1 // script.cc -- handle linker scripts for gold.
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
31 #include "filenames.h"
35 #include "dirsearch.h"
38 #include "workqueue.h"
40 #include "parameters.h"
43 #include "target-select.h"
46 #include "incremental.h"
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
57 // Token classification.
62 // Token indicates end of input.
64 // Token is a string of characters.
66 // Token is a quoted string of characters.
68 // Token is an operator.
70 // Token is a number (an integer).
74 // We need an empty constructor so that we can put this STL objects.
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
105 // Return whether the token is invalid.
108 { return this->classification_ == TOKEN_INVALID; }
110 // Return whether this is an EOF token.
113 { return this->classification_ == TOKEN_EOF; }
115 // Return the token classification.
117 classification() const
118 { return this->classification_; }
120 // Return the line number at which the token starts.
123 { return this->lineno_; }
125 // Return the character position at this the token starts.
128 { return this->charpos_; }
130 // Get the value of a token.
133 string_value(size_t* length) const
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
142 operator_value() const
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
149 integer_value() const;
152 // The token classification.
153 Classification classification_;
154 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
157 // The length of the token value.
158 size_t value_length_;
159 // The token value, for TOKEN_OPERATOR.
161 // The line number where this token started (one based).
163 // The character position within the line where this token started
168 // Return the value of a TOKEN_INTEGER.
171 Token::integer_value() const
173 gold_assert(this->classification_ == TOKEN_INTEGER);
175 size_t len = this->value_length_;
177 uint64_t multiplier = 1;
178 char last = this->value_[len - 1];
179 if (last == 'm' || last == 'M')
181 multiplier = 1024 * 1024;
184 else if (last == 'k' || last == 'K')
191 uint64_t ret = strtoull(this->value_, &end, 0);
192 gold_assert(static_cast<size_t>(end - this->value_) == len);
194 return ret * multiplier;
197 // This class handles lexing a file into a sequence of tokens.
202 // We unfortunately have to support different lexing modes, because
203 // when reading different parts of a linker script we need to parse
204 // things differently.
207 // Reading an ordinary linker script.
209 // Reading an expression in a linker script.
211 // Reading a version script.
213 // Reading a --dynamic-list file.
217 Lex(const char* input_string, size_t input_length, int parsing_token)
218 : input_string_(input_string), input_length_(input_length),
219 current_(input_string), mode_(LINKER_SCRIPT),
220 first_token_(parsing_token), token_(),
221 lineno_(1), linestart_(input_string)
224 // Read a file into a string.
226 read_file(Input_file*, std::string*);
228 // Return the next token.
232 // Return the current lexing mode.
235 { return this->mode_; }
237 // Set the lexing mode.
240 { this->mode_ = mode; }
244 Lex& operator=(const Lex&);
246 // Make a general token with no value at the current location.
248 make_token(Token::Classification c, const char* start) const
249 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
251 // Make a general token with a value at the current location.
253 make_token(Token::Classification c, const char* v, size_t len,
256 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
258 // Make an operator token at the current location.
260 make_token(int opcode, const char* start) const
261 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
263 // Make an invalid token at the current location.
265 make_invalid_token(const char* start)
266 { return this->make_token(Token::TOKEN_INVALID, start); }
268 // Make an EOF token at the current location.
270 make_eof_token(const char* start)
271 { return this->make_token(Token::TOKEN_EOF, start); }
273 // Return whether C can be the first character in a name. C2 is the
274 // next character, since we sometimes need that.
276 can_start_name(char c, char c2);
278 // If C can appear in a name which has already started, return a
279 // pointer to a character later in the token or just past
280 // it. Otherwise, return NULL.
282 can_continue_name(const char* c);
284 // Return whether C, C2, C3 can start a hex number.
286 can_start_hex(char c, char c2, char c3);
288 // If C can appear in a hex number which has already started, return
289 // a pointer to a character later in the token or just past
290 // it. Otherwise, return NULL.
292 can_continue_hex(const char* c);
294 // Return whether C can start a non-hex number.
296 can_start_number(char c);
298 // If C can appear in a decimal number which has already started,
299 // return a pointer to a character later in the token or just past
300 // it. Otherwise, return NULL.
302 can_continue_number(const char* c)
303 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
305 // If C1 C2 C3 form a valid three character operator, return the
306 // opcode. Otherwise return 0.
308 three_char_operator(char c1, char c2, char c3);
310 // If C1 C2 form a valid two character operator, return the opcode.
311 // Otherwise return 0.
313 two_char_operator(char c1, char c2);
315 // If C1 is a valid one character operator, return the opcode.
316 // Otherwise return 0.
318 one_char_operator(char c1);
320 // Read the next token.
322 get_token(const char**);
324 // Skip a C style /* */ comment. Return false if the comment did
327 skip_c_comment(const char**);
329 // Skip a line # comment. Return false if there was no newline.
331 skip_line_comment(const char**);
333 // Build a token CLASSIFICATION from all characters that match
334 // CAN_CONTINUE_FN. The token starts at START. Start matching from
335 // MATCH. Set *PP to the character following the token.
337 gather_token(Token::Classification,
338 const char* (Lex::*can_continue_fn)(const char*),
339 const char* start, const char* match, const char** pp);
341 // Build a token from a quoted string.
343 gather_quoted_string(const char** pp);
345 // The string we are tokenizing.
346 const char* input_string_;
347 // The length of the string.
348 size_t input_length_;
349 // The current offset into the string.
350 const char* current_;
351 // The current lexing mode.
353 // The code to use for the first token. This is set to 0 after it
356 // The current token.
358 // The current line number.
360 // The start of the current line in the string.
361 const char* linestart_;
364 // Read the whole file into memory. We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer. We ignore the
366 // data we've already read, so that we read aligned buffers.
369 Lex::read_file(Input_file* input_file, std::string* contents)
371 off_t filesize = input_file->file().filesize();
373 contents->reserve(filesize);
376 unsigned char buf[BUFSIZ];
377 while (off < filesize)
380 if (get > filesize - off)
381 get = filesize - off;
382 input_file->file().read(off, get, buf);
383 contents->append(reinterpret_cast<char*>(&buf[0]), get);
388 // Return whether C can be the start of a name, if the next character
389 // is C2. A name can being with a letter, underscore, period, or
390 // dollar sign. Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde. Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator. It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol. That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not. We are
400 Lex::can_start_name(char c, char c2)
404 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
409 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
414 case '_': case '.': case '$':
418 return this->mode_ == LINKER_SCRIPT;
421 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
424 return (this->mode_ == VERSION_SCRIPT
425 || this->mode_ == DYNAMIC_LIST
426 || (this->mode_ == LINKER_SCRIPT
427 && can_continue_name(&c2)));
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*". So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
441 Lex::can_continue_name(const char* c)
445 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
450 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
455 case '_': case '.': case '$':
456 case '0': case '1': case '2': case '3': case '4':
457 case '5': case '6': case '7': case '8': case '9':
460 // TODO(csilvers): why not allow ~ in names for version-scripts?
461 case '/': case '\\': case '~':
464 if (this->mode_ == LINKER_SCRIPT)
468 case '[': case ']': case '*': case '?': case '-':
469 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470 || this->mode_ == DYNAMIC_LIST)
474 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
476 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
481 if (this->mode_ == LINKER_SCRIPT)
483 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
486 // A name can have '::' in it, as that's a c++ namespace
487 // separator. But a single colon is not part of a name.
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits. The old linker accepts leading '$' for hex, and
499 // trailing HXBOD. Those are for MRI compatibility and we don't
502 // Return whether C1 C2 C3 can start a hex number.
505 Lex::can_start_hex(char c1, char c2, char c3)
507 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508 return this->can_continue_hex(&c3);
512 // Return whether C can appear in a hex number.
515 Lex::can_continue_hex(const char* c)
519 case '0': case '1': case '2': case '3': case '4':
520 case '5': case '6': case '7': case '8': case '9':
521 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
530 // Return whether C can start a non-hex number.
533 Lex::can_start_number(char c)
537 case '0': case '1': case '2': case '3': case '4':
538 case '5': case '6': case '7': case '8': case '9':
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
551 Lex::three_char_operator(char c1, char c2, char c3)
556 if (c2 == '<' && c3 == '=')
560 if (c2 == '>' && c3 == '=')
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
574 Lex::two_char_operator(char c1, char c2)
632 // If C1 is a valid operator, return the opcode. Otherwise return 0.
635 Lex::one_char_operator(char c1)
668 // Skip a C style comment. *PP points to just after the "/*". Return
669 // false if the comment did not end.
672 Lex::skip_c_comment(const char** pp)
675 while (p[0] != '*' || p[1] != '/')
686 this->linestart_ = p + 1;
695 // Skip a line # comment. Return false if there was no newline.
698 Lex::skip_line_comment(const char** pp)
701 size_t skip = strcspn(p, "\n");
710 this->linestart_ = p;
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN. Update *PP.
720 Lex::gather_token(Token::Classification classification,
721 const char* (Lex::*can_continue_fn)(const char*),
726 const char* new_match = NULL;
727 while ((new_match = (this->*can_continue_fn)(match)) != NULL)
730 // A special case: integers may be followed by a single M or K,
732 if (classification == Token::TOKEN_INTEGER
733 && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
737 return this->make_token(classification, start, match - start, start);
740 // Build a token from a quoted string.
743 Lex::gather_quoted_string(const char** pp)
745 const char* start = *pp;
746 const char* p = start;
748 size_t skip = strcspn(p, "\"\n");
750 return this->make_invalid_token(start);
752 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
755 // Return the next token at *PP. Update *PP. General guideline: we
756 // require linker scripts to be simple ASCII. No unicode linker
757 // scripts. In particular we can assume that any '\0' is the end of
761 Lex::get_token(const char** pp)
767 // Skip whitespace quickly.
768 while (*p == ' ' || *p == '\t' || *p == '\r')
775 this->linestart_ = p;
784 return this->make_eof_token(p);
789 // Skip C style comments.
790 if (c0 == '/' && c1 == '*')
792 int lineno = this->lineno_;
793 int charpos = p - this->linestart_ + 1;
796 if (!this->skip_c_comment(pp))
797 return Token(Token::TOKEN_INVALID, lineno, charpos);
803 // Skip line comments.
807 if (!this->skip_line_comment(pp))
808 return this->make_eof_token(p);
814 if (this->can_start_name(c0, c1))
815 return this->gather_token(Token::TOKEN_STRING,
816 &Lex::can_continue_name,
819 // We accept any arbitrary name in double quotes, as long as it
820 // does not cross a line boundary.
824 return this->gather_quoted_string(pp);
827 // Be careful not to lookahead past the end of the buffer.
828 char c2 = (c1 == '\0' ? '\0' : p[2]);
830 // Check for a number.
832 if (this->can_start_hex(c0, c1, c2))
833 return this->gather_token(Token::TOKEN_INTEGER,
834 &Lex::can_continue_hex,
837 if (Lex::can_start_number(c0))
838 return this->gather_token(Token::TOKEN_INTEGER,
839 &Lex::can_continue_number,
842 // Check for operators.
844 int opcode = Lex::three_char_operator(c0, c1, c2);
848 return this->make_token(opcode, p);
851 opcode = Lex::two_char_operator(c0, c1);
855 return this->make_token(opcode, p);
858 opcode = Lex::one_char_operator(c0);
862 return this->make_token(opcode, p);
865 return this->make_token(Token::TOKEN_INVALID, p);
869 // Return the next token.
874 // The first token is special.
875 if (this->first_token_ != 0)
877 this->token_ = Token(this->first_token_, 0, 0);
878 this->first_token_ = 0;
879 return &this->token_;
882 this->token_ = this->get_token(&this->current_);
884 // Don't let an early null byte fool us into thinking that we've
885 // reached the end of the file.
886 if (this->token_.is_eof()
887 && (static_cast<size_t>(this->current_ - this->input_string_)
888 < this->input_length_))
889 this->token_ = this->make_invalid_token(this->current_);
891 return &this->token_;
894 // class Symbol_assignment.
896 // Add the symbol to the symbol table. This makes sure the symbol is
897 // there and defined. The actual value is stored later. We can't
898 // determine the actual value at this point, because we can't
899 // necessarily evaluate the expression until all ordinary symbols have
902 // The GNU linker lets symbol assignments in the linker script
903 // silently override defined symbols in object files. We are
904 // compatible. FIXME: Should we issue a warning?
907 Symbol_assignment::add_to_table(Symbol_table* symtab)
909 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
910 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
913 ? Symbol_table::DEFSYM
914 : Symbol_table::SCRIPT),
922 true); // force_override
925 // Finalize a symbol value.
928 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
930 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
933 // Finalize a symbol value which can refer to the dot symbol.
936 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
937 const Layout* layout,
939 Output_section* dot_section)
941 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
944 // Finalize a symbol value, internal version.
947 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
948 const Layout* layout,
949 bool is_dot_available,
951 Output_section* dot_section)
953 // If we were only supposed to provide this symbol, the sym_ field
954 // will be NULL if the symbol was not referenced.
955 if (this->sym_ == NULL)
957 gold_assert(this->provide_);
961 if (parameters->target().get_size() == 32)
963 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
964 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
970 else if (parameters->target().get_size() == 64)
972 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
973 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
985 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
986 bool is_dot_available, uint64_t dot_value,
987 Output_section* dot_section)
989 Output_section* section;
990 elfcpp::STT type = elfcpp::STT_NOTYPE;
991 elfcpp::STV vis = elfcpp::STV_DEFAULT;
992 unsigned char nonvis = 0;
993 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
995 dot_value, dot_section,
996 §ion, NULL, &type,
997 &vis, &nonvis, false, NULL);
998 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
999 ssym->set_value(final_val);
1000 ssym->set_type(type);
1001 ssym->set_visibility(vis);
1002 ssym->set_nonvis(nonvis);
1003 if (section != NULL)
1004 ssym->set_output_section(section);
1007 // Set the symbol value if the expression yields an absolute value or
1008 // a value relative to DOT_SECTION.
1011 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1012 bool is_dot_available, uint64_t dot_value,
1013 Output_section* dot_section)
1015 if (this->sym_ == NULL)
1018 Output_section* val_section;
1020 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1021 is_dot_available, dot_value,
1022 dot_section, &val_section, NULL,
1023 NULL, NULL, NULL, false, &is_valid);
1024 if (!is_valid || (val_section != NULL && val_section != dot_section))
1027 if (parameters->target().get_size() == 32)
1029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1031 ssym->set_value(val);
1036 else if (parameters->target().get_size() == 64)
1038 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1039 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1040 ssym->set_value(val);
1047 if (val_section != NULL)
1048 this->sym_->set_output_section(val_section);
1051 // Print for debugging.
1054 Symbol_assignment::print(FILE* f) const
1056 if (this->provide_ && this->hidden_)
1057 fprintf(f, "PROVIDE_HIDDEN(");
1058 else if (this->provide_)
1059 fprintf(f, "PROVIDE(");
1060 else if (this->hidden_)
1063 fprintf(f, "%s = ", this->name_.c_str());
1064 this->val_->print(f);
1066 if (this->provide_ || this->hidden_)
1072 // Class Script_assertion.
1074 // Check the assertion.
1077 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1079 if (!this->check_->eval(symtab, layout, true))
1080 gold_error("%s", this->message_.c_str());
1083 // Print for debugging.
1086 Script_assertion::print(FILE* f) const
1088 fprintf(f, "ASSERT(");
1089 this->check_->print(f);
1090 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1093 // Class Script_options.
1095 Script_options::Script_options()
1096 : entry_(), symbol_assignments_(), symbol_definitions_(),
1097 symbol_references_(), version_script_info_(), script_sections_()
1101 // Returns true if NAME is on the list of symbol assignments waiting
1105 Script_options::is_pending_assignment(const char* name)
1107 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108 p != this->symbol_assignments_.end();
1110 if ((*p)->name() == name)
1115 // Add a symbol to be defined.
1118 Script_options::add_symbol_assignment(const char* name, size_t length,
1119 bool is_defsym, Expression* value,
1120 bool provide, bool hidden)
1122 if (length != 1 || name[0] != '.')
1124 if (this->script_sections_.in_sections_clause())
1126 gold_assert(!is_defsym);
1127 this->script_sections_.add_symbol_assignment(name, length, value,
1132 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1133 value, provide, hidden);
1134 this->symbol_assignments_.push_back(p);
1139 std::string n(name, length);
1140 this->symbol_definitions_.insert(n);
1141 this->symbol_references_.erase(n);
1146 if (provide || hidden)
1147 gold_error(_("invalid use of PROVIDE for dot symbol"));
1149 // The GNU linker permits assignments to dot outside of SECTIONS
1150 // clauses and treats them as occurring inside, so we don't
1151 // check in_sections_clause here.
1152 this->script_sections_.add_dot_assignment(value);
1156 // Add a reference to a symbol.
1159 Script_options::add_symbol_reference(const char* name, size_t length)
1161 if (length != 1 || name[0] != '.')
1163 std::string n(name, length);
1164 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1165 this->symbol_references_.insert(n);
1169 // Add an assertion.
1172 Script_options::add_assertion(Expression* check, const char* message,
1175 if (this->script_sections_.in_sections_clause())
1176 this->script_sections_.add_assertion(check, message, messagelen);
1179 Script_assertion* p = new Script_assertion(check, message, messagelen);
1180 this->assertions_.push_back(p);
1184 // Create sections required by any linker scripts.
1187 Script_options::create_script_sections(Layout* layout)
1189 if (this->saw_sections_clause())
1190 this->script_sections_.create_sections(layout);
1193 // Add any symbols we are defining to the symbol table.
1196 Script_options::add_symbols_to_table(Symbol_table* symtab)
1198 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1199 p != this->symbol_assignments_.end();
1201 (*p)->add_to_table(symtab);
1202 this->script_sections_.add_symbols_to_table(symtab);
1205 // Finalize symbol values. Also check assertions.
1208 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1210 // We finalize the symbols defined in SECTIONS first, because they
1211 // are the ones which may have changed. This way if symbol outside
1212 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1213 // will get the right value.
1214 this->script_sections_.finalize_symbols(symtab, layout);
1216 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1217 p != this->symbol_assignments_.end();
1219 (*p)->finalize(symtab, layout);
1221 for (Assertions::iterator p = this->assertions_.begin();
1222 p != this->assertions_.end();
1224 (*p)->check(symtab, layout);
1227 // Set section addresses. We set all the symbols which have absolute
1228 // values. Then we let the SECTIONS clause do its thing. This
1229 // returns the segment which holds the file header and segment
1233 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1235 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1236 p != this->symbol_assignments_.end();
1238 (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1240 return this->script_sections_.set_section_addresses(symtab, layout);
1243 // This class holds data passed through the parser to the lexer and to
1244 // the parser support functions. This avoids global variables. We
1245 // can't use global variables because we need not be called by a
1246 // singleton thread.
1248 class Parser_closure
1251 Parser_closure(const char* filename,
1252 const Position_dependent_options& posdep_options,
1253 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1254 Command_line* command_line,
1255 Script_options* script_options,
1257 bool skip_on_incompatible_target,
1258 Script_info* script_info)
1259 : filename_(filename), posdep_options_(posdep_options),
1260 parsing_defsym_(parsing_defsym), in_group_(in_group),
1261 is_in_sysroot_(is_in_sysroot),
1262 skip_on_incompatible_target_(skip_on_incompatible_target),
1263 found_incompatible_target_(false),
1264 command_line_(command_line), script_options_(script_options),
1265 version_script_info_(script_options->version_script_info()),
1266 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1267 script_info_(script_info)
1269 // We start out processing C symbols in the default lex mode.
1270 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1271 this->lex_mode_stack_.push_back(lex->mode());
1274 // Return the file name.
1277 { return this->filename_; }
1279 // Return the position dependent options. The caller may modify
1281 Position_dependent_options&
1282 position_dependent_options()
1283 { return this->posdep_options_; }
1285 // Whether we are parsing a --defsym.
1287 parsing_defsym() const
1288 { return this->parsing_defsym_; }
1290 // Return whether this script is being run in a group.
1293 { return this->in_group_; }
1295 // Return whether this script was found using a directory in the
1298 is_in_sysroot() const
1299 { return this->is_in_sysroot_; }
1301 // Whether to skip to the next file with the same name if we find an
1302 // incompatible target in an OUTPUT_FORMAT statement.
1304 skip_on_incompatible_target() const
1305 { return this->skip_on_incompatible_target_; }
1307 // Stop skipping to the next file on an incompatible target. This
1308 // is called when we make some unrevocable change to the data
1311 clear_skip_on_incompatible_target()
1312 { this->skip_on_incompatible_target_ = false; }
1314 // Whether we found an incompatible target in an OUTPUT_FORMAT
1317 found_incompatible_target() const
1318 { return this->found_incompatible_target_; }
1320 // Note that we found an incompatible target.
1322 set_found_incompatible_target()
1323 { this->found_incompatible_target_ = true; }
1325 // Returns the Command_line structure passed in at constructor time.
1326 // This value may be NULL. The caller may modify this, which modifies
1327 // the passed-in Command_line object (not a copy).
1330 { return this->command_line_; }
1332 // Return the options which may be set by a script.
1335 { return this->script_options_; }
1337 // Return the object in which version script information should be stored.
1338 Version_script_info*
1340 { return this->version_script_info_; }
1342 // Return the next token, and advance.
1346 const Token* token = this->lex_->next_token();
1347 this->lineno_ = token->lineno();
1348 this->charpos_ = token->charpos();
1352 // Set a new lexer mode, pushing the current one.
1354 push_lex_mode(Lex::Mode mode)
1356 this->lex_mode_stack_.push_back(this->lex_->mode());
1357 this->lex_->set_mode(mode);
1360 // Pop the lexer mode.
1364 gold_assert(!this->lex_mode_stack_.empty());
1365 this->lex_->set_mode(this->lex_mode_stack_.back());
1366 this->lex_mode_stack_.pop_back();
1369 // Return the current lexer mode.
1372 { return this->lex_mode_stack_.back(); }
1374 // Return the line number of the last token.
1377 { return this->lineno_; }
1379 // Return the character position in the line of the last token.
1382 { return this->charpos_; }
1384 // Return the list of input files, creating it if necessary. This
1385 // is a space leak--we never free the INPUTS_ pointer.
1389 if (this->inputs_ == NULL)
1390 this->inputs_ = new Input_arguments();
1391 return this->inputs_;
1394 // Return whether we saw any input files.
1397 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1399 // Return the current language being processed in a version script
1400 // (eg, "C++"). The empty string represents unmangled C names.
1401 Version_script_info::Language
1402 get_current_language() const
1403 { return this->language_stack_.back(); }
1405 // Push a language onto the stack when entering an extern block.
1407 push_language(Version_script_info::Language lang)
1408 { this->language_stack_.push_back(lang); }
1410 // Pop a language off of the stack when exiting an extern block.
1414 gold_assert(!this->language_stack_.empty());
1415 this->language_stack_.pop_back();
1418 // Return a pointer to the incremental info.
1421 { return this->script_info_; }
1424 // The name of the file we are reading.
1425 const char* filename_;
1426 // The position dependent options.
1427 Position_dependent_options posdep_options_;
1428 // True if we are parsing a --defsym.
1429 bool parsing_defsym_;
1430 // Whether we are currently in a --start-group/--end-group.
1432 // Whether the script was found in a sysrooted directory.
1433 bool is_in_sysroot_;
1434 // If this is true, then if we find an OUTPUT_FORMAT with an
1435 // incompatible target, then we tell the parser to abort so that we
1436 // can search for the next file with the same name.
1437 bool skip_on_incompatible_target_;
1438 // True if we found an OUTPUT_FORMAT with an incompatible target.
1439 bool found_incompatible_target_;
1440 // May be NULL if the user chooses not to pass one in.
1441 Command_line* command_line_;
1442 // Options which may be set from any linker script.
1443 Script_options* script_options_;
1444 // Information parsed from a version script.
1445 Version_script_info* version_script_info_;
1448 // The line number of the last token returned by next_token.
1450 // The column number of the last token returned by next_token.
1452 // A stack of lexer modes.
1453 std::vector<Lex::Mode> lex_mode_stack_;
1454 // A stack of which extern/language block we're inside. Can be C++,
1455 // java, or empty for C.
1456 std::vector<Version_script_info::Language> language_stack_;
1457 // New input files found to add to the link.
1458 Input_arguments* inputs_;
1459 // Pointer to incremental linking info.
1460 Script_info* script_info_;
1463 // FILE was found as an argument on the command line. Try to read it
1464 // as a script. Return true if the file was handled.
1467 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1468 Dirsearch* dirsearch, int dirindex,
1469 Input_objects* input_objects, Mapfile* mapfile,
1470 Input_group* input_group,
1471 const Input_argument* input_argument,
1472 Input_file* input_file, Task_token* next_blocker,
1473 bool* used_next_blocker)
1475 *used_next_blocker = false;
1477 std::string input_string;
1478 Lex::read_file(input_file, &input_string);
1480 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1482 Script_info* script_info = NULL;
1483 if (layout->incremental_inputs() != NULL)
1485 const std::string& filename = input_file->filename();
1486 Timespec mtime = input_file->file().get_mtime();
1487 unsigned int arg_serial = input_argument->file().arg_serial();
1488 script_info = new Script_info(filename);
1489 layout->incremental_inputs()->report_script(script_info, arg_serial,
1493 Parser_closure closure(input_file->filename().c_str(),
1494 input_argument->file().options(),
1496 input_group != NULL,
1497 input_file->is_in_sysroot(),
1499 layout->script_options(),
1501 input_file->will_search_for(),
1504 bool old_saw_sections_clause =
1505 layout->script_options()->saw_sections_clause();
1507 if (yyparse(&closure) != 0)
1509 if (closure.found_incompatible_target())
1511 Read_symbols::incompatible_warning(input_argument, input_file);
1512 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1513 dirsearch, dirindex, mapfile, input_argument,
1514 input_group, next_blocker);
1520 if (!old_saw_sections_clause
1521 && layout->script_options()->saw_sections_clause()
1522 && layout->have_added_input_section())
1523 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1524 input_file->filename().c_str());
1526 if (!closure.saw_inputs())
1529 Task_token* this_blocker = NULL;
1530 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1531 p != closure.inputs()->end();
1535 if (p + 1 == closure.inputs()->end())
1539 nb = new Task_token(true);
1542 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1543 layout, dirsearch, 0, mapfile, &*p,
1544 input_group, NULL, this_blocker, nb));
1548 *used_next_blocker = true;
1553 // Helper function for read_version_script(), read_commandline_script() and
1554 // script_include_directive(). Processes the given file in the mode indicated
1555 // by first_token and lex_mode.
1558 read_script_file(const char* filename, Command_line* cmdline,
1559 Script_options* script_options,
1560 int first_token, Lex::Mode lex_mode)
1562 Dirsearch dirsearch;
1563 std::string name = filename;
1565 // If filename is a relative filename, search for it manually using "." +
1566 // cmdline->options()->library_path() -- not dirsearch.
1567 if (!IS_ABSOLUTE_PATH(filename))
1569 const General_options::Dir_list& search_path =
1570 cmdline->options().library_path();
1571 name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1574 // The file locking code wants to record a Task, but we haven't
1575 // started the workqueue yet. This is only for debugging purposes,
1576 // so we invent a fake value.
1577 const Task* task = reinterpret_cast<const Task*>(-1);
1579 // We don't want this file to be opened in binary mode.
1580 Position_dependent_options posdep = cmdline->position_dependent_options();
1581 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1582 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1583 Input_file_argument input_argument(name.c_str(),
1584 Input_file_argument::INPUT_FILE_TYPE_FILE,
1586 Input_file input_file(&input_argument);
1588 if (!input_file.open(dirsearch, task, &dummy))
1591 std::string input_string;
1592 Lex::read_file(&input_file, &input_string);
1594 Lex lex(input_string.c_str(), input_string.length(), first_token);
1595 lex.set_mode(lex_mode);
1597 Parser_closure closure(filename,
1598 cmdline->position_dependent_options(),
1599 first_token == Lex::DYNAMIC_LIST,
1601 input_file.is_in_sysroot(),
1607 if (yyparse(&closure) != 0)
1609 input_file.file().unlock(task);
1613 input_file.file().unlock(task);
1615 gold_assert(!closure.saw_inputs());
1620 // FILENAME was found as an argument to --script (-T).
1621 // Read it as a script, and execute its contents immediately.
1624 read_commandline_script(const char* filename, Command_line* cmdline)
1626 return read_script_file(filename, cmdline, &cmdline->script_options(),
1627 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1630 // FILENAME was found as an argument to --version-script. Read it as
1631 // a version script, and store its contents in
1632 // cmdline->script_options()->version_script_info().
1635 read_version_script(const char* filename, Command_line* cmdline)
1637 return read_script_file(filename, cmdline, &cmdline->script_options(),
1638 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1641 // FILENAME was found as an argument to --dynamic-list. Read it as a
1642 // list of symbols, and store its contents in DYNAMIC_LIST.
1645 read_dynamic_list(const char* filename, Command_line* cmdline,
1646 Script_options* dynamic_list)
1648 return read_script_file(filename, cmdline, dynamic_list,
1649 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1652 // Implement the --defsym option on the command line. Return true if
1656 Script_options::define_symbol(const char* definition)
1658 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1659 lex.set_mode(Lex::EXPRESSION);
1662 Position_dependent_options posdep_options;
1664 Parser_closure closure("command line", posdep_options, true,
1665 false, false, NULL, this, &lex, false, NULL);
1667 if (yyparse(&closure) != 0)
1670 gold_assert(!closure.saw_inputs());
1675 // Print the script to F for debugging.
1678 Script_options::print(FILE* f) const
1680 fprintf(f, "%s: Dumping linker script\n", program_name);
1682 if (!this->entry_.empty())
1683 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1685 for (Symbol_assignments::const_iterator p =
1686 this->symbol_assignments_.begin();
1687 p != this->symbol_assignments_.end();
1691 for (Assertions::const_iterator p = this->assertions_.begin();
1692 p != this->assertions_.end();
1696 this->script_sections_.print(f);
1698 this->version_script_info_.print(f);
1701 // Manage mapping from keywords to the codes expected by the bison
1702 // parser. We construct one global object for each lex mode with
1705 class Keyword_to_parsecode
1708 // The structure which maps keywords to parsecodes.
1709 struct Keyword_parsecode
1712 const char* keyword;
1713 // Corresponding parsecode.
1717 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1719 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1722 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1725 keyword_to_parsecode(const char* keyword, size_t len) const;
1728 const Keyword_parsecode* keyword_parsecodes_;
1729 const int keyword_count_;
1732 // Mapping from keyword string to keyword parsecode. This array must
1733 // be kept in sorted order. Parsecodes are looked up using bsearch.
1734 // This array must correspond to the list of parsecodes in yyscript.y.
1736 static const Keyword_to_parsecode::Keyword_parsecode
1737 script_keyword_parsecodes[] =
1739 { "ABSOLUTE", ABSOLUTE },
1741 { "ALIGN", ALIGN_K },
1742 { "ALIGNOF", ALIGNOF },
1743 { "ASSERT", ASSERT_K },
1744 { "AS_NEEDED", AS_NEEDED },
1749 { "CONSTANT", CONSTANT },
1750 { "CONSTRUCTORS", CONSTRUCTORS },
1752 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1753 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1754 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1755 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1756 { "DEFINED", DEFINED },
1759 { "EXCLUDE_FILE", EXCLUDE_FILE },
1760 { "EXTERN", EXTERN },
1763 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1765 { "HIDDEN", HIDDEN },
1767 { "INCLUDE", INCLUDE },
1769 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1772 { "LENGTH", LENGTH },
1773 { "LOADADDR", LOADADDR },
1777 { "MEMORY", MEMORY },
1780 { "NOCROSSREFS", NOCROSSREFS },
1781 { "NOFLOAT", NOFLOAT },
1782 { "NOLOAD", NOLOAD },
1783 { "ONLY_IF_RO", ONLY_IF_RO },
1784 { "ONLY_IF_RW", ONLY_IF_RW },
1785 { "OPTION", OPTION },
1786 { "ORIGIN", ORIGIN },
1787 { "OUTPUT", OUTPUT },
1788 { "OUTPUT_ARCH", OUTPUT_ARCH },
1789 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1790 { "OVERLAY", OVERLAY },
1792 { "PROVIDE", PROVIDE },
1793 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1795 { "SEARCH_DIR", SEARCH_DIR },
1796 { "SECTIONS", SECTIONS },
1797 { "SEGMENT_START", SEGMENT_START },
1799 { "SIZEOF", SIZEOF },
1800 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1801 { "SORT", SORT_BY_NAME },
1802 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1803 { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1804 { "SORT_BY_NAME", SORT_BY_NAME },
1805 { "SPECIAL", SPECIAL },
1807 { "STARTUP", STARTUP },
1808 { "SUBALIGN", SUBALIGN },
1809 { "SYSLIB", SYSLIB },
1810 { "TARGET", TARGET_K },
1811 { "TRUNCATE", TRUNCATE },
1812 { "VERSION", VERSIONK },
1813 { "global", GLOBAL },
1819 { "sizeof_headers", SIZEOF_HEADERS },
1822 static const Keyword_to_parsecode
1823 script_keywords(&script_keyword_parsecodes[0],
1824 (sizeof(script_keyword_parsecodes)
1825 / sizeof(script_keyword_parsecodes[0])));
1827 static const Keyword_to_parsecode::Keyword_parsecode
1828 version_script_keyword_parsecodes[] =
1830 { "extern", EXTERN },
1831 { "global", GLOBAL },
1835 static const Keyword_to_parsecode
1836 version_script_keywords(&version_script_keyword_parsecodes[0],
1837 (sizeof(version_script_keyword_parsecodes)
1838 / sizeof(version_script_keyword_parsecodes[0])));
1840 static const Keyword_to_parsecode::Keyword_parsecode
1841 dynamic_list_keyword_parsecodes[] =
1843 { "extern", EXTERN },
1846 static const Keyword_to_parsecode
1847 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1848 (sizeof(dynamic_list_keyword_parsecodes)
1849 / sizeof(dynamic_list_keyword_parsecodes[0])));
1853 // Comparison function passed to bsearch.
1865 ktt_compare(const void* keyv, const void* kttv)
1867 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1868 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1869 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1870 int i = strncmp(key->str, ktt->keyword, key->len);
1873 if (ktt->keyword[key->len] != '\0')
1878 } // End extern "C".
1881 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1887 void* kttv = bsearch(&key,
1888 this->keyword_parsecodes_,
1889 this->keyword_count_,
1890 sizeof(this->keyword_parsecodes_[0]),
1894 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1895 return ktt->parsecode;
1898 // The following structs are used within the VersionInfo class as well
1899 // as in the bison helper functions. They store the information
1900 // parsed from the version script.
1902 // A single version expression.
1903 // For example, pattern="std::map*" and language="C++".
1904 struct Version_expression
1906 Version_expression(const std::string& a_pattern,
1907 Version_script_info::Language a_language,
1909 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1910 was_matched_by_symbol(false)
1913 std::string pattern;
1914 Version_script_info::Language language;
1915 // If false, we use glob() to match pattern. If true, we use strcmp().
1917 // True if --no-undefined-version is in effect and we found this
1918 // version in get_symbol_version. We use mutable because this
1919 // struct is generally not modifiable after it has been created.
1920 mutable bool was_matched_by_symbol;
1923 // A list of expressions.
1924 struct Version_expression_list
1926 std::vector<struct Version_expression> expressions;
1929 // A list of which versions upon which another version depends.
1930 // Strings should be from the Stringpool.
1931 struct Version_dependency_list
1933 std::vector<std::string> dependencies;
1936 // The total definition of a version. It includes the tag for the
1937 // version, its global and local expressions, and any dependencies.
1941 : tag(), global(NULL), local(NULL), dependencies(NULL)
1945 const struct Version_expression_list* global;
1946 const struct Version_expression_list* local;
1947 const struct Version_dependency_list* dependencies;
1950 // Helper class that calls cplus_demangle when needed and takes care of freeing
1953 class Lazy_demangler
1956 Lazy_demangler(const char* symbol, int options)
1957 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1961 { free(this->demangled_); }
1963 // Return the demangled name. The actual demangling happens on the first call,
1964 // and the result is later cached.
1969 // The symbol to demangle.
1970 const char* symbol_;
1971 // Option flags to pass to cplus_demagle.
1973 // The cached demangled value, or NULL if demangling didn't happen yet or
1976 // Whether we already called cplus_demangle
1980 // Return the demangled name. The actual demangling happens on the first call,
1981 // and the result is later cached. Returns NULL if the symbol cannot be
1985 Lazy_demangler::get()
1987 if (!this->did_demangle_)
1989 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1990 this->did_demangle_ = true;
1992 return this->demangled_;
1995 // Class Version_script_info.
1997 Version_script_info::Version_script_info()
1998 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1999 default_version_(NULL), default_is_global_(false), is_finalized_(false)
2001 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2002 this->exact_[i] = NULL;
2005 Version_script_info::~Version_script_info()
2009 // Forget all the known version script information.
2012 Version_script_info::clear()
2014 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2015 delete this->dependency_lists_[k];
2016 this->dependency_lists_.clear();
2017 for (size_t k = 0; k < this->version_trees_.size(); ++k)
2018 delete this->version_trees_[k];
2019 this->version_trees_.clear();
2020 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2021 delete this->expression_lists_[k];
2022 this->expression_lists_.clear();
2025 // Finalize the version script information.
2028 Version_script_info::finalize()
2030 if (!this->is_finalized_)
2032 this->build_lookup_tables();
2033 this->is_finalized_ = true;
2037 // Return all the versions.
2039 std::vector<std::string>
2040 Version_script_info::get_versions() const
2042 std::vector<std::string> ret;
2043 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2044 if (!this->version_trees_[j]->tag.empty())
2045 ret.push_back(this->version_trees_[j]->tag);
2049 // Return the dependencies of VERSION.
2051 std::vector<std::string>
2052 Version_script_info::get_dependencies(const char* version) const
2054 std::vector<std::string> ret;
2055 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2056 if (this->version_trees_[j]->tag == version)
2058 const struct Version_dependency_list* deps =
2059 this->version_trees_[j]->dependencies;
2061 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2062 ret.push_back(deps->dependencies[k]);
2068 // A version script essentially maps a symbol name to a version tag
2069 // and an indication of whether symbol is global or local within that
2070 // version tag. Each symbol maps to at most one version tag.
2071 // Unfortunately, in practice, version scripts are ambiguous, and list
2072 // symbols multiple times. Thus, we have to document the matching
2075 // This is a description of what the GNU linker does as of 2010-01-11.
2076 // It walks through the version tags in the order in which they appear
2077 // in the version script. For each tag, it first walks through the
2078 // global patterns for that tag, then the local patterns. When
2079 // looking at a single pattern, it first applies any language specific
2080 // demangling as specified for the pattern, and then matches the
2081 // resulting symbol name to the pattern. If it finds an exact match
2082 // for a literal pattern (a pattern enclosed in quotes or with no
2083 // wildcard characters), then that is the match that it uses. If
2084 // finds a match with a wildcard pattern, then it saves it and
2085 // continues searching. Wildcard patterns that are exactly "*" are
2086 // saved separately.
2088 // If no exact match with a literal pattern is ever found, then if a
2089 // wildcard match with a global pattern was found it is used,
2090 // otherwise if a wildcard match with a local pattern was found it is
2093 // This is the result:
2094 // * If there is an exact match, then we use the first tag in the
2095 // version script where it matches.
2096 // + If the exact match in that tag is global, it is used.
2097 // + Otherwise the exact match in that tag is local, and is used.
2098 // * Otherwise, if there is any match with a global wildcard pattern:
2099 // + If there is any match with a wildcard pattern which is not
2100 // "*", then we use the tag in which the *last* such pattern
2102 // + Otherwise, we matched "*". If there is no match with a local
2103 // wildcard pattern which is not "*", then we use the *last*
2104 // match with a global "*". Otherwise, continue.
2105 // * Otherwise, if there is any match with a local wildcard pattern:
2106 // + If there is any match with a wildcard pattern which is not
2107 // "*", then we use the tag in which the *last* such pattern
2109 // + Otherwise, we matched "*", and we use the tag in which the
2110 // *last* such match occurred.
2112 // There is an additional wrinkle. When the GNU linker finds a symbol
2113 // with a version defined in an object file due to a .symver
2114 // directive, it looks up that symbol name in that version tag. If it
2115 // finds it, it matches the symbol name against the patterns for that
2116 // version. If there is no match with a global pattern, but there is
2117 // a match with a local pattern, then the GNU linker marks the symbol
2120 // We want gold to be generally compatible, but we also want gold to
2121 // be fast. These are the rules that gold implements:
2122 // * If there is an exact match for the mangled name, we use it.
2123 // + If there is more than one exact match, we give a warning, and
2124 // we use the first tag in the script which matches.
2125 // + If a symbol has an exact match as both global and local for
2126 // the same version tag, we give an error.
2127 // * Otherwise, we look for an extern C++ or an extern Java exact
2128 // match. If we find an exact match, we use it.
2129 // + If there is more than one exact match, we give a warning, and
2130 // we use the first tag in the script which matches.
2131 // + If a symbol has an exact match as both global and local for
2132 // the same version tag, we give an error.
2133 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2134 // patterns. We look through the version tags in reverse order.
2135 // For each version tag, we look through the global patterns and
2136 // then the local patterns. We use the first match we find (i.e.,
2137 // the last matching version tag in the file).
2138 // * Otherwise, we use the "*" pattern if there is one. We give an
2139 // error if there are multiple "*" patterns.
2141 // At least for now, gold does not look up the version tag for a
2142 // symbol version found in an object file to see if it should be
2143 // forced local. There are other ways to force a symbol to be local,
2144 // and I don't understand why this one is useful.
2146 // Build a set of fast lookup tables for a version script.
2149 Version_script_info::build_lookup_tables()
2151 size_t size = this->version_trees_.size();
2152 for (size_t j = 0; j < size; ++j)
2154 const Version_tree* v = this->version_trees_[j];
2155 this->build_expression_list_lookup(v->local, v, false);
2156 this->build_expression_list_lookup(v->global, v, true);
2160 // If a pattern has backlashes but no unquoted wildcard characters,
2161 // then we apply backslash unquoting and look for an exact match.
2162 // Otherwise we treat it as a wildcard pattern. This function returns
2163 // true for a wildcard pattern. Otherwise, it does backslash
2164 // unquoting on *PATTERN and returns false. If this returns true,
2165 // *PATTERN may have been partially unquoted.
2168 Version_script_info::unquote(std::string* pattern) const
2170 bool saw_backslash = false;
2171 size_t len = pattern->length();
2173 for (size_t i = 0; i < len; ++i)
2176 saw_backslash = false;
2179 switch ((*pattern)[i])
2181 case '?': case '[': case '*':
2184 saw_backslash = true;
2192 (*pattern)[j] = (*pattern)[i];
2198 // Add an exact match for MATCH to *PE. The result of the match is
2202 Version_script_info::add_exact_match(const std::string& match,
2203 const Version_tree* v, bool is_global,
2204 const Version_expression* ve,
2207 std::pair<Exact::iterator, bool> ins =
2208 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2211 // This is the first time we have seen this match.
2215 Version_tree_match& vtm(ins.first->second);
2216 if (vtm.real->tag != v->tag)
2218 // This is an ambiguous match. We still return the
2219 // first version that we found in the script, but we
2220 // record the new version to issue a warning if we
2221 // wind up looking up this symbol.
2222 if (vtm.ambiguous == NULL)
2225 else if (is_global != vtm.is_global)
2227 // We have a match for both the global and local entries for a
2228 // version tag. That's got to be wrong.
2229 gold_error(_("'%s' appears as both a global and a local symbol "
2230 "for version '%s' in script"),
2231 match.c_str(), v->tag.c_str());
2235 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2236 // All matches go to V, and IS_GLOBAL is true if they are global
2240 Version_script_info::build_expression_list_lookup(
2241 const Version_expression_list* explist,
2242 const Version_tree* v,
2245 if (explist == NULL)
2247 size_t size = explist->expressions.size();
2248 for (size_t i = 0; i < size; ++i)
2250 const Version_expression& exp(explist->expressions[i]);
2252 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2254 if (this->default_version_ != NULL
2255 && this->default_version_->tag != v->tag)
2256 gold_warning(_("wildcard match appears in both version '%s' "
2257 "and '%s' in script"),
2258 this->default_version_->tag.c_str(), v->tag.c_str());
2259 else if (this->default_version_ != NULL
2260 && this->default_is_global_ != is_global)
2261 gold_error(_("wildcard match appears as both global and local "
2262 "in version '%s' in script"),
2264 this->default_version_ = v;
2265 this->default_is_global_ = is_global;
2269 std::string pattern = exp.pattern;
2270 if (!exp.exact_match)
2272 if (this->unquote(&pattern))
2274 this->globs_.push_back(Glob(&exp, v, is_global));
2279 if (this->exact_[exp.language] == NULL)
2280 this->exact_[exp.language] = new Exact();
2281 this->add_exact_match(pattern, v, is_global, &exp,
2282 this->exact_[exp.language]);
2286 // Return the name to match given a name, a language code, and two
2290 Version_script_info::get_name_to_match(const char* name,
2292 Lazy_demangler* cpp_demangler,
2293 Lazy_demangler* java_demangler) const
2300 return cpp_demangler->get();
2302 return java_demangler->get();
2308 // Look up SYMBOL_NAME in the list of versions. Return true if the
2309 // symbol is found, false if not. If the symbol is found, then if
2310 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2311 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2312 // symbol is global or not.
2315 Version_script_info::get_symbol_version(const char* symbol_name,
2316 std::string* pversion,
2317 bool* p_is_global) const
2319 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2320 Lazy_demangler java_demangled_name(symbol_name,
2321 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2323 gold_assert(this->is_finalized_);
2324 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2326 Exact* exact = this->exact_[i];
2330 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2331 &cpp_demangled_name,
2332 &java_demangled_name);
2333 if (name_to_match == NULL)
2335 // If the name can not be demangled, the GNU linker goes
2336 // ahead and tries to match it anyhow. That does not
2337 // make sense to me and I have not implemented it.
2341 Exact::const_iterator pe = exact->find(name_to_match);
2342 if (pe != exact->end())
2344 const Version_tree_match& vtm(pe->second);
2345 if (vtm.ambiguous != NULL)
2346 gold_warning(_("using '%s' as version for '%s' which is also "
2347 "named in version '%s' in script"),
2348 vtm.real->tag.c_str(), name_to_match,
2349 vtm.ambiguous->tag.c_str());
2351 if (pversion != NULL)
2352 *pversion = vtm.real->tag;
2353 if (p_is_global != NULL)
2354 *p_is_global = vtm.is_global;
2356 // If we are using --no-undefined-version, and this is a
2357 // global symbol, we have to record that we have found this
2358 // symbol, so that we don't warn about it. We have to do
2359 // this now, because otherwise we have no way to get from a
2360 // non-C language back to the demangled name that we
2362 if (p_is_global != NULL && vtm.is_global)
2363 vtm.expression->was_matched_by_symbol = true;
2369 // Look through the glob patterns in reverse order.
2371 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2372 p != this->globs_.rend();
2375 int language = p->expression->language;
2376 const char* name_to_match = this->get_name_to_match(symbol_name,
2378 &cpp_demangled_name,
2379 &java_demangled_name);
2380 if (name_to_match == NULL)
2383 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2386 if (pversion != NULL)
2387 *pversion = p->version->tag;
2388 if (p_is_global != NULL)
2389 *p_is_global = p->is_global;
2394 // Finally, there may be a wildcard.
2395 if (this->default_version_ != NULL)
2397 if (pversion != NULL)
2398 *pversion = this->default_version_->tag;
2399 if (p_is_global != NULL)
2400 *p_is_global = this->default_is_global_;
2407 // Give an error if any exact symbol names (not wildcards) appear in a
2408 // version script, but there is no such symbol.
2411 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2413 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2415 const Version_tree* vt = this->version_trees_[i];
2416 if (vt->global == NULL)
2418 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2420 const Version_expression& expression(vt->global->expressions[j]);
2422 // Ignore cases where we used the version because we saw a
2423 // symbol that we looked up. Note that
2424 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2425 // not a definition. That's OK as in that case we most
2426 // likely gave an undefined symbol error anyhow.
2427 if (expression.was_matched_by_symbol)
2430 // Just ignore names which are in languages other than C.
2431 // We have no way to look them up in the symbol table.
2432 if (expression.language != LANGUAGE_C)
2435 // Remove backslash quoting, and ignore wildcard patterns.
2436 std::string pattern = expression.pattern;
2437 if (!expression.exact_match)
2439 if (this->unquote(&pattern))
2443 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2444 gold_error(_("version script assignment of %s to symbol %s "
2445 "failed: symbol not defined"),
2446 vt->tag.c_str(), pattern.c_str());
2451 struct Version_dependency_list*
2452 Version_script_info::allocate_dependency_list()
2454 dependency_lists_.push_back(new Version_dependency_list);
2455 return dependency_lists_.back();
2458 struct Version_expression_list*
2459 Version_script_info::allocate_expression_list()
2461 expression_lists_.push_back(new Version_expression_list);
2462 return expression_lists_.back();
2465 struct Version_tree*
2466 Version_script_info::allocate_version_tree()
2468 version_trees_.push_back(new Version_tree);
2469 return version_trees_.back();
2472 // Print for debugging.
2475 Version_script_info::print(FILE* f) const
2480 fprintf(f, "VERSION {");
2482 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2484 const Version_tree* vt = this->version_trees_[i];
2486 if (vt->tag.empty())
2489 fprintf(f, " %s {\n", vt->tag.c_str());
2491 if (vt->global != NULL)
2493 fprintf(f, " global :\n");
2494 this->print_expression_list(f, vt->global);
2497 if (vt->local != NULL)
2499 fprintf(f, " local :\n");
2500 this->print_expression_list(f, vt->local);
2504 if (vt->dependencies != NULL)
2506 const Version_dependency_list* deps = vt->dependencies;
2507 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2509 if (j < deps->dependencies.size() - 1)
2511 fprintf(f, " %s", deps->dependencies[j].c_str());
2521 Version_script_info::print_expression_list(
2523 const Version_expression_list* vel) const
2525 Version_script_info::Language current_language = LANGUAGE_C;
2526 for (size_t i = 0; i < vel->expressions.size(); ++i)
2528 const Version_expression& ve(vel->expressions[i]);
2530 if (ve.language != current_language)
2532 if (current_language != LANGUAGE_C)
2534 switch (ve.language)
2539 fprintf(f, " extern \"C++\" {\n");
2542 fprintf(f, " extern \"Java\" {\n");
2547 current_language = ve.language;
2551 if (current_language != LANGUAGE_C)
2556 fprintf(f, "%s", ve.pattern.c_str());
2563 if (current_language != LANGUAGE_C)
2567 } // End namespace gold.
2569 // The remaining functions are extern "C", so it's clearer to not put
2570 // them in namespace gold.
2572 using namespace gold;
2574 // This function is called by the bison parser to return the next
2578 yylex(YYSTYPE* lvalp, void* closurev)
2580 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2581 const Token* token = closure->next_token();
2582 switch (token->classification())
2587 case Token::TOKEN_INVALID:
2588 yyerror(closurev, "invalid character");
2591 case Token::TOKEN_EOF:
2594 case Token::TOKEN_STRING:
2596 // This is either a keyword or a STRING.
2598 const char* str = token->string_value(&len);
2600 switch (closure->lex_mode())
2602 case Lex::LINKER_SCRIPT:
2603 parsecode = script_keywords.keyword_to_parsecode(str, len);
2605 case Lex::VERSION_SCRIPT:
2606 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2608 case Lex::DYNAMIC_LIST:
2609 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2616 lvalp->string.value = str;
2617 lvalp->string.length = len;
2621 case Token::TOKEN_QUOTED_STRING:
2622 lvalp->string.value = token->string_value(&lvalp->string.length);
2623 return QUOTED_STRING;
2625 case Token::TOKEN_OPERATOR:
2626 return token->operator_value();
2628 case Token::TOKEN_INTEGER:
2629 lvalp->integer = token->integer_value();
2634 // This function is called by the bison parser to report an error.
2637 yyerror(void* closurev, const char* message)
2639 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2640 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2641 closure->charpos(), message);
2644 // Called by the bison parser to add an external symbol to the link.
2647 script_add_extern(void* closurev, const char* name, size_t length)
2649 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2650 closure->script_options()->add_symbol_reference(name, length);
2653 // Called by the bison parser to add a file to the link.
2656 script_add_file(void* closurev, const char* name, size_t length)
2658 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2660 // If this is an absolute path, and we found the script in the
2661 // sysroot, then we want to prepend the sysroot to the file name.
2662 // For example, this is how we handle a cross link to the x86_64
2663 // libc.so, which refers to /lib/libc.so.6.
2664 std::string name_string(name, length);
2665 const char* extra_search_path = ".";
2666 std::string script_directory;
2667 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2669 if (closure->is_in_sysroot())
2671 const std::string& sysroot(parameters->options().sysroot());
2672 gold_assert(!sysroot.empty());
2673 name_string = sysroot + name_string;
2678 // In addition to checking the normal library search path, we
2679 // also want to check in the script-directory.
2680 const char* slash = strrchr(closure->filename(), '/');
2683 script_directory.assign(closure->filename(),
2684 slash - closure->filename() + 1);
2685 extra_search_path = script_directory.c_str();
2689 Input_file_argument file(name_string.c_str(),
2690 Input_file_argument::INPUT_FILE_TYPE_FILE,
2691 extra_search_path, false,
2692 closure->position_dependent_options());
2693 Input_argument& arg = closure->inputs()->add_file(file);
2694 arg.set_script_info(closure->script_info());
2697 // Called by the bison parser to add a library to the link.
2700 script_add_library(void* closurev, const char* name, size_t length)
2702 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2703 std::string name_string(name, length);
2705 if (name_string[0] != 'l')
2706 gold_error(_("library name must be prefixed with -l"));
2708 Input_file_argument file(name_string.c_str() + 1,
2709 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2711 closure->position_dependent_options());
2712 Input_argument& arg = closure->inputs()->add_file(file);
2713 arg.set_script_info(closure->script_info());
2716 // Called by the bison parser to start a group. If we are already in
2717 // a group, that means that this script was invoked within a
2718 // --start-group --end-group sequence on the command line, or that
2719 // this script was found in a GROUP of another script. In that case,
2720 // we simply continue the existing group, rather than starting a new
2721 // one. It is possible to construct a case in which this will do
2722 // something other than what would happen if we did a recursive group,
2723 // but it's hard to imagine why the different behaviour would be
2724 // useful for a real program. Avoiding recursive groups is simpler
2725 // and more efficient.
2728 script_start_group(void* closurev)
2730 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2731 if (!closure->in_group())
2732 closure->inputs()->start_group();
2735 // Called by the bison parser at the end of a group.
2738 script_end_group(void* closurev)
2740 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2741 if (!closure->in_group())
2742 closure->inputs()->end_group();
2745 // Called by the bison parser to start an AS_NEEDED list.
2748 script_start_as_needed(void* closurev)
2750 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2751 closure->position_dependent_options().set_as_needed(true);
2754 // Called by the bison parser at the end of an AS_NEEDED list.
2757 script_end_as_needed(void* closurev)
2759 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2760 closure->position_dependent_options().set_as_needed(false);
2763 // Called by the bison parser to set the entry symbol.
2766 script_set_entry(void* closurev, const char* entry, size_t length)
2768 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2769 // TODO(csilvers): FIXME -- call set_entry directly.
2770 std::string arg("--entry=");
2771 arg.append(entry, length);
2772 script_parse_option(closurev, arg.c_str(), arg.size());
2775 // Called by the bison parser to set whether to define common symbols.
2778 script_set_common_allocation(void* closurev, int set)
2780 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2781 script_parse_option(closurev, arg, strlen(arg));
2784 // Called by the bison parser to refer to a symbol.
2786 extern "C" Expression*
2787 script_symbol(void* closurev, const char* name, size_t length)
2789 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2790 if (length != 1 || name[0] != '.')
2791 closure->script_options()->add_symbol_reference(name, length);
2792 return script_exp_string(name, length);
2795 // Called by the bison parser to define a symbol.
2798 script_set_symbol(void* closurev, const char* name, size_t length,
2799 Expression* value, int providei, int hiddeni)
2801 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802 const bool provide = providei != 0;
2803 const bool hidden = hiddeni != 0;
2804 closure->script_options()->add_symbol_assignment(name, length,
2805 closure->parsing_defsym(),
2806 value, provide, hidden);
2807 closure->clear_skip_on_incompatible_target();
2810 // Called by the bison parser to add an assertion.
2813 script_add_assertion(void* closurev, Expression* check, const char* message,
2816 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2817 closure->script_options()->add_assertion(check, message, messagelen);
2818 closure->clear_skip_on_incompatible_target();
2821 // Called by the bison parser to parse an OPTION.
2824 script_parse_option(void* closurev, const char* option, size_t length)
2826 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2827 // We treat the option as a single command-line option, even if
2828 // it has internal whitespace.
2829 if (closure->command_line() == NULL)
2831 // There are some options that we could handle here--e.g.,
2832 // -lLIBRARY. Should we bother?
2833 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2834 " for scripts specified via -T/--script"),
2835 closure->filename(), closure->lineno(), closure->charpos());
2839 bool past_a_double_dash_option = false;
2840 const char* mutable_option = strndup(option, length);
2841 gold_assert(mutable_option != NULL);
2842 closure->command_line()->process_one_option(1, &mutable_option, 0,
2843 &past_a_double_dash_option);
2844 // The General_options class will quite possibly store a pointer
2845 // into mutable_option, so we can't free it. In cases the class
2846 // does not store such a pointer, this is a memory leak. Alas. :(
2848 closure->clear_skip_on_incompatible_target();
2851 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2852 // takes either one or three arguments. In the three argument case,
2853 // the format depends on the endianness option, which we don't
2854 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2855 // wrong format, then we want to search for a new file. Returning 0
2856 // here will cause the parser to immediately abort.
2859 script_check_output_format(void* closurev,
2860 const char* default_name, size_t default_length,
2861 const char*, size_t, const char*, size_t)
2863 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2864 std::string name(default_name, default_length);
2865 Target* target = select_target_by_bfd_name(name.c_str());
2866 if (target == NULL || !parameters->is_compatible_target(target))
2868 if (closure->skip_on_incompatible_target())
2870 closure->set_found_incompatible_target();
2873 // FIXME: Should we warn about the unknown target?
2878 // Called by the bison parser to handle TARGET.
2881 script_set_target(void* closurev, const char* target, size_t len)
2883 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2884 std::string s(target, len);
2885 General_options::Object_format format_enum;
2886 format_enum = General_options::string_to_object_format(s.c_str());
2887 closure->position_dependent_options().set_format_enum(format_enum);
2890 // Called by the bison parser to handle SEARCH_DIR. This is handled
2891 // exactly like a -L option.
2894 script_add_search_dir(void* closurev, const char* option, size_t length)
2896 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2897 if (closure->command_line() == NULL)
2898 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2899 " for scripts specified via -T/--script"),
2900 closure->filename(), closure->lineno(), closure->charpos());
2901 else if (!closure->command_line()->options().nostdlib())
2903 std::string s = "-L" + std::string(option, length);
2904 script_parse_option(closurev, s.c_str(), s.size());
2908 /* Called by the bison parser to push the lexer into expression
2912 script_push_lex_into_expression_mode(void* closurev)
2914 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2915 closure->push_lex_mode(Lex::EXPRESSION);
2918 /* Called by the bison parser to push the lexer into version
2922 script_push_lex_into_version_mode(void* closurev)
2924 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2925 if (closure->version_script()->is_finalized())
2926 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2927 closure->filename(), closure->lineno(), closure->charpos());
2928 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2931 /* Called by the bison parser to pop the lexer mode. */
2934 script_pop_lex_mode(void* closurev)
2936 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2937 closure->pop_lex_mode();
2940 // Register an entire version node. For example:
2946 // - tag is "GLIBC_2.1"
2947 // - tree contains the information "global: foo"
2948 // - deps contains "GLIBC_2.0"
2951 script_register_vers_node(void*,
2954 struct Version_tree* tree,
2955 struct Version_dependency_list* deps)
2957 gold_assert(tree != NULL);
2958 tree->dependencies = deps;
2960 tree->tag = std::string(tag, taglen);
2963 // Add a dependencies to the list of existing dependencies, if any,
2964 // and return the expanded list.
2966 extern "C" struct Version_dependency_list*
2967 script_add_vers_depend(void* closurev,
2968 struct Version_dependency_list* all_deps,
2969 const char* depend_to_add, int deplen)
2971 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2972 if (all_deps == NULL)
2973 all_deps = closure->version_script()->allocate_dependency_list();
2974 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2978 // Add a pattern expression to an existing list of expressions, if any.
2980 extern "C" struct Version_expression_list*
2981 script_new_vers_pattern(void* closurev,
2982 struct Version_expression_list* expressions,
2983 const char* pattern, int patlen, int exact_match)
2985 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2986 if (expressions == NULL)
2987 expressions = closure->version_script()->allocate_expression_list();
2988 expressions->expressions.push_back(
2989 Version_expression(std::string(pattern, patlen),
2990 closure->get_current_language(),
2991 static_cast<bool>(exact_match)));
2995 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2997 extern "C" struct Version_expression_list*
2998 script_merge_expressions(struct Version_expression_list* a,
2999 struct Version_expression_list* b)
3001 a->expressions.insert(a->expressions.end(),
3002 b->expressions.begin(), b->expressions.end());
3003 // We could delete b and remove it from expressions_lists_, but
3004 // that's a lot of work. This works just as well.
3005 b->expressions.clear();
3009 // Combine the global and local expressions into a a Version_tree.
3011 extern "C" struct Version_tree*
3012 script_new_vers_node(void* closurev,
3013 struct Version_expression_list* global,
3014 struct Version_expression_list* local)
3016 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3017 Version_tree* tree = closure->version_script()->allocate_version_tree();
3018 tree->global = global;
3019 tree->local = local;
3023 // Handle a transition in language, such as at the
3024 // start or end of 'extern "C++"'
3027 version_script_push_lang(void* closurev, const char* lang, int langlen)
3029 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3030 std::string language(lang, langlen);
3031 Version_script_info::Language code;
3032 if (language.empty() || language == "C")
3033 code = Version_script_info::LANGUAGE_C;
3034 else if (language == "C++")
3035 code = Version_script_info::LANGUAGE_CXX;
3036 else if (language == "Java")
3037 code = Version_script_info::LANGUAGE_JAVA;
3040 char* buf = new char[langlen + 100];
3041 snprintf(buf, langlen + 100,
3042 _("unrecognized version script language '%s'"),
3044 yyerror(closurev, buf);
3046 code = Version_script_info::LANGUAGE_C;
3048 closure->push_language(code);
3052 version_script_pop_lang(void* closurev)
3054 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3055 closure->pop_language();
3058 // Called by the bison parser to start a SECTIONS clause.
3061 script_start_sections(void* closurev)
3063 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3064 closure->script_options()->script_sections()->start_sections();
3065 closure->clear_skip_on_incompatible_target();
3068 // Called by the bison parser to finish a SECTIONS clause.
3071 script_finish_sections(void* closurev)
3073 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3074 closure->script_options()->script_sections()->finish_sections();
3077 // Start processing entries for an output section.
3080 script_start_output_section(void* closurev, const char* name, size_t namelen,
3081 const struct Parser_output_section_header* header)
3083 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3084 closure->script_options()->script_sections()->start_output_section(name,
3089 // Finish processing entries for an output section.
3092 script_finish_output_section(void* closurev,
3093 const struct Parser_output_section_trailer* trail)
3095 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3096 closure->script_options()->script_sections()->finish_output_section(trail);
3099 // Add a data item (e.g., "WORD (0)") to the current output section.
3102 script_add_data(void* closurev, int data_token, Expression* val)
3104 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3106 bool is_signed = true;
3128 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3131 // Add a clause setting the fill value to the current output section.
3134 script_add_fill(void* closurev, Expression* val)
3136 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3137 closure->script_options()->script_sections()->add_fill(val);
3140 // Add a new input section specification to the current output
3144 script_add_input_section(void* closurev,
3145 const struct Input_section_spec* spec,
3148 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3149 bool keep = keepi != 0;
3150 closure->script_options()->script_sections()->add_input_section(spec, keep);
3153 // When we see DATA_SEGMENT_ALIGN we record that following output
3154 // sections may be relro.
3157 script_data_segment_align(void* closurev)
3159 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3160 if (!closure->script_options()->saw_sections_clause())
3161 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3162 closure->filename(), closure->lineno(), closure->charpos());
3164 closure->script_options()->script_sections()->data_segment_align();
3167 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3168 // since DATA_SEGMENT_ALIGN should be relro.
3171 script_data_segment_relro_end(void* closurev)
3173 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3174 if (!closure->script_options()->saw_sections_clause())
3175 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3176 closure->filename(), closure->lineno(), closure->charpos());
3178 closure->script_options()->script_sections()->data_segment_relro_end();
3181 // Create a new list of string/sort pairs.
3183 extern "C" String_sort_list_ptr
3184 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3186 return new String_sort_list(1, *string_sort);
3189 // Add an entry to a list of string/sort pairs. The way the parser
3190 // works permits us to simply modify the first parameter, rather than
3193 extern "C" String_sort_list_ptr
3194 script_string_sort_list_add(String_sort_list_ptr pv,
3195 const struct Wildcard_section* string_sort)
3198 return script_new_string_sort_list(string_sort);
3201 pv->push_back(*string_sort);
3206 // Create a new list of strings.
3208 extern "C" String_list_ptr
3209 script_new_string_list(const char* str, size_t len)
3211 return new String_list(1, std::string(str, len));
3214 // Add an element to a list of strings. The way the parser works
3215 // permits us to simply modify the first parameter, rather than copy
3218 extern "C" String_list_ptr
3219 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3222 return script_new_string_list(str, len);
3225 pv->push_back(std::string(str, len));
3230 // Concatenate two string lists. Either or both may be NULL. The way
3231 // the parser works permits us to modify the parameters, rather than
3234 extern "C" String_list_ptr
3235 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3241 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3245 // Add a new program header.
3248 script_add_phdr(void* closurev, const char* name, size_t namelen,
3249 unsigned int type, const Phdr_info* info)
3251 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3252 bool includes_filehdr = info->includes_filehdr != 0;
3253 bool includes_phdrs = info->includes_phdrs != 0;
3254 bool is_flags_valid = info->is_flags_valid != 0;
3255 Script_sections* ss = closure->script_options()->script_sections();
3256 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3257 is_flags_valid, info->flags, info->load_address);
3258 closure->clear_skip_on_incompatible_target();
3261 // Convert a program header string to a type.
3263 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3270 } phdr_type_names[] =
3274 PHDR_TYPE(PT_DYNAMIC),
3275 PHDR_TYPE(PT_INTERP),
3277 PHDR_TYPE(PT_SHLIB),
3280 PHDR_TYPE(PT_GNU_EH_FRAME),
3281 PHDR_TYPE(PT_GNU_STACK),
3282 PHDR_TYPE(PT_GNU_RELRO)
3285 extern "C" unsigned int
3286 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3288 for (unsigned int i = 0;
3289 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3291 if (namelen == phdr_type_names[i].namelen
3292 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3293 return phdr_type_names[i].val;
3294 yyerror(closurev, _("unknown PHDR type (try integer)"));
3295 return elfcpp::PT_NULL;
3299 script_saw_segment_start_expression(void* closurev)
3301 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3302 Script_sections* ss = closure->script_options()->script_sections();
3303 ss->set_saw_segment_start_expression(true);
3307 script_set_section_region(void* closurev, const char* name, size_t namelen,
3310 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3311 if (!closure->script_options()->saw_sections_clause())
3313 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3315 closure->filename(), closure->lineno(), closure->charpos(),
3316 static_cast<int>(namelen), name);
3320 Script_sections* ss = closure->script_options()->script_sections();
3321 Memory_region* mr = ss->find_memory_region(name, namelen);
3324 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3325 closure->filename(), closure->lineno(), closure->charpos(),
3326 static_cast<int>(namelen), name);
3330 ss->set_memory_region(mr, set_vma);
3334 script_add_memory(void* closurev, const char* name, size_t namelen,
3335 unsigned int attrs, Expression* origin, Expression* length)
3337 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3338 Script_sections* ss = closure->script_options()->script_sections();
3339 ss->add_memory_region(name, namelen, attrs, origin, length);
3342 extern "C" unsigned int
3343 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3353 attributes |= MEM_READABLE; break;
3356 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3359 attributes |= MEM_EXECUTABLE; break;
3362 attributes |= MEM_ALLOCATABLE; break;
3367 attributes |= MEM_INITIALIZED; break;
3369 yyerror(closurev, _("unknown MEMORY attribute"));
3373 attributes = (~ attributes) & MEM_ATTR_MASK;
3379 script_include_directive(int first_token, void* closurev,
3380 const char* filename, size_t length)
3382 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3383 std::string name(filename, length);
3384 Command_line* cmdline = closure->command_line();
3385 read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3386 first_token, Lex::LINKER_SCRIPT);
3389 // Functions for memory regions.
3391 extern "C" Expression*
3392 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3394 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3395 Script_sections* ss = closure->script_options()->script_sections();
3396 Expression* origin = ss->find_memory_region_origin(name, namelen);
3400 gold_error(_("undefined memory region '%s' referenced "
3401 "in ORIGIN expression"),
3403 // Create a dummy expression to prevent crashes later on.
3404 origin = script_exp_integer(0);
3410 extern "C" Expression*
3411 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3413 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3414 Script_sections* ss = closure->script_options()->script_sections();
3415 Expression* length = ss->find_memory_region_length(name, namelen);
3419 gold_error(_("undefined memory region '%s' referenced "
3420 "in LENGTH expression"),
3422 // Create a dummy expression to prevent crashes later on.
3423 length = script_exp_integer(0);