2009-10-09 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections.  This is intended to be largely compatible
47 // with the GNU linker.  The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement.  We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54  private:
55   typedef Script_sections::Elements_iterator Elements_iterator;
56
57  public:
58   Orphan_section_placement();
59
60   // Handle an output section during initialization of this mapping.
61   void
62   output_section_init(const std::string& name, Output_section*,
63                       Elements_iterator location);
64
65   // Initialize the last location.
66   void
67   last_init(Elements_iterator location);
68
69   // Set *PWHERE to the address of an iterator pointing to the
70   // location to use for an orphan section.  Return true if the
71   // iterator has a value, false otherwise.
72   bool
73   find_place(Output_section*, Elements_iterator** pwhere);
74
75   // Return the iterator being used for sections at the very end of
76   // the linker script.
77   Elements_iterator
78   last_place() const;
79
80  private:
81   // The places that we specifically recognize.  This list is copied
82   // from the GNU linker.
83   enum Place_index
84   {
85     PLACE_TEXT,
86     PLACE_RODATA,
87     PLACE_DATA,
88     PLACE_BSS,
89     PLACE_REL,
90     PLACE_INTERP,
91     PLACE_NONALLOC,
92     PLACE_LAST,
93     PLACE_MAX
94   };
95
96   // The information we keep for a specific place.
97   struct Place
98   {
99     // The name of sections for this place.
100     const char* name;
101     // Whether we have a location for this place.
102     bool have_location;
103     // The iterator for this place.
104     Elements_iterator location;
105   };
106
107   // Initialize one place element.
108   void
109   initialize_place(Place_index, const char*);
110
111   // The places.
112   Place places_[PLACE_MAX];
113   // True if this is the first call to output_section_init.
114   bool first_init_;
115 };
116
117 // Initialize Orphan_section_placement.
118
119 Orphan_section_placement::Orphan_section_placement()
120   : first_init_(true)
121 {
122   this->initialize_place(PLACE_TEXT, ".text");
123   this->initialize_place(PLACE_RODATA, ".rodata");
124   this->initialize_place(PLACE_DATA, ".data");
125   this->initialize_place(PLACE_BSS, ".bss");
126   this->initialize_place(PLACE_REL, NULL);
127   this->initialize_place(PLACE_INTERP, ".interp");
128   this->initialize_place(PLACE_NONALLOC, NULL);
129   this->initialize_place(PLACE_LAST, NULL);
130 }
131
132 // Initialize one place element.
133
134 void
135 Orphan_section_placement::initialize_place(Place_index index, const char* name)
136 {
137   this->places_[index].name = name;
138   this->places_[index].have_location = false;
139 }
140
141 // While initializing the Orphan_section_placement information, this
142 // is called once for each output section named in the linker script.
143 // If we found an output section during the link, it will be passed in
144 // OS.
145
146 void
147 Orphan_section_placement::output_section_init(const std::string& name,
148                                               Output_section* os,
149                                               Elements_iterator location)
150 {
151   bool first_init = this->first_init_;
152   this->first_init_ = false;
153
154   for (int i = 0; i < PLACE_MAX; ++i)
155     {
156       if (this->places_[i].name != NULL && this->places_[i].name == name)
157         {
158           if (this->places_[i].have_location)
159             {
160               // We have already seen a section with this name.
161               return;
162             }
163
164           this->places_[i].location = location;
165           this->places_[i].have_location = true;
166
167           // If we just found the .bss section, restart the search for
168           // an unallocated section.  This follows the GNU linker's
169           // behaviour.
170           if (i == PLACE_BSS)
171             this->places_[PLACE_NONALLOC].have_location = false;
172
173           return;
174         }
175     }
176
177   // Relocation sections.
178   if (!this->places_[PLACE_REL].have_location
179       && os != NULL
180       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
181       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
182     {
183       this->places_[PLACE_REL].location = location;
184       this->places_[PLACE_REL].have_location = true;
185     }
186
187   // We find the location for unallocated sections by finding the
188   // first debugging or comment section after the BSS section (if
189   // there is one).
190   if (!this->places_[PLACE_NONALLOC].have_location
191       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
192     {
193       // We add orphan sections after the location in PLACES_.  We
194       // want to store unallocated sections before LOCATION.  If this
195       // is the very first section, we can't use it.
196       if (!first_init)
197         {
198           --location;
199           this->places_[PLACE_NONALLOC].location = location;
200           this->places_[PLACE_NONALLOC].have_location = true;
201         }
202     }
203 }
204
205 // Initialize the last location.
206
207 void
208 Orphan_section_placement::last_init(Elements_iterator location)
209 {
210   this->places_[PLACE_LAST].location = location;
211   this->places_[PLACE_LAST].have_location = true;
212 }
213
214 // Set *PWHERE to the address of an iterator pointing to the location
215 // to use for an orphan section.  Return true if the iterator has a
216 // value, false otherwise.
217
218 bool
219 Orphan_section_placement::find_place(Output_section* os,
220                                      Elements_iterator** pwhere)
221 {
222   // Figure out where OS should go.  This is based on the GNU linker
223   // code.  FIXME: The GNU linker handles small data sections
224   // specially, but we don't.
225   elfcpp::Elf_Word type = os->type();
226   elfcpp::Elf_Xword flags = os->flags();
227   Place_index index;
228   if ((flags & elfcpp::SHF_ALLOC) == 0
229       && !Layout::is_debug_info_section(os->name()))
230     index = PLACE_NONALLOC;
231   else if ((flags & elfcpp::SHF_ALLOC) == 0)
232     index = PLACE_LAST;
233   else if (type == elfcpp::SHT_NOTE)
234     index = PLACE_INTERP;
235   else if (type == elfcpp::SHT_NOBITS)
236     index = PLACE_BSS;
237   else if ((flags & elfcpp::SHF_WRITE) != 0)
238     index = PLACE_DATA;
239   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
240     index = PLACE_REL;
241   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
242     index = PLACE_RODATA;
243   else
244     index = PLACE_TEXT;
245
246   // If we don't have a location yet, try to find one based on a
247   // plausible ordering of sections.
248   if (!this->places_[index].have_location)
249     {
250       Place_index follow;
251       switch (index)
252         {
253         default:
254           follow = PLACE_MAX;
255           break;
256         case PLACE_RODATA:
257           follow = PLACE_TEXT;
258           break;
259         case PLACE_BSS:
260           follow = PLACE_DATA;
261           break;
262         case PLACE_REL:
263           follow = PLACE_TEXT;
264           break;
265         case PLACE_INTERP:
266           follow = PLACE_TEXT;
267           break;
268         }
269       if (follow != PLACE_MAX && this->places_[follow].have_location)
270         {
271           // Set the location of INDEX to the location of FOLLOW.  The
272           // location of INDEX will then be incremented by the caller,
273           // so anything in INDEX will continue to be after anything
274           // in FOLLOW.
275           this->places_[index].location = this->places_[follow].location;
276           this->places_[index].have_location = true;
277         }
278     }
279
280   *pwhere = &this->places_[index].location;
281   bool ret = this->places_[index].have_location;
282
283   // The caller will set the location.
284   this->places_[index].have_location = true;
285
286   return ret;
287 }
288
289 // Return the iterator being used for sections at the very end of the
290 // linker script.
291
292 Orphan_section_placement::Elements_iterator
293 Orphan_section_placement::last_place() const
294 {
295   gold_assert(this->places_[PLACE_LAST].have_location);
296   return this->places_[PLACE_LAST].location;
297 }
298
299 // An element in a SECTIONS clause.
300
301 class Sections_element
302 {
303  public:
304   Sections_element()
305   { }
306
307   virtual ~Sections_element()
308   { }
309
310   // Return whether an output section is relro.
311   virtual bool
312   is_relro() const
313   { return false; }
314
315   // Record that an output section is relro.
316   virtual void
317   set_is_relro()
318   { }
319
320   // Create any required output sections.  The only real
321   // implementation is in Output_section_definition.
322   virtual void
323   create_sections(Layout*)
324   { }
325
326   // Add any symbol being defined to the symbol table.
327   virtual void
328   add_symbols_to_table(Symbol_table*)
329   { }
330
331   // Finalize symbols and check assertions.
332   virtual void
333   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
334   { }
335
336   // Return the output section name to use for an input file name and
337   // section name.  This only real implementation is in
338   // Output_section_definition.
339   virtual const char*
340   output_section_name(const char*, const char*, Output_section***)
341   { return NULL; }
342
343   // Initialize OSP with an output section.
344   virtual void
345   orphan_section_init(Orphan_section_placement*,
346                       Script_sections::Elements_iterator)
347   { }
348
349   // Set section addresses.  This includes applying assignments if the
350   // the expression is an absolute value.
351   virtual void
352   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
353   { }
354
355   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
356   // this section is constrained, and the input sections do not match,
357   // return the constraint, and set *POSD.
358   virtual Section_constraint
359   check_constraint(Output_section_definition**)
360   { return CONSTRAINT_NONE; }
361
362   // See if this is the alternate output section for a constrained
363   // output section.  If it is, transfer the Output_section and return
364   // true.  Otherwise return false.
365   virtual bool
366   alternate_constraint(Output_section_definition*, Section_constraint)
367   { return false; }
368
369   // Get the list of segments to use for an allocated section when
370   // using a PHDRS clause.  If this is an allocated section, return
371   // the Output_section, and set *PHDRS_LIST (the first parameter) to
372   // the list of PHDRS to which it should be attached.  If the PHDRS
373   // were not specified, don't change *PHDRS_LIST.  When not returning
374   // NULL, set *ORPHAN (the second parameter) according to whether
375   // this is an orphan section--one that is not mentioned in the
376   // linker script.
377   virtual Output_section*
378   allocate_to_segment(String_list**, bool*)
379   { return NULL; }
380
381   // Look for an output section by name and return the address, the
382   // load address, the alignment, and the size.  This is used when an
383   // expression refers to an output section which was not actually
384   // created.  This returns true if the section was found, false
385   // otherwise.  The only real definition is for
386   // Output_section_definition.
387   virtual bool
388   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
389                           uint64_t*) const
390   { return false; }
391
392   // Return the associated Output_section if there is one.
393   virtual Output_section*
394   get_output_section() const
395   { return NULL; }
396
397   // Print the element for debugging purposes.
398   virtual void
399   print(FILE* f) const = 0;
400 };
401
402 // An assignment in a SECTIONS clause outside of an output section.
403
404 class Sections_element_assignment : public Sections_element
405 {
406  public:
407   Sections_element_assignment(const char* name, size_t namelen,
408                               Expression* val, bool provide, bool hidden)
409     : assignment_(name, namelen, val, provide, hidden)
410   { }
411
412   // Add the symbol to the symbol table.
413   void
414   add_symbols_to_table(Symbol_table* symtab)
415   { this->assignment_.add_to_table(symtab); }
416
417   // Finalize the symbol.
418   void
419   finalize_symbols(Symbol_table* symtab, const Layout* layout,
420                    uint64_t* dot_value)
421   {
422     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
423   }
424
425   // Set the section address.  There is no section here, but if the
426   // value is absolute, we set the symbol.  This permits us to use
427   // absolute symbols when setting dot.
428   void
429   set_section_addresses(Symbol_table* symtab, Layout* layout,
430                         uint64_t* dot_value, uint64_t*)
431   {
432     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
433   }
434
435   // Print for debugging.
436   void
437   print(FILE* f) const
438   {
439     fprintf(f, "  ");
440     this->assignment_.print(f);
441   }
442
443  private:
444   Symbol_assignment assignment_;
445 };
446
447 // An assignment to the dot symbol in a SECTIONS clause outside of an
448 // output section.
449
450 class Sections_element_dot_assignment : public Sections_element
451 {
452  public:
453   Sections_element_dot_assignment(Expression* val)
454     : val_(val)
455   { }
456
457   // Finalize the symbol.
458   void
459   finalize_symbols(Symbol_table* symtab, const Layout* layout,
460                    uint64_t* dot_value)
461   {
462     // We ignore the section of the result because outside of an
463     // output section definition the dot symbol is always considered
464     // to be absolute.
465     Output_section* dummy;
466     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
467                                            NULL, &dummy);
468   }
469
470   // Update the dot symbol while setting section addresses.
471   void
472   set_section_addresses(Symbol_table* symtab, Layout* layout,
473                         uint64_t* dot_value, uint64_t* load_address)
474   {
475     Output_section* dummy;
476     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
477                                            NULL, &dummy);
478     *load_address = *dot_value;
479   }
480
481   // Print for debugging.
482   void
483   print(FILE* f) const
484   {
485     fprintf(f, "  . = ");
486     this->val_->print(f);
487     fprintf(f, "\n");
488   }
489
490  private:
491   Expression* val_;
492 };
493
494 // An assertion in a SECTIONS clause outside of an output section.
495
496 class Sections_element_assertion : public Sections_element
497 {
498  public:
499   Sections_element_assertion(Expression* check, const char* message,
500                              size_t messagelen)
501     : assertion_(check, message, messagelen)
502   { }
503
504   // Check the assertion.
505   void
506   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
507   { this->assertion_.check(symtab, layout); }
508
509   // Print for debugging.
510   void
511   print(FILE* f) const
512   {
513     fprintf(f, "  ");
514     this->assertion_.print(f);
515   }
516
517  private:
518   Script_assertion assertion_;
519 };
520
521 // An element in an output section in a SECTIONS clause.
522
523 class Output_section_element
524 {
525  public:
526   // A list of input sections.
527   typedef std::list<Output_section::Simple_input_section> Input_section_list;
528
529   Output_section_element()
530   { }
531
532   virtual ~Output_section_element()
533   { }
534
535   // Return whether this element requires an output section to exist.
536   virtual bool
537   needs_output_section() const
538   { return false; }
539
540   // Add any symbol being defined to the symbol table.
541   virtual void
542   add_symbols_to_table(Symbol_table*)
543   { }
544
545   // Finalize symbols and check assertions.
546   virtual void
547   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
548   { }
549
550   // Return whether this element matches FILE_NAME and SECTION_NAME.
551   // The only real implementation is in Output_section_element_input.
552   virtual bool
553   match_name(const char*, const char*) const
554   { return false; }
555
556   // Set section addresses.  This includes applying assignments if the
557   // the expression is an absolute value.
558   virtual void
559   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
560                         uint64_t*, Output_section**, std::string*,
561                         Input_section_list*)
562   { }
563
564   // Print the element for debugging purposes.
565   virtual void
566   print(FILE* f) const = 0;
567
568  protected:
569   // Return a fill string that is LENGTH bytes long, filling it with
570   // FILL.
571   std::string
572   get_fill_string(const std::string* fill, section_size_type length) const;
573 };
574
575 std::string
576 Output_section_element::get_fill_string(const std::string* fill,
577                                         section_size_type length) const
578 {
579   std::string this_fill;
580   this_fill.reserve(length);
581   while (this_fill.length() + fill->length() <= length)
582     this_fill += *fill;
583   if (this_fill.length() < length)
584     this_fill.append(*fill, 0, length - this_fill.length());
585   return this_fill;
586 }
587
588 // A symbol assignment in an output section.
589
590 class Output_section_element_assignment : public Output_section_element
591 {
592  public:
593   Output_section_element_assignment(const char* name, size_t namelen,
594                                     Expression* val, bool provide,
595                                     bool hidden)
596     : assignment_(name, namelen, val, provide, hidden)
597   { }
598
599   // Add the symbol to the symbol table.
600   void
601   add_symbols_to_table(Symbol_table* symtab)
602   { this->assignment_.add_to_table(symtab); }
603
604   // Finalize the symbol.
605   void
606   finalize_symbols(Symbol_table* symtab, const Layout* layout,
607                    uint64_t* dot_value, Output_section** dot_section)
608   {
609     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
610                                         *dot_section);
611   }
612
613   // Set the section address.  There is no section here, but if the
614   // value is absolute, we set the symbol.  This permits us to use
615   // absolute symbols when setting dot.
616   void
617   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
618                         uint64_t, uint64_t* dot_value, Output_section**,
619                         std::string*, Input_section_list*)
620   {
621     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
622   }
623
624   // Print for debugging.
625   void
626   print(FILE* f) const
627   {
628     fprintf(f, "    ");
629     this->assignment_.print(f);
630   }
631
632  private:
633   Symbol_assignment assignment_;
634 };
635
636 // An assignment to the dot symbol in an output section.
637
638 class Output_section_element_dot_assignment : public Output_section_element
639 {
640  public:
641   Output_section_element_dot_assignment(Expression* val)
642     : val_(val)
643   { }
644
645   // Finalize the symbol.
646   void
647   finalize_symbols(Symbol_table* symtab, const Layout* layout,
648                    uint64_t* dot_value, Output_section** dot_section)
649   {
650     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
651                                            *dot_section, dot_section);
652   }
653
654   // Update the dot symbol while setting section addresses.
655   void
656   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657                         uint64_t, uint64_t* dot_value, Output_section**,
658                         std::string*, Input_section_list*);
659
660   // Print for debugging.
661   void
662   print(FILE* f) const
663   {
664     fprintf(f, "    . = ");
665     this->val_->print(f);
666     fprintf(f, "\n");
667   }
668
669  private:
670   Expression* val_;
671 };
672
673 // Update the dot symbol while setting section addresses.
674
675 void
676 Output_section_element_dot_assignment::set_section_addresses(
677     Symbol_table* symtab,
678     Layout* layout,
679     Output_section* output_section,
680     uint64_t,
681     uint64_t* dot_value,
682     Output_section** dot_section,
683     std::string* fill,
684     Input_section_list*)
685 {
686   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
687                                                 *dot_value, *dot_section,
688                                                 dot_section);
689   if (next_dot < *dot_value)
690     gold_error(_("dot may not move backward"));
691   if (next_dot > *dot_value && output_section != NULL)
692     {
693       section_size_type length = convert_to_section_size_type(next_dot
694                                                               - *dot_value);
695       Output_section_data* posd;
696       if (fill->empty())
697         posd = new Output_data_zero_fill(length, 0);
698       else
699         {
700           std::string this_fill = this->get_fill_string(fill, length);
701           posd = new Output_data_const(this_fill, 0);
702         }
703       output_section->add_output_section_data(posd);
704       layout->new_output_section_data_from_script(posd);
705     }
706   *dot_value = next_dot;
707 }
708
709 // An assertion in an output section.
710
711 class Output_section_element_assertion : public Output_section_element
712 {
713  public:
714   Output_section_element_assertion(Expression* check, const char* message,
715                                    size_t messagelen)
716     : assertion_(check, message, messagelen)
717   { }
718
719   void
720   print(FILE* f) const
721   {
722     fprintf(f, "    ");
723     this->assertion_.print(f);
724   }
725
726  private:
727   Script_assertion assertion_;
728 };
729
730 // We use a special instance of Output_section_data to handle BYTE,
731 // SHORT, etc.  This permits forward references to symbols in the
732 // expressions.
733
734 class Output_data_expression : public Output_section_data
735 {
736  public:
737   Output_data_expression(int size, bool is_signed, Expression* val,
738                          const Symbol_table* symtab, const Layout* layout,
739                          uint64_t dot_value, Output_section* dot_section)
740     : Output_section_data(size, 0, true),
741       is_signed_(is_signed), val_(val), symtab_(symtab),
742       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
743   { }
744
745  protected:
746   // Write the data to the output file.
747   void
748   do_write(Output_file*);
749
750   // Write the data to a buffer.
751   void
752   do_write_to_buffer(unsigned char*);
753
754   // Write to a map file.
755   void
756   do_print_to_mapfile(Mapfile* mapfile) const
757   { mapfile->print_output_data(this, _("** expression")); }
758
759  private:
760   template<bool big_endian>
761   void
762   endian_write_to_buffer(uint64_t, unsigned char*);
763
764   bool is_signed_;
765   Expression* val_;
766   const Symbol_table* symtab_;
767   const Layout* layout_;
768   uint64_t dot_value_;
769   Output_section* dot_section_;
770 };
771
772 // Write the data element to the output file.
773
774 void
775 Output_data_expression::do_write(Output_file* of)
776 {
777   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
778   this->write_to_buffer(view);
779   of->write_output_view(this->offset(), this->data_size(), view);
780 }
781
782 // Write the data element to a buffer.
783
784 void
785 Output_data_expression::do_write_to_buffer(unsigned char* buf)
786 {
787   Output_section* dummy;
788   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
789                                            true, this->dot_value_,
790                                            this->dot_section_, &dummy);
791
792   if (parameters->target().is_big_endian())
793     this->endian_write_to_buffer<true>(val, buf);
794   else
795     this->endian_write_to_buffer<false>(val, buf);
796 }
797
798 template<bool big_endian>
799 void
800 Output_data_expression::endian_write_to_buffer(uint64_t val,
801                                                unsigned char* buf)
802 {
803   switch (this->data_size())
804     {
805     case 1:
806       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
807       break;
808     case 2:
809       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
810       break;
811     case 4:
812       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
813       break;
814     case 8:
815       if (parameters->target().get_size() == 32)
816         {
817           val &= 0xffffffff;
818           if (this->is_signed_ && (val & 0x80000000) != 0)
819             val |= 0xffffffff00000000LL;
820         }
821       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
822       break;
823     default:
824       gold_unreachable();
825     }
826 }
827
828 // A data item in an output section.
829
830 class Output_section_element_data : public Output_section_element
831 {
832  public:
833   Output_section_element_data(int size, bool is_signed, Expression* val)
834     : size_(size), is_signed_(is_signed), val_(val)
835   { }
836
837   // If there is a data item, then we must create an output section.
838   bool
839   needs_output_section() const
840   { return true; }
841
842   // Finalize symbols--we just need to update dot.
843   void
844   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
845                    Output_section**)
846   { *dot_value += this->size_; }
847
848   // Store the value in the section.
849   void
850   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
851                         uint64_t* dot_value, Output_section**, std::string*,
852                         Input_section_list*);
853
854   // Print for debugging.
855   void
856   print(FILE*) const;
857
858  private:
859   // The size in bytes.
860   int size_;
861   // Whether the value is signed.
862   bool is_signed_;
863   // The value.
864   Expression* val_;
865 };
866
867 // Store the value in the section.
868
869 void
870 Output_section_element_data::set_section_addresses(
871     Symbol_table* symtab,
872     Layout* layout,
873     Output_section* os,
874     uint64_t,
875     uint64_t* dot_value,
876     Output_section** dot_section,
877     std::string*,
878     Input_section_list*)
879 {
880   gold_assert(os != NULL);
881   Output_data_expression* expression =
882     new Output_data_expression(this->size_, this->is_signed_, this->val_,
883                                symtab, layout, *dot_value, *dot_section);
884   os->add_output_section_data(expression);
885   layout->new_output_section_data_from_script(expression);
886   *dot_value += this->size_;
887 }
888
889 // Print for debugging.
890
891 void
892 Output_section_element_data::print(FILE* f) const
893 {
894   const char* s;
895   switch (this->size_)
896     {
897     case 1:
898       s = "BYTE";
899       break;
900     case 2:
901       s = "SHORT";
902       break;
903     case 4:
904       s = "LONG";
905       break;
906     case 8:
907       if (this->is_signed_)
908         s = "SQUAD";
909       else
910         s = "QUAD";
911       break;
912     default:
913       gold_unreachable();
914     }
915   fprintf(f, "    %s(", s);
916   this->val_->print(f);
917   fprintf(f, ")\n");
918 }
919
920 // A fill value setting in an output section.
921
922 class Output_section_element_fill : public Output_section_element
923 {
924  public:
925   Output_section_element_fill(Expression* val)
926     : val_(val)
927   { }
928
929   // Update the fill value while setting section addresses.
930   void
931   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932                         uint64_t, uint64_t* dot_value,
933                         Output_section** dot_section,
934                         std::string* fill, Input_section_list*)
935   {
936     Output_section* fill_section;
937     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
938                                                   *dot_value, *dot_section,
939                                                   &fill_section);
940     if (fill_section != NULL)
941       gold_warning(_("fill value is not absolute"));
942     // FIXME: The GNU linker supports fill values of arbitrary length.
943     unsigned char fill_buff[4];
944     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
945     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
946   }
947
948   // Print for debugging.
949   void
950   print(FILE* f) const
951   {
952     fprintf(f, "    FILL(");
953     this->val_->print(f);
954     fprintf(f, ")\n");
955   }
956
957  private:
958   // The new fill value.
959   Expression* val_;
960 };
961
962 // Return whether STRING contains a wildcard character.  This is used
963 // to speed up matching.
964
965 static inline bool
966 is_wildcard_string(const std::string& s)
967 {
968   return strpbrk(s.c_str(), "?*[") != NULL;
969 }
970
971 // An input section specification in an output section
972
973 class Output_section_element_input : public Output_section_element
974 {
975  public:
976   Output_section_element_input(const Input_section_spec* spec, bool keep);
977
978   // Finalize symbols--just update the value of the dot symbol.
979   void
980   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
981                    Output_section** dot_section)
982   {
983     *dot_value = this->final_dot_value_;
984     *dot_section = this->final_dot_section_;
985   }
986
987   // See whether we match FILE_NAME and SECTION_NAME as an input
988   // section.
989   bool
990   match_name(const char* file_name, const char* section_name) const;
991
992   // Set the section address.
993   void
994   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
995                         uint64_t subalign, uint64_t* dot_value,
996                         Output_section**, std::string* fill,
997                         Input_section_list*);
998
999   // Print for debugging.
1000   void
1001   print(FILE* f) const;
1002
1003  private:
1004   // An input section pattern.
1005   struct Input_section_pattern
1006   {
1007     std::string pattern;
1008     bool pattern_is_wildcard;
1009     Sort_wildcard sort;
1010
1011     Input_section_pattern(const char* patterna, size_t patternlena,
1012                           Sort_wildcard sorta)
1013       : pattern(patterna, patternlena),
1014         pattern_is_wildcard(is_wildcard_string(this->pattern)),
1015         sort(sorta)
1016     { }
1017   };
1018
1019   typedef std::vector<Input_section_pattern> Input_section_patterns;
1020
1021   // Filename_exclusions is a pair of filename pattern and a bool
1022   // indicating whether the filename is a wildcard.
1023   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1024
1025   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1026   // indicates whether this is a wildcard pattern.
1027   static inline bool
1028   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1029   {
1030     return (is_wildcard_pattern
1031             ? fnmatch(pattern, string, 0) == 0
1032             : strcmp(string, pattern) == 0);
1033   }
1034
1035   // See if we match a file name.
1036   bool
1037   match_file_name(const char* file_name) const;
1038
1039   // The file name pattern.  If this is the empty string, we match all
1040   // files.
1041   std::string filename_pattern_;
1042   // Whether the file name pattern is a wildcard.
1043   bool filename_is_wildcard_;
1044   // How the file names should be sorted.  This may only be
1045   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1046   Sort_wildcard filename_sort_;
1047   // The list of file names to exclude.
1048   Filename_exclusions filename_exclusions_;
1049   // The list of input section patterns.
1050   Input_section_patterns input_section_patterns_;
1051   // Whether to keep this section when garbage collecting.
1052   bool keep_;
1053   // The value of dot after including all matching sections.
1054   uint64_t final_dot_value_;
1055   // The section where dot is defined after including all matching
1056   // sections.
1057   Output_section* final_dot_section_;
1058 };
1059
1060 // Construct Output_section_element_input.  The parser records strings
1061 // as pointers into a copy of the script file, which will go away when
1062 // parsing is complete.  We make sure they are in std::string objects.
1063
1064 Output_section_element_input::Output_section_element_input(
1065     const Input_section_spec* spec,
1066     bool keep)
1067   : filename_pattern_(),
1068     filename_is_wildcard_(false),
1069     filename_sort_(spec->file.sort),
1070     filename_exclusions_(),
1071     input_section_patterns_(),
1072     keep_(keep),
1073     final_dot_value_(0),
1074     final_dot_section_(NULL)
1075 {
1076   // The filename pattern "*" is common, and matches all files.  Turn
1077   // it into the empty string.
1078   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1079     this->filename_pattern_.assign(spec->file.name.value,
1080                                    spec->file.name.length);
1081   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1082
1083   if (spec->input_sections.exclude != NULL)
1084     {
1085       for (String_list::const_iterator p =
1086              spec->input_sections.exclude->begin();
1087            p != spec->input_sections.exclude->end();
1088            ++p)
1089         {
1090           bool is_wildcard = is_wildcard_string(*p);
1091           this->filename_exclusions_.push_back(std::make_pair(*p,
1092                                                               is_wildcard));
1093         }
1094     }
1095
1096   if (spec->input_sections.sections != NULL)
1097     {
1098       Input_section_patterns& isp(this->input_section_patterns_);
1099       for (String_sort_list::const_iterator p =
1100              spec->input_sections.sections->begin();
1101            p != spec->input_sections.sections->end();
1102            ++p)
1103         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1104                                             p->sort));
1105     }
1106 }
1107
1108 // See whether we match FILE_NAME.
1109
1110 bool
1111 Output_section_element_input::match_file_name(const char* file_name) const
1112 {
1113   if (!this->filename_pattern_.empty())
1114     {
1115       // If we were called with no filename, we refuse to match a
1116       // pattern which requires a file name.
1117       if (file_name == NULL)
1118         return false;
1119
1120       if (!match(file_name, this->filename_pattern_.c_str(),
1121                  this->filename_is_wildcard_))
1122         return false;
1123     }
1124
1125   if (file_name != NULL)
1126     {
1127       // Now we have to see whether FILE_NAME matches one of the
1128       // exclusion patterns, if any.
1129       for (Filename_exclusions::const_iterator p =
1130              this->filename_exclusions_.begin();
1131            p != this->filename_exclusions_.end();
1132            ++p)
1133         {
1134           if (match(file_name, p->first.c_str(), p->second))
1135             return false;
1136         }
1137     }
1138
1139   return true;
1140 }
1141
1142 // See whether we match FILE_NAME and SECTION_NAME.
1143
1144 bool
1145 Output_section_element_input::match_name(const char* file_name,
1146                                          const char* section_name) const
1147 {
1148   if (!this->match_file_name(file_name))
1149     return false;
1150
1151   // If there are no section name patterns, then we match.
1152   if (this->input_section_patterns_.empty())
1153     return true;
1154
1155   // See whether we match the section name patterns.
1156   for (Input_section_patterns::const_iterator p =
1157          this->input_section_patterns_.begin();
1158        p != this->input_section_patterns_.end();
1159        ++p)
1160     {
1161       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1162         return true;
1163     }
1164
1165   // We didn't match any section names, so we didn't match.
1166   return false;
1167 }
1168
1169 // Information we use to sort the input sections.
1170
1171 class Input_section_info
1172 {
1173  public:
1174   Input_section_info(const Output_section::Simple_input_section& input_section)
1175     : input_section_(input_section), section_name_(),
1176       size_(0), addralign_(1)
1177   { }
1178
1179   // Return the simple input section.
1180   const Output_section::Simple_input_section&
1181   input_section() const
1182   { return this->input_section_; }
1183
1184   // Return the object.
1185   Relobj*
1186   relobj() const
1187   { return this->input_section_.relobj(); }
1188
1189   // Return the section index.
1190   unsigned int
1191   shndx()
1192   { return this->input_section_.shndx(); }
1193
1194   // Return the section name.
1195   const std::string&
1196   section_name() const
1197   { return this->section_name_; }
1198
1199   // Set the section name.
1200   void
1201   set_section_name(const std::string name)
1202   { this->section_name_ = name; }
1203
1204   // Return the section size.
1205   uint64_t
1206   size() const
1207   { return this->size_; }
1208
1209   // Set the section size.
1210   void
1211   set_size(uint64_t size)
1212   { this->size_ = size; }
1213
1214   // Return the address alignment.
1215   uint64_t
1216   addralign() const
1217   { return this->addralign_; }
1218
1219   // Set the address alignment.
1220   void
1221   set_addralign(uint64_t addralign)
1222   { this->addralign_ = addralign; }
1223
1224  private:
1225   // Input section, can be a relaxed section.
1226   Output_section::Simple_input_section input_section_;
1227   // Name of the section. 
1228   std::string section_name_;
1229   // Section size.
1230   uint64_t size_;
1231   // Address alignment.
1232   uint64_t addralign_;
1233 };
1234
1235 // A class to sort the input sections.
1236
1237 class Input_section_sorter
1238 {
1239  public:
1240   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1241     : filename_sort_(filename_sort), section_sort_(section_sort)
1242   { }
1243
1244   bool
1245   operator()(const Input_section_info&, const Input_section_info&) const;
1246
1247  private:
1248   Sort_wildcard filename_sort_;
1249   Sort_wildcard section_sort_;
1250 };
1251
1252 bool
1253 Input_section_sorter::operator()(const Input_section_info& isi1,
1254                                  const Input_section_info& isi2) const
1255 {
1256   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1257       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1258       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1259           && isi1.addralign() == isi2.addralign()))
1260     {
1261       if (isi1.section_name() != isi2.section_name())
1262         return isi1.section_name() < isi2.section_name();
1263     }
1264   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1265       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1266       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1267     {
1268       if (isi1.addralign() != isi2.addralign())
1269         return isi1.addralign() < isi2.addralign();
1270     }
1271   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1272     {
1273       if (isi1.relobj()->name() != isi2.relobj()->name())
1274         return (isi1.relobj()->name() < isi2.relobj()->name());
1275     }
1276
1277   // Otherwise we leave them in the same order.
1278   return false;
1279 }
1280
1281 // Set the section address.  Look in INPUT_SECTIONS for sections which
1282 // match this spec, sort them as specified, and add them to the output
1283 // section.
1284
1285 void
1286 Output_section_element_input::set_section_addresses(
1287     Symbol_table*,
1288     Layout* layout,
1289     Output_section* output_section,
1290     uint64_t subalign,
1291     uint64_t* dot_value,
1292     Output_section** dot_section,
1293     std::string* fill,
1294     Input_section_list* input_sections)
1295 {
1296   // We build a list of sections which match each
1297   // Input_section_pattern.
1298
1299   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1300   size_t input_pattern_count = this->input_section_patterns_.size();
1301   if (input_pattern_count == 0)
1302     input_pattern_count = 1;
1303   Matching_sections matching_sections(input_pattern_count);
1304
1305   // Look through the list of sections for this output section.  Add
1306   // each one which matches to one of the elements of
1307   // MATCHING_SECTIONS.
1308
1309   Input_section_list::iterator p = input_sections->begin();
1310   while (p != input_sections->end())
1311     {
1312       Relobj* relobj = p->relobj();
1313       unsigned int shndx = p->shndx();      
1314       Input_section_info isi(*p);
1315
1316       // Calling section_name and section_addralign is not very
1317       // efficient.
1318
1319       // Lock the object so that we can get information about the
1320       // section.  This is OK since we know we are single-threaded
1321       // here.
1322       {
1323         const Task* task = reinterpret_cast<const Task*>(-1);
1324         Task_lock_obj<Object> tl(task, relobj);
1325
1326         isi.set_section_name(relobj->section_name(shndx));
1327         if (p->is_relaxed_input_section())
1328           {
1329             // We use current data size because relxed section sizes may not
1330             // have finalized yet.
1331             isi.set_size(p->relaxed_input_section()->current_data_size());
1332             isi.set_addralign(p->relaxed_input_section()->addralign());
1333           }
1334         else
1335           {
1336             isi.set_size(relobj->section_size(shndx));
1337             isi.set_addralign(relobj->section_addralign(shndx));
1338           }
1339       }
1340
1341       if (!this->match_file_name(relobj->name().c_str()))
1342         ++p;
1343       else if (this->input_section_patterns_.empty())
1344         {
1345           matching_sections[0].push_back(isi);
1346           p = input_sections->erase(p);
1347         }
1348       else
1349         {
1350           size_t i;
1351           for (i = 0; i < input_pattern_count; ++i)
1352             {
1353               const Input_section_pattern&
1354                 isp(this->input_section_patterns_[i]);
1355               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1356                         isp.pattern_is_wildcard))
1357                 break;
1358             }
1359
1360           if (i >= this->input_section_patterns_.size())
1361             ++p;
1362           else
1363             {
1364               matching_sections[i].push_back(isi);
1365               p = input_sections->erase(p);
1366             }
1367         }
1368     }
1369
1370   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1371   // using a stable sort so that we get the default order when
1372   // sections are otherwise equal.  Add each input section to the
1373   // output section.
1374
1375   for (size_t i = 0; i < input_pattern_count; ++i)
1376     {
1377       if (matching_sections[i].empty())
1378         continue;
1379
1380       gold_assert(output_section != NULL);
1381
1382       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1383       if (isp.sort != SORT_WILDCARD_NONE
1384           || this->filename_sort_ != SORT_WILDCARD_NONE)
1385         std::stable_sort(matching_sections[i].begin(),
1386                          matching_sections[i].end(),
1387                          Input_section_sorter(this->filename_sort_,
1388                                               isp.sort));
1389
1390       for (std::vector<Input_section_info>::const_iterator p =
1391              matching_sections[i].begin();
1392            p != matching_sections[i].end();
1393            ++p)
1394         {
1395           uint64_t this_subalign = p->addralign();
1396           if (this_subalign < subalign)
1397             this_subalign = subalign;
1398
1399           uint64_t address = align_address(*dot_value, this_subalign);
1400
1401           if (address > *dot_value && !fill->empty())
1402             {
1403               section_size_type length =
1404                 convert_to_section_size_type(address - *dot_value);
1405               std::string this_fill = this->get_fill_string(fill, length);
1406               Output_section_data* posd = new Output_data_const(this_fill, 0);
1407               output_section->add_output_section_data(posd);
1408               layout->new_output_section_data_from_script(posd);
1409             }
1410
1411           output_section->add_input_section_for_script(p->input_section(),
1412                                                        p->size(),
1413                                                        this_subalign);
1414
1415           *dot_value = address + p->size();
1416         }
1417     }
1418
1419   this->final_dot_value_ = *dot_value;
1420   this->final_dot_section_ = *dot_section;
1421 }
1422
1423 // Print for debugging.
1424
1425 void
1426 Output_section_element_input::print(FILE* f) const
1427 {
1428   fprintf(f, "    ");
1429
1430   if (this->keep_)
1431     fprintf(f, "KEEP(");
1432
1433   if (!this->filename_pattern_.empty())
1434     {
1435       bool need_close_paren = false;
1436       switch (this->filename_sort_)
1437         {
1438         case SORT_WILDCARD_NONE:
1439           break;
1440         case SORT_WILDCARD_BY_NAME:
1441           fprintf(f, "SORT_BY_NAME(");
1442           need_close_paren = true;
1443           break;
1444         default:
1445           gold_unreachable();
1446         }
1447
1448       fprintf(f, "%s", this->filename_pattern_.c_str());
1449
1450       if (need_close_paren)
1451         fprintf(f, ")");
1452     }
1453
1454   if (!this->input_section_patterns_.empty()
1455       || !this->filename_exclusions_.empty())
1456     {
1457       fprintf(f, "(");
1458
1459       bool need_space = false;
1460       if (!this->filename_exclusions_.empty())
1461         {
1462           fprintf(f, "EXCLUDE_FILE(");
1463           bool need_comma = false;
1464           for (Filename_exclusions::const_iterator p =
1465                  this->filename_exclusions_.begin();
1466                p != this->filename_exclusions_.end();
1467                ++p)
1468             {
1469               if (need_comma)
1470                 fprintf(f, ", ");
1471               fprintf(f, "%s", p->first.c_str());
1472               need_comma = true;
1473             }
1474           fprintf(f, ")");
1475           need_space = true;
1476         }
1477
1478       for (Input_section_patterns::const_iterator p =
1479              this->input_section_patterns_.begin();
1480            p != this->input_section_patterns_.end();
1481            ++p)
1482         {
1483           if (need_space)
1484             fprintf(f, " ");
1485
1486           int close_parens = 0;
1487           switch (p->sort)
1488             {
1489             case SORT_WILDCARD_NONE:
1490               break;
1491             case SORT_WILDCARD_BY_NAME:
1492               fprintf(f, "SORT_BY_NAME(");
1493               close_parens = 1;
1494               break;
1495             case SORT_WILDCARD_BY_ALIGNMENT:
1496               fprintf(f, "SORT_BY_ALIGNMENT(");
1497               close_parens = 1;
1498               break;
1499             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1500               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1501               close_parens = 2;
1502               break;
1503             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1504               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1505               close_parens = 2;
1506               break;
1507             default:
1508               gold_unreachable();
1509             }
1510
1511           fprintf(f, "%s", p->pattern.c_str());
1512
1513           for (int i = 0; i < close_parens; ++i)
1514             fprintf(f, ")");
1515
1516           need_space = true;
1517         }
1518
1519       fprintf(f, ")");
1520     }
1521
1522   if (this->keep_)
1523     fprintf(f, ")");
1524
1525   fprintf(f, "\n");
1526 }
1527
1528 // An output section.
1529
1530 class Output_section_definition : public Sections_element
1531 {
1532  public:
1533   typedef Output_section_element::Input_section_list Input_section_list;
1534
1535   Output_section_definition(const char* name, size_t namelen,
1536                             const Parser_output_section_header* header);
1537
1538   // Finish the output section with the information in the trailer.
1539   void
1540   finish(const Parser_output_section_trailer* trailer);
1541
1542   // Add a symbol to be defined.
1543   void
1544   add_symbol_assignment(const char* name, size_t length, Expression* value,
1545                         bool provide, bool hidden);
1546
1547   // Add an assignment to the special dot symbol.
1548   void
1549   add_dot_assignment(Expression* value);
1550
1551   // Add an assertion.
1552   void
1553   add_assertion(Expression* check, const char* message, size_t messagelen);
1554
1555   // Add a data item to the current output section.
1556   void
1557   add_data(int size, bool is_signed, Expression* val);
1558
1559   // Add a setting for the fill value.
1560   void
1561   add_fill(Expression* val);
1562
1563   // Add an input section specification.
1564   void
1565   add_input_section(const Input_section_spec* spec, bool keep);
1566
1567   // Return whether the output section is relro.
1568   bool
1569   is_relro() const
1570   { return this->is_relro_; }
1571
1572   // Record that the output section is relro.
1573   void
1574   set_is_relro()
1575   { this->is_relro_ = true; }
1576
1577   // Create any required output sections.
1578   void
1579   create_sections(Layout*);
1580
1581   // Add any symbols being defined to the symbol table.
1582   void
1583   add_symbols_to_table(Symbol_table* symtab);
1584
1585   // Finalize symbols and check assertions.
1586   void
1587   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1588
1589   // Return the output section name to use for an input file name and
1590   // section name.
1591   const char*
1592   output_section_name(const char* file_name, const char* section_name,
1593                       Output_section***);
1594
1595   // Initialize OSP with an output section.
1596   void
1597   orphan_section_init(Orphan_section_placement* osp,
1598                       Script_sections::Elements_iterator p)
1599   { osp->output_section_init(this->name_, this->output_section_, p); }
1600
1601   // Set the section address.
1602   void
1603   set_section_addresses(Symbol_table* symtab, Layout* layout,
1604                         uint64_t* dot_value, uint64_t* load_address);
1605
1606   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1607   // this section is constrained, and the input sections do not match,
1608   // return the constraint, and set *POSD.
1609   Section_constraint
1610   check_constraint(Output_section_definition** posd);
1611
1612   // See if this is the alternate output section for a constrained
1613   // output section.  If it is, transfer the Output_section and return
1614   // true.  Otherwise return false.
1615   bool
1616   alternate_constraint(Output_section_definition*, Section_constraint);
1617
1618   // Get the list of segments to use for an allocated section when
1619   // using a PHDRS clause.
1620   Output_section*
1621   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1622
1623   // Look for an output section by name and return the address, the
1624   // load address, the alignment, and the size.  This is used when an
1625   // expression refers to an output section which was not actually
1626   // created.  This returns true if the section was found, false
1627   // otherwise.
1628   bool
1629   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1630                           uint64_t*) const;
1631
1632   // Return the associated Output_section if there is one.
1633   Output_section*
1634   get_output_section() const
1635   { return this->output_section_; }
1636
1637   // Print the contents to the FILE.  This is for debugging.
1638   void
1639   print(FILE*) const;
1640
1641  private:
1642   typedef std::vector<Output_section_element*> Output_section_elements;
1643
1644   // The output section name.
1645   std::string name_;
1646   // The address.  This may be NULL.
1647   Expression* address_;
1648   // The load address.  This may be NULL.
1649   Expression* load_address_;
1650   // The alignment.  This may be NULL.
1651   Expression* align_;
1652   // The input section alignment.  This may be NULL.
1653   Expression* subalign_;
1654   // The constraint, if any.
1655   Section_constraint constraint_;
1656   // The fill value.  This may be NULL.
1657   Expression* fill_;
1658   // The list of segments this section should go into.  This may be
1659   // NULL.
1660   String_list* phdrs_;
1661   // The list of elements defining the section.
1662   Output_section_elements elements_;
1663   // The Output_section created for this definition.  This will be
1664   // NULL if none was created.
1665   Output_section* output_section_;
1666   // The address after it has been evaluated.
1667   uint64_t evaluated_address_;
1668   // The load address after it has been evaluated.
1669   uint64_t evaluated_load_address_;
1670   // The alignment after it has been evaluated.
1671   uint64_t evaluated_addralign_;
1672   // The output section is relro.
1673   bool is_relro_;
1674 };
1675
1676 // Constructor.
1677
1678 Output_section_definition::Output_section_definition(
1679     const char* name,
1680     size_t namelen,
1681     const Parser_output_section_header* header)
1682   : name_(name, namelen),
1683     address_(header->address),
1684     load_address_(header->load_address),
1685     align_(header->align),
1686     subalign_(header->subalign),
1687     constraint_(header->constraint),
1688     fill_(NULL),
1689     phdrs_(NULL),
1690     elements_(),
1691     output_section_(NULL),
1692     evaluated_address_(0),
1693     evaluated_load_address_(0),
1694     evaluated_addralign_(0),
1695     is_relro_(false)
1696 {
1697 }
1698
1699 // Finish an output section.
1700
1701 void
1702 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1703 {
1704   this->fill_ = trailer->fill;
1705   this->phdrs_ = trailer->phdrs;
1706 }
1707
1708 // Add a symbol to be defined.
1709
1710 void
1711 Output_section_definition::add_symbol_assignment(const char* name,
1712                                                  size_t length,
1713                                                  Expression* value,
1714                                                  bool provide,
1715                                                  bool hidden)
1716 {
1717   Output_section_element* p = new Output_section_element_assignment(name,
1718                                                                     length,
1719                                                                     value,
1720                                                                     provide,
1721                                                                     hidden);
1722   this->elements_.push_back(p);
1723 }
1724
1725 // Add an assignment to the special dot symbol.
1726
1727 void
1728 Output_section_definition::add_dot_assignment(Expression* value)
1729 {
1730   Output_section_element* p = new Output_section_element_dot_assignment(value);
1731   this->elements_.push_back(p);
1732 }
1733
1734 // Add an assertion.
1735
1736 void
1737 Output_section_definition::add_assertion(Expression* check,
1738                                          const char* message,
1739                                          size_t messagelen)
1740 {
1741   Output_section_element* p = new Output_section_element_assertion(check,
1742                                                                    message,
1743                                                                    messagelen);
1744   this->elements_.push_back(p);
1745 }
1746
1747 // Add a data item to the current output section.
1748
1749 void
1750 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1751 {
1752   Output_section_element* p = new Output_section_element_data(size, is_signed,
1753                                                               val);
1754   this->elements_.push_back(p);
1755 }
1756
1757 // Add a setting for the fill value.
1758
1759 void
1760 Output_section_definition::add_fill(Expression* val)
1761 {
1762   Output_section_element* p = new Output_section_element_fill(val);
1763   this->elements_.push_back(p);
1764 }
1765
1766 // Add an input section specification.
1767
1768 void
1769 Output_section_definition::add_input_section(const Input_section_spec* spec,
1770                                              bool keep)
1771 {
1772   Output_section_element* p = new Output_section_element_input(spec, keep);
1773   this->elements_.push_back(p);
1774 }
1775
1776 // Create any required output sections.  We need an output section if
1777 // there is a data statement here.
1778
1779 void
1780 Output_section_definition::create_sections(Layout* layout)
1781 {
1782   if (this->output_section_ != NULL)
1783     return;
1784   for (Output_section_elements::const_iterator p = this->elements_.begin();
1785        p != this->elements_.end();
1786        ++p)
1787     {
1788       if ((*p)->needs_output_section())
1789         {
1790           const char* name = this->name_.c_str();
1791           this->output_section_ = layout->make_output_section_for_script(name);
1792           return;
1793         }
1794     }
1795 }
1796
1797 // Add any symbols being defined to the symbol table.
1798
1799 void
1800 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1801 {
1802   for (Output_section_elements::iterator p = this->elements_.begin();
1803        p != this->elements_.end();
1804        ++p)
1805     (*p)->add_symbols_to_table(symtab);
1806 }
1807
1808 // Finalize symbols and check assertions.
1809
1810 void
1811 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1812                                             const Layout* layout,
1813                                             uint64_t* dot_value)
1814 {
1815   if (this->output_section_ != NULL)
1816     *dot_value = this->output_section_->address();
1817   else
1818     {
1819       uint64_t address = *dot_value;
1820       if (this->address_ != NULL)
1821         {
1822           Output_section* dummy;
1823           address = this->address_->eval_with_dot(symtab, layout, true,
1824                                                   *dot_value, NULL,
1825                                                   &dummy);
1826         }
1827       if (this->align_ != NULL)
1828         {
1829           Output_section* dummy;
1830           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1831                                                        *dot_value,
1832                                                        NULL,
1833                                                        &dummy);
1834           address = align_address(address, align);
1835         }
1836       *dot_value = address;
1837     }
1838
1839   Output_section* dot_section = this->output_section_;
1840   for (Output_section_elements::iterator p = this->elements_.begin();
1841        p != this->elements_.end();
1842        ++p)
1843     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1844 }
1845
1846 // Return the output section name to use for an input section name.
1847
1848 const char*
1849 Output_section_definition::output_section_name(const char* file_name,
1850                                                const char* section_name,
1851                                                Output_section*** slot)
1852 {
1853   // Ask each element whether it matches NAME.
1854   for (Output_section_elements::const_iterator p = this->elements_.begin();
1855        p != this->elements_.end();
1856        ++p)
1857     {
1858       if ((*p)->match_name(file_name, section_name))
1859         {
1860           // We found a match for NAME, which means that it should go
1861           // into this output section.
1862           *slot = &this->output_section_;
1863           return this->name_.c_str();
1864         }
1865     }
1866
1867   // We don't know about this section name.
1868   return NULL;
1869 }
1870
1871 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1872 // be NULL if no input sections were mapped to this output section.
1873 // We still have to adjust dot and process symbol assignments.
1874
1875 void
1876 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1877                                                  Layout* layout,
1878                                                  uint64_t* dot_value,
1879                                                  uint64_t* load_address)
1880 {
1881   uint64_t address;
1882   if (this->address_ == NULL)
1883     address = *dot_value;
1884   else
1885     {
1886       Output_section* dummy;
1887       address = this->address_->eval_with_dot(symtab, layout, true,
1888                                               *dot_value, NULL, &dummy);
1889     }
1890
1891   uint64_t align;
1892   if (this->align_ == NULL)
1893     {
1894       if (this->output_section_ == NULL)
1895         align = 0;
1896       else
1897         align = this->output_section_->addralign();
1898     }
1899   else
1900     {
1901       Output_section* align_section;
1902       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1903                                           NULL, &align_section);
1904       if (align_section != NULL)
1905         gold_warning(_("alignment of section %s is not absolute"),
1906                      this->name_.c_str());
1907       if (this->output_section_ != NULL)
1908         this->output_section_->set_addralign(align);
1909     }
1910
1911   address = align_address(address, align);
1912
1913   uint64_t start_address = address;
1914
1915   *dot_value = address;
1916
1917   // The address of non-SHF_ALLOC sections is forced to zero,
1918   // regardless of what the linker script wants.
1919   if (this->output_section_ != NULL
1920       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1921     this->output_section_->set_address(address);
1922
1923   this->evaluated_address_ = address;
1924   this->evaluated_addralign_ = align;
1925
1926   if (this->load_address_ == NULL)
1927     this->evaluated_load_address_ = address;
1928   else
1929     {
1930       Output_section* dummy;
1931       uint64_t laddr =
1932         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1933                                            this->output_section_, &dummy);
1934       if (this->output_section_ != NULL)
1935         this->output_section_->set_load_address(laddr);
1936       this->evaluated_load_address_ = laddr;
1937     }
1938
1939   uint64_t subalign;
1940   if (this->subalign_ == NULL)
1941     subalign = 0;
1942   else
1943     {
1944       Output_section* subalign_section;
1945       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1946                                                 *dot_value, NULL,
1947                                                 &subalign_section);
1948       if (subalign_section != NULL)
1949         gold_warning(_("subalign of section %s is not absolute"),
1950                      this->name_.c_str());
1951     }
1952
1953   std::string fill;
1954   if (this->fill_ != NULL)
1955     {
1956       // FIXME: The GNU linker supports fill values of arbitrary
1957       // length.
1958       Output_section* fill_section;
1959       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1960                                                      *dot_value,
1961                                                      NULL,
1962                                                      &fill_section);
1963       if (fill_section != NULL)
1964         gold_warning(_("fill of section %s is not absolute"),
1965                      this->name_.c_str());
1966       unsigned char fill_buff[4];
1967       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1968       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1969     }
1970
1971   Input_section_list input_sections;
1972   if (this->output_section_ != NULL)
1973     {
1974       // Get the list of input sections attached to this output
1975       // section.  This will leave the output section with only
1976       // Output_section_data entries.
1977       address += this->output_section_->get_input_sections(address,
1978                                                            fill,
1979                                                            &input_sections);
1980       *dot_value = address;
1981     }
1982
1983   Output_section* dot_section = this->output_section_;
1984   for (Output_section_elements::iterator p = this->elements_.begin();
1985        p != this->elements_.end();
1986        ++p)
1987     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1988                                 subalign, dot_value, &dot_section, &fill,
1989                                 &input_sections);
1990
1991   gold_assert(input_sections.empty());
1992
1993   if (this->load_address_ == NULL || this->output_section_ == NULL)
1994     *load_address = *dot_value;
1995   else
1996     *load_address = (this->output_section_->load_address()
1997                      + (*dot_value - start_address));
1998
1999   if (this->output_section_ != NULL)
2000     {
2001       if (this->is_relro_)
2002         this->output_section_->set_is_relro();
2003       else
2004         this->output_section_->clear_is_relro();
2005     }
2006 }
2007
2008 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2009 // this section is constrained, and the input sections do not match,
2010 // return the constraint, and set *POSD.
2011
2012 Section_constraint
2013 Output_section_definition::check_constraint(Output_section_definition** posd)
2014 {
2015   switch (this->constraint_)
2016     {
2017     case CONSTRAINT_NONE:
2018       return CONSTRAINT_NONE;
2019
2020     case CONSTRAINT_ONLY_IF_RO:
2021       if (this->output_section_ != NULL
2022           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2023         {
2024           *posd = this;
2025           return CONSTRAINT_ONLY_IF_RO;
2026         }
2027       return CONSTRAINT_NONE;
2028
2029     case CONSTRAINT_ONLY_IF_RW:
2030       if (this->output_section_ != NULL
2031           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2032         {
2033           *posd = this;
2034           return CONSTRAINT_ONLY_IF_RW;
2035         }
2036       return CONSTRAINT_NONE;
2037
2038     case CONSTRAINT_SPECIAL:
2039       if (this->output_section_ != NULL)
2040         gold_error(_("SPECIAL constraints are not implemented"));
2041       return CONSTRAINT_NONE;
2042
2043     default:
2044       gold_unreachable();
2045     }
2046 }
2047
2048 // See if this is the alternate output section for a constrained
2049 // output section.  If it is, transfer the Output_section and return
2050 // true.  Otherwise return false.
2051
2052 bool
2053 Output_section_definition::alternate_constraint(
2054     Output_section_definition* posd,
2055     Section_constraint constraint)
2056 {
2057   if (this->name_ != posd->name_)
2058     return false;
2059
2060   switch (constraint)
2061     {
2062     case CONSTRAINT_ONLY_IF_RO:
2063       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2064         return false;
2065       break;
2066
2067     case CONSTRAINT_ONLY_IF_RW:
2068       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2069         return false;
2070       break;
2071
2072     default:
2073       gold_unreachable();
2074     }
2075
2076   // We have found the alternate constraint.  We just need to move
2077   // over the Output_section.  When constraints are used properly,
2078   // THIS should not have an output_section pointer, as all the input
2079   // sections should have matched the other definition.
2080
2081   if (this->output_section_ != NULL)
2082     gold_error(_("mismatched definition for constrained sections"));
2083
2084   this->output_section_ = posd->output_section_;
2085   posd->output_section_ = NULL;
2086
2087   if (this->is_relro_)
2088     this->output_section_->set_is_relro();
2089   else
2090     this->output_section_->clear_is_relro();
2091
2092   return true;
2093 }
2094
2095 // Get the list of segments to use for an allocated section when using
2096 // a PHDRS clause.
2097
2098 Output_section*
2099 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2100                                                bool* orphan)
2101 {
2102   if (this->output_section_ == NULL)
2103     return NULL;
2104   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2105     return NULL;
2106   *orphan = false;
2107   if (this->phdrs_ != NULL)
2108     *phdrs_list = this->phdrs_;
2109   return this->output_section_;
2110 }
2111
2112 // Look for an output section by name and return the address, the load
2113 // address, the alignment, and the size.  This is used when an
2114 // expression refers to an output section which was not actually
2115 // created.  This returns true if the section was found, false
2116 // otherwise.
2117
2118 bool
2119 Output_section_definition::get_output_section_info(const char* name,
2120                                                    uint64_t* address,
2121                                                    uint64_t* load_address,
2122                                                    uint64_t* addralign,
2123                                                    uint64_t* size) const
2124 {
2125   if (this->name_ != name)
2126     return false;
2127
2128   if (this->output_section_ != NULL)
2129     {
2130       *address = this->output_section_->address();
2131       if (this->output_section_->has_load_address())
2132         *load_address = this->output_section_->load_address();
2133       else
2134         *load_address = *address;
2135       *addralign = this->output_section_->addralign();
2136       *size = this->output_section_->current_data_size();
2137     }
2138   else
2139     {
2140       *address = this->evaluated_address_;
2141       *load_address = this->evaluated_load_address_;
2142       *addralign = this->evaluated_addralign_;
2143       *size = 0;
2144     }
2145
2146   return true;
2147 }
2148
2149 // Print for debugging.
2150
2151 void
2152 Output_section_definition::print(FILE* f) const
2153 {
2154   fprintf(f, "  %s ", this->name_.c_str());
2155
2156   if (this->address_ != NULL)
2157     {
2158       this->address_->print(f);
2159       fprintf(f, " ");
2160     }
2161
2162   fprintf(f, ": ");
2163
2164   if (this->load_address_ != NULL)
2165     {
2166       fprintf(f, "AT(");
2167       this->load_address_->print(f);
2168       fprintf(f, ") ");
2169     }
2170
2171   if (this->align_ != NULL)
2172     {
2173       fprintf(f, "ALIGN(");
2174       this->align_->print(f);
2175       fprintf(f, ") ");
2176     }
2177
2178   if (this->subalign_ != NULL)
2179     {
2180       fprintf(f, "SUBALIGN(");
2181       this->subalign_->print(f);
2182       fprintf(f, ") ");
2183     }
2184
2185   fprintf(f, "{\n");
2186
2187   for (Output_section_elements::const_iterator p = this->elements_.begin();
2188        p != this->elements_.end();
2189        ++p)
2190     (*p)->print(f);
2191
2192   fprintf(f, "  }");
2193
2194   if (this->fill_ != NULL)
2195     {
2196       fprintf(f, " = ");
2197       this->fill_->print(f);
2198     }
2199
2200   if (this->phdrs_ != NULL)
2201     {
2202       for (String_list::const_iterator p = this->phdrs_->begin();
2203            p != this->phdrs_->end();
2204            ++p)
2205         fprintf(f, " :%s", p->c_str());
2206     }
2207
2208   fprintf(f, "\n");
2209 }
2210
2211 // An output section created to hold orphaned input sections.  These
2212 // do not actually appear in linker scripts.  However, for convenience
2213 // when setting the output section addresses, we put a marker to these
2214 // sections in the appropriate place in the list of SECTIONS elements.
2215
2216 class Orphan_output_section : public Sections_element
2217 {
2218  public:
2219   Orphan_output_section(Output_section* os)
2220     : os_(os)
2221   { }
2222
2223   // Return whether the orphan output section is relro.  We can just
2224   // check the output section because we always set the flag, if
2225   // needed, just after we create the Orphan_output_section.
2226   bool
2227   is_relro() const
2228   { return this->os_->is_relro(); }
2229
2230   // Initialize OSP with an output section.  This should have been
2231   // done already.
2232   void
2233   orphan_section_init(Orphan_section_placement*,
2234                       Script_sections::Elements_iterator)
2235   { gold_unreachable(); }
2236
2237   // Set section addresses.
2238   void
2239   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2240
2241   // Get the list of segments to use for an allocated section when
2242   // using a PHDRS clause.
2243   Output_section*
2244   allocate_to_segment(String_list**, bool*);
2245
2246   // Return the associated Output_section.
2247   Output_section*
2248   get_output_section() const
2249   { return this->os_; }
2250
2251   // Print for debugging.
2252   void
2253   print(FILE* f) const
2254   {
2255     fprintf(f, "  marker for orphaned output section %s\n",
2256             this->os_->name());
2257   }
2258
2259  private:
2260   Output_section* os_;
2261 };
2262
2263 // Set section addresses.
2264
2265 void
2266 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2267                                              uint64_t* dot_value,
2268                                              uint64_t* load_address)
2269 {
2270   typedef std::list<Output_section::Simple_input_section> Input_section_list;
2271
2272   bool have_load_address = *load_address != *dot_value;
2273
2274   uint64_t address = *dot_value;
2275   address = align_address(address, this->os_->addralign());
2276
2277   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2278     {
2279       this->os_->set_address(address);
2280       if (have_load_address)
2281         this->os_->set_load_address(align_address(*load_address,
2282                                                   this->os_->addralign()));
2283     }
2284
2285   Input_section_list input_sections;
2286   address += this->os_->get_input_sections(address, "", &input_sections);
2287
2288   for (Input_section_list::iterator p = input_sections.begin();
2289        p != input_sections.end();
2290        ++p)
2291     {
2292       uint64_t addralign;
2293       uint64_t size;
2294
2295       // We know what are single-threaded, so it is OK to lock the
2296       // object.
2297       {
2298         const Task* task = reinterpret_cast<const Task*>(-1);
2299         Task_lock_obj<Object> tl(task, p->relobj());
2300         addralign = p->relobj()->section_addralign(p->shndx());
2301         if (p->is_relaxed_input_section())
2302           // We use current data size because relxed section sizes may not
2303           // have finalized yet.
2304           size = p->relaxed_input_section()->current_data_size();
2305         else
2306           size = p->relobj()->section_size(p->shndx());
2307       }
2308
2309       address = align_address(address, addralign);
2310       this->os_->add_input_section_for_script(*p, size, addralign);
2311       address += size;
2312     }
2313
2314   if (!have_load_address)
2315     *load_address = address;
2316   else
2317     *load_address += address - *dot_value;
2318
2319   *dot_value = address;
2320 }
2321
2322 // Get the list of segments to use for an allocated section when using
2323 // a PHDRS clause.  If this is an allocated section, return the
2324 // Output_section.  We don't change the list of segments.
2325
2326 Output_section*
2327 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2328 {
2329   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2330     return NULL;
2331   *orphan = true;
2332   return this->os_;
2333 }
2334
2335 // Class Phdrs_element.  A program header from a PHDRS clause.
2336
2337 class Phdrs_element
2338 {
2339  public:
2340   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2341                 bool includes_filehdr, bool includes_phdrs,
2342                 bool is_flags_valid, unsigned int flags,
2343                 Expression* load_address)
2344     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2345       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2346       flags_(flags), load_address_(load_address), load_address_value_(0),
2347       segment_(NULL)
2348   { }
2349
2350   // Return the name of this segment.
2351   const std::string&
2352   name() const
2353   { return this->name_; }
2354
2355   // Return the type of the segment.
2356   unsigned int
2357   type() const
2358   { return this->type_; }
2359
2360   // Whether to include the file header.
2361   bool
2362   includes_filehdr() const
2363   { return this->includes_filehdr_; }
2364
2365   // Whether to include the program headers.
2366   bool
2367   includes_phdrs() const
2368   { return this->includes_phdrs_; }
2369
2370   // Return whether there is a load address.
2371   bool
2372   has_load_address() const
2373   { return this->load_address_ != NULL; }
2374
2375   // Evaluate the load address expression if there is one.
2376   void
2377   eval_load_address(Symbol_table* symtab, Layout* layout)
2378   {
2379     if (this->load_address_ != NULL)
2380       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2381                                                             true);
2382   }
2383
2384   // Return the load address.
2385   uint64_t
2386   load_address() const
2387   {
2388     gold_assert(this->load_address_ != NULL);
2389     return this->load_address_value_;
2390   }
2391
2392   // Create the segment.
2393   Output_segment*
2394   create_segment(Layout* layout)
2395   {
2396     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2397     return this->segment_;
2398   }
2399
2400   // Return the segment.
2401   Output_segment*
2402   segment()
2403   { return this->segment_; }
2404
2405   // Release the segment.
2406   void
2407   release_segment()
2408   { this->segment_ = NULL; }
2409
2410   // Set the segment flags if appropriate.
2411   void
2412   set_flags_if_valid()
2413   {
2414     if (this->is_flags_valid_)
2415       this->segment_->set_flags(this->flags_);
2416   }
2417
2418   // Print for debugging.
2419   void
2420   print(FILE*) const;
2421
2422  private:
2423   // The name used in the script.
2424   std::string name_;
2425   // The type of the segment (PT_LOAD, etc.).
2426   unsigned int type_;
2427   // Whether this segment includes the file header.
2428   bool includes_filehdr_;
2429   // Whether this segment includes the section headers.
2430   bool includes_phdrs_;
2431   // Whether the flags were explicitly specified.
2432   bool is_flags_valid_;
2433   // The flags for this segment (PF_R, etc.) if specified.
2434   unsigned int flags_;
2435   // The expression for the load address for this segment.  This may
2436   // be NULL.
2437   Expression* load_address_;
2438   // The actual load address from evaluating the expression.
2439   uint64_t load_address_value_;
2440   // The segment itself.
2441   Output_segment* segment_;
2442 };
2443
2444 // Print for debugging.
2445
2446 void
2447 Phdrs_element::print(FILE* f) const
2448 {
2449   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2450   if (this->includes_filehdr_)
2451     fprintf(f, " FILEHDR");
2452   if (this->includes_phdrs_)
2453     fprintf(f, " PHDRS");
2454   if (this->is_flags_valid_)
2455     fprintf(f, " FLAGS(%u)", this->flags_);
2456   if (this->load_address_ != NULL)
2457     {
2458       fprintf(f, " AT(");
2459       this->load_address_->print(f);
2460       fprintf(f, ")");
2461     }
2462   fprintf(f, ";\n");
2463 }
2464
2465 // Class Script_sections.
2466
2467 Script_sections::Script_sections()
2468   : saw_sections_clause_(false),
2469     in_sections_clause_(false),
2470     sections_elements_(NULL),
2471     output_section_(NULL),
2472     phdrs_elements_(NULL),
2473     orphan_section_placement_(NULL),
2474     data_segment_align_start_(),
2475     saw_data_segment_align_(false),
2476     saw_relro_end_(false)
2477 {
2478 }
2479
2480 // Start a SECTIONS clause.
2481
2482 void
2483 Script_sections::start_sections()
2484 {
2485   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2486   this->saw_sections_clause_ = true;
2487   this->in_sections_clause_ = true;
2488   if (this->sections_elements_ == NULL)
2489     this->sections_elements_ = new Sections_elements;
2490 }
2491
2492 // Finish a SECTIONS clause.
2493
2494 void
2495 Script_sections::finish_sections()
2496 {
2497   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2498   this->in_sections_clause_ = false;
2499 }
2500
2501 // Add a symbol to be defined.
2502
2503 void
2504 Script_sections::add_symbol_assignment(const char* name, size_t length,
2505                                        Expression* val, bool provide,
2506                                        bool hidden)
2507 {
2508   if (this->output_section_ != NULL)
2509     this->output_section_->add_symbol_assignment(name, length, val,
2510                                                  provide, hidden);
2511   else
2512     {
2513       Sections_element* p = new Sections_element_assignment(name, length,
2514                                                             val, provide,
2515                                                             hidden);
2516       this->sections_elements_->push_back(p);
2517     }
2518 }
2519
2520 // Add an assignment to the special dot symbol.
2521
2522 void
2523 Script_sections::add_dot_assignment(Expression* val)
2524 {
2525   if (this->output_section_ != NULL)
2526     this->output_section_->add_dot_assignment(val);
2527   else
2528     {
2529       Sections_element* p = new Sections_element_dot_assignment(val);
2530       this->sections_elements_->push_back(p);
2531     }
2532 }
2533
2534 // Add an assertion.
2535
2536 void
2537 Script_sections::add_assertion(Expression* check, const char* message,
2538                                size_t messagelen)
2539 {
2540   if (this->output_section_ != NULL)
2541     this->output_section_->add_assertion(check, message, messagelen);
2542   else
2543     {
2544       Sections_element* p = new Sections_element_assertion(check, message,
2545                                                            messagelen);
2546       this->sections_elements_->push_back(p);
2547     }
2548 }
2549
2550 // Start processing entries for an output section.
2551
2552 void
2553 Script_sections::start_output_section(
2554     const char* name,
2555     size_t namelen,
2556     const Parser_output_section_header *header)
2557 {
2558   Output_section_definition* posd = new Output_section_definition(name,
2559                                                                   namelen,
2560                                                                   header);
2561   this->sections_elements_->push_back(posd);
2562   gold_assert(this->output_section_ == NULL);
2563   this->output_section_ = posd;
2564 }
2565
2566 // Stop processing entries for an output section.
2567
2568 void
2569 Script_sections::finish_output_section(
2570     const Parser_output_section_trailer* trailer)
2571 {
2572   gold_assert(this->output_section_ != NULL);
2573   this->output_section_->finish(trailer);
2574   this->output_section_ = NULL;
2575 }
2576
2577 // Add a data item to the current output section.
2578
2579 void
2580 Script_sections::add_data(int size, bool is_signed, Expression* val)
2581 {
2582   gold_assert(this->output_section_ != NULL);
2583   this->output_section_->add_data(size, is_signed, val);
2584 }
2585
2586 // Add a fill value setting to the current output section.
2587
2588 void
2589 Script_sections::add_fill(Expression* val)
2590 {
2591   gold_assert(this->output_section_ != NULL);
2592   this->output_section_->add_fill(val);
2593 }
2594
2595 // Add an input section specification to the current output section.
2596
2597 void
2598 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2599 {
2600   gold_assert(this->output_section_ != NULL);
2601   this->output_section_->add_input_section(spec, keep);
2602 }
2603
2604 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
2605 // subsequent output sections may be relro.
2606
2607 void
2608 Script_sections::data_segment_align()
2609 {
2610   if (this->saw_data_segment_align_)
2611     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2612   gold_assert(!this->sections_elements_->empty());
2613   Sections_elements::iterator p = this->sections_elements_->end();
2614   --p;
2615   this->data_segment_align_start_ = p;
2616   this->saw_data_segment_align_ = true;
2617 }
2618
2619 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
2620 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2621
2622 void
2623 Script_sections::data_segment_relro_end()
2624 {
2625   if (this->saw_relro_end_)
2626     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2627                  "in a linker script"));
2628   this->saw_relro_end_ = true;
2629
2630   if (!this->saw_data_segment_align_)
2631     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2632   else
2633     {
2634       Sections_elements::iterator p = this->data_segment_align_start_;
2635       for (++p; p != this->sections_elements_->end(); ++p)
2636         (*p)->set_is_relro();
2637     }
2638 }
2639
2640 // Create any required sections.
2641
2642 void
2643 Script_sections::create_sections(Layout* layout)
2644 {
2645   if (!this->saw_sections_clause_)
2646     return;
2647   for (Sections_elements::iterator p = this->sections_elements_->begin();
2648        p != this->sections_elements_->end();
2649        ++p)
2650     (*p)->create_sections(layout);
2651 }
2652
2653 // Add any symbols we are defining to the symbol table.
2654
2655 void
2656 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2657 {
2658   if (!this->saw_sections_clause_)
2659     return;
2660   for (Sections_elements::iterator p = this->sections_elements_->begin();
2661        p != this->sections_elements_->end();
2662        ++p)
2663     (*p)->add_symbols_to_table(symtab);
2664 }
2665
2666 // Finalize symbols and check assertions.
2667
2668 void
2669 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2670 {
2671   if (!this->saw_sections_clause_)
2672     return;
2673   uint64_t dot_value = 0;
2674   for (Sections_elements::iterator p = this->sections_elements_->begin();
2675        p != this->sections_elements_->end();
2676        ++p)
2677     (*p)->finalize_symbols(symtab, layout, &dot_value);
2678 }
2679
2680 // Return the name of the output section to use for an input file name
2681 // and section name.
2682
2683 const char*
2684 Script_sections::output_section_name(const char* file_name,
2685                                      const char* section_name,
2686                                      Output_section*** output_section_slot)
2687 {
2688   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2689        p != this->sections_elements_->end();
2690        ++p)
2691     {
2692       const char* ret = (*p)->output_section_name(file_name, section_name,
2693                                                   output_section_slot);
2694
2695       if (ret != NULL)
2696         {
2697           // The special name /DISCARD/ means that the input section
2698           // should be discarded.
2699           if (strcmp(ret, "/DISCARD/") == 0)
2700             {
2701               *output_section_slot = NULL;
2702               return NULL;
2703             }
2704           return ret;
2705         }
2706     }
2707
2708   // If we couldn't find a mapping for the name, the output section
2709   // gets the name of the input section.
2710
2711   *output_section_slot = NULL;
2712
2713   return section_name;
2714 }
2715
2716 // Place a marker for an orphan output section into the SECTIONS
2717 // clause.
2718
2719 void
2720 Script_sections::place_orphan(Output_section* os)
2721 {
2722   Orphan_section_placement* osp = this->orphan_section_placement_;
2723   if (osp == NULL)
2724     {
2725       // Initialize the Orphan_section_placement structure.
2726       osp = new Orphan_section_placement();
2727       for (Sections_elements::iterator p = this->sections_elements_->begin();
2728            p != this->sections_elements_->end();
2729            ++p)
2730         (*p)->orphan_section_init(osp, p);
2731       gold_assert(!this->sections_elements_->empty());
2732       Sections_elements::iterator last = this->sections_elements_->end();
2733       --last;
2734       osp->last_init(last);
2735       this->orphan_section_placement_ = osp;
2736     }
2737
2738   Orphan_output_section* orphan = new Orphan_output_section(os);
2739
2740   // Look for where to put ORPHAN.
2741   Sections_elements::iterator* where;
2742   if (osp->find_place(os, &where))
2743     {
2744       if ((**where)->is_relro())
2745         os->set_is_relro();
2746       else
2747         os->clear_is_relro();
2748
2749       // We want to insert ORPHAN after *WHERE, and then update *WHERE
2750       // so that the next one goes after this one.
2751       Sections_elements::iterator p = *where;
2752       gold_assert(p != this->sections_elements_->end());
2753       ++p;
2754       *where = this->sections_elements_->insert(p, orphan);
2755     }
2756   else
2757     {
2758       os->clear_is_relro();
2759       // We don't have a place to put this orphan section.  Put it,
2760       // and all other sections like it, at the end, but before the
2761       // sections which always come at the end.
2762       Sections_elements::iterator last = osp->last_place();
2763       *where = this->sections_elements_->insert(last, orphan);
2764     }
2765 }
2766
2767 // Set the addresses of all the output sections.  Walk through all the
2768 // elements, tracking the dot symbol.  Apply assignments which set
2769 // absolute symbol values, in case they are used when setting dot.
2770 // Fill in data statement values.  As we find output sections, set the
2771 // address, set the address of all associated input sections, and
2772 // update dot.  Return the segment which should hold the file header
2773 // and segment headers, if any.
2774
2775 Output_segment*
2776 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2777 {
2778   gold_assert(this->saw_sections_clause_);
2779
2780   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2781   // for our representation.
2782   for (Sections_elements::iterator p = this->sections_elements_->begin();
2783        p != this->sections_elements_->end();
2784        ++p)
2785     {
2786       Output_section_definition* posd;
2787       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2788       if (failed_constraint != CONSTRAINT_NONE)
2789         {
2790           Sections_elements::iterator q;
2791           for (q = this->sections_elements_->begin();
2792                q != this->sections_elements_->end();
2793                ++q)
2794             {
2795               if (q != p)
2796                 {
2797                   if ((*q)->alternate_constraint(posd, failed_constraint))
2798                     break;
2799                 }
2800             }
2801
2802           if (q == this->sections_elements_->end())
2803             gold_error(_("no matching section constraint"));
2804         }
2805     }
2806
2807   // Force the alignment of the first TLS section to be the maximum
2808   // alignment of all TLS sections.
2809   Output_section* first_tls = NULL;
2810   uint64_t tls_align = 0;
2811   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2812        p != this->sections_elements_->end();
2813        ++p)
2814     {
2815       Output_section *os = (*p)->get_output_section();
2816       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2817         {
2818           if (first_tls == NULL)
2819             first_tls = os;
2820           if (os->addralign() > tls_align)
2821             tls_align = os->addralign();
2822         }
2823     }
2824   if (first_tls != NULL)
2825     first_tls->set_addralign(tls_align);
2826
2827   // For a relocatable link, we implicitly set dot to zero.
2828   uint64_t dot_value = 0;
2829   uint64_t load_address = 0;
2830   for (Sections_elements::iterator p = this->sections_elements_->begin();
2831        p != this->sections_elements_->end();
2832        ++p)
2833     (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2834
2835   if (this->phdrs_elements_ != NULL)
2836     {
2837       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2838            p != this->phdrs_elements_->end();
2839            ++p)
2840         (*p)->eval_load_address(symtab, layout);
2841     }
2842
2843   return this->create_segments(layout);
2844 }
2845
2846 // Sort the sections in order to put them into segments.
2847
2848 class Sort_output_sections
2849 {
2850  public:
2851   bool
2852   operator()(const Output_section* os1, const Output_section* os2) const;
2853 };
2854
2855 bool
2856 Sort_output_sections::operator()(const Output_section* os1,
2857                                  const Output_section* os2) const
2858 {
2859   // Sort first by the load address.
2860   uint64_t lma1 = (os1->has_load_address()
2861                    ? os1->load_address()
2862                    : os1->address());
2863   uint64_t lma2 = (os2->has_load_address()
2864                    ? os2->load_address()
2865                    : os2->address());
2866   if (lma1 != lma2)
2867     return lma1 < lma2;
2868
2869   // Then sort by the virtual address.
2870   if (os1->address() != os2->address())
2871     return os1->address() < os2->address();
2872
2873   // Sort TLS sections to the end.
2874   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2875   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2876   if (tls1 != tls2)
2877     return tls2;
2878
2879   // Sort PROGBITS before NOBITS.
2880   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2881     return true;
2882   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2883     return false;
2884
2885   // Otherwise we don't care.
2886   return false;
2887 }
2888
2889 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2890 // We treat a section with the SHF_TLS flag set as taking up space
2891 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2892 // space for them in the file.
2893
2894 bool
2895 Script_sections::is_bss_section(const Output_section* os)
2896 {
2897   return (os->type() == elfcpp::SHT_NOBITS
2898           && (os->flags() & elfcpp::SHF_TLS) == 0);
2899 }
2900
2901 // Return the size taken by the file header and the program headers.
2902
2903 size_t
2904 Script_sections::total_header_size(Layout* layout) const
2905 {
2906   size_t segment_count = layout->segment_count();
2907   size_t file_header_size;
2908   size_t segment_headers_size;
2909   if (parameters->target().get_size() == 32)
2910     {
2911       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2912       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2913     }
2914   else if (parameters->target().get_size() == 64)
2915     {
2916       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2917       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2918     }
2919   else
2920     gold_unreachable();
2921
2922   return file_header_size + segment_headers_size;
2923 }
2924
2925 // Return the amount we have to subtract from the LMA to accomodate
2926 // headers of the given size.  The complication is that the file
2927 // header have to be at the start of a page, as otherwise it will not
2928 // be at the start of the file.
2929
2930 uint64_t
2931 Script_sections::header_size_adjustment(uint64_t lma,
2932                                         size_t sizeof_headers) const
2933 {
2934   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2935   uint64_t hdr_lma = lma - sizeof_headers;
2936   hdr_lma &= ~(abi_pagesize - 1);
2937   return lma - hdr_lma;
2938 }
2939
2940 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2941 // the segment which should hold the file header and segment headers,
2942 // if any.
2943
2944 Output_segment*
2945 Script_sections::create_segments(Layout* layout)
2946 {
2947   gold_assert(this->saw_sections_clause_);
2948
2949   if (parameters->options().relocatable())
2950     return NULL;
2951
2952   if (this->saw_phdrs_clause())
2953     return create_segments_from_phdrs_clause(layout);
2954
2955   Layout::Section_list sections;
2956   layout->get_allocated_sections(&sections);
2957
2958   // Sort the sections by address.
2959   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2960
2961   this->create_note_and_tls_segments(layout, &sections);
2962
2963   // Walk through the sections adding them to PT_LOAD segments.
2964   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2965   Output_segment* first_seg = NULL;
2966   Output_segment* current_seg = NULL;
2967   bool is_current_seg_readonly = true;
2968   Layout::Section_list::iterator plast = sections.end();
2969   uint64_t last_vma = 0;
2970   uint64_t last_lma = 0;
2971   uint64_t last_size = 0;
2972   for (Layout::Section_list::iterator p = sections.begin();
2973        p != sections.end();
2974        ++p)
2975     {
2976       const uint64_t vma = (*p)->address();
2977       const uint64_t lma = ((*p)->has_load_address()
2978                             ? (*p)->load_address()
2979                             : vma);
2980       const uint64_t size = (*p)->current_data_size();
2981
2982       bool need_new_segment;
2983       if (current_seg == NULL)
2984         need_new_segment = true;
2985       else if (lma - vma != last_lma - last_vma)
2986         {
2987           // This section has a different LMA relationship than the
2988           // last one; we need a new segment.
2989           need_new_segment = true;
2990         }
2991       else if (align_address(last_lma + last_size, abi_pagesize)
2992                < align_address(lma, abi_pagesize))
2993         {
2994           // Putting this section in the segment would require
2995           // skipping a page.
2996           need_new_segment = true;
2997         }
2998       else if (is_bss_section(*plast) && !is_bss_section(*p))
2999         {
3000           // A non-BSS section can not follow a BSS section in the
3001           // same segment.
3002           need_new_segment = true;
3003         }
3004       else if (is_current_seg_readonly
3005                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3006                && !parameters->options().omagic())
3007         {
3008           // Don't put a writable section in the same segment as a
3009           // non-writable section.
3010           need_new_segment = true;
3011         }
3012       else
3013         {
3014           // Otherwise, reuse the existing segment.
3015           need_new_segment = false;
3016         }
3017
3018       elfcpp::Elf_Word seg_flags =
3019         Layout::section_flags_to_segment((*p)->flags());
3020
3021       if (need_new_segment)
3022         {
3023           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3024                                                     seg_flags);
3025           current_seg->set_addresses(vma, lma);
3026           if (first_seg == NULL)
3027             first_seg = current_seg;
3028           is_current_seg_readonly = true;
3029         }
3030
3031       current_seg->add_output_section(*p, seg_flags);
3032
3033       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3034         is_current_seg_readonly = false;
3035
3036       plast = p;
3037       last_vma = vma;
3038       last_lma = lma;
3039       last_size = size;
3040     }
3041
3042   // An ELF program should work even if the program headers are not in
3043   // a PT_LOAD segment.  However, it appears that the Linux kernel
3044   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3045   // the load address to p_vaddr - p_offset of the first PT_LOAD
3046   // segment.  It then sets AT_PHDR to the load address plus the
3047   // offset to the program headers, e_phoff in the file header.  This
3048   // fails when the program headers appear in the file before the
3049   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3050   // segment to hold the file header and the program headers.  This is
3051   // effectively what the GNU linker does, and it is slightly more
3052   // efficient in any case.  We try to use the first PT_LOAD segment
3053   // if we can, otherwise we make a new one.
3054
3055   if (first_seg == NULL)
3056     return NULL;
3057
3058   // -n or -N mean that the program is not demand paged and there is
3059   // no need to put the program headers in a PT_LOAD segment.
3060   if (parameters->options().nmagic() || parameters->options().omagic())
3061     return NULL;
3062
3063   size_t sizeof_headers = this->total_header_size(layout);
3064
3065   uint64_t vma = first_seg->vaddr();
3066   uint64_t lma = first_seg->paddr();
3067
3068   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3069
3070   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3071     {
3072       first_seg->set_addresses(vma - subtract, lma - subtract);
3073       return first_seg;
3074     }
3075
3076   // If there is no room to squeeze in the headers, then punt.  The
3077   // resulting executable probably won't run on GNU/Linux, but we
3078   // trust that the user knows what they are doing.
3079   if (lma < subtract || vma < subtract)
3080     return NULL;
3081
3082   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3083                                                          elfcpp::PF_R);
3084   load_seg->set_addresses(vma - subtract, lma - subtract);
3085
3086   return load_seg;
3087 }
3088
3089 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3090 // segment if there are any SHT_TLS sections.
3091
3092 void
3093 Script_sections::create_note_and_tls_segments(
3094     Layout* layout,
3095     const Layout::Section_list* sections)
3096 {
3097   gold_assert(!this->saw_phdrs_clause());
3098
3099   bool saw_tls = false;
3100   for (Layout::Section_list::const_iterator p = sections->begin();
3101        p != sections->end();
3102        ++p)
3103     {
3104       if ((*p)->type() == elfcpp::SHT_NOTE)
3105         {
3106           elfcpp::Elf_Word seg_flags =
3107             Layout::section_flags_to_segment((*p)->flags());
3108           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3109                                                              seg_flags);
3110           oseg->add_output_section(*p, seg_flags);
3111
3112           // Incorporate any subsequent SHT_NOTE sections, in the
3113           // hopes that the script is sensible.
3114           Layout::Section_list::const_iterator pnext = p + 1;
3115           while (pnext != sections->end()
3116                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3117             {
3118               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3119               oseg->add_output_section(*pnext, seg_flags);
3120               p = pnext;
3121               ++pnext;
3122             }
3123         }
3124
3125       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3126         {
3127           if (saw_tls)
3128             gold_error(_("TLS sections are not adjacent"));
3129
3130           elfcpp::Elf_Word seg_flags =
3131             Layout::section_flags_to_segment((*p)->flags());
3132           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3133                                                              seg_flags);
3134           oseg->add_output_section(*p, seg_flags);
3135
3136           Layout::Section_list::const_iterator pnext = p + 1;
3137           while (pnext != sections->end()
3138                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3139             {
3140               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3141               oseg->add_output_section(*pnext, seg_flags);
3142               p = pnext;
3143               ++pnext;
3144             }
3145
3146           saw_tls = true;
3147         }
3148     }
3149 }
3150
3151 // Add a program header.  The PHDRS clause is syntactically distinct
3152 // from the SECTIONS clause, but we implement it with the SECTIONS
3153 // support because PHDRS is useless if there is no SECTIONS clause.
3154
3155 void
3156 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3157                           bool includes_filehdr, bool includes_phdrs,
3158                           bool is_flags_valid, unsigned int flags,
3159                           Expression* load_address)
3160 {
3161   if (this->phdrs_elements_ == NULL)
3162     this->phdrs_elements_ = new Phdrs_elements();
3163   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3164                                                      includes_filehdr,
3165                                                      includes_phdrs,
3166                                                      is_flags_valid, flags,
3167                                                      load_address));
3168 }
3169
3170 // Return the number of segments we expect to create based on the
3171 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3172
3173 size_t
3174 Script_sections::expected_segment_count(const Layout* layout) const
3175 {
3176   if (this->saw_phdrs_clause())
3177     return this->phdrs_elements_->size();
3178
3179   Layout::Section_list sections;
3180   layout->get_allocated_sections(&sections);
3181
3182   // We assume that we will need two PT_LOAD segments.
3183   size_t ret = 2;
3184
3185   bool saw_note = false;
3186   bool saw_tls = false;
3187   for (Layout::Section_list::const_iterator p = sections.begin();
3188        p != sections.end();
3189        ++p)
3190     {
3191       if ((*p)->type() == elfcpp::SHT_NOTE)
3192         {
3193           // Assume that all note sections will fit into a single
3194           // PT_NOTE segment.
3195           if (!saw_note)
3196             {
3197               ++ret;
3198               saw_note = true;
3199             }
3200         }
3201       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3202         {
3203           // There can only be one PT_TLS segment.
3204           if (!saw_tls)
3205             {
3206               ++ret;
3207               saw_tls = true;
3208             }
3209         }
3210     }
3211
3212   return ret;
3213 }
3214
3215 // Create the segments from a PHDRS clause.  Return the segment which
3216 // should hold the file header and program headers, if any.
3217
3218 Output_segment*
3219 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
3220 {
3221   this->attach_sections_using_phdrs_clause(layout);
3222   return this->set_phdrs_clause_addresses(layout);
3223 }
3224
3225 // Create the segments from the PHDRS clause, and put the output
3226 // sections in them.
3227
3228 void
3229 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3230 {
3231   typedef std::map<std::string, Output_segment*> Name_to_segment;
3232   Name_to_segment name_to_segment;
3233   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3234        p != this->phdrs_elements_->end();
3235        ++p)
3236     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3237
3238   // Walk through the output sections and attach them to segments.
3239   // Output sections in the script which do not list segments are
3240   // attached to the same set of segments as the immediately preceding
3241   // output section.
3242   
3243   String_list* phdr_names = NULL;
3244   bool load_segments_only = false;
3245   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3246        p != this->sections_elements_->end();
3247        ++p)
3248     {
3249       bool orphan;
3250       String_list* old_phdr_names = phdr_names;
3251       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3252       if (os == NULL)
3253         continue;
3254
3255       if (phdr_names == NULL)
3256         {
3257           gold_error(_("allocated section not in any segment"));
3258           continue;
3259         }
3260
3261       // We see a list of segments names.  Disable PT_LOAD segment only
3262       // filtering.
3263       if (old_phdr_names != phdr_names)
3264         load_segments_only = false;
3265                 
3266       // If this is an orphan section--one that was not explicitly
3267       // mentioned in the linker script--then it should not inherit
3268       // any segment type other than PT_LOAD.  Otherwise, e.g., the
3269       // PT_INTERP segment will pick up following orphan sections,
3270       // which does not make sense.  If this is not an orphan section,
3271       // we trust the linker script.
3272       if (orphan)
3273         {
3274           // Enable PT_LOAD segments only filtering until we see another
3275           // list of segment names.
3276           load_segments_only = true;
3277         }
3278
3279       bool in_load_segment = false;
3280       for (String_list::const_iterator q = phdr_names->begin();
3281            q != phdr_names->end();
3282            ++q)
3283         {
3284           Name_to_segment::const_iterator r = name_to_segment.find(*q);
3285           if (r == name_to_segment.end())
3286             gold_error(_("no segment %s"), q->c_str());
3287           else
3288             {
3289               if (load_segments_only
3290                   && r->second->type() != elfcpp::PT_LOAD)
3291                 continue;
3292
3293               elfcpp::Elf_Word seg_flags =
3294                 Layout::section_flags_to_segment(os->flags());
3295               r->second->add_output_section(os, seg_flags);
3296
3297               if (r->second->type() == elfcpp::PT_LOAD)
3298                 {
3299                   if (in_load_segment)
3300                     gold_error(_("section in two PT_LOAD segments"));
3301                   in_load_segment = true;
3302                 }
3303             }
3304         }
3305
3306       if (!in_load_segment)
3307         gold_error(_("allocated section not in any PT_LOAD segment"));
3308     }
3309 }
3310
3311 // Set the addresses for segments created from a PHDRS clause.  Return
3312 // the segment which should hold the file header and program headers,
3313 // if any.
3314
3315 Output_segment*
3316 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3317 {
3318   Output_segment* load_seg = NULL;
3319   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3320        p != this->phdrs_elements_->end();
3321        ++p)
3322     {
3323       // Note that we have to set the flags after adding the output
3324       // sections to the segment, as adding an output segment can
3325       // change the flags.
3326       (*p)->set_flags_if_valid();
3327
3328       Output_segment* oseg = (*p)->segment();
3329
3330       if (oseg->type() != elfcpp::PT_LOAD)
3331         {
3332           // The addresses of non-PT_LOAD segments are set from the
3333           // PT_LOAD segments.
3334           if ((*p)->has_load_address())
3335             gold_error(_("may only specify load address for PT_LOAD segment"));
3336           continue;
3337         }
3338
3339       // The output sections should have addresses from the SECTIONS
3340       // clause.  The addresses don't have to be in order, so find the
3341       // one with the lowest load address.  Use that to set the
3342       // address of the segment.
3343
3344       Output_section* osec = oseg->section_with_lowest_load_address();
3345       if (osec == NULL)
3346         {
3347           oseg->set_addresses(0, 0);
3348           continue;
3349         }
3350
3351       uint64_t vma = osec->address();
3352       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3353
3354       // Override the load address of the section with the load
3355       // address specified for the segment.
3356       if ((*p)->has_load_address())
3357         {
3358           if (osec->has_load_address())
3359             gold_warning(_("PHDRS load address overrides "
3360                            "section %s load address"),
3361                          osec->name());
3362
3363           lma = (*p)->load_address();
3364         }
3365
3366       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3367       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3368         {
3369           // We could support this if we wanted to.
3370           gold_error(_("using only one of FILEHDR and PHDRS is "
3371                        "not currently supported"));
3372         }
3373       if (headers)
3374         {
3375           size_t sizeof_headers = this->total_header_size(layout);
3376           uint64_t subtract = this->header_size_adjustment(lma,
3377                                                            sizeof_headers);
3378           if (lma >= subtract && vma >= subtract)
3379             {
3380               lma -= subtract;
3381               vma -= subtract;
3382             }
3383           else
3384             {
3385               gold_error(_("sections loaded on first page without room "
3386                            "for file and program headers "
3387                            "are not supported"));
3388             }
3389
3390           if (load_seg != NULL)
3391             gold_error(_("using FILEHDR and PHDRS on more than one "
3392                          "PT_LOAD segment is not currently supported"));
3393           load_seg = oseg;
3394         }
3395
3396       oseg->set_addresses(vma, lma);
3397     }
3398
3399   return load_seg;
3400 }
3401
3402 // Add the file header and segment headers to non-load segments
3403 // specified in the PHDRS clause.
3404
3405 void
3406 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3407                                       Output_data* segment_headers)
3408 {
3409   gold_assert(this->saw_phdrs_clause());
3410   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3411        p != this->phdrs_elements_->end();
3412        ++p)
3413     {
3414       if ((*p)->type() != elfcpp::PT_LOAD)
3415         {
3416           if ((*p)->includes_phdrs())
3417             (*p)->segment()->add_initial_output_data(segment_headers);
3418           if ((*p)->includes_filehdr())
3419             (*p)->segment()->add_initial_output_data(file_header);
3420         }
3421     }
3422 }
3423
3424 // Look for an output section by name and return the address, the load
3425 // address, the alignment, and the size.  This is used when an
3426 // expression refers to an output section which was not actually
3427 // created.  This returns true if the section was found, false
3428 // otherwise.
3429
3430 bool
3431 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3432                                          uint64_t* load_address,
3433                                          uint64_t* addralign,
3434                                          uint64_t* size) const
3435 {
3436   if (!this->saw_sections_clause_)
3437     return false;
3438   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3439        p != this->sections_elements_->end();
3440        ++p)
3441     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3442                                       size))
3443       return true;
3444   return false;
3445 }
3446
3447 // Release all Output_segments.  This remove all pointers to all
3448 // Output_segments.
3449
3450 void
3451 Script_sections::release_segments()
3452 {
3453   if (this->saw_phdrs_clause())
3454     {
3455       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3456            p != this->phdrs_elements_->end();
3457            ++p)
3458         (*p)->release_segment();
3459     }
3460 }
3461
3462 // Print the SECTIONS clause to F for debugging.
3463
3464 void
3465 Script_sections::print(FILE* f) const
3466 {
3467   if (!this->saw_sections_clause_)
3468     return;
3469
3470   fprintf(f, "SECTIONS {\n");
3471
3472   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3473        p != this->sections_elements_->end();
3474        ++p)
3475     (*p)->print(f);
3476
3477   fprintf(f, "}\n");
3478
3479   if (this->phdrs_elements_ != NULL)
3480     {
3481       fprintf(f, "PHDRS {\n");
3482       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3483            p != this->phdrs_elements_->end();
3484            ++p)
3485         (*p)->print(f);
3486       fprintf(f, "}\n");
3487     }
3488 }
3489
3490 } // End namespace gold.