef HAVE_TARGET_32_BIG
3690 template
3691 Sized_symbol<32>*
3692 Symbol_table::add_from_incrobj(
3693     Object* obj,
3694     const char* name,
3695     const char* ver,
3696     elfcpp::Sym<32, true>* sym);
3697 #endif
3698
3699 #ifdef HAVE_TARGET_64_LITTLE
3700 template
3701 Sized_symbol<64>*
3702 Symbol_table::add_from_incrobj(
3703     Object* obj,
3704     const char* name,
3705     const char* ver,
3706     elfcpp::Sym<64, false>* sym);
3707 #endif
3708
3709 #ifdef HAVE_TARGET_64_BIG
3710 template
3711 Sized_symbol<64>*
3712 Symbol_table::add_from_incrobj(
3713     Object* obj,
3714     const char* name,
3715     const char* ver,
3716     elfcpp::Sym<64, true>* sym);
3717 #endif
3718
3719 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3720 template
3721 void
3722 Symbol_table::define_with_copy_reloc<32>(
3723     Sized_symbol<32>* sym,
3724     Output_data* posd,
3725     elfcpp::Elf_types<32>::Elf_Addr value);
3726 #endif
3727
3728 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3729 template
3730 void
3731 Symbol_table::define_with_copy_reloc<64>(
3732     Sized_symbol<64>* sym,
3733     Output_data* posd,
3734     elfcpp::Elf_types<64>::Elf_Addr value);
3735 #endif
3736
3737 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3738 template
3739 void
3740 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3741                                    Output_data* od, Value_type value,
3742                                    Size_type symsize, elfcpp::STT type,
3743                                    elfcpp::STB binding,
3744                                    elfcpp::STV visibility,
3745                                    unsigned char nonvis,
3746                                    bool offset_is_from_end,
3747                                    bool is_predefined);
3748 #endif
3749
3750 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3751 template
3752 void
3753 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3754                                    Output_data* od, Value_type value,
3755                                    Size_type symsize, elfcpp::STT type,
3756                                    elfcpp::STB binding,
3757                                    elfcpp::STV visibility,
3758                                    unsigned char nonvis,
3759                                    bool offset_is_from_end,
3760                                    bool is_predefined);
3761 #endif
3762
3763 #ifdef HAVE_TARGET_32_LITTLE
3764 template
3765 void
3766 Warnings::issue_warning<32, false>(const Symbol* sym,
3767                                    const Relocate_info<32, false>* relinfo,
3768                                    size_t relnum, off_t reloffset) const;
3769 #endif
3770
3771 #ifdef HAVE_TARGET_32_BIG
3772 template
3773 void
3774 Warnings::issue_warning<32, true>(const Symbol* sym,
3775                                   const Relocate_info<32, true>* relinfo,
3776                                   size_t relnum, off_t reloffset) const;
3777 #endif
3778
3779 #ifdef HAVE_TARGET_64_LITTLE
3780 template
3781 void
3782 Warnings::issue_warning<64, false>(const Symbol* sym,
3783                                    const Relocate_info<64, false>* relinfo,
3784                                    size_t relnum, off_t reloffset) const;
3785 #endif
3786
3787 #ifdef HAVE_TARGET_64_BIG
3788 template
3789 void
3790 Warnings::issue_warning<64, true>(const Symbol* sym,
3791                                   const Relocate_info<64, true>* relinfo,
3792                                   size_t relnum, off_t reloffset) const;
3793 #endif
3794
3795 } // End namespace gold.