Remove info message for every erratum 843419 found and fixed.
[external/binutils.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // or the symbol should be globally unique (GNU_UNIQUE),
423   // and the symbol is defined in a regular object and is
424   // externally visible, we need to add it.
425   if ((parameters->options().export_dynamic()
426        || parameters->options().shared()
427        || (parameters->options().gnu_unique()
428            && this->binding() == elfcpp::STB_GNU_UNIQUE))
429       && !this->is_from_dynobj()
430       && !this->is_undefined()
431       && this->is_externally_visible())
432     return true;
433
434   return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443   // If we are not generating an executable, then no final values are
444   // known, since they will change at runtime, with the exception of
445   // TLS symbols in a position-independent executable.
446   if ((parameters->options().output_is_position_independent()
447        || parameters->options().relocatable())
448       && !(this->type() == elfcpp::STT_TLS
449            && parameters->options().pie()))
450     return false;
451
452   // If the symbol is not from an object file, and is not undefined,
453   // then it is defined, and known.
454   if (this->source_ != FROM_OBJECT)
455     {
456       if (this->source_ != IS_UNDEFINED)
457         return true;
458     }
459   else
460     {
461       // If the symbol is from a dynamic object, then the final value
462       // is not known.
463       if (this->object()->is_dynamic())
464         return false;
465
466       // If the symbol is not undefined (it is defined or common),
467       // then the final value is known.
468       if (!this->is_undefined())
469         return true;
470     }
471
472   // If the symbol is undefined, then whether the final value is known
473   // depends on whether we are doing a static link.  If we are doing a
474   // dynamic link, then the final value could be filled in at runtime.
475   // This could reasonably be the case for a weak undefined symbol.
476   return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484   switch (this->source_)
485     {
486     case FROM_OBJECT:
487       {
488         unsigned int shndx = this->u_.from_object.shndx;
489         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490           {
491             gold_assert(!this->u_.from_object.object->is_dynamic());
492             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494             return relobj->output_section(shndx);
495           }
496         return NULL;
497       }
498
499     case IN_OUTPUT_DATA:
500       return this->u_.in_output_data.output_data->output_section();
501
502     case IN_OUTPUT_SEGMENT:
503     case IS_CONSTANT:
504     case IS_UNDEFINED:
505       return NULL;
506
507     default:
508       gold_unreachable();
509     }
510 }
511
512 // Set the symbol's output section.  This is used for symbols defined
513 // in scripts.  This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519   switch (this->source_)
520     {
521     case FROM_OBJECT:
522     case IN_OUTPUT_DATA:
523       gold_assert(this->output_section() == os);
524       break;
525     case IS_CONSTANT:
526       this->source_ = IN_OUTPUT_DATA;
527       this->u_.in_output_data.output_data = os;
528       this->u_.in_output_data.offset_is_from_end = false;
529       break;
530     case IN_OUTPUT_SEGMENT:
531     case IS_UNDEFINED:
532     default:
533       gold_unreachable();
534     }
535 }
536
537 // Set the symbol's output segment.  This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544   gold_assert(this->is_predefined_);
545   this->source_ = IN_OUTPUT_SEGMENT;
546   this->u_.in_output_segment.output_segment = os;
547   this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined.  This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557   this->source_ = IS_UNDEFINED;
558   this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564                            const Version_script_info& version_script)
565   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566     forwarders_(), commons_(), tls_commons_(), small_commons_(),
567     large_commons_(), forced_locals_(), warnings_(),
568     version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570   namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function.  This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582                                           const Symbol_table_key& k2) const
583 {
584   return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590   return (parameters->options().icf_enabled()
591           && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void 
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600   for (options::String_set::const_iterator p =
601          parameters->options().undefined_begin();
602        p != parameters->options().undefined_end();
603        ++p)
604     {
605       const char* name = p->c_str();
606       Symbol* sym = this->lookup(name);
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT 
609           && !sym->object()->is_dynamic())
610         {
611           this->gc_mark_symbol(sym);
612         }
613     }
614
615   for (options::String_set::const_iterator p =
616          parameters->options().export_dynamic_symbol_begin();
617        p != parameters->options().export_dynamic_symbol_end();
618        ++p)
619     {
620       const char* name = p->c_str();
621       Symbol* sym = this->lookup(name);
622       // It's not an error if a symbol named by --export-dynamic-symbol
623       // is undefined.
624       if (sym != NULL
625           && sym->source() == Symbol::FROM_OBJECT 
626           && !sym->object()->is_dynamic())
627         {
628           this->gc_mark_symbol(sym);
629         }
630     }
631
632   for (Script_options::referenced_const_iterator p =
633          layout->script_options()->referenced_begin();
634        p != layout->script_options()->referenced_end();
635        ++p)
636     {
637       Symbol* sym = this->lookup(p->c_str());
638       gold_assert(sym != NULL);
639       if (sym->source() == Symbol::FROM_OBJECT
640           && !sym->object()->is_dynamic())
641         {
642           this->gc_mark_symbol(sym);
643         }
644     }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650   // Add the object and section to the work list.
651   bool is_ordinary;
652   unsigned int shndx = sym->shndx(&is_ordinary);
653   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654     {
655       gold_assert(this->gc_!= NULL);
656       Relobj* relobj = static_cast<Relobj*>(sym->object());
657       this->gc_->worklist().push_back(Section_id(relobj, shndx));
658     }
659   parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void 
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668       && !sym->object()->is_dynamic())
669     this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677   gold_assert(from != to);
678   gold_assert(!from->is_forwarder() && !to->is_forwarder());
679   this->forwarders_[from] = to;
680   from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688   gold_assert(from->is_forwarder());
689   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690     this->forwarders_.find(from);
691   gold_assert(p != this->forwarders_.end());
692   return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700   Stringpool::Key name_key;
701   name = this->namepool_.find(name, &name_key);
702   if (name == NULL)
703     return NULL;
704
705   Stringpool::Key version_key = 0;
706   if (version != NULL)
707     {
708       version = this->namepool_.find(version, &version_key);
709       if (version == NULL)
710         return NULL;
711     }
712
713   Symbol_table_key key(name_key, version_key);
714   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715   if (p == this->table_.end())
716     return NULL;
717   return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol.  This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version.  Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731   elfcpp::Sym_write<size, big_endian> esym(buf);
732   // We don't bother to set the st_name or the st_shndx field.
733   esym.put_st_value(from->value());
734   esym.put_st_size(from->symsize());
735   esym.put_st_info(from->binding(), from->type());
736   esym.put_st_other(from->visibility(), from->nonvis());
737   bool is_ordinary;
738   unsigned int shndx = from->shndx(&is_ordinary);
739   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740                 from->version(), true);
741   if (from->in_reg())
742     to->set_in_reg();
743   if (from->in_dyn())
744     to->set_in_dyn();
745   if (parameters->options().gc_sections())
746     this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755   if (!sym->is_defined() && !sym->is_common())
756     return;
757   if (sym->is_forced_local())
758     {
759       // We already got this one.
760       return;
761     }
762   sym->set_is_forced_local();
763   this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773   // For some targets, we need to ignore a specific character when
774   // wrapping, and add it back later.
775   char prefix = '\0';
776   if (name[0] == parameters->target().wrap_char())
777     {
778       prefix = name[0];
779       ++name;
780     }
781
782   if (parameters->options().is_wrap(name))
783     {
784       // Turn NAME into __wrap_NAME.
785       std::string s;
786       if (prefix != '\0')
787         s += prefix;
788       s += "__wrap_";
789       s += name;
790
791       // This will give us both the old and new name in NAMEPOOL_, but
792       // that is OK.  Only the versions we need will wind up in the
793       // real string table in the output file.
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796
797   const char* const real_prefix = "__real_";
798   const size_t real_prefix_length = strlen(real_prefix);
799   if (strncmp(name, real_prefix, real_prefix_length) == 0
800       && parameters->options().is_wrap(name + real_prefix_length))
801     {
802       // Turn __real_NAME into NAME.
803       std::string s;
804       if (prefix != '\0')
805         s += prefix;
806       s += name + real_prefix_length;
807       return this->namepool_.add(s.c_str(), true, name_key);
808     }
809
810   return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version.  SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822                                      bool default_is_new,
823                                      Symbol_table_type::iterator pdef)
824 {
825   if (default_is_new)
826     {
827       // This is the first time we have seen NAME/NULL.  Make
828       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829       // version.
830       pdef->second = sym;
831       sym->set_is_default();
832     }
833   else if (pdef->second == sym)
834     {
835       // NAME/NULL already points to NAME/VERSION.  Don't mark the
836       // symbol as the default if it is not already the default.
837     }
838   else
839     {
840       // This is the unfortunate case where we already have entries
841       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
842       // NAME/VERSION where VERSION is the default version.  We have
843       // already resolved this new symbol with the existing
844       // NAME/VERSION symbol.
845
846       // It's possible that NAME/NULL and NAME/VERSION are both
847       // defined in regular objects.  This can only happen if one
848       // object file defines foo and another defines foo@@ver.  This
849       // is somewhat obscure, but we call it a multiple definition
850       // error.
851
852       // It's possible that NAME/NULL actually has a version, in which
853       // case it won't be the same as VERSION.  This happens with
854       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
855       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
856       // then see an unadorned t2_2 in an object file and give it
857       // version VER1 from the version script.  This looks like a
858       // default definition for VER1, so it looks like we should merge
859       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
860       // not obvious that this is an error, either.  So we just punt.
861
862       // If one of the symbols has non-default visibility, and the
863       // other is defined in a shared object, then they are different
864       // symbols.
865
866       // Otherwise, we just resolve the symbols as though they were
867       // the same.
868
869       if (pdef->second->version() != NULL)
870         gold_assert(pdef->second->version() != sym->version());
871       else if (sym->visibility() != elfcpp::STV_DEFAULT
872                && pdef->second->is_from_dynobj())
873         ;
874       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875                && sym->is_from_dynobj())
876         ;
877       else
878         {
879           const Sized_symbol<size>* symdef;
880           symdef = this->get_sized_symbol<size>(pdef->second);
881           Symbol_table::resolve<size, big_endian>(sym, symdef);
882           this->make_forwarder(pdef->second, sym);
883           pdef->second = sym;
884           sym->set_is_default();
885         }
886     }
887 }
888
889 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
890 // name and VERSION is the version; both are canonicalized.  DEF is
891 // whether this is the default version.  ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol.  That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol.  This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION.  If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure.  That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table.  We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files.  So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code.  ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922                               const char* name,
923                               Stringpool::Key name_key,
924                               const char* version,
925                               Stringpool::Key version_key,
926                               bool is_default_version,
927                               const elfcpp::Sym<size, big_endian>& sym,
928                               unsigned int st_shndx,
929                               bool is_ordinary,
930                               unsigned int orig_st_shndx)
931 {
932   // Print a message if this symbol is being traced.
933   if (parameters->options().is_trace_symbol(name))
934     {
935       if (orig_st_shndx == elfcpp::SHN_UNDEF)
936         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937       else
938         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939     }
940
941   // For an undefined symbol, we may need to adjust the name using
942   // --wrap.
943   if (orig_st_shndx == elfcpp::SHN_UNDEF
944       && parameters->options().any_wrap())
945     {
946       const char* wrap_name = this->wrap_symbol(name, &name_key);
947       if (wrap_name != name)
948         {
949           // If we see a reference to malloc with version GLIBC_2.0,
950           // and we turn it into a reference to __wrap_malloc, then we
951           // discard the version number.  Otherwise the user would be
952           // required to specify the correct version for
953           // __wrap_malloc.
954           version = NULL;
955           version_key = 0;
956           name = wrap_name;
957         }
958     }
959
960   Symbol* const snull = NULL;
961   std::pair<typename Symbol_table_type::iterator, bool> ins =
962     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963                                        snull));
964
965   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966     std::make_pair(this->table_.end(), false);
967   if (is_default_version)
968     {
969       const Stringpool::Key vnull_key = 0;
970       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971                                                                      vnull_key),
972                                                       snull));
973     }
974
975   // ins.first: an iterator, which is a pointer to a pair.
976   // ins.first->first: the key (a pair of name and version).
977   // ins.first->second: the value (Symbol*).
978   // ins.second: true if new entry was inserted, false if not.
979
980   Sized_symbol<size>* ret;
981   bool was_undefined;
982   bool was_common;
983   if (!ins.second)
984     {
985       // We already have an entry for NAME/VERSION.
986       ret = this->get_sized_symbol<size>(ins.first->second);
987       gold_assert(ret != NULL);
988
989       was_undefined = ret->is_undefined();
990       // Commons from plugins are just placeholders.
991       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994                     version, is_default_version);
995       if (parameters->options().gc_sections())
996         this->gc_mark_dyn_syms(ret);
997
998       if (is_default_version)
999         this->define_default_version<size, big_endian>(ret, insdefault.second,
1000                                                        insdefault.first);
1001       else
1002         {
1003           bool dummy;
1004           if (version != NULL
1005               && ret->source() == Symbol::FROM_OBJECT
1006               && ret->object() == object
1007               && is_ordinary
1008               && ret->shndx(&dummy) == st_shndx
1009               && ret->is_default())
1010             {
1011               // We have seen NAME/VERSION already, and marked it as the
1012               // default version, but now we see a definition for
1013               // NAME/VERSION that is not the default version. This can
1014               // happen when the assembler generates two symbols for
1015               // a symbol as a result of a ".symver foo,foo@VER"
1016               // directive. We see the first unversioned symbol and
1017               // we may mark it as the default version (from a
1018               // version script); then we see the second versioned
1019               // symbol and we need to override the first.
1020               // In any other case, the two symbols should have generated
1021               // a multiple definition error.
1022               // (See PR gold/18703.)
1023               ret->set_is_not_default();
1024               const Stringpool::Key vnull_key = 0;
1025               this->table_.erase(std::make_pair(name_key, vnull_key));
1026             }
1027         }
1028     }
1029   else
1030     {
1031       // This is the first time we have seen NAME/VERSION.
1032       gold_assert(ins.first->second == NULL);
1033
1034       if (is_default_version && !insdefault.second)
1035         {
1036           // We already have an entry for NAME/NULL.  If we override
1037           // it, then change it to NAME/VERSION.
1038           ret = this->get_sized_symbol<size>(insdefault.first->second);
1039
1040           was_undefined = ret->is_undefined();
1041           // Commons from plugins are just placeholders.
1042           was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1043
1044           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1045                         version, is_default_version);
1046           if (parameters->options().gc_sections())
1047             this->gc_mark_dyn_syms(ret);
1048           ins.first->second = ret;
1049         }
1050       else
1051         {
1052           was_undefined = false;
1053           was_common = false;
1054
1055           Sized_target<size, big_endian>* target =
1056             parameters->sized_target<size, big_endian>();
1057           if (!target->has_make_symbol())
1058             ret = new Sized_symbol<size>();
1059           else
1060             {
1061               ret = target->make_symbol();
1062               if (ret == NULL)
1063                 {
1064                   // This means that we don't want a symbol table
1065                   // entry after all.
1066                   if (!is_default_version)
1067                     this->table_.erase(ins.first);
1068                   else
1069                     {
1070                       this->table_.erase(insdefault.first);
1071                       // Inserting INSDEFAULT invalidated INS.
1072                       this->table_.erase(std::make_pair(name_key,
1073                                                         version_key));
1074                     }
1075                   return NULL;
1076                 }
1077             }
1078
1079           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1080
1081           ins.first->second = ret;
1082           if (is_default_version)
1083             {
1084               // This is the first time we have seen NAME/NULL.  Point
1085               // it at the new entry for NAME/VERSION.
1086               gold_assert(insdefault.second);
1087               insdefault.first->second = ret;
1088             }
1089         }
1090
1091       if (is_default_version)
1092         ret->set_is_default();
1093     }
1094
1095   // Record every time we see a new undefined symbol, to speed up
1096   // archive groups.
1097   if (!was_undefined && ret->is_undefined())
1098     {
1099       ++this->saw_undefined_;
1100       if (parameters->options().has_plugins())
1101         parameters->options().plugins()->new_undefined_symbol(ret);
1102     }
1103
1104   // Keep track of common symbols, to speed up common symbol
1105   // allocation.  Don't record commons from plugin objects;
1106   // we need to wait until we see the real symbol in the
1107   // replacement file.
1108   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1109     {
1110       if (ret->type() == elfcpp::STT_TLS)
1111         this->tls_commons_.push_back(ret);
1112       else if (!is_ordinary
1113                && st_shndx == parameters->target().small_common_shndx())
1114         this->small_commons_.push_back(ret);
1115       else if (!is_ordinary
1116                && st_shndx == parameters->target().large_common_shndx())
1117         this->large_commons_.push_back(ret);
1118       else
1119         this->commons_.push_back(ret);
1120     }
1121
1122   // If we're not doing a relocatable link, then any symbol with
1123   // hidden or internal visibility is local.
1124   if ((ret->visibility() == elfcpp::STV_HIDDEN
1125        || ret->visibility() == elfcpp::STV_INTERNAL)
1126       && (ret->binding() == elfcpp::STB_GLOBAL
1127           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1128           || ret->binding() == elfcpp::STB_WEAK)
1129       && !parameters->options().relocatable())
1130     this->force_local(ret);
1131
1132   return ret;
1133 }
1134
1135 // Add all the symbols in a relocatable object to the hash table.
1136
1137 template<int size, bool big_endian>
1138 void
1139 Symbol_table::add_from_relobj(
1140     Sized_relobj_file<size, big_endian>* relobj,
1141     const unsigned char* syms,
1142     size_t count,
1143     size_t symndx_offset,
1144     const char* sym_names,
1145     size_t sym_name_size,
1146     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1147     size_t* defined)
1148 {
1149   *defined = 0;
1150
1151   gold_assert(size == parameters->target().get_size());
1152
1153   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1154
1155   const bool just_symbols = relobj->just_symbols();
1156
1157   const unsigned char* p = syms;
1158   for (size_t i = 0; i < count; ++i, p += sym_size)
1159     {
1160       (*sympointers)[i] = NULL;
1161
1162       elfcpp::Sym<size, big_endian> sym(p);
1163
1164       unsigned int st_name = sym.get_st_name();
1165       if (st_name >= sym_name_size)
1166         {
1167           relobj->error(_("bad global symbol name offset %u at %zu"),
1168                         st_name, i);
1169           continue;
1170         }
1171
1172       const char* name = sym_names + st_name;
1173
1174       if (!parameters->options().relocatable()
1175           && strcmp (name, "__gnu_lto_slim") == 0)
1176         gold_info(_("%s: plugin needed to handle lto object"),
1177                   relobj->name().c_str());
1178
1179       bool is_ordinary;
1180       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1181                                                        sym.get_st_shndx(),
1182                                                        &is_ordinary);
1183       unsigned int orig_st_shndx = st_shndx;
1184       if (!is_ordinary)
1185         orig_st_shndx = elfcpp::SHN_UNDEF;
1186
1187       if (st_shndx != elfcpp::SHN_UNDEF)
1188         ++*defined;
1189
1190       // A symbol defined in a section which we are not including must
1191       // be treated as an undefined symbol.
1192       bool is_defined_in_discarded_section = false;
1193       if (st_shndx != elfcpp::SHN_UNDEF
1194           && is_ordinary
1195           && !relobj->is_section_included(st_shndx)
1196           && !this->is_section_folded(relobj, st_shndx))
1197         {
1198           st_shndx = elfcpp::SHN_UNDEF;
1199           is_defined_in_discarded_section = true;
1200         }
1201
1202       // In an object file, an '@' in the name separates the symbol
1203       // name from the version name.  If there are two '@' characters,
1204       // this is the default version.
1205       const char* ver = strchr(name, '@');
1206       Stringpool::Key ver_key = 0;
1207       int namelen = 0;
1208       // IS_DEFAULT_VERSION: is the version default?
1209       // IS_FORCED_LOCAL: is the symbol forced local?
1210       bool is_default_version = false;
1211       bool is_forced_local = false;
1212
1213       // FIXME: For incremental links, we don't store version information,
1214       // so we need to ignore version symbols for now.
1215       if (parameters->incremental_update() && ver != NULL)
1216         {
1217           namelen = ver - name;
1218           ver = NULL;
1219         }
1220
1221       if (ver != NULL)
1222         {
1223           // The symbol name is of the form foo@VERSION or foo@@VERSION
1224           namelen = ver - name;
1225           ++ver;
1226           if (*ver == '@')
1227             {
1228               is_default_version = true;
1229               ++ver;
1230             }
1231           ver = this->namepool_.add(ver, true, &ver_key);
1232         }
1233       // We don't want to assign a version to an undefined symbol,
1234       // even if it is listed in the version script.  FIXME: What
1235       // about a common symbol?
1236       else
1237         {
1238           namelen = strlen(name);
1239           if (!this->version_script_.empty()
1240               && st_shndx != elfcpp::SHN_UNDEF)
1241             {
1242               // The symbol name did not have a version, but the
1243               // version script may assign a version anyway.
1244               std::string version;
1245               bool is_global;
1246               if (this->version_script_.get_symbol_version(name, &version,
1247                                                            &is_global))
1248                 {
1249                   if (!is_global)
1250                     is_forced_local = true;
1251                   else if (!version.empty())
1252                     {
1253                       ver = this->namepool_.add_with_length(version.c_str(),
1254                                                             version.length(),
1255                                                             true,
1256                                                             &ver_key);
1257                       is_default_version = true;
1258                     }
1259                 }
1260             }
1261         }
1262
1263       elfcpp::Sym<size, big_endian>* psym = &sym;
1264       unsigned char symbuf[sym_size];
1265       elfcpp::Sym<size, big_endian> sym2(symbuf);
1266       if (just_symbols)
1267         {
1268           memcpy(symbuf, p, sym_size);
1269           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1270           if (orig_st_shndx != elfcpp::SHN_UNDEF
1271               && is_ordinary
1272               && relobj->e_type() == elfcpp::ET_REL)
1273             {
1274               // Symbol values in relocatable object files are section
1275               // relative.  This is normally what we want, but since here
1276               // we are converting the symbol to absolute we need to add
1277               // the section address.  The section address in an object
1278               // file is normally zero, but people can use a linker
1279               // script to change it.
1280               sw.put_st_value(sym.get_st_value()
1281                               + relobj->section_address(orig_st_shndx));
1282             }
1283           st_shndx = elfcpp::SHN_ABS;
1284           is_ordinary = false;
1285           psym = &sym2;
1286         }
1287
1288       // Fix up visibility if object has no-export set.
1289       if (relobj->no_export()
1290           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1291         {
1292           // We may have copied symbol already above.
1293           if (psym != &sym2)
1294             {
1295               memcpy(symbuf, p, sym_size);
1296               psym = &sym2;
1297             }
1298
1299           elfcpp::STV visibility = sym2.get_st_visibility();
1300           if (visibility == elfcpp::STV_DEFAULT
1301               || visibility == elfcpp::STV_PROTECTED)
1302             {
1303               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1304               unsigned char nonvis = sym2.get_st_nonvis();
1305               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1306             }
1307         }
1308
1309       Stringpool::Key name_key;
1310       name = this->namepool_.add_with_length(name, namelen, true,
1311                                              &name_key);
1312
1313       Sized_symbol<size>* res;
1314       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1315                                   is_default_version, *psym, st_shndx,
1316                                   is_ordinary, orig_st_shndx);
1317       
1318       if (is_forced_local)
1319         this->force_local(res);
1320
1321       // Do not treat this symbol as garbage if this symbol will be
1322       // exported to the dynamic symbol table.  This is true when
1323       // building a shared library or using --export-dynamic and
1324       // the symbol is externally visible.
1325       if (parameters->options().gc_sections()
1326           && res->is_externally_visible()
1327           && !res->is_from_dynobj()
1328           && (parameters->options().shared()
1329               || parameters->options().export_dynamic()
1330               || parameters->options().in_dynamic_list(res->name())))
1331         this->gc_mark_symbol(res);
1332
1333       if (is_defined_in_discarded_section)
1334         res->set_is_defined_in_discarded_section();
1335
1336       (*sympointers)[i] = res;
1337     }
1338 }
1339
1340 // Add a symbol from a plugin-claimed file.
1341
1342 template<int size, bool big_endian>
1343 Symbol*
1344 Symbol_table::add_from_pluginobj(
1345     Sized_pluginobj<size, big_endian>* obj,
1346     const char* name,
1347     const char* ver,
1348     elfcpp::Sym<size, big_endian>* sym)
1349 {
1350   unsigned int st_shndx = sym->get_st_shndx();
1351   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1352
1353   Stringpool::Key ver_key = 0;
1354   bool is_default_version = false;
1355   bool is_forced_local = false;
1356
1357   if (ver != NULL)
1358     {
1359       ver = this->namepool_.add(ver, true, &ver_key);
1360     }
1361   // We don't want to assign a version to an undefined symbol,
1362   // even if it is listed in the version script.  FIXME: What
1363   // about a common symbol?
1364   else
1365     {
1366       if (!this->version_script_.empty()
1367           && st_shndx != elfcpp::SHN_UNDEF)
1368         {
1369           // The symbol name did not have a version, but the
1370           // version script may assign a version anyway.
1371           std::string version;
1372           bool is_global;
1373           if (this->version_script_.get_symbol_version(name, &version,
1374                                                        &is_global))
1375             {
1376               if (!is_global)
1377                 is_forced_local = true;
1378               else if (!version.empty())
1379                 {
1380                   ver = this->namepool_.add_with_length(version.c_str(),
1381                                                         version.length(),
1382                                                         true,
1383                                                         &ver_key);
1384                   is_default_version = true;
1385                 }
1386             }
1387         }
1388     }
1389
1390   Stringpool::Key name_key;
1391   name = this->namepool_.add(name, true, &name_key);
1392
1393   Sized_symbol<size>* res;
1394   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1395                               is_default_version, *sym, st_shndx,
1396                               is_ordinary, st_shndx);
1397
1398   if (is_forced_local)
1399     this->force_local(res);
1400
1401   return res;
1402 }
1403
1404 // Add all the symbols in a dynamic object to the hash table.
1405
1406 template<int size, bool big_endian>
1407 void
1408 Symbol_table::add_from_dynobj(
1409     Sized_dynobj<size, big_endian>* dynobj,
1410     const unsigned char* syms,
1411     size_t count,
1412     const char* sym_names,
1413     size_t sym_name_size,
1414     const unsigned char* versym,
1415     size_t versym_size,
1416     const std::vector<const char*>* version_map,
1417     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1418     size_t* defined)
1419 {
1420   *defined = 0;
1421
1422   gold_assert(size == parameters->target().get_size());
1423
1424   if (dynobj->just_symbols())
1425     {
1426       gold_error(_("--just-symbols does not make sense with a shared object"));
1427       return;
1428     }
1429
1430   // FIXME: For incremental links, we don't store version information,
1431   // so we need to ignore version symbols for now.
1432   if (parameters->incremental_update())
1433     versym = NULL;
1434
1435   if (versym != NULL && versym_size / 2 < count)
1436     {
1437       dynobj->error(_("too few symbol versions"));
1438       return;
1439     }
1440
1441   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1442
1443   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1444   // weak aliases.  This is necessary because if the dynamic object
1445   // provides the same variable under two names, one of which is a
1446   // weak definition, and the regular object refers to the weak
1447   // definition, we have to put both the weak definition and the
1448   // strong definition into the dynamic symbol table.  Given a weak
1449   // definition, the only way that we can find the corresponding
1450   // strong definition, if any, is to search the symbol table.
1451   std::vector<Sized_symbol<size>*> object_symbols;
1452
1453   const unsigned char* p = syms;
1454   const unsigned char* vs = versym;
1455   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1456     {
1457       elfcpp::Sym<size, big_endian> sym(p);
1458
1459       if (sympointers != NULL)
1460         (*sympointers)[i] = NULL;
1461
1462       // Ignore symbols with local binding or that have
1463       // internal or hidden visibility.
1464       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1465           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1466           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1467         continue;
1468
1469       // A protected symbol in a shared library must be treated as a
1470       // normal symbol when viewed from outside the shared library.
1471       // Implement this by overriding the visibility here.
1472       // Likewise, an IFUNC symbol in a shared library must be treated
1473       // as a normal FUNC symbol.
1474       elfcpp::Sym<size, big_endian>* psym = &sym;
1475       unsigned char symbuf[sym_size];
1476       elfcpp::Sym<size, big_endian> sym2(symbuf);
1477       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1478           || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1479         {
1480           memcpy(symbuf, p, sym_size);
1481           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1482           if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1483             sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1484           if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1485             sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1486           psym = &sym2;
1487         }
1488
1489       unsigned int st_name = psym->get_st_name();
1490       if (st_name >= sym_name_size)
1491         {
1492           dynobj->error(_("bad symbol name offset %u at %zu"),
1493                         st_name, i);
1494           continue;
1495         }
1496
1497       const char* name = sym_names + st_name;
1498
1499       bool is_ordinary;
1500       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1501                                                        &is_ordinary);
1502
1503       if (st_shndx != elfcpp::SHN_UNDEF)
1504         ++*defined;
1505
1506       Sized_symbol<size>* res;
1507
1508       if (versym == NULL)
1509         {
1510           Stringpool::Key name_key;
1511           name = this->namepool_.add(name, true, &name_key);
1512           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1513                                       false, *psym, st_shndx, is_ordinary,
1514                                       st_shndx);
1515         }
1516       else
1517         {
1518           // Read the version information.
1519
1520           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1521
1522           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1523           v &= elfcpp::VERSYM_VERSION;
1524
1525           // The Sun documentation says that V can be VER_NDX_LOCAL,
1526           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1527           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1528           // The old GNU linker will happily generate VER_NDX_LOCAL
1529           // for an undefined symbol.  I don't know what the Sun
1530           // linker will generate.
1531
1532           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1533               && st_shndx != elfcpp::SHN_UNDEF)
1534             {
1535               // This symbol should not be visible outside the object.
1536               continue;
1537             }
1538
1539           // At this point we are definitely going to add this symbol.
1540           Stringpool::Key name_key;
1541           name = this->namepool_.add(name, true, &name_key);
1542
1543           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1544               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1545             {
1546               // This symbol does not have a version.
1547               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1548                                           false, *psym, st_shndx, is_ordinary,
1549                                           st_shndx);
1550             }
1551           else
1552             {
1553               if (v >= version_map->size())
1554                 {
1555                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1556                                 i, v);
1557                   continue;
1558                 }
1559
1560               const char* version = (*version_map)[v];
1561               if (version == NULL)
1562                 {
1563                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1564                                 i, v);
1565                   continue;
1566                 }
1567
1568               Stringpool::Key version_key;
1569               version = this->namepool_.add(version, true, &version_key);
1570
1571               // If this is an absolute symbol, and the version name
1572               // and symbol name are the same, then this is the
1573               // version definition symbol.  These symbols exist to
1574               // support using -u to pull in particular versions.  We
1575               // do not want to record a version for them.
1576               if (st_shndx == elfcpp::SHN_ABS
1577                   && !is_ordinary
1578                   && name_key == version_key)
1579                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1580                                             false, *psym, st_shndx, is_ordinary,
1581                                             st_shndx);
1582               else
1583                 {
1584                   const bool is_default_version =
1585                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1586                   res = this->add_from_object(dynobj, name, name_key, version,
1587                                               version_key, is_default_version,
1588                                               *psym, st_shndx,
1589                                               is_ordinary, st_shndx);
1590                 }
1591             }
1592         }
1593
1594       // Note that it is possible that RES was overridden by an
1595       // earlier object, in which case it can't be aliased here.
1596       if (st_shndx != elfcpp::SHN_UNDEF
1597           && is_ordinary
1598           && psym->get_st_type() == elfcpp::STT_OBJECT
1599           && res->source() == Symbol::FROM_OBJECT
1600           && res->object() == dynobj)
1601         object_symbols.push_back(res);
1602
1603       if (sympointers != NULL)
1604         (*sympointers)[i] = res;
1605     }
1606
1607   this->record_weak_aliases(&object_symbols);
1608 }
1609
1610 // Add a symbol from a incremental object file.
1611
1612 template<int size, bool big_endian>
1613 Sized_symbol<size>*
1614 Symbol_table::add_from_incrobj(
1615     Object* obj,
1616     const char* name,
1617     const char* ver,
1618     elfcpp::Sym<size, big_endian>* sym)
1619 {
1620   unsigned int st_shndx = sym->get_st_shndx();
1621   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1622
1623   Stringpool::Key ver_key = 0;
1624   bool is_default_version = false;
1625   bool is_forced_local = false;
1626
1627   Stringpool::Key name_key;
1628   name = this->namepool_.add(name, true, &name_key);
1629
1630   Sized_symbol<size>* res;
1631   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1632                               is_default_version, *sym, st_shndx,
1633                               is_ordinary, st_shndx);
1634
1635   if (is_forced_local)
1636     this->force_local(res);
1637
1638   return res;
1639 }
1640
1641 // This is used to sort weak aliases.  We sort them first by section
1642 // index, then by offset, then by weak ahead of strong.
1643
1644 template<int size>
1645 class Weak_alias_sorter
1646 {
1647  public:
1648   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1649 };
1650
1651 template<int size>
1652 bool
1653 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1654                                     const Sized_symbol<size>* s2) const
1655 {
1656   bool is_ordinary;
1657   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1658   gold_assert(is_ordinary);
1659   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1660   gold_assert(is_ordinary);
1661   if (s1_shndx != s2_shndx)
1662     return s1_shndx < s2_shndx;
1663
1664   if (s1->value() != s2->value())
1665     return s1->value() < s2->value();
1666   if (s1->binding() != s2->binding())
1667     {
1668       if (s1->binding() == elfcpp::STB_WEAK)
1669         return true;
1670       if (s2->binding() == elfcpp::STB_WEAK)
1671         return false;
1672     }
1673   return std::string(s1->name()) < std::string(s2->name());
1674 }
1675
1676 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1677 // for any weak aliases, and record them so that if we add the weak
1678 // alias to the dynamic symbol table, we also add the corresponding
1679 // strong symbol.
1680
1681 template<int size>
1682 void
1683 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1684 {
1685   // Sort the vector by section index, then by offset, then by weak
1686   // ahead of strong.
1687   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1688
1689   // Walk through the vector.  For each weak definition, record
1690   // aliases.
1691   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1692          symbols->begin();
1693        p != symbols->end();
1694        ++p)
1695     {
1696       if ((*p)->binding() != elfcpp::STB_WEAK)
1697         continue;
1698
1699       // Build a circular list of weak aliases.  Each symbol points to
1700       // the next one in the circular list.
1701
1702       Sized_symbol<size>* from_sym = *p;
1703       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1704       for (q = p + 1; q != symbols->end(); ++q)
1705         {
1706           bool dummy;
1707           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1708               || (*q)->value() != from_sym->value())
1709             break;
1710
1711           this->weak_aliases_[from_sym] = *q;
1712           from_sym->set_has_alias();
1713           from_sym = *q;
1714         }
1715
1716       if (from_sym != *p)
1717         {
1718           this->weak_aliases_[from_sym] = *p;
1719           from_sym->set_has_alias();
1720         }
1721
1722       p = q - 1;
1723     }
1724 }
1725
1726 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1727 // true, then only create the symbol if there is a reference to it.
1728 // If this does not return NULL, it sets *POLDSYM to the existing
1729 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1730 // resolve the newly created symbol to the old one.  This
1731 // canonicalizes *PNAME and *PVERSION.
1732
1733 template<int size, bool big_endian>
1734 Sized_symbol<size>*
1735 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1736                                     bool only_if_ref,
1737                                     Sized_symbol<size>** poldsym,
1738                                     bool* resolve_oldsym)
1739 {
1740   *resolve_oldsym = false;
1741   *poldsym = NULL;
1742
1743   // If the caller didn't give us a version, see if we get one from
1744   // the version script.
1745   std::string v;
1746   bool is_default_version = false;
1747   if (*pversion == NULL)
1748     {
1749       bool is_global;
1750       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1751         {
1752           if (is_global && !v.empty())
1753             {
1754               *pversion = v.c_str();
1755               // If we get the version from a version script, then we
1756               // are also the default version.
1757               is_default_version = true;
1758             }
1759         }
1760     }
1761
1762   Symbol* oldsym;
1763   Sized_symbol<size>* sym;
1764
1765   bool add_to_table = false;
1766   typename Symbol_table_type::iterator add_loc = this->table_.end();
1767   bool add_def_to_table = false;
1768   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1769
1770   if (only_if_ref)
1771     {
1772       oldsym = this->lookup(*pname, *pversion);
1773       if (oldsym == NULL && is_default_version)
1774         oldsym = this->lookup(*pname, NULL);
1775       if (oldsym == NULL || !oldsym->is_undefined())
1776         return NULL;
1777
1778       *pname = oldsym->name();
1779       if (is_default_version)
1780         *pversion = this->namepool_.add(*pversion, true, NULL);
1781       else
1782         *pversion = oldsym->version();
1783     }
1784   else
1785     {
1786       // Canonicalize NAME and VERSION.
1787       Stringpool::Key name_key;
1788       *pname = this->namepool_.add(*pname, true, &name_key);
1789
1790       Stringpool::Key version_key = 0;
1791       if (*pversion != NULL)
1792         *pversion = this->namepool_.add(*pversion, true, &version_key);
1793
1794       Symbol* const snull = NULL;
1795       std::pair<typename Symbol_table_type::iterator, bool> ins =
1796         this->table_.insert(std::make_pair(std::make_pair(name_key,
1797                                                           version_key),
1798                                            snull));
1799
1800       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1801         std::make_pair(this->table_.end(), false);
1802       if (is_default_version)
1803         {
1804           const Stringpool::Key vnull = 0;
1805           insdefault =
1806             this->table_.insert(std::make_pair(std::make_pair(name_key,
1807                                                               vnull),
1808                                                snull));
1809         }
1810
1811       if (!ins.second)
1812         {
1813           // We already have a symbol table entry for NAME/VERSION.
1814           oldsym = ins.first->second;
1815           gold_assert(oldsym != NULL);
1816
1817           if (is_default_version)
1818             {
1819               Sized_symbol<size>* soldsym =
1820                 this->get_sized_symbol<size>(oldsym);
1821               this->define_default_version<size, big_endian>(soldsym,
1822                                                              insdefault.second,
1823                                                              insdefault.first);
1824             }
1825         }
1826       else
1827         {
1828           // We haven't seen this symbol before.
1829           gold_assert(ins.first->second == NULL);
1830
1831           add_to_table = true;
1832           add_loc = ins.first;
1833
1834           if (is_default_version && !insdefault.second)
1835             {
1836               // We are adding NAME/VERSION, and it is the default
1837               // version.  We already have an entry for NAME/NULL.
1838               oldsym = insdefault.first->second;
1839               *resolve_oldsym = true;
1840             }
1841           else
1842             {
1843               oldsym = NULL;
1844
1845               if (is_default_version)
1846                 {
1847                   add_def_to_table = true;
1848                   add_def_loc = insdefault.first;
1849                 }
1850             }
1851         }
1852     }
1853
1854   const Target& target = parameters->target();
1855   if (!target.has_make_symbol())
1856     sym = new Sized_symbol<size>();
1857   else
1858     {
1859       Sized_target<size, big_endian>* sized_target =
1860         parameters->sized_target<size, big_endian>();
1861       sym = sized_target->make_symbol();
1862       if (sym == NULL)
1863         return NULL;
1864     }
1865
1866   if (add_to_table)
1867     add_loc->second = sym;
1868   else
1869     gold_assert(oldsym != NULL);
1870
1871   if (add_def_to_table)
1872     add_def_loc->second = sym;
1873
1874   *poldsym = this->get_sized_symbol<size>(oldsym);
1875
1876   return sym;
1877 }
1878
1879 // Define a symbol based on an Output_data.
1880
1881 Symbol*
1882 Symbol_table::define_in_output_data(const char* name,
1883                                     const char* version,
1884                                     Defined defined,
1885                                     Output_data* od,
1886                                     uint64_t value,
1887                                     uint64_t symsize,
1888                                     elfcpp::STT type,
1889                                     elfcpp::STB binding,
1890                                     elfcpp::STV visibility,
1891                                     unsigned char nonvis,
1892                                     bool offset_is_from_end,
1893                                     bool only_if_ref)
1894 {
1895   if (parameters->target().get_size() == 32)
1896     {
1897 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1898       return this->do_define_in_output_data<32>(name, version, defined, od,
1899                                                 value, symsize, type, binding,
1900                                                 visibility, nonvis,
1901                                                 offset_is_from_end,
1902                                                 only_if_ref);
1903 #else
1904       gold_unreachable();
1905 #endif
1906     }
1907   else if (parameters->target().get_size() == 64)
1908     {
1909 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1910       return this->do_define_in_output_data<64>(name, version, defined, od,
1911                                                 value, symsize, type, binding,
1912                                                 visibility, nonvis,
1913                                                 offset_is_from_end,
1914                                                 only_if_ref);
1915 #else
1916       gold_unreachable();
1917 #endif
1918     }
1919   else
1920     gold_unreachable();
1921 }
1922
1923 // Define a symbol in an Output_data, sized version.
1924
1925 template<int size>
1926 Sized_symbol<size>*
1927 Symbol_table::do_define_in_output_data(
1928     const char* name,
1929     const char* version,
1930     Defined defined,
1931     Output_data* od,
1932     typename elfcpp::Elf_types<size>::Elf_Addr value,
1933     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1934     elfcpp::STT type,
1935     elfcpp::STB binding,
1936     elfcpp::STV visibility,
1937     unsigned char nonvis,
1938     bool offset_is_from_end,
1939     bool only_if_ref)
1940 {
1941   Sized_symbol<size>* sym;
1942   Sized_symbol<size>* oldsym;
1943   bool resolve_oldsym;
1944
1945   if (parameters->target().is_big_endian())
1946     {
1947 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1948       sym = this->define_special_symbol<size, true>(&name, &version,
1949                                                     only_if_ref, &oldsym,
1950                                                     &resolve_oldsym);
1951 #else
1952       gold_unreachable();
1953 #endif
1954     }
1955   else
1956     {
1957 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1958       sym = this->define_special_symbol<size, false>(&name, &version,
1959                                                      only_if_ref, &oldsym,
1960                                                      &resolve_oldsym);
1961 #else
1962       gold_unreachable();
1963 #endif
1964     }
1965
1966   if (sym == NULL)
1967     return NULL;
1968
1969   sym->init_output_data(name, version, od, value, symsize, type, binding,
1970                         visibility, nonvis, offset_is_from_end,
1971                         defined == PREDEFINED);
1972
1973   if (oldsym == NULL)
1974     {
1975       if (binding == elfcpp::STB_LOCAL
1976           || this->version_script_.symbol_is_local(name))
1977         this->force_local(sym);
1978       else if (version != NULL)
1979         sym->set_is_default();
1980       return sym;
1981     }
1982
1983   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1984     this->override_with_special(oldsym, sym);
1985
1986   if (resolve_oldsym)
1987     return sym;
1988   else
1989     {
1990       if (defined == PREDEFINED
1991           && (binding == elfcpp::STB_LOCAL
1992               || this->version_script_.symbol_is_local(name)))
1993         this->force_local(oldsym);
1994       delete sym;
1995       return oldsym;
1996     }
1997 }
1998
1999 // Define a symbol based on an Output_segment.
2000
2001 Symbol*
2002 Symbol_table::define_in_output_segment(const char* name,
2003                                        const char* version,
2004                                        Defined defined,
2005                                        Output_segment* os,
2006                                        uint64_t value,
2007                                        uint64_t symsize,
2008                                        elfcpp::STT type,
2009                                        elfcpp::STB binding,
2010                                        elfcpp::STV visibility,
2011                                        unsigned char nonvis,
2012                                        Symbol::Segment_offset_base offset_base,
2013                                        bool only_if_ref)
2014 {
2015   if (parameters->target().get_size() == 32)
2016     {
2017 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2018       return this->do_define_in_output_segment<32>(name, version, defined, os,
2019                                                    value, symsize, type,
2020                                                    binding, visibility, nonvis,
2021                                                    offset_base, only_if_ref);
2022 #else
2023       gold_unreachable();
2024 #endif
2025     }
2026   else if (parameters->target().get_size() == 64)
2027     {
2028 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2029       return this->do_define_in_output_segment<64>(name, version, defined, os,
2030                                                    value, symsize, type,
2031                                                    binding, visibility, nonvis,
2032                                                    offset_base, only_if_ref);
2033 #else
2034       gold_unreachable();
2035 #endif
2036     }
2037   else
2038     gold_unreachable();
2039 }
2040
2041 // Define a symbol in an Output_segment, sized version.
2042
2043 template<int size>
2044 Sized_symbol<size>*
2045 Symbol_table::do_define_in_output_segment(
2046     const char* name,
2047     const char* version,
2048     Defined defined,
2049     Output_segment* os,
2050     typename elfcpp::Elf_types<size>::Elf_Addr value,
2051     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2052     elfcpp::STT type,
2053     elfcpp::STB binding,
2054     elfcpp::STV visibility,
2055     unsigned char nonvis,
2056     Symbol::Segment_offset_base offset_base,
2057     bool only_if_ref)
2058 {
2059   Sized_symbol<size>* sym;
2060   Sized_symbol<size>* oldsym;
2061   bool resolve_oldsym;
2062
2063   if (parameters->target().is_big_endian())
2064     {
2065 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2066       sym = this->define_special_symbol<size, true>(&name, &version,
2067                                                     only_if_ref, &oldsym,
2068                                                     &resolve_oldsym);
2069 #else
2070       gold_unreachable();
2071 #endif
2072     }
2073   else
2074     {
2075 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2076       sym = this->define_special_symbol<size, false>(&name, &version,
2077                                                      only_if_ref, &oldsym,
2078                                                      &resolve_oldsym);
2079 #else
2080       gold_unreachable();
2081 #endif
2082     }
2083
2084   if (sym == NULL)
2085     return NULL;
2086
2087   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2088                            visibility, nonvis, offset_base,
2089                            defined == PREDEFINED);
2090
2091   if (oldsym == NULL)
2092     {
2093       if (binding == elfcpp::STB_LOCAL
2094           || this->version_script_.symbol_is_local(name))
2095         this->force_local(sym);
2096       else if (version != NULL)
2097         sym->set_is_default();
2098       return sym;
2099     }
2100
2101   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2102     this->override_with_special(oldsym, sym);
2103
2104   if (resolve_oldsym)
2105     return sym;
2106   else
2107     {
2108       if (binding == elfcpp::STB_LOCAL
2109           || this->version_script_.symbol_is_local(name))
2110         this->force_local(oldsym);
2111       delete sym;
2112       return oldsym;
2113     }
2114 }
2115
2116 // Define a special symbol with a constant value.  It is a multiple
2117 // definition error if this symbol is already defined.
2118
2119 Symbol*
2120 Symbol_table::define_as_constant(const char* name,
2121                                  const char* version,
2122                                  Defined defined,
2123                                  uint64_t value,
2124                                  uint64_t symsize,
2125                                  elfcpp::STT type,
2126                                  elfcpp::STB binding,
2127                                  elfcpp::STV visibility,
2128                                  unsigned char nonvis,
2129                                  bool only_if_ref,
2130                                  bool force_override)
2131 {
2132   if (parameters->target().get_size() == 32)
2133     {
2134 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2135       return this->do_define_as_constant<32>(name, version, defined, value,
2136                                              symsize, type, binding,
2137                                              visibility, nonvis, only_if_ref,
2138                                              force_override);
2139 #else
2140       gold_unreachable();
2141 #endif
2142     }
2143   else if (parameters->target().get_size() == 64)
2144     {
2145 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2146       return this->do_define_as_constant<64>(name, version, defined, value,
2147                                              symsize, type, binding,
2148                                              visibility, nonvis, only_if_ref,
2149                                              force_override);
2150 #else
2151       gold_unreachable();
2152 #endif
2153     }
2154   else
2155     gold_unreachable();
2156 }
2157
2158 // Define a symbol as a constant, sized version.
2159
2160 template<int size>
2161 Sized_symbol<size>*
2162 Symbol_table::do_define_as_constant(
2163     const char* name,
2164     const char* version,
2165     Defined defined,
2166     typename elfcpp::Elf_types<size>::Elf_Addr value,
2167     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2168     elfcpp::STT type,
2169     elfcpp::STB binding,
2170     elfcpp::STV visibility,
2171     unsigned char nonvis,
2172     bool only_if_ref,
2173     bool force_override)
2174 {
2175   Sized_symbol<size>* sym;
2176   Sized_symbol<size>* oldsym;
2177   bool resolve_oldsym;
2178
2179   if (parameters->target().is_big_endian())
2180     {
2181 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2182       sym = this->define_special_symbol<size, true>(&name, &version,
2183                                                     only_if_ref, &oldsym,
2184                                                     &resolve_oldsym);
2185 #else
2186       gold_unreachable();
2187 #endif
2188     }
2189   else
2190     {
2191 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2192       sym = this->define_special_symbol<size, false>(&name, &version,
2193                                                      only_if_ref, &oldsym,
2194                                                      &resolve_oldsym);
2195 #else
2196       gold_unreachable();
2197 #endif
2198     }
2199
2200   if (sym == NULL)
2201     return NULL;
2202
2203   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2204                      nonvis, defined == PREDEFINED);
2205
2206   if (oldsym == NULL)
2207     {
2208       // Version symbols are absolute symbols with name == version.
2209       // We don't want to force them to be local.
2210       if ((version == NULL
2211            || name != version
2212            || value != 0)
2213           && (binding == elfcpp::STB_LOCAL
2214               || this->version_script_.symbol_is_local(name)))
2215         this->force_local(sym);
2216       else if (version != NULL
2217                && (name != version || value != 0))
2218         sym->set_is_default();
2219       return sym;
2220     }
2221
2222   if (force_override
2223       || Symbol_table::should_override_with_special(oldsym, type, defined))
2224     this->override_with_special(oldsym, sym);
2225
2226   if (resolve_oldsym)
2227     return sym;
2228   else
2229     {
2230       if (binding == elfcpp::STB_LOCAL
2231           || this->version_script_.symbol_is_local(name))
2232         this->force_local(oldsym);
2233       delete sym;
2234       return oldsym;
2235     }
2236 }
2237
2238 // Define a set of symbols in output sections.
2239
2240 void
2241 Symbol_table::define_symbols(const Layout* layout, int count,
2242                              const Define_symbol_in_section* p,
2243                              bool only_if_ref)
2244 {
2245   for (int i = 0; i < count; ++i, ++p)
2246     {
2247       Output_section* os = layout->find_output_section(p->output_section);
2248       if (os != NULL)
2249         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2250                                     p->size, p->type, p->binding,
2251                                     p->visibility, p->nonvis,
2252                                     p->offset_is_from_end,
2253                                     only_if_ref || p->only_if_ref);
2254       else
2255         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2256                                  p->type, p->binding, p->visibility, p->nonvis,
2257                                  only_if_ref || p->only_if_ref,
2258                                  false);
2259     }
2260 }
2261
2262 // Define a set of symbols in output segments.
2263
2264 void
2265 Symbol_table::define_symbols(const Layout* layout, int count,
2266                              const Define_symbol_in_segment* p,
2267                              bool only_if_ref)
2268 {
2269   for (int i = 0; i < count; ++i, ++p)
2270     {
2271       Output_segment* os = layout->find_output_segment(p->segment_type,
2272                                                        p->segment_flags_set,
2273                                                        p->segment_flags_clear);
2274       if (os != NULL)
2275         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2276                                        p->size, p->type, p->binding,
2277                                        p->visibility, p->nonvis,
2278                                        p->offset_base,
2279                                        only_if_ref || p->only_if_ref);
2280       else
2281         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2282                                  p->type, p->binding, p->visibility, p->nonvis,
2283                                  only_if_ref || p->only_if_ref,
2284                                  false);
2285     }
2286 }
2287
2288 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2289 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2290 // the offset within POSD.
2291
2292 template<int size>
2293 void
2294 Symbol_table::define_with_copy_reloc(
2295     Sized_symbol<size>* csym,
2296     Output_data* posd,
2297     typename elfcpp::Elf_types<size>::Elf_Addr value)
2298 {
2299   gold_assert(csym->is_from_dynobj());
2300   gold_assert(!csym->is_copied_from_dynobj());
2301   Object* object = csym->object();
2302   gold_assert(object->is_dynamic());
2303   Dynobj* dynobj = static_cast<Dynobj*>(object);
2304
2305   // Our copied variable has to override any variable in a shared
2306   // library.
2307   elfcpp::STB binding = csym->binding();
2308   if (binding == elfcpp::STB_WEAK)
2309     binding = elfcpp::STB_GLOBAL;
2310
2311   this->define_in_output_data(csym->name(), csym->version(), COPY,
2312                               posd, value, csym->symsize(),
2313                               csym->type(), binding,
2314                               csym->visibility(), csym->nonvis(),
2315                               false, false);
2316
2317   csym->set_is_copied_from_dynobj();
2318   csym->set_needs_dynsym_entry();
2319
2320   this->copied_symbol_dynobjs_[csym] = dynobj;
2321
2322   // We have now defined all aliases, but we have not entered them all
2323   // in the copied_symbol_dynobjs_ map.
2324   if (csym->has_alias())
2325     {
2326       Symbol* sym = csym;
2327       while (true)
2328         {
2329           sym = this->weak_aliases_[sym];
2330           if (sym == csym)
2331             break;
2332           gold_assert(sym->output_data() == posd);
2333
2334           sym->set_is_copied_from_dynobj();
2335           this->copied_symbol_dynobjs_[sym] = dynobj;
2336         }
2337     }
2338 }
2339
2340 // SYM is defined using a COPY reloc.  Return the dynamic object where
2341 // the original definition was found.
2342
2343 Dynobj*
2344 Symbol_table::get_copy_source(const Symbol* sym) const
2345 {
2346   gold_assert(sym->is_copied_from_dynobj());
2347   Copied_symbol_dynobjs::const_iterator p =
2348     this->copied_symbol_dynobjs_.find(sym);
2349   gold_assert(p != this->copied_symbol_dynobjs_.end());
2350   return p->second;
2351 }
2352
2353 // Add any undefined symbols named on the command line.
2354
2355 void
2356 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2357 {
2358   if (parameters->options().any_undefined()
2359       || layout->script_options()->any_unreferenced())
2360     {
2361       if (parameters->target().get_size() == 32)
2362         {
2363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2364           this->do_add_undefined_symbols_from_command_line<32>(layout);
2365 #else
2366           gold_unreachable();
2367 #endif
2368         }
2369       else if (parameters->target().get_size() == 64)
2370         {
2371 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2372           this->do_add_undefined_symbols_from_command_line<64>(layout);
2373 #else
2374           gold_unreachable();
2375 #endif
2376         }
2377       else
2378         gold_unreachable();
2379     }
2380 }
2381
2382 template<int size>
2383 void
2384 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2385 {
2386   for (options::String_set::const_iterator p =
2387          parameters->options().undefined_begin();
2388        p != parameters->options().undefined_end();
2389        ++p)
2390     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2391
2392   for (options::String_set::const_iterator p =
2393          parameters->options().export_dynamic_symbol_begin();
2394        p != parameters->options().export_dynamic_symbol_end();
2395        ++p)
2396     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2397
2398   for (Script_options::referenced_const_iterator p =
2399          layout->script_options()->referenced_begin();
2400        p != layout->script_options()->referenced_end();
2401        ++p)
2402     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2403 }
2404
2405 template<int size>
2406 void
2407 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2408 {
2409   if (this->lookup(name) != NULL)
2410     return;
2411
2412   const char* version = NULL;
2413
2414   Sized_symbol<size>* sym;
2415   Sized_symbol<size>* oldsym;
2416   bool resolve_oldsym;
2417   if (parameters->target().is_big_endian())
2418     {
2419 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2420       sym = this->define_special_symbol<size, true>(&name, &version,
2421                                                     false, &oldsym,
2422                                                     &resolve_oldsym);
2423 #else
2424       gold_unreachable();
2425 #endif
2426     }
2427   else
2428     {
2429 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2430       sym = this->define_special_symbol<size, false>(&name, &version,
2431                                                      false, &oldsym,
2432                                                      &resolve_oldsym);
2433 #else
2434       gold_unreachable();
2435 #endif
2436     }
2437
2438   gold_assert(oldsym == NULL);
2439
2440   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2441                       elfcpp::STV_DEFAULT, 0);
2442   ++this->saw_undefined_;
2443 }
2444
2445 // Set the dynamic symbol indexes.  INDEX is the index of the first
2446 // global dynamic symbol.  Pointers to the symbols are stored into the
2447 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2448 // updated dynamic symbol index.
2449
2450 unsigned int
2451 Symbol_table::set_dynsym_indexes(unsigned int index,
2452                                  std::vector<Symbol*>* syms,
2453                                  Stringpool* dynpool,
2454                                  Versions* versions)
2455 {
2456   std::vector<Symbol*> as_needed_sym;
2457
2458   // Allow a target to set dynsym indexes.
2459   if (parameters->target().has_custom_set_dynsym_indexes())
2460     {
2461       std::vector<Symbol*> dyn_symbols;
2462       for (Symbol_table_type::iterator p = this->table_.begin();
2463            p != this->table_.end();
2464            ++p)
2465         {
2466           Symbol* sym = p->second;
2467           if (!sym->should_add_dynsym_entry(this))
2468             sym->set_dynsym_index(-1U);
2469           else
2470             dyn_symbols.push_back(sym);
2471         }
2472
2473       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2474                                                      dynpool, versions, this);
2475     }
2476
2477   for (Symbol_table_type::iterator p = this->table_.begin();
2478        p != this->table_.end();
2479        ++p)
2480     {
2481       Symbol* sym = p->second;
2482
2483       // Note that SYM may already have a dynamic symbol index, since
2484       // some symbols appear more than once in the symbol table, with
2485       // and without a version.
2486
2487       if (!sym->should_add_dynsym_entry(this))
2488         sym->set_dynsym_index(-1U);
2489       else if (!sym->has_dynsym_index())
2490         {
2491           sym->set_dynsym_index(index);
2492           ++index;
2493           syms->push_back(sym);
2494           dynpool->add(sym->name(), false, NULL);
2495
2496           // If the symbol is defined in a dynamic object and is
2497           // referenced strongly in a regular object, then mark the
2498           // dynamic object as needed.  This is used to implement
2499           // --as-needed.
2500           if (sym->is_from_dynobj()
2501               && sym->in_reg()
2502               && !sym->is_undef_binding_weak())
2503             sym->object()->set_is_needed();
2504
2505           // Record any version information, except those from
2506           // as-needed libraries not seen to be needed.  Note that the
2507           // is_needed state for such libraries can change in this loop.
2508           if (sym->version() != NULL)
2509             {
2510               if (!sym->is_from_dynobj()
2511                   || !sym->object()->as_needed()
2512                   || sym->object()->is_needed())
2513                 versions->record_version(this, dynpool, sym);
2514               else
2515                 as_needed_sym.push_back(sym);
2516             }
2517         }
2518     }
2519
2520   // Process version information for symbols from as-needed libraries.
2521   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2522        p != as_needed_sym.end();
2523        ++p)
2524     {
2525       Symbol* sym = *p;
2526
2527       if (sym->object()->is_needed())
2528         versions->record_version(this, dynpool, sym);
2529       else
2530         sym->clear_version();
2531     }
2532
2533   // Finish up the versions.  In some cases this may add new dynamic
2534   // symbols.
2535   index = versions->finalize(this, index, syms);
2536
2537   return index;
2538 }
2539
2540 // Set the final values for all the symbols.  The index of the first
2541 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2542 // file offset OFF.  Add their names to POOL.  Return the new file
2543 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2544
2545 off_t
2546 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2547                        size_t dyncount, Stringpool* pool,
2548                        unsigned int* plocal_symcount)
2549 {
2550   off_t ret;
2551
2552   gold_assert(*plocal_symcount != 0);
2553   this->first_global_index_ = *plocal_symcount;
2554
2555   this->dynamic_offset_ = dynoff;
2556   this->first_dynamic_global_index_ = dyn_global_index;
2557   this->dynamic_count_ = dyncount;
2558
2559   if (parameters->target().get_size() == 32)
2560     {
2561 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2562       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2563 #else
2564       gold_unreachable();
2565 #endif
2566     }
2567   else if (parameters->target().get_size() == 64)
2568     {
2569 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2570       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2571 #else
2572       gold_unreachable();
2573 #endif
2574     }
2575   else
2576     gold_unreachable();
2577
2578   // Now that we have the final symbol table, we can reliably note
2579   // which symbols should get warnings.
2580   this->warnings_.note_warnings(this);
2581
2582   return ret;
2583 }
2584
2585 // SYM is going into the symbol table at *PINDEX.  Add the name to
2586 // POOL, update *PINDEX and *POFF.
2587
2588 template<int size>
2589 void
2590 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2591                                   unsigned int* pindex, off_t* poff)
2592 {
2593   sym->set_symtab_index(*pindex);
2594   if (sym->version() == NULL || !parameters->options().relocatable())
2595     pool->add(sym->name(), false, NULL);
2596   else
2597     pool->add(sym->versioned_name(), true, NULL);
2598   ++*pindex;
2599   *poff += elfcpp::Elf_sizes<size>::sym_size;
2600 }
2601
2602 // Set the final value for all the symbols.  This is called after
2603 // Layout::finalize, so all the output sections have their final
2604 // address.
2605
2606 template<int size>
2607 off_t
2608 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2609                              unsigned int* plocal_symcount)
2610 {
2611   off = align_address(off, size >> 3);
2612   this->offset_ = off;
2613
2614   unsigned int index = *plocal_symcount;
2615   const unsigned int orig_index = index;
2616
2617   // First do all the symbols which have been forced to be local, as
2618   // they must appear before all global symbols.
2619   for (Forced_locals::iterator p = this->forced_locals_.begin();
2620        p != this->forced_locals_.end();
2621        ++p)
2622     {
2623       Symbol* sym = *p;
2624       gold_assert(sym->is_forced_local());
2625       if (this->sized_finalize_symbol<size>(sym))
2626         {
2627           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2628           ++*plocal_symcount;
2629         }
2630     }
2631
2632   // Now do all the remaining symbols.
2633   for (Symbol_table_type::iterator p = this->table_.begin();
2634        p != this->table_.end();
2635        ++p)
2636     {
2637       Symbol* sym = p->second;
2638       if (this->sized_finalize_symbol<size>(sym))
2639         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2640     }
2641
2642   this->output_count_ = index - orig_index;
2643
2644   return off;
2645 }
2646
2647 // Compute the final value of SYM and store status in location PSTATUS.
2648 // During relaxation, this may be called multiple times for a symbol to
2649 // compute its would-be final value in each relaxation pass.
2650
2651 template<int size>
2652 typename Sized_symbol<size>::Value_type
2653 Symbol_table::compute_final_value(
2654     const Sized_symbol<size>* sym,
2655     Compute_final_value_status* pstatus) const
2656 {
2657   typedef typename Sized_symbol<size>::Value_type Value_type;
2658   Value_type value;
2659
2660   switch (sym->source())
2661     {
2662     case Symbol::FROM_OBJECT:
2663       {
2664         bool is_ordinary;
2665         unsigned int shndx = sym->shndx(&is_ordinary);
2666
2667         if (!is_ordinary
2668             && shndx != elfcpp::SHN_ABS
2669             && !Symbol::is_common_shndx(shndx))
2670           {
2671             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2672             return 0;
2673           }
2674
2675         Object* symobj = sym->object();
2676         if (symobj->is_dynamic())
2677           {
2678             value = 0;
2679             shndx = elfcpp::SHN_UNDEF;
2680           }
2681         else if (symobj->pluginobj() != NULL)
2682           {
2683             value = 0;
2684             shndx = elfcpp::SHN_UNDEF;
2685           }
2686         else if (shndx == elfcpp::SHN_UNDEF)
2687           value = 0;
2688         else if (!is_ordinary
2689                  && (shndx == elfcpp::SHN_ABS
2690                      || Symbol::is_common_shndx(shndx)))
2691           value = sym->value();
2692         else
2693           {
2694             Relobj* relobj = static_cast<Relobj*>(symobj);
2695             Output_section* os = relobj->output_section(shndx);
2696
2697             if (this->is_section_folded(relobj, shndx))
2698               {
2699                 gold_assert(os == NULL);
2700                 // Get the os of the section it is folded onto.
2701                 Section_id folded = this->icf_->get_folded_section(relobj,
2702                                                                    shndx);
2703                 gold_assert(folded.first != NULL);
2704                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2705                 unsigned folded_shndx = folded.second;
2706
2707                 os = folded_obj->output_section(folded_shndx);  
2708                 gold_assert(os != NULL);
2709
2710                 // Replace (relobj, shndx) with canonical ICF input section.
2711                 shndx = folded_shndx;
2712                 relobj = folded_obj;
2713               }
2714
2715             uint64_t secoff64 = relobj->output_section_offset(shndx);
2716             if (os == NULL)
2717               {
2718                 bool static_or_reloc = (parameters->doing_static_link() ||
2719                                         parameters->options().relocatable());
2720                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2721
2722                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2723                 return 0;
2724               }
2725
2726             if (secoff64 == -1ULL)
2727               {
2728                 // The section needs special handling (e.g., a merge section).
2729
2730                 value = os->output_address(relobj, shndx, sym->value());
2731               }
2732             else
2733               {
2734                 Value_type secoff =
2735                   convert_types<Value_type, uint64_t>(secoff64);
2736                 if (sym->type() == elfcpp::STT_TLS)
2737                   value = sym->value() + os->tls_offset() + secoff;
2738                 else
2739                   value = sym->value() + os->address() + secoff;
2740               }
2741           }
2742       }
2743       break;
2744
2745     case Symbol::IN_OUTPUT_DATA:
2746       {
2747         Output_data* od = sym->output_data();
2748         value = sym->value();
2749         if (sym->type() != elfcpp::STT_TLS)
2750           value += od->address();
2751         else
2752           {
2753             Output_section* os = od->output_section();
2754             gold_assert(os != NULL);
2755             value += os->tls_offset() + (od->address() - os->address());
2756           }
2757         if (sym->offset_is_from_end())
2758           value += od->data_size();
2759       }
2760       break;
2761
2762     case Symbol::IN_OUTPUT_SEGMENT:
2763       {
2764         Output_segment* os = sym->output_segment();
2765         value = sym->value();
2766         if (sym->type() != elfcpp::STT_TLS)
2767           value += os->vaddr();
2768         switch (sym->offset_base())
2769           {
2770           case Symbol::SEGMENT_START:
2771             break;
2772           case Symbol::SEGMENT_END:
2773             value += os->memsz();
2774             break;
2775           case Symbol::SEGMENT_BSS:
2776             value += os->filesz();
2777             break;
2778           default:
2779             gold_unreachable();
2780           }
2781       }
2782       break;
2783
2784     case Symbol::IS_CONSTANT:
2785       value = sym->value();
2786       break;
2787
2788     case Symbol::IS_UNDEFINED:
2789       value = 0;
2790       break;
2791
2792     default:
2793       gold_unreachable();
2794     }
2795
2796   *pstatus = CFVS_OK;
2797   return value;
2798 }
2799
2800 // Finalize the symbol SYM.  This returns true if the symbol should be
2801 // added to the symbol table, false otherwise.
2802
2803 template<int size>
2804 bool
2805 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2806 {
2807   typedef typename Sized_symbol<size>::Value_type Value_type;
2808
2809   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2810
2811   // The default version of a symbol may appear twice in the symbol
2812   // table.  We only need to finalize it once.
2813   if (sym->has_symtab_index())
2814     return false;
2815
2816   if (!sym->in_reg())
2817     {
2818       gold_assert(!sym->has_symtab_index());
2819       sym->set_symtab_index(-1U);
2820       gold_assert(sym->dynsym_index() == -1U);
2821       return false;
2822     }
2823
2824   // If the symbol is only present on plugin files, the plugin decided we
2825   // don't need it.
2826   if (!sym->in_real_elf())
2827     {
2828       gold_assert(!sym->has_symtab_index());
2829       sym->set_symtab_index(-1U);
2830       return false;
2831     }
2832
2833   // Compute final symbol value.
2834   Compute_final_value_status status;
2835   Value_type value = this->compute_final_value(sym, &status);
2836
2837   switch (status)
2838     {
2839     case CFVS_OK:
2840       break;
2841     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2842       {
2843         bool is_ordinary;
2844         unsigned int shndx = sym->shndx(&is_ordinary);
2845         gold_error(_("%s: unsupported symbol section 0x%x"),
2846                    sym->demangled_name().c_str(), shndx);
2847       }
2848       break;
2849     case CFVS_NO_OUTPUT_SECTION:
2850       sym->set_symtab_index(-1U);
2851       return false;
2852     default:
2853       gold_unreachable();
2854     }
2855
2856   sym->set_value(value);
2857
2858   if (parameters->options().strip_all()
2859       || !parameters->options().should_retain_symbol(sym->name()))
2860     {
2861       sym->set_symtab_index(-1U);
2862       return false;
2863     }
2864
2865   return true;
2866 }
2867
2868 // Write out the global symbols.
2869
2870 void
2871 Symbol_table::write_globals(const Stringpool* sympool,
2872                             const Stringpool* dynpool,
2873                             Output_symtab_xindex* symtab_xindex,
2874                             Output_symtab_xindex* dynsym_xindex,
2875                             Output_file* of) const
2876 {
2877   switch (parameters->size_and_endianness())
2878     {
2879 #ifdef HAVE_TARGET_32_LITTLE
2880     case Parameters::TARGET_32_LITTLE:
2881       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2882                                            dynsym_xindex, of);
2883       break;
2884 #endif
2885 #ifdef HAVE_TARGET_32_BIG
2886     case Parameters::TARGET_32_BIG:
2887       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2888                                           dynsym_xindex, of);
2889       break;
2890 #endif
2891 #ifdef HAVE_TARGET_64_LITTLE
2892     case Parameters::TARGET_64_LITTLE:
2893       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2894                                            dynsym_xindex, of);
2895       break;
2896 #endif
2897 #ifdef HAVE_TARGET_64_BIG
2898     case Parameters::TARGET_64_BIG:
2899       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2900                                           dynsym_xindex, of);
2901       break;
2902 #endif
2903     default:
2904       gold_unreachable();
2905     }
2906 }
2907
2908 // Write out the global symbols.
2909
2910 template<int size, bool big_endian>
2911 void
2912 Symbol_table::sized_write_globals(const Stringpool* sympool,
2913                                   const Stringpool* dynpool,
2914                                   Output_symtab_xindex* symtab_xindex,
2915                                   Output_symtab_xindex* dynsym_xindex,
2916                                   Output_file* of) const
2917 {
2918   const Target& target = parameters->target();
2919
2920   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2921
2922   const unsigned int output_count = this->output_count_;
2923   const section_size_type oview_size = output_count * sym_size;
2924   const unsigned int first_global_index = this->first_global_index_;
2925   unsigned char* psyms;
2926   if (this->offset_ == 0 || output_count == 0)
2927     psyms = NULL;
2928   else
2929     psyms = of->get_output_view(this->offset_, oview_size);
2930
2931   const unsigned int dynamic_count = this->dynamic_count_;
2932   const section_size_type dynamic_size = dynamic_count * sym_size;
2933   const unsigned int first_dynamic_global_index =
2934     this->first_dynamic_global_index_;
2935   unsigned char* dynamic_view;
2936   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2937     dynamic_view = NULL;
2938   else
2939     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2940
2941   for (Symbol_table_type::const_iterator p = this->table_.begin();
2942        p != this->table_.end();
2943        ++p)
2944     {
2945       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2946
2947       // Possibly warn about unresolved symbols in shared libraries.
2948       this->warn_about_undefined_dynobj_symbol(sym);
2949
2950       unsigned int sym_index = sym->symtab_index();
2951       unsigned int dynsym_index;
2952       if (dynamic_view == NULL)
2953         dynsym_index = -1U;
2954       else
2955         dynsym_index = sym->dynsym_index();
2956
2957       if (sym_index == -1U && dynsym_index == -1U)
2958         {
2959           // This symbol is not included in the output file.
2960           continue;
2961         }
2962
2963       unsigned int shndx;
2964       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2965       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2966       elfcpp::STB binding = sym->binding();
2967
2968       // If --weak-unresolved-symbols is set, change binding of unresolved
2969       // global symbols to STB_WEAK.
2970       if (parameters->options().weak_unresolved_symbols()
2971           && binding == elfcpp::STB_GLOBAL
2972           && sym->is_undefined())
2973         binding = elfcpp::STB_WEAK;
2974
2975       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2976       if (binding == elfcpp::STB_GNU_UNIQUE
2977           && !parameters->options().gnu_unique())
2978         binding = elfcpp::STB_GLOBAL;
2979
2980       switch (sym->source())
2981         {
2982         case Symbol::FROM_OBJECT:
2983           {
2984             bool is_ordinary;
2985             unsigned int in_shndx = sym->shndx(&is_ordinary);
2986
2987             if (!is_ordinary
2988                 && in_shndx != elfcpp::SHN_ABS
2989                 && !Symbol::is_common_shndx(in_shndx))
2990               {
2991                 gold_error(_("%s: unsupported symbol section 0x%x"),
2992                            sym->demangled_name().c_str(), in_shndx);
2993                 shndx = in_shndx;
2994               }
2995             else
2996               {
2997                 Object* symobj = sym->object();
2998                 if (symobj->is_dynamic())
2999                   {
3000                     if (sym->needs_dynsym_value())
3001                       dynsym_value = target.dynsym_value(sym);
3002                     shndx = elfcpp::SHN_UNDEF;
3003                     if (sym->is_undef_binding_weak())
3004                       binding = elfcpp::STB_WEAK;
3005                     else
3006                       binding = elfcpp::STB_GLOBAL;
3007                   }
3008                 else if (symobj->pluginobj() != NULL)
3009                   shndx = elfcpp::SHN_UNDEF;
3010                 else if (in_shndx == elfcpp::SHN_UNDEF
3011                          || (!is_ordinary
3012                              && (in_shndx == elfcpp::SHN_ABS
3013                                  || Symbol::is_common_shndx(in_shndx))))
3014                   shndx = in_shndx;
3015                 else
3016                   {
3017                     Relobj* relobj = static_cast<Relobj*>(symobj);
3018                     Output_section* os = relobj->output_section(in_shndx);
3019                     if (this->is_section_folded(relobj, in_shndx))
3020                       {
3021                         // This global symbol must be written out even though
3022                         // it is folded.
3023                         // Get the os of the section it is folded onto.
3024                         Section_id folded =
3025                              this->icf_->get_folded_section(relobj, in_shndx);
3026                         gold_assert(folded.first !=NULL);
3027                         Relobj* folded_obj = 
3028                           reinterpret_cast<Relobj*>(folded.first);
3029                         os = folded_obj->output_section(folded.second);  
3030                         gold_assert(os != NULL);
3031                       }
3032                     gold_assert(os != NULL);
3033                     shndx = os->out_shndx();
3034
3035                     if (shndx >= elfcpp::SHN_LORESERVE)
3036                       {
3037                         if (sym_index != -1U)
3038                           symtab_xindex->add(sym_index, shndx);
3039                         if (dynsym_index != -1U)
3040                           dynsym_xindex->add(dynsym_index, shndx);
3041                         shndx = elfcpp::SHN_XINDEX;
3042                       }
3043
3044                     // In object files symbol values are section
3045                     // relative.
3046                     if (parameters->options().relocatable())
3047                       sym_value -= os->address();
3048                   }
3049               }
3050           }
3051           break;
3052
3053         case Symbol::IN_OUTPUT_DATA:
3054           {
3055             Output_data* od = sym->output_data();
3056
3057             shndx = od->out_shndx();
3058             if (shndx >= elfcpp::SHN_LORESERVE)
3059               {
3060                 if (sym_index != -1U)
3061                   symtab_xindex->add(sym_index, shndx);
3062                 if (dynsym_index != -1U)
3063                   dynsym_xindex->add(dynsym_index, shndx);
3064                 shndx = elfcpp::SHN_XINDEX;
3065               }
3066
3067             // In object files symbol values are section
3068             // relative.
3069             if (parameters->options().relocatable())
3070               sym_value -= od->address();
3071           }
3072           break;
3073
3074         case Symbol::IN_OUTPUT_SEGMENT:
3075           shndx = elfcpp::SHN_ABS;
3076           break;
3077
3078         case Symbol::IS_CONSTANT:
3079           shndx = elfcpp::SHN_ABS;
3080           break;
3081
3082         case Symbol::IS_UNDEFINED:
3083           shndx = elfcpp::SHN_UNDEF;
3084           break;
3085
3086         default:
3087           gold_unreachable();
3088         }
3089
3090       if (sym_index != -1U)
3091         {
3092           sym_index -= first_global_index;
3093           gold_assert(sym_index < output_count);
3094           unsigned char* ps = psyms + (sym_index * sym_size);
3095           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3096                                                      binding, sympool, ps);
3097         }
3098
3099       if (dynsym_index != -1U)
3100         {
3101           dynsym_index -= first_dynamic_global_index;
3102           gold_assert(dynsym_index < dynamic_count);
3103           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3104           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3105                                                      binding, dynpool, pd);
3106           // Allow a target to adjust dynamic symbol value.
3107           parameters->target().adjust_dyn_symbol(sym, pd);
3108         }
3109     }
3110
3111   of->write_output_view(this->offset_, oview_size, psyms);
3112   if (dynamic_view != NULL)
3113     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3114 }
3115
3116 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3117 // strtab holding the name.
3118
3119 template<int size, bool big_endian>
3120 void
3121 Symbol_table::sized_write_symbol(
3122     Sized_symbol<size>* sym,
3123     typename elfcpp::Elf_types<size>::Elf_Addr value,
3124     unsigned int shndx,
3125     elfcpp::STB binding,
3126     const Stringpool* pool,
3127     unsigned char* p) const
3128 {
3129   elfcpp::Sym_write<size, big_endian> osym(p);
3130   if (sym->version() == NULL || !parameters->options().relocatable())
3131     osym.put_st_name(pool->get_offset(sym->name()));
3132   else
3133     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3134   osym.put_st_value(value);
3135   // Use a symbol size of zero for undefined symbols from shared libraries.
3136   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3137     osym.put_st_size(0);
3138   else
3139     osym.put_st_size(sym->symsize());
3140   elfcpp::STT type = sym->type();
3141   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3142   // A version script may have overridden the default binding.
3143   if (sym->is_forced_local())
3144     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3145   else
3146     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3147   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3148   osym.put_st_shndx(shndx);
3149 }
3150
3151 // Check for unresolved symbols in shared libraries.  This is
3152 // controlled by the --allow-shlib-undefined option.
3153
3154 // We only warn about libraries for which we have seen all the
3155 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3156 // which were not seen in this link.  If we didn't see a DT_NEEDED
3157 // entry, we aren't going to be able to reliably report whether the
3158 // symbol is undefined.
3159
3160 // We also don't warn about libraries found in a system library
3161 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3162 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3163 // can have undefined references satisfied by ld-linux.so.
3164
3165 inline void
3166 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3167 {
3168   bool dummy;
3169   if (sym->source() == Symbol::FROM_OBJECT
3170       && sym->object()->is_dynamic()
3171       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3172       && sym->binding() != elfcpp::STB_WEAK
3173       && !parameters->options().allow_shlib_undefined()
3174       && !parameters->target().is_defined_by_abi(sym)
3175       && !sym->object()->is_in_system_directory())
3176     {
3177       // A very ugly cast.
3178       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3179       if (!dynobj->has_unknown_needed_entries())
3180         gold_undefined_symbol(sym);
3181     }
3182 }
3183
3184 // Write out a section symbol.  Return the update offset.
3185
3186 void
3187 Symbol_table::write_section_symbol(const Output_section* os,
3188                                    Output_symtab_xindex* symtab_xindex,
3189                                    Output_file* of,
3190                                    off_t offset) const
3191 {
3192   switch (parameters->size_and_endianness())
3193     {
3194 #ifdef HAVE_TARGET_32_LITTLE
3195     case Parameters::TARGET_32_LITTLE:
3196       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3197                                                   offset);
3198       break;
3199 #endif
3200 #ifdef HAVE_TARGET_32_BIG
3201     case Parameters::TARGET_32_BIG:
3202       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3203                                                  offset);
3204       break;
3205 #endif
3206 #ifdef HAVE_TARGET_64_LITTLE
3207     case Parameters::TARGET_64_LITTLE:
3208       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3209                                                   offset);
3210       break;
3211 #endif
3212 #ifdef HAVE_TARGET_64_BIG
3213     case Parameters::TARGET_64_BIG:
3214       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3215                                                  offset);
3216       break;
3217 #endif
3218     default:
3219       gold_unreachable();
3220     }
3221 }
3222
3223 // Write out a section symbol, specialized for size and endianness.
3224
3225 template<int size, bool big_endian>
3226 void
3227 Symbol_table::sized_write_section_symbol(const Output_section* os,
3228                                          Output_symtab_xindex* symtab_xindex,
3229                                          Output_file* of,
3230                                          off_t offset) const
3231 {
3232   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3233
3234   unsigned char* pov = of->get_output_view(offset, sym_size);
3235
3236   elfcpp::Sym_write<size, big_endian> osym(pov);
3237   osym.put_st_name(0);
3238   if (parameters->options().relocatable())
3239     osym.put_st_value(0);
3240   else
3241     osym.put_st_value(os->address());
3242   osym.put_st_size(0);
3243   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3244                                        elfcpp::STT_SECTION));
3245   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3246
3247   unsigned int shndx = os->out_shndx();
3248   if (shndx >= elfcpp::SHN_LORESERVE)
3249     {
3250       symtab_xindex->add(os->symtab_index(), shndx);
3251       shndx = elfcpp::SHN_XINDEX;
3252     }
3253   osym.put_st_shndx(shndx);
3254
3255   of->write_output_view(offset, sym_size, pov);
3256 }
3257
3258 // Print statistical information to stderr.  This is used for --stats.
3259
3260 void
3261 Symbol_table::print_stats() const
3262 {
3263 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3264   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3265           program_name, this->table_.size(), this->table_.bucket_count());
3266 #else
3267   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3268           program_name, this->table_.size());
3269 #endif
3270   this->namepool_.print_stats("symbol table stringpool");
3271 }
3272
3273 // We check for ODR violations by looking for symbols with the same
3274 // name for which the debugging information reports that they were
3275 // defined in disjoint source locations.  When comparing the source
3276 // location, we consider instances with the same base filename to be
3277 // the same.  This is because different object files/shared libraries
3278 // can include the same header file using different paths, and
3279 // different optimization settings can make the line number appear to
3280 // be a couple lines off, and we don't want to report an ODR violation
3281 // in those cases.
3282
3283 // This struct is used to compare line information, as returned by
3284 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3285 // operator used with std::sort.
3286
3287 struct Odr_violation_compare
3288 {
3289   bool
3290   operator()(const std::string& s1, const std::string& s2) const
3291   {
3292     // Inputs should be of the form "dirname/filename:linenum" where
3293     // "dirname/" is optional.  We want to compare just the filename:linenum.
3294
3295     // Find the last '/' in each string.
3296     std::string::size_type s1begin = s1.rfind('/');
3297     std::string::size_type s2begin = s2.rfind('/');
3298     // If there was no '/' in a string, start at the beginning.
3299     if (s1begin == std::string::npos)
3300       s1begin = 0;
3301     if (s2begin == std::string::npos)
3302       s2begin = 0;
3303     return s1.compare(s1begin, std::string::npos,
3304                       s2, s2begin, std::string::npos) < 0;
3305   }
3306 };
3307
3308 // Returns all of the lines attached to LOC, not just the one the
3309 // instruction actually came from.
3310 std::vector<std::string>
3311 Symbol_table::linenos_from_loc(const Task* task,
3312                                const Symbol_location& loc)
3313 {
3314   // We need to lock the object in order to read it.  This
3315   // means that we have to run in a singleton Task.  If we
3316   // want to run this in a general Task for better
3317   // performance, we will need one Task for object, plus
3318   // appropriate locking to ensure that we don't conflict with
3319   // other uses of the object.  Also note, one_addr2line is not
3320   // currently thread-safe.
3321   Task_lock_obj<Object> tl(task, loc.object);
3322
3323   std::vector<std::string> result;
3324   Symbol_location code_loc = loc;
3325   parameters->target().function_location(&code_loc);
3326   // 16 is the size of the object-cache that one_addr2line should use.
3327   std::string canonical_result = Dwarf_line_info::one_addr2line(
3328       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3329   if (!canonical_result.empty())
3330     result.push_back(canonical_result);
3331   return result;
3332 }
3333
3334 // OutputIterator that records if it was ever assigned to.  This
3335 // allows it to be used with std::set_intersection() to check for
3336 // intersection rather than computing the intersection.
3337 struct Check_intersection
3338 {
3339   Check_intersection()
3340     : value_(false)
3341   {}
3342
3343   bool had_intersection() const
3344   { return this->value_; }
3345
3346   Check_intersection& operator++()
3347   { return *this; }
3348
3349   Check_intersection& operator*()
3350   { return *this; }
3351
3352   template<typename T>
3353   Check_intersection& operator=(const T&)
3354   {
3355     this->value_ = true;
3356     return *this;
3357   }
3358
3359  private:
3360   bool value_;
3361 };
3362
3363 // Check candidate_odr_violations_ to find symbols with the same name
3364 // but apparently different definitions (different source-file/line-no
3365 // for each line assigned to the first instruction).
3366
3367 void
3368 Symbol_table::detect_odr_violations(const Task* task,
3369                                     const char* output_file_name) const
3370 {
3371   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3372        it != candidate_odr_violations_.end();
3373        ++it)
3374     {
3375       const char* const symbol_name = it->first;
3376
3377       std::string first_object_name;
3378       std::vector<std::string> first_object_linenos;
3379
3380       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3381           locs = it->second.begin();
3382       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3383           locs_end = it->second.end();
3384       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3385         {
3386           // Save the line numbers from the first definition to
3387           // compare to the other definitions.  Ideally, we'd compare
3388           // every definition to every other, but we don't want to
3389           // take O(N^2) time to do this.  This shortcut may cause
3390           // false negatives that appear or disappear depending on the
3391           // link order, but it won't cause false positives.
3392           first_object_name = locs->object->name();
3393           first_object_linenos = this->linenos_from_loc(task, *locs);
3394         }
3395       if (first_object_linenos.empty())
3396         continue;
3397
3398       // Sort by Odr_violation_compare to make std::set_intersection work.
3399       std::string first_object_canonical_result = first_object_linenos.back();
3400       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3401                 Odr_violation_compare());
3402
3403       for (; locs != locs_end; ++locs)
3404         {
3405           std::vector<std::string> linenos =
3406               this->linenos_from_loc(task, *locs);
3407           // linenos will be empty if we couldn't parse the debug info.
3408           if (linenos.empty())
3409             continue;
3410           // Sort by Odr_violation_compare to make std::set_intersection work.
3411           gold_assert(!linenos.empty());
3412           std::string second_object_canonical_result = linenos.back();
3413           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3414
3415           Check_intersection intersection_result =
3416               std::set_intersection(first_object_linenos.begin(),
3417                                     first_object_linenos.end(),
3418                                     linenos.begin(),
3419                                     linenos.end(),
3420                                     Check_intersection(),
3421                                     Odr_violation_compare());
3422           if (!intersection_result.had_intersection())
3423             {
3424               gold_warning(_("while linking %s: symbol '%s' defined in "
3425                              "multiple places (possible ODR violation):"),
3426                            output_file_name, demangle(symbol_name).c_str());
3427               // This only prints one location from each definition,
3428               // which may not be the location we expect to intersect
3429               // with another definition.  We could print the whole
3430               // set of locations, but that seems too verbose.
3431               fprintf(stderr, _("  %s from %s\n"),
3432                       first_object_canonical_result.c_str(),
3433                       first_object_name.c_str());
3434               fprintf(stderr, _("  %s from %s\n"),
3435                       second_object_canonical_result.c_str(),
3436                       locs->object->name().c_str());
3437               // Only print one broken pair, to avoid needing to
3438               // compare against a list of the disjoint definition
3439               // locations we've found so far.  (If we kept comparing
3440               // against just the first one, we'd get a lot of
3441               // redundant complaints about the second definition
3442               // location.)
3443               break;
3444             }
3445         }
3446     }
3447   // We only call one_addr2line() in this function, so we can clear its cache.
3448   Dwarf_line_info::clear_addr2line_cache();
3449 }
3450
3451 // Warnings functions.
3452
3453 // Add a new warning.
3454
3455 void
3456 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3457                       const std::string& warning)
3458 {
3459   name = symtab->canonicalize_name(name);
3460   this->warnings_[name].set(obj, warning);
3461 }
3462
3463 // Look through the warnings and mark the symbols for which we should
3464 // warn.  This is called during Layout::finalize when we know the
3465 // sources for all the symbols.
3466
3467 void
3468 Warnings::note_warnings(Symbol_table* symtab)
3469 {
3470   for (Warning_table::iterator p = this->warnings_.begin();
3471        p != this->warnings_.end();
3472        ++p)
3473     {
3474       Symbol* sym = symtab->lookup(p->first, NULL);
3475       if (sym != NULL
3476           && sym->source() == Symbol::FROM_OBJECT
3477           && sym->object() == p->second.object)
3478         sym->set_has_warning();
3479     }
3480 }
3481
3482 // Issue a warning.  This is called when we see a relocation against a
3483 // symbol for which has a warning.
3484
3485 template<int size, bool big_endian>
3486 void
3487 Warnings::issue_warning(const Symbol* sym,
3488                         const Relocate_info<size, big_endian>* relinfo,
3489                         size_t relnum, off_t reloffset) const
3490 {
3491   gold_assert(sym->has_warning());
3492
3493   // We don't want to issue a warning for a relocation against the
3494   // symbol in the same object file in which the symbol is defined.
3495   if (sym->object() == relinfo->object)
3496     return;
3497
3498   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3499   gold_assert(p != this->warnings_.end());
3500   gold_warning_at_location(relinfo, relnum, reloffset,
3501                            "%s", p->second.text.c_str());
3502 }
3503
3504 // Instantiate the templates we need.  We could use the configure
3505 // script to restrict this to only the ones needed for implemented
3506 // targets.
3507
3508 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3509 template
3510 void
3511 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3512 #endif
3513
3514 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3515 template
3516 void
3517 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_LITTLE
3521 template
3522 void
3523 Symbol_table::add_from_relobj<32, false>(
3524     Sized_relobj_file<32, false>* relobj,
3525     const unsigned char* syms,
3526     size_t count,
3527     size_t symndx_offset,
3528     const char* sym_names,
3529     size_t sym_name_size,
3530     Sized_relobj_file<32, false>::Symbols* sympointers,
3531     size_t* defined);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_32_BIG
3535 template
3536 void
3537 Symbol_table::add_from_relobj<32, true>(
3538     Sized_relobj_file<32, true>* relobj,
3539     const unsigned char* syms,
3540     size_t count,
3541     size_t symndx_offset,
3542     const char* sym_names,
3543     size_t sym_name_size,
3544     Sized_relobj_file<32, true>::Symbols* sympointers,
3545     size_t* defined);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_64_LITTLE
3549 template
3550 void
3551 Symbol_table::add_from_relobj<64, false>(
3552     Sized_relobj_file<64, false>* relobj,
3553     const unsigned char* syms,
3554     size_t count,
3555     size_t symndx_offset,
3556     const char* sym_names,
3557     size_t sym_name_size,
3558     Sized_relobj_file<64, false>::Symbols* sympointers,
3559     size_t* defined);
3560 #endif
3561
3562 #ifdef HAVE_TARGET_64_BIG
3563 template
3564 void
3565 Symbol_table::add_from_relobj<64, true>(
3566     Sized_relobj_file<64, true>* relobj,
3567     const unsigned char* syms,
3568     size_t count,
3569     size_t symndx_offset,
3570     const char* sym_names,
3571     size_t sym_name_size,
3572     Sized_relobj_file<64, true>::Symbols* sympointers,
3573     size_t* defined);
3574 #endif
3575
3576 #ifdef HAVE_TARGET_32_LITTLE
3577 template
3578 Symbol*
3579 Symbol_table::add_from_pluginobj<32, false>(
3580     Sized_pluginobj<32, false>* obj,
3581     const char* name,
3582     const char* ver,
3583     elfcpp::Sym<32, false>* sym);
3584 #endif
3585
3586 #ifdef HAVE_TARGET_32_BIG
3587 template
3588 Symbol*
3589 Symbol_table::add_from_pluginobj<32, true>(
3590     Sized_pluginobj<32, true>* obj,
3591     const char* name,
3592     const char* ver,
3593     elfcpp::Sym<32, true>* sym);
3594 #endif
3595
3596 #ifdef HAVE_TARGET_64_LITTLE
3597 template
3598 Symbol*
3599 Symbol_table::add_from_pluginobj<64, false>(
3600     Sized_pluginobj<64, false>* obj,
3601     const char* name,
3602     const char* ver,
3603     elfcpp::Sym<64, false>* sym);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_BIG
3607 template
3608 Symbol*
3609 Symbol_table::add_from_pluginobj<64, true>(
3610     Sized_pluginobj<64, true>* obj,
3611     const char* name,
3612     const char* ver,
3613     elfcpp::Sym<64, true>* sym);
3614 #endif
3615
3616 #ifdef HAVE_TARGET_32_LITTLE
3617 template
3618 void
3619 Symbol_table::add_from_dynobj<32, false>(
3620     Sized_dynobj<32, false>* dynobj,
3621     const unsigned char* syms,
3622     size_t count,
3623     const char* sym_names,
3624     size_t sym_name_size,
3625     const unsigned char* versym,
3626     size_t versym_size,
3627     const std::vector<const char*>* version_map,
3628     Sized_relobj_file<32, false>::Symbols* sympointers,
3629     size_t* defined);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_32_BIG
3633 template
3634 void
3635 Symbol_table::add_from_dynobj<32, true>(
3636     Sized_dynobj<32, true>* dynobj,
3637     const unsigned char* syms,
3638     size_t count,
3639     const char* sym_names,
3640     size_t sym_name_size,
3641     const unsigned char* versym,
3642     size_t versym_size,
3643     const std::vector<const char*>* version_map,
3644     Sized_relobj_file<32, true>::Symbols* sympointers,
3645     size_t* defined);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_64_LITTLE
3649 template
3650 void
3651 Symbol_table::add_from_dynobj<64, false>(
3652     Sized_dynobj<64, false>* dynobj,
3653     const unsigned char* syms,
3654     size_t count,
3655     const char* sym_names,
3656     size_t sym_name_size,
3657     const unsigned char* versym,
3658     size_t versym_size,
3659     const std::vector<const char*>* version_map,
3660     Sized_relobj_file<64, false>::Symbols* sympointers,
3661     size_t* defined);
3662 #endif
3663
3664 #ifdef HAVE_TARGET_64_BIG
3665 template
3666 void
3667 Symbol_table::add_from_dynobj<64, true>(
3668     Sized_dynobj<64, true>* dynobj,
3669     const unsigned char* syms,
3670     size_t count,
3671     const char* sym_names,
3672     size_t sym_name_size,
3673     const unsigned char* versym,
3674     size_t versym_size,
3675     const std::vector<const char*>* version_map,
3676     Sized_relobj_file<64, true>::Symbols* sympointers,
3677     size_t* defined);
3678 #endif
3679
3680 #ifdef HAVE_TARGET_32_LITTLE
3681 template
3682 Sized_symbol<32>*
3683 Symbol_table::add_from_incrobj(
3684     Object* obj,
3685     const char* name,
3686     const char* ver,
3687     elfcpp::Sym<32, false>* sym);
3688 #endif
3689
3690 #ifdef HAVE_TARGET_32_BIG
3691 template
3692 Sized_symbol<32>*
3693 Symbol_table::add_from_incrobj(
3694     Object* obj,
3695     const char* name,
3696     const char* ver,
3697     elfcpp::Sym<32, true>* sym);
3698 #endif
3699
3700 #ifdef HAVE_TARGET_64_LITTLE
3701 template
3702 Sized_symbol<64>*
3703 Symbol_table::add_from_incrobj(
3704     Object* obj,
3705     const char* name,
3706     const char* ver,
3707     elfcpp::Sym<64, false>* sym);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_64_BIG
3711 template
3712 Sized_symbol<64>*
3713 Symbol_table::add_from_incrobj(
3714     Object* obj,
3715     const char* name,
3716     const char* ver,
3717     elfcpp::Sym<64, true>* sym);
3718 #endif
3719
3720 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3721 template
3722 void
3723 Symbol_table::define_with_copy_reloc<32>(
3724     Sized_symbol<32>* sym,
3725     Output_data* posd,
3726     elfcpp::Elf_types<32>::Elf_Addr value);
3727 #endif
3728
3729 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3730 template
3731 void
3732 Symbol_table::define_with_copy_reloc<64>(
3733     Sized_symbol<64>* sym,
3734     Output_data* posd,
3735     elfcpp::Elf_types<64>::Elf_Addr value);
3736 #endif
3737
3738 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3739 template
3740 void
3741 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3742                                    Output_data* od, Value_type value,
3743                                    Size_type symsize, elfcpp::STT type,
3744                                    elfcpp::STB binding,
3745                                    elfcpp::STV visibility,
3746                                    unsigned char nonvis,
3747                                    bool offset_is_from_end,
3748                                    bool is_predefined);
3749 #endif
3750
3751 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3752 template
3753 void
3754 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3755                                    Output_data* od, Value_type value,
3756                                    Size_type symsize, elfcpp::STT type,
3757                                    elfcpp::STB binding,
3758                                    elfcpp::STV visibility,
3759                                    unsigned char nonvis,
3760                                    bool offset_is_from_end,
3761                                    bool is_predefined);
3762 #endif
3763
3764 #ifdef HAVE_TARGET_32_LITTLE
3765 template
3766 void
3767 Warnings::issue_warning<32, false>(const Symbol* sym,
3768                                    const Relocate_info<32, false>* relinfo,
3769                                    size_t relnum, off_t reloffset) const;
3770 #endif
3771
3772 #ifdef HAVE_TARGET_32_BIG
3773 template
3774 void
3775 Warnings::issue_warning<32, true>(const Symbol* sym,
3776                                   const Relocate_info<32, true>* relinfo,
3777                                   size_t relnum, off_t reloffset) const;
3778 #endif
3779
3780 #ifdef HAVE_TARGET_64_LITTLE
3781 template
3782 void
3783 Warnings::issue_warning<64, false>(const Symbol* sym,
3784                                    const Relocate_info<64, false>* relinfo,
3785                                    size_t relnum, off_t reloffset) const;
3786 #endif
3787
3788 #ifdef HAVE_TARGET_64_BIG
3789 template
3790 void
3791 Warnings::issue_warning<64, true>(const Symbol* sym,
3792                                   const Relocate_info<64, true>* relinfo,
3793                                   size_t relnum, off_t reloffset) const;
3794 #endif
3795
3796 } // End namespace gold.