Print PHDRS clause for debugging.
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50  public:
51   Sections_element()
52   { }
53
54   virtual ~Sections_element()
55   { }
56
57   // Add any symbol being defined to the symbol table.
58   virtual void
59   add_symbols_to_table(Symbol_table*)
60   { }
61
62   // Finalize symbols and check assertions.
63   virtual void
64   finalize_symbols(Symbol_table*, const Layout*, bool*, uint64_t*)
65   { }
66
67   // Return the output section name to use for an input file name and
68   // section name.  This only real implementation is in
69   // Output_section_definition.
70   virtual const char*
71   output_section_name(const char*, const char*, Output_section***)
72   { return NULL; }
73
74   // Return whether to place an orphan output section after this
75   // element.
76   virtual bool
77   place_orphan_here(const Output_section *, bool*) const
78   { return false; }
79
80   // Set section addresses.  This includes applying assignments if the
81   // the expression is an absolute value.
82   virtual void
83   set_section_addresses(Symbol_table*, Layout*, bool*, uint64_t*)
84   { }
85
86   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
87   // this section is constrained, and the input sections do not match,
88   // return the constraint, and set *POSD.
89   virtual Section_constraint
90   check_constraint(Output_section_definition**)
91   { return CONSTRAINT_NONE; }
92
93   // See if this is the alternate output section for a constrained
94   // output section.  If it is, transfer the Output_section and return
95   // true.  Otherwise return false.
96   virtual bool
97   alternate_constraint(Output_section_definition*, Section_constraint)
98   { return false; }
99
100   // Get the list of segments to use for an allocated section when
101   // using a PHDRS clause.  If this is an allocated section, return
102   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
103   // which it should be attached.  If the PHDRS were not specified,
104   // don't change *PHDRS_LIST.
105   virtual Output_section*
106   allocate_to_segment(String_list**)
107   { return NULL; }
108
109   // Print the element for debugging purposes.
110   virtual void
111   print(FILE* f) const = 0;
112 };
113
114 // An assignment in a SECTIONS clause outside of an output section.
115
116 class Sections_element_assignment : public Sections_element
117 {
118  public:
119   Sections_element_assignment(const char* name, size_t namelen,
120                               Expression* val, bool provide, bool hidden)
121     : assignment_(name, namelen, val, provide, hidden)
122   { }
123
124   // Add the symbol to the symbol table.
125   void
126   add_symbols_to_table(Symbol_table* symtab)
127   { this->assignment_.add_to_table(symtab); }
128
129   // Finalize the symbol.
130   void
131   finalize_symbols(Symbol_table* symtab, const Layout* layout,
132                    bool* dot_has_value, uint64_t* dot_value)
133   {
134     this->assignment_.finalize_with_dot(symtab, layout, *dot_has_value,
135                                         *dot_value);
136   }
137
138   // Set the section address.  There is no section here, but if the
139   // value is absolute, we set the symbol.  This permits us to use
140   // absolute symbols when setting dot.
141   void
142   set_section_addresses(Symbol_table* symtab, Layout* layout,
143                         bool* dot_has_value, uint64_t* dot_value)
144   {
145     this->assignment_.set_if_absolute(symtab, layout, true, *dot_has_value,
146                                       *dot_value);
147   }
148
149   // Print for debugging.
150   void
151   print(FILE* f) const
152   {
153     fprintf(f, "  ");
154     this->assignment_.print(f);
155   }
156
157  private:
158   Symbol_assignment assignment_;
159 };
160
161 // An assignment to the dot symbol in a SECTIONS clause outside of an
162 // output section.
163
164 class Sections_element_dot_assignment : public Sections_element
165 {
166  public:
167   Sections_element_dot_assignment(Expression* val)
168     : val_(val)
169   { }
170
171   // Finalize the symbol.
172   void
173   finalize_symbols(Symbol_table* symtab, const Layout* layout,
174                    bool* dot_has_value, uint64_t* dot_value)
175   {
176     bool dummy;
177     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_has_value,
178                                            *dot_value, &dummy);
179     *dot_has_value = true;
180   }
181
182   // Update the dot symbol while setting section addresses.
183   void
184   set_section_addresses(Symbol_table* symtab, Layout* layout,
185                         bool* dot_has_value, uint64_t* dot_value)
186   {
187     bool is_absolute;
188     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_has_value,
189                                            *dot_value, &is_absolute);
190     if (!is_absolute)
191       gold_error(_("dot set to non-absolute value"));
192     *dot_has_value = true;
193   }
194
195   // Print for debugging.
196   void
197   print(FILE* f) const
198   {
199     fprintf(f, "  . = ");
200     this->val_->print(f);
201     fprintf(f, "\n");
202   }
203
204  private:
205   Expression* val_;
206 };
207
208 // An assertion in a SECTIONS clause outside of an output section.
209
210 class Sections_element_assertion : public Sections_element
211 {
212  public:
213   Sections_element_assertion(Expression* check, const char* message,
214                              size_t messagelen)
215     : assertion_(check, message, messagelen)
216   { }
217
218   // Check the assertion.
219   void
220   finalize_symbols(Symbol_table* symtab, const Layout* layout, bool*,
221                    uint64_t*)
222   { this->assertion_.check(symtab, layout); }
223
224   // Print for debugging.
225   void
226   print(FILE* f) const
227   {
228     fprintf(f, "  ");
229     this->assertion_.print(f);
230   }
231
232  private:
233   Script_assertion assertion_;
234 };
235
236 // An element in an output section in a SECTIONS clause.
237
238 class Output_section_element
239 {
240  public:
241   // A list of input sections.
242   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
243
244   Output_section_element()
245   { }
246
247   virtual ~Output_section_element()
248   { }
249
250   // Add any symbol being defined to the symbol table.
251   virtual void
252   add_symbols_to_table(Symbol_table*)
253   { }
254
255   // Finalize symbols and check assertions.
256   virtual void
257   finalize_symbols(Symbol_table*, const Layout*, bool*, uint64_t*)
258   { }
259
260   // Return whether this element matches FILE_NAME and SECTION_NAME.
261   // The only real implementation is in Output_section_element_input.
262   virtual bool
263   match_name(const char*, const char*) const
264   { return false; }
265
266   // Set section addresses.  This includes applying assignments if the
267   // the expression is an absolute value.
268   virtual void
269   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
270                         uint64_t*, std::string*, Input_section_list*)
271   { }
272
273   // Print the element for debugging purposes.
274   virtual void
275   print(FILE* f) const = 0;
276
277  protected:
278   // Return a fill string that is LENGTH bytes long, filling it with
279   // FILL.
280   std::string
281   get_fill_string(const std::string* fill, section_size_type length) const;
282 };
283
284 std::string
285 Output_section_element::get_fill_string(const std::string* fill,
286                                         section_size_type length) const
287 {
288   std::string this_fill;
289   this_fill.reserve(length);
290   while (this_fill.length() + fill->length() <= length)
291     this_fill += *fill;
292   if (this_fill.length() < length)
293     this_fill.append(*fill, 0, length - this_fill.length());
294   return this_fill;
295 }
296
297 // A symbol assignment in an output section.
298
299 class Output_section_element_assignment : public Output_section_element
300 {
301  public:
302   Output_section_element_assignment(const char* name, size_t namelen,
303                                     Expression* val, bool provide,
304                                     bool hidden)
305     : assignment_(name, namelen, val, provide, hidden)
306   { }
307
308   // Add the symbol to the symbol table.
309   void
310   add_symbols_to_table(Symbol_table* symtab)
311   { this->assignment_.add_to_table(symtab); }
312
313   // Finalize the symbol.
314   void
315   finalize_symbols(Symbol_table* symtab, const Layout* layout,
316                    bool* dot_has_value, uint64_t* dot_value)
317   {
318     this->assignment_.finalize_with_dot(symtab, layout, *dot_has_value,
319                                         *dot_value);
320   }
321
322   // Set the section address.  There is no section here, but if the
323   // value is absolute, we set the symbol.  This permits us to use
324   // absolute symbols when setting dot.
325   void
326   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
327                         uint64_t, uint64_t* dot_value, std::string*,
328                         Input_section_list*)
329   {
330     this->assignment_.set_if_absolute(symtab, layout, true, true, *dot_value);
331   }
332
333   // Print for debugging.
334   void
335   print(FILE* f) const
336   {
337     fprintf(f, "    ");
338     this->assignment_.print(f);
339   }
340
341  private:
342   Symbol_assignment assignment_;
343 };
344
345 // An assignment to the dot symbol in an output section.
346
347 class Output_section_element_dot_assignment : public Output_section_element
348 {
349  public:
350   Output_section_element_dot_assignment(Expression* val)
351     : val_(val)
352   { }
353
354   // Finalize the symbol.
355   void
356   finalize_symbols(Symbol_table* symtab, const Layout* layout,
357                    bool* dot_has_value, uint64_t* dot_value)
358   {
359     bool dummy;
360     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_has_value,
361                                            *dot_value, &dummy);
362     *dot_has_value = true;
363   }
364
365   // Update the dot symbol while setting section addresses.
366   void
367   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
368                         uint64_t, uint64_t* dot_value, std::string*,
369                         Input_section_list*);
370
371   // Print for debugging.
372   void
373   print(FILE* f) const
374   {
375     fprintf(f, "    . = ");
376     this->val_->print(f);
377     fprintf(f, "\n");
378   }
379
380  private:
381   Expression* val_;
382 };
383
384 // Update the dot symbol while setting section addresses.
385
386 void
387 Output_section_element_dot_assignment::set_section_addresses(
388     Symbol_table* symtab,
389     Layout* layout,
390     Output_section* output_section,
391     uint64_t,
392     uint64_t* dot_value,
393     std::string* fill,
394     Input_section_list*)
395 {
396   bool is_absolute;
397   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, true,
398                                                 *dot_value, &is_absolute);
399   if (!is_absolute)
400     gold_error(_("dot set to non-absolute value"));
401   if (next_dot < *dot_value)
402     gold_error(_("dot may not move backward"));
403   if (next_dot > *dot_value && output_section != NULL)
404     {
405       section_size_type length = convert_to_section_size_type(next_dot
406                                                               - *dot_value);
407       Output_section_data* posd;
408       if (fill->empty())
409         posd = new Output_data_fixed_space(length, 0);
410       else
411         {
412           std::string this_fill = this->get_fill_string(fill, length);
413           posd = new Output_data_const(this_fill, 0);
414         }
415       output_section->add_output_section_data(posd);
416     }
417   *dot_value = next_dot;
418 }
419
420 // An assertion in an output section.
421
422 class Output_section_element_assertion : public Output_section_element
423 {
424  public:
425   Output_section_element_assertion(Expression* check, const char* message,
426                                    size_t messagelen)
427     : assertion_(check, message, messagelen)
428   { }
429
430   void
431   print(FILE* f) const
432   {
433     fprintf(f, "    ");
434     this->assertion_.print(f);
435   }
436
437  private:
438   Script_assertion assertion_;
439 };
440
441 // A data item in an output section.
442
443 class Output_section_element_data : public Output_section_element
444 {
445  public:
446   Output_section_element_data(int size, bool is_signed, Expression* val)
447     : size_(size), is_signed_(is_signed), val_(val)
448   { }
449
450   // Finalize symbols--we just need to update dot.
451   void
452   finalize_symbols(Symbol_table*, const Layout*, bool*, uint64_t* dot_value)
453   { *dot_value += this->size_; }
454
455   // Store the value in the section.
456   void
457   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
458                         uint64_t* dot_value, std::string*,
459                         Input_section_list*);
460
461   // Print for debugging.
462   void
463   print(FILE*) const;
464
465  private:
466   template<bool big_endian>
467   std::string
468   set_fill_string(uint64_t);
469
470   // The size in bytes.
471   int size_;
472   // Whether the value is signed.
473   bool is_signed_;
474   // The value.
475   Expression* val_;
476 };
477
478 // Store the value in the section.
479
480 void
481 Output_section_element_data::set_section_addresses(Symbol_table* symtab,
482                                                    Layout* layout,
483                                                    Output_section* os,
484                                                    uint64_t,
485                                                    uint64_t* dot_value,
486                                                    std::string*,
487                                                    Input_section_list*)
488 {
489   gold_assert(os != NULL);
490
491   bool is_absolute;
492   uint64_t val = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
493                                            &is_absolute);
494   if (!is_absolute)
495     gold_error(_("data directive with non-absolute value"));
496
497   std::string fill;
498   if (parameters->is_big_endian())
499     fill = this->set_fill_string<true>(val);
500   else
501     fill = this->set_fill_string<false>(val);
502
503   os->add_output_section_data(new Output_data_const(fill, 0));
504
505   *dot_value += this->size_;
506 }
507
508 // Get the value to store in a std::string.
509
510 template<bool big_endian>
511 std::string
512     Output_section_element_data::set_fill_string(uint64_t val)
513 {
514   std::string ret;
515   unsigned char buf[8];
516   switch (this->size_)
517     {
518     case 1:
519       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
520       ret.assign(reinterpret_cast<char*>(buf), 1);
521       break;
522     case 2:
523       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
524       ret.assign(reinterpret_cast<char*>(buf), 2);
525       break;
526     case 4:
527       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
528       ret.assign(reinterpret_cast<char*>(buf), 4);
529       break;
530     case 8:
531       if (parameters->get_size() == 32)
532         {
533           val &= 0xffffffff;
534           if (this->is_signed_ && (val & 0x80000000) != 0)
535             val |= 0xffffffff00000000LL;
536         }
537       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
538       ret.assign(reinterpret_cast<char*>(buf), 8);
539       break;
540     default:
541       gold_unreachable();
542     }
543   return ret;
544 }
545
546 // Print for debugging.
547
548 void
549 Output_section_element_data::print(FILE* f) const
550 {
551   const char* s;
552   switch (this->size_)
553     {
554     case 1:
555       s = "BYTE";
556       break;
557     case 2:
558       s = "SHORT";
559       break;
560     case 4:
561       s = "LONG";
562       break;
563     case 8:
564       if (this->is_signed_)
565         s = "SQUAD";
566       else
567         s = "QUAD";
568       break;
569     default:
570       gold_unreachable();
571     }
572   fprintf(f, "    %s(", s);
573   this->val_->print(f);
574   fprintf(f, ")\n");
575 }
576
577 // A fill value setting in an output section.
578
579 class Output_section_element_fill : public Output_section_element
580 {
581  public:
582   Output_section_element_fill(Expression* val)
583     : val_(val)
584   { }
585
586   // Update the fill value while setting section addresses.
587   void
588   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
589                         uint64_t, uint64_t* dot_value, std::string* fill,
590                         Input_section_list*)
591   {
592     bool is_absolute;
593     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, true,
594                                                   *dot_value,
595                                                   &is_absolute);
596     if (!is_absolute)
597       gold_error(_("fill set to non-absolute value"));
598     // FIXME: The GNU linker supports fill values of arbitrary length.
599     unsigned char fill_buff[4];
600     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
601     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
602   }
603
604   // Print for debugging.
605   void
606   print(FILE* f) const
607   {
608     fprintf(f, "    FILL(");
609     this->val_->print(f);
610     fprintf(f, ")\n");
611   }
612
613  private:
614   // The new fill value.
615   Expression* val_;
616 };
617
618 // Return whether STRING contains a wildcard character.  This is used
619 // to speed up matching.
620
621 static inline bool
622 is_wildcard_string(const std::string& s)
623 {
624   return strpbrk(s.c_str(), "?*[") != NULL;
625 }
626
627 // An input section specification in an output section
628
629 class Output_section_element_input : public Output_section_element
630 {
631  public:
632   Output_section_element_input(const Input_section_spec* spec, bool keep);
633
634   // Finalize symbols--just update the value of the dot symbol.
635   void
636   finalize_symbols(Symbol_table*, const Layout*, bool* dot_has_value,
637                    uint64_t* dot_value)
638   {
639     *dot_value = this->final_dot_value_;
640     *dot_has_value = true;
641   }
642
643   // See whether we match FILE_NAME and SECTION_NAME as an input
644   // section.
645   bool
646   match_name(const char* file_name, const char* section_name) const;
647
648   // Set the section address.
649   void
650   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
651                         uint64_t subalign, uint64_t* dot_value,
652                         std::string* fill, Input_section_list*);
653
654   // Print for debugging.
655   void
656   print(FILE* f) const;
657
658  private:
659   // An input section pattern.
660   struct Input_section_pattern
661   {
662     std::string pattern;
663     bool pattern_is_wildcard;
664     Sort_wildcard sort;
665
666     Input_section_pattern(const char* patterna, size_t patternlena,
667                           Sort_wildcard sorta)
668       : pattern(patterna, patternlena),
669         pattern_is_wildcard(is_wildcard_string(this->pattern)),
670         sort(sorta)
671     { }
672   };
673
674   typedef std::vector<Input_section_pattern> Input_section_patterns;
675
676   // Filename_exclusions is a pair of filename pattern and a bool
677   // indicating whether the filename is a wildcard.
678   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
679
680   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
681   // indicates whether this is a wildcard pattern.
682   static inline bool
683   match(const char* string, const char* pattern, bool is_wildcard_pattern)
684   {
685     return (is_wildcard_pattern
686             ? fnmatch(pattern, string, 0) == 0
687             : strcmp(string, pattern) == 0);
688   }
689
690   // See if we match a file name.
691   bool
692   match_file_name(const char* file_name) const;
693
694   // The file name pattern.  If this is the empty string, we match all
695   // files.
696   std::string filename_pattern_;
697   // Whether the file name pattern is a wildcard.
698   bool filename_is_wildcard_;
699   // How the file names should be sorted.  This may only be
700   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
701   Sort_wildcard filename_sort_;
702   // The list of file names to exclude.
703   Filename_exclusions filename_exclusions_;
704   // The list of input section patterns.
705   Input_section_patterns input_section_patterns_;
706   // Whether to keep this section when garbage collecting.
707   bool keep_;
708   // The value of dot after including all matching sections.
709   uint64_t final_dot_value_;
710 };
711
712 // Construct Output_section_element_input.  The parser records strings
713 // as pointers into a copy of the script file, which will go away when
714 // parsing is complete.  We make sure they are in std::string objects.
715
716 Output_section_element_input::Output_section_element_input(
717     const Input_section_spec* spec,
718     bool keep)
719   : filename_pattern_(),
720     filename_is_wildcard_(false),
721     filename_sort_(spec->file.sort),
722     filename_exclusions_(),
723     input_section_patterns_(),
724     keep_(keep),
725     final_dot_value_(0)
726 {
727   // The filename pattern "*" is common, and matches all files.  Turn
728   // it into the empty string.
729   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
730     this->filename_pattern_.assign(spec->file.name.value,
731                                    spec->file.name.length);
732   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
733
734   if (spec->input_sections.exclude != NULL)
735     {
736       for (String_list::const_iterator p =
737              spec->input_sections.exclude->begin();
738            p != spec->input_sections.exclude->end();
739            ++p)
740         {
741           bool is_wildcard = is_wildcard_string(*p);
742           this->filename_exclusions_.push_back(std::make_pair(*p,
743                                                               is_wildcard));
744         }
745     }
746
747   if (spec->input_sections.sections != NULL)
748     {
749       Input_section_patterns& isp(this->input_section_patterns_);
750       for (String_sort_list::const_iterator p =
751              spec->input_sections.sections->begin();
752            p != spec->input_sections.sections->end();
753            ++p)
754         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
755                                             p->sort));
756     }
757 }
758
759 // See whether we match FILE_NAME.
760
761 bool
762 Output_section_element_input::match_file_name(const char* file_name) const
763 {
764   if (!this->filename_pattern_.empty())
765     {
766       // If we were called with no filename, we refuse to match a
767       // pattern which requires a file name.
768       if (file_name == NULL)
769         return false;
770
771       if (!match(file_name, this->filename_pattern_.c_str(),
772                  this->filename_is_wildcard_))
773         return false;
774     }
775
776   if (file_name != NULL)
777     {
778       // Now we have to see whether FILE_NAME matches one of the
779       // exclusion patterns, if any.
780       for (Filename_exclusions::const_iterator p =
781              this->filename_exclusions_.begin();
782            p != this->filename_exclusions_.end();
783            ++p)
784         {
785           if (match(file_name, p->first.c_str(), p->second))
786             return false;
787         }
788     }
789
790   return true;
791 }
792
793 // See whether we match FILE_NAME and SECTION_NAME.
794
795 bool
796 Output_section_element_input::match_name(const char* file_name,
797                                          const char* section_name) const
798 {
799   if (!this->match_file_name(file_name))
800     return false;
801
802   // If there are no section name patterns, then we match.
803   if (this->input_section_patterns_.empty())
804     return true;
805
806   // See whether we match the section name patterns.
807   for (Input_section_patterns::const_iterator p =
808          this->input_section_patterns_.begin();
809        p != this->input_section_patterns_.end();
810        ++p)
811     {
812       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
813         return true;
814     }
815
816   // We didn't match any section names, so we didn't match.
817   return false;
818 }
819
820 // Information we use to sort the input sections.
821
822 struct Input_section_info
823 {
824   Relobj* relobj;
825   unsigned int shndx;
826   std::string section_name;
827   uint64_t size;
828   uint64_t addralign;
829 };
830
831 // A class to sort the input sections.
832
833 class Input_section_sorter
834 {
835  public:
836   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
837     : filename_sort_(filename_sort), section_sort_(section_sort)
838   { }
839
840   bool
841   operator()(const Input_section_info&, const Input_section_info&) const;
842
843  private:
844   Sort_wildcard filename_sort_;
845   Sort_wildcard section_sort_;
846 };
847
848 bool
849 Input_section_sorter::operator()(const Input_section_info& isi1,
850                                  const Input_section_info& isi2) const
851 {
852   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
853       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
854       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
855           && isi1.addralign == isi2.addralign))
856     {
857       if (isi1.section_name != isi2.section_name)
858         return isi1.section_name < isi2.section_name;
859     }
860   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
861       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
862       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
863     {
864       if (isi1.addralign != isi2.addralign)
865         return isi1.addralign < isi2.addralign;
866     }
867   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
868     {
869       if (isi1.relobj->name() != isi2.relobj->name())
870         return isi1.relobj->name() < isi2.relobj->name();
871     }
872
873   // Otherwise we leave them in the same order.
874   return false;
875 }
876
877 // Set the section address.  Look in INPUT_SECTIONS for sections which
878 // match this spec, sort them as specified, and add them to the output
879 // section.
880
881 void
882 Output_section_element_input::set_section_addresses(
883     Symbol_table*,
884     Layout*,
885     Output_section* output_section,
886     uint64_t subalign,
887     uint64_t* dot_value,
888     std::string* fill,
889     Input_section_list* input_sections)
890 {
891   // We build a list of sections which match each
892   // Input_section_pattern.
893
894   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
895   size_t input_pattern_count = this->input_section_patterns_.size();
896   if (input_pattern_count == 0)
897     input_pattern_count = 1;
898   Matching_sections matching_sections(input_pattern_count);
899
900   // Look through the list of sections for this output section.  Add
901   // each one which matches to one of the elements of
902   // MATCHING_SECTIONS.
903
904   Input_section_list::iterator p = input_sections->begin();
905   while (p != input_sections->end())
906     {
907       // Calling section_name and section_addralign is not very
908       // efficient.
909       Input_section_info isi;
910       isi.relobj = p->first;
911       isi.shndx = p->second;
912
913       // Lock the object so that we can get information about the
914       // section.  This is OK since we know we are single-threaded
915       // here.
916       {
917         const Task* task = reinterpret_cast<const Task*>(-1);
918         Task_lock_obj<Object> tl(task, p->first);
919
920         isi.section_name = p->first->section_name(p->second);
921         isi.size = p->first->section_size(p->second);
922         isi.addralign = p->first->section_addralign(p->second);
923       }
924
925       if (!this->match_file_name(isi.relobj->name().c_str()))
926         ++p;
927       else if (this->input_section_patterns_.empty())
928         {
929           matching_sections[0].push_back(isi);
930           p = input_sections->erase(p);
931         }
932       else
933         {
934           size_t i;
935           for (i = 0; i < input_pattern_count; ++i)
936             {
937               const Input_section_pattern&
938                 isp(this->input_section_patterns_[i]);
939               if (match(isi.section_name.c_str(), isp.pattern.c_str(),
940                         isp.pattern_is_wildcard))
941                 break;
942             }
943
944           if (i >= this->input_section_patterns_.size())
945             ++p;
946           else
947             {
948               matching_sections[i].push_back(isi);
949               p = input_sections->erase(p);
950             }
951         }
952     }
953
954   // Look through MATCHING_SECTIONS.  Sort each one as specified,
955   // using a stable sort so that we get the default order when
956   // sections are otherwise equal.  Add each input section to the
957   // output section.
958
959   for (size_t i = 0; i < input_pattern_count; ++i)
960     {
961       if (matching_sections[i].empty())
962         continue;
963
964       gold_assert(output_section != NULL);
965
966       const Input_section_pattern& isp(this->input_section_patterns_[i]);
967       if (isp.sort != SORT_WILDCARD_NONE
968           || this->filename_sort_ != SORT_WILDCARD_NONE)
969         std::stable_sort(matching_sections[i].begin(),
970                          matching_sections[i].end(),
971                          Input_section_sorter(this->filename_sort_,
972                                               isp.sort));
973
974       for (std::vector<Input_section_info>::const_iterator p =
975              matching_sections[i].begin();
976            p != matching_sections[i].end();
977            ++p)
978         {
979           uint64_t this_subalign = p->addralign;
980           if (this_subalign < subalign)
981             this_subalign = subalign;
982
983           uint64_t address = align_address(*dot_value, this_subalign);
984
985           if (address > *dot_value && !fill->empty())
986             {
987               section_size_type length =
988                 convert_to_section_size_type(address - *dot_value);
989               std::string this_fill = this->get_fill_string(fill, length);
990               Output_section_data* posd = new Output_data_const(this_fill, 0);
991               output_section->add_output_section_data(posd);
992             }
993
994           output_section->add_input_section_for_script(p->relobj,
995                                                        p->shndx,
996                                                        p->size,
997                                                        this_subalign);
998
999           *dot_value = address + p->size;
1000         }
1001     }
1002
1003   this->final_dot_value_ = *dot_value;
1004 }
1005
1006 // Print for debugging.
1007
1008 void
1009 Output_section_element_input::print(FILE* f) const
1010 {
1011   fprintf(f, "    ");
1012
1013   if (this->keep_)
1014     fprintf(f, "KEEP(");
1015
1016   if (!this->filename_pattern_.empty())
1017     {
1018       bool need_close_paren = false;
1019       switch (this->filename_sort_)
1020         {
1021         case SORT_WILDCARD_NONE:
1022           break;
1023         case SORT_WILDCARD_BY_NAME:
1024           fprintf(f, "SORT_BY_NAME(");
1025           need_close_paren = true;
1026           break;
1027         default:
1028           gold_unreachable();
1029         }
1030
1031       fprintf(f, "%s", this->filename_pattern_.c_str());
1032
1033       if (need_close_paren)
1034         fprintf(f, ")");
1035     }
1036
1037   if (!this->input_section_patterns_.empty()
1038       || !this->filename_exclusions_.empty())
1039     {
1040       fprintf(f, "(");
1041
1042       bool need_space = false;
1043       if (!this->filename_exclusions_.empty())
1044         {
1045           fprintf(f, "EXCLUDE_FILE(");
1046           bool need_comma = false;
1047           for (Filename_exclusions::const_iterator p =
1048                  this->filename_exclusions_.begin();
1049                p != this->filename_exclusions_.end();
1050                ++p)
1051             {
1052               if (need_comma)
1053                 fprintf(f, ", ");
1054               fprintf(f, "%s", p->first.c_str());
1055               need_comma = true;
1056             }
1057           fprintf(f, ")");
1058           need_space = true;
1059         }
1060
1061       for (Input_section_patterns::const_iterator p =
1062              this->input_section_patterns_.begin();
1063            p != this->input_section_patterns_.end();
1064            ++p)
1065         {
1066           if (need_space)
1067             fprintf(f, " ");
1068
1069           int close_parens = 0;
1070           switch (p->sort)
1071             {
1072             case SORT_WILDCARD_NONE:
1073               break;
1074             case SORT_WILDCARD_BY_NAME:
1075               fprintf(f, "SORT_BY_NAME(");
1076               close_parens = 1;
1077               break;
1078             case SORT_WILDCARD_BY_ALIGNMENT:
1079               fprintf(f, "SORT_BY_ALIGNMENT(");
1080               close_parens = 1;
1081               break;
1082             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1083               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1084               close_parens = 2;
1085               break;
1086             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1087               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1088               close_parens = 2;
1089               break;
1090             default:
1091               gold_unreachable();
1092             }
1093
1094           fprintf(f, "%s", p->pattern.c_str());
1095
1096           for (int i = 0; i < close_parens; ++i)
1097             fprintf(f, ")");
1098
1099           need_space = true;
1100         }
1101
1102       fprintf(f, ")");
1103     }
1104
1105   if (this->keep_)
1106     fprintf(f, ")");
1107
1108   fprintf(f, "\n");
1109 }
1110
1111 // An output section.
1112
1113 class Output_section_definition : public Sections_element
1114 {
1115  public:
1116   typedef Output_section_element::Input_section_list Input_section_list;
1117
1118   Output_section_definition(const char* name, size_t namelen,
1119                             const Parser_output_section_header* header);
1120
1121   // Finish the output section with the information in the trailer.
1122   void
1123   finish(const Parser_output_section_trailer* trailer);
1124
1125   // Add a symbol to be defined.
1126   void
1127   add_symbol_assignment(const char* name, size_t length, Expression* value,
1128                         bool provide, bool hidden);
1129
1130   // Add an assignment to the special dot symbol.
1131   void
1132   add_dot_assignment(Expression* value);
1133
1134   // Add an assertion.
1135   void
1136   add_assertion(Expression* check, const char* message, size_t messagelen);
1137
1138   // Add a data item to the current output section.
1139   void
1140   add_data(int size, bool is_signed, Expression* val);
1141
1142   // Add a setting for the fill value.
1143   void
1144   add_fill(Expression* val);
1145
1146   // Add an input section specification.
1147   void
1148   add_input_section(const Input_section_spec* spec, bool keep);
1149
1150   // Add any symbols being defined to the symbol table.
1151   void
1152   add_symbols_to_table(Symbol_table* symtab);
1153
1154   // Finalize symbols and check assertions.
1155   void
1156   finalize_symbols(Symbol_table*, const Layout*, bool*, uint64_t*);
1157
1158   // Return the output section name to use for an input file name and
1159   // section name.
1160   const char*
1161   output_section_name(const char* file_name, const char* section_name,
1162                       Output_section***);
1163
1164   // Return whether to place an orphan section after this one.
1165   bool
1166   place_orphan_here(const Output_section *os, bool* exact) const;
1167
1168   // Set the section address.
1169   void
1170   set_section_addresses(Symbol_table* symtab, Layout* layout,
1171                         bool* dot_has_value, uint64_t* dot_value);
1172
1173   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1174   // this section is constrained, and the input sections do not match,
1175   // return the constraint, and set *POSD.
1176   Section_constraint
1177   check_constraint(Output_section_definition** posd);
1178
1179   // See if this is the alternate output section for a constrained
1180   // output section.  If it is, transfer the Output_section and return
1181   // true.  Otherwise return false.
1182   bool
1183   alternate_constraint(Output_section_definition*, Section_constraint);
1184
1185   // Get the list of segments to use for an allocated section when
1186   // using a PHDRS clause.  If this is an allocated section, return
1187   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
1188   // which it should be attached.  If the PHDRS were not specified,
1189   // don't change *PHDRS_LIST.
1190   Output_section*
1191   allocate_to_segment(String_list** phdrs_list);
1192
1193   // Print the contents to the FILE.  This is for debugging.
1194   void
1195   print(FILE*) const;
1196
1197  private:
1198   typedef std::vector<Output_section_element*> Output_section_elements;
1199
1200   // The output section name.
1201   std::string name_;
1202   // The address.  This may be NULL.
1203   Expression* address_;
1204   // The load address.  This may be NULL.
1205   Expression* load_address_;
1206   // The alignment.  This may be NULL.
1207   Expression* align_;
1208   // The input section alignment.  This may be NULL.
1209   Expression* subalign_;
1210   // The constraint, if any.
1211   Section_constraint constraint_;
1212   // The fill value.  This may be NULL.
1213   Expression* fill_;
1214   // The list of segments this section should go into.  This may be
1215   // NULL.
1216   String_list* phdrs_;
1217   // The list of elements defining the section.
1218   Output_section_elements elements_;
1219   // The Output_section created for this definition.  This will be
1220   // NULL if none was created.
1221   Output_section* output_section_;
1222 };
1223
1224 // Constructor.
1225
1226 Output_section_definition::Output_section_definition(
1227     const char* name,
1228     size_t namelen,
1229     const Parser_output_section_header* header)
1230   : name_(name, namelen),
1231     address_(header->address),
1232     load_address_(header->load_address),
1233     align_(header->align),
1234     subalign_(header->subalign),
1235     constraint_(header->constraint),
1236     fill_(NULL),
1237     phdrs_(NULL),
1238     elements_(),
1239     output_section_(NULL)
1240 {
1241 }
1242
1243 // Finish an output section.
1244
1245 void
1246 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1247 {
1248   this->fill_ = trailer->fill;
1249   this->phdrs_ = trailer->phdrs;
1250 }
1251
1252 // Add a symbol to be defined.
1253
1254 void
1255 Output_section_definition::add_symbol_assignment(const char* name,
1256                                                  size_t length,
1257                                                  Expression* value,
1258                                                  bool provide,
1259                                                  bool hidden)
1260 {
1261   Output_section_element* p = new Output_section_element_assignment(name,
1262                                                                     length,
1263                                                                     value,
1264                                                                     provide,
1265                                                                     hidden);
1266   this->elements_.push_back(p);
1267 }
1268
1269 // Add an assignment to the special dot symbol.
1270
1271 void
1272 Output_section_definition::add_dot_assignment(Expression* value)
1273 {
1274   Output_section_element* p = new Output_section_element_dot_assignment(value);
1275   this->elements_.push_back(p);
1276 }
1277
1278 // Add an assertion.
1279
1280 void
1281 Output_section_definition::add_assertion(Expression* check,
1282                                          const char* message,
1283                                          size_t messagelen)
1284 {
1285   Output_section_element* p = new Output_section_element_assertion(check,
1286                                                                    message,
1287                                                                    messagelen);
1288   this->elements_.push_back(p);
1289 }
1290
1291 // Add a data item to the current output section.
1292
1293 void
1294 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1295 {
1296   Output_section_element* p = new Output_section_element_data(size, is_signed,
1297                                                               val);
1298   this->elements_.push_back(p);
1299 }
1300
1301 // Add a setting for the fill value.
1302
1303 void
1304 Output_section_definition::add_fill(Expression* val)
1305 {
1306   Output_section_element* p = new Output_section_element_fill(val);
1307   this->elements_.push_back(p);
1308 }
1309
1310 // Add an input section specification.
1311
1312 void
1313 Output_section_definition::add_input_section(const Input_section_spec* spec,
1314                                              bool keep)
1315 {
1316   Output_section_element* p = new Output_section_element_input(spec, keep);
1317   this->elements_.push_back(p);
1318 }
1319
1320 // Add any symbols being defined to the symbol table.
1321
1322 void
1323 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1324 {
1325   for (Output_section_elements::iterator p = this->elements_.begin();
1326        p != this->elements_.end();
1327        ++p)
1328     (*p)->add_symbols_to_table(symtab);
1329 }
1330
1331 // Finalize symbols and check assertions.
1332
1333 void
1334 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1335                                             const Layout* layout,
1336                                             bool* dot_has_value,
1337                                             uint64_t* dot_value)
1338 {
1339   if (this->output_section_ != NULL)
1340     *dot_value = this->output_section_->address();
1341   else
1342     {
1343       uint64_t address = *dot_value;
1344       if (this->address_ != NULL)
1345         {
1346           bool dummy;
1347           address = this->address_->eval_with_dot(symtab, layout,
1348                                                   *dot_has_value, *dot_value,
1349                                                   &dummy);
1350         }
1351       if (this->align_ != NULL)
1352         {
1353           bool dummy;
1354           uint64_t align = this->align_->eval_with_dot(symtab, layout,
1355                                                        *dot_has_value,
1356                                                        *dot_value,
1357                                                        &dummy);
1358           address = align_address(address, align);
1359         }
1360       *dot_value = address;
1361     }
1362   *dot_has_value = true;
1363
1364   for (Output_section_elements::iterator p = this->elements_.begin();
1365        p != this->elements_.end();
1366        ++p)
1367     (*p)->finalize_symbols(symtab, layout, dot_has_value, dot_value);
1368 }
1369
1370 // Return the output section name to use for an input section name.
1371
1372 const char*
1373 Output_section_definition::output_section_name(const char* file_name,
1374                                                const char* section_name,
1375                                                Output_section*** slot)
1376 {
1377   // Ask each element whether it matches NAME.
1378   for (Output_section_elements::const_iterator p = this->elements_.begin();
1379        p != this->elements_.end();
1380        ++p)
1381     {
1382       if ((*p)->match_name(file_name, section_name))
1383         {
1384           // We found a match for NAME, which means that it should go
1385           // into this output section.
1386           *slot = &this->output_section_;
1387           return this->name_.c_str();
1388         }
1389     }
1390
1391   // We don't know about this section name.
1392   return NULL;
1393 }
1394
1395 // Return whether to place an orphan output section after this
1396 // section.
1397
1398 bool
1399 Output_section_definition::place_orphan_here(const Output_section *os,
1400                                              bool* exact) const
1401 {
1402   // Check for the simple case first.
1403   if (this->output_section_ != NULL
1404       && this->output_section_->type() == os->type()
1405       && this->output_section_->flags() == os->flags())
1406     {
1407       *exact = true;
1408       return true;
1409     }
1410
1411   // Otherwise use some heuristics.
1412
1413   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1414     return false;
1415
1416   if (os->type() == elfcpp::SHT_NOBITS)
1417     {
1418       if (this->name_ == ".bss")
1419         {
1420           *exact = true;
1421           return true;
1422         }
1423       if (this->output_section_ != NULL
1424           && this->output_section_->type() == elfcpp::SHT_NOBITS)
1425         return true;
1426     }
1427   else if (os->type() == elfcpp::SHT_NOTE)
1428     {
1429       if (this->output_section_ != NULL
1430           && this->output_section_->type() == elfcpp::SHT_NOTE)
1431         {
1432           *exact = true;
1433           return true;
1434         }
1435       if (this->name_.compare(0, 5, ".note") == 0)
1436         {
1437           *exact = true;
1438           return true;
1439         }
1440       if (this->name_ == ".interp")
1441         return true;
1442       if (this->output_section_ != NULL
1443           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1444           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1445         return true;
1446     }
1447   else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1448     {
1449       if (this->name_.compare(0, 4, ".rel") == 0)
1450         {
1451           *exact = true;
1452           return true;
1453         }
1454       if (this->output_section_ != NULL
1455           && (this->output_section_->type() == elfcpp::SHT_REL
1456               || this->output_section_->type() == elfcpp::SHT_RELA))
1457         {
1458           *exact = true;
1459           return true;
1460         }
1461       if (this->output_section_ != NULL
1462           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1463           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1464         return true;
1465     }
1466   else if (os->type() == elfcpp::SHT_PROGBITS
1467            && (os->flags() & elfcpp::SHF_WRITE) != 0)
1468     {
1469       if (this->name_ == ".data")
1470         {
1471           *exact = true;
1472           return true;
1473         }
1474       if (this->output_section_ != NULL
1475           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1476           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1477         return true;
1478     }
1479   else if (os->type() == elfcpp::SHT_PROGBITS
1480            && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1481     {
1482       if (this->name_ == ".text")
1483         {
1484           *exact = true;
1485           return true;
1486         }
1487       if (this->output_section_ != NULL
1488           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1489           && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1490         return true;
1491     }
1492   else if (os->type() == elfcpp::SHT_PROGBITS
1493            || (os->type() != elfcpp::SHT_PROGBITS
1494                && (os->flags() & elfcpp::SHF_WRITE) == 0))
1495     {
1496       if (this->name_ == ".rodata")
1497         {
1498           *exact = true;
1499           return true;
1500         }
1501       if (this->output_section_ != NULL
1502           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1503           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1504         return true;
1505     }
1506
1507   return false;
1508 }
1509
1510 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1511 // be NULL if no input sections were mapped to this output section.
1512 // We still have to adjust dot and process symbol assignments.
1513
1514 void
1515 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1516                                                  Layout* layout,
1517                                                  bool* dot_has_value,
1518                                                  uint64_t* dot_value)
1519 {
1520   bool is_absolute;
1521   uint64_t address;
1522   if (this->address_ != NULL)
1523     {
1524       address = this->address_->eval_with_dot(symtab, layout, *dot_has_value,
1525                                               *dot_value, &is_absolute);
1526       if (!is_absolute)
1527         gold_error(_("address of section %s is not absolute"),
1528                    this->name_.c_str());
1529     }
1530   else
1531     {
1532       if (!*dot_has_value)
1533         gold_error(_("no address given for section %s"),
1534                    this->name_.c_str());
1535       address = *dot_value;
1536     }
1537
1538   uint64_t align;
1539   if (this->align_ == NULL)
1540     {
1541       if (this->output_section_ == NULL)
1542         align = 0;
1543       else
1544         align = this->output_section_->addralign();
1545     }
1546   else
1547     {
1548       align = this->align_->eval_with_dot(symtab, layout, *dot_has_value,
1549                                           *dot_value, &is_absolute);
1550       if (!is_absolute)
1551         gold_error(_("alignment of section %s is not absolute"),
1552                    this->name_.c_str());
1553       if (this->output_section_ != NULL)
1554         this->output_section_->set_addralign(align);
1555     }
1556
1557   address = align_address(address, align);
1558
1559   *dot_value = address;
1560   *dot_has_value = true;
1561
1562   // The address of non-SHF_ALLOC sections is forced to zero,
1563   // regardless of what the linker script wants.
1564   if (this->output_section_ != NULL
1565       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1566     this->output_section_->set_address(address);
1567
1568   if (this->load_address_ != NULL && this->output_section_ != NULL)
1569     {
1570       uint64_t load_address =
1571         this->load_address_->eval_with_dot(symtab, layout, *dot_has_value,
1572                                            *dot_value, &is_absolute);
1573       if (!is_absolute)
1574         gold_error(_("load address of section %s is not absolute"),
1575                    this->name_.c_str());
1576       this->output_section_->set_load_address(load_address);
1577     }
1578
1579   uint64_t subalign;
1580   if (this->subalign_ == NULL)
1581     subalign = 0;
1582   else
1583     {
1584       subalign = this->subalign_->eval_with_dot(symtab, layout, *dot_has_value,
1585                                                 *dot_value, &is_absolute);
1586       if (!is_absolute)
1587         gold_error(_("subalign of section %s is not absolute"),
1588                    this->name_.c_str());
1589     }
1590
1591   std::string fill;
1592   if (this->fill_ != NULL)
1593     {
1594       // FIXME: The GNU linker supports fill values of arbitrary
1595       // length.
1596       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout,
1597                                                      *dot_has_value,
1598                                                      *dot_value,
1599                                                      &is_absolute);
1600       if (!is_absolute)
1601         gold_error(_("fill of section %s is not absolute"),
1602                    this->name_.c_str());
1603       unsigned char fill_buff[4];
1604       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1605       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1606     }
1607
1608   Input_section_list input_sections;
1609   if (this->output_section_ != NULL)
1610     {
1611       // Get the list of input sections attached to this output
1612       // section.  This will leave the output section with only
1613       // Output_section_data entries.
1614       address += this->output_section_->get_input_sections(address,
1615                                                            fill,
1616                                                            &input_sections);
1617       *dot_value = address;
1618     }
1619
1620   for (Output_section_elements::iterator p = this->elements_.begin();
1621        p != this->elements_.end();
1622        ++p)
1623     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1624                                 subalign, dot_value, &fill, &input_sections);
1625
1626   gold_assert(input_sections.empty());
1627 }
1628
1629 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1630 // this section is constrained, and the input sections do not match,
1631 // return the constraint, and set *POSD.
1632
1633 Section_constraint
1634 Output_section_definition::check_constraint(Output_section_definition** posd)
1635 {
1636   switch (this->constraint_)
1637     {
1638     case CONSTRAINT_NONE:
1639       return CONSTRAINT_NONE;
1640
1641     case CONSTRAINT_ONLY_IF_RO:
1642       if (this->output_section_ != NULL
1643           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1644         {
1645           *posd = this;
1646           return CONSTRAINT_ONLY_IF_RO;
1647         }
1648       return CONSTRAINT_NONE;
1649
1650     case CONSTRAINT_ONLY_IF_RW:
1651       if (this->output_section_ != NULL
1652           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1653         {
1654           *posd = this;
1655           return CONSTRAINT_ONLY_IF_RW;
1656         }
1657       return CONSTRAINT_NONE;
1658
1659     case CONSTRAINT_SPECIAL:
1660       if (this->output_section_ != NULL)
1661         gold_error(_("SPECIAL constraints are not implemented"));
1662       return CONSTRAINT_NONE;
1663
1664     default:
1665       gold_unreachable();
1666     }
1667 }
1668
1669 // See if this is the alternate output section for a constrained
1670 // output section.  If it is, transfer the Output_section and return
1671 // true.  Otherwise return false.
1672
1673 bool
1674 Output_section_definition::alternate_constraint(
1675     Output_section_definition* posd,
1676     Section_constraint constraint)
1677 {
1678   if (this->name_ != posd->name_)
1679     return false;
1680
1681   switch (constraint)
1682     {
1683     case CONSTRAINT_ONLY_IF_RO:
1684       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1685         return false;
1686       break;
1687
1688     case CONSTRAINT_ONLY_IF_RW:
1689       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1690         return false;
1691       break;
1692
1693     default:
1694       gold_unreachable();
1695     }
1696
1697   // We have found the alternate constraint.  We just need to move
1698   // over the Output_section.  When constraints are used properly,
1699   // THIS should not have an output_section pointer, as all the input
1700   // sections should have matched the other definition.
1701
1702   if (this->output_section_ != NULL)
1703     gold_error(_("mismatched definition for constrained sections"));
1704
1705   this->output_section_ = posd->output_section_;
1706   posd->output_section_ = NULL;
1707
1708   return true;
1709 }
1710
1711 // Get the list of segments to use for an allocated section when using
1712 // a PHDRS clause.  If this is an allocated section, return the
1713 // Output_section, and set *PHDRS_LIST to the list of PHDRS to which
1714 // it should be attached.  If the PHDRS were not specified, don't
1715 // change *PHDRS_LIST.
1716
1717 Output_section*
1718 Output_section_definition::allocate_to_segment(String_list** phdrs_list)
1719 {
1720   if (this->output_section_ == NULL)
1721     return NULL;
1722   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1723     return NULL;
1724   if (this->phdrs_ != NULL)
1725     *phdrs_list = this->phdrs_;
1726   return this->output_section_;
1727 }
1728
1729 // Print for debugging.
1730
1731 void
1732 Output_section_definition::print(FILE* f) const
1733 {
1734   fprintf(f, "  %s ", this->name_.c_str());
1735
1736   if (this->address_ != NULL)
1737     {
1738       this->address_->print(f);
1739       fprintf(f, " ");
1740     }
1741
1742   fprintf(f, ": ");
1743
1744   if (this->load_address_ != NULL)
1745     {
1746       fprintf(f, "AT(");
1747       this->load_address_->print(f);
1748       fprintf(f, ") ");
1749     }
1750
1751   if (this->align_ != NULL)
1752     {
1753       fprintf(f, "ALIGN(");
1754       this->align_->print(f);
1755       fprintf(f, ") ");
1756     }
1757
1758   if (this->subalign_ != NULL)
1759     {
1760       fprintf(f, "SUBALIGN(");
1761       this->subalign_->print(f);
1762       fprintf(f, ") ");
1763     }
1764
1765   fprintf(f, "{\n");
1766
1767   for (Output_section_elements::const_iterator p = this->elements_.begin();
1768        p != this->elements_.end();
1769        ++p)
1770     (*p)->print(f);
1771
1772   fprintf(f, "  }");
1773
1774   if (this->fill_ != NULL)
1775     {
1776       fprintf(f, " = ");
1777       this->fill_->print(f);
1778     }
1779
1780   if (this->phdrs_ != NULL)
1781     {
1782       for (String_list::const_iterator p = this->phdrs_->begin();
1783            p != this->phdrs_->end();
1784            ++p)
1785         fprintf(f, " :%s", p->c_str());
1786     }
1787
1788   fprintf(f, "\n");
1789 }
1790
1791 // An output section created to hold orphaned input sections.  These
1792 // do not actually appear in linker scripts.  However, for convenience
1793 // when setting the output section addresses, we put a marker to these
1794 // sections in the appropriate place in the list of SECTIONS elements.
1795
1796 class Orphan_output_section : public Sections_element
1797 {
1798  public:
1799   Orphan_output_section(Output_section* os)
1800     : os_(os)
1801   { }
1802
1803   // Return whether to place an orphan section after this one.
1804   bool
1805   place_orphan_here(const Output_section *os, bool* exact) const;
1806
1807   // Set section addresses.
1808   void
1809   set_section_addresses(Symbol_table*, Layout*, bool*, uint64_t*);
1810
1811   // Get the list of segments to use for an allocated section when
1812   // using a PHDRS clause.  If this is an allocated section, return
1813   // the Output_section.
1814   Output_section*
1815   allocate_to_segment(String_list**);
1816
1817   // Print for debugging.
1818   void
1819   print(FILE* f) const
1820   {
1821     fprintf(f, "  marker for orphaned output section %s\n",
1822             this->os_->name());
1823   }
1824
1825  private:
1826   Output_section* os_;
1827 };
1828
1829 // Whether to place another orphan section after this one.
1830
1831 bool
1832 Orphan_output_section::place_orphan_here(const Output_section* os,
1833                                          bool* exact) const
1834 {
1835   if (this->os_->type() == os->type()
1836       && this->os_->flags() == os->flags())
1837     {
1838       *exact = true;
1839       return true;
1840     }
1841   return false;
1842 }
1843
1844 // Set section addresses.
1845
1846 void
1847 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
1848                                              bool* dot_has_value,
1849                                              uint64_t* dot_value)
1850 {
1851   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
1852
1853   if (!*dot_has_value)
1854     gold_error(_("no address for orphan section %s"), this->os_->name());
1855
1856   uint64_t address = *dot_value;
1857   address = align_address(address, this->os_->addralign());
1858
1859   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
1860     this->os_->set_address(address);
1861
1862   Input_section_list input_sections;
1863   address += this->os_->get_input_sections(address, "", &input_sections);
1864
1865   for (Input_section_list::iterator p = input_sections.begin();
1866        p != input_sections.end();
1867        ++p)
1868     {
1869       uint64_t addralign;
1870       uint64_t size;
1871
1872       // We know what are single-threaded, so it is OK to lock the
1873       // object.
1874       {
1875         const Task* task = reinterpret_cast<const Task*>(-1);
1876         Task_lock_obj<Object> tl(task, p->first);
1877         addralign = p->first->section_addralign(p->second);
1878         size = p->first->section_size(p->second);
1879       }
1880
1881       address = align_address(address, addralign);
1882       this->os_->add_input_section_for_script(p->first, p->second, size, 0);
1883       address += size;
1884     }
1885
1886   *dot_value = address;
1887 }
1888
1889 // Get the list of segments to use for an allocated section when using
1890 // a PHDRS clause.  If this is an allocated section, return the
1891 // Output_section.  We don't change the list of segments.
1892
1893 Output_section*
1894 Orphan_output_section::allocate_to_segment(String_list**)
1895 {
1896   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
1897     return NULL;
1898   return this->os_;
1899 }
1900
1901 // Class Phdrs_element.  A program header from a PHDRS clause.
1902
1903 class Phdrs_element
1904 {
1905  public:
1906   Phdrs_element(const char* name, size_t namelen, unsigned int type,
1907                 bool includes_filehdr, bool includes_phdrs,
1908                 bool is_flags_valid, unsigned int flags,
1909                 Expression* load_address)
1910     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
1911       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
1912       flags_(flags), load_address_(load_address), load_address_value_(0),
1913       segment_(NULL)
1914   { }
1915
1916   // Return the name of this segment.
1917   const std::string&
1918   name() const
1919   { return this->name_; }
1920
1921   // Return the type of the segment.
1922   unsigned int
1923   type() const
1924   { return this->type_; }
1925
1926   // Whether to include the file header.
1927   bool
1928   includes_filehdr() const
1929   { return this->includes_filehdr_; }
1930
1931   // Whether to include the program headers.
1932   bool
1933   includes_phdrs() const
1934   { return this->includes_phdrs_; }
1935
1936   // Return whether there is a load address.
1937   bool
1938   has_load_address() const
1939   { return this->load_address_ != NULL; }
1940
1941   // Evaluate the load address expression if there is one.
1942   void
1943   eval_load_address(Symbol_table* symtab, Layout* layout)
1944   {
1945     if (this->load_address_ != NULL)
1946       this->load_address_value_ = this->load_address_->eval(symtab, layout);
1947   }
1948
1949   // Return the load address.
1950   uint64_t
1951   load_address() const
1952   {
1953     gold_assert(this->load_address_ != NULL);
1954     return this->load_address_value_;
1955   }
1956
1957   // Create the segment.
1958   Output_segment*
1959   create_segment(Layout* layout)
1960   {
1961     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
1962     return this->segment_;
1963   }
1964
1965   // Return the segment.
1966   Output_segment*
1967   segment()
1968   { return this->segment_; }
1969
1970   // Set the segment flags if appropriate.
1971   void
1972   set_flags_if_valid()
1973   {
1974     if (this->is_flags_valid_)
1975       this->segment_->set_flags(this->flags_);
1976   }
1977
1978   // Print for debugging.
1979   void
1980   print(FILE*) const;
1981
1982  private:
1983   // The name used in the script.
1984   std::string name_;
1985   // The type of the segment (PT_LOAD, etc.).
1986   unsigned int type_;
1987   // Whether this segment includes the file header.
1988   bool includes_filehdr_;
1989   // Whether this segment includes the section headers.
1990   bool includes_phdrs_;
1991   // Whether the flags were explicitly specified.
1992   bool is_flags_valid_;
1993   // The flags for this segment (PF_R, etc.) if specified.
1994   unsigned int flags_;
1995   // The expression for the load address for this segment.  This may
1996   // be NULL.
1997   Expression* load_address_;
1998   // The actual load address from evaluating the expression.
1999   uint64_t load_address_value_;
2000   // The segment itself.
2001   Output_segment* segment_;
2002 };
2003
2004 // Print for debugging.
2005
2006 void
2007 Phdrs_element::print(FILE* f) const
2008 {
2009   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2010   if (this->includes_filehdr_)
2011     fprintf(f, " FILEHDR");
2012   if (this->includes_phdrs_)
2013     fprintf(f, " PHDRS");
2014   if (this->is_flags_valid_)
2015     fprintf(f, " FLAGS(%u)", this->flags_);
2016   if (this->load_address_ != NULL)
2017     {
2018       fprintf(f, " AT(");
2019       this->load_address_->print(f);
2020       fprintf(f, ")");
2021     }
2022   fprintf(f, ";\n");
2023 }
2024
2025 // Class Script_sections.
2026
2027 Script_sections::Script_sections()
2028   : saw_sections_clause_(false),
2029     in_sections_clause_(false),
2030     sections_elements_(NULL),
2031     output_section_(NULL),
2032     phdrs_elements_(NULL)
2033 {
2034 }
2035
2036 // Start a SECTIONS clause.
2037
2038 void
2039 Script_sections::start_sections()
2040 {
2041   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2042   this->saw_sections_clause_ = true;
2043   this->in_sections_clause_ = true;
2044   if (this->sections_elements_ == NULL)
2045     this->sections_elements_ = new Sections_elements;
2046 }
2047
2048 // Finish a SECTIONS clause.
2049
2050 void
2051 Script_sections::finish_sections()
2052 {
2053   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2054   this->in_sections_clause_ = false;
2055 }
2056
2057 // Add a symbol to be defined.
2058
2059 void
2060 Script_sections::add_symbol_assignment(const char* name, size_t length,
2061                                        Expression* val, bool provide,
2062                                        bool hidden)
2063 {
2064   if (this->output_section_ != NULL)
2065     this->output_section_->add_symbol_assignment(name, length, val,
2066                                                  provide, hidden);
2067   else
2068     {
2069       Sections_element* p = new Sections_element_assignment(name, length,
2070                                                             val, provide,
2071                                                             hidden);
2072       this->sections_elements_->push_back(p);
2073     }
2074 }
2075
2076 // Add an assignment to the special dot symbol.
2077
2078 void
2079 Script_sections::add_dot_assignment(Expression* val)
2080 {
2081   if (this->output_section_ != NULL)
2082     this->output_section_->add_dot_assignment(val);
2083   else
2084     {
2085       Sections_element* p = new Sections_element_dot_assignment(val);
2086       this->sections_elements_->push_back(p);
2087     }
2088 }
2089
2090 // Add an assertion.
2091
2092 void
2093 Script_sections::add_assertion(Expression* check, const char* message,
2094                                size_t messagelen)
2095 {
2096   if (this->output_section_ != NULL)
2097     this->output_section_->add_assertion(check, message, messagelen);
2098   else
2099     {
2100       Sections_element* p = new Sections_element_assertion(check, message,
2101                                                            messagelen);
2102       this->sections_elements_->push_back(p);
2103     }
2104 }
2105
2106 // Start processing entries for an output section.
2107
2108 void
2109 Script_sections::start_output_section(
2110     const char* name,
2111     size_t namelen,
2112     const Parser_output_section_header *header)
2113 {
2114   Output_section_definition* posd = new Output_section_definition(name,
2115                                                                   namelen,
2116                                                                   header);
2117   this->sections_elements_->push_back(posd);
2118   gold_assert(this->output_section_ == NULL);
2119   this->output_section_ = posd;
2120 }
2121
2122 // Stop processing entries for an output section.
2123
2124 void
2125 Script_sections::finish_output_section(
2126     const Parser_output_section_trailer* trailer)
2127 {
2128   gold_assert(this->output_section_ != NULL);
2129   this->output_section_->finish(trailer);
2130   this->output_section_ = NULL;
2131 }
2132
2133 // Add a data item to the current output section.
2134
2135 void
2136 Script_sections::add_data(int size, bool is_signed, Expression* val)
2137 {
2138   gold_assert(this->output_section_ != NULL);
2139   this->output_section_->add_data(size, is_signed, val);
2140 }
2141
2142 // Add a fill value setting to the current output section.
2143
2144 void
2145 Script_sections::add_fill(Expression* val)
2146 {
2147   gold_assert(this->output_section_ != NULL);
2148   this->output_section_->add_fill(val);
2149 }
2150
2151 // Add an input section specification to the current output section.
2152
2153 void
2154 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2155 {
2156   gold_assert(this->output_section_ != NULL);
2157   this->output_section_->add_input_section(spec, keep);
2158 }
2159
2160 // Add any symbols we are defining to the symbol table.
2161
2162 void
2163 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2164 {
2165   if (!this->saw_sections_clause_)
2166     return;
2167   for (Sections_elements::iterator p = this->sections_elements_->begin();
2168        p != this->sections_elements_->end();
2169        ++p)
2170     (*p)->add_symbols_to_table(symtab);
2171 }
2172
2173 // Finalize symbols and check assertions.
2174
2175 void
2176 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2177 {
2178   if (!this->saw_sections_clause_)
2179     return;
2180   bool dot_has_value = false;
2181   uint64_t dot_value = 0;
2182   for (Sections_elements::iterator p = this->sections_elements_->begin();
2183        p != this->sections_elements_->end();
2184        ++p)
2185     (*p)->finalize_symbols(symtab, layout, &dot_has_value, &dot_value);
2186 }
2187
2188 // Return the name of the output section to use for an input file name
2189 // and section name.
2190
2191 const char*
2192 Script_sections::output_section_name(const char* file_name,
2193                                      const char* section_name,
2194                                      Output_section*** output_section_slot)
2195 {
2196   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2197        p != this->sections_elements_->end();
2198        ++p)
2199     {
2200       const char* ret = (*p)->output_section_name(file_name, section_name,
2201                                                   output_section_slot);
2202
2203       if (ret != NULL)
2204         {
2205           // The special name /DISCARD/ means that the input section
2206           // should be discarded.
2207           if (strcmp(ret, "/DISCARD/") == 0)
2208             {
2209               *output_section_slot = NULL;
2210               return NULL;
2211             }
2212           return ret;
2213         }
2214     }
2215
2216   // If we couldn't find a mapping for the name, the output section
2217   // gets the name of the input section.
2218
2219   *output_section_slot = NULL;
2220
2221   return section_name;
2222 }
2223
2224 // Place a marker for an orphan output section into the SECTIONS
2225 // clause.
2226
2227 void
2228 Script_sections::place_orphan(Output_section* os)
2229 {
2230   // Look for an output section definition which matches the output
2231   // section.  Put a marker after that section.
2232   Sections_elements::iterator place = this->sections_elements_->end();
2233   for (Sections_elements::iterator p = this->sections_elements_->begin();
2234        p != this->sections_elements_->end();
2235        ++p)
2236     {
2237       bool exact;
2238       if ((*p)->place_orphan_here(os, &exact))
2239         {
2240           place = p;
2241           if (exact)
2242             break;
2243         }
2244     }
2245
2246   // The insert function puts the new element before the iterator.
2247   if (place != this->sections_elements_->end())
2248     ++place;
2249
2250   this->sections_elements_->insert(place, new Orphan_output_section(os));
2251 }
2252
2253 // Set the addresses of all the output sections.  Walk through all the
2254 // elements, tracking the dot symbol.  Apply assignments which set
2255 // absolute symbol values, in case they are used when setting dot.
2256 // Fill in data statement values.  As we find output sections, set the
2257 // address, set the address of all associated input sections, and
2258 // update dot.  Return the segment which should hold the file header
2259 // and segment headers, if any.
2260
2261 Output_segment*
2262 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2263 {
2264   gold_assert(this->saw_sections_clause_);
2265
2266   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2267   // for our representation.
2268   for (Sections_elements::iterator p = this->sections_elements_->begin();
2269        p != this->sections_elements_->end();
2270        ++p)
2271     {
2272       Output_section_definition* posd;
2273       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2274       if (failed_constraint != CONSTRAINT_NONE)
2275         {
2276           Sections_elements::iterator q;
2277           for (q = this->sections_elements_->begin();
2278                q != this->sections_elements_->end();
2279                ++q)
2280             {
2281               if (q != p)
2282                 {
2283                   if ((*q)->alternate_constraint(posd, failed_constraint))
2284                     break;
2285                 }
2286             }
2287
2288           if (q == this->sections_elements_->end())
2289             gold_error(_("no matching section constraint"));
2290         }
2291     }
2292
2293   bool dot_has_value = false;
2294   uint64_t dot_value = 0;
2295   for (Sections_elements::iterator p = this->sections_elements_->begin();
2296        p != this->sections_elements_->end();
2297        ++p)
2298     (*p)->set_section_addresses(symtab, layout, &dot_has_value, &dot_value);
2299
2300   if (this->phdrs_elements_ != NULL)
2301     {
2302       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2303            p != this->phdrs_elements_->end();
2304            ++p)
2305         (*p)->eval_load_address(symtab, layout);
2306     }
2307
2308   return this->create_segments(layout);
2309 }
2310
2311 // Sort the sections in order to put them into segments.
2312
2313 class Sort_output_sections
2314 {
2315  public:
2316   bool
2317   operator()(const Output_section* os1, const Output_section* os2) const;
2318 };
2319
2320 bool
2321 Sort_output_sections::operator()(const Output_section* os1,
2322                                  const Output_section* os2) const
2323 {
2324   // Sort first by the load address.
2325   uint64_t lma1 = (os1->has_load_address()
2326                    ? os1->load_address()
2327                    : os1->address());
2328   uint64_t lma2 = (os2->has_load_address()
2329                    ? os2->load_address()
2330                    : os2->address());
2331   if (lma1 != lma2)
2332     return lma1 < lma2;
2333
2334   // Then sort by the virtual address.
2335   if (os1->address() != os2->address())
2336     return os1->address() < os2->address();
2337
2338   // Sort TLS sections to the end.
2339   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2340   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2341   if (tls1 != tls2)
2342     return tls2;
2343
2344   // Sort PROGBITS before NOBITS.
2345   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2346     return true;
2347   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2348     return false;
2349
2350   // Otherwise we don't care.
2351   return false;
2352 }
2353
2354 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2355 // We treat a section with the SHF_TLS flag set as taking up space
2356 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2357 // space for them in the file.
2358
2359 bool
2360 Script_sections::is_bss_section(const Output_section* os)
2361 {
2362   return (os->type() == elfcpp::SHT_NOBITS
2363           && (os->flags() & elfcpp::SHF_TLS) == 0);
2364 }
2365
2366 // Return the size taken by the file header and the program headers.
2367
2368 size_t
2369 Script_sections::total_header_size(Layout* layout) const
2370 {
2371   size_t segment_count = layout->segment_count();
2372   size_t file_header_size;
2373   size_t segment_headers_size;
2374   if (parameters->get_size() == 32)
2375     {
2376       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2377       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2378     }
2379   else if (parameters->get_size() == 64)
2380     {
2381       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2382       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2383     }
2384   else
2385     gold_unreachable();
2386
2387   return file_header_size + segment_headers_size;
2388 }
2389
2390 // Return the amount we have to subtract from the LMA to accomodate
2391 // headers of the given size.  The complication is that the file
2392 // header have to be at the start of a page, as otherwise it will not
2393 // be at the start of the file.
2394
2395 uint64_t
2396 Script_sections::header_size_adjustment(uint64_t lma,
2397                                         size_t sizeof_headers) const
2398 {
2399   const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2400   uint64_t hdr_lma = lma - sizeof_headers;
2401   hdr_lma &= ~(abi_pagesize - 1);
2402   return lma - hdr_lma;
2403 }
2404
2405 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2406 // the segment which should hold the file header and segment headers,
2407 // if any.
2408
2409 Output_segment*
2410 Script_sections::create_segments(Layout* layout)
2411 {
2412   gold_assert(this->saw_sections_clause_);
2413
2414   if (parameters->output_is_object())
2415     return NULL;
2416
2417   if (this->saw_phdrs_clause())
2418     return create_segments_from_phdrs_clause(layout);
2419
2420   Layout::Section_list sections;
2421   layout->get_allocated_sections(&sections);
2422
2423   // Sort the sections by address.
2424   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2425
2426   this->create_note_and_tls_segments(layout, &sections);
2427
2428   // Walk through the sections adding them to PT_LOAD segments.
2429   const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2430   Output_segment* first_seg = NULL;
2431   Output_segment* current_seg = NULL;
2432   bool is_current_seg_readonly = true;
2433   Layout::Section_list::iterator plast = sections.end();
2434   uint64_t last_vma = 0;
2435   uint64_t last_lma = 0;
2436   uint64_t last_size = 0;
2437   for (Layout::Section_list::iterator p = sections.begin();
2438        p != sections.end();
2439        ++p)
2440     {
2441       const uint64_t vma = (*p)->address();
2442       const uint64_t lma = ((*p)->has_load_address()
2443                             ? (*p)->load_address()
2444                             : vma);
2445       const uint64_t size = (*p)->current_data_size();
2446
2447       bool need_new_segment;
2448       if (current_seg == NULL)
2449         need_new_segment = true;
2450       else if (lma - vma != last_lma - last_vma)
2451         {
2452           // This section has a different LMA relationship than the
2453           // last one; we need a new segment.
2454           need_new_segment = true;
2455         }
2456       else if (align_address(last_lma + last_size, abi_pagesize)
2457                < align_address(lma, abi_pagesize))
2458         {
2459           // Putting this section in the segment would require
2460           // skipping a page.
2461           need_new_segment = true;
2462         }
2463       else if (is_bss_section(*plast) && !is_bss_section(*p))
2464         {
2465           // A non-BSS section can not follow a BSS section in the
2466           // same segment.
2467           need_new_segment = true;
2468         }
2469       else if (is_current_seg_readonly
2470                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2471         {
2472           // Don't put a writable section in the same segment as a
2473           // non-writable section.
2474           need_new_segment = true;
2475         }
2476       else
2477         {
2478           // Otherwise, reuse the existing segment.
2479           need_new_segment = false;
2480         }
2481
2482       elfcpp::Elf_Word seg_flags =
2483         Layout::section_flags_to_segment((*p)->flags());
2484
2485       if (need_new_segment)
2486         {
2487           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2488                                                     seg_flags);
2489           current_seg->set_addresses(vma, lma);
2490           if (first_seg == NULL)
2491             first_seg = current_seg;
2492           is_current_seg_readonly = true;
2493         }
2494
2495       current_seg->add_output_section(*p, seg_flags);
2496
2497       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2498         is_current_seg_readonly = false;
2499
2500       plast = p;
2501       last_vma = vma;
2502       last_lma = lma;
2503       last_size = size;
2504     }
2505
2506   // An ELF program should work even if the program headers are not in
2507   // a PT_LOAD segment.  However, it appears that the Linux kernel
2508   // does not set the AT_PHDR auxiliary entry in that case.  It sets
2509   // the load address to p_vaddr - p_offset of the first PT_LOAD
2510   // segment.  It then sets AT_PHDR to the load address plus the
2511   // offset to the program headers, e_phoff in the file header.  This
2512   // fails when the program headers appear in the file before the
2513   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
2514   // segment to hold the file header and the program headers.  This is
2515   // effectively what the GNU linker does, and it is slightly more
2516   // efficient in any case.  We try to use the first PT_LOAD segment
2517   // if we can, otherwise we make a new one.
2518
2519   size_t sizeof_headers = this->total_header_size(layout);
2520
2521   if (first_seg != NULL
2522       && (first_seg->paddr() & (abi_pagesize - 1)) >= sizeof_headers)
2523     {
2524       first_seg->set_addresses(first_seg->vaddr() - sizeof_headers,
2525                                first_seg->paddr() - sizeof_headers);
2526       return first_seg;
2527     }
2528
2529   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2530                                                          elfcpp::PF_R);
2531   if (first_seg == NULL)
2532     load_seg->set_addresses(0, 0);
2533   else
2534     {
2535       uint64_t vma = first_seg->vaddr();
2536       uint64_t lma = first_seg->paddr();
2537
2538       uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2539       if (lma >= subtract && vma >= subtract)
2540         load_seg->set_addresses(vma - subtract, lma - subtract);
2541       else
2542         {
2543           // We could handle this case by create the file header
2544           // outside of any PT_LOAD segment, and creating a new
2545           // PT_LOAD segment after the others to hold the segment
2546           // headers.
2547           gold_error(_("sections loaded on first page without room for "
2548                        "file and program headers are not supported"));
2549         }
2550     }
2551
2552   return load_seg;
2553 }
2554
2555 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2556 // segment if there are any SHT_TLS sections.
2557
2558 void
2559 Script_sections::create_note_and_tls_segments(
2560     Layout* layout,
2561     const Layout::Section_list* sections)
2562 {
2563   gold_assert(!this->saw_phdrs_clause());
2564
2565   bool saw_tls = false;
2566   for (Layout::Section_list::const_iterator p = sections->begin();
2567        p != sections->end();
2568        ++p)
2569     {
2570       if ((*p)->type() == elfcpp::SHT_NOTE)
2571         {
2572           elfcpp::Elf_Word seg_flags =
2573             Layout::section_flags_to_segment((*p)->flags());
2574           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2575                                                              seg_flags);
2576           oseg->add_output_section(*p, seg_flags);
2577
2578           // Incorporate any subsequent SHT_NOTE sections, in the
2579           // hopes that the script is sensible.
2580           Layout::Section_list::const_iterator pnext = p + 1;
2581           while (pnext != sections->end()
2582                  && (*pnext)->type() == elfcpp::SHT_NOTE)
2583             {
2584               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2585               oseg->add_output_section(*pnext, seg_flags);
2586               p = pnext;
2587               ++pnext;
2588             }
2589         }
2590
2591       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2592         {
2593           if (saw_tls)
2594             gold_error(_("TLS sections are not adjacent"));
2595
2596           elfcpp::Elf_Word seg_flags =
2597             Layout::section_flags_to_segment((*p)->flags());
2598           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2599                                                              seg_flags);
2600           oseg->add_output_section(*p, seg_flags);
2601
2602           Layout::Section_list::const_iterator pnext = p + 1;
2603           while (pnext != sections->end()
2604                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2605             {
2606               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2607               oseg->add_output_section(*pnext, seg_flags);
2608               p = pnext;
2609               ++pnext;
2610             }
2611
2612           saw_tls = true;
2613         }
2614     }
2615 }
2616
2617 // Add a program header.  The PHDRS clause is syntactically distinct
2618 // from the SECTIONS clause, but we implement it with the SECTIONS
2619 // support becauase PHDRS is useless if there is no SECTIONS clause.
2620
2621 void
2622 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2623                           bool includes_filehdr, bool includes_phdrs,
2624                           bool is_flags_valid, unsigned int flags,
2625                           Expression* load_address)
2626 {
2627   if (this->phdrs_elements_ == NULL)
2628     this->phdrs_elements_ = new Phdrs_elements();
2629   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2630                                                      includes_filehdr,
2631                                                      includes_phdrs,
2632                                                      is_flags_valid, flags,
2633                                                      load_address));
2634 }
2635
2636 // Return the number of segments we expect to create based on the
2637 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
2638
2639 size_t
2640 Script_sections::expected_segment_count(const Layout* layout) const
2641 {
2642   if (this->saw_phdrs_clause())
2643     return this->phdrs_elements_->size();
2644
2645   Layout::Section_list sections;
2646   layout->get_allocated_sections(&sections);
2647
2648   // We assume that we will need two PT_LOAD segments.
2649   size_t ret = 2;
2650
2651   bool saw_note = false;
2652   bool saw_tls = false;
2653   for (Layout::Section_list::const_iterator p = sections.begin();
2654        p != sections.end();
2655        ++p)
2656     {
2657       if ((*p)->type() == elfcpp::SHT_NOTE)
2658         {
2659           // Assume that all note sections will fit into a single
2660           // PT_NOTE segment.
2661           if (!saw_note)
2662             {
2663               ++ret;
2664               saw_note = true;
2665             }
2666         }
2667       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2668         {
2669           // There can only be one PT_TLS segment.
2670           if (!saw_tls)
2671             {
2672               ++ret;
2673               saw_tls = true;
2674             }
2675         }
2676     }
2677
2678   return ret;
2679 }
2680
2681 // Create the segments from a PHDRS clause.  Return the segment which
2682 // should hold the file header and program headers, if any.
2683
2684 Output_segment*
2685 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2686 {
2687   this->attach_sections_using_phdrs_clause(layout);
2688   return this->set_phdrs_clause_addresses(layout);
2689 }
2690
2691 // Create the segments from the PHDRS clause, and put the output
2692 // sections in them.
2693
2694 void
2695 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2696 {
2697   typedef std::map<std::string, Output_segment*> Name_to_segment;
2698   Name_to_segment name_to_segment;
2699   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2700        p != this->phdrs_elements_->end();
2701        ++p)
2702     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2703
2704   // Walk through the output sections and attach them to segments.
2705   // Output sections in the script which do not list segments are
2706   // attached to the same set of segments as the immediately preceding
2707   // output section.
2708   String_list* phdr_names = NULL;
2709   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2710        p != this->sections_elements_->end();
2711        ++p)
2712     {
2713       Output_section* os = (*p)->allocate_to_segment(&phdr_names);
2714       if (os == NULL)
2715         continue;
2716
2717       if (phdr_names == NULL)
2718         {
2719           gold_error(_("allocated section not in any segment"));
2720           continue;
2721         }
2722
2723       bool in_load_segment = false;
2724       for (String_list::const_iterator q = phdr_names->begin();
2725            q != phdr_names->end();
2726            ++q)
2727         {
2728           Name_to_segment::const_iterator r = name_to_segment.find(*q);
2729           if (r == name_to_segment.end())
2730             gold_error(_("no segment %s"), q->c_str());
2731           else
2732             {
2733               elfcpp::Elf_Word seg_flags =
2734                 Layout::section_flags_to_segment(os->flags());
2735               r->second->add_output_section(os, seg_flags);
2736
2737               if (r->second->type() == elfcpp::PT_LOAD)
2738                 {
2739                   if (in_load_segment)
2740                     gold_error(_("section in two PT_LOAD segments"));
2741                   in_load_segment = true;
2742                 }
2743             }
2744         }
2745
2746       if (!in_load_segment)
2747         gold_error(_("allocated section not in any PT_LOAD segment"));
2748     }
2749 }
2750
2751 // Set the addresses for segments created from a PHDRS clause.  Return
2752 // the segment which should hold the file header and program headers,
2753 // if any.
2754
2755 Output_segment*
2756 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2757 {
2758   Output_segment* load_seg = NULL;
2759   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2760        p != this->phdrs_elements_->end();
2761        ++p)
2762     {
2763       // Note that we have to set the flags after adding the output
2764       // sections to the segment, as adding an output segment can
2765       // change the flags.
2766       (*p)->set_flags_if_valid();
2767
2768       Output_segment* oseg = (*p)->segment();
2769
2770       if (oseg->type() != elfcpp::PT_LOAD)
2771         {
2772           // The addresses of non-PT_LOAD segments are set from the
2773           // PT_LOAD segments.
2774           if ((*p)->has_load_address())
2775             gold_error(_("may only specify load address for PT_LOAD segment"));
2776           continue;
2777         }
2778
2779       // The output sections should have addresses from the SECTIONS
2780       // clause.  The addresses don't have to be in order, so find the
2781       // one with the lowest load address.  Use that to set the
2782       // address of the segment.
2783
2784       Output_section* osec = oseg->section_with_lowest_load_address();
2785       if (osec == NULL)
2786         {
2787           oseg->set_addresses(0, 0);
2788           continue;
2789         }
2790
2791       uint64_t vma = osec->address();
2792       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2793
2794       // Override the load address of the section with the load
2795       // address specified for the segment.
2796       if ((*p)->has_load_address())
2797         {
2798           if (osec->has_load_address())
2799             gold_warning(_("PHDRS load address overrides "
2800                            "section %s load address"),
2801                          osec->name());
2802
2803           lma = (*p)->load_address();
2804         }
2805
2806       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
2807       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
2808         {
2809           // We could support this if we wanted to.
2810           gold_error(_("using only one of FILEHDR and PHDRS is "
2811                        "not currently supported"));
2812         }
2813       if (headers)
2814         {
2815           size_t sizeof_headers = this->total_header_size(layout);
2816           uint64_t subtract = this->header_size_adjustment(lma,
2817                                                            sizeof_headers);
2818           if (lma >= subtract && vma >= subtract)
2819             {
2820               lma -= subtract;
2821               vma -= subtract;
2822             }
2823           else
2824             {
2825               gold_error(_("sections loaded on first page without room "
2826                            "for file and program headers "
2827                            "are not supported"));
2828             }
2829
2830           if (load_seg != NULL)
2831             gold_error(_("using FILEHDR and PHDRS on more than one "
2832                          "PT_LOAD segment is not currently supported"));
2833           load_seg = oseg;
2834         }
2835
2836       oseg->set_addresses(vma, lma);
2837     }
2838
2839   return load_seg;
2840 }
2841
2842 // Add the file header and segment headers to non-load segments
2843 // specified in the PHDRS clause.
2844
2845 void
2846 Script_sections::put_headers_in_phdrs(Output_data* file_header,
2847                                       Output_data* segment_headers)
2848 {
2849   gold_assert(this->saw_phdrs_clause());
2850   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2851        p != this->phdrs_elements_->end();
2852        ++p)
2853     {
2854       if ((*p)->type() != elfcpp::PT_LOAD)
2855         {
2856           if ((*p)->includes_phdrs())
2857             (*p)->segment()->add_initial_output_data(segment_headers);
2858           if ((*p)->includes_filehdr())
2859             (*p)->segment()->add_initial_output_data(file_header);
2860         }
2861     }
2862 }
2863
2864 // Print the SECTIONS clause to F for debugging.
2865
2866 void
2867 Script_sections::print(FILE* f) const
2868 {
2869   if (!this->saw_sections_clause_)
2870     return;
2871
2872   fprintf(f, "SECTIONS {\n");
2873
2874   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2875        p != this->sections_elements_->end();
2876        ++p)
2877     (*p)->print(f);
2878
2879   fprintf(f, "}\n");
2880
2881   if (this->phdrs_elements_ != NULL)
2882     {
2883       fprintf(f, "PHDRS {\n");
2884       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2885            p != this->phdrs_elements_->end();
2886            ++p)
2887         (*p)->print(f);
2888       fprintf(f, "}\n");
2889     }
2890 }
2891
2892 } // End namespace gold.