[GOLD] powerpc64le-linux fails to link large Linux kernel
[external/binutils.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file.  We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56  public:
57   // Token classification.
58   enum Classification
59   {
60     // Token is invalid.
61     TOKEN_INVALID,
62     // Token indicates end of input.
63     TOKEN_EOF,
64     // Token is a string of characters.
65     TOKEN_STRING,
66     // Token is a quoted string of characters.
67     TOKEN_QUOTED_STRING,
68     // Token is an operator.
69     TOKEN_OPERATOR,
70     // Token is a number (an integer).
71     TOKEN_INTEGER
72   };
73
74   // We need an empty constructor so that we can put this STL objects.
75   Token()
76     : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77       opcode_(0), lineno_(0), charpos_(0)
78   { }
79
80   // A general token with no value.
81   Token(Classification classification, int lineno, int charpos)
82     : classification_(classification), value_(NULL), value_length_(0),
83       opcode_(0), lineno_(lineno), charpos_(charpos)
84   {
85     gold_assert(classification == TOKEN_INVALID
86                 || classification == TOKEN_EOF);
87   }
88
89   // A general token with a value.
90   Token(Classification classification, const char* value, size_t length,
91         int lineno, int charpos)
92     : classification_(classification), value_(value), value_length_(length),
93       opcode_(0), lineno_(lineno), charpos_(charpos)
94   {
95     gold_assert(classification != TOKEN_INVALID
96                 && classification != TOKEN_EOF);
97   }
98
99   // A token representing an operator.
100   Token(int opcode, int lineno, int charpos)
101     : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102       opcode_(opcode), lineno_(lineno), charpos_(charpos)
103   { }
104
105   // Return whether the token is invalid.
106   bool
107   is_invalid() const
108   { return this->classification_ == TOKEN_INVALID; }
109
110   // Return whether this is an EOF token.
111   bool
112   is_eof() const
113   { return this->classification_ == TOKEN_EOF; }
114
115   // Return the token classification.
116   Classification
117   classification() const
118   { return this->classification_; }
119
120   // Return the line number at which the token starts.
121   int
122   lineno() const
123   { return this->lineno_; }
124
125   // Return the character position at this the token starts.
126   int
127   charpos() const
128   { return this->charpos_; }
129
130   // Get the value of a token.
131
132   const char*
133   string_value(size_t* length) const
134   {
135     gold_assert(this->classification_ == TOKEN_STRING
136                 || this->classification_ == TOKEN_QUOTED_STRING);
137     *length = this->value_length_;
138     return this->value_;
139   }
140
141   int
142   operator_value() const
143   {
144     gold_assert(this->classification_ == TOKEN_OPERATOR);
145     return this->opcode_;
146   }
147
148   uint64_t
149   integer_value() const;
150
151  private:
152   // The token classification.
153   Classification classification_;
154   // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155   // TOKEN_INTEGER.
156   const char* value_;
157   // The length of the token value.
158   size_t value_length_;
159   // The token value, for TOKEN_OPERATOR.
160   int opcode_;
161   // The line number where this token started (one based).
162   int lineno_;
163   // The character position within the line where this token started
164   // (one based).
165   int charpos_;
166 };
167
168 // Return the value of a TOKEN_INTEGER.
169
170 uint64_t
171 Token::integer_value() const
172 {
173   gold_assert(this->classification_ == TOKEN_INTEGER);
174
175   size_t len = this->value_length_;
176
177   uint64_t multiplier = 1;
178   char last = this->value_[len - 1];
179   if (last == 'm' || last == 'M')
180     {
181       multiplier = 1024 * 1024;
182       --len;
183     }
184   else if (last == 'k' || last == 'K')
185     {
186       multiplier = 1024;
187       --len;
188     }
189
190   char *end;
191   uint64_t ret = strtoull(this->value_, &end, 0);
192   gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194   return ret * multiplier;
195 }
196
197 // This class handles lexing a file into a sequence of tokens.
198
199 class Lex
200 {
201  public:
202   // We unfortunately have to support different lexing modes, because
203   // when reading different parts of a linker script we need to parse
204   // things differently.
205   enum Mode
206   {
207     // Reading an ordinary linker script.
208     LINKER_SCRIPT,
209     // Reading an expression in a linker script.
210     EXPRESSION,
211     // Reading a version script.
212     VERSION_SCRIPT,
213     // Reading a --dynamic-list file.
214     DYNAMIC_LIST
215   };
216
217   Lex(const char* input_string, size_t input_length, int parsing_token)
218     : input_string_(input_string), input_length_(input_length),
219       current_(input_string), mode_(LINKER_SCRIPT),
220       first_token_(parsing_token), token_(),
221       lineno_(1), linestart_(input_string)
222   { }
223
224   // Read a file into a string.
225   static void
226   read_file(Input_file*, std::string*);
227
228   // Return the next token.
229   const Token*
230   next_token();
231
232   // Return the current lexing mode.
233   Lex::Mode
234   mode() const
235   { return this->mode_; }
236
237   // Set the lexing mode.
238   void
239   set_mode(Mode mode)
240   { this->mode_ = mode; }
241
242  private:
243   Lex(const Lex&);
244   Lex& operator=(const Lex&);
245
246   // Make a general token with no value at the current location.
247   Token
248   make_token(Token::Classification c, const char* start) const
249   { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251   // Make a general token with a value at the current location.
252   Token
253   make_token(Token::Classification c, const char* v, size_t len,
254              const char* start)
255     const
256   { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258   // Make an operator token at the current location.
259   Token
260   make_token(int opcode, const char* start) const
261   { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263   // Make an invalid token at the current location.
264   Token
265   make_invalid_token(const char* start)
266   { return this->make_token(Token::TOKEN_INVALID, start); }
267
268   // Make an EOF token at the current location.
269   Token
270   make_eof_token(const char* start)
271   { return this->make_token(Token::TOKEN_EOF, start); }
272
273   // Return whether C can be the first character in a name.  C2 is the
274   // next character, since we sometimes need that.
275   inline bool
276   can_start_name(char c, char c2);
277
278   // If C can appear in a name which has already started, return a
279   // pointer to a character later in the token or just past
280   // it. Otherwise, return NULL.
281   inline const char*
282   can_continue_name(const char* c);
283
284   // Return whether C, C2, C3 can start a hex number.
285   inline bool
286   can_start_hex(char c, char c2, char c3);
287
288   // If C can appear in a hex number which has already started, return
289   // a pointer to a character later in the token or just past
290   // it. Otherwise, return NULL.
291   inline const char*
292   can_continue_hex(const char* c);
293
294   // Return whether C can start a non-hex number.
295   static inline bool
296   can_start_number(char c);
297
298   // If C can appear in a decimal number which has already started,
299   // return a pointer to a character later in the token or just past
300   // it. Otherwise, return NULL.
301   inline const char*
302   can_continue_number(const char* c)
303   { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305   // If C1 C2 C3 form a valid three character operator, return the
306   // opcode.  Otherwise return 0.
307   static inline int
308   three_char_operator(char c1, char c2, char c3);
309
310   // If C1 C2 form a valid two character operator, return the opcode.
311   // Otherwise return 0.
312   static inline int
313   two_char_operator(char c1, char c2);
314
315   // If C1 is a valid one character operator, return the opcode.
316   // Otherwise return 0.
317   static inline int
318   one_char_operator(char c1);
319
320   // Read the next token.
321   Token
322   get_token(const char**);
323
324   // Skip a C style /* */ comment.  Return false if the comment did
325   // not end.
326   bool
327   skip_c_comment(const char**);
328
329   // Skip a line # comment.  Return false if there was no newline.
330   bool
331   skip_line_comment(const char**);
332
333   // Build a token CLASSIFICATION from all characters that match
334   // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
335   // MATCH.  Set *PP to the character following the token.
336   inline Token
337   gather_token(Token::Classification,
338                const char* (Lex::*can_continue_fn)(const char*),
339                const char* start, const char* match, const char** pp);
340
341   // Build a token from a quoted string.
342   Token
343   gather_quoted_string(const char** pp);
344
345   // The string we are tokenizing.
346   const char* input_string_;
347   // The length of the string.
348   size_t input_length_;
349   // The current offset into the string.
350   const char* current_;
351   // The current lexing mode.
352   Mode mode_;
353   // The code to use for the first token.  This is set to 0 after it
354   // is used.
355   int first_token_;
356   // The current token.
357   Token token_;
358   // The current line number.
359   int lineno_;
360   // The start of the current line in the string.
361   const char* linestart_;
362 };
363
364 // Read the whole file into memory.  We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer.  We ignore the
366 // data we've already read, so that we read aligned buffers.
367
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371   off_t filesize = input_file->file().filesize();
372   contents->clear();
373   contents->reserve(filesize);
374
375   off_t off = 0;
376   unsigned char buf[BUFSIZ];
377   while (off < filesize)
378     {
379       off_t get = BUFSIZ;
380       if (get > filesize - off)
381         get = filesize - off;
382       input_file->file().read(off, get, buf);
383       contents->append(reinterpret_cast<char*>(&buf[0]), get);
384       off += get;
385     }
386 }
387
388 // Return whether C can be the start of a name, if the next character
389 // is C2.  A name can being with a letter, underscore, period, or
390 // dollar sign.  Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde.  Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator.  It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol.  That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not.  We are
397 // compatible.
398
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402   switch (c)
403     {
404     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408     case 'Y': case 'Z':
409     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413     case 'y': case 'z':
414     case '_': case '.': case '$':
415       return true;
416
417     case '/': case '\\':
418       return this->mode_ == LINKER_SCRIPT;
419
420     case '~':
421       return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423     case '*': case '[':
424       return (this->mode_ == VERSION_SCRIPT
425               || this->mode_ == DYNAMIC_LIST
426               || (this->mode_ == LINKER_SCRIPT
427                   && can_continue_name(&c2)));
428
429     default:
430       return false;
431     }
432 }
433
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*".  So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443   switch (*c)
444     {
445     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449     case 'Y': case 'Z':
450     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454     case 'y': case 'z':
455     case '_': case '.': case '$':
456     case '0': case '1': case '2': case '3': case '4':
457     case '5': case '6': case '7': case '8': case '9':
458       return c + 1;
459
460     // TODO(csilvers): why not allow ~ in names for version-scripts?
461     case '/': case '\\': case '~':
462     case '=': case '+':
463     case ',':
464       if (this->mode_ == LINKER_SCRIPT)
465         return c + 1;
466       return NULL;
467
468     case '[': case ']': case '*': case '?': case '-':
469       if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470           || this->mode_ == DYNAMIC_LIST)
471         return c + 1;
472       return NULL;
473
474     // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
475     case '^':
476       if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477         return c + 1;
478       return NULL;
479
480     case ':':
481       if (this->mode_ == LINKER_SCRIPT)
482         return c + 1;
483       else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484                && (c[1] == ':'))
485         {
486           // A name can have '::' in it, as that's a c++ namespace
487           // separator. But a single colon is not part of a name.
488           return c + 2;
489         }
490       return NULL;
491
492     default:
493       return NULL;
494     }
495 }
496
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits.  The old linker accepts leading '$' for hex, and
499 // trailing HXBOD.  Those are for MRI compatibility and we don't
500 // accept them.
501
502 // Return whether C1 C2 C3 can start a hex number.
503
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507   if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508     return this->can_continue_hex(&c3);
509   return false;
510 }
511
512 // Return whether C can appear in a hex number.
513
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517   switch (*c)
518     {
519     case '0': case '1': case '2': case '3': case '4':
520     case '5': case '6': case '7': case '8': case '9':
521     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523       return c + 1;
524
525     default:
526       return NULL;
527     }
528 }
529
530 // Return whether C can start a non-hex number.
531
532 inline bool
533 Lex::can_start_number(char c)
534 {
535   switch (c)
536     {
537     case '0': case '1': case '2': case '3': case '4':
538     case '5': case '6': case '7': case '8': case '9':
539       return true;
540
541     default:
542       return false;
543     }
544 }
545
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553   switch (c1)
554     {
555     case '<':
556       if (c2 == '<' && c3 == '=')
557         return LSHIFTEQ;
558       break;
559     case '>':
560       if (c2 == '>' && c3 == '=')
561         return RSHIFTEQ;
562       break;
563     default:
564       break;
565     }
566   return 0;
567 }
568
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576   switch (c1)
577     {
578     case '=':
579       if (c2 == '=')
580         return EQ;
581       break;
582     case '!':
583       if (c2 == '=')
584         return NE;
585       break;
586     case '+':
587       if (c2 == '=')
588         return PLUSEQ;
589       break;
590     case '-':
591       if (c2 == '=')
592         return MINUSEQ;
593       break;
594     case '*':
595       if (c2 == '=')
596         return MULTEQ;
597       break;
598     case '/':
599       if (c2 == '=')
600         return DIVEQ;
601       break;
602     case '|':
603       if (c2 == '=')
604         return OREQ;
605       if (c2 == '|')
606         return OROR;
607       break;
608     case '&':
609       if (c2 == '=')
610         return ANDEQ;
611       if (c2 == '&')
612         return ANDAND;
613       break;
614     case '>':
615       if (c2 == '=')
616         return GE;
617       if (c2 == '>')
618         return RSHIFT;
619       break;
620     case '<':
621       if (c2 == '=')
622         return LE;
623       if (c2 == '<')
624         return LSHIFT;
625       break;
626     default:
627       break;
628     }
629   return 0;
630 }
631
632 // If C1 is a valid operator, return the opcode.  Otherwise return 0.
633
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637   switch (c1)
638     {
639     case '+':
640     case '-':
641     case '*':
642     case '/':
643     case '%':
644     case '!':
645     case '&':
646     case '|':
647     case '^':
648     case '~':
649     case '<':
650     case '>':
651     case '=':
652     case '?':
653     case ',':
654     case '(':
655     case ')':
656     case '{':
657     case '}':
658     case '[':
659     case ']':
660     case ':':
661     case ';':
662       return c1;
663     default:
664       return 0;
665     }
666 }
667
668 // Skip a C style comment.  *PP points to just after the "/*".  Return
669 // false if the comment did not end.
670
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674   const char* p = *pp;
675   while (p[0] != '*' || p[1] != '/')
676     {
677       if (*p == '\0')
678         {
679           *pp = p;
680           return false;
681         }
682
683       if (*p == '\n')
684         {
685           ++this->lineno_;
686           this->linestart_ = p + 1;
687         }
688       ++p;
689     }
690
691   *pp = p + 2;
692   return true;
693 }
694
695 // Skip a line # comment.  Return false if there was no newline.
696
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700   const char* p = *pp;
701   size_t skip = strcspn(p, "\n");
702   if (p[skip] == '\0')
703     {
704       *pp = p + skip;
705       return false;
706     }
707
708   p += skip + 1;
709   ++this->lineno_;
710   this->linestart_ = p;
711   *pp = p;
712
713   return true;
714 }
715
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN.  Update *PP.
718
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721                   const char* (Lex::*can_continue_fn)(const char*),
722                   const char* start,
723                   const char* match,
724                   const char** pp)
725 {
726   const char* new_match = NULL;
727   while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728     match = new_match;
729
730   // A special case: integers may be followed by a single M or K,
731   // case-insensitive.
732   if (classification == Token::TOKEN_INTEGER
733       && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734     ++match;
735
736   *pp = match;
737   return this->make_token(classification, start, match - start, start);
738 }
739
740 // Build a token from a quoted string.
741
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745   const char* start = *pp;
746   const char* p = start;
747   ++p;
748   size_t skip = strcspn(p, "\"\n");
749   if (p[skip] != '"')
750     return this->make_invalid_token(start);
751   *pp = p + skip + 1;
752   return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754
755 // Return the next token at *PP.  Update *PP.  General guideline: we
756 // require linker scripts to be simple ASCII.  No unicode linker
757 // scripts.  In particular we can assume that any '\0' is the end of
758 // the input.
759
760 Token
761 Lex::get_token(const char** pp)
762 {
763   const char* p = *pp;
764
765   while (true)
766     {
767       if (*p == '\0')
768         {
769           *pp = p;
770           return this->make_eof_token(p);
771         }
772
773       // Skip whitespace quickly.
774       while (*p == ' ' || *p == '\t' || *p == '\r')
775         ++p;
776
777       if (*p == '\n')
778         {
779           ++p;
780           ++this->lineno_;
781           this->linestart_ = p;
782           continue;
783         }
784
785       // Skip C style comments.
786       if (p[0] == '/' && p[1] == '*')
787         {
788           int lineno = this->lineno_;
789           int charpos = p - this->linestart_ + 1;
790
791           *pp = p + 2;
792           if (!this->skip_c_comment(pp))
793             return Token(Token::TOKEN_INVALID, lineno, charpos);
794           p = *pp;
795
796           continue;
797         }
798
799       // Skip line comments.
800       if (*p == '#')
801         {
802           *pp = p + 1;
803           if (!this->skip_line_comment(pp))
804             return this->make_eof_token(p);
805           p = *pp;
806           continue;
807         }
808
809       // Check for a name.
810       if (this->can_start_name(p[0], p[1]))
811         return this->gather_token(Token::TOKEN_STRING,
812                                   &Lex::can_continue_name,
813                                   p, p + 1, pp);
814
815       // We accept any arbitrary name in double quotes, as long as it
816       // does not cross a line boundary.
817       if (*p == '"')
818         {
819           *pp = p;
820           return this->gather_quoted_string(pp);
821         }
822
823       // Check for a number.
824
825       if (this->can_start_hex(p[0], p[1], p[2]))
826         return this->gather_token(Token::TOKEN_INTEGER,
827                                   &Lex::can_continue_hex,
828                                   p, p + 3, pp);
829
830       if (Lex::can_start_number(p[0]))
831         return this->gather_token(Token::TOKEN_INTEGER,
832                                   &Lex::can_continue_number,
833                                   p, p + 1, pp);
834
835       // Check for operators.
836
837       int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
838       if (opcode != 0)
839         {
840           *pp = p + 3;
841           return this->make_token(opcode, p);
842         }
843
844       opcode = Lex::two_char_operator(p[0], p[1]);
845       if (opcode != 0)
846         {
847           *pp = p + 2;
848           return this->make_token(opcode, p);
849         }
850
851       opcode = Lex::one_char_operator(p[0]);
852       if (opcode != 0)
853         {
854           *pp = p + 1;
855           return this->make_token(opcode, p);
856         }
857
858       return this->make_token(Token::TOKEN_INVALID, p);
859     }
860 }
861
862 // Return the next token.
863
864 const Token*
865 Lex::next_token()
866 {
867   // The first token is special.
868   if (this->first_token_ != 0)
869     {
870       this->token_ = Token(this->first_token_, 0, 0);
871       this->first_token_ = 0;
872       return &this->token_;
873     }
874
875   this->token_ = this->get_token(&this->current_);
876
877   // Don't let an early null byte fool us into thinking that we've
878   // reached the end of the file.
879   if (this->token_.is_eof()
880       && (static_cast<size_t>(this->current_ - this->input_string_)
881           < this->input_length_))
882     this->token_ = this->make_invalid_token(this->current_);
883
884   return &this->token_;
885 }
886
887 // class Symbol_assignment.
888
889 // Add the symbol to the symbol table.  This makes sure the symbol is
890 // there and defined.  The actual value is stored later.  We can't
891 // determine the actual value at this point, because we can't
892 // necessarily evaluate the expression until all ordinary symbols have
893 // been finalized.
894
895 // The GNU linker lets symbol assignments in the linker script
896 // silently override defined symbols in object files.  We are
897 // compatible.  FIXME: Should we issue a warning?
898
899 void
900 Symbol_assignment::add_to_table(Symbol_table* symtab)
901 {
902   elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
903   this->sym_ = symtab->define_as_constant(this->name_.c_str(),
904                                           NULL, // version
905                                           (this->is_defsym_
906                                            ? Symbol_table::DEFSYM
907                                            : Symbol_table::SCRIPT),
908                                           0, // value
909                                           0, // size
910                                           elfcpp::STT_NOTYPE,
911                                           elfcpp::STB_GLOBAL,
912                                           vis,
913                                           0, // nonvis
914                                           this->provide_,
915                                           true); // force_override
916 }
917
918 // Finalize a symbol value.
919
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923   this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925
926 // Finalize a symbol value which can refer to the dot symbol.
927
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930                                      const Layout* layout,
931                                      uint64_t dot_value,
932                                      Output_section* dot_section)
933 {
934   this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936
937 // Finalize a symbol value, internal version.
938
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941                                       const Layout* layout,
942                                       bool is_dot_available,
943                                       uint64_t dot_value,
944                                       Output_section* dot_section)
945 {
946   // If we were only supposed to provide this symbol, the sym_ field
947   // will be NULL if the symbol was not referenced.
948   if (this->sym_ == NULL)
949     {
950       gold_assert(this->provide_);
951       return;
952     }
953
954   if (parameters->target().get_size() == 32)
955     {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957       this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958                                dot_section);
959 #else
960       gold_unreachable();
961 #endif
962     }
963   else if (parameters->target().get_size() == 64)
964     {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966       this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967                                dot_section);
968 #else
969       gold_unreachable();
970 #endif
971     }
972   else
973     gold_unreachable();
974 }
975
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979                                   bool is_dot_available, uint64_t dot_value,
980                                   Output_section* dot_section)
981 {
982   Output_section* section;
983   elfcpp::STT type = elfcpp::STT_NOTYPE;
984   elfcpp::STV vis = elfcpp::STV_DEFAULT;
985   unsigned char nonvis = 0;
986   uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
987                                                   is_dot_available,
988                                                   dot_value, dot_section,
989                                                   &section, NULL, &type,
990                                                   &vis, &nonvis, false, NULL);
991   Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
992   ssym->set_value(final_val);
993   ssym->set_type(type);
994   ssym->set_visibility(vis);
995   ssym->set_nonvis(nonvis);
996   if (section != NULL)
997     ssym->set_output_section(section);
998 }
999
1000 // Set the symbol value if the expression yields an absolute value or
1001 // a value relative to DOT_SECTION.
1002
1003 void
1004 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1005                                    bool is_dot_available, uint64_t dot_value,
1006                                    Output_section* dot_section)
1007 {
1008   if (this->sym_ == NULL)
1009     return;
1010
1011   Output_section* val_section;
1012   bool is_valid;
1013   uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1014                                             is_dot_available, dot_value,
1015                                             dot_section, &val_section, NULL,
1016                                             NULL, NULL, NULL, false, &is_valid);
1017   if (!is_valid || (val_section != NULL && val_section != dot_section))
1018     return;
1019
1020   if (parameters->target().get_size() == 32)
1021     {
1022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1023       Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1024       ssym->set_value(val);
1025 #else
1026       gold_unreachable();
1027 #endif
1028     }
1029   else if (parameters->target().get_size() == 64)
1030     {
1031 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1032       Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1033       ssym->set_value(val);
1034 #else
1035       gold_unreachable();
1036 #endif
1037     }
1038   else
1039     gold_unreachable();
1040   if (val_section != NULL)
1041     this->sym_->set_output_section(val_section);
1042 }
1043
1044 // Print for debugging.
1045
1046 void
1047 Symbol_assignment::print(FILE* f) const
1048 {
1049   if (this->provide_ && this->hidden_)
1050     fprintf(f, "PROVIDE_HIDDEN(");
1051   else if (this->provide_)
1052     fprintf(f, "PROVIDE(");
1053   else if (this->hidden_)
1054     gold_unreachable();
1055
1056   fprintf(f, "%s = ", this->name_.c_str());
1057   this->val_->print(f);
1058
1059   if (this->provide_ || this->hidden_)
1060     fprintf(f, ")");
1061
1062   fprintf(f, "\n");
1063 }
1064
1065 // Class Script_assertion.
1066
1067 // Check the assertion.
1068
1069 void
1070 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1071 {
1072   if (!this->check_->eval(symtab, layout, true))
1073     gold_error("%s", this->message_.c_str());
1074 }
1075
1076 // Print for debugging.
1077
1078 void
1079 Script_assertion::print(FILE* f) const
1080 {
1081   fprintf(f, "ASSERT(");
1082   this->check_->print(f);
1083   fprintf(f, ", \"%s\")\n", this->message_.c_str());
1084 }
1085
1086 // Class Script_options.
1087
1088 Script_options::Script_options()
1089   : entry_(), symbol_assignments_(), symbol_definitions_(),
1090     symbol_references_(), version_script_info_(), script_sections_()
1091 {
1092 }
1093
1094 // Returns true if NAME is on the list of symbol assignments waiting
1095 // to be processed.
1096
1097 bool
1098 Script_options::is_pending_assignment(const char* name)
1099 {
1100   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1101        p != this->symbol_assignments_.end();
1102        ++p)
1103     if ((*p)->name() == name)
1104       return true;
1105   return false;
1106 }
1107
1108 // Add a symbol to be defined.
1109
1110 void
1111 Script_options::add_symbol_assignment(const char* name, size_t length,
1112                                       bool is_defsym, Expression* value,
1113                                       bool provide, bool hidden)
1114 {
1115   if (length != 1 || name[0] != '.')
1116     {
1117       if (this->script_sections_.in_sections_clause())
1118         {
1119           gold_assert(!is_defsym);
1120           this->script_sections_.add_symbol_assignment(name, length, value,
1121                                                        provide, hidden);
1122         }
1123       else
1124         {
1125           Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1126                                                        value, provide, hidden);
1127           this->symbol_assignments_.push_back(p);
1128         }
1129
1130       if (!provide)
1131         {
1132           std::string n(name, length);
1133           this->symbol_definitions_.insert(n);
1134           this->symbol_references_.erase(n);
1135         }
1136     }
1137   else
1138     {
1139       if (provide || hidden)
1140         gold_error(_("invalid use of PROVIDE for dot symbol"));
1141
1142       // The GNU linker permits assignments to dot outside of SECTIONS
1143       // clauses and treats them as occurring inside, so we don't
1144       // check in_sections_clause here.
1145       this->script_sections_.add_dot_assignment(value);
1146     }
1147 }
1148
1149 // Add a reference to a symbol.
1150
1151 void
1152 Script_options::add_symbol_reference(const char* name, size_t length)
1153 {
1154   if (length != 1 || name[0] != '.')
1155     {
1156       std::string n(name, length);
1157       if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1158         this->symbol_references_.insert(n);
1159     }
1160 }
1161
1162 // Add an assertion.
1163
1164 void
1165 Script_options::add_assertion(Expression* check, const char* message,
1166                               size_t messagelen)
1167 {
1168   if (this->script_sections_.in_sections_clause())
1169     this->script_sections_.add_assertion(check, message, messagelen);
1170   else
1171     {
1172       Script_assertion* p = new Script_assertion(check, message, messagelen);
1173       this->assertions_.push_back(p);
1174     }
1175 }
1176
1177 // Create sections required by any linker scripts.
1178
1179 void
1180 Script_options::create_script_sections(Layout* layout)
1181 {
1182   if (this->saw_sections_clause())
1183     this->script_sections_.create_sections(layout);
1184 }
1185
1186 // Add any symbols we are defining to the symbol table.
1187
1188 void
1189 Script_options::add_symbols_to_table(Symbol_table* symtab)
1190 {
1191   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1192        p != this->symbol_assignments_.end();
1193        ++p)
1194     (*p)->add_to_table(symtab);
1195   this->script_sections_.add_symbols_to_table(symtab);
1196 }
1197
1198 // Finalize symbol values.  Also check assertions.
1199
1200 void
1201 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1202 {
1203   // We finalize the symbols defined in SECTIONS first, because they
1204   // are the ones which may have changed.  This way if symbol outside
1205   // SECTIONS are defined in terms of symbols inside SECTIONS, they
1206   // will get the right value.
1207   this->script_sections_.finalize_symbols(symtab, layout);
1208
1209   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1210        p != this->symbol_assignments_.end();
1211        ++p)
1212     (*p)->finalize(symtab, layout);
1213
1214   for (Assertions::iterator p = this->assertions_.begin();
1215        p != this->assertions_.end();
1216        ++p)
1217     (*p)->check(symtab, layout);
1218 }
1219
1220 // Set section addresses.  We set all the symbols which have absolute
1221 // values.  Then we let the SECTIONS clause do its thing.  This
1222 // returns the segment which holds the file header and segment
1223 // headers, if any.
1224
1225 Output_segment*
1226 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1227 {
1228   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1229        p != this->symbol_assignments_.end();
1230        ++p)
1231     (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1232
1233   return this->script_sections_.set_section_addresses(symtab, layout);
1234 }
1235
1236 // This class holds data passed through the parser to the lexer and to
1237 // the parser support functions.  This avoids global variables.  We
1238 // can't use global variables because we need not be called by a
1239 // singleton thread.
1240
1241 class Parser_closure
1242 {
1243  public:
1244   Parser_closure(const char* filename,
1245                  const Position_dependent_options& posdep_options,
1246                  bool parsing_defsym, bool in_group, bool is_in_sysroot,
1247                  Command_line* command_line,
1248                  Script_options* script_options,
1249                  Lex* lex,
1250                  bool skip_on_incompatible_target,
1251                  Script_info* script_info)
1252     : filename_(filename), posdep_options_(posdep_options),
1253       parsing_defsym_(parsing_defsym), in_group_(in_group),
1254       is_in_sysroot_(is_in_sysroot),
1255       skip_on_incompatible_target_(skip_on_incompatible_target),
1256       found_incompatible_target_(false),
1257       command_line_(command_line), script_options_(script_options),
1258       version_script_info_(script_options->version_script_info()),
1259       lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1260       script_info_(script_info)
1261   {
1262     // We start out processing C symbols in the default lex mode.
1263     this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1264     this->lex_mode_stack_.push_back(lex->mode());
1265   }
1266
1267   // Return the file name.
1268   const char*
1269   filename() const
1270   { return this->filename_; }
1271
1272   // Return the position dependent options.  The caller may modify
1273   // this.
1274   Position_dependent_options&
1275   position_dependent_options()
1276   { return this->posdep_options_; }
1277
1278   // Whether we are parsing a --defsym.
1279   bool
1280   parsing_defsym() const
1281   { return this->parsing_defsym_; }
1282
1283   // Return whether this script is being run in a group.
1284   bool
1285   in_group() const
1286   { return this->in_group_; }
1287
1288   // Return whether this script was found using a directory in the
1289   // sysroot.
1290   bool
1291   is_in_sysroot() const
1292   { return this->is_in_sysroot_; }
1293
1294   // Whether to skip to the next file with the same name if we find an
1295   // incompatible target in an OUTPUT_FORMAT statement.
1296   bool
1297   skip_on_incompatible_target() const
1298   { return this->skip_on_incompatible_target_; }
1299
1300   // Stop skipping to the next file on an incompatible target.  This
1301   // is called when we make some unrevocable change to the data
1302   // structures.
1303   void
1304   clear_skip_on_incompatible_target()
1305   { this->skip_on_incompatible_target_ = false; }
1306
1307   // Whether we found an incompatible target in an OUTPUT_FORMAT
1308   // statement.
1309   bool
1310   found_incompatible_target() const
1311   { return this->found_incompatible_target_; }
1312
1313   // Note that we found an incompatible target.
1314   void
1315   set_found_incompatible_target()
1316   { this->found_incompatible_target_ = true; }
1317
1318   // Returns the Command_line structure passed in at constructor time.
1319   // This value may be NULL.  The caller may modify this, which modifies
1320   // the passed-in Command_line object (not a copy).
1321   Command_line*
1322   command_line()
1323   { return this->command_line_; }
1324
1325   // Return the options which may be set by a script.
1326   Script_options*
1327   script_options()
1328   { return this->script_options_; }
1329
1330   // Return the object in which version script information should be stored.
1331   Version_script_info*
1332   version_script()
1333   { return this->version_script_info_; }
1334
1335   // Return the next token, and advance.
1336   const Token*
1337   next_token()
1338   {
1339     const Token* token = this->lex_->next_token();
1340     this->lineno_ = token->lineno();
1341     this->charpos_ = token->charpos();
1342     return token;
1343   }
1344
1345   // Set a new lexer mode, pushing the current one.
1346   void
1347   push_lex_mode(Lex::Mode mode)
1348   {
1349     this->lex_mode_stack_.push_back(this->lex_->mode());
1350     this->lex_->set_mode(mode);
1351   }
1352
1353   // Pop the lexer mode.
1354   void
1355   pop_lex_mode()
1356   {
1357     gold_assert(!this->lex_mode_stack_.empty());
1358     this->lex_->set_mode(this->lex_mode_stack_.back());
1359     this->lex_mode_stack_.pop_back();
1360   }
1361
1362   // Return the current lexer mode.
1363   Lex::Mode
1364   lex_mode() const
1365   { return this->lex_mode_stack_.back(); }
1366
1367   // Return the line number of the last token.
1368   int
1369   lineno() const
1370   { return this->lineno_; }
1371
1372   // Return the character position in the line of the last token.
1373   int
1374   charpos() const
1375   { return this->charpos_; }
1376
1377   // Return the list of input files, creating it if necessary.  This
1378   // is a space leak--we never free the INPUTS_ pointer.
1379   Input_arguments*
1380   inputs()
1381   {
1382     if (this->inputs_ == NULL)
1383       this->inputs_ = new Input_arguments();
1384     return this->inputs_;
1385   }
1386
1387   // Return whether we saw any input files.
1388   bool
1389   saw_inputs() const
1390   { return this->inputs_ != NULL && !this->inputs_->empty(); }
1391
1392   // Return the current language being processed in a version script
1393   // (eg, "C++").  The empty string represents unmangled C names.
1394   Version_script_info::Language
1395   get_current_language() const
1396   { return this->language_stack_.back(); }
1397
1398   // Push a language onto the stack when entering an extern block.
1399   void
1400   push_language(Version_script_info::Language lang)
1401   { this->language_stack_.push_back(lang); }
1402
1403   // Pop a language off of the stack when exiting an extern block.
1404   void
1405   pop_language()
1406   {
1407     gold_assert(!this->language_stack_.empty());
1408     this->language_stack_.pop_back();
1409   }
1410
1411   // Return a pointer to the incremental info.
1412   Script_info*
1413   script_info()
1414   { return this->script_info_; }
1415
1416  private:
1417   // The name of the file we are reading.
1418   const char* filename_;
1419   // The position dependent options.
1420   Position_dependent_options posdep_options_;
1421   // True if we are parsing a --defsym.
1422   bool parsing_defsym_;
1423   // Whether we are currently in a --start-group/--end-group.
1424   bool in_group_;
1425   // Whether the script was found in a sysrooted directory.
1426   bool is_in_sysroot_;
1427   // If this is true, then if we find an OUTPUT_FORMAT with an
1428   // incompatible target, then we tell the parser to abort so that we
1429   // can search for the next file with the same name.
1430   bool skip_on_incompatible_target_;
1431   // True if we found an OUTPUT_FORMAT with an incompatible target.
1432   bool found_incompatible_target_;
1433   // May be NULL if the user chooses not to pass one in.
1434   Command_line* command_line_;
1435   // Options which may be set from any linker script.
1436   Script_options* script_options_;
1437   // Information parsed from a version script.
1438   Version_script_info* version_script_info_;
1439   // The lexer.
1440   Lex* lex_;
1441   // The line number of the last token returned by next_token.
1442   int lineno_;
1443   // The column number of the last token returned by next_token.
1444   int charpos_;
1445   // A stack of lexer modes.
1446   std::vector<Lex::Mode> lex_mode_stack_;
1447   // A stack of which extern/language block we're inside. Can be C++,
1448   // java, or empty for C.
1449   std::vector<Version_script_info::Language> language_stack_;
1450   // New input files found to add to the link.
1451   Input_arguments* inputs_;
1452   // Pointer to incremental linking info.
1453   Script_info* script_info_;
1454 };
1455
1456 // FILE was found as an argument on the command line.  Try to read it
1457 // as a script.  Return true if the file was handled.
1458
1459 bool
1460 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1461                   Dirsearch* dirsearch, int dirindex,
1462                   Input_objects* input_objects, Mapfile* mapfile,
1463                   Input_group* input_group,
1464                   const Input_argument* input_argument,
1465                   Input_file* input_file, Task_token* next_blocker,
1466                   bool* used_next_blocker)
1467 {
1468   *used_next_blocker = false;
1469
1470   std::string input_string;
1471   Lex::read_file(input_file, &input_string);
1472
1473   Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1474
1475   Script_info* script_info = NULL;
1476   if (layout->incremental_inputs() != NULL)
1477     {
1478       const std::string& filename = input_file->filename();
1479       Timespec mtime = input_file->file().get_mtime();
1480       unsigned int arg_serial = input_argument->file().arg_serial();
1481       script_info = new Script_info(filename);
1482       layout->incremental_inputs()->report_script(script_info, arg_serial,
1483                                                   mtime);
1484     }
1485
1486   Parser_closure closure(input_file->filename().c_str(),
1487                          input_argument->file().options(),
1488                          false,
1489                          input_group != NULL,
1490                          input_file->is_in_sysroot(),
1491                          NULL,
1492                          layout->script_options(),
1493                          &lex,
1494                          input_file->will_search_for(),
1495                          script_info);
1496
1497   bool old_saw_sections_clause =
1498     layout->script_options()->saw_sections_clause();
1499
1500   if (yyparse(&closure) != 0)
1501     {
1502       if (closure.found_incompatible_target())
1503         {
1504           Read_symbols::incompatible_warning(input_argument, input_file);
1505           Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1506                                 dirsearch, dirindex, mapfile, input_argument,
1507                                 input_group, next_blocker);
1508           return true;
1509         }
1510       return false;
1511     }
1512
1513   if (!old_saw_sections_clause
1514       && layout->script_options()->saw_sections_clause()
1515       && layout->have_added_input_section())
1516     gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1517                input_file->filename().c_str());
1518
1519   if (!closure.saw_inputs())
1520     return true;
1521
1522   Task_token* this_blocker = NULL;
1523   for (Input_arguments::const_iterator p = closure.inputs()->begin();
1524        p != closure.inputs()->end();
1525        ++p)
1526     {
1527       Task_token* nb;
1528       if (p + 1 == closure.inputs()->end())
1529         nb = next_blocker;
1530       else
1531         {
1532           nb = new Task_token(true);
1533           nb->add_blocker();
1534         }
1535       workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1536                                              layout, dirsearch, 0, mapfile, &*p,
1537                                              input_group, NULL, this_blocker, nb));
1538       this_blocker = nb;
1539     }
1540
1541   *used_next_blocker = true;
1542
1543   return true;
1544 }
1545
1546 // Helper function for read_version_script(), read_commandline_script() and
1547 // script_include_directive().  Processes the given file in the mode indicated
1548 // by first_token and lex_mode.
1549
1550 static bool
1551 read_script_file(const char* filename, Command_line* cmdline,
1552                  Script_options* script_options,
1553                  int first_token, Lex::Mode lex_mode)
1554 {
1555   Dirsearch dirsearch;
1556   std::string name = filename;
1557
1558   // If filename is a relative filename, search for it manually using "." +
1559   // cmdline->options()->library_path() -- not dirsearch.
1560   if (!IS_ABSOLUTE_PATH(filename))
1561     {
1562       const General_options::Dir_list& search_path =
1563           cmdline->options().library_path();
1564       name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1565     }
1566
1567   // The file locking code wants to record a Task, but we haven't
1568   // started the workqueue yet.  This is only for debugging purposes,
1569   // so we invent a fake value.
1570   const Task* task = reinterpret_cast<const Task*>(-1);
1571
1572   // We don't want this file to be opened in binary mode.
1573   Position_dependent_options posdep = cmdline->position_dependent_options();
1574   if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1575     posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1576   Input_file_argument input_argument(name.c_str(),
1577                                      Input_file_argument::INPUT_FILE_TYPE_FILE,
1578                                      "", false, posdep);
1579   Input_file input_file(&input_argument);
1580   int dummy = 0;
1581   if (!input_file.open(dirsearch, task, &dummy))
1582     return false;
1583
1584   std::string input_string;
1585   Lex::read_file(&input_file, &input_string);
1586
1587   Lex lex(input_string.c_str(), input_string.length(), first_token);
1588   lex.set_mode(lex_mode);
1589
1590   Parser_closure closure(filename,
1591                          cmdline->position_dependent_options(),
1592                          first_token == Lex::DYNAMIC_LIST,
1593                          false,
1594                          input_file.is_in_sysroot(),
1595                          cmdline,
1596                          script_options,
1597                          &lex,
1598                          false,
1599                          NULL);
1600   if (yyparse(&closure) != 0)
1601     {
1602       input_file.file().unlock(task);
1603       return false;
1604     }
1605
1606   input_file.file().unlock(task);
1607
1608   gold_assert(!closure.saw_inputs());
1609
1610   return true;
1611 }
1612
1613 // FILENAME was found as an argument to --script (-T).
1614 // Read it as a script, and execute its contents immediately.
1615
1616 bool
1617 read_commandline_script(const char* filename, Command_line* cmdline)
1618 {
1619   return read_script_file(filename, cmdline, &cmdline->script_options(),
1620                           PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1621 }
1622
1623 // FILENAME was found as an argument to --version-script.  Read it as
1624 // a version script, and store its contents in
1625 // cmdline->script_options()->version_script_info().
1626
1627 bool
1628 read_version_script(const char* filename, Command_line* cmdline)
1629 {
1630   return read_script_file(filename, cmdline, &cmdline->script_options(),
1631                           PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1632 }
1633
1634 // FILENAME was found as an argument to --dynamic-list.  Read it as a
1635 // list of symbols, and store its contents in DYNAMIC_LIST.
1636
1637 bool
1638 read_dynamic_list(const char* filename, Command_line* cmdline,
1639                   Script_options* dynamic_list)
1640 {
1641   return read_script_file(filename, cmdline, dynamic_list,
1642                           PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1643 }
1644
1645 // Implement the --defsym option on the command line.  Return true if
1646 // all is well.
1647
1648 bool
1649 Script_options::define_symbol(const char* definition)
1650 {
1651   Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1652   lex.set_mode(Lex::EXPRESSION);
1653
1654   // Dummy value.
1655   Position_dependent_options posdep_options;
1656
1657   Parser_closure closure("command line", posdep_options, true,
1658                          false, false, NULL, this, &lex, false, NULL);
1659
1660   if (yyparse(&closure) != 0)
1661     return false;
1662
1663   gold_assert(!closure.saw_inputs());
1664
1665   return true;
1666 }
1667
1668 // Print the script to F for debugging.
1669
1670 void
1671 Script_options::print(FILE* f) const
1672 {
1673   fprintf(f, "%s: Dumping linker script\n", program_name);
1674
1675   if (!this->entry_.empty())
1676     fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1677
1678   for (Symbol_assignments::const_iterator p =
1679          this->symbol_assignments_.begin();
1680        p != this->symbol_assignments_.end();
1681        ++p)
1682     (*p)->print(f);
1683
1684   for (Assertions::const_iterator p = this->assertions_.begin();
1685        p != this->assertions_.end();
1686        ++p)
1687     (*p)->print(f);
1688
1689   this->script_sections_.print(f);
1690
1691   this->version_script_info_.print(f);
1692 }
1693
1694 // Manage mapping from keywords to the codes expected by the bison
1695 // parser.  We construct one global object for each lex mode with
1696 // keywords.
1697
1698 class Keyword_to_parsecode
1699 {
1700  public:
1701   // The structure which maps keywords to parsecodes.
1702   struct Keyword_parsecode
1703   {
1704     // Keyword.
1705     const char* keyword;
1706     // Corresponding parsecode.
1707     int parsecode;
1708   };
1709
1710   Keyword_to_parsecode(const Keyword_parsecode* keywords,
1711                        int keyword_count)
1712       : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1713   { }
1714
1715   // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1716   // keyword.
1717   int
1718   keyword_to_parsecode(const char* keyword, size_t len) const;
1719
1720  private:
1721   const Keyword_parsecode* keyword_parsecodes_;
1722   const int keyword_count_;
1723 };
1724
1725 // Mapping from keyword string to keyword parsecode.  This array must
1726 // be kept in sorted order.  Parsecodes are looked up using bsearch.
1727 // This array must correspond to the list of parsecodes in yyscript.y.
1728
1729 static const Keyword_to_parsecode::Keyword_parsecode
1730 script_keyword_parsecodes[] =
1731 {
1732   { "ABSOLUTE", ABSOLUTE },
1733   { "ADDR", ADDR },
1734   { "ALIGN", ALIGN_K },
1735   { "ALIGNOF", ALIGNOF },
1736   { "ASSERT", ASSERT_K },
1737   { "AS_NEEDED", AS_NEEDED },
1738   { "AT", AT },
1739   { "BIND", BIND },
1740   { "BLOCK", BLOCK },
1741   { "BYTE", BYTE },
1742   { "CONSTANT", CONSTANT },
1743   { "CONSTRUCTORS", CONSTRUCTORS },
1744   { "COPY", COPY },
1745   { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1746   { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1747   { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1748   { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1749   { "DEFINED", DEFINED },
1750   { "DSECT", DSECT },
1751   { "ENTRY", ENTRY },
1752   { "EXCLUDE_FILE", EXCLUDE_FILE },
1753   { "EXTERN", EXTERN },
1754   { "FILL", FILL },
1755   { "FLOAT", FLOAT },
1756   { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1757   { "GROUP", GROUP },
1758   { "HIDDEN", HIDDEN },
1759   { "HLL", HLL },
1760   { "INCLUDE", INCLUDE },
1761   { "INFO", INFO },
1762   { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1763   { "INPUT", INPUT },
1764   { "KEEP", KEEP },
1765   { "LENGTH", LENGTH },
1766   { "LOADADDR", LOADADDR },
1767   { "LONG", LONG },
1768   { "MAP", MAP },
1769   { "MAX", MAX_K },
1770   { "MEMORY", MEMORY },
1771   { "MIN", MIN_K },
1772   { "NEXT", NEXT },
1773   { "NOCROSSREFS", NOCROSSREFS },
1774   { "NOFLOAT", NOFLOAT },
1775   { "NOLOAD", NOLOAD },
1776   { "ONLY_IF_RO", ONLY_IF_RO },
1777   { "ONLY_IF_RW", ONLY_IF_RW },
1778   { "OPTION", OPTION },
1779   { "ORIGIN", ORIGIN },
1780   { "OUTPUT", OUTPUT },
1781   { "OUTPUT_ARCH", OUTPUT_ARCH },
1782   { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1783   { "OVERLAY", OVERLAY },
1784   { "PHDRS", PHDRS },
1785   { "PROVIDE", PROVIDE },
1786   { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1787   { "QUAD", QUAD },
1788   { "SEARCH_DIR", SEARCH_DIR },
1789   { "SECTIONS", SECTIONS },
1790   { "SEGMENT_START", SEGMENT_START },
1791   { "SHORT", SHORT },
1792   { "SIZEOF", SIZEOF },
1793   { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1794   { "SORT", SORT_BY_NAME },
1795   { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1796   { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1797   { "SORT_BY_NAME", SORT_BY_NAME },
1798   { "SPECIAL", SPECIAL },
1799   { "SQUAD", SQUAD },
1800   { "STARTUP", STARTUP },
1801   { "SUBALIGN", SUBALIGN },
1802   { "SYSLIB", SYSLIB },
1803   { "TARGET", TARGET_K },
1804   { "TRUNCATE", TRUNCATE },
1805   { "VERSION", VERSIONK },
1806   { "global", GLOBAL },
1807   { "l", LENGTH },
1808   { "len", LENGTH },
1809   { "local", LOCAL },
1810   { "o", ORIGIN },
1811   { "org", ORIGIN },
1812   { "sizeof_headers", SIZEOF_HEADERS },
1813 };
1814
1815 static const Keyword_to_parsecode
1816 script_keywords(&script_keyword_parsecodes[0],
1817                 (sizeof(script_keyword_parsecodes)
1818                  / sizeof(script_keyword_parsecodes[0])));
1819
1820 static const Keyword_to_parsecode::Keyword_parsecode
1821 version_script_keyword_parsecodes[] =
1822 {
1823   { "extern", EXTERN },
1824   { "global", GLOBAL },
1825   { "local", LOCAL },
1826 };
1827
1828 static const Keyword_to_parsecode
1829 version_script_keywords(&version_script_keyword_parsecodes[0],
1830                         (sizeof(version_script_keyword_parsecodes)
1831                          / sizeof(version_script_keyword_parsecodes[0])));
1832
1833 static const Keyword_to_parsecode::Keyword_parsecode
1834 dynamic_list_keyword_parsecodes[] =
1835 {
1836   { "extern", EXTERN },
1837 };
1838
1839 static const Keyword_to_parsecode
1840 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1841                       (sizeof(dynamic_list_keyword_parsecodes)
1842                        / sizeof(dynamic_list_keyword_parsecodes[0])));
1843
1844
1845
1846 // Comparison function passed to bsearch.
1847
1848 extern "C"
1849 {
1850
1851 struct Ktt_key
1852 {
1853   const char* str;
1854   size_t len;
1855 };
1856
1857 static int
1858 ktt_compare(const void* keyv, const void* kttv)
1859 {
1860   const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1861   const Keyword_to_parsecode::Keyword_parsecode* ktt =
1862     static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1863   int i = strncmp(key->str, ktt->keyword, key->len);
1864   if (i != 0)
1865     return i;
1866   if (ktt->keyword[key->len] != '\0')
1867     return -1;
1868   return 0;
1869 }
1870
1871 } // End extern "C".
1872
1873 int
1874 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1875                                            size_t len) const
1876 {
1877   Ktt_key key;
1878   key.str = keyword;
1879   key.len = len;
1880   void* kttv = bsearch(&key,
1881                        this->keyword_parsecodes_,
1882                        this->keyword_count_,
1883                        sizeof(this->keyword_parsecodes_[0]),
1884                        ktt_compare);
1885   if (kttv == NULL)
1886     return 0;
1887   Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1888   return ktt->parsecode;
1889 }
1890
1891 // The following structs are used within the VersionInfo class as well
1892 // as in the bison helper functions.  They store the information
1893 // parsed from the version script.
1894
1895 // A single version expression.
1896 // For example, pattern="std::map*" and language="C++".
1897 struct Version_expression
1898 {
1899   Version_expression(const std::string& a_pattern,
1900                      Version_script_info::Language a_language,
1901                      bool a_exact_match)
1902     : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1903       was_matched_by_symbol(false)
1904   { }
1905
1906   std::string pattern;
1907   Version_script_info::Language language;
1908   // If false, we use glob() to match pattern.  If true, we use strcmp().
1909   bool exact_match;
1910   // True if --no-undefined-version is in effect and we found this
1911   // version in get_symbol_version.  We use mutable because this
1912   // struct is generally not modifiable after it has been created.
1913   mutable bool was_matched_by_symbol;
1914 };
1915
1916 // A list of expressions.
1917 struct Version_expression_list
1918 {
1919   std::vector<struct Version_expression> expressions;
1920 };
1921
1922 // A list of which versions upon which another version depends.
1923 // Strings should be from the Stringpool.
1924 struct Version_dependency_list
1925 {
1926   std::vector<std::string> dependencies;
1927 };
1928
1929 // The total definition of a version.  It includes the tag for the
1930 // version, its global and local expressions, and any dependencies.
1931 struct Version_tree
1932 {
1933   Version_tree()
1934       : tag(), global(NULL), local(NULL), dependencies(NULL)
1935   { }
1936
1937   std::string tag;
1938   const struct Version_expression_list* global;
1939   const struct Version_expression_list* local;
1940   const struct Version_dependency_list* dependencies;
1941 };
1942
1943 // Helper class that calls cplus_demangle when needed and takes care of freeing
1944 // the result.
1945
1946 class Lazy_demangler
1947 {
1948  public:
1949   Lazy_demangler(const char* symbol, int options)
1950     : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1951   { }
1952
1953   ~Lazy_demangler()
1954   { free(this->demangled_); }
1955
1956   // Return the demangled name. The actual demangling happens on the first call,
1957   // and the result is later cached.
1958   inline char*
1959   get();
1960
1961  private:
1962   // The symbol to demangle.
1963   const char* symbol_;
1964   // Option flags to pass to cplus_demagle.
1965   const int options_;
1966   // The cached demangled value, or NULL if demangling didn't happen yet or
1967   // failed.
1968   char* demangled_;
1969   // Whether we already called cplus_demangle
1970   bool did_demangle_;
1971 };
1972
1973 // Return the demangled name. The actual demangling happens on the first call,
1974 // and the result is later cached. Returns NULL if the symbol cannot be
1975 // demangled.
1976
1977 inline char*
1978 Lazy_demangler::get()
1979 {
1980   if (!this->did_demangle_)
1981     {
1982       this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1983       this->did_demangle_ = true;
1984     }
1985   return this->demangled_;
1986 }
1987
1988 // Class Version_script_info.
1989
1990 Version_script_info::Version_script_info()
1991   : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1992     default_version_(NULL), default_is_global_(false), is_finalized_(false)
1993 {
1994   for (int i = 0; i < LANGUAGE_COUNT; ++i)
1995     this->exact_[i] = NULL;
1996 }
1997
1998 Version_script_info::~Version_script_info()
1999 {
2000 }
2001
2002 // Forget all the known version script information.
2003
2004 void
2005 Version_script_info::clear()
2006 {
2007   for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2008     delete this->dependency_lists_[k];
2009   this->dependency_lists_.clear();
2010   for (size_t k = 0; k < this->version_trees_.size(); ++k)
2011     delete this->version_trees_[k];
2012   this->version_trees_.clear();
2013   for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2014     delete this->expression_lists_[k];
2015   this->expression_lists_.clear();
2016 }
2017
2018 // Finalize the version script information.
2019
2020 void
2021 Version_script_info::finalize()
2022 {
2023   if (!this->is_finalized_)
2024     {
2025       this->build_lookup_tables();
2026       this->is_finalized_ = true;
2027     }
2028 }
2029
2030 // Return all the versions.
2031
2032 std::vector<std::string>
2033 Version_script_info::get_versions() const
2034 {
2035   std::vector<std::string> ret;
2036   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2037     if (!this->version_trees_[j]->tag.empty())
2038       ret.push_back(this->version_trees_[j]->tag);
2039   return ret;
2040 }
2041
2042 // Return the dependencies of VERSION.
2043
2044 std::vector<std::string>
2045 Version_script_info::get_dependencies(const char* version) const
2046 {
2047   std::vector<std::string> ret;
2048   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2049     if (this->version_trees_[j]->tag == version)
2050       {
2051         const struct Version_dependency_list* deps =
2052           this->version_trees_[j]->dependencies;
2053         if (deps != NULL)
2054           for (size_t k = 0; k < deps->dependencies.size(); ++k)
2055             ret.push_back(deps->dependencies[k]);
2056         return ret;
2057       }
2058   return ret;
2059 }
2060
2061 // A version script essentially maps a symbol name to a version tag
2062 // and an indication of whether symbol is global or local within that
2063 // version tag.  Each symbol maps to at most one version tag.
2064 // Unfortunately, in practice, version scripts are ambiguous, and list
2065 // symbols multiple times.  Thus, we have to document the matching
2066 // process.
2067
2068 // This is a description of what the GNU linker does as of 2010-01-11.
2069 // It walks through the version tags in the order in which they appear
2070 // in the version script.  For each tag, it first walks through the
2071 // global patterns for that tag, then the local patterns.  When
2072 // looking at a single pattern, it first applies any language specific
2073 // demangling as specified for the pattern, and then matches the
2074 // resulting symbol name to the pattern.  If it finds an exact match
2075 // for a literal pattern (a pattern enclosed in quotes or with no
2076 // wildcard characters), then that is the match that it uses.  If
2077 // finds a match with a wildcard pattern, then it saves it and
2078 // continues searching.  Wildcard patterns that are exactly "*" are
2079 // saved separately.
2080
2081 // If no exact match with a literal pattern is ever found, then if a
2082 // wildcard match with a global pattern was found it is used,
2083 // otherwise if a wildcard match with a local pattern was found it is
2084 // used.
2085
2086 // This is the result:
2087 //   * If there is an exact match, then we use the first tag in the
2088 //     version script where it matches.
2089 //     + If the exact match in that tag is global, it is used.
2090 //     + Otherwise the exact match in that tag is local, and is used.
2091 //   * Otherwise, if there is any match with a global wildcard pattern:
2092 //     + If there is any match with a wildcard pattern which is not
2093 //       "*", then we use the tag in which the *last* such pattern
2094 //       appears.
2095 //     + Otherwise, we matched "*".  If there is no match with a local
2096 //       wildcard pattern which is not "*", then we use the *last*
2097 //       match with a global "*".  Otherwise, continue.
2098 //   * Otherwise, if there is any match with a local wildcard pattern:
2099 //     + If there is any match with a wildcard pattern which is not
2100 //       "*", then we use the tag in which the *last* such pattern
2101 //       appears.
2102 //     + Otherwise, we matched "*", and we use the tag in which the
2103 //       *last* such match occurred.
2104
2105 // There is an additional wrinkle.  When the GNU linker finds a symbol
2106 // with a version defined in an object file due to a .symver
2107 // directive, it looks up that symbol name in that version tag.  If it
2108 // finds it, it matches the symbol name against the patterns for that
2109 // version.  If there is no match with a global pattern, but there is
2110 // a match with a local pattern, then the GNU linker marks the symbol
2111 // as local.
2112
2113 // We want gold to be generally compatible, but we also want gold to
2114 // be fast.  These are the rules that gold implements:
2115 //   * If there is an exact match for the mangled name, we use it.
2116 //     + If there is more than one exact match, we give a warning, and
2117 //       we use the first tag in the script which matches.
2118 //     + If a symbol has an exact match as both global and local for
2119 //       the same version tag, we give an error.
2120 //   * Otherwise, we look for an extern C++ or an extern Java exact
2121 //     match.  If we find an exact match, we use it.
2122 //     + If there is more than one exact match, we give a warning, and
2123 //       we use the first tag in the script which matches.
2124 //     + If a symbol has an exact match as both global and local for
2125 //       the same version tag, we give an error.
2126 //   * Otherwise, we look through the wildcard patterns, ignoring "*"
2127 //     patterns.  We look through the version tags in reverse order.
2128 //     For each version tag, we look through the global patterns and
2129 //     then the local patterns.  We use the first match we find (i.e.,
2130 //     the last matching version tag in the file).
2131 //   * Otherwise, we use the "*" pattern if there is one.  We give an
2132 //     error if there are multiple "*" patterns.
2133
2134 // At least for now, gold does not look up the version tag for a
2135 // symbol version found in an object file to see if it should be
2136 // forced local.  There are other ways to force a symbol to be local,
2137 // and I don't understand why this one is useful.
2138
2139 // Build a set of fast lookup tables for a version script.
2140
2141 void
2142 Version_script_info::build_lookup_tables()
2143 {
2144   size_t size = this->version_trees_.size();
2145   for (size_t j = 0; j < size; ++j)
2146     {
2147       const Version_tree* v = this->version_trees_[j];
2148       this->build_expression_list_lookup(v->local, v, false);
2149       this->build_expression_list_lookup(v->global, v, true);
2150     }
2151 }
2152
2153 // If a pattern has backlashes but no unquoted wildcard characters,
2154 // then we apply backslash unquoting and look for an exact match.
2155 // Otherwise we treat it as a wildcard pattern.  This function returns
2156 // true for a wildcard pattern.  Otherwise, it does backslash
2157 // unquoting on *PATTERN and returns false.  If this returns true,
2158 // *PATTERN may have been partially unquoted.
2159
2160 bool
2161 Version_script_info::unquote(std::string* pattern) const
2162 {
2163   bool saw_backslash = false;
2164   size_t len = pattern->length();
2165   size_t j = 0;
2166   for (size_t i = 0; i < len; ++i)
2167     {
2168       if (saw_backslash)
2169         saw_backslash = false;
2170       else
2171         {
2172           switch ((*pattern)[i])
2173             {
2174             case '?': case '[': case '*':
2175               return true;
2176             case '\\':
2177               saw_backslash = true;
2178               continue;
2179             default:
2180               break;
2181             }
2182         }
2183
2184       if (i != j)
2185         (*pattern)[j] = (*pattern)[i];
2186       ++j;
2187     }
2188   return false;
2189 }
2190
2191 // Add an exact match for MATCH to *PE.  The result of the match is
2192 // V/IS_GLOBAL.
2193
2194 void
2195 Version_script_info::add_exact_match(const std::string& match,
2196                                      const Version_tree* v, bool is_global,
2197                                      const Version_expression* ve,
2198                                      Exact* pe)
2199 {
2200   std::pair<Exact::iterator, bool> ins =
2201     pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2202   if (ins.second)
2203     {
2204       // This is the first time we have seen this match.
2205       return;
2206     }
2207
2208   Version_tree_match& vtm(ins.first->second);
2209   if (vtm.real->tag != v->tag)
2210     {
2211       // This is an ambiguous match.  We still return the
2212       // first version that we found in the script, but we
2213       // record the new version to issue a warning if we
2214       // wind up looking up this symbol.
2215       if (vtm.ambiguous == NULL)
2216         vtm.ambiguous = v;
2217     }
2218   else if (is_global != vtm.is_global)
2219     {
2220       // We have a match for both the global and local entries for a
2221       // version tag.  That's got to be wrong.
2222       gold_error(_("'%s' appears as both a global and a local symbol "
2223                    "for version '%s' in script"),
2224                  match.c_str(), v->tag.c_str());
2225     }
2226 }
2227
2228 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2229 // All matches go to V, and IS_GLOBAL is true if they are global
2230 // matches.
2231
2232 void
2233 Version_script_info::build_expression_list_lookup(
2234     const Version_expression_list* explist,
2235     const Version_tree* v,
2236     bool is_global)
2237 {
2238   if (explist == NULL)
2239     return;
2240   size_t size = explist->expressions.size();
2241   for (size_t i = 0; i < size; ++i)
2242     {
2243       const Version_expression& exp(explist->expressions[i]);
2244
2245       if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2246         {
2247           if (this->default_version_ != NULL
2248               && this->default_version_->tag != v->tag)
2249             gold_warning(_("wildcard match appears in both version '%s' "
2250                            "and '%s' in script"),
2251                          this->default_version_->tag.c_str(), v->tag.c_str());
2252           else if (this->default_version_ != NULL
2253                    && this->default_is_global_ != is_global)
2254             gold_error(_("wildcard match appears as both global and local "
2255                          "in version '%s' in script"),
2256                        v->tag.c_str());
2257           this->default_version_ = v;
2258           this->default_is_global_ = is_global;
2259           continue;
2260         }
2261
2262       std::string pattern = exp.pattern;
2263       if (!exp.exact_match)
2264         {
2265           if (this->unquote(&pattern))
2266             {
2267               this->globs_.push_back(Glob(&exp, v, is_global));
2268               continue;
2269             }
2270         }
2271
2272       if (this->exact_[exp.language] == NULL)
2273         this->exact_[exp.language] = new Exact();
2274       this->add_exact_match(pattern, v, is_global, &exp,
2275                             this->exact_[exp.language]);
2276     }
2277 }
2278
2279 // Return the name to match given a name, a language code, and two
2280 // lazy demanglers.
2281
2282 const char*
2283 Version_script_info::get_name_to_match(const char* name,
2284                                        int language,
2285                                        Lazy_demangler* cpp_demangler,
2286                                        Lazy_demangler* java_demangler) const
2287 {
2288   switch (language)
2289     {
2290     case LANGUAGE_C:
2291       return name;
2292     case LANGUAGE_CXX:
2293       return cpp_demangler->get();
2294     case LANGUAGE_JAVA:
2295       return java_demangler->get();
2296     default:
2297       gold_unreachable();
2298     }
2299 }
2300
2301 // Look up SYMBOL_NAME in the list of versions.  Return true if the
2302 // symbol is found, false if not.  If the symbol is found, then if
2303 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2304 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2305 // symbol is global or not.
2306
2307 bool
2308 Version_script_info::get_symbol_version(const char* symbol_name,
2309                                         std::string* pversion,
2310                                         bool* p_is_global) const
2311 {
2312   Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2313   Lazy_demangler java_demangled_name(symbol_name,
2314                                      DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2315
2316   gold_assert(this->is_finalized_);
2317   for (int i = 0; i < LANGUAGE_COUNT; ++i)
2318     {
2319       Exact* exact = this->exact_[i];
2320       if (exact == NULL)
2321         continue;
2322
2323       const char* name_to_match = this->get_name_to_match(symbol_name, i,
2324                                                           &cpp_demangled_name,
2325                                                           &java_demangled_name);
2326       if (name_to_match == NULL)
2327         {
2328           // If the name can not be demangled, the GNU linker goes
2329           // ahead and tries to match it anyhow.  That does not
2330           // make sense to me and I have not implemented it.
2331           continue;
2332         }
2333
2334       Exact::const_iterator pe = exact->find(name_to_match);
2335       if (pe != exact->end())
2336         {
2337           const Version_tree_match& vtm(pe->second);
2338           if (vtm.ambiguous != NULL)
2339             gold_warning(_("using '%s' as version for '%s' which is also "
2340                            "named in version '%s' in script"),
2341                          vtm.real->tag.c_str(), name_to_match,
2342                          vtm.ambiguous->tag.c_str());
2343
2344           if (pversion != NULL)
2345             *pversion = vtm.real->tag;
2346           if (p_is_global != NULL)
2347             *p_is_global = vtm.is_global;
2348
2349           // If we are using --no-undefined-version, and this is a
2350           // global symbol, we have to record that we have found this
2351           // symbol, so that we don't warn about it.  We have to do
2352           // this now, because otherwise we have no way to get from a
2353           // non-C language back to the demangled name that we
2354           // matched.
2355           if (p_is_global != NULL && vtm.is_global)
2356             vtm.expression->was_matched_by_symbol = true;
2357
2358           return true;
2359         }
2360     }
2361
2362   // Look through the glob patterns in reverse order.
2363
2364   for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2365        p != this->globs_.rend();
2366        ++p)
2367     {
2368       int language = p->expression->language;
2369       const char* name_to_match = this->get_name_to_match(symbol_name,
2370                                                           language,
2371                                                           &cpp_demangled_name,
2372                                                           &java_demangled_name);
2373       if (name_to_match == NULL)
2374         continue;
2375
2376       if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2377                   FNM_NOESCAPE) == 0)
2378         {
2379           if (pversion != NULL)
2380             *pversion = p->version->tag;
2381           if (p_is_global != NULL)
2382             *p_is_global = p->is_global;
2383           return true;
2384         }
2385     }
2386
2387   // Finally, there may be a wildcard.
2388   if (this->default_version_ != NULL)
2389     {
2390       if (pversion != NULL)
2391         *pversion = this->default_version_->tag;
2392       if (p_is_global != NULL)
2393         *p_is_global = this->default_is_global_;
2394       return true;
2395     }
2396
2397   return false;
2398 }
2399
2400 // Give an error if any exact symbol names (not wildcards) appear in a
2401 // version script, but there is no such symbol.
2402
2403 void
2404 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2405 {
2406   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2407     {
2408       const Version_tree* vt = this->version_trees_[i];
2409       if (vt->global == NULL)
2410         continue;
2411       for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2412         {
2413           const Version_expression& expression(vt->global->expressions[j]);
2414
2415           // Ignore cases where we used the version because we saw a
2416           // symbol that we looked up.  Note that
2417           // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2418           // not a definition.  That's OK as in that case we most
2419           // likely gave an undefined symbol error anyhow.
2420           if (expression.was_matched_by_symbol)
2421             continue;
2422
2423           // Just ignore names which are in languages other than C.
2424           // We have no way to look them up in the symbol table.
2425           if (expression.language != LANGUAGE_C)
2426             continue;
2427
2428           // Remove backslash quoting, and ignore wildcard patterns.
2429           std::string pattern = expression.pattern;
2430           if (!expression.exact_match)
2431             {
2432               if (this->unquote(&pattern))
2433                 continue;
2434             }
2435
2436           if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2437             gold_error(_("version script assignment of %s to symbol %s "
2438                          "failed: symbol not defined"),
2439                        vt->tag.c_str(), pattern.c_str());
2440         }
2441     }
2442 }
2443
2444 struct Version_dependency_list*
2445 Version_script_info::allocate_dependency_list()
2446 {
2447   dependency_lists_.push_back(new Version_dependency_list);
2448   return dependency_lists_.back();
2449 }
2450
2451 struct Version_expression_list*
2452 Version_script_info::allocate_expression_list()
2453 {
2454   expression_lists_.push_back(new Version_expression_list);
2455   return expression_lists_.back();
2456 }
2457
2458 struct Version_tree*
2459 Version_script_info::allocate_version_tree()
2460 {
2461   version_trees_.push_back(new Version_tree);
2462   return version_trees_.back();
2463 }
2464
2465 // Print for debugging.
2466
2467 void
2468 Version_script_info::print(FILE* f) const
2469 {
2470   if (this->empty())
2471     return;
2472
2473   fprintf(f, "VERSION {");
2474
2475   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2476     {
2477       const Version_tree* vt = this->version_trees_[i];
2478
2479       if (vt->tag.empty())
2480         fprintf(f, "  {\n");
2481       else
2482         fprintf(f, "  %s {\n", vt->tag.c_str());
2483
2484       if (vt->global != NULL)
2485         {
2486           fprintf(f, "    global :\n");
2487           this->print_expression_list(f, vt->global);
2488         }
2489
2490       if (vt->local != NULL)
2491         {
2492           fprintf(f, "    local :\n");
2493           this->print_expression_list(f, vt->local);
2494         }
2495
2496       fprintf(f, "  }");
2497       if (vt->dependencies != NULL)
2498         {
2499           const Version_dependency_list* deps = vt->dependencies;
2500           for (size_t j = 0; j < deps->dependencies.size(); ++j)
2501             {
2502               if (j < deps->dependencies.size() - 1)
2503                 fprintf(f, "\n");
2504               fprintf(f, "    %s", deps->dependencies[j].c_str());
2505             }
2506         }
2507       fprintf(f, ";\n");
2508     }
2509
2510   fprintf(f, "}\n");
2511 }
2512
2513 void
2514 Version_script_info::print_expression_list(
2515     FILE* f,
2516     const Version_expression_list* vel) const
2517 {
2518   Version_script_info::Language current_language = LANGUAGE_C;
2519   for (size_t i = 0; i < vel->expressions.size(); ++i)
2520     {
2521       const Version_expression& ve(vel->expressions[i]);
2522
2523       if (ve.language != current_language)
2524         {
2525           if (current_language != LANGUAGE_C)
2526             fprintf(f, "      }\n");
2527           switch (ve.language)
2528             {
2529             case LANGUAGE_C:
2530               break;
2531             case LANGUAGE_CXX:
2532               fprintf(f, "      extern \"C++\" {\n");
2533               break;
2534             case LANGUAGE_JAVA:
2535               fprintf(f, "      extern \"Java\" {\n");
2536               break;
2537             default:
2538               gold_unreachable();
2539             }
2540           current_language = ve.language;
2541         }
2542
2543       fprintf(f, "      ");
2544       if (current_language != LANGUAGE_C)
2545         fprintf(f, "  ");
2546
2547       if (ve.exact_match)
2548         fprintf(f, "\"");
2549       fprintf(f, "%s", ve.pattern.c_str());
2550       if (ve.exact_match)
2551         fprintf(f, "\"");
2552
2553       fprintf(f, "\n");
2554     }
2555
2556   if (current_language != LANGUAGE_C)
2557     fprintf(f, "      }\n");
2558 }
2559
2560 } // End namespace gold.
2561
2562 // The remaining functions are extern "C", so it's clearer to not put
2563 // them in namespace gold.
2564
2565 using namespace gold;
2566
2567 // This function is called by the bison parser to return the next
2568 // token.
2569
2570 extern "C" int
2571 yylex(YYSTYPE* lvalp, void* closurev)
2572 {
2573   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2574   const Token* token = closure->next_token();
2575   switch (token->classification())
2576     {
2577     default:
2578       gold_unreachable();
2579
2580     case Token::TOKEN_INVALID:
2581       yyerror(closurev, "invalid character");
2582       return 0;
2583
2584     case Token::TOKEN_EOF:
2585       return 0;
2586
2587     case Token::TOKEN_STRING:
2588       {
2589         // This is either a keyword or a STRING.
2590         size_t len;
2591         const char* str = token->string_value(&len);
2592         int parsecode = 0;
2593         switch (closure->lex_mode())
2594           {
2595           case Lex::LINKER_SCRIPT:
2596             parsecode = script_keywords.keyword_to_parsecode(str, len);
2597             break;
2598           case Lex::VERSION_SCRIPT:
2599             parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2600             break;
2601           case Lex::DYNAMIC_LIST:
2602             parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2603             break;
2604           default:
2605             break;
2606           }
2607         if (parsecode != 0)
2608           return parsecode;
2609         lvalp->string.value = str;
2610         lvalp->string.length = len;
2611         return STRING;
2612       }
2613
2614     case Token::TOKEN_QUOTED_STRING:
2615       lvalp->string.value = token->string_value(&lvalp->string.length);
2616       return QUOTED_STRING;
2617
2618     case Token::TOKEN_OPERATOR:
2619       return token->operator_value();
2620
2621     case Token::TOKEN_INTEGER:
2622       lvalp->integer = token->integer_value();
2623       return INTEGER;
2624     }
2625 }
2626
2627 // This function is called by the bison parser to report an error.
2628
2629 extern "C" void
2630 yyerror(void* closurev, const char* message)
2631 {
2632   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2633   gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2634              closure->charpos(), message);
2635 }
2636
2637 // Called by the bison parser to add an external symbol to the link.
2638
2639 extern "C" void
2640 script_add_extern(void* closurev, const char* name, size_t length)
2641 {
2642   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2643   closure->script_options()->add_symbol_reference(name, length);
2644 }
2645
2646 // Called by the bison parser to add a file to the link.
2647
2648 extern "C" void
2649 script_add_file(void* closurev, const char* name, size_t length)
2650 {
2651   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2652
2653   // If this is an absolute path, and we found the script in the
2654   // sysroot, then we want to prepend the sysroot to the file name.
2655   // For example, this is how we handle a cross link to the x86_64
2656   // libc.so, which refers to /lib/libc.so.6.
2657   std::string name_string(name, length);
2658   const char* extra_search_path = ".";
2659   std::string script_directory;
2660   if (IS_ABSOLUTE_PATH(name_string.c_str()))
2661     {
2662       if (closure->is_in_sysroot())
2663         {
2664           const std::string& sysroot(parameters->options().sysroot());
2665           gold_assert(!sysroot.empty());
2666           name_string = sysroot + name_string;
2667         }
2668     }
2669   else
2670     {
2671       // In addition to checking the normal library search path, we
2672       // also want to check in the script-directory.
2673       const char* slash = strrchr(closure->filename(), '/');
2674       if (slash != NULL)
2675         {
2676           script_directory.assign(closure->filename(),
2677                                   slash - closure->filename() + 1);
2678           extra_search_path = script_directory.c_str();
2679         }
2680     }
2681
2682   Input_file_argument file(name_string.c_str(),
2683                            Input_file_argument::INPUT_FILE_TYPE_FILE,
2684                            extra_search_path, false,
2685                            closure->position_dependent_options());
2686   Input_argument& arg = closure->inputs()->add_file(file);
2687   arg.set_script_info(closure->script_info());
2688 }
2689
2690 // Called by the bison parser to add a library to the link.
2691
2692 extern "C" void
2693 script_add_library(void* closurev, const char* name, size_t length)
2694 {
2695   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2696   std::string name_string(name, length);
2697
2698   if (name_string[0] != 'l')
2699     gold_error(_("library name must be prefixed with -l"));
2700
2701   Input_file_argument file(name_string.c_str() + 1,
2702                            Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2703                            "", false,
2704                            closure->position_dependent_options());
2705   Input_argument& arg = closure->inputs()->add_file(file);
2706   arg.set_script_info(closure->script_info());
2707 }
2708
2709 // Called by the bison parser to start a group.  If we are already in
2710 // a group, that means that this script was invoked within a
2711 // --start-group --end-group sequence on the command line, or that
2712 // this script was found in a GROUP of another script.  In that case,
2713 // we simply continue the existing group, rather than starting a new
2714 // one.  It is possible to construct a case in which this will do
2715 // something other than what would happen if we did a recursive group,
2716 // but it's hard to imagine why the different behaviour would be
2717 // useful for a real program.  Avoiding recursive groups is simpler
2718 // and more efficient.
2719
2720 extern "C" void
2721 script_start_group(void* closurev)
2722 {
2723   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2724   if (!closure->in_group())
2725     closure->inputs()->start_group();
2726 }
2727
2728 // Called by the bison parser at the end of a group.
2729
2730 extern "C" void
2731 script_end_group(void* closurev)
2732 {
2733   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2734   if (!closure->in_group())
2735     closure->inputs()->end_group();
2736 }
2737
2738 // Called by the bison parser to start an AS_NEEDED list.
2739
2740 extern "C" void
2741 script_start_as_needed(void* closurev)
2742 {
2743   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2744   closure->position_dependent_options().set_as_needed(true);
2745 }
2746
2747 // Called by the bison parser at the end of an AS_NEEDED list.
2748
2749 extern "C" void
2750 script_end_as_needed(void* closurev)
2751 {
2752   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2753   closure->position_dependent_options().set_as_needed(false);
2754 }
2755
2756 // Called by the bison parser to set the entry symbol.
2757
2758 extern "C" void
2759 script_set_entry(void* closurev, const char* entry, size_t length)
2760 {
2761   // We'll parse this exactly the same as --entry=ENTRY on the commandline
2762   // TODO(csilvers): FIXME -- call set_entry directly.
2763   std::string arg("--entry=");
2764   arg.append(entry, length);
2765   script_parse_option(closurev, arg.c_str(), arg.size());
2766 }
2767
2768 // Called by the bison parser to set whether to define common symbols.
2769
2770 extern "C" void
2771 script_set_common_allocation(void* closurev, int set)
2772 {
2773   const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2774   script_parse_option(closurev, arg, strlen(arg));
2775 }
2776
2777 // Called by the bison parser to refer to a symbol.
2778
2779 extern "C" Expression*
2780 script_symbol(void* closurev, const char* name, size_t length)
2781 {
2782   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2783   if (length != 1 || name[0] != '.')
2784     closure->script_options()->add_symbol_reference(name, length);
2785   return script_exp_string(name, length);
2786 }
2787
2788 // Called by the bison parser to define a symbol.
2789
2790 extern "C" void
2791 script_set_symbol(void* closurev, const char* name, size_t length,
2792                   Expression* value, int providei, int hiddeni)
2793 {
2794   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2795   const bool provide = providei != 0;
2796   const bool hidden = hiddeni != 0;
2797   closure->script_options()->add_symbol_assignment(name, length,
2798                                                    closure->parsing_defsym(),
2799                                                    value, provide, hidden);
2800   closure->clear_skip_on_incompatible_target();
2801 }
2802
2803 // Called by the bison parser to add an assertion.
2804
2805 extern "C" void
2806 script_add_assertion(void* closurev, Expression* check, const char* message,
2807                      size_t messagelen)
2808 {
2809   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2810   closure->script_options()->add_assertion(check, message, messagelen);
2811   closure->clear_skip_on_incompatible_target();
2812 }
2813
2814 // Called by the bison parser to parse an OPTION.
2815
2816 extern "C" void
2817 script_parse_option(void* closurev, const char* option, size_t length)
2818 {
2819   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2820   // We treat the option as a single command-line option, even if
2821   // it has internal whitespace.
2822   if (closure->command_line() == NULL)
2823     {
2824       // There are some options that we could handle here--e.g.,
2825       // -lLIBRARY.  Should we bother?
2826       gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2827                      " for scripts specified via -T/--script"),
2828                    closure->filename(), closure->lineno(), closure->charpos());
2829     }
2830   else
2831     {
2832       bool past_a_double_dash_option = false;
2833       const char* mutable_option = strndup(option, length);
2834       gold_assert(mutable_option != NULL);
2835       closure->command_line()->process_one_option(1, &mutable_option, 0,
2836                                                   &past_a_double_dash_option);
2837       // The General_options class will quite possibly store a pointer
2838       // into mutable_option, so we can't free it.  In cases the class
2839       // does not store such a pointer, this is a memory leak.  Alas. :(
2840     }
2841   closure->clear_skip_on_incompatible_target();
2842 }
2843
2844 // Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2845 // takes either one or three arguments.  In the three argument case,
2846 // the format depends on the endianness option, which we don't
2847 // currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2848 // wrong format, then we want to search for a new file.  Returning 0
2849 // here will cause the parser to immediately abort.
2850
2851 extern "C" int
2852 script_check_output_format(void* closurev,
2853                            const char* default_name, size_t default_length,
2854                            const char*, size_t, const char*, size_t)
2855 {
2856   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2857   std::string name(default_name, default_length);
2858   Target* target = select_target_by_bfd_name(name.c_str());
2859   if (target == NULL || !parameters->is_compatible_target(target))
2860     {
2861       if (closure->skip_on_incompatible_target())
2862         {
2863           closure->set_found_incompatible_target();
2864           return 0;
2865         }
2866       // FIXME: Should we warn about the unknown target?
2867     }
2868   return 1;
2869 }
2870
2871 // Called by the bison parser to handle TARGET.
2872
2873 extern "C" void
2874 script_set_target(void* closurev, const char* target, size_t len)
2875 {
2876   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2877   std::string s(target, len);
2878   General_options::Object_format format_enum;
2879   format_enum = General_options::string_to_object_format(s.c_str());
2880   closure->position_dependent_options().set_format_enum(format_enum);
2881 }
2882
2883 // Called by the bison parser to handle SEARCH_DIR.  This is handled
2884 // exactly like a -L option.
2885
2886 extern "C" void
2887 script_add_search_dir(void* closurev, const char* option, size_t length)
2888 {
2889   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2890   if (closure->command_line() == NULL)
2891     gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2892                    " for scripts specified via -T/--script"),
2893                  closure->filename(), closure->lineno(), closure->charpos());
2894   else if (!closure->command_line()->options().nostdlib())
2895     {
2896       std::string s = "-L" + std::string(option, length);
2897       script_parse_option(closurev, s.c_str(), s.size());
2898     }
2899 }
2900
2901 /* Called by the bison parser to push the lexer into expression
2902    mode.  */
2903
2904 extern "C" void
2905 script_push_lex_into_expression_mode(void* closurev)
2906 {
2907   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2908   closure->push_lex_mode(Lex::EXPRESSION);
2909 }
2910
2911 /* Called by the bison parser to push the lexer into version
2912    mode.  */
2913
2914 extern "C" void
2915 script_push_lex_into_version_mode(void* closurev)
2916 {
2917   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2918   if (closure->version_script()->is_finalized())
2919     gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2920                closure->filename(), closure->lineno(), closure->charpos());
2921   closure->push_lex_mode(Lex::VERSION_SCRIPT);
2922 }
2923
2924 /* Called by the bison parser to pop the lexer mode.  */
2925
2926 extern "C" void
2927 script_pop_lex_mode(void* closurev)
2928 {
2929   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2930   closure->pop_lex_mode();
2931 }
2932
2933 // Register an entire version node. For example:
2934 //
2935 // GLIBC_2.1 {
2936 //   global: foo;
2937 // } GLIBC_2.0;
2938 //
2939 // - tag is "GLIBC_2.1"
2940 // - tree contains the information "global: foo"
2941 // - deps contains "GLIBC_2.0"
2942
2943 extern "C" void
2944 script_register_vers_node(void*,
2945                           const char* tag,
2946                           int taglen,
2947                           struct Version_tree* tree,
2948                           struct Version_dependency_list* deps)
2949 {
2950   gold_assert(tree != NULL);
2951   tree->dependencies = deps;
2952   if (tag != NULL)
2953     tree->tag = std::string(tag, taglen);
2954 }
2955
2956 // Add a dependencies to the list of existing dependencies, if any,
2957 // and return the expanded list.
2958
2959 extern "C" struct Version_dependency_list*
2960 script_add_vers_depend(void* closurev,
2961                        struct Version_dependency_list* all_deps,
2962                        const char* depend_to_add, int deplen)
2963 {
2964   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2965   if (all_deps == NULL)
2966     all_deps = closure->version_script()->allocate_dependency_list();
2967   all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2968   return all_deps;
2969 }
2970
2971 // Add a pattern expression to an existing list of expressions, if any.
2972
2973 extern "C" struct Version_expression_list*
2974 script_new_vers_pattern(void* closurev,
2975                         struct Version_expression_list* expressions,
2976                         const char* pattern, int patlen, int exact_match)
2977 {
2978   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2979   if (expressions == NULL)
2980     expressions = closure->version_script()->allocate_expression_list();
2981   expressions->expressions.push_back(
2982       Version_expression(std::string(pattern, patlen),
2983                          closure->get_current_language(),
2984                          static_cast<bool>(exact_match)));
2985   return expressions;
2986 }
2987
2988 // Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2989
2990 extern "C" struct Version_expression_list*
2991 script_merge_expressions(struct Version_expression_list* a,
2992                          struct Version_expression_list* b)
2993 {
2994   a->expressions.insert(a->expressions.end(),
2995                         b->expressions.begin(), b->expressions.end());
2996   // We could delete b and remove it from expressions_lists_, but
2997   // that's a lot of work.  This works just as well.
2998   b->expressions.clear();
2999   return a;
3000 }
3001
3002 // Combine the global and local expressions into a a Version_tree.
3003
3004 extern "C" struct Version_tree*
3005 script_new_vers_node(void* closurev,
3006                      struct Version_expression_list* global,
3007                      struct Version_expression_list* local)
3008 {
3009   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3010   Version_tree* tree = closure->version_script()->allocate_version_tree();
3011   tree->global = global;
3012   tree->local = local;
3013   return tree;
3014 }
3015
3016 // Handle a transition in language, such as at the
3017 // start or end of 'extern "C++"'
3018
3019 extern "C" void
3020 version_script_push_lang(void* closurev, const char* lang, int langlen)
3021 {
3022   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3023   std::string language(lang, langlen);
3024   Version_script_info::Language code;
3025   if (language.empty() || language == "C")
3026     code = Version_script_info::LANGUAGE_C;
3027   else if (language == "C++")
3028     code = Version_script_info::LANGUAGE_CXX;
3029   else if (language == "Java")
3030     code = Version_script_info::LANGUAGE_JAVA;
3031   else
3032     {
3033       char* buf = new char[langlen + 100];
3034       snprintf(buf, langlen + 100,
3035                _("unrecognized version script language '%s'"),
3036                language.c_str());
3037       yyerror(closurev, buf);
3038       delete[] buf;
3039       code = Version_script_info::LANGUAGE_C;
3040     }
3041   closure->push_language(code);
3042 }
3043
3044 extern "C" void
3045 version_script_pop_lang(void* closurev)
3046 {
3047   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3048   closure->pop_language();
3049 }
3050
3051 // Called by the bison parser to start a SECTIONS clause.
3052
3053 extern "C" void
3054 script_start_sections(void* closurev)
3055 {
3056   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3057   closure->script_options()->script_sections()->start_sections();
3058   closure->clear_skip_on_incompatible_target();
3059 }
3060
3061 // Called by the bison parser to finish a SECTIONS clause.
3062
3063 extern "C" void
3064 script_finish_sections(void* closurev)
3065 {
3066   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3067   closure->script_options()->script_sections()->finish_sections();
3068 }
3069
3070 // Start processing entries for an output section.
3071
3072 extern "C" void
3073 script_start_output_section(void* closurev, const char* name, size_t namelen,
3074                             const struct Parser_output_section_header* header)
3075 {
3076   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3077   closure->script_options()->script_sections()->start_output_section(name,
3078                                                                      namelen,
3079                                                                      header);
3080 }
3081
3082 // Finish processing entries for an output section.
3083
3084 extern "C" void
3085 script_finish_output_section(void* closurev,
3086                              const struct Parser_output_section_trailer* trail)
3087 {
3088   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3089   closure->script_options()->script_sections()->finish_output_section(trail);
3090 }
3091
3092 // Add a data item (e.g., "WORD (0)") to the current output section.
3093
3094 extern "C" void
3095 script_add_data(void* closurev, int data_token, Expression* val)
3096 {
3097   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3098   int size;
3099   bool is_signed = true;
3100   switch (data_token)
3101     {
3102     case QUAD:
3103       size = 8;
3104       is_signed = false;
3105       break;
3106     case SQUAD:
3107       size = 8;
3108       break;
3109     case LONG:
3110       size = 4;
3111       break;
3112     case SHORT:
3113       size = 2;
3114       break;
3115     case BYTE:
3116       size = 1;
3117       break;
3118     default:
3119       gold_unreachable();
3120     }
3121   closure->script_options()->script_sections()->add_data(size, is_signed, val);
3122 }
3123
3124 // Add a clause setting the fill value to the current output section.
3125
3126 extern "C" void
3127 script_add_fill(void* closurev, Expression* val)
3128 {
3129   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3130   closure->script_options()->script_sections()->add_fill(val);
3131 }
3132
3133 // Add a new input section specification to the current output
3134 // section.
3135
3136 extern "C" void
3137 script_add_input_section(void* closurev,
3138                          const struct Input_section_spec* spec,
3139                          int keepi)
3140 {
3141   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3142   bool keep = keepi != 0;
3143   closure->script_options()->script_sections()->add_input_section(spec, keep);
3144 }
3145
3146 // When we see DATA_SEGMENT_ALIGN we record that following output
3147 // sections may be relro.
3148
3149 extern "C" void
3150 script_data_segment_align(void* closurev)
3151 {
3152   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3153   if (!closure->script_options()->saw_sections_clause())
3154     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3155                closure->filename(), closure->lineno(), closure->charpos());
3156   else
3157     closure->script_options()->script_sections()->data_segment_align();
3158 }
3159
3160 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3161 // since DATA_SEGMENT_ALIGN should be relro.
3162
3163 extern "C" void
3164 script_data_segment_relro_end(void* closurev)
3165 {
3166   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3167   if (!closure->script_options()->saw_sections_clause())
3168     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3169                closure->filename(), closure->lineno(), closure->charpos());
3170   else
3171     closure->script_options()->script_sections()->data_segment_relro_end();
3172 }
3173
3174 // Create a new list of string/sort pairs.
3175
3176 extern "C" String_sort_list_ptr
3177 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3178 {
3179   return new String_sort_list(1, *string_sort);
3180 }
3181
3182 // Add an entry to a list of string/sort pairs.  The way the parser
3183 // works permits us to simply modify the first parameter, rather than
3184 // copy the vector.
3185
3186 extern "C" String_sort_list_ptr
3187 script_string_sort_list_add(String_sort_list_ptr pv,
3188                             const struct Wildcard_section* string_sort)
3189 {
3190   if (pv == NULL)
3191     return script_new_string_sort_list(string_sort);
3192   else
3193     {
3194       pv->push_back(*string_sort);
3195       return pv;
3196     }
3197 }
3198
3199 // Create a new list of strings.
3200
3201 extern "C" String_list_ptr
3202 script_new_string_list(const char* str, size_t len)
3203 {
3204   return new String_list(1, std::string(str, len));
3205 }
3206
3207 // Add an element to a list of strings.  The way the parser works
3208 // permits us to simply modify the first parameter, rather than copy
3209 // the vector.
3210
3211 extern "C" String_list_ptr
3212 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3213 {
3214   if (pv == NULL)
3215     return script_new_string_list(str, len);
3216   else
3217     {
3218       pv->push_back(std::string(str, len));
3219       return pv;
3220     }
3221 }
3222
3223 // Concatenate two string lists.  Either or both may be NULL.  The way
3224 // the parser works permits us to modify the parameters, rather than
3225 // copy the vector.
3226
3227 extern "C" String_list_ptr
3228 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3229 {
3230   if (pv1 == NULL)
3231     return pv2;
3232   if (pv2 == NULL)
3233     return pv1;
3234   pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3235   return pv1;
3236 }
3237
3238 // Add a new program header.
3239
3240 extern "C" void
3241 script_add_phdr(void* closurev, const char* name, size_t namelen,
3242                 unsigned int type, const Phdr_info* info)
3243 {
3244   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3245   bool includes_filehdr = info->includes_filehdr != 0;
3246   bool includes_phdrs = info->includes_phdrs != 0;
3247   bool is_flags_valid = info->is_flags_valid != 0;
3248   Script_sections* ss = closure->script_options()->script_sections();
3249   ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3250                is_flags_valid, info->flags, info->load_address);
3251   closure->clear_skip_on_incompatible_target();
3252 }
3253
3254 // Convert a program header string to a type.
3255
3256 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3257
3258 static struct
3259 {
3260   const char* name;
3261   size_t namelen;
3262   unsigned int val;
3263 } phdr_type_names[] =
3264 {
3265   PHDR_TYPE(PT_NULL),
3266   PHDR_TYPE(PT_LOAD),
3267   PHDR_TYPE(PT_DYNAMIC),
3268   PHDR_TYPE(PT_INTERP),
3269   PHDR_TYPE(PT_NOTE),
3270   PHDR_TYPE(PT_SHLIB),
3271   PHDR_TYPE(PT_PHDR),
3272   PHDR_TYPE(PT_TLS),
3273   PHDR_TYPE(PT_GNU_EH_FRAME),
3274   PHDR_TYPE(PT_GNU_STACK),
3275   PHDR_TYPE(PT_GNU_RELRO)
3276 };
3277
3278 extern "C" unsigned int
3279 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3280 {
3281   for (unsigned int i = 0;
3282        i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3283        ++i)
3284     if (namelen == phdr_type_names[i].namelen
3285         && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3286       return phdr_type_names[i].val;
3287   yyerror(closurev, _("unknown PHDR type (try integer)"));
3288   return elfcpp::PT_NULL;
3289 }
3290
3291 extern "C" void
3292 script_saw_segment_start_expression(void* closurev)
3293 {
3294   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3295   Script_sections* ss = closure->script_options()->script_sections();
3296   ss->set_saw_segment_start_expression(true);
3297 }
3298
3299 extern "C" void
3300 script_set_section_region(void* closurev, const char* name, size_t namelen,
3301                           int set_vma)
3302 {
3303   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3304   if (!closure->script_options()->saw_sections_clause())
3305     {
3306       gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3307                    "SECTIONS clause"),
3308                  closure->filename(), closure->lineno(), closure->charpos(),
3309                  static_cast<int>(namelen), name);
3310       return;
3311     }
3312
3313   Script_sections* ss = closure->script_options()->script_sections();
3314   Memory_region* mr = ss->find_memory_region(name, namelen);
3315   if (mr == NULL)
3316     {
3317       gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3318                  closure->filename(), closure->lineno(), closure->charpos(),
3319                  static_cast<int>(namelen), name);
3320       return;
3321     }
3322
3323   ss->set_memory_region(mr, set_vma);
3324 }
3325
3326 extern "C" void
3327 script_add_memory(void* closurev, const char* name, size_t namelen,
3328                   unsigned int attrs, Expression* origin, Expression* length)
3329 {
3330   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3331   Script_sections* ss = closure->script_options()->script_sections();
3332   ss->add_memory_region(name, namelen, attrs, origin, length);
3333 }
3334
3335 extern "C" unsigned int
3336 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3337                          int invert)
3338 {
3339   int attributes = 0;
3340
3341   while (attrlen--)
3342     switch (*attrs++)
3343       {
3344       case 'R':
3345       case 'r':
3346         attributes |= MEM_READABLE; break;
3347       case 'W':
3348       case 'w':
3349         attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3350       case 'X':
3351       case 'x':
3352         attributes |= MEM_EXECUTABLE; break;
3353       case 'A':
3354       case 'a':
3355         attributes |= MEM_ALLOCATABLE; break;
3356       case 'I':
3357       case 'i':
3358       case 'L':
3359       case 'l':
3360         attributes |= MEM_INITIALIZED; break;
3361       default:
3362         yyerror(closurev, _("unknown MEMORY attribute"));
3363       }
3364
3365   if (invert)
3366     attributes = (~ attributes) & MEM_ATTR_MASK;
3367
3368   return attributes;
3369 }
3370
3371 extern "C" void
3372 script_include_directive(int first_token, void* closurev,
3373                          const char* filename, size_t length)
3374 {
3375   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3376   std::string name(filename, length);
3377   Command_line* cmdline = closure->command_line();
3378   read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3379                    first_token, Lex::LINKER_SCRIPT);
3380 }
3381
3382 // Functions for memory regions.
3383
3384 extern "C" Expression*
3385 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3386 {
3387   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3388   Script_sections* ss = closure->script_options()->script_sections();
3389   Expression* origin = ss->find_memory_region_origin(name, namelen);
3390
3391   if (origin == NULL)
3392     {
3393       gold_error(_("undefined memory region '%s' referenced "
3394                    "in ORIGIN expression"),
3395                  name);
3396       // Create a dummy expression to prevent crashes later on.
3397       origin = script_exp_integer(0);
3398     }
3399
3400   return origin;
3401 }
3402
3403 extern "C" Expression*
3404 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3405 {
3406   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3407   Script_sections* ss = closure->script_options()->script_sections();
3408   Expression* length = ss->find_memory_region_length(name, namelen);
3409
3410   if (length == NULL)
3411     {
3412       gold_error(_("undefined memory region '%s' referenced "
3413                    "in LENGTH expression"),
3414                  name);
3415       // Create a dummy expression to prevent crashes later on.
3416       length = script_exp_integer(0);
3417     }
3418
3419   return length;
3420 }