2010-05-14 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections.  This is intended to be largely compatible
47 // with the GNU linker.  The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement.  We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54  private:
55   typedef Script_sections::Elements_iterator Elements_iterator;
56
57  public:
58   Orphan_section_placement();
59
60   // Handle an output section during initialization of this mapping.
61   void
62   output_section_init(const std::string& name, Output_section*,
63                       Elements_iterator location);
64
65   // Initialize the last location.
66   void
67   last_init(Elements_iterator location);
68
69   // Set *PWHERE to the address of an iterator pointing to the
70   // location to use for an orphan section.  Return true if the
71   // iterator has a value, false otherwise.
72   bool
73   find_place(Output_section*, Elements_iterator** pwhere);
74
75   // Return the iterator being used for sections at the very end of
76   // the linker script.
77   Elements_iterator
78   last_place() const;
79
80  private:
81   // The places that we specifically recognize.  This list is copied
82   // from the GNU linker.
83   enum Place_index
84   {
85     PLACE_TEXT,
86     PLACE_RODATA,
87     PLACE_DATA,
88     PLACE_TLS,
89     PLACE_TLS_BSS,
90     PLACE_BSS,
91     PLACE_REL,
92     PLACE_INTERP,
93     PLACE_NONALLOC,
94     PLACE_LAST,
95     PLACE_MAX
96   };
97
98   // The information we keep for a specific place.
99   struct Place
100   {
101     // The name of sections for this place.
102     const char* name;
103     // Whether we have a location for this place.
104     bool have_location;
105     // The iterator for this place.
106     Elements_iterator location;
107   };
108
109   // Initialize one place element.
110   void
111   initialize_place(Place_index, const char*);
112
113   // The places.
114   Place places_[PLACE_MAX];
115   // True if this is the first call to output_section_init.
116   bool first_init_;
117 };
118
119 // Initialize Orphan_section_placement.
120
121 Orphan_section_placement::Orphan_section_placement()
122   : first_init_(true)
123 {
124   this->initialize_place(PLACE_TEXT, ".text");
125   this->initialize_place(PLACE_RODATA, ".rodata");
126   this->initialize_place(PLACE_DATA, ".data");
127   this->initialize_place(PLACE_TLS, NULL);
128   this->initialize_place(PLACE_TLS_BSS, NULL);
129   this->initialize_place(PLACE_BSS, ".bss");
130   this->initialize_place(PLACE_REL, NULL);
131   this->initialize_place(PLACE_INTERP, ".interp");
132   this->initialize_place(PLACE_NONALLOC, NULL);
133   this->initialize_place(PLACE_LAST, NULL);
134 }
135
136 // Initialize one place element.
137
138 void
139 Orphan_section_placement::initialize_place(Place_index index, const char* name)
140 {
141   this->places_[index].name = name;
142   this->places_[index].have_location = false;
143 }
144
145 // While initializing the Orphan_section_placement information, this
146 // is called once for each output section named in the linker script.
147 // If we found an output section during the link, it will be passed in
148 // OS.
149
150 void
151 Orphan_section_placement::output_section_init(const std::string& name,
152                                               Output_section* os,
153                                               Elements_iterator location)
154 {
155   bool first_init = this->first_init_;
156   this->first_init_ = false;
157
158   for (int i = 0; i < PLACE_MAX; ++i)
159     {
160       if (this->places_[i].name != NULL && this->places_[i].name == name)
161         {
162           if (this->places_[i].have_location)
163             {
164               // We have already seen a section with this name.
165               return;
166             }
167
168           this->places_[i].location = location;
169           this->places_[i].have_location = true;
170
171           // If we just found the .bss section, restart the search for
172           // an unallocated section.  This follows the GNU linker's
173           // behaviour.
174           if (i == PLACE_BSS)
175             this->places_[PLACE_NONALLOC].have_location = false;
176
177           return;
178         }
179     }
180
181   // Relocation sections.
182   if (!this->places_[PLACE_REL].have_location
183       && os != NULL
184       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
185       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
186     {
187       this->places_[PLACE_REL].location = location;
188       this->places_[PLACE_REL].have_location = true;
189     }
190
191   // We find the location for unallocated sections by finding the
192   // first debugging or comment section after the BSS section (if
193   // there is one).
194   if (!this->places_[PLACE_NONALLOC].have_location
195       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
196     {
197       // We add orphan sections after the location in PLACES_.  We
198       // want to store unallocated sections before LOCATION.  If this
199       // is the very first section, we can't use it.
200       if (!first_init)
201         {
202           --location;
203           this->places_[PLACE_NONALLOC].location = location;
204           this->places_[PLACE_NONALLOC].have_location = true;
205         }
206     }
207 }
208
209 // Initialize the last location.
210
211 void
212 Orphan_section_placement::last_init(Elements_iterator location)
213 {
214   this->places_[PLACE_LAST].location = location;
215   this->places_[PLACE_LAST].have_location = true;
216 }
217
218 // Set *PWHERE to the address of an iterator pointing to the location
219 // to use for an orphan section.  Return true if the iterator has a
220 // value, false otherwise.
221
222 bool
223 Orphan_section_placement::find_place(Output_section* os,
224                                      Elements_iterator** pwhere)
225 {
226   // Figure out where OS should go.  This is based on the GNU linker
227   // code.  FIXME: The GNU linker handles small data sections
228   // specially, but we don't.
229   elfcpp::Elf_Word type = os->type();
230   elfcpp::Elf_Xword flags = os->flags();
231   Place_index index;
232   if ((flags & elfcpp::SHF_ALLOC) == 0
233       && !Layout::is_debug_info_section(os->name()))
234     index = PLACE_NONALLOC;
235   else if ((flags & elfcpp::SHF_ALLOC) == 0)
236     index = PLACE_LAST;
237   else if (type == elfcpp::SHT_NOTE)
238     index = PLACE_INTERP;
239   else if ((flags & elfcpp::SHF_TLS) != 0)
240     {
241       if (type == elfcpp::SHT_NOBITS)
242         index = PLACE_TLS_BSS;
243       else
244         index = PLACE_TLS;
245     }
246   else if (type == elfcpp::SHT_NOBITS)
247     index = PLACE_BSS;
248   else if ((flags & elfcpp::SHF_WRITE) != 0)
249     index = PLACE_DATA;
250   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
251     index = PLACE_REL;
252   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
253     index = PLACE_RODATA;
254   else
255     index = PLACE_TEXT;
256
257   // If we don't have a location yet, try to find one based on a
258   // plausible ordering of sections.
259   if (!this->places_[index].have_location)
260     {
261       Place_index follow;
262       switch (index)
263         {
264         default:
265           follow = PLACE_MAX;
266           break;
267         case PLACE_RODATA:
268           follow = PLACE_TEXT;
269           break;
270         case PLACE_BSS:
271           follow = PLACE_DATA;
272           break;
273         case PLACE_REL:
274           follow = PLACE_TEXT;
275           break;
276         case PLACE_INTERP:
277           follow = PLACE_TEXT;
278           break;
279         case PLACE_TLS:
280           follow = PLACE_DATA;
281           break;
282         case PLACE_TLS_BSS:
283           follow = PLACE_TLS;
284           if (!this->places_[PLACE_TLS].have_location)
285             follow = PLACE_DATA;
286           break;
287         }
288       if (follow != PLACE_MAX && this->places_[follow].have_location)
289         {
290           // Set the location of INDEX to the location of FOLLOW.  The
291           // location of INDEX will then be incremented by the caller,
292           // so anything in INDEX will continue to be after anything
293           // in FOLLOW.
294           this->places_[index].location = this->places_[follow].location;
295           this->places_[index].have_location = true;
296         }
297     }
298
299   *pwhere = &this->places_[index].location;
300   bool ret = this->places_[index].have_location;
301
302   // The caller will set the location.
303   this->places_[index].have_location = true;
304
305   return ret;
306 }
307
308 // Return the iterator being used for sections at the very end of the
309 // linker script.
310
311 Orphan_section_placement::Elements_iterator
312 Orphan_section_placement::last_place() const
313 {
314   gold_assert(this->places_[PLACE_LAST].have_location);
315   return this->places_[PLACE_LAST].location;
316 }
317
318 // An element in a SECTIONS clause.
319
320 class Sections_element
321 {
322  public:
323   Sections_element()
324   { }
325
326   virtual ~Sections_element()
327   { }
328
329   // Return whether an output section is relro.
330   virtual bool
331   is_relro() const
332   { return false; }
333
334   // Record that an output section is relro.
335   virtual void
336   set_is_relro()
337   { }
338
339   // Create any required output sections.  The only real
340   // implementation is in Output_section_definition.
341   virtual void
342   create_sections(Layout*)
343   { }
344
345   // Add any symbol being defined to the symbol table.
346   virtual void
347   add_symbols_to_table(Symbol_table*)
348   { }
349
350   // Finalize symbols and check assertions.
351   virtual void
352   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
353   { }
354
355   // Return the output section name to use for an input file name and
356   // section name.  This only real implementation is in
357   // Output_section_definition.
358   virtual const char*
359   output_section_name(const char*, const char*, Output_section***,
360                       Script_sections::Section_type*)
361   { return NULL; }
362
363   // Initialize OSP with an output section.
364   virtual void
365   orphan_section_init(Orphan_section_placement*,
366                       Script_sections::Elements_iterator)
367   { }
368
369   // Set section addresses.  This includes applying assignments if the
370   // the expression is an absolute value.
371   virtual void
372   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
373                         uint64_t*)
374   { }
375
376   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
377   // this section is constrained, and the input sections do not match,
378   // return the constraint, and set *POSD.
379   virtual Section_constraint
380   check_constraint(Output_section_definition**)
381   { return CONSTRAINT_NONE; }
382
383   // See if this is the alternate output section for a constrained
384   // output section.  If it is, transfer the Output_section and return
385   // true.  Otherwise return false.
386   virtual bool
387   alternate_constraint(Output_section_definition*, Section_constraint)
388   { return false; }
389
390   // Get the list of segments to use for an allocated section when
391   // using a PHDRS clause.  If this is an allocated section, return
392   // the Output_section, and set *PHDRS_LIST (the first parameter) to
393   // the list of PHDRS to which it should be attached.  If the PHDRS
394   // were not specified, don't change *PHDRS_LIST.  When not returning
395   // NULL, set *ORPHAN (the second parameter) according to whether
396   // this is an orphan section--one that is not mentioned in the
397   // linker script.
398   virtual Output_section*
399   allocate_to_segment(String_list**, bool*)
400   { return NULL; }
401
402   // Look for an output section by name and return the address, the
403   // load address, the alignment, and the size.  This is used when an
404   // expression refers to an output section which was not actually
405   // created.  This returns true if the section was found, false
406   // otherwise.  The only real definition is for
407   // Output_section_definition.
408   virtual bool
409   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
410                           uint64_t*) const
411   { return false; }
412
413   // Return the associated Output_section if there is one.
414   virtual Output_section*
415   get_output_section() const
416   { return NULL; }
417
418   // Print the element for debugging purposes.
419   virtual void
420   print(FILE* f) const = 0;
421 };
422
423 // An assignment in a SECTIONS clause outside of an output section.
424
425 class Sections_element_assignment : public Sections_element
426 {
427  public:
428   Sections_element_assignment(const char* name, size_t namelen,
429                               Expression* val, bool provide, bool hidden)
430     : assignment_(name, namelen, false, val, provide, hidden)
431   { }
432
433   // Add the symbol to the symbol table.
434   void
435   add_symbols_to_table(Symbol_table* symtab)
436   { this->assignment_.add_to_table(symtab); }
437
438   // Finalize the symbol.
439   void
440   finalize_symbols(Symbol_table* symtab, const Layout* layout,
441                    uint64_t* dot_value)
442   {
443     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
444   }
445
446   // Set the section address.  There is no section here, but if the
447   // value is absolute, we set the symbol.  This permits us to use
448   // absolute symbols when setting dot.
449   void
450   set_section_addresses(Symbol_table* symtab, Layout* layout,
451                         uint64_t* dot_value, uint64_t*, uint64_t*)
452   {
453     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
454   }
455
456   // Print for debugging.
457   void
458   print(FILE* f) const
459   {
460     fprintf(f, "  ");
461     this->assignment_.print(f);
462   }
463
464  private:
465   Symbol_assignment assignment_;
466 };
467
468 // An assignment to the dot symbol in a SECTIONS clause outside of an
469 // output section.
470
471 class Sections_element_dot_assignment : public Sections_element
472 {
473  public:
474   Sections_element_dot_assignment(Expression* val)
475     : val_(val)
476   { }
477
478   // Finalize the symbol.
479   void
480   finalize_symbols(Symbol_table* symtab, const Layout* layout,
481                    uint64_t* dot_value)
482   {
483     // We ignore the section of the result because outside of an
484     // output section definition the dot symbol is always considered
485     // to be absolute.
486     Output_section* dummy;
487     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
488                                            NULL, &dummy, NULL);
489   }
490
491   // Update the dot symbol while setting section addresses.
492   void
493   set_section_addresses(Symbol_table* symtab, Layout* layout,
494                         uint64_t* dot_value, uint64_t* dot_alignment,
495                         uint64_t* load_address)
496   {
497     Output_section* dummy;
498     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
499                                            NULL, &dummy, dot_alignment);
500     *load_address = *dot_value;
501   }
502
503   // Print for debugging.
504   void
505   print(FILE* f) const
506   {
507     fprintf(f, "  . = ");
508     this->val_->print(f);
509     fprintf(f, "\n");
510   }
511
512  private:
513   Expression* val_;
514 };
515
516 // An assertion in a SECTIONS clause outside of an output section.
517
518 class Sections_element_assertion : public Sections_element
519 {
520  public:
521   Sections_element_assertion(Expression* check, const char* message,
522                              size_t messagelen)
523     : assertion_(check, message, messagelen)
524   { }
525
526   // Check the assertion.
527   void
528   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
529   { this->assertion_.check(symtab, layout); }
530
531   // Print for debugging.
532   void
533   print(FILE* f) const
534   {
535     fprintf(f, "  ");
536     this->assertion_.print(f);
537   }
538
539  private:
540   Script_assertion assertion_;
541 };
542
543 // An element in an output section in a SECTIONS clause.
544
545 class Output_section_element
546 {
547  public:
548   // A list of input sections.
549   typedef std::list<Output_section::Input_section> Input_section_list;
550
551   Output_section_element()
552   { }
553
554   virtual ~Output_section_element()
555   { }
556
557   // Return whether this element requires an output section to exist.
558   virtual bool
559   needs_output_section() const
560   { return false; }
561
562   // Add any symbol being defined to the symbol table.
563   virtual void
564   add_symbols_to_table(Symbol_table*)
565   { }
566
567   // Finalize symbols and check assertions.
568   virtual void
569   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
570   { }
571
572   // Return whether this element matches FILE_NAME and SECTION_NAME.
573   // The only real implementation is in Output_section_element_input.
574   virtual bool
575   match_name(const char*, const char*) const
576   { return false; }
577
578   // Set section addresses.  This includes applying assignments if the
579   // the expression is an absolute value.
580   virtual void
581   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
582                         uint64_t*, uint64_t*, Output_section**, std::string*,
583                         Input_section_list*)
584   { }
585
586   // Print the element for debugging purposes.
587   virtual void
588   print(FILE* f) const = 0;
589
590  protected:
591   // Return a fill string that is LENGTH bytes long, filling it with
592   // FILL.
593   std::string
594   get_fill_string(const std::string* fill, section_size_type length) const;
595 };
596
597 std::string
598 Output_section_element::get_fill_string(const std::string* fill,
599                                         section_size_type length) const
600 {
601   std::string this_fill;
602   this_fill.reserve(length);
603   while (this_fill.length() + fill->length() <= length)
604     this_fill += *fill;
605   if (this_fill.length() < length)
606     this_fill.append(*fill, 0, length - this_fill.length());
607   return this_fill;
608 }
609
610 // A symbol assignment in an output section.
611
612 class Output_section_element_assignment : public Output_section_element
613 {
614  public:
615   Output_section_element_assignment(const char* name, size_t namelen,
616                                     Expression* val, bool provide,
617                                     bool hidden)
618     : assignment_(name, namelen, false, val, provide, hidden)
619   { }
620
621   // Add the symbol to the symbol table.
622   void
623   add_symbols_to_table(Symbol_table* symtab)
624   { this->assignment_.add_to_table(symtab); }
625
626   // Finalize the symbol.
627   void
628   finalize_symbols(Symbol_table* symtab, const Layout* layout,
629                    uint64_t* dot_value, Output_section** dot_section)
630   {
631     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
632                                         *dot_section);
633   }
634
635   // Set the section address.  There is no section here, but if the
636   // value is absolute, we set the symbol.  This permits us to use
637   // absolute symbols when setting dot.
638   void
639   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
640                         uint64_t, uint64_t* dot_value, uint64_t*,
641                         Output_section**, std::string*, Input_section_list*)
642   {
643     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
644   }
645
646   // Print for debugging.
647   void
648   print(FILE* f) const
649   {
650     fprintf(f, "    ");
651     this->assignment_.print(f);
652   }
653
654  private:
655   Symbol_assignment assignment_;
656 };
657
658 // An assignment to the dot symbol in an output section.
659
660 class Output_section_element_dot_assignment : public Output_section_element
661 {
662  public:
663   Output_section_element_dot_assignment(Expression* val)
664     : val_(val)
665   { }
666
667   // Finalize the symbol.
668   void
669   finalize_symbols(Symbol_table* symtab, const Layout* layout,
670                    uint64_t* dot_value, Output_section** dot_section)
671   {
672     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
673                                            *dot_section, dot_section, NULL);
674   }
675
676   // Update the dot symbol while setting section addresses.
677   void
678   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
679                         uint64_t, uint64_t* dot_value, uint64_t*,
680                         Output_section**, std::string*, Input_section_list*);
681
682   // Print for debugging.
683   void
684   print(FILE* f) const
685   {
686     fprintf(f, "    . = ");
687     this->val_->print(f);
688     fprintf(f, "\n");
689   }
690
691  private:
692   Expression* val_;
693 };
694
695 // Update the dot symbol while setting section addresses.
696
697 void
698 Output_section_element_dot_assignment::set_section_addresses(
699     Symbol_table* symtab,
700     Layout* layout,
701     Output_section* output_section,
702     uint64_t,
703     uint64_t* dot_value,
704     uint64_t* dot_alignment,
705     Output_section** dot_section,
706     std::string* fill,
707     Input_section_list*)
708 {
709   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
710                                                 *dot_value, *dot_section,
711                                                 dot_section, dot_alignment);
712   if (next_dot < *dot_value)
713     gold_error(_("dot may not move backward"));
714   if (next_dot > *dot_value && output_section != NULL)
715     {
716       section_size_type length = convert_to_section_size_type(next_dot
717                                                               - *dot_value);
718       Output_section_data* posd;
719       if (fill->empty())
720         posd = new Output_data_zero_fill(length, 0);
721       else
722         {
723           std::string this_fill = this->get_fill_string(fill, length);
724           posd = new Output_data_const(this_fill, 0);
725         }
726       output_section->add_output_section_data(posd);
727       layout->new_output_section_data_from_script(posd);
728     }
729   *dot_value = next_dot;
730 }
731
732 // An assertion in an output section.
733
734 class Output_section_element_assertion : public Output_section_element
735 {
736  public:
737   Output_section_element_assertion(Expression* check, const char* message,
738                                    size_t messagelen)
739     : assertion_(check, message, messagelen)
740   { }
741
742   void
743   print(FILE* f) const
744   {
745     fprintf(f, "    ");
746     this->assertion_.print(f);
747   }
748
749  private:
750   Script_assertion assertion_;
751 };
752
753 // We use a special instance of Output_section_data to handle BYTE,
754 // SHORT, etc.  This permits forward references to symbols in the
755 // expressions.
756
757 class Output_data_expression : public Output_section_data
758 {
759  public:
760   Output_data_expression(int size, bool is_signed, Expression* val,
761                          const Symbol_table* symtab, const Layout* layout,
762                          uint64_t dot_value, Output_section* dot_section)
763     : Output_section_data(size, 0, true),
764       is_signed_(is_signed), val_(val), symtab_(symtab),
765       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
766   { }
767
768  protected:
769   // Write the data to the output file.
770   void
771   do_write(Output_file*);
772
773   // Write the data to a buffer.
774   void
775   do_write_to_buffer(unsigned char*);
776
777   // Write to a map file.
778   void
779   do_print_to_mapfile(Mapfile* mapfile) const
780   { mapfile->print_output_data(this, _("** expression")); }
781
782  private:
783   template<bool big_endian>
784   void
785   endian_write_to_buffer(uint64_t, unsigned char*);
786
787   bool is_signed_;
788   Expression* val_;
789   const Symbol_table* symtab_;
790   const Layout* layout_;
791   uint64_t dot_value_;
792   Output_section* dot_section_;
793 };
794
795 // Write the data element to the output file.
796
797 void
798 Output_data_expression::do_write(Output_file* of)
799 {
800   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
801   this->write_to_buffer(view);
802   of->write_output_view(this->offset(), this->data_size(), view);
803 }
804
805 // Write the data element to a buffer.
806
807 void
808 Output_data_expression::do_write_to_buffer(unsigned char* buf)
809 {
810   Output_section* dummy;
811   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
812                                            true, this->dot_value_,
813                                            this->dot_section_, &dummy, NULL);
814
815   if (parameters->target().is_big_endian())
816     this->endian_write_to_buffer<true>(val, buf);
817   else
818     this->endian_write_to_buffer<false>(val, buf);
819 }
820
821 template<bool big_endian>
822 void
823 Output_data_expression::endian_write_to_buffer(uint64_t val,
824                                                unsigned char* buf)
825 {
826   switch (this->data_size())
827     {
828     case 1:
829       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
830       break;
831     case 2:
832       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
833       break;
834     case 4:
835       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
836       break;
837     case 8:
838       if (parameters->target().get_size() == 32)
839         {
840           val &= 0xffffffff;
841           if (this->is_signed_ && (val & 0x80000000) != 0)
842             val |= 0xffffffff00000000LL;
843         }
844       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
845       break;
846     default:
847       gold_unreachable();
848     }
849 }
850
851 // A data item in an output section.
852
853 class Output_section_element_data : public Output_section_element
854 {
855  public:
856   Output_section_element_data(int size, bool is_signed, Expression* val)
857     : size_(size), is_signed_(is_signed), val_(val)
858   { }
859
860   // If there is a data item, then we must create an output section.
861   bool
862   needs_output_section() const
863   { return true; }
864
865   // Finalize symbols--we just need to update dot.
866   void
867   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
868                    Output_section**)
869   { *dot_value += this->size_; }
870
871   // Store the value in the section.
872   void
873   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
874                         uint64_t* dot_value, uint64_t*, Output_section**,
875                         std::string*, Input_section_list*);
876
877   // Print for debugging.
878   void
879   print(FILE*) const;
880
881  private:
882   // The size in bytes.
883   int size_;
884   // Whether the value is signed.
885   bool is_signed_;
886   // The value.
887   Expression* val_;
888 };
889
890 // Store the value in the section.
891
892 void
893 Output_section_element_data::set_section_addresses(
894     Symbol_table* symtab,
895     Layout* layout,
896     Output_section* os,
897     uint64_t,
898     uint64_t* dot_value,
899     uint64_t*,
900     Output_section** dot_section,
901     std::string*,
902     Input_section_list*)
903 {
904   gold_assert(os != NULL);
905   Output_data_expression* expression =
906     new Output_data_expression(this->size_, this->is_signed_, this->val_,
907                                symtab, layout, *dot_value, *dot_section);
908   os->add_output_section_data(expression);
909   layout->new_output_section_data_from_script(expression);
910   *dot_value += this->size_;
911 }
912
913 // Print for debugging.
914
915 void
916 Output_section_element_data::print(FILE* f) const
917 {
918   const char* s;
919   switch (this->size_)
920     {
921     case 1:
922       s = "BYTE";
923       break;
924     case 2:
925       s = "SHORT";
926       break;
927     case 4:
928       s = "LONG";
929       break;
930     case 8:
931       if (this->is_signed_)
932         s = "SQUAD";
933       else
934         s = "QUAD";
935       break;
936     default:
937       gold_unreachable();
938     }
939   fprintf(f, "    %s(", s);
940   this->val_->print(f);
941   fprintf(f, ")\n");
942 }
943
944 // A fill value setting in an output section.
945
946 class Output_section_element_fill : public Output_section_element
947 {
948  public:
949   Output_section_element_fill(Expression* val)
950     : val_(val)
951   { }
952
953   // Update the fill value while setting section addresses.
954   void
955   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
956                         uint64_t, uint64_t* dot_value, uint64_t*,
957                         Output_section** dot_section,
958                         std::string* fill, Input_section_list*)
959   {
960     Output_section* fill_section;
961     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
962                                                   *dot_value, *dot_section,
963                                                   &fill_section, NULL);
964     if (fill_section != NULL)
965       gold_warning(_("fill value is not absolute"));
966     // FIXME: The GNU linker supports fill values of arbitrary length.
967     unsigned char fill_buff[4];
968     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
969     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
970   }
971
972   // Print for debugging.
973   void
974   print(FILE* f) const
975   {
976     fprintf(f, "    FILL(");
977     this->val_->print(f);
978     fprintf(f, ")\n");
979   }
980
981  private:
982   // The new fill value.
983   Expression* val_;
984 };
985
986 // Return whether STRING contains a wildcard character.  This is used
987 // to speed up matching.
988
989 static inline bool
990 is_wildcard_string(const std::string& s)
991 {
992   return strpbrk(s.c_str(), "?*[") != NULL;
993 }
994
995 // An input section specification in an output section
996
997 class Output_section_element_input : public Output_section_element
998 {
999  public:
1000   Output_section_element_input(const Input_section_spec* spec, bool keep);
1001
1002   // Finalize symbols--just update the value of the dot symbol.
1003   void
1004   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1005                    Output_section** dot_section)
1006   {
1007     *dot_value = this->final_dot_value_;
1008     *dot_section = this->final_dot_section_;
1009   }
1010
1011   // See whether we match FILE_NAME and SECTION_NAME as an input
1012   // section.
1013   bool
1014   match_name(const char* file_name, const char* section_name) const;
1015
1016   // Set the section address.
1017   void
1018   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1019                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1020                         Output_section**, std::string* fill,
1021                         Input_section_list*);
1022
1023   // Print for debugging.
1024   void
1025   print(FILE* f) const;
1026
1027  private:
1028   // An input section pattern.
1029   struct Input_section_pattern
1030   {
1031     std::string pattern;
1032     bool pattern_is_wildcard;
1033     Sort_wildcard sort;
1034
1035     Input_section_pattern(const char* patterna, size_t patternlena,
1036                           Sort_wildcard sorta)
1037       : pattern(patterna, patternlena),
1038         pattern_is_wildcard(is_wildcard_string(this->pattern)),
1039         sort(sorta)
1040     { }
1041   };
1042
1043   typedef std::vector<Input_section_pattern> Input_section_patterns;
1044
1045   // Filename_exclusions is a pair of filename pattern and a bool
1046   // indicating whether the filename is a wildcard.
1047   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1048
1049   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1050   // indicates whether this is a wildcard pattern.
1051   static inline bool
1052   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1053   {
1054     return (is_wildcard_pattern
1055             ? fnmatch(pattern, string, 0) == 0
1056             : strcmp(string, pattern) == 0);
1057   }
1058
1059   // See if we match a file name.
1060   bool
1061   match_file_name(const char* file_name) const;
1062
1063   // The file name pattern.  If this is the empty string, we match all
1064   // files.
1065   std::string filename_pattern_;
1066   // Whether the file name pattern is a wildcard.
1067   bool filename_is_wildcard_;
1068   // How the file names should be sorted.  This may only be
1069   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1070   Sort_wildcard filename_sort_;
1071   // The list of file names to exclude.
1072   Filename_exclusions filename_exclusions_;
1073   // The list of input section patterns.
1074   Input_section_patterns input_section_patterns_;
1075   // Whether to keep this section when garbage collecting.
1076   bool keep_;
1077   // The value of dot after including all matching sections.
1078   uint64_t final_dot_value_;
1079   // The section where dot is defined after including all matching
1080   // sections.
1081   Output_section* final_dot_section_;
1082 };
1083
1084 // Construct Output_section_element_input.  The parser records strings
1085 // as pointers into a copy of the script file, which will go away when
1086 // parsing is complete.  We make sure they are in std::string objects.
1087
1088 Output_section_element_input::Output_section_element_input(
1089     const Input_section_spec* spec,
1090     bool keep)
1091   : filename_pattern_(),
1092     filename_is_wildcard_(false),
1093     filename_sort_(spec->file.sort),
1094     filename_exclusions_(),
1095     input_section_patterns_(),
1096     keep_(keep),
1097     final_dot_value_(0),
1098     final_dot_section_(NULL)
1099 {
1100   // The filename pattern "*" is common, and matches all files.  Turn
1101   // it into the empty string.
1102   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1103     this->filename_pattern_.assign(spec->file.name.value,
1104                                    spec->file.name.length);
1105   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1106
1107   if (spec->input_sections.exclude != NULL)
1108     {
1109       for (String_list::const_iterator p =
1110              spec->input_sections.exclude->begin();
1111            p != spec->input_sections.exclude->end();
1112            ++p)
1113         {
1114           bool is_wildcard = is_wildcard_string(*p);
1115           this->filename_exclusions_.push_back(std::make_pair(*p,
1116                                                               is_wildcard));
1117         }
1118     }
1119
1120   if (spec->input_sections.sections != NULL)
1121     {
1122       Input_section_patterns& isp(this->input_section_patterns_);
1123       for (String_sort_list::const_iterator p =
1124              spec->input_sections.sections->begin();
1125            p != spec->input_sections.sections->end();
1126            ++p)
1127         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1128                                             p->sort));
1129     }
1130 }
1131
1132 // See whether we match FILE_NAME.
1133
1134 bool
1135 Output_section_element_input::match_file_name(const char* file_name) const
1136 {
1137   if (!this->filename_pattern_.empty())
1138     {
1139       // If we were called with no filename, we refuse to match a
1140       // pattern which requires a file name.
1141       if (file_name == NULL)
1142         return false;
1143
1144       if (!match(file_name, this->filename_pattern_.c_str(),
1145                  this->filename_is_wildcard_))
1146         return false;
1147     }
1148
1149   if (file_name != NULL)
1150     {
1151       // Now we have to see whether FILE_NAME matches one of the
1152       // exclusion patterns, if any.
1153       for (Filename_exclusions::const_iterator p =
1154              this->filename_exclusions_.begin();
1155            p != this->filename_exclusions_.end();
1156            ++p)
1157         {
1158           if (match(file_name, p->first.c_str(), p->second))
1159             return false;
1160         }
1161     }
1162
1163   return true;
1164 }
1165
1166 // See whether we match FILE_NAME and SECTION_NAME.
1167
1168 bool
1169 Output_section_element_input::match_name(const char* file_name,
1170                                          const char* section_name) const
1171 {
1172   if (!this->match_file_name(file_name))
1173     return false;
1174
1175   // If there are no section name patterns, then we match.
1176   if (this->input_section_patterns_.empty())
1177     return true;
1178
1179   // See whether we match the section name patterns.
1180   for (Input_section_patterns::const_iterator p =
1181          this->input_section_patterns_.begin();
1182        p != this->input_section_patterns_.end();
1183        ++p)
1184     {
1185       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1186         return true;
1187     }
1188
1189   // We didn't match any section names, so we didn't match.
1190   return false;
1191 }
1192
1193 // Information we use to sort the input sections.
1194
1195 class Input_section_info
1196 {
1197  public:
1198   Input_section_info(const Output_section::Input_section& input_section)
1199     : input_section_(input_section), section_name_(),
1200       size_(0), addralign_(1)
1201   { }
1202
1203   // Return the simple input section.
1204   const Output_section::Input_section&
1205   input_section() const
1206   { return this->input_section_; }
1207
1208   // Return the object.
1209   Relobj*
1210   relobj() const
1211   { return this->input_section_.relobj(); }
1212
1213   // Return the section index.
1214   unsigned int
1215   shndx()
1216   { return this->input_section_.shndx(); }
1217
1218   // Return the section name.
1219   const std::string&
1220   section_name() const
1221   { return this->section_name_; }
1222
1223   // Set the section name.
1224   void
1225   set_section_name(const std::string name)
1226   { this->section_name_ = name; }
1227
1228   // Return the section size.
1229   uint64_t
1230   size() const
1231   { return this->size_; }
1232
1233   // Set the section size.
1234   void
1235   set_size(uint64_t size)
1236   { this->size_ = size; }
1237
1238   // Return the address alignment.
1239   uint64_t
1240   addralign() const
1241   { return this->addralign_; }
1242
1243   // Set the address alignment.
1244   void
1245   set_addralign(uint64_t addralign)
1246   { this->addralign_ = addralign; }
1247
1248  private:
1249   // Input section, can be a relaxed section.
1250   Output_section::Input_section input_section_;
1251   // Name of the section. 
1252   std::string section_name_;
1253   // Section size.
1254   uint64_t size_;
1255   // Address alignment.
1256   uint64_t addralign_;
1257 };
1258
1259 // A class to sort the input sections.
1260
1261 class Input_section_sorter
1262 {
1263  public:
1264   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1265     : filename_sort_(filename_sort), section_sort_(section_sort)
1266   { }
1267
1268   bool
1269   operator()(const Input_section_info&, const Input_section_info&) const;
1270
1271  private:
1272   Sort_wildcard filename_sort_;
1273   Sort_wildcard section_sort_;
1274 };
1275
1276 bool
1277 Input_section_sorter::operator()(const Input_section_info& isi1,
1278                                  const Input_section_info& isi2) const
1279 {
1280   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1281       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1282       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1283           && isi1.addralign() == isi2.addralign()))
1284     {
1285       if (isi1.section_name() != isi2.section_name())
1286         return isi1.section_name() < isi2.section_name();
1287     }
1288   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1289       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1290       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1291     {
1292       if (isi1.addralign() != isi2.addralign())
1293         return isi1.addralign() < isi2.addralign();
1294     }
1295   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1296     {
1297       if (isi1.relobj()->name() != isi2.relobj()->name())
1298         return (isi1.relobj()->name() < isi2.relobj()->name());
1299     }
1300
1301   // Otherwise we leave them in the same order.
1302   return false;
1303 }
1304
1305 // Set the section address.  Look in INPUT_SECTIONS for sections which
1306 // match this spec, sort them as specified, and add them to the output
1307 // section.
1308
1309 void
1310 Output_section_element_input::set_section_addresses(
1311     Symbol_table*,
1312     Layout* layout,
1313     Output_section* output_section,
1314     uint64_t subalign,
1315     uint64_t* dot_value,
1316     uint64_t*,
1317     Output_section** dot_section,
1318     std::string* fill,
1319     Input_section_list* input_sections)
1320 {
1321   // We build a list of sections which match each
1322   // Input_section_pattern.
1323
1324   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1325   size_t input_pattern_count = this->input_section_patterns_.size();
1326   if (input_pattern_count == 0)
1327     input_pattern_count = 1;
1328   Matching_sections matching_sections(input_pattern_count);
1329
1330   // Look through the list of sections for this output section.  Add
1331   // each one which matches to one of the elements of
1332   // MATCHING_SECTIONS.
1333
1334   Input_section_list::iterator p = input_sections->begin();
1335   while (p != input_sections->end())
1336     {
1337       Relobj* relobj = p->relobj();
1338       unsigned int shndx = p->shndx();      
1339       Input_section_info isi(*p);
1340
1341       // Calling section_name and section_addralign is not very
1342       // efficient.
1343
1344       // Lock the object so that we can get information about the
1345       // section.  This is OK since we know we are single-threaded
1346       // here.
1347       {
1348         const Task* task = reinterpret_cast<const Task*>(-1);
1349         Task_lock_obj<Object> tl(task, relobj);
1350
1351         isi.set_section_name(relobj->section_name(shndx));
1352         if (p->is_relaxed_input_section())
1353           {
1354             // We use current data size because relxed section sizes may not
1355             // have finalized yet.
1356             isi.set_size(p->relaxed_input_section()->current_data_size());
1357             isi.set_addralign(p->relaxed_input_section()->addralign());
1358           }
1359         else
1360           {
1361             isi.set_size(relobj->section_size(shndx));
1362             isi.set_addralign(relobj->section_addralign(shndx));
1363           }
1364       }
1365
1366       if (!this->match_file_name(relobj->name().c_str()))
1367         ++p;
1368       else if (this->input_section_patterns_.empty())
1369         {
1370           matching_sections[0].push_back(isi);
1371           p = input_sections->erase(p);
1372         }
1373       else
1374         {
1375           size_t i;
1376           for (i = 0; i < input_pattern_count; ++i)
1377             {
1378               const Input_section_pattern&
1379                 isp(this->input_section_patterns_[i]);
1380               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1381                         isp.pattern_is_wildcard))
1382                 break;
1383             }
1384
1385           if (i >= this->input_section_patterns_.size())
1386             ++p;
1387           else
1388             {
1389               matching_sections[i].push_back(isi);
1390               p = input_sections->erase(p);
1391             }
1392         }
1393     }
1394
1395   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1396   // using a stable sort so that we get the default order when
1397   // sections are otherwise equal.  Add each input section to the
1398   // output section.
1399
1400   uint64_t dot = *dot_value;
1401   for (size_t i = 0; i < input_pattern_count; ++i)
1402     {
1403       if (matching_sections[i].empty())
1404         continue;
1405
1406       gold_assert(output_section != NULL);
1407
1408       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1409       if (isp.sort != SORT_WILDCARD_NONE
1410           || this->filename_sort_ != SORT_WILDCARD_NONE)
1411         std::stable_sort(matching_sections[i].begin(),
1412                          matching_sections[i].end(),
1413                          Input_section_sorter(this->filename_sort_,
1414                                               isp.sort));
1415
1416       for (std::vector<Input_section_info>::const_iterator p =
1417              matching_sections[i].begin();
1418            p != matching_sections[i].end();
1419            ++p)
1420         {
1421           // Override the original address alignment if SUBALIGN is specified
1422           // and is greater than the original alignment.  We need to make a
1423           // copy of the input section to modify the alignment.
1424           Output_section::Input_section sis(p->input_section());
1425
1426           uint64_t this_subalign = sis.addralign();
1427           if (!sis.is_input_section())
1428             sis.output_section_data()->finalize_data_size();    
1429           uint64_t data_size = sis.data_size();
1430           if (this_subalign < subalign)
1431             {
1432               this_subalign = subalign;
1433               sis.set_addralign(subalign);
1434             }
1435
1436           uint64_t address = align_address(dot, this_subalign);
1437
1438           if (address > dot && !fill->empty())
1439             {
1440               section_size_type length =
1441                 convert_to_section_size_type(address - dot);
1442               std::string this_fill = this->get_fill_string(fill, length);
1443               Output_section_data* posd = new Output_data_const(this_fill, 0);
1444               output_section->add_output_section_data(posd);
1445               layout->new_output_section_data_from_script(posd);
1446             }
1447
1448           output_section->add_script_input_section(sis);
1449           dot = address + data_size;
1450         }
1451     }
1452
1453   // An SHF_TLS/SHT_NOBITS section does not take up any
1454   // address space.
1455   if (output_section == NULL
1456       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1457       || output_section->type() != elfcpp::SHT_NOBITS)
1458     *dot_value = dot;
1459
1460   this->final_dot_value_ = *dot_value;
1461   this->final_dot_section_ = *dot_section;
1462 }
1463
1464 // Print for debugging.
1465
1466 void
1467 Output_section_element_input::print(FILE* f) const
1468 {
1469   fprintf(f, "    ");
1470
1471   if (this->keep_)
1472     fprintf(f, "KEEP(");
1473
1474   if (!this->filename_pattern_.empty())
1475     {
1476       bool need_close_paren = false;
1477       switch (this->filename_sort_)
1478         {
1479         case SORT_WILDCARD_NONE:
1480           break;
1481         case SORT_WILDCARD_BY_NAME:
1482           fprintf(f, "SORT_BY_NAME(");
1483           need_close_paren = true;
1484           break;
1485         default:
1486           gold_unreachable();
1487         }
1488
1489       fprintf(f, "%s", this->filename_pattern_.c_str());
1490
1491       if (need_close_paren)
1492         fprintf(f, ")");
1493     }
1494
1495   if (!this->input_section_patterns_.empty()
1496       || !this->filename_exclusions_.empty())
1497     {
1498       fprintf(f, "(");
1499
1500       bool need_space = false;
1501       if (!this->filename_exclusions_.empty())
1502         {
1503           fprintf(f, "EXCLUDE_FILE(");
1504           bool need_comma = false;
1505           for (Filename_exclusions::const_iterator p =
1506                  this->filename_exclusions_.begin();
1507                p != this->filename_exclusions_.end();
1508                ++p)
1509             {
1510               if (need_comma)
1511                 fprintf(f, ", ");
1512               fprintf(f, "%s", p->first.c_str());
1513               need_comma = true;
1514             }
1515           fprintf(f, ")");
1516           need_space = true;
1517         }
1518
1519       for (Input_section_patterns::const_iterator p =
1520              this->input_section_patterns_.begin();
1521            p != this->input_section_patterns_.end();
1522            ++p)
1523         {
1524           if (need_space)
1525             fprintf(f, " ");
1526
1527           int close_parens = 0;
1528           switch (p->sort)
1529             {
1530             case SORT_WILDCARD_NONE:
1531               break;
1532             case SORT_WILDCARD_BY_NAME:
1533               fprintf(f, "SORT_BY_NAME(");
1534               close_parens = 1;
1535               break;
1536             case SORT_WILDCARD_BY_ALIGNMENT:
1537               fprintf(f, "SORT_BY_ALIGNMENT(");
1538               close_parens = 1;
1539               break;
1540             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1541               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1542               close_parens = 2;
1543               break;
1544             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1545               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1546               close_parens = 2;
1547               break;
1548             default:
1549               gold_unreachable();
1550             }
1551
1552           fprintf(f, "%s", p->pattern.c_str());
1553
1554           for (int i = 0; i < close_parens; ++i)
1555             fprintf(f, ")");
1556
1557           need_space = true;
1558         }
1559
1560       fprintf(f, ")");
1561     }
1562
1563   if (this->keep_)
1564     fprintf(f, ")");
1565
1566   fprintf(f, "\n");
1567 }
1568
1569 // An output section.
1570
1571 class Output_section_definition : public Sections_element
1572 {
1573  public:
1574   typedef Output_section_element::Input_section_list Input_section_list;
1575
1576   Output_section_definition(const char* name, size_t namelen,
1577                             const Parser_output_section_header* header);
1578
1579   // Finish the output section with the information in the trailer.
1580   void
1581   finish(const Parser_output_section_trailer* trailer);
1582
1583   // Add a symbol to be defined.
1584   void
1585   add_symbol_assignment(const char* name, size_t length, Expression* value,
1586                         bool provide, bool hidden);
1587
1588   // Add an assignment to the special dot symbol.
1589   void
1590   add_dot_assignment(Expression* value);
1591
1592   // Add an assertion.
1593   void
1594   add_assertion(Expression* check, const char* message, size_t messagelen);
1595
1596   // Add a data item to the current output section.
1597   void
1598   add_data(int size, bool is_signed, Expression* val);
1599
1600   // Add a setting for the fill value.
1601   void
1602   add_fill(Expression* val);
1603
1604   // Add an input section specification.
1605   void
1606   add_input_section(const Input_section_spec* spec, bool keep);
1607
1608   // Return whether the output section is relro.
1609   bool
1610   is_relro() const
1611   { return this->is_relro_; }
1612
1613   // Record that the output section is relro.
1614   void
1615   set_is_relro()
1616   { this->is_relro_ = true; }
1617
1618   // Create any required output sections.
1619   void
1620   create_sections(Layout*);
1621
1622   // Add any symbols being defined to the symbol table.
1623   void
1624   add_symbols_to_table(Symbol_table* symtab);
1625
1626   // Finalize symbols and check assertions.
1627   void
1628   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1629
1630   // Return the output section name to use for an input file name and
1631   // section name.
1632   const char*
1633   output_section_name(const char* file_name, const char* section_name,
1634                       Output_section***, Script_sections::Section_type*);
1635
1636   // Initialize OSP with an output section.
1637   void
1638   orphan_section_init(Orphan_section_placement* osp,
1639                       Script_sections::Elements_iterator p)
1640   { osp->output_section_init(this->name_, this->output_section_, p); }
1641
1642   // Set the section address.
1643   void
1644   set_section_addresses(Symbol_table* symtab, Layout* layout,
1645                         uint64_t* dot_value, uint64_t*,
1646                         uint64_t* load_address);
1647
1648   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1649   // this section is constrained, and the input sections do not match,
1650   // return the constraint, and set *POSD.
1651   Section_constraint
1652   check_constraint(Output_section_definition** posd);
1653
1654   // See if this is the alternate output section for a constrained
1655   // output section.  If it is, transfer the Output_section and return
1656   // true.  Otherwise return false.
1657   bool
1658   alternate_constraint(Output_section_definition*, Section_constraint);
1659
1660   // Get the list of segments to use for an allocated section when
1661   // using a PHDRS clause.
1662   Output_section*
1663   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1664
1665   // Look for an output section by name and return the address, the
1666   // load address, the alignment, and the size.  This is used when an
1667   // expression refers to an output section which was not actually
1668   // created.  This returns true if the section was found, false
1669   // otherwise.
1670   bool
1671   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1672                           uint64_t*) const;
1673
1674   // Return the associated Output_section if there is one.
1675   Output_section*
1676   get_output_section() const
1677   { return this->output_section_; }
1678
1679   // Print the contents to the FILE.  This is for debugging.
1680   void
1681   print(FILE*) const;
1682
1683   // Return the output section type if specified or Script_sections::ST_NONE.
1684   Script_sections::Section_type
1685   section_type() const;
1686
1687  private:
1688   static const char*
1689   script_section_type_name(Script_section_type);
1690
1691   typedef std::vector<Output_section_element*> Output_section_elements;
1692
1693   // The output section name.
1694   std::string name_;
1695   // The address.  This may be NULL.
1696   Expression* address_;
1697   // The load address.  This may be NULL.
1698   Expression* load_address_;
1699   // The alignment.  This may be NULL.
1700   Expression* align_;
1701   // The input section alignment.  This may be NULL.
1702   Expression* subalign_;
1703   // The constraint, if any.
1704   Section_constraint constraint_;
1705   // The fill value.  This may be NULL.
1706   Expression* fill_;
1707   // The list of segments this section should go into.  This may be
1708   // NULL.
1709   String_list* phdrs_;
1710   // The list of elements defining the section.
1711   Output_section_elements elements_;
1712   // The Output_section created for this definition.  This will be
1713   // NULL if none was created.
1714   Output_section* output_section_;
1715   // The address after it has been evaluated.
1716   uint64_t evaluated_address_;
1717   // The load address after it has been evaluated.
1718   uint64_t evaluated_load_address_;
1719   // The alignment after it has been evaluated.
1720   uint64_t evaluated_addralign_;
1721   // The output section is relro.
1722   bool is_relro_;
1723   // The output section type if specified.
1724   enum Script_section_type script_section_type_;
1725 };
1726
1727 // Constructor.
1728
1729 Output_section_definition::Output_section_definition(
1730     const char* name,
1731     size_t namelen,
1732     const Parser_output_section_header* header)
1733   : name_(name, namelen),
1734     address_(header->address),
1735     load_address_(header->load_address),
1736     align_(header->align),
1737     subalign_(header->subalign),
1738     constraint_(header->constraint),
1739     fill_(NULL),
1740     phdrs_(NULL),
1741     elements_(),
1742     output_section_(NULL),
1743     evaluated_address_(0),
1744     evaluated_load_address_(0),
1745     evaluated_addralign_(0),
1746     is_relro_(false),
1747     script_section_type_(header->section_type)
1748 {
1749 }
1750
1751 // Finish an output section.
1752
1753 void
1754 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1755 {
1756   this->fill_ = trailer->fill;
1757   this->phdrs_ = trailer->phdrs;
1758 }
1759
1760 // Add a symbol to be defined.
1761
1762 void
1763 Output_section_definition::add_symbol_assignment(const char* name,
1764                                                  size_t length,
1765                                                  Expression* value,
1766                                                  bool provide,
1767                                                  bool hidden)
1768 {
1769   Output_section_element* p = new Output_section_element_assignment(name,
1770                                                                     length,
1771                                                                     value,
1772                                                                     provide,
1773                                                                     hidden);
1774   this->elements_.push_back(p);
1775 }
1776
1777 // Add an assignment to the special dot symbol.
1778
1779 void
1780 Output_section_definition::add_dot_assignment(Expression* value)
1781 {
1782   Output_section_element* p = new Output_section_element_dot_assignment(value);
1783   this->elements_.push_back(p);
1784 }
1785
1786 // Add an assertion.
1787
1788 void
1789 Output_section_definition::add_assertion(Expression* check,
1790                                          const char* message,
1791                                          size_t messagelen)
1792 {
1793   Output_section_element* p = new Output_section_element_assertion(check,
1794                                                                    message,
1795                                                                    messagelen);
1796   this->elements_.push_back(p);
1797 }
1798
1799 // Add a data item to the current output section.
1800
1801 void
1802 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1803 {
1804   Output_section_element* p = new Output_section_element_data(size, is_signed,
1805                                                               val);
1806   this->elements_.push_back(p);
1807 }
1808
1809 // Add a setting for the fill value.
1810
1811 void
1812 Output_section_definition::add_fill(Expression* val)
1813 {
1814   Output_section_element* p = new Output_section_element_fill(val);
1815   this->elements_.push_back(p);
1816 }
1817
1818 // Add an input section specification.
1819
1820 void
1821 Output_section_definition::add_input_section(const Input_section_spec* spec,
1822                                              bool keep)
1823 {
1824   Output_section_element* p = new Output_section_element_input(spec, keep);
1825   this->elements_.push_back(p);
1826 }
1827
1828 // Create any required output sections.  We need an output section if
1829 // there is a data statement here.
1830
1831 void
1832 Output_section_definition::create_sections(Layout* layout)
1833 {
1834   if (this->output_section_ != NULL)
1835     return;
1836   for (Output_section_elements::const_iterator p = this->elements_.begin();
1837        p != this->elements_.end();
1838        ++p)
1839     {
1840       if ((*p)->needs_output_section())
1841         {
1842           const char* name = this->name_.c_str();
1843           this->output_section_ =
1844             layout->make_output_section_for_script(name, this->section_type());
1845           return;
1846         }
1847     }
1848 }
1849
1850 // Add any symbols being defined to the symbol table.
1851
1852 void
1853 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1854 {
1855   for (Output_section_elements::iterator p = this->elements_.begin();
1856        p != this->elements_.end();
1857        ++p)
1858     (*p)->add_symbols_to_table(symtab);
1859 }
1860
1861 // Finalize symbols and check assertions.
1862
1863 void
1864 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1865                                             const Layout* layout,
1866                                             uint64_t* dot_value)
1867 {
1868   if (this->output_section_ != NULL)
1869     *dot_value = this->output_section_->address();
1870   else
1871     {
1872       uint64_t address = *dot_value;
1873       if (this->address_ != NULL)
1874         {
1875           Output_section* dummy;
1876           address = this->address_->eval_with_dot(symtab, layout, true,
1877                                                   *dot_value, NULL,
1878                                                   &dummy, NULL);
1879         }
1880       if (this->align_ != NULL)
1881         {
1882           Output_section* dummy;
1883           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1884                                                        *dot_value,
1885                                                        NULL,
1886                                                        &dummy, NULL);
1887           address = align_address(address, align);
1888         }
1889       *dot_value = address;
1890     }
1891
1892   Output_section* dot_section = this->output_section_;
1893   for (Output_section_elements::iterator p = this->elements_.begin();
1894        p != this->elements_.end();
1895        ++p)
1896     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1897 }
1898
1899 // Return the output section name to use for an input section name.
1900
1901 const char*
1902 Output_section_definition::output_section_name(
1903     const char* file_name,
1904     const char* section_name,
1905     Output_section*** slot,
1906     Script_sections::Section_type *psection_type)
1907 {
1908   // Ask each element whether it matches NAME.
1909   for (Output_section_elements::const_iterator p = this->elements_.begin();
1910        p != this->elements_.end();
1911        ++p)
1912     {
1913       if ((*p)->match_name(file_name, section_name))
1914         {
1915           // We found a match for NAME, which means that it should go
1916           // into this output section.
1917           *slot = &this->output_section_;
1918           *psection_type = this->section_type();
1919           return this->name_.c_str();
1920         }
1921     }
1922
1923   // We don't know about this section name.
1924   return NULL;
1925 }
1926
1927 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1928 // be NULL if no input sections were mapped to this output section.
1929 // We still have to adjust dot and process symbol assignments.
1930
1931 void
1932 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1933                                                  Layout* layout,
1934                                                  uint64_t* dot_value,
1935                                                  uint64_t* dot_alignment,
1936                                                  uint64_t* load_address)
1937 {
1938   uint64_t address;
1939   uint64_t old_dot_value = *dot_value;
1940   uint64_t old_load_address = *load_address;
1941
1942   if (this->address_ == NULL)
1943     address = *dot_value;
1944   else
1945     {
1946       Output_section* dummy;
1947       address = this->address_->eval_with_dot(symtab, layout, true,
1948                                               *dot_value, NULL, &dummy,
1949                                               dot_alignment);
1950     }
1951
1952   uint64_t align;
1953   if (this->align_ == NULL)
1954     {
1955       if (this->output_section_ == NULL)
1956         align = 0;
1957       else
1958         align = this->output_section_->addralign();
1959     }
1960   else
1961     {
1962       Output_section* align_section;
1963       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1964                                           NULL, &align_section, NULL);
1965       if (align_section != NULL)
1966         gold_warning(_("alignment of section %s is not absolute"),
1967                      this->name_.c_str());
1968       if (this->output_section_ != NULL)
1969         this->output_section_->set_addralign(align);
1970     }
1971
1972   address = align_address(address, align);
1973
1974   uint64_t start_address = address;
1975
1976   *dot_value = address;
1977
1978   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
1979   // forced to zero, regardless of what the linker script wants.
1980   if (this->output_section_ != NULL
1981       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
1982           || this->output_section_->is_noload()))
1983     this->output_section_->set_address(address);
1984
1985   this->evaluated_address_ = address;
1986   this->evaluated_addralign_ = align;
1987
1988   if (this->load_address_ == NULL)
1989     this->evaluated_load_address_ = address;
1990   else
1991     {
1992       Output_section* dummy;
1993       uint64_t laddr =
1994         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1995                                            this->output_section_, &dummy,
1996                                            NULL);
1997       if (this->output_section_ != NULL)
1998         this->output_section_->set_load_address(laddr);
1999       this->evaluated_load_address_ = laddr;
2000     }
2001
2002   uint64_t subalign;
2003   if (this->subalign_ == NULL)
2004     subalign = 0;
2005   else
2006     {
2007       Output_section* subalign_section;
2008       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2009                                                 *dot_value, NULL,
2010                                                 &subalign_section, NULL);
2011       if (subalign_section != NULL)
2012         gold_warning(_("subalign of section %s is not absolute"),
2013                      this->name_.c_str());
2014     }
2015
2016   std::string fill;
2017   if (this->fill_ != NULL)
2018     {
2019       // FIXME: The GNU linker supports fill values of arbitrary
2020       // length.
2021       Output_section* fill_section;
2022       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2023                                                      *dot_value,
2024                                                      NULL, &fill_section,
2025                                                      NULL);
2026       if (fill_section != NULL)
2027         gold_warning(_("fill of section %s is not absolute"),
2028                      this->name_.c_str());
2029       unsigned char fill_buff[4];
2030       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2031       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2032     }
2033
2034   Input_section_list input_sections;
2035   if (this->output_section_ != NULL)
2036     {
2037       // Get the list of input sections attached to this output
2038       // section.  This will leave the output section with only
2039       // Output_section_data entries.
2040       address += this->output_section_->get_input_sections(address,
2041                                                            fill,
2042                                                            &input_sections);
2043       *dot_value = address;
2044     }
2045
2046   Output_section* dot_section = this->output_section_;
2047   for (Output_section_elements::iterator p = this->elements_.begin();
2048        p != this->elements_.end();
2049        ++p)
2050     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2051                                 subalign, dot_value, dot_alignment,
2052                                 &dot_section, &fill, &input_sections);
2053
2054   gold_assert(input_sections.empty());
2055
2056   if (this->load_address_ == NULL || this->output_section_ == NULL)
2057     *load_address = *dot_value;
2058   else
2059     *load_address = (this->output_section_->load_address()
2060                      + (*dot_value - start_address));
2061
2062   if (this->output_section_ != NULL)
2063     {
2064       if (this->is_relro_)
2065         this->output_section_->set_is_relro();
2066       else
2067         this->output_section_->clear_is_relro();
2068
2069       // If this is a NOLOAD section, keep dot and load address unchanged.
2070       if (this->output_section_->is_noload())
2071         {
2072           *dot_value = old_dot_value;
2073           *load_address = old_load_address;
2074         }
2075     }
2076 }
2077
2078 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2079 // this section is constrained, and the input sections do not match,
2080 // return the constraint, and set *POSD.
2081
2082 Section_constraint
2083 Output_section_definition::check_constraint(Output_section_definition** posd)
2084 {
2085   switch (this->constraint_)
2086     {
2087     case CONSTRAINT_NONE:
2088       return CONSTRAINT_NONE;
2089
2090     case CONSTRAINT_ONLY_IF_RO:
2091       if (this->output_section_ != NULL
2092           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2093         {
2094           *posd = this;
2095           return CONSTRAINT_ONLY_IF_RO;
2096         }
2097       return CONSTRAINT_NONE;
2098
2099     case CONSTRAINT_ONLY_IF_RW:
2100       if (this->output_section_ != NULL
2101           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2102         {
2103           *posd = this;
2104           return CONSTRAINT_ONLY_IF_RW;
2105         }
2106       return CONSTRAINT_NONE;
2107
2108     case CONSTRAINT_SPECIAL:
2109       if (this->output_section_ != NULL)
2110         gold_error(_("SPECIAL constraints are not implemented"));
2111       return CONSTRAINT_NONE;
2112
2113     default:
2114       gold_unreachable();
2115     }
2116 }
2117
2118 // See if this is the alternate output section for a constrained
2119 // output section.  If it is, transfer the Output_section and return
2120 // true.  Otherwise return false.
2121
2122 bool
2123 Output_section_definition::alternate_constraint(
2124     Output_section_definition* posd,
2125     Section_constraint constraint)
2126 {
2127   if (this->name_ != posd->name_)
2128     return false;
2129
2130   switch (constraint)
2131     {
2132     case CONSTRAINT_ONLY_IF_RO:
2133       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2134         return false;
2135       break;
2136
2137     case CONSTRAINT_ONLY_IF_RW:
2138       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2139         return false;
2140       break;
2141
2142     default:
2143       gold_unreachable();
2144     }
2145
2146   // We have found the alternate constraint.  We just need to move
2147   // over the Output_section.  When constraints are used properly,
2148   // THIS should not have an output_section pointer, as all the input
2149   // sections should have matched the other definition.
2150
2151   if (this->output_section_ != NULL)
2152     gold_error(_("mismatched definition for constrained sections"));
2153
2154   this->output_section_ = posd->output_section_;
2155   posd->output_section_ = NULL;
2156
2157   if (this->is_relro_)
2158     this->output_section_->set_is_relro();
2159   else
2160     this->output_section_->clear_is_relro();
2161
2162   return true;
2163 }
2164
2165 // Get the list of segments to use for an allocated section when using
2166 // a PHDRS clause.
2167
2168 Output_section*
2169 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2170                                                bool* orphan)
2171 {
2172   if (this->output_section_ == NULL)
2173     return NULL;
2174   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2175     return NULL;
2176   *orphan = false;
2177   if (this->phdrs_ != NULL)
2178     *phdrs_list = this->phdrs_;
2179   return this->output_section_;
2180 }
2181
2182 // Look for an output section by name and return the address, the load
2183 // address, the alignment, and the size.  This is used when an
2184 // expression refers to an output section which was not actually
2185 // created.  This returns true if the section was found, false
2186 // otherwise.
2187
2188 bool
2189 Output_section_definition::get_output_section_info(const char* name,
2190                                                    uint64_t* address,
2191                                                    uint64_t* load_address,
2192                                                    uint64_t* addralign,
2193                                                    uint64_t* size) const
2194 {
2195   if (this->name_ != name)
2196     return false;
2197
2198   if (this->output_section_ != NULL)
2199     {
2200       *address = this->output_section_->address();
2201       if (this->output_section_->has_load_address())
2202         *load_address = this->output_section_->load_address();
2203       else
2204         *load_address = *address;
2205       *addralign = this->output_section_->addralign();
2206       *size = this->output_section_->current_data_size();
2207     }
2208   else
2209     {
2210       *address = this->evaluated_address_;
2211       *load_address = this->evaluated_load_address_;
2212       *addralign = this->evaluated_addralign_;
2213       *size = 0;
2214     }
2215
2216   return true;
2217 }
2218
2219 // Print for debugging.
2220
2221 void
2222 Output_section_definition::print(FILE* f) const
2223 {
2224   fprintf(f, "  %s ", this->name_.c_str());
2225
2226   if (this->address_ != NULL)
2227     {
2228       this->address_->print(f);
2229       fprintf(f, " ");
2230     }
2231
2232   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2233       fprintf(f, "(%s) ",
2234               this->script_section_type_name(this->script_section_type_));
2235
2236   fprintf(f, ": ");
2237
2238   if (this->load_address_ != NULL)
2239     {
2240       fprintf(f, "AT(");
2241       this->load_address_->print(f);
2242       fprintf(f, ") ");
2243     }
2244
2245   if (this->align_ != NULL)
2246     {
2247       fprintf(f, "ALIGN(");
2248       this->align_->print(f);
2249       fprintf(f, ") ");
2250     }
2251
2252   if (this->subalign_ != NULL)
2253     {
2254       fprintf(f, "SUBALIGN(");
2255       this->subalign_->print(f);
2256       fprintf(f, ") ");
2257     }
2258
2259   fprintf(f, "{\n");
2260
2261   for (Output_section_elements::const_iterator p = this->elements_.begin();
2262        p != this->elements_.end();
2263        ++p)
2264     (*p)->print(f);
2265
2266   fprintf(f, "  }");
2267
2268   if (this->fill_ != NULL)
2269     {
2270       fprintf(f, " = ");
2271       this->fill_->print(f);
2272     }
2273
2274   if (this->phdrs_ != NULL)
2275     {
2276       for (String_list::const_iterator p = this->phdrs_->begin();
2277            p != this->phdrs_->end();
2278            ++p)
2279         fprintf(f, " :%s", p->c_str());
2280     }
2281
2282   fprintf(f, "\n");
2283 }
2284
2285 Script_sections::Section_type
2286 Output_section_definition::section_type() const
2287 {
2288   switch (this->script_section_type_)
2289     {
2290     case SCRIPT_SECTION_TYPE_NONE:
2291       return Script_sections::ST_NONE;
2292     case SCRIPT_SECTION_TYPE_NOLOAD:
2293       return Script_sections::ST_NOLOAD;
2294     case SCRIPT_SECTION_TYPE_COPY:
2295     case SCRIPT_SECTION_TYPE_DSECT:
2296     case SCRIPT_SECTION_TYPE_INFO:
2297     case SCRIPT_SECTION_TYPE_OVERLAY:
2298       // There are not really support so we treat them as ST_NONE.  The
2299       // parse should have issued errors for them already.
2300       return Script_sections::ST_NONE;
2301     default:
2302       gold_unreachable();
2303     }
2304 }
2305
2306 // Return the name of a script section type.
2307
2308 const char*
2309 Output_section_definition::script_section_type_name (
2310     Script_section_type script_section_type)
2311 {
2312   switch (script_section_type)
2313     {
2314     case SCRIPT_SECTION_TYPE_NONE:
2315       return "NONE";
2316     case SCRIPT_SECTION_TYPE_NOLOAD:
2317       return "NOLOAD";
2318     case SCRIPT_SECTION_TYPE_DSECT:
2319       return "DSECT";
2320     case SCRIPT_SECTION_TYPE_COPY:
2321       return "COPY";
2322     case SCRIPT_SECTION_TYPE_INFO:
2323       return "INFO";
2324     case SCRIPT_SECTION_TYPE_OVERLAY:
2325       return "OVERLAY";
2326     default:
2327       gold_unreachable();
2328     }
2329 }
2330
2331 // An output section created to hold orphaned input sections.  These
2332 // do not actually appear in linker scripts.  However, for convenience
2333 // when setting the output section addresses, we put a marker to these
2334 // sections in the appropriate place in the list of SECTIONS elements.
2335
2336 class Orphan_output_section : public Sections_element
2337 {
2338  public:
2339   Orphan_output_section(Output_section* os)
2340     : os_(os)
2341   { }
2342
2343   // Return whether the orphan output section is relro.  We can just
2344   // check the output section because we always set the flag, if
2345   // needed, just after we create the Orphan_output_section.
2346   bool
2347   is_relro() const
2348   { return this->os_->is_relro(); }
2349
2350   // Initialize OSP with an output section.  This should have been
2351   // done already.
2352   void
2353   orphan_section_init(Orphan_section_placement*,
2354                       Script_sections::Elements_iterator)
2355   { gold_unreachable(); }
2356
2357   // Set section addresses.
2358   void
2359   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2360                         uint64_t*);
2361
2362   // Get the list of segments to use for an allocated section when
2363   // using a PHDRS clause.
2364   Output_section*
2365   allocate_to_segment(String_list**, bool*);
2366
2367   // Return the associated Output_section.
2368   Output_section*
2369   get_output_section() const
2370   { return this->os_; }
2371
2372   // Print for debugging.
2373   void
2374   print(FILE* f) const
2375   {
2376     fprintf(f, "  marker for orphaned output section %s\n",
2377             this->os_->name());
2378   }
2379
2380  private:
2381   Output_section* os_;
2382 };
2383
2384 // Set section addresses.
2385
2386 void
2387 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2388                                              uint64_t* dot_value,
2389                                              uint64_t*,
2390                                              uint64_t* load_address)
2391 {
2392   typedef std::list<Output_section::Input_section> Input_section_list;
2393
2394   bool have_load_address = *load_address != *dot_value;
2395
2396   uint64_t address = *dot_value;
2397   address = align_address(address, this->os_->addralign());
2398
2399   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2400     {
2401       this->os_->set_address(address);
2402       if (have_load_address)
2403         this->os_->set_load_address(align_address(*load_address,
2404                                                   this->os_->addralign()));
2405     }
2406
2407   Input_section_list input_sections;
2408   address += this->os_->get_input_sections(address, "", &input_sections);
2409
2410   for (Input_section_list::iterator p = input_sections.begin();
2411        p != input_sections.end();
2412        ++p)
2413     {
2414       uint64_t addralign = p->addralign();
2415       if (!p->is_input_section())
2416         p->output_section_data()->finalize_data_size(); 
2417       uint64_t size = p->data_size();
2418       address = align_address(address, addralign);
2419       this->os_->add_script_input_section(*p);
2420       address += size;
2421     }
2422
2423   // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2424   if (this->os_ == NULL
2425       || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2426       || this->os_->type() != elfcpp::SHT_NOBITS)
2427     {
2428       if (!have_load_address)
2429         *load_address = address;
2430       else
2431         *load_address += address - *dot_value;
2432
2433       *dot_value = address;
2434     }
2435 }
2436
2437 // Get the list of segments to use for an allocated section when using
2438 // a PHDRS clause.  If this is an allocated section, return the
2439 // Output_section.  We don't change the list of segments.
2440
2441 Output_section*
2442 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2443 {
2444   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2445     return NULL;
2446   *orphan = true;
2447   return this->os_;
2448 }
2449
2450 // Class Phdrs_element.  A program header from a PHDRS clause.
2451
2452 class Phdrs_element
2453 {
2454  public:
2455   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2456                 bool includes_filehdr, bool includes_phdrs,
2457                 bool is_flags_valid, unsigned int flags,
2458                 Expression* load_address)
2459     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2460       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2461       flags_(flags), load_address_(load_address), load_address_value_(0),
2462       segment_(NULL)
2463   { }
2464
2465   // Return the name of this segment.
2466   const std::string&
2467   name() const
2468   { return this->name_; }
2469
2470   // Return the type of the segment.
2471   unsigned int
2472   type() const
2473   { return this->type_; }
2474
2475   // Whether to include the file header.
2476   bool
2477   includes_filehdr() const
2478   { return this->includes_filehdr_; }
2479
2480   // Whether to include the program headers.
2481   bool
2482   includes_phdrs() const
2483   { return this->includes_phdrs_; }
2484
2485   // Return whether there is a load address.
2486   bool
2487   has_load_address() const
2488   { return this->load_address_ != NULL; }
2489
2490   // Evaluate the load address expression if there is one.
2491   void
2492   eval_load_address(Symbol_table* symtab, Layout* layout)
2493   {
2494     if (this->load_address_ != NULL)
2495       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2496                                                             true);
2497   }
2498
2499   // Return the load address.
2500   uint64_t
2501   load_address() const
2502   {
2503     gold_assert(this->load_address_ != NULL);
2504     return this->load_address_value_;
2505   }
2506
2507   // Create the segment.
2508   Output_segment*
2509   create_segment(Layout* layout)
2510   {
2511     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2512     return this->segment_;
2513   }
2514
2515   // Return the segment.
2516   Output_segment*
2517   segment()
2518   { return this->segment_; }
2519
2520   // Release the segment.
2521   void
2522   release_segment()
2523   { this->segment_ = NULL; }
2524
2525   // Set the segment flags if appropriate.
2526   void
2527   set_flags_if_valid()
2528   {
2529     if (this->is_flags_valid_)
2530       this->segment_->set_flags(this->flags_);
2531   }
2532
2533   // Print for debugging.
2534   void
2535   print(FILE*) const;
2536
2537  private:
2538   // The name used in the script.
2539   std::string name_;
2540   // The type of the segment (PT_LOAD, etc.).
2541   unsigned int type_;
2542   // Whether this segment includes the file header.
2543   bool includes_filehdr_;
2544   // Whether this segment includes the section headers.
2545   bool includes_phdrs_;
2546   // Whether the flags were explicitly specified.
2547   bool is_flags_valid_;
2548   // The flags for this segment (PF_R, etc.) if specified.
2549   unsigned int flags_;
2550   // The expression for the load address for this segment.  This may
2551   // be NULL.
2552   Expression* load_address_;
2553   // The actual load address from evaluating the expression.
2554   uint64_t load_address_value_;
2555   // The segment itself.
2556   Output_segment* segment_;
2557 };
2558
2559 // Print for debugging.
2560
2561 void
2562 Phdrs_element::print(FILE* f) const
2563 {
2564   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2565   if (this->includes_filehdr_)
2566     fprintf(f, " FILEHDR");
2567   if (this->includes_phdrs_)
2568     fprintf(f, " PHDRS");
2569   if (this->is_flags_valid_)
2570     fprintf(f, " FLAGS(%u)", this->flags_);
2571   if (this->load_address_ != NULL)
2572     {
2573       fprintf(f, " AT(");
2574       this->load_address_->print(f);
2575       fprintf(f, ")");
2576     }
2577   fprintf(f, ";\n");
2578 }
2579
2580 // Class Script_sections.
2581
2582 Script_sections::Script_sections()
2583   : saw_sections_clause_(false),
2584     in_sections_clause_(false),
2585     sections_elements_(NULL),
2586     output_section_(NULL),
2587     phdrs_elements_(NULL),
2588     orphan_section_placement_(NULL),
2589     data_segment_align_start_(),
2590     saw_data_segment_align_(false),
2591     saw_relro_end_(false),
2592     saw_segment_start_expression_(false)
2593 {
2594 }
2595
2596 // Start a SECTIONS clause.
2597
2598 void
2599 Script_sections::start_sections()
2600 {
2601   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2602   this->saw_sections_clause_ = true;
2603   this->in_sections_clause_ = true;
2604   if (this->sections_elements_ == NULL)
2605     this->sections_elements_ = new Sections_elements;
2606 }
2607
2608 // Finish a SECTIONS clause.
2609
2610 void
2611 Script_sections::finish_sections()
2612 {
2613   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2614   this->in_sections_clause_ = false;
2615 }
2616
2617 // Add a symbol to be defined.
2618
2619 void
2620 Script_sections::add_symbol_assignment(const char* name, size_t length,
2621                                        Expression* val, bool provide,
2622                                        bool hidden)
2623 {
2624   if (this->output_section_ != NULL)
2625     this->output_section_->add_symbol_assignment(name, length, val,
2626                                                  provide, hidden);
2627   else
2628     {
2629       Sections_element* p = new Sections_element_assignment(name, length,
2630                                                             val, provide,
2631                                                             hidden);
2632       this->sections_elements_->push_back(p);
2633     }
2634 }
2635
2636 // Add an assignment to the special dot symbol.
2637
2638 void
2639 Script_sections::add_dot_assignment(Expression* val)
2640 {
2641   if (this->output_section_ != NULL)
2642     this->output_section_->add_dot_assignment(val);
2643   else
2644     {
2645       // The GNU linker permits assignments to . to appears outside of
2646       // a SECTIONS clause, and treats it as appearing inside, so
2647       // sections_elements_ may be NULL here.
2648       if (this->sections_elements_ == NULL)
2649         {
2650           this->sections_elements_ = new Sections_elements;
2651           this->saw_sections_clause_ = true;
2652         }
2653
2654       Sections_element* p = new Sections_element_dot_assignment(val);
2655       this->sections_elements_->push_back(p);
2656     }
2657 }
2658
2659 // Add an assertion.
2660
2661 void
2662 Script_sections::add_assertion(Expression* check, const char* message,
2663                                size_t messagelen)
2664 {
2665   if (this->output_section_ != NULL)
2666     this->output_section_->add_assertion(check, message, messagelen);
2667   else
2668     {
2669       Sections_element* p = new Sections_element_assertion(check, message,
2670                                                            messagelen);
2671       this->sections_elements_->push_back(p);
2672     }
2673 }
2674
2675 // Start processing entries for an output section.
2676
2677 void
2678 Script_sections::start_output_section(
2679     const char* name,
2680     size_t namelen,
2681     const Parser_output_section_header *header)
2682 {
2683   Output_section_definition* posd = new Output_section_definition(name,
2684                                                                   namelen,
2685                                                                   header);
2686   this->sections_elements_->push_back(posd);
2687   gold_assert(this->output_section_ == NULL);
2688   this->output_section_ = posd;
2689 }
2690
2691 // Stop processing entries for an output section.
2692
2693 void
2694 Script_sections::finish_output_section(
2695     const Parser_output_section_trailer* trailer)
2696 {
2697   gold_assert(this->output_section_ != NULL);
2698   this->output_section_->finish(trailer);
2699   this->output_section_ = NULL;
2700 }
2701
2702 // Add a data item to the current output section.
2703
2704 void
2705 Script_sections::add_data(int size, bool is_signed, Expression* val)
2706 {
2707   gold_assert(this->output_section_ != NULL);
2708   this->output_section_->add_data(size, is_signed, val);
2709 }
2710
2711 // Add a fill value setting to the current output section.
2712
2713 void
2714 Script_sections::add_fill(Expression* val)
2715 {
2716   gold_assert(this->output_section_ != NULL);
2717   this->output_section_->add_fill(val);
2718 }
2719
2720 // Add an input section specification to the current output section.
2721
2722 void
2723 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2724 {
2725   gold_assert(this->output_section_ != NULL);
2726   this->output_section_->add_input_section(spec, keep);
2727 }
2728
2729 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
2730 // subsequent output sections may be relro.
2731
2732 void
2733 Script_sections::data_segment_align()
2734 {
2735   if (this->saw_data_segment_align_)
2736     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2737   gold_assert(!this->sections_elements_->empty());
2738   Sections_elements::iterator p = this->sections_elements_->end();
2739   --p;
2740   this->data_segment_align_start_ = p;
2741   this->saw_data_segment_align_ = true;
2742 }
2743
2744 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
2745 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2746
2747 void
2748 Script_sections::data_segment_relro_end()
2749 {
2750   if (this->saw_relro_end_)
2751     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2752                  "in a linker script"));
2753   this->saw_relro_end_ = true;
2754
2755   if (!this->saw_data_segment_align_)
2756     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2757   else
2758     {
2759       Sections_elements::iterator p = this->data_segment_align_start_;
2760       for (++p; p != this->sections_elements_->end(); ++p)
2761         (*p)->set_is_relro();
2762     }
2763 }
2764
2765 // Create any required sections.
2766
2767 void
2768 Script_sections::create_sections(Layout* layout)
2769 {
2770   if (!this->saw_sections_clause_)
2771     return;
2772   for (Sections_elements::iterator p = this->sections_elements_->begin();
2773        p != this->sections_elements_->end();
2774        ++p)
2775     (*p)->create_sections(layout);
2776 }
2777
2778 // Add any symbols we are defining to the symbol table.
2779
2780 void
2781 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2782 {
2783   if (!this->saw_sections_clause_)
2784     return;
2785   for (Sections_elements::iterator p = this->sections_elements_->begin();
2786        p != this->sections_elements_->end();
2787        ++p)
2788     (*p)->add_symbols_to_table(symtab);
2789 }
2790
2791 // Finalize symbols and check assertions.
2792
2793 void
2794 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2795 {
2796   if (!this->saw_sections_clause_)
2797     return;
2798   uint64_t dot_value = 0;
2799   for (Sections_elements::iterator p = this->sections_elements_->begin();
2800        p != this->sections_elements_->end();
2801        ++p)
2802     (*p)->finalize_symbols(symtab, layout, &dot_value);
2803 }
2804
2805 // Return the name of the output section to use for an input file name
2806 // and section name.
2807
2808 const char*
2809 Script_sections::output_section_name(
2810     const char* file_name,
2811     const char* section_name,
2812     Output_section*** output_section_slot,
2813     Script_sections::Section_type *psection_type)
2814 {
2815   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2816        p != this->sections_elements_->end();
2817        ++p)
2818     {
2819       const char* ret = (*p)->output_section_name(file_name, section_name,
2820                                                   output_section_slot,
2821                                                   psection_type);
2822
2823       if (ret != NULL)
2824         {
2825           // The special name /DISCARD/ means that the input section
2826           // should be discarded.
2827           if (strcmp(ret, "/DISCARD/") == 0)
2828             {
2829               *output_section_slot = NULL;
2830               *psection_type = Script_sections::ST_NONE;
2831               return NULL;
2832             }
2833           return ret;
2834         }
2835     }
2836
2837   // If we couldn't find a mapping for the name, the output section
2838   // gets the name of the input section.
2839
2840   *output_section_slot = NULL;
2841   *psection_type = Script_sections::ST_NONE;
2842
2843   return section_name;
2844 }
2845
2846 // Place a marker for an orphan output section into the SECTIONS
2847 // clause.
2848
2849 void
2850 Script_sections::place_orphan(Output_section* os)
2851 {
2852   Orphan_section_placement* osp = this->orphan_section_placement_;
2853   if (osp == NULL)
2854     {
2855       // Initialize the Orphan_section_placement structure.
2856       osp = new Orphan_section_placement();
2857       for (Sections_elements::iterator p = this->sections_elements_->begin();
2858            p != this->sections_elements_->end();
2859            ++p)
2860         (*p)->orphan_section_init(osp, p);
2861       gold_assert(!this->sections_elements_->empty());
2862       Sections_elements::iterator last = this->sections_elements_->end();
2863       --last;
2864       osp->last_init(last);
2865       this->orphan_section_placement_ = osp;
2866     }
2867
2868   Orphan_output_section* orphan = new Orphan_output_section(os);
2869
2870   // Look for where to put ORPHAN.
2871   Sections_elements::iterator* where;
2872   if (osp->find_place(os, &where))
2873     {
2874       if ((**where)->is_relro())
2875         os->set_is_relro();
2876       else
2877         os->clear_is_relro();
2878
2879       // We want to insert ORPHAN after *WHERE, and then update *WHERE
2880       // so that the next one goes after this one.
2881       Sections_elements::iterator p = *where;
2882       gold_assert(p != this->sections_elements_->end());
2883       ++p;
2884       *where = this->sections_elements_->insert(p, orphan);
2885     }
2886   else
2887     {
2888       os->clear_is_relro();
2889       // We don't have a place to put this orphan section.  Put it,
2890       // and all other sections like it, at the end, but before the
2891       // sections which always come at the end.
2892       Sections_elements::iterator last = osp->last_place();
2893       *where = this->sections_elements_->insert(last, orphan);
2894     }
2895 }
2896
2897 // Set the addresses of all the output sections.  Walk through all the
2898 // elements, tracking the dot symbol.  Apply assignments which set
2899 // absolute symbol values, in case they are used when setting dot.
2900 // Fill in data statement values.  As we find output sections, set the
2901 // address, set the address of all associated input sections, and
2902 // update dot.  Return the segment which should hold the file header
2903 // and segment headers, if any.
2904
2905 Output_segment*
2906 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2907 {
2908   gold_assert(this->saw_sections_clause_);
2909
2910   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2911   // for our representation.
2912   for (Sections_elements::iterator p = this->sections_elements_->begin();
2913        p != this->sections_elements_->end();
2914        ++p)
2915     {
2916       Output_section_definition* posd;
2917       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2918       if (failed_constraint != CONSTRAINT_NONE)
2919         {
2920           Sections_elements::iterator q;
2921           for (q = this->sections_elements_->begin();
2922                q != this->sections_elements_->end();
2923                ++q)
2924             {
2925               if (q != p)
2926                 {
2927                   if ((*q)->alternate_constraint(posd, failed_constraint))
2928                     break;
2929                 }
2930             }
2931
2932           if (q == this->sections_elements_->end())
2933             gold_error(_("no matching section constraint"));
2934         }
2935     }
2936
2937   // Force the alignment of the first TLS section to be the maximum
2938   // alignment of all TLS sections.
2939   Output_section* first_tls = NULL;
2940   uint64_t tls_align = 0;
2941   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2942        p != this->sections_elements_->end();
2943        ++p)
2944     {
2945       Output_section *os = (*p)->get_output_section();
2946       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2947         {
2948           if (first_tls == NULL)
2949             first_tls = os;
2950           if (os->addralign() > tls_align)
2951             tls_align = os->addralign();
2952         }
2953     }
2954   if (first_tls != NULL)
2955     first_tls->set_addralign(tls_align);
2956
2957   // For a relocatable link, we implicitly set dot to zero.
2958   uint64_t dot_value = 0;
2959   uint64_t dot_alignment = 0;
2960   uint64_t load_address = 0;
2961
2962   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
2963   // to set section addresses.  If the script has any SEGMENT_START
2964   // expression, we do not set the section addresses.
2965   bool use_tsection_options =
2966     (!this->saw_segment_start_expression_
2967      && (parameters->options().user_set_Ttext()
2968          || parameters->options().user_set_Tdata()
2969          || parameters->options().user_set_Tbss()));
2970
2971   for (Sections_elements::iterator p = this->sections_elements_->begin();
2972        p != this->sections_elements_->end();
2973        ++p)
2974     {
2975       Output_section* os = (*p)->get_output_section();
2976
2977       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
2978       // the special sections by names and doing dot assignments. 
2979       if (use_tsection_options
2980           && os != NULL
2981           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
2982         {
2983           uint64_t new_dot_value = dot_value;
2984
2985           if (parameters->options().user_set_Ttext()
2986               && strcmp(os->name(), ".text") == 0)
2987             new_dot_value = parameters->options().Ttext();
2988           else if (parameters->options().user_set_Tdata()
2989               && strcmp(os->name(), ".data") == 0)
2990             new_dot_value = parameters->options().Tdata();
2991           else if (parameters->options().user_set_Tbss()
2992               && strcmp(os->name(), ".bss") == 0)
2993             new_dot_value = parameters->options().Tbss();
2994
2995           // Update dot and load address if necessary.
2996           if (new_dot_value < dot_value)
2997             gold_error(_("dot may not move backward"));
2998           else if (new_dot_value != dot_value)
2999             {
3000               dot_value = new_dot_value;
3001               load_address = new_dot_value;
3002             }
3003         }
3004
3005       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3006                                   &load_address);
3007     } 
3008
3009   if (this->phdrs_elements_ != NULL)
3010     {
3011       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3012            p != this->phdrs_elements_->end();
3013            ++p)
3014         (*p)->eval_load_address(symtab, layout);
3015     }
3016
3017   return this->create_segments(layout, dot_alignment);
3018 }
3019
3020 // Sort the sections in order to put them into segments.
3021
3022 class Sort_output_sections
3023 {
3024  public:
3025   bool
3026   operator()(const Output_section* os1, const Output_section* os2) const;
3027 };
3028
3029 bool
3030 Sort_output_sections::operator()(const Output_section* os1,
3031                                  const Output_section* os2) const
3032 {
3033   // Sort first by the load address.
3034   uint64_t lma1 = (os1->has_load_address()
3035                    ? os1->load_address()
3036                    : os1->address());
3037   uint64_t lma2 = (os2->has_load_address()
3038                    ? os2->load_address()
3039                    : os2->address());
3040   if (lma1 != lma2)
3041     return lma1 < lma2;
3042
3043   // Then sort by the virtual address.
3044   if (os1->address() != os2->address())
3045     return os1->address() < os2->address();
3046
3047   // Sort TLS sections to the end.
3048   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3049   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3050   if (tls1 != tls2)
3051     return tls2;
3052
3053   // Sort PROGBITS before NOBITS.
3054   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
3055     return true;
3056   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
3057     return false;
3058
3059   // Sort non-NOLOAD before NOLOAD.
3060   if (os1->is_noload() && !os2->is_noload())
3061     return true;
3062   if (!os1->is_noload() && os2->is_noload())
3063     return true;
3064   
3065   // Otherwise we don't care.
3066   return false;
3067 }
3068
3069 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3070 // We treat a section with the SHF_TLS flag set as taking up space
3071 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3072 // space for them in the file.
3073
3074 bool
3075 Script_sections::is_bss_section(const Output_section* os)
3076 {
3077   return (os->type() == elfcpp::SHT_NOBITS
3078           && (os->flags() & elfcpp::SHF_TLS) == 0);
3079 }
3080
3081 // Return the size taken by the file header and the program headers.
3082
3083 size_t
3084 Script_sections::total_header_size(Layout* layout) const
3085 {
3086   size_t segment_count = layout->segment_count();
3087   size_t file_header_size;
3088   size_t segment_headers_size;
3089   if (parameters->target().get_size() == 32)
3090     {
3091       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3092       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3093     }
3094   else if (parameters->target().get_size() == 64)
3095     {
3096       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3097       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3098     }
3099   else
3100     gold_unreachable();
3101
3102   return file_header_size + segment_headers_size;
3103 }
3104
3105 // Return the amount we have to subtract from the LMA to accomodate
3106 // headers of the given size.  The complication is that the file
3107 // header have to be at the start of a page, as otherwise it will not
3108 // be at the start of the file.
3109
3110 uint64_t
3111 Script_sections::header_size_adjustment(uint64_t lma,
3112                                         size_t sizeof_headers) const
3113 {
3114   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3115   uint64_t hdr_lma = lma - sizeof_headers;
3116   hdr_lma &= ~(abi_pagesize - 1);
3117   return lma - hdr_lma;
3118 }
3119
3120 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3121 // the segment which should hold the file header and segment headers,
3122 // if any.
3123
3124 Output_segment*
3125 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3126 {
3127   gold_assert(this->saw_sections_clause_);
3128
3129   if (parameters->options().relocatable())
3130     return NULL;
3131
3132   if (this->saw_phdrs_clause())
3133     return create_segments_from_phdrs_clause(layout, dot_alignment);
3134
3135   Layout::Section_list sections;
3136   layout->get_allocated_sections(&sections);
3137
3138   // Sort the sections by address.
3139   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
3140
3141   this->create_note_and_tls_segments(layout, &sections);
3142
3143   // Walk through the sections adding them to PT_LOAD segments.
3144   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3145   Output_segment* first_seg = NULL;
3146   Output_segment* current_seg = NULL;
3147   bool is_current_seg_readonly = true;
3148   Layout::Section_list::iterator plast = sections.end();
3149   uint64_t last_vma = 0;
3150   uint64_t last_lma = 0;
3151   uint64_t last_size = 0;
3152   for (Layout::Section_list::iterator p = sections.begin();
3153        p != sections.end();
3154        ++p)
3155     {
3156       const uint64_t vma = (*p)->address();
3157       const uint64_t lma = ((*p)->has_load_address()
3158                             ? (*p)->load_address()
3159                             : vma);
3160       const uint64_t size = (*p)->current_data_size();
3161
3162       bool need_new_segment;
3163       if (current_seg == NULL)
3164         need_new_segment = true;
3165       else if (lma - vma != last_lma - last_vma)
3166         {
3167           // This section has a different LMA relationship than the
3168           // last one; we need a new segment.
3169           need_new_segment = true;
3170         }
3171       else if (align_address(last_lma + last_size, abi_pagesize)
3172                < align_address(lma, abi_pagesize))
3173         {
3174           // Putting this section in the segment would require
3175           // skipping a page.
3176           need_new_segment = true;
3177         }
3178       else if (is_bss_section(*plast) && !is_bss_section(*p))
3179         {
3180           // A non-BSS section can not follow a BSS section in the
3181           // same segment.
3182           need_new_segment = true;
3183         }
3184       else if (is_current_seg_readonly
3185                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3186                && !parameters->options().omagic())
3187         {
3188           // Don't put a writable section in the same segment as a
3189           // non-writable section.
3190           need_new_segment = true;
3191         }
3192       else
3193         {
3194           // Otherwise, reuse the existing segment.
3195           need_new_segment = false;
3196         }
3197
3198       elfcpp::Elf_Word seg_flags =
3199         Layout::section_flags_to_segment((*p)->flags());
3200
3201       if (need_new_segment)
3202         {
3203           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3204                                                     seg_flags);
3205           current_seg->set_addresses(vma, lma);
3206           current_seg->set_minimum_p_align(dot_alignment);
3207           if (first_seg == NULL)
3208             first_seg = current_seg;
3209           is_current_seg_readonly = true;
3210         }
3211
3212       current_seg->add_output_section(*p, seg_flags, false);
3213
3214       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3215         is_current_seg_readonly = false;
3216
3217       plast = p;
3218       last_vma = vma;
3219       last_lma = lma;
3220       last_size = size;
3221     }
3222
3223   // An ELF program should work even if the program headers are not in
3224   // a PT_LOAD segment.  However, it appears that the Linux kernel
3225   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3226   // the load address to p_vaddr - p_offset of the first PT_LOAD
3227   // segment.  It then sets AT_PHDR to the load address plus the
3228   // offset to the program headers, e_phoff in the file header.  This
3229   // fails when the program headers appear in the file before the
3230   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3231   // segment to hold the file header and the program headers.  This is
3232   // effectively what the GNU linker does, and it is slightly more
3233   // efficient in any case.  We try to use the first PT_LOAD segment
3234   // if we can, otherwise we make a new one.
3235
3236   if (first_seg == NULL)
3237     return NULL;
3238
3239   // -n or -N mean that the program is not demand paged and there is
3240   // no need to put the program headers in a PT_LOAD segment.
3241   if (parameters->options().nmagic() || parameters->options().omagic())
3242     return NULL;
3243
3244   size_t sizeof_headers = this->total_header_size(layout);
3245
3246   uint64_t vma = first_seg->vaddr();
3247   uint64_t lma = first_seg->paddr();
3248
3249   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3250
3251   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3252     {
3253       first_seg->set_addresses(vma - subtract, lma - subtract);
3254       return first_seg;
3255     }
3256
3257   // If there is no room to squeeze in the headers, then punt.  The
3258   // resulting executable probably won't run on GNU/Linux, but we
3259   // trust that the user knows what they are doing.
3260   if (lma < subtract || vma < subtract)
3261     return NULL;
3262
3263   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3264                                                          elfcpp::PF_R);
3265   load_seg->set_addresses(vma - subtract, lma - subtract);
3266
3267   return load_seg;
3268 }
3269
3270 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3271 // segment if there are any SHT_TLS sections.
3272
3273 void
3274 Script_sections::create_note_and_tls_segments(
3275     Layout* layout,
3276     const Layout::Section_list* sections)
3277 {
3278   gold_assert(!this->saw_phdrs_clause());
3279
3280   bool saw_tls = false;
3281   for (Layout::Section_list::const_iterator p = sections->begin();
3282        p != sections->end();
3283        ++p)
3284     {
3285       if ((*p)->type() == elfcpp::SHT_NOTE)
3286         {
3287           elfcpp::Elf_Word seg_flags =
3288             Layout::section_flags_to_segment((*p)->flags());
3289           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3290                                                              seg_flags);
3291           oseg->add_output_section(*p, seg_flags, false);
3292
3293           // Incorporate any subsequent SHT_NOTE sections, in the
3294           // hopes that the script is sensible.
3295           Layout::Section_list::const_iterator pnext = p + 1;
3296           while (pnext != sections->end()
3297                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3298             {
3299               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3300               oseg->add_output_section(*pnext, seg_flags, false);
3301               p = pnext;
3302               ++pnext;
3303             }
3304         }
3305
3306       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3307         {
3308           if (saw_tls)
3309             gold_error(_("TLS sections are not adjacent"));
3310
3311           elfcpp::Elf_Word seg_flags =
3312             Layout::section_flags_to_segment((*p)->flags());
3313           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3314                                                              seg_flags);
3315           oseg->add_output_section(*p, seg_flags, false);
3316
3317           Layout::Section_list::const_iterator pnext = p + 1;
3318           while (pnext != sections->end()
3319                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3320             {
3321               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3322               oseg->add_output_section(*pnext, seg_flags, false);
3323               p = pnext;
3324               ++pnext;
3325             }
3326
3327           saw_tls = true;
3328         }
3329     }
3330 }
3331
3332 // Add a program header.  The PHDRS clause is syntactically distinct
3333 // from the SECTIONS clause, but we implement it with the SECTIONS
3334 // support because PHDRS is useless if there is no SECTIONS clause.
3335
3336 void
3337 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3338                           bool includes_filehdr, bool includes_phdrs,
3339                           bool is_flags_valid, unsigned int flags,
3340                           Expression* load_address)
3341 {
3342   if (this->phdrs_elements_ == NULL)
3343     this->phdrs_elements_ = new Phdrs_elements();
3344   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3345                                                      includes_filehdr,
3346                                                      includes_phdrs,
3347                                                      is_flags_valid, flags,
3348                                                      load_address));
3349 }
3350
3351 // Return the number of segments we expect to create based on the
3352 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3353
3354 size_t
3355 Script_sections::expected_segment_count(const Layout* layout) const
3356 {
3357   if (this->saw_phdrs_clause())
3358     return this->phdrs_elements_->size();
3359
3360   Layout::Section_list sections;
3361   layout->get_allocated_sections(&sections);
3362
3363   // We assume that we will need two PT_LOAD segments.
3364   size_t ret = 2;
3365
3366   bool saw_note = false;
3367   bool saw_tls = false;
3368   for (Layout::Section_list::const_iterator p = sections.begin();
3369        p != sections.end();
3370        ++p)
3371     {
3372       if ((*p)->type() == elfcpp::SHT_NOTE)
3373         {
3374           // Assume that all note sections will fit into a single
3375           // PT_NOTE segment.
3376           if (!saw_note)
3377             {
3378               ++ret;
3379               saw_note = true;
3380             }
3381         }
3382       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3383         {
3384           // There can only be one PT_TLS segment.
3385           if (!saw_tls)
3386             {
3387               ++ret;
3388               saw_tls = true;
3389             }
3390         }
3391     }
3392
3393   return ret;
3394 }
3395
3396 // Create the segments from a PHDRS clause.  Return the segment which
3397 // should hold the file header and program headers, if any.
3398
3399 Output_segment*
3400 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
3401                                                    uint64_t dot_alignment)
3402 {
3403   this->attach_sections_using_phdrs_clause(layout);
3404   return this->set_phdrs_clause_addresses(layout, dot_alignment);
3405 }
3406
3407 // Create the segments from the PHDRS clause, and put the output
3408 // sections in them.
3409
3410 void
3411 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3412 {
3413   typedef std::map<std::string, Output_segment*> Name_to_segment;
3414   Name_to_segment name_to_segment;
3415   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3416        p != this->phdrs_elements_->end();
3417        ++p)
3418     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3419
3420   // Walk through the output sections and attach them to segments.
3421   // Output sections in the script which do not list segments are
3422   // attached to the same set of segments as the immediately preceding
3423   // output section.
3424   
3425   String_list* phdr_names = NULL;
3426   bool load_segments_only = false;
3427   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3428        p != this->sections_elements_->end();
3429        ++p)
3430     {
3431       bool orphan;
3432       String_list* old_phdr_names = phdr_names;
3433       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3434       if (os == NULL)
3435         continue;
3436
3437       if (phdr_names == NULL)
3438         {
3439           gold_error(_("allocated section not in any segment"));
3440           continue;
3441         }
3442
3443       // We see a list of segments names.  Disable PT_LOAD segment only
3444       // filtering.
3445       if (old_phdr_names != phdr_names)
3446         load_segments_only = false;
3447                 
3448       // If this is an orphan section--one that was not explicitly
3449       // mentioned in the linker script--then it should not inherit
3450       // any segment type other than PT_LOAD.  Otherwise, e.g., the
3451       // PT_INTERP segment will pick up following orphan sections,
3452       // which does not make sense.  If this is not an orphan section,
3453       // we trust the linker script.
3454       if (orphan)
3455         {
3456           // Enable PT_LOAD segments only filtering until we see another
3457           // list of segment names.
3458           load_segments_only = true;
3459         }
3460
3461       bool in_load_segment = false;
3462       for (String_list::const_iterator q = phdr_names->begin();
3463            q != phdr_names->end();
3464            ++q)
3465         {
3466           Name_to_segment::const_iterator r = name_to_segment.find(*q);
3467           if (r == name_to_segment.end())
3468             gold_error(_("no segment %s"), q->c_str());
3469           else
3470             {
3471               if (load_segments_only
3472                   && r->second->type() != elfcpp::PT_LOAD)
3473                 continue;
3474
3475               elfcpp::Elf_Word seg_flags =
3476                 Layout::section_flags_to_segment(os->flags());
3477               r->second->add_output_section(os, seg_flags, false);
3478
3479               if (r->second->type() == elfcpp::PT_LOAD)
3480                 {
3481                   if (in_load_segment)
3482                     gold_error(_("section in two PT_LOAD segments"));
3483                   in_load_segment = true;
3484                 }
3485             }
3486         }
3487
3488       if (!in_load_segment)
3489         gold_error(_("allocated section not in any PT_LOAD segment"));
3490     }
3491 }
3492
3493 // Set the addresses for segments created from a PHDRS clause.  Return
3494 // the segment which should hold the file header and program headers,
3495 // if any.
3496
3497 Output_segment*
3498 Script_sections::set_phdrs_clause_addresses(Layout* layout,
3499                                             uint64_t dot_alignment)
3500 {
3501   Output_segment* load_seg = NULL;
3502   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3503        p != this->phdrs_elements_->end();
3504        ++p)
3505     {
3506       // Note that we have to set the flags after adding the output
3507       // sections to the segment, as adding an output segment can
3508       // change the flags.
3509       (*p)->set_flags_if_valid();
3510
3511       Output_segment* oseg = (*p)->segment();
3512
3513       if (oseg->type() != elfcpp::PT_LOAD)
3514         {
3515           // The addresses of non-PT_LOAD segments are set from the
3516           // PT_LOAD segments.
3517           if ((*p)->has_load_address())
3518             gold_error(_("may only specify load address for PT_LOAD segment"));
3519           continue;
3520         }
3521
3522       oseg->set_minimum_p_align(dot_alignment);
3523
3524       // The output sections should have addresses from the SECTIONS
3525       // clause.  The addresses don't have to be in order, so find the
3526       // one with the lowest load address.  Use that to set the
3527       // address of the segment.
3528
3529       Output_section* osec = oseg->section_with_lowest_load_address();
3530       if (osec == NULL)
3531         {
3532           oseg->set_addresses(0, 0);
3533           continue;
3534         }
3535
3536       uint64_t vma = osec->address();
3537       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3538
3539       // Override the load address of the section with the load
3540       // address specified for the segment.
3541       if ((*p)->has_load_address())
3542         {
3543           if (osec->has_load_address())
3544             gold_warning(_("PHDRS load address overrides "
3545                            "section %s load address"),
3546                          osec->name());
3547
3548           lma = (*p)->load_address();
3549         }
3550
3551       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3552       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3553         {
3554           // We could support this if we wanted to.
3555           gold_error(_("using only one of FILEHDR and PHDRS is "
3556                        "not currently supported"));
3557         }
3558       if (headers)
3559         {
3560           size_t sizeof_headers = this->total_header_size(layout);
3561           uint64_t subtract = this->header_size_adjustment(lma,
3562                                                            sizeof_headers);
3563           if (lma >= subtract && vma >= subtract)
3564             {
3565               lma -= subtract;
3566               vma -= subtract;
3567             }
3568           else
3569             {
3570               gold_error(_("sections loaded on first page without room "
3571                            "for file and program headers "
3572                            "are not supported"));
3573             }
3574
3575           if (load_seg != NULL)
3576             gold_error(_("using FILEHDR and PHDRS on more than one "
3577                          "PT_LOAD segment is not currently supported"));
3578           load_seg = oseg;
3579         }
3580
3581       oseg->set_addresses(vma, lma);
3582     }
3583
3584   return load_seg;
3585 }
3586
3587 // Add the file header and segment headers to non-load segments
3588 // specified in the PHDRS clause.
3589
3590 void
3591 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3592                                       Output_data* segment_headers)
3593 {
3594   gold_assert(this->saw_phdrs_clause());
3595   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3596        p != this->phdrs_elements_->end();
3597        ++p)
3598     {
3599       if ((*p)->type() != elfcpp::PT_LOAD)
3600         {
3601           if ((*p)->includes_phdrs())
3602             (*p)->segment()->add_initial_output_data(segment_headers);
3603           if ((*p)->includes_filehdr())
3604             (*p)->segment()->add_initial_output_data(file_header);
3605         }
3606     }
3607 }
3608
3609 // Look for an output section by name and return the address, the load
3610 // address, the alignment, and the size.  This is used when an
3611 // expression refers to an output section which was not actually
3612 // created.  This returns true if the section was found, false
3613 // otherwise.
3614
3615 bool
3616 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3617                                          uint64_t* load_address,
3618                                          uint64_t* addralign,
3619                                          uint64_t* size) const
3620 {
3621   if (!this->saw_sections_clause_)
3622     return false;
3623   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3624        p != this->sections_elements_->end();
3625        ++p)
3626     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3627                                       size))
3628       return true;
3629   return false;
3630 }
3631
3632 // Release all Output_segments.  This remove all pointers to all
3633 // Output_segments.
3634
3635 void
3636 Script_sections::release_segments()
3637 {
3638   if (this->saw_phdrs_clause())
3639     {
3640       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3641            p != this->phdrs_elements_->end();
3642            ++p)
3643         (*p)->release_segment();
3644     }
3645 }
3646
3647 // Print the SECTIONS clause to F for debugging.
3648
3649 void
3650 Script_sections::print(FILE* f) const
3651 {
3652   if (!this->saw_sections_clause_)
3653     return;
3654
3655   fprintf(f, "SECTIONS {\n");
3656
3657   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3658        p != this->sections_elements_->end();
3659        ++p)
3660     (*p)->print(f);
3661
3662   fprintf(f, "}\n");
3663
3664   if (this->phdrs_elements_ != NULL)
3665     {
3666       fprintf(f, "PHDRS {\n");
3667       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3668            p != this->phdrs_elements_->end();
3669            ++p)
3670         (*p)->print(f);
3671       fprintf(f, "}\n");
3672     }
3673 }
3674
3675 } // End namespace gold.