Fix bug with grouping sections.
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51                 Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_offset_(0),
57       vma_sections_(),
58       lma_sections_(),
59       last_section_(NULL)
60   { }
61
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86             && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88
89   Expression*
90   get_current_address() const
91   {
92     return
93       script_exp_binary_add(this->start_,
94                             script_exp_integer(this->current_offset_));
95   }
96
97   void
98   set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99   {
100     uint64_t start = this->start_->eval(symtab, layout, false);
101     uint64_t len = this->length_->eval(symtab, layout, false);
102     if (addr < start || addr >= start + len)
103       gold_error(_("address 0x%llx is not within region %s"),
104                  static_cast<unsigned long long>(addr),
105                  this->name_.c_str());
106     else if (addr < start + this->current_offset_)
107       gold_error(_("address 0x%llx moves dot backwards in region %s"),
108                  static_cast<unsigned long long>(addr),
109                  this->name_.c_str());
110     this->current_offset_ = addr - start;
111   }
112
113   void
114   increment_offset(std::string section_name, uint64_t amount,
115                    const Symbol_table* symtab, const Layout* layout)
116   {
117     this->current_offset_ += amount;
118
119     if (this->current_offset_
120         > this->length_->eval(symtab, layout, false))
121       gold_error(_("section %s overflows end of region %s"),
122                  section_name.c_str(), this->name_.c_str());
123   }
124
125   // Returns true iff there is room left in this region
126   // for AMOUNT more bytes of data.
127   bool
128   has_room_for(const Symbol_table* symtab, const Layout* layout,
129                uint64_t amount) const
130   {
131     return (this->current_offset_ + amount
132             < this->length_->eval(symtab, layout, false));
133   }
134
135   // Return true if the provided section flags
136   // are compatible with this region's attributes.
137   bool
138   attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140   void
141   add_section(Output_section_definition* sec, bool vma)
142   {
143     if (vma)
144       this->vma_sections_.push_back(sec);
145     else
146       this->lma_sections_.push_back(sec);
147   }
148
149   typedef std::vector<Output_section_definition*> Section_list;
150
151   // Return the start of the list of sections
152   // whose VMAs are taken from this region.
153   Section_list::const_iterator
154   get_vma_section_list_start() const
155   { return this->vma_sections_.begin(); }
156
157   // Return the start of the list of sections
158   // whose LMAs are taken from this region.
159   Section_list::const_iterator
160   get_lma_section_list_start() const
161   { return this->lma_sections_.begin(); }
162
163   // Return the end of the list of sections
164   // whose VMAs are taken from this region.
165   Section_list::const_iterator
166   get_vma_section_list_end() const
167   { return this->vma_sections_.end(); }
168
169   // Return the end of the list of sections
170   // whose LMAs are taken from this region.
171   Section_list::const_iterator
172   get_lma_section_list_end() const
173   { return this->lma_sections_.end(); }
174
175   Output_section_definition*
176   get_last_section() const
177   { return this->last_section_; }
178
179   void
180   set_last_section(Output_section_definition* sec)
181   { this->last_section_ = sec; }
182
183  private:
184
185   std::string name_;
186   unsigned int attributes_;
187   Expression* start_;
188   Expression* length_;
189   // The offset to the next free byte in the region.
190   // Note - for compatibility with GNU LD we only maintain one offset
191   // regardless of whether the region is being used for VMA values,
192   // LMA values, or both.
193   uint64_t current_offset_;
194   // A list of sections whose VMAs are set inside this region.
195   Section_list vma_sections_;
196   // A list of sections whose LMAs are set inside this region.
197   Section_list lma_sections_;
198   // The latest section to make use of this region.
199   Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207                                      elfcpp::Elf_Xword type) const
208 {
209   unsigned int attrs = this->attributes_;
210
211   // No attributes means that this region is not compatible with anything.
212   if (attrs == 0)
213     return false;
214
215   bool match = true;
216   do
217     {
218       switch (attrs & - attrs)
219         {
220         case MEM_EXECUTABLE:
221           if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222             match = false;
223           break;
224
225         case MEM_WRITEABLE:
226           if ((flags & elfcpp::SHF_WRITE) == 0)
227             match = false;
228           break;
229
230         case MEM_READABLE:
231           // All sections are presumed readable.
232           break;
233
234         case MEM_ALLOCATABLE:
235           if ((flags & elfcpp::SHF_ALLOC) == 0)
236             match = false;
237           break;
238
239         case MEM_INITIALIZED:
240           if ((type & elfcpp::SHT_NOBITS) != 0)
241             match = false;
242           break;
243         }
244       attrs &= ~ (attrs & - attrs);
245     }
246   while (attrs != 0);
247   
248   return match;
249 }
250   
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256   fprintf(f, "  %s", this->name_.c_str());
257
258   unsigned int attrs = this->attributes_;
259   if (attrs != 0)
260     {
261       fprintf(f, " (");
262       do
263         {
264           switch (attrs & - attrs)
265             {
266             case MEM_EXECUTABLE:  fputc('x', f); break;
267             case MEM_WRITEABLE:   fputc('w', f); break;
268             case MEM_READABLE:    fputc('r', f); break;
269             case MEM_ALLOCATABLE: fputc('a', f); break;
270             case MEM_INITIALIZED: fputc('i', f); break;
271             default:
272               gold_unreachable();
273             }
274           attrs &= ~ (attrs & - attrs);
275         }
276       while (attrs != 0);
277       fputc(')', f);
278     }
279
280   fprintf(f, " : origin = ");
281   this->start_->print(f);
282   fprintf(f, ", length = ");
283   this->length_->print(f);
284   fprintf(f, "\n");
285 }
286
287 // Manage orphan sections.  This is intended to be largely compatible
288 // with the GNU linker.  The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement.  We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295  private:
296   typedef Script_sections::Elements_iterator Elements_iterator;
297
298  public:
299   Orphan_section_placement();
300
301   // Handle an output section during initialization of this mapping.
302   void
303   output_section_init(const std::string& name, Output_section*,
304                       Elements_iterator location);
305
306   // Initialize the last location.
307   void
308   last_init(Elements_iterator location);
309
310   // Set *PWHERE to the address of an iterator pointing to the
311   // location to use for an orphan section.  Return true if the
312   // iterator has a value, false otherwise.
313   bool
314   find_place(Output_section*, Elements_iterator** pwhere);
315
316   // Return the iterator being used for sections at the very end of
317   // the linker script.
318   Elements_iterator
319   last_place() const;
320
321  private:
322   // The places that we specifically recognize.  This list is copied
323   // from the GNU linker.
324   enum Place_index
325   {
326     PLACE_TEXT,
327     PLACE_RODATA,
328     PLACE_DATA,
329     PLACE_TLS,
330     PLACE_TLS_BSS,
331     PLACE_BSS,
332     PLACE_REL,
333     PLACE_INTERP,
334     PLACE_NONALLOC,
335     PLACE_LAST,
336     PLACE_MAX
337   };
338
339   // The information we keep for a specific place.
340   struct Place
341   {
342     // The name of sections for this place.
343     const char* name;
344     // Whether we have a location for this place.
345     bool have_location;
346     // The iterator for this place.
347     Elements_iterator location;
348   };
349
350   // Initialize one place element.
351   void
352   initialize_place(Place_index, const char*);
353
354   // The places.
355   Place places_[PLACE_MAX];
356   // True if this is the first call to output_section_init.
357   bool first_init_;
358 };
359
360 // Initialize Orphan_section_placement.
361
362 Orphan_section_placement::Orphan_section_placement()
363   : first_init_(true)
364 {
365   this->initialize_place(PLACE_TEXT, ".text");
366   this->initialize_place(PLACE_RODATA, ".rodata");
367   this->initialize_place(PLACE_DATA, ".data");
368   this->initialize_place(PLACE_TLS, NULL);
369   this->initialize_place(PLACE_TLS_BSS, NULL);
370   this->initialize_place(PLACE_BSS, ".bss");
371   this->initialize_place(PLACE_REL, NULL);
372   this->initialize_place(PLACE_INTERP, ".interp");
373   this->initialize_place(PLACE_NONALLOC, NULL);
374   this->initialize_place(PLACE_LAST, NULL);
375 }
376
377 // Initialize one place element.
378
379 void
380 Orphan_section_placement::initialize_place(Place_index index, const char* name)
381 {
382   this->places_[index].name = name;
383   this->places_[index].have_location = false;
384 }
385
386 // While initializing the Orphan_section_placement information, this
387 // is called once for each output section named in the linker script.
388 // If we found an output section during the link, it will be passed in
389 // OS.
390
391 void
392 Orphan_section_placement::output_section_init(const std::string& name,
393                                               Output_section* os,
394                                               Elements_iterator location)
395 {
396   bool first_init = this->first_init_;
397   this->first_init_ = false;
398
399   for (int i = 0; i < PLACE_MAX; ++i)
400     {
401       if (this->places_[i].name != NULL && this->places_[i].name == name)
402         {
403           if (this->places_[i].have_location)
404             {
405               // We have already seen a section with this name.
406               return;
407             }
408
409           this->places_[i].location = location;
410           this->places_[i].have_location = true;
411
412           // If we just found the .bss section, restart the search for
413           // an unallocated section.  This follows the GNU linker's
414           // behaviour.
415           if (i == PLACE_BSS)
416             this->places_[PLACE_NONALLOC].have_location = false;
417
418           return;
419         }
420     }
421
422   // Relocation sections.
423   if (!this->places_[PLACE_REL].have_location
424       && os != NULL
425       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
426       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
427     {
428       this->places_[PLACE_REL].location = location;
429       this->places_[PLACE_REL].have_location = true;
430     }
431
432   // We find the location for unallocated sections by finding the
433   // first debugging or comment section after the BSS section (if
434   // there is one).
435   if (!this->places_[PLACE_NONALLOC].have_location
436       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
437     {
438       // We add orphan sections after the location in PLACES_.  We
439       // want to store unallocated sections before LOCATION.  If this
440       // is the very first section, we can't use it.
441       if (!first_init)
442         {
443           --location;
444           this->places_[PLACE_NONALLOC].location = location;
445           this->places_[PLACE_NONALLOC].have_location = true;
446         }
447     }
448 }
449
450 // Initialize the last location.
451
452 void
453 Orphan_section_placement::last_init(Elements_iterator location)
454 {
455   this->places_[PLACE_LAST].location = location;
456   this->places_[PLACE_LAST].have_location = true;
457 }
458
459 // Set *PWHERE to the address of an iterator pointing to the location
460 // to use for an orphan section.  Return true if the iterator has a
461 // value, false otherwise.
462
463 bool
464 Orphan_section_placement::find_place(Output_section* os,
465                                      Elements_iterator** pwhere)
466 {
467   // Figure out where OS should go.  This is based on the GNU linker
468   // code.  FIXME: The GNU linker handles small data sections
469   // specially, but we don't.
470   elfcpp::Elf_Word type = os->type();
471   elfcpp::Elf_Xword flags = os->flags();
472   Place_index index;
473   if ((flags & elfcpp::SHF_ALLOC) == 0
474       && !Layout::is_debug_info_section(os->name()))
475     index = PLACE_NONALLOC;
476   else if ((flags & elfcpp::SHF_ALLOC) == 0)
477     index = PLACE_LAST;
478   else if (type == elfcpp::SHT_NOTE)
479     index = PLACE_INTERP;
480   else if ((flags & elfcpp::SHF_TLS) != 0)
481     {
482       if (type == elfcpp::SHT_NOBITS)
483         index = PLACE_TLS_BSS;
484       else
485         index = PLACE_TLS;
486     }
487   else if (type == elfcpp::SHT_NOBITS)
488     index = PLACE_BSS;
489   else if ((flags & elfcpp::SHF_WRITE) != 0)
490     index = PLACE_DATA;
491   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
492     index = PLACE_REL;
493   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
494     index = PLACE_RODATA;
495   else
496     index = PLACE_TEXT;
497
498   // If we don't have a location yet, try to find one based on a
499   // plausible ordering of sections.
500   if (!this->places_[index].have_location)
501     {
502       Place_index follow;
503       switch (index)
504         {
505         default:
506           follow = PLACE_MAX;
507           break;
508         case PLACE_RODATA:
509           follow = PLACE_TEXT;
510           break;
511         case PLACE_BSS:
512           follow = PLACE_DATA;
513           break;
514         case PLACE_REL:
515           follow = PLACE_TEXT;
516           break;
517         case PLACE_INTERP:
518           follow = PLACE_TEXT;
519           break;
520         case PLACE_TLS:
521           follow = PLACE_DATA;
522           break;
523         case PLACE_TLS_BSS:
524           follow = PLACE_TLS;
525           if (!this->places_[PLACE_TLS].have_location)
526             follow = PLACE_DATA;
527           break;
528         }
529       if (follow != PLACE_MAX && this->places_[follow].have_location)
530         {
531           // Set the location of INDEX to the location of FOLLOW.  The
532           // location of INDEX will then be incremented by the caller,
533           // so anything in INDEX will continue to be after anything
534           // in FOLLOW.
535           this->places_[index].location = this->places_[follow].location;
536           this->places_[index].have_location = true;
537         }
538     }
539
540   *pwhere = &this->places_[index].location;
541   bool ret = this->places_[index].have_location;
542
543   // The caller will set the location.
544   this->places_[index].have_location = true;
545
546   return ret;
547 }
548
549 // Return the iterator being used for sections at the very end of the
550 // linker script.
551
552 Orphan_section_placement::Elements_iterator
553 Orphan_section_placement::last_place() const
554 {
555   gold_assert(this->places_[PLACE_LAST].have_location);
556   return this->places_[PLACE_LAST].location;
557 }
558
559 // An element in a SECTIONS clause.
560
561 class Sections_element
562 {
563  public:
564   Sections_element()
565   { }
566
567   virtual ~Sections_element()
568   { }
569
570   // Return whether an output section is relro.
571   virtual bool
572   is_relro() const
573   { return false; }
574
575   // Record that an output section is relro.
576   virtual void
577   set_is_relro()
578   { }
579
580   // Create any required output sections.  The only real
581   // implementation is in Output_section_definition.
582   virtual void
583   create_sections(Layout*)
584   { }
585
586   // Add any symbol being defined to the symbol table.
587   virtual void
588   add_symbols_to_table(Symbol_table*)
589   { }
590
591   // Finalize symbols and check assertions.
592   virtual void
593   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
594   { }
595
596   // Return the output section name to use for an input file name and
597   // section name.  This only real implementation is in
598   // Output_section_definition.
599   virtual const char*
600   output_section_name(const char*, const char*, Output_section***,
601                       Script_sections::Section_type*, bool*)
602   { return NULL; }
603
604   // Initialize OSP with an output section.
605   virtual void
606   orphan_section_init(Orphan_section_placement*,
607                       Script_sections::Elements_iterator)
608   { }
609
610   // Set section addresses.  This includes applying assignments if the
611   // expression is an absolute value.
612   virtual void
613   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
614                         uint64_t*)
615   { }
616
617   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
618   // this section is constrained, and the input sections do not match,
619   // return the constraint, and set *POSD.
620   virtual Section_constraint
621   check_constraint(Output_section_definition**)
622   { return CONSTRAINT_NONE; }
623
624   // See if this is the alternate output section for a constrained
625   // output section.  If it is, transfer the Output_section and return
626   // true.  Otherwise return false.
627   virtual bool
628   alternate_constraint(Output_section_definition*, Section_constraint)
629   { return false; }
630
631   // Get the list of segments to use for an allocated section when
632   // using a PHDRS clause.  If this is an allocated section, return
633   // the Output_section, and set *PHDRS_LIST (the first parameter) to
634   // the list of PHDRS to which it should be attached.  If the PHDRS
635   // were not specified, don't change *PHDRS_LIST.  When not returning
636   // NULL, set *ORPHAN (the second parameter) according to whether
637   // this is an orphan section--one that is not mentioned in the
638   // linker script.
639   virtual Output_section*
640   allocate_to_segment(String_list**, bool*)
641   { return NULL; }
642
643   // Look for an output section by name and return the address, the
644   // load address, the alignment, and the size.  This is used when an
645   // expression refers to an output section which was not actually
646   // created.  This returns true if the section was found, false
647   // otherwise.  The only real definition is for
648   // Output_section_definition.
649   virtual bool
650   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
651                           uint64_t*) const
652   { return false; }
653
654   // Return the associated Output_section if there is one.
655   virtual Output_section*
656   get_output_section() const
657   { return NULL; }
658
659   // Set the section's memory regions.
660   virtual void
661   set_memory_region(Memory_region*, bool)
662   { gold_error(_("Attempt to set a memory region for a non-output section")); }
663
664   // Print the element for debugging purposes.
665   virtual void
666   print(FILE* f) const = 0;
667 };
668
669 // An assignment in a SECTIONS clause outside of an output section.
670
671 class Sections_element_assignment : public Sections_element
672 {
673  public:
674   Sections_element_assignment(const char* name, size_t namelen,
675                               Expression* val, bool provide, bool hidden)
676     : assignment_(name, namelen, false, val, provide, hidden)
677   { }
678
679   // Add the symbol to the symbol table.
680   void
681   add_symbols_to_table(Symbol_table* symtab)
682   { this->assignment_.add_to_table(symtab); }
683
684   // Finalize the symbol.
685   void
686   finalize_symbols(Symbol_table* symtab, const Layout* layout,
687                    uint64_t* dot_value)
688   {
689     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
690   }
691
692   // Set the section address.  There is no section here, but if the
693   // value is absolute, we set the symbol.  This permits us to use
694   // absolute symbols when setting dot.
695   void
696   set_section_addresses(Symbol_table* symtab, Layout* layout,
697                         uint64_t* dot_value, uint64_t*, uint64_t*)
698   {
699     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
700   }
701
702   // Print for debugging.
703   void
704   print(FILE* f) const
705   {
706     fprintf(f, "  ");
707     this->assignment_.print(f);
708   }
709
710  private:
711   Symbol_assignment assignment_;
712 };
713
714 // An assignment to the dot symbol in a SECTIONS clause outside of an
715 // output section.
716
717 class Sections_element_dot_assignment : public Sections_element
718 {
719  public:
720   Sections_element_dot_assignment(Expression* val)
721     : val_(val)
722   { }
723
724   // Finalize the symbol.
725   void
726   finalize_symbols(Symbol_table* symtab, const Layout* layout,
727                    uint64_t* dot_value)
728   {
729     // We ignore the section of the result because outside of an
730     // output section definition the dot symbol is always considered
731     // to be absolute.
732     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
733                                            NULL, NULL, NULL, false);
734   }
735
736   // Update the dot symbol while setting section addresses.
737   void
738   set_section_addresses(Symbol_table* symtab, Layout* layout,
739                         uint64_t* dot_value, uint64_t* dot_alignment,
740                         uint64_t* load_address)
741   {
742     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
743                                            NULL, NULL, dot_alignment, false);
744     *load_address = *dot_value;
745   }
746
747   // Print for debugging.
748   void
749   print(FILE* f) const
750   {
751     fprintf(f, "  . = ");
752     this->val_->print(f);
753     fprintf(f, "\n");
754   }
755
756  private:
757   Expression* val_;
758 };
759
760 // An assertion in a SECTIONS clause outside of an output section.
761
762 class Sections_element_assertion : public Sections_element
763 {
764  public:
765   Sections_element_assertion(Expression* check, const char* message,
766                              size_t messagelen)
767     : assertion_(check, message, messagelen)
768   { }
769
770   // Check the assertion.
771   void
772   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
773   { this->assertion_.check(symtab, layout); }
774
775   // Print for debugging.
776   void
777   print(FILE* f) const
778   {
779     fprintf(f, "  ");
780     this->assertion_.print(f);
781   }
782
783  private:
784   Script_assertion assertion_;
785 };
786
787 // An element in an output section in a SECTIONS clause.
788
789 class Output_section_element
790 {
791  public:
792   // A list of input sections.
793   typedef std::list<Output_section::Input_section> Input_section_list;
794
795   Output_section_element()
796   { }
797
798   virtual ~Output_section_element()
799   { }
800
801   // Return whether this element requires an output section to exist.
802   virtual bool
803   needs_output_section() const
804   { return false; }
805
806   // Add any symbol being defined to the symbol table.
807   virtual void
808   add_symbols_to_table(Symbol_table*)
809   { }
810
811   // Finalize symbols and check assertions.
812   virtual void
813   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
814   { }
815
816   // Return whether this element matches FILE_NAME and SECTION_NAME.
817   // The only real implementation is in Output_section_element_input.
818   virtual bool
819   match_name(const char*, const char*, bool *) const
820   { return false; }
821
822   // Set section addresses.  This includes applying assignments if the
823   // expression is an absolute value.
824   virtual void
825   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
826                         uint64_t*, uint64_t*, Output_section**, std::string*,
827                         Input_section_list*)
828   { }
829
830   // Print the element for debugging purposes.
831   virtual void
832   print(FILE* f) const = 0;
833
834  protected:
835   // Return a fill string that is LENGTH bytes long, filling it with
836   // FILL.
837   std::string
838   get_fill_string(const std::string* fill, section_size_type length) const;
839 };
840
841 std::string
842 Output_section_element::get_fill_string(const std::string* fill,
843                                         section_size_type length) const
844 {
845   std::string this_fill;
846   this_fill.reserve(length);
847   while (this_fill.length() + fill->length() <= length)
848     this_fill += *fill;
849   if (this_fill.length() < length)
850     this_fill.append(*fill, 0, length - this_fill.length());
851   return this_fill;
852 }
853
854 // A symbol assignment in an output section.
855
856 class Output_section_element_assignment : public Output_section_element
857 {
858  public:
859   Output_section_element_assignment(const char* name, size_t namelen,
860                                     Expression* val, bool provide,
861                                     bool hidden)
862     : assignment_(name, namelen, false, val, provide, hidden)
863   { }
864
865   // Add the symbol to the symbol table.
866   void
867   add_symbols_to_table(Symbol_table* symtab)
868   { this->assignment_.add_to_table(symtab); }
869
870   // Finalize the symbol.
871   void
872   finalize_symbols(Symbol_table* symtab, const Layout* layout,
873                    uint64_t* dot_value, Output_section** dot_section)
874   {
875     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
876                                         *dot_section);
877   }
878
879   // Set the section address.  There is no section here, but if the
880   // value is absolute, we set the symbol.  This permits us to use
881   // absolute symbols when setting dot.
882   void
883   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
884                         uint64_t, uint64_t* dot_value, uint64_t*,
885                         Output_section** dot_section, std::string*,
886                         Input_section_list*)
887   {
888     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
889                                       *dot_section);
890   }
891
892   // Print for debugging.
893   void
894   print(FILE* f) const
895   {
896     fprintf(f, "    ");
897     this->assignment_.print(f);
898   }
899
900  private:
901   Symbol_assignment assignment_;
902 };
903
904 // An assignment to the dot symbol in an output section.
905
906 class Output_section_element_dot_assignment : public Output_section_element
907 {
908  public:
909   Output_section_element_dot_assignment(Expression* val)
910     : val_(val)
911   { }
912
913   // An assignment to dot within an output section is enough to force
914   // the output section to exist.
915   bool
916   needs_output_section() const
917   { return true; }
918
919   // Finalize the symbol.
920   void
921   finalize_symbols(Symbol_table* symtab, const Layout* layout,
922                    uint64_t* dot_value, Output_section** dot_section)
923   {
924     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
925                                            *dot_section, dot_section, NULL,
926                                            true);
927   }
928
929   // Update the dot symbol while setting section addresses.
930   void
931   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932                         uint64_t, uint64_t* dot_value, uint64_t*,
933                         Output_section** dot_section, std::string*,
934                         Input_section_list*);
935
936   // Print for debugging.
937   void
938   print(FILE* f) const
939   {
940     fprintf(f, "    . = ");
941     this->val_->print(f);
942     fprintf(f, "\n");
943   }
944
945  private:
946   Expression* val_;
947 };
948
949 // Update the dot symbol while setting section addresses.
950
951 void
952 Output_section_element_dot_assignment::set_section_addresses(
953     Symbol_table* symtab,
954     Layout* layout,
955     Output_section* output_section,
956     uint64_t,
957     uint64_t* dot_value,
958     uint64_t* dot_alignment,
959     Output_section** dot_section,
960     std::string* fill,
961     Input_section_list*)
962 {
963   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
964                                                 *dot_value, *dot_section,
965                                                 dot_section, dot_alignment,
966                                                 true);
967   if (next_dot < *dot_value)
968     gold_error(_("dot may not move backward"));
969   if (next_dot > *dot_value && output_section != NULL)
970     {
971       section_size_type length = convert_to_section_size_type(next_dot
972                                                               - *dot_value);
973       Output_section_data* posd;
974       if (fill->empty())
975         posd = new Output_data_zero_fill(length, 0);
976       else
977         {
978           std::string this_fill = this->get_fill_string(fill, length);
979           posd = new Output_data_const(this_fill, 0);
980         }
981       output_section->add_output_section_data(posd);
982       layout->new_output_section_data_from_script(posd);
983     }
984   *dot_value = next_dot;
985 }
986
987 // An assertion in an output section.
988
989 class Output_section_element_assertion : public Output_section_element
990 {
991  public:
992   Output_section_element_assertion(Expression* check, const char* message,
993                                    size_t messagelen)
994     : assertion_(check, message, messagelen)
995   { }
996
997   void
998   print(FILE* f) const
999   {
1000     fprintf(f, "    ");
1001     this->assertion_.print(f);
1002   }
1003
1004  private:
1005   Script_assertion assertion_;
1006 };
1007
1008 // We use a special instance of Output_section_data to handle BYTE,
1009 // SHORT, etc.  This permits forward references to symbols in the
1010 // expressions.
1011
1012 class Output_data_expression : public Output_section_data
1013 {
1014  public:
1015   Output_data_expression(int size, bool is_signed, Expression* val,
1016                          const Symbol_table* symtab, const Layout* layout,
1017                          uint64_t dot_value, Output_section* dot_section)
1018     : Output_section_data(size, 0, true),
1019       is_signed_(is_signed), val_(val), symtab_(symtab),
1020       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1021   { }
1022
1023  protected:
1024   // Write the data to the output file.
1025   void
1026   do_write(Output_file*);
1027
1028   // Write the data to a buffer.
1029   void
1030   do_write_to_buffer(unsigned char*);
1031
1032   // Write to a map file.
1033   void
1034   do_print_to_mapfile(Mapfile* mapfile) const
1035   { mapfile->print_output_data(this, _("** expression")); }
1036
1037  private:
1038   template<bool big_endian>
1039   void
1040   endian_write_to_buffer(uint64_t, unsigned char*);
1041
1042   bool is_signed_;
1043   Expression* val_;
1044   const Symbol_table* symtab_;
1045   const Layout* layout_;
1046   uint64_t dot_value_;
1047   Output_section* dot_section_;
1048 };
1049
1050 // Write the data element to the output file.
1051
1052 void
1053 Output_data_expression::do_write(Output_file* of)
1054 {
1055   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1056   this->write_to_buffer(view);
1057   of->write_output_view(this->offset(), this->data_size(), view);
1058 }
1059
1060 // Write the data element to a buffer.
1061
1062 void
1063 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1064 {
1065   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1066                                            true, this->dot_value_,
1067                                            this->dot_section_, NULL, NULL,
1068                                            false);
1069
1070   if (parameters->target().is_big_endian())
1071     this->endian_write_to_buffer<true>(val, buf);
1072   else
1073     this->endian_write_to_buffer<false>(val, buf);
1074 }
1075
1076 template<bool big_endian>
1077 void
1078 Output_data_expression::endian_write_to_buffer(uint64_t val,
1079                                                unsigned char* buf)
1080 {
1081   switch (this->data_size())
1082     {
1083     case 1:
1084       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1085       break;
1086     case 2:
1087       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1088       break;
1089     case 4:
1090       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1091       break;
1092     case 8:
1093       if (parameters->target().get_size() == 32)
1094         {
1095           val &= 0xffffffff;
1096           if (this->is_signed_ && (val & 0x80000000) != 0)
1097             val |= 0xffffffff00000000LL;
1098         }
1099       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1100       break;
1101     default:
1102       gold_unreachable();
1103     }
1104 }
1105
1106 // A data item in an output section.
1107
1108 class Output_section_element_data : public Output_section_element
1109 {
1110  public:
1111   Output_section_element_data(int size, bool is_signed, Expression* val)
1112     : size_(size), is_signed_(is_signed), val_(val)
1113   { }
1114
1115   // If there is a data item, then we must create an output section.
1116   bool
1117   needs_output_section() const
1118   { return true; }
1119
1120   // Finalize symbols--we just need to update dot.
1121   void
1122   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1123                    Output_section**)
1124   { *dot_value += this->size_; }
1125
1126   // Store the value in the section.
1127   void
1128   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1129                         uint64_t* dot_value, uint64_t*, Output_section**,
1130                         std::string*, Input_section_list*);
1131
1132   // Print for debugging.
1133   void
1134   print(FILE*) const;
1135
1136  private:
1137   // The size in bytes.
1138   int size_;
1139   // Whether the value is signed.
1140   bool is_signed_;
1141   // The value.
1142   Expression* val_;
1143 };
1144
1145 // Store the value in the section.
1146
1147 void
1148 Output_section_element_data::set_section_addresses(
1149     Symbol_table* symtab,
1150     Layout* layout,
1151     Output_section* os,
1152     uint64_t,
1153     uint64_t* dot_value,
1154     uint64_t*,
1155     Output_section** dot_section,
1156     std::string*,
1157     Input_section_list*)
1158 {
1159   gold_assert(os != NULL);
1160   Output_data_expression* expression =
1161     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1162                                symtab, layout, *dot_value, *dot_section);
1163   os->add_output_section_data(expression);
1164   layout->new_output_section_data_from_script(expression);
1165   *dot_value += this->size_;
1166 }
1167
1168 // Print for debugging.
1169
1170 void
1171 Output_section_element_data::print(FILE* f) const
1172 {
1173   const char* s;
1174   switch (this->size_)
1175     {
1176     case 1:
1177       s = "BYTE";
1178       break;
1179     case 2:
1180       s = "SHORT";
1181       break;
1182     case 4:
1183       s = "LONG";
1184       break;
1185     case 8:
1186       if (this->is_signed_)
1187         s = "SQUAD";
1188       else
1189         s = "QUAD";
1190       break;
1191     default:
1192       gold_unreachable();
1193     }
1194   fprintf(f, "    %s(", s);
1195   this->val_->print(f);
1196   fprintf(f, ")\n");
1197 }
1198
1199 // A fill value setting in an output section.
1200
1201 class Output_section_element_fill : public Output_section_element
1202 {
1203  public:
1204   Output_section_element_fill(Expression* val)
1205     : val_(val)
1206   { }
1207
1208   // Update the fill value while setting section addresses.
1209   void
1210   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1211                         uint64_t, uint64_t* dot_value, uint64_t*,
1212                         Output_section** dot_section,
1213                         std::string* fill, Input_section_list*)
1214   {
1215     Output_section* fill_section;
1216     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1217                                                   *dot_value, *dot_section,
1218                                                   &fill_section, NULL, false);
1219     if (fill_section != NULL)
1220       gold_warning(_("fill value is not absolute"));
1221     // FIXME: The GNU linker supports fill values of arbitrary length.
1222     unsigned char fill_buff[4];
1223     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1224     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1225   }
1226
1227   // Print for debugging.
1228   void
1229   print(FILE* f) const
1230   {
1231     fprintf(f, "    FILL(");
1232     this->val_->print(f);
1233     fprintf(f, ")\n");
1234   }
1235
1236  private:
1237   // The new fill value.
1238   Expression* val_;
1239 };
1240
1241 // An input section specification in an output section
1242
1243 class Output_section_element_input : public Output_section_element
1244 {
1245  public:
1246   Output_section_element_input(const Input_section_spec* spec, bool keep);
1247
1248   // Finalize symbols--just update the value of the dot symbol.
1249   void
1250   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1251                    Output_section** dot_section)
1252   {
1253     *dot_value = this->final_dot_value_;
1254     *dot_section = this->final_dot_section_;
1255   }
1256
1257   // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258   // If we do then also indicate whether the section should be KEPT.
1259   bool
1260   match_name(const char* file_name, const char* section_name, bool* keep) const;
1261
1262   // Set the section address.
1263   void
1264   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1265                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1266                         Output_section**, std::string* fill,
1267                         Input_section_list*);
1268
1269   // Print for debugging.
1270   void
1271   print(FILE* f) const;
1272
1273  private:
1274   // An input section pattern.
1275   struct Input_section_pattern
1276   {
1277     std::string pattern;
1278     bool pattern_is_wildcard;
1279     Sort_wildcard sort;
1280
1281     Input_section_pattern(const char* patterna, size_t patternlena,
1282                           Sort_wildcard sorta)
1283       : pattern(patterna, patternlena),
1284         pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1285         sort(sorta)
1286     { }
1287   };
1288
1289   typedef std::vector<Input_section_pattern> Input_section_patterns;
1290
1291   // Filename_exclusions is a pair of filename pattern and a bool
1292   // indicating whether the filename is a wildcard.
1293   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1294
1295   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296   // indicates whether this is a wildcard pattern.
1297   static inline bool
1298   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1299   {
1300     return (is_wildcard_pattern
1301             ? fnmatch(pattern, string, 0) == 0
1302             : strcmp(string, pattern) == 0);
1303   }
1304
1305   // See if we match a file name.
1306   bool
1307   match_file_name(const char* file_name) const;
1308
1309   // The file name pattern.  If this is the empty string, we match all
1310   // files.
1311   std::string filename_pattern_;
1312   // Whether the file name pattern is a wildcard.
1313   bool filename_is_wildcard_;
1314   // How the file names should be sorted.  This may only be
1315   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316   Sort_wildcard filename_sort_;
1317   // The list of file names to exclude.
1318   Filename_exclusions filename_exclusions_;
1319   // The list of input section patterns.
1320   Input_section_patterns input_section_patterns_;
1321   // Whether to keep this section when garbage collecting.
1322   bool keep_;
1323   // The value of dot after including all matching sections.
1324   uint64_t final_dot_value_;
1325   // The section where dot is defined after including all matching
1326   // sections.
1327   Output_section* final_dot_section_;
1328 };
1329
1330 // Construct Output_section_element_input.  The parser records strings
1331 // as pointers into a copy of the script file, which will go away when
1332 // parsing is complete.  We make sure they are in std::string objects.
1333
1334 Output_section_element_input::Output_section_element_input(
1335     const Input_section_spec* spec,
1336     bool keep)
1337   : filename_pattern_(),
1338     filename_is_wildcard_(false),
1339     filename_sort_(spec->file.sort),
1340     filename_exclusions_(),
1341     input_section_patterns_(),
1342     keep_(keep),
1343     final_dot_value_(0),
1344     final_dot_section_(NULL)
1345 {
1346   // The filename pattern "*" is common, and matches all files.  Turn
1347   // it into the empty string.
1348   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1349     this->filename_pattern_.assign(spec->file.name.value,
1350                                    spec->file.name.length);
1351   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1352
1353   if (spec->input_sections.exclude != NULL)
1354     {
1355       for (String_list::const_iterator p =
1356              spec->input_sections.exclude->begin();
1357            p != spec->input_sections.exclude->end();
1358            ++p)
1359         {
1360           bool is_wildcard = is_wildcard_string((*p).c_str());
1361           this->filename_exclusions_.push_back(std::make_pair(*p,
1362                                                               is_wildcard));
1363         }
1364     }
1365
1366   if (spec->input_sections.sections != NULL)
1367     {
1368       Input_section_patterns& isp(this->input_section_patterns_);
1369       for (String_sort_list::const_iterator p =
1370              spec->input_sections.sections->begin();
1371            p != spec->input_sections.sections->end();
1372            ++p)
1373         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1374                                             p->sort));
1375     }
1376 }
1377
1378 // See whether we match FILE_NAME.
1379
1380 bool
1381 Output_section_element_input::match_file_name(const char* file_name) const
1382 {
1383   if (!this->filename_pattern_.empty())
1384     {
1385       // If we were called with no filename, we refuse to match a
1386       // pattern which requires a file name.
1387       if (file_name == NULL)
1388         return false;
1389
1390       if (!match(file_name, this->filename_pattern_.c_str(),
1391                  this->filename_is_wildcard_))
1392         return false;
1393     }
1394
1395   if (file_name != NULL)
1396     {
1397       // Now we have to see whether FILE_NAME matches one of the
1398       // exclusion patterns, if any.
1399       for (Filename_exclusions::const_iterator p =
1400              this->filename_exclusions_.begin();
1401            p != this->filename_exclusions_.end();
1402            ++p)
1403         {
1404           if (match(file_name, p->first.c_str(), p->second))
1405             return false;
1406         }
1407     }
1408
1409   return true;
1410 }
1411
1412 // See whether we match FILE_NAME and SECTION_NAME.  If we do then
1413 // KEEP indicates whether the section should survive garbage collection.
1414
1415 bool
1416 Output_section_element_input::match_name(const char* file_name,
1417                                          const char* section_name,
1418                                          bool *keep) const
1419 {
1420   if (!this->match_file_name(file_name))
1421     return false;
1422
1423   *keep = this->keep_;
1424
1425   // If there are no section name patterns, then we match.
1426   if (this->input_section_patterns_.empty())
1427     return true;
1428
1429   // See whether we match the section name patterns.
1430   for (Input_section_patterns::const_iterator p =
1431          this->input_section_patterns_.begin();
1432        p != this->input_section_patterns_.end();
1433        ++p)
1434     {
1435       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1436         return true;
1437     }
1438
1439   // We didn't match any section names, so we didn't match.
1440   return false;
1441 }
1442
1443 // Information we use to sort the input sections.
1444
1445 class Input_section_info
1446 {
1447  public:
1448   Input_section_info(const Output_section::Input_section& input_section)
1449     : input_section_(input_section), section_name_(),
1450       size_(0), addralign_(1)
1451   { }
1452
1453   // Return the simple input section.
1454   const Output_section::Input_section&
1455   input_section() const
1456   { return this->input_section_; }
1457
1458   // Return the object.
1459   Relobj*
1460   relobj() const
1461   { return this->input_section_.relobj(); }
1462
1463   // Return the section index.
1464   unsigned int
1465   shndx()
1466   { return this->input_section_.shndx(); }
1467
1468   // Return the section name.
1469   const std::string&
1470   section_name() const
1471   { return this->section_name_; }
1472
1473   // Set the section name.
1474   void
1475   set_section_name(const std::string name)
1476   {
1477     if (is_compressed_debug_section(name.c_str()))
1478       this->section_name_ = corresponding_uncompressed_section_name(name);
1479     else
1480       this->section_name_ = name;
1481   }
1482
1483   // Return the section size.
1484   uint64_t
1485   size() const
1486   { return this->size_; }
1487
1488   // Set the section size.
1489   void
1490   set_size(uint64_t size)
1491   { this->size_ = size; }
1492
1493   // Return the address alignment.
1494   uint64_t
1495   addralign() const
1496   { return this->addralign_; }
1497
1498   // Set the address alignment.
1499   void
1500   set_addralign(uint64_t addralign)
1501   { this->addralign_ = addralign; }
1502
1503  private:
1504   // Input section, can be a relaxed section.
1505   Output_section::Input_section input_section_;
1506   // Name of the section. 
1507   std::string section_name_;
1508   // Section size.
1509   uint64_t size_;
1510   // Address alignment.
1511   uint64_t addralign_;
1512 };
1513
1514 // A class to sort the input sections.
1515
1516 class Input_section_sorter
1517 {
1518  public:
1519   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1520     : filename_sort_(filename_sort), section_sort_(section_sort)
1521   { }
1522
1523   bool
1524   operator()(const Input_section_info&, const Input_section_info&) const;
1525
1526  private:
1527   Sort_wildcard filename_sort_;
1528   Sort_wildcard section_sort_;
1529 };
1530
1531 bool
1532 Input_section_sorter::operator()(const Input_section_info& isi1,
1533                                  const Input_section_info& isi2) const
1534 {
1535   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1536       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1537       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1538           && isi1.addralign() == isi2.addralign()))
1539     {
1540       if (isi1.section_name() != isi2.section_name())
1541         return isi1.section_name() < isi2.section_name();
1542     }
1543   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1544       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1545       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1546     {
1547       if (isi1.addralign() != isi2.addralign())
1548         return isi1.addralign() < isi2.addralign();
1549     }
1550   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1551     {
1552       if (isi1.relobj()->name() != isi2.relobj()->name())
1553         return (isi1.relobj()->name() < isi2.relobj()->name());
1554     }
1555
1556   // Otherwise we leave them in the same order.
1557   return false;
1558 }
1559
1560 // Set the section address.  Look in INPUT_SECTIONS for sections which
1561 // match this spec, sort them as specified, and add them to the output
1562 // section.
1563
1564 void
1565 Output_section_element_input::set_section_addresses(
1566     Symbol_table*,
1567     Layout* layout,
1568     Output_section* output_section,
1569     uint64_t subalign,
1570     uint64_t* dot_value,
1571     uint64_t*,
1572     Output_section** dot_section,
1573     std::string* fill,
1574     Input_section_list* input_sections)
1575 {
1576   // We build a list of sections which match each
1577   // Input_section_pattern.
1578
1579   // If none of the patterns specify a sort option, we throw all
1580   // matching input sections into a single bin, in the order we
1581   // find them.  Otherwise, we put matching input sections into
1582   // a separate bin for each pattern, and sort each one as
1583   // specified.  Thus, an input section spec like this:
1584   //   *(.foo .bar)
1585   // will group all .foo and .bar sections in the order seen,
1586   // whereas this:
1587   //   *(.foo) *(.bar)
1588   // will group all .foo sections followed by all .bar sections.
1589   // This matches Gnu ld behavior.
1590
1591   // Things get really weird, though, when you add a sort spec
1592   // on some, but not all, of the patterns, like this:
1593   //   *(SORT_BY_NAME(.foo) .bar)
1594   // We do not attempt to match Gnu ld behavior in this case.
1595
1596   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1597   size_t input_pattern_count = this->input_section_patterns_.size();
1598   size_t bin_count = 1;
1599   bool any_patterns_with_sort = false;
1600   for (size_t i = 0; i < input_pattern_count; ++i)
1601     {
1602       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1603       if (isp.sort != SORT_WILDCARD_NONE)
1604         any_patterns_with_sort = true;
1605     }
1606   if (any_patterns_with_sort)
1607     bin_count = input_pattern_count;
1608   Matching_sections matching_sections(bin_count);
1609
1610   // Look through the list of sections for this output section.  Add
1611   // each one which matches to one of the elements of
1612   // MATCHING_SECTIONS.
1613
1614   Input_section_list::iterator p = input_sections->begin();
1615   while (p != input_sections->end())
1616     {
1617       Relobj* relobj = p->relobj();
1618       unsigned int shndx = p->shndx();      
1619       Input_section_info isi(*p);
1620
1621       // Calling section_name and section_addralign is not very
1622       // efficient.
1623
1624       // Lock the object so that we can get information about the
1625       // section.  This is OK since we know we are single-threaded
1626       // here.
1627       {
1628         const Task* task = reinterpret_cast<const Task*>(-1);
1629         Task_lock_obj<Object> tl(task, relobj);
1630
1631         isi.set_section_name(relobj->section_name(shndx));
1632         if (p->is_relaxed_input_section())
1633           {
1634             // We use current data size because relaxed section sizes may not
1635             // have finalized yet.
1636             isi.set_size(p->relaxed_input_section()->current_data_size());
1637             isi.set_addralign(p->relaxed_input_section()->addralign());
1638           }
1639         else
1640           {
1641             isi.set_size(relobj->section_size(shndx));
1642             isi.set_addralign(relobj->section_addralign(shndx));
1643           }
1644       }
1645
1646       if (!this->match_file_name(relobj->name().c_str()))
1647         ++p;
1648       else if (this->input_section_patterns_.empty())
1649         {
1650           matching_sections[0].push_back(isi);
1651           p = input_sections->erase(p);
1652         }
1653       else
1654         {
1655           size_t i;
1656           for (i = 0; i < input_pattern_count; ++i)
1657             {
1658               const Input_section_pattern&
1659                 isp(this->input_section_patterns_[i]);
1660               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1661                         isp.pattern_is_wildcard))
1662                 break;
1663             }
1664
1665           if (i >= input_pattern_count)
1666             ++p;
1667           else
1668             {
1669               if (i >= bin_count)
1670                 i = 0;
1671               matching_sections[i].push_back(isi);
1672               p = input_sections->erase(p);
1673             }
1674         }
1675     }
1676
1677   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1678   // using a stable sort so that we get the default order when
1679   // sections are otherwise equal.  Add each input section to the
1680   // output section.
1681
1682   uint64_t dot = *dot_value;
1683   for (size_t i = 0; i < bin_count; ++i)
1684     {
1685       if (matching_sections[i].empty())
1686         continue;
1687
1688       gold_assert(output_section != NULL);
1689
1690       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1691       if (isp.sort != SORT_WILDCARD_NONE
1692           || this->filename_sort_ != SORT_WILDCARD_NONE)
1693         std::stable_sort(matching_sections[i].begin(),
1694                          matching_sections[i].end(),
1695                          Input_section_sorter(this->filename_sort_,
1696                                               isp.sort));
1697
1698       for (std::vector<Input_section_info>::const_iterator p =
1699              matching_sections[i].begin();
1700            p != matching_sections[i].end();
1701            ++p)
1702         {
1703           // Override the original address alignment if SUBALIGN is specified
1704           // and is greater than the original alignment.  We need to make a
1705           // copy of the input section to modify the alignment.
1706           Output_section::Input_section sis(p->input_section());
1707
1708           uint64_t this_subalign = sis.addralign();
1709           if (!sis.is_input_section())
1710             sis.output_section_data()->finalize_data_size();    
1711           uint64_t data_size = sis.data_size();
1712           if (this_subalign < subalign)
1713             {
1714               this_subalign = subalign;
1715               sis.set_addralign(subalign);
1716             }
1717
1718           uint64_t address = align_address(dot, this_subalign);
1719
1720           if (address > dot && !fill->empty())
1721             {
1722               section_size_type length =
1723                 convert_to_section_size_type(address - dot);
1724               std::string this_fill = this->get_fill_string(fill, length);
1725               Output_section_data* posd = new Output_data_const(this_fill, 0);
1726               output_section->add_output_section_data(posd);
1727               layout->new_output_section_data_from_script(posd);
1728             }
1729
1730           output_section->add_script_input_section(sis);
1731           dot = address + data_size;
1732         }
1733     }
1734
1735   // An SHF_TLS/SHT_NOBITS section does not take up any
1736   // address space.
1737   if (output_section == NULL
1738       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1739       || output_section->type() != elfcpp::SHT_NOBITS)
1740     *dot_value = dot;
1741
1742   this->final_dot_value_ = *dot_value;
1743   this->final_dot_section_ = *dot_section;
1744 }
1745
1746 // Print for debugging.
1747
1748 void
1749 Output_section_element_input::print(FILE* f) const
1750 {
1751   fprintf(f, "    ");
1752
1753   if (this->keep_)
1754     fprintf(f, "KEEP(");
1755
1756   if (!this->filename_pattern_.empty())
1757     {
1758       bool need_close_paren = false;
1759       switch (this->filename_sort_)
1760         {
1761         case SORT_WILDCARD_NONE:
1762           break;
1763         case SORT_WILDCARD_BY_NAME:
1764           fprintf(f, "SORT_BY_NAME(");
1765           need_close_paren = true;
1766           break;
1767         default:
1768           gold_unreachable();
1769         }
1770
1771       fprintf(f, "%s", this->filename_pattern_.c_str());
1772
1773       if (need_close_paren)
1774         fprintf(f, ")");
1775     }
1776
1777   if (!this->input_section_patterns_.empty()
1778       || !this->filename_exclusions_.empty())
1779     {
1780       fprintf(f, "(");
1781
1782       bool need_space = false;
1783       if (!this->filename_exclusions_.empty())
1784         {
1785           fprintf(f, "EXCLUDE_FILE(");
1786           bool need_comma = false;
1787           for (Filename_exclusions::const_iterator p =
1788                  this->filename_exclusions_.begin();
1789                p != this->filename_exclusions_.end();
1790                ++p)
1791             {
1792               if (need_comma)
1793                 fprintf(f, ", ");
1794               fprintf(f, "%s", p->first.c_str());
1795               need_comma = true;
1796             }
1797           fprintf(f, ")");
1798           need_space = true;
1799         }
1800
1801       for (Input_section_patterns::const_iterator p =
1802              this->input_section_patterns_.begin();
1803            p != this->input_section_patterns_.end();
1804            ++p)
1805         {
1806           if (need_space)
1807             fprintf(f, " ");
1808
1809           int close_parens = 0;
1810           switch (p->sort)
1811             {
1812             case SORT_WILDCARD_NONE:
1813               break;
1814             case SORT_WILDCARD_BY_NAME:
1815               fprintf(f, "SORT_BY_NAME(");
1816               close_parens = 1;
1817               break;
1818             case SORT_WILDCARD_BY_ALIGNMENT:
1819               fprintf(f, "SORT_BY_ALIGNMENT(");
1820               close_parens = 1;
1821               break;
1822             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1823               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1824               close_parens = 2;
1825               break;
1826             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1827               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1828               close_parens = 2;
1829               break;
1830             default:
1831               gold_unreachable();
1832             }
1833
1834           fprintf(f, "%s", p->pattern.c_str());
1835
1836           for (int i = 0; i < close_parens; ++i)
1837             fprintf(f, ")");
1838
1839           need_space = true;
1840         }
1841
1842       fprintf(f, ")");
1843     }
1844
1845   if (this->keep_)
1846     fprintf(f, ")");
1847
1848   fprintf(f, "\n");
1849 }
1850
1851 // An output section.
1852
1853 class Output_section_definition : public Sections_element
1854 {
1855  public:
1856   typedef Output_section_element::Input_section_list Input_section_list;
1857
1858   Output_section_definition(const char* name, size_t namelen,
1859                             const Parser_output_section_header* header);
1860
1861   // Finish the output section with the information in the trailer.
1862   void
1863   finish(const Parser_output_section_trailer* trailer);
1864
1865   // Add a symbol to be defined.
1866   void
1867   add_symbol_assignment(const char* name, size_t length, Expression* value,
1868                         bool provide, bool hidden);
1869
1870   // Add an assignment to the special dot symbol.
1871   void
1872   add_dot_assignment(Expression* value);
1873
1874   // Add an assertion.
1875   void
1876   add_assertion(Expression* check, const char* message, size_t messagelen);
1877
1878   // Add a data item to the current output section.
1879   void
1880   add_data(int size, bool is_signed, Expression* val);
1881
1882   // Add a setting for the fill value.
1883   void
1884   add_fill(Expression* val);
1885
1886   // Add an input section specification.
1887   void
1888   add_input_section(const Input_section_spec* spec, bool keep);
1889
1890   // Return whether the output section is relro.
1891   bool
1892   is_relro() const
1893   { return this->is_relro_; }
1894
1895   // Record that the output section is relro.
1896   void
1897   set_is_relro()
1898   { this->is_relro_ = true; }
1899
1900   // Create any required output sections.
1901   void
1902   create_sections(Layout*);
1903
1904   // Add any symbols being defined to the symbol table.
1905   void
1906   add_symbols_to_table(Symbol_table* symtab);
1907
1908   // Finalize symbols and check assertions.
1909   void
1910   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1911
1912   // Return the output section name to use for an input file name and
1913   // section name.
1914   const char*
1915   output_section_name(const char* file_name, const char* section_name,
1916                       Output_section***, Script_sections::Section_type*,
1917                       bool*);
1918
1919   // Initialize OSP with an output section.
1920   void
1921   orphan_section_init(Orphan_section_placement* osp,
1922                       Script_sections::Elements_iterator p)
1923   { osp->output_section_init(this->name_, this->output_section_, p); }
1924
1925   // Set the section address.
1926   void
1927   set_section_addresses(Symbol_table* symtab, Layout* layout,
1928                         uint64_t* dot_value, uint64_t*,
1929                         uint64_t* load_address);
1930
1931   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1932   // this section is constrained, and the input sections do not match,
1933   // return the constraint, and set *POSD.
1934   Section_constraint
1935   check_constraint(Output_section_definition** posd);
1936
1937   // See if this is the alternate output section for a constrained
1938   // output section.  If it is, transfer the Output_section and return
1939   // true.  Otherwise return false.
1940   bool
1941   alternate_constraint(Output_section_definition*, Section_constraint);
1942
1943   // Get the list of segments to use for an allocated section when
1944   // using a PHDRS clause.
1945   Output_section*
1946   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1947
1948   // Look for an output section by name and return the address, the
1949   // load address, the alignment, and the size.  This is used when an
1950   // expression refers to an output section which was not actually
1951   // created.  This returns true if the section was found, false
1952   // otherwise.
1953   bool
1954   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1955                           uint64_t*) const;
1956
1957   // Return the associated Output_section if there is one.
1958   Output_section*
1959   get_output_section() const
1960   { return this->output_section_; }
1961
1962   // Print the contents to the FILE.  This is for debugging.
1963   void
1964   print(FILE*) const;
1965
1966   // Return the output section type if specified or Script_sections::ST_NONE.
1967   Script_sections::Section_type
1968   section_type() const;
1969
1970   // Store the memory region to use.
1971   void
1972   set_memory_region(Memory_region*, bool set_vma);
1973
1974   void
1975   set_section_vma(Expression* address)
1976   { this->address_ = address; }
1977   
1978   void
1979   set_section_lma(Expression* address)
1980   { this->load_address_ = address; }
1981
1982   const std::string&
1983   get_section_name() const
1984   { return this->name_; }
1985   
1986  private:
1987   static const char*
1988   script_section_type_name(Script_section_type);
1989
1990   typedef std::vector<Output_section_element*> Output_section_elements;
1991
1992   // The output section name.
1993   std::string name_;
1994   // The address.  This may be NULL.
1995   Expression* address_;
1996   // The load address.  This may be NULL.
1997   Expression* load_address_;
1998   // The alignment.  This may be NULL.
1999   Expression* align_;
2000   // The input section alignment.  This may be NULL.
2001   Expression* subalign_;
2002   // The constraint, if any.
2003   Section_constraint constraint_;
2004   // The fill value.  This may be NULL.
2005   Expression* fill_;
2006   // The list of segments this section should go into.  This may be
2007   // NULL.
2008   String_list* phdrs_;
2009   // The list of elements defining the section.
2010   Output_section_elements elements_;
2011   // The Output_section created for this definition.  This will be
2012   // NULL if none was created.
2013   Output_section* output_section_;
2014   // The address after it has been evaluated.
2015   uint64_t evaluated_address_;
2016   // The load address after it has been evaluated.
2017   uint64_t evaluated_load_address_;
2018   // The alignment after it has been evaluated.
2019   uint64_t evaluated_addralign_;
2020   // The output section is relro.
2021   bool is_relro_;
2022   // The output section type if specified.
2023   enum Script_section_type script_section_type_;
2024 };
2025
2026 // Constructor.
2027
2028 Output_section_definition::Output_section_definition(
2029     const char* name,
2030     size_t namelen,
2031     const Parser_output_section_header* header)
2032   : name_(name, namelen),
2033     address_(header->address),
2034     load_address_(header->load_address),
2035     align_(header->align),
2036     subalign_(header->subalign),
2037     constraint_(header->constraint),
2038     fill_(NULL),
2039     phdrs_(NULL),
2040     elements_(),
2041     output_section_(NULL),
2042     evaluated_address_(0),
2043     evaluated_load_address_(0),
2044     evaluated_addralign_(0),
2045     is_relro_(false),
2046     script_section_type_(header->section_type)
2047 {
2048 }
2049
2050 // Finish an output section.
2051
2052 void
2053 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2054 {
2055   this->fill_ = trailer->fill;
2056   this->phdrs_ = trailer->phdrs;
2057 }
2058
2059 // Add a symbol to be defined.
2060
2061 void
2062 Output_section_definition::add_symbol_assignment(const char* name,
2063                                                  size_t length,
2064                                                  Expression* value,
2065                                                  bool provide,
2066                                                  bool hidden)
2067 {
2068   Output_section_element* p = new Output_section_element_assignment(name,
2069                                                                     length,
2070                                                                     value,
2071                                                                     provide,
2072                                                                     hidden);
2073   this->elements_.push_back(p);
2074 }
2075
2076 // Add an assignment to the special dot symbol.
2077
2078 void
2079 Output_section_definition::add_dot_assignment(Expression* value)
2080 {
2081   Output_section_element* p = new Output_section_element_dot_assignment(value);
2082   this->elements_.push_back(p);
2083 }
2084
2085 // Add an assertion.
2086
2087 void
2088 Output_section_definition::add_assertion(Expression* check,
2089                                          const char* message,
2090                                          size_t messagelen)
2091 {
2092   Output_section_element* p = new Output_section_element_assertion(check,
2093                                                                    message,
2094                                                                    messagelen);
2095   this->elements_.push_back(p);
2096 }
2097
2098 // Add a data item to the current output section.
2099
2100 void
2101 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2102 {
2103   Output_section_element* p = new Output_section_element_data(size, is_signed,
2104                                                               val);
2105   this->elements_.push_back(p);
2106 }
2107
2108 // Add a setting for the fill value.
2109
2110 void
2111 Output_section_definition::add_fill(Expression* val)
2112 {
2113   Output_section_element* p = new Output_section_element_fill(val);
2114   this->elements_.push_back(p);
2115 }
2116
2117 // Add an input section specification.
2118
2119 void
2120 Output_section_definition::add_input_section(const Input_section_spec* spec,
2121                                              bool keep)
2122 {
2123   Output_section_element* p = new Output_section_element_input(spec, keep);
2124   this->elements_.push_back(p);
2125 }
2126
2127 // Create any required output sections.  We need an output section if
2128 // there is a data statement here.
2129
2130 void
2131 Output_section_definition::create_sections(Layout* layout)
2132 {
2133   if (this->output_section_ != NULL)
2134     return;
2135   for (Output_section_elements::const_iterator p = this->elements_.begin();
2136        p != this->elements_.end();
2137        ++p)
2138     {
2139       if ((*p)->needs_output_section())
2140         {
2141           const char* name = this->name_.c_str();
2142           this->output_section_ =
2143             layout->make_output_section_for_script(name, this->section_type());
2144           return;
2145         }
2146     }
2147 }
2148
2149 // Add any symbols being defined to the symbol table.
2150
2151 void
2152 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2153 {
2154   for (Output_section_elements::iterator p = this->elements_.begin();
2155        p != this->elements_.end();
2156        ++p)
2157     (*p)->add_symbols_to_table(symtab);
2158 }
2159
2160 // Finalize symbols and check assertions.
2161
2162 void
2163 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2164                                             const Layout* layout,
2165                                             uint64_t* dot_value)
2166 {
2167   if (this->output_section_ != NULL)
2168     *dot_value = this->output_section_->address();
2169   else
2170     {
2171       uint64_t address = *dot_value;
2172       if (this->address_ != NULL)
2173         {
2174           address = this->address_->eval_with_dot(symtab, layout, true,
2175                                                   *dot_value, NULL,
2176                                                   NULL, NULL, false);
2177         }
2178       if (this->align_ != NULL)
2179         {
2180           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2181                                                        *dot_value, NULL,
2182                                                        NULL, NULL, false);
2183           address = align_address(address, align);
2184         }
2185       *dot_value = address;
2186     }
2187
2188   Output_section* dot_section = this->output_section_;
2189   for (Output_section_elements::iterator p = this->elements_.begin();
2190        p != this->elements_.end();
2191        ++p)
2192     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2193 }
2194
2195 // Return the output section name to use for an input section name.
2196
2197 const char*
2198 Output_section_definition::output_section_name(
2199     const char* file_name,
2200     const char* section_name,
2201     Output_section*** slot,
2202     Script_sections::Section_type* psection_type,
2203     bool* keep)
2204 {
2205   // Ask each element whether it matches NAME.
2206   for (Output_section_elements::const_iterator p = this->elements_.begin();
2207        p != this->elements_.end();
2208        ++p)
2209     {
2210       if ((*p)->match_name(file_name, section_name, keep))
2211         {
2212           // We found a match for NAME, which means that it should go
2213           // into this output section.
2214           *slot = &this->output_section_;
2215           *psection_type = this->section_type();
2216           return this->name_.c_str();
2217         }
2218     }
2219
2220   // We don't know about this section name.
2221   return NULL;
2222 }
2223
2224 // Return true if memory from START to START + LENGTH is contained
2225 // within a memory region.
2226
2227 bool
2228 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2229                                  uint64_t start, uint64_t length) const
2230 {
2231   if (this->memory_regions_ == NULL)
2232     return false;
2233
2234   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2235        mr != this->memory_regions_->end();
2236        ++mr)
2237     {
2238       uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2239       uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2240
2241       if (s <= start
2242           && (s + l) >= (start + length))
2243         return true;
2244     }
2245
2246   return false;
2247 }
2248
2249 // Find a memory region that should be used by a given output SECTION.
2250 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2251 // that used the return memory region.
2252
2253 Memory_region*
2254 Script_sections::find_memory_region(
2255     Output_section_definition* section,
2256     bool find_vma_region,
2257     bool explicit_only,
2258     Output_section_definition** previous_section_return)
2259 {
2260   if (previous_section_return != NULL)
2261     * previous_section_return = NULL;
2262
2263   // Walk the memory regions specified in this script, if any.
2264   if (this->memory_regions_ == NULL)
2265     return NULL;
2266
2267   // The /DISCARD/ section never gets assigned to any region.
2268   if (section->get_section_name() == "/DISCARD/")
2269     return NULL;
2270
2271   Memory_region* first_match = NULL;
2272
2273   // First check to see if a region has been assigned to this section.
2274   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2275        mr != this->memory_regions_->end();
2276        ++mr)
2277     {
2278       if (find_vma_region)
2279         {
2280           for (Memory_region::Section_list::const_iterator s =
2281                  (*mr)->get_vma_section_list_start();
2282                s != (*mr)->get_vma_section_list_end();
2283                ++s)
2284             if ((*s) == section)
2285               {
2286                 (*mr)->set_last_section(section);
2287                 return *mr;
2288               }
2289         }
2290       else
2291         {
2292           for (Memory_region::Section_list::const_iterator s =
2293                  (*mr)->get_lma_section_list_start();
2294                s != (*mr)->get_lma_section_list_end();
2295                ++s)
2296             if ((*s) == section)
2297               {
2298                 (*mr)->set_last_section(section);
2299                 return *mr;
2300               }
2301         }
2302
2303       if (!explicit_only)
2304         {
2305           // Make a note of the first memory region whose attributes
2306           // are compatible with the section.  If we do not find an
2307           // explicit region assignment, then we will return this region.
2308           Output_section* out_sec = section->get_output_section();
2309           if (first_match == NULL
2310               && out_sec != NULL
2311               && (*mr)->attributes_compatible(out_sec->flags(),
2312                                               out_sec->type()))
2313             first_match = *mr;
2314         }
2315     }
2316
2317   // With LMA computations, if an explicit region has not been specified then
2318   // we will want to set the difference between the VMA and the LMA of the
2319   // section were searching for to be the same as the difference between the
2320   // VMA and LMA of the last section to be added to first matched region.
2321   // Hence, if it was asked for, we return a pointer to the last section
2322   // known to be used by the first matched region.
2323   if (first_match != NULL
2324       && previous_section_return != NULL)
2325     *previous_section_return = first_match->get_last_section();
2326
2327   return first_match;
2328 }
2329
2330 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2331 // be NULL if no input sections were mapped to this output section.
2332 // We still have to adjust dot and process symbol assignments.
2333
2334 void
2335 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2336                                                  Layout* layout,
2337                                                  uint64_t* dot_value,
2338                                                  uint64_t* dot_alignment,
2339                                                  uint64_t* load_address)
2340 {
2341   Memory_region* vma_region = NULL;
2342   Memory_region* lma_region = NULL;
2343   Script_sections* script_sections =
2344     layout->script_options()->script_sections();
2345   uint64_t address;
2346   uint64_t old_dot_value = *dot_value;
2347   uint64_t old_load_address = *load_address;
2348
2349   // If input section sorting is requested via --section-ordering-file or
2350   // linker plugins, then do it here.  This is important because we want 
2351   // any sorting specified in the linker scripts, which will be done after
2352   // this, to take precedence.  The final order of input sections is then 
2353   // guaranteed to be according to the linker script specification.
2354   if (this->output_section_ != NULL
2355       && this->output_section_->input_section_order_specified())
2356     this->output_section_->sort_attached_input_sections();
2357
2358   // Decide the start address for the section.  The algorithm is:
2359   // 1) If an address has been specified in a linker script, use that.
2360   // 2) Otherwise if a memory region has been specified for the section,
2361   //    use the next free address in the region.
2362   // 3) Otherwise if memory regions have been specified find the first
2363   //    region whose attributes are compatible with this section and
2364   //    install it into that region.
2365   // 4) Otherwise use the current location counter.
2366
2367   if (this->output_section_ != NULL
2368       // Check for --section-start.
2369       && parameters->options().section_start(this->output_section_->name(),
2370                                              &address))
2371     ;
2372   else if (this->address_ == NULL)
2373     {
2374       vma_region = script_sections->find_memory_region(this, true, false, NULL);
2375       if (vma_region != NULL)
2376         address = vma_region->get_current_address()->eval(symtab, layout,
2377                                                           false);
2378       else
2379         address = *dot_value;
2380     }
2381   else
2382     {
2383       vma_region = script_sections->find_memory_region(this, true, true, NULL);
2384       address = this->address_->eval_with_dot(symtab, layout, true,
2385                                               *dot_value, NULL, NULL,
2386                                               dot_alignment, false);
2387       if (vma_region != NULL)
2388         vma_region->set_address(address, symtab, layout);
2389     }
2390
2391   uint64_t align;
2392   if (this->align_ == NULL)
2393     {
2394       if (this->output_section_ == NULL)
2395         align = 0;
2396       else
2397         align = this->output_section_->addralign();
2398     }
2399   else
2400     {
2401       Output_section* align_section;
2402       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2403                                           NULL, &align_section, NULL, false);
2404       if (align_section != NULL)
2405         gold_warning(_("alignment of section %s is not absolute"),
2406                      this->name_.c_str());
2407       if (this->output_section_ != NULL)
2408         this->output_section_->set_addralign(align);
2409     }
2410
2411   address = align_address(address, align);
2412
2413   uint64_t start_address = address;
2414
2415   *dot_value = address;
2416
2417   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2418   // forced to zero, regardless of what the linker script wants.
2419   if (this->output_section_ != NULL
2420       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2421           || this->output_section_->is_noload()))
2422     this->output_section_->set_address(address);
2423
2424   this->evaluated_address_ = address;
2425   this->evaluated_addralign_ = align;
2426
2427   uint64_t laddr;
2428
2429   if (this->load_address_ == NULL)
2430     {
2431       Output_section_definition* previous_section;
2432
2433       // Determine if an LMA region has been set for this section.
2434       lma_region = script_sections->find_memory_region(this, false, false,
2435                                                        &previous_section);
2436
2437       if (lma_region != NULL)
2438         {
2439           if (previous_section == NULL)
2440             // The LMA address was explicitly set to the given region.
2441             laddr = lma_region->get_current_address()->eval(symtab, layout,
2442                                                             false);
2443           else 
2444             {
2445               // We are not going to use the discovered lma_region, so
2446               // make sure that we do not update it in the code below.
2447               lma_region = NULL;
2448
2449               if (this->address_ != NULL || previous_section == this)
2450                 {
2451                   // Either an explicit VMA address has been set, or an
2452                   // explicit VMA region has been set, so set the LMA equal to
2453                   // the VMA.
2454                   laddr = address;
2455                 }
2456               else
2457                 {
2458                   // The LMA address was not explicitly or implicitly set.
2459                   //
2460                   // We have been given the first memory region that is
2461                   // compatible with the current section and a pointer to the
2462                   // last section to use this region.  Set the LMA of this
2463                   // section so that the difference between its' VMA and LMA
2464                   // is the same as the difference between the VMA and LMA of
2465                   // the last section in the given region.
2466                   laddr = address + (previous_section->evaluated_load_address_
2467                                      - previous_section->evaluated_address_);
2468                 }
2469             }
2470
2471           if (this->output_section_ != NULL)
2472             this->output_section_->set_load_address(laddr);
2473         }
2474       else
2475         {
2476           // Do not set the load address of the output section, if one exists.
2477           // This allows future sections to determine what the load address
2478           // should be.  If none is ever set, it will default to being the
2479           // same as the vma address.
2480           laddr = address;
2481         }
2482     }
2483   else
2484     {
2485       laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2486                                                  *dot_value,
2487                                                  this->output_section_,
2488                                                  NULL, NULL, false);
2489       if (this->output_section_ != NULL)
2490         this->output_section_->set_load_address(laddr);
2491     }
2492
2493   this->evaluated_load_address_ = laddr;
2494
2495   uint64_t subalign;
2496   if (this->subalign_ == NULL)
2497     subalign = 0;
2498   else
2499     {
2500       Output_section* subalign_section;
2501       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2502                                                 *dot_value, NULL,
2503                                                 &subalign_section, NULL,
2504                                                 false);
2505       if (subalign_section != NULL)
2506         gold_warning(_("subalign of section %s is not absolute"),
2507                      this->name_.c_str());
2508     }
2509
2510   std::string fill;
2511   if (this->fill_ != NULL)
2512     {
2513       // FIXME: The GNU linker supports fill values of arbitrary
2514       // length.
2515       Output_section* fill_section;
2516       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2517                                                      *dot_value,
2518                                                      NULL, &fill_section,
2519                                                      NULL, false);
2520       if (fill_section != NULL)
2521         gold_warning(_("fill of section %s is not absolute"),
2522                      this->name_.c_str());
2523       unsigned char fill_buff[4];
2524       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2525       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2526     }
2527
2528   Input_section_list input_sections;
2529   if (this->output_section_ != NULL)
2530     {
2531       // Get the list of input sections attached to this output
2532       // section.  This will leave the output section with only
2533       // Output_section_data entries.
2534       address += this->output_section_->get_input_sections(address,
2535                                                            fill,
2536                                                            &input_sections);
2537       *dot_value = address;
2538     }
2539
2540   Output_section* dot_section = this->output_section_;
2541   for (Output_section_elements::iterator p = this->elements_.begin();
2542        p != this->elements_.end();
2543        ++p)
2544     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2545                                 subalign, dot_value, dot_alignment,
2546                                 &dot_section, &fill, &input_sections);
2547
2548   gold_assert(input_sections.empty());
2549
2550   if (vma_region != NULL)
2551     {
2552       // Update the VMA region being used by the section now that we know how
2553       // big it is.  Use the current address in the region, rather than
2554       // start_address because that might have been aligned upwards and we
2555       // need to allow for the padding.
2556       Expression* addr = vma_region->get_current_address();
2557       uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2558
2559       vma_region->increment_offset(this->get_section_name(), size,
2560                                    symtab, layout);
2561     }
2562
2563   // If the LMA region is different from the VMA region, then increment the
2564   // offset there as well.  Note that we use the same "dot_value -
2565   // start_address" formula that is used in the load_address assignment below.
2566   if (lma_region != NULL && lma_region != vma_region)
2567     lma_region->increment_offset(this->get_section_name(),
2568                                  *dot_value - start_address,
2569                                  symtab, layout);
2570
2571   // Compute the load address for the following section.
2572   if (this->output_section_ == NULL)
2573     *load_address = *dot_value;
2574   else if (this->load_address_ == NULL)
2575     {
2576       if (lma_region == NULL)
2577         *load_address = *dot_value;
2578       else
2579         *load_address =
2580           lma_region->get_current_address()->eval(symtab, layout, false);
2581     }
2582   else
2583     *load_address = (this->output_section_->load_address()
2584                      + (*dot_value - start_address));
2585
2586   if (this->output_section_ != NULL)
2587     {
2588       if (this->is_relro_)
2589         this->output_section_->set_is_relro();
2590       else
2591         this->output_section_->clear_is_relro();
2592
2593       // If this is a NOLOAD section, keep dot and load address unchanged.
2594       if (this->output_section_->is_noload())
2595         {
2596           *dot_value = old_dot_value;
2597           *load_address = old_load_address;
2598         }
2599     }
2600 }
2601
2602 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2603 // this section is constrained, and the input sections do not match,
2604 // return the constraint, and set *POSD.
2605
2606 Section_constraint
2607 Output_section_definition::check_constraint(Output_section_definition** posd)
2608 {
2609   switch (this->constraint_)
2610     {
2611     case CONSTRAINT_NONE:
2612       return CONSTRAINT_NONE;
2613
2614     case CONSTRAINT_ONLY_IF_RO:
2615       if (this->output_section_ != NULL
2616           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2617         {
2618           *posd = this;
2619           return CONSTRAINT_ONLY_IF_RO;
2620         }
2621       return CONSTRAINT_NONE;
2622
2623     case CONSTRAINT_ONLY_IF_RW:
2624       if (this->output_section_ != NULL
2625           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2626         {
2627           *posd = this;
2628           return CONSTRAINT_ONLY_IF_RW;
2629         }
2630       return CONSTRAINT_NONE;
2631
2632     case CONSTRAINT_SPECIAL:
2633       if (this->output_section_ != NULL)
2634         gold_error(_("SPECIAL constraints are not implemented"));
2635       return CONSTRAINT_NONE;
2636
2637     default:
2638       gold_unreachable();
2639     }
2640 }
2641
2642 // See if this is the alternate output section for a constrained
2643 // output section.  If it is, transfer the Output_section and return
2644 // true.  Otherwise return false.
2645
2646 bool
2647 Output_section_definition::alternate_constraint(
2648     Output_section_definition* posd,
2649     Section_constraint constraint)
2650 {
2651   if (this->name_ != posd->name_)
2652     return false;
2653
2654   switch (constraint)
2655     {
2656     case CONSTRAINT_ONLY_IF_RO:
2657       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2658         return false;
2659       break;
2660
2661     case CONSTRAINT_ONLY_IF_RW:
2662       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2663         return false;
2664       break;
2665
2666     default:
2667       gold_unreachable();
2668     }
2669
2670   // We have found the alternate constraint.  We just need to move
2671   // over the Output_section.  When constraints are used properly,
2672   // THIS should not have an output_section pointer, as all the input
2673   // sections should have matched the other definition.
2674
2675   if (this->output_section_ != NULL)
2676     gold_error(_("mismatched definition for constrained sections"));
2677
2678   this->output_section_ = posd->output_section_;
2679   posd->output_section_ = NULL;
2680
2681   if (this->is_relro_)
2682     this->output_section_->set_is_relro();
2683   else
2684     this->output_section_->clear_is_relro();
2685
2686   return true;
2687 }
2688
2689 // Get the list of segments to use for an allocated section when using
2690 // a PHDRS clause.
2691
2692 Output_section*
2693 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2694                                                bool* orphan)
2695 {
2696   // Update phdrs_list even if we don't have an output section. It
2697   // might be used by the following sections.
2698   if (this->phdrs_ != NULL)
2699     *phdrs_list = this->phdrs_;
2700
2701   if (this->output_section_ == NULL)
2702     return NULL;
2703   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2704     return NULL;
2705   *orphan = false;
2706   return this->output_section_;
2707 }
2708
2709 // Look for an output section by name and return the address, the load
2710 // address, the alignment, and the size.  This is used when an
2711 // expression refers to an output section which was not actually
2712 // created.  This returns true if the section was found, false
2713 // otherwise.
2714
2715 bool
2716 Output_section_definition::get_output_section_info(const char* name,
2717                                                    uint64_t* address,
2718                                                    uint64_t* load_address,
2719                                                    uint64_t* addralign,
2720                                                    uint64_t* size) const
2721 {
2722   if (this->name_ != name)
2723     return false;
2724
2725   if (this->output_section_ != NULL)
2726     {
2727       *address = this->output_section_->address();
2728       if (this->output_section_->has_load_address())
2729         *load_address = this->output_section_->load_address();
2730       else
2731         *load_address = *address;
2732       *addralign = this->output_section_->addralign();
2733       *size = this->output_section_->current_data_size();
2734     }
2735   else
2736     {
2737       *address = this->evaluated_address_;
2738       *load_address = this->evaluated_load_address_;
2739       *addralign = this->evaluated_addralign_;
2740       *size = 0;
2741     }
2742
2743   return true;
2744 }
2745
2746 // Print for debugging.
2747
2748 void
2749 Output_section_definition::print(FILE* f) const
2750 {
2751   fprintf(f, "  %s ", this->name_.c_str());
2752
2753   if (this->address_ != NULL)
2754     {
2755       this->address_->print(f);
2756       fprintf(f, " ");
2757     }
2758
2759   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2760       fprintf(f, "(%s) ",
2761               this->script_section_type_name(this->script_section_type_));
2762
2763   fprintf(f, ": ");
2764
2765   if (this->load_address_ != NULL)
2766     {
2767       fprintf(f, "AT(");
2768       this->load_address_->print(f);
2769       fprintf(f, ") ");
2770     }
2771
2772   if (this->align_ != NULL)
2773     {
2774       fprintf(f, "ALIGN(");
2775       this->align_->print(f);
2776       fprintf(f, ") ");
2777     }
2778
2779   if (this->subalign_ != NULL)
2780     {
2781       fprintf(f, "SUBALIGN(");
2782       this->subalign_->print(f);
2783       fprintf(f, ") ");
2784     }
2785
2786   fprintf(f, "{\n");
2787
2788   for (Output_section_elements::const_iterator p = this->elements_.begin();
2789        p != this->elements_.end();
2790        ++p)
2791     (*p)->print(f);
2792
2793   fprintf(f, "  }");
2794
2795   if (this->fill_ != NULL)
2796     {
2797       fprintf(f, " = ");
2798       this->fill_->print(f);
2799     }
2800
2801   if (this->phdrs_ != NULL)
2802     {
2803       for (String_list::const_iterator p = this->phdrs_->begin();
2804            p != this->phdrs_->end();
2805            ++p)
2806         fprintf(f, " :%s", p->c_str());
2807     }
2808
2809   fprintf(f, "\n");
2810 }
2811
2812 Script_sections::Section_type
2813 Output_section_definition::section_type() const
2814 {
2815   switch (this->script_section_type_)
2816     {
2817     case SCRIPT_SECTION_TYPE_NONE:
2818       return Script_sections::ST_NONE;
2819     case SCRIPT_SECTION_TYPE_NOLOAD:
2820       return Script_sections::ST_NOLOAD;
2821     case SCRIPT_SECTION_TYPE_COPY:
2822     case SCRIPT_SECTION_TYPE_DSECT:
2823     case SCRIPT_SECTION_TYPE_INFO:
2824     case SCRIPT_SECTION_TYPE_OVERLAY:
2825       // There are not really support so we treat them as ST_NONE.  The
2826       // parse should have issued errors for them already.
2827       return Script_sections::ST_NONE;
2828     default:
2829       gold_unreachable();
2830     }
2831 }
2832
2833 // Return the name of a script section type.
2834
2835 const char*
2836 Output_section_definition::script_section_type_name(
2837     Script_section_type script_section_type)
2838 {
2839   switch (script_section_type)
2840     {
2841     case SCRIPT_SECTION_TYPE_NONE:
2842       return "NONE";
2843     case SCRIPT_SECTION_TYPE_NOLOAD:
2844       return "NOLOAD";
2845     case SCRIPT_SECTION_TYPE_DSECT:
2846       return "DSECT";
2847     case SCRIPT_SECTION_TYPE_COPY:
2848       return "COPY";
2849     case SCRIPT_SECTION_TYPE_INFO:
2850       return "INFO";
2851     case SCRIPT_SECTION_TYPE_OVERLAY:
2852       return "OVERLAY";
2853     default:
2854       gold_unreachable();
2855     }
2856 }
2857
2858 void
2859 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2860 {
2861   gold_assert(mr != NULL);
2862   // Add the current section to the specified region's list.
2863   mr->add_section(this, set_vma);
2864 }
2865
2866 // An output section created to hold orphaned input sections.  These
2867 // do not actually appear in linker scripts.  However, for convenience
2868 // when setting the output section addresses, we put a marker to these
2869 // sections in the appropriate place in the list of SECTIONS elements.
2870
2871 class Orphan_output_section : public Sections_element
2872 {
2873  public:
2874   Orphan_output_section(Output_section* os)
2875     : os_(os)
2876   { }
2877
2878   // Return whether the orphan output section is relro.  We can just
2879   // check the output section because we always set the flag, if
2880   // needed, just after we create the Orphan_output_section.
2881   bool
2882   is_relro() const
2883   { return this->os_->is_relro(); }
2884
2885   // Initialize OSP with an output section.  This should have been
2886   // done already.
2887   void
2888   orphan_section_init(Orphan_section_placement*,
2889                       Script_sections::Elements_iterator)
2890   { gold_unreachable(); }
2891
2892   // Set section addresses.
2893   void
2894   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2895                         uint64_t*);
2896
2897   // Get the list of segments to use for an allocated section when
2898   // using a PHDRS clause.
2899   Output_section*
2900   allocate_to_segment(String_list**, bool*);
2901
2902   // Return the associated Output_section.
2903   Output_section*
2904   get_output_section() const
2905   { return this->os_; }
2906
2907   // Print for debugging.
2908   void
2909   print(FILE* f) const
2910   {
2911     fprintf(f, "  marker for orphaned output section %s\n",
2912             this->os_->name());
2913   }
2914
2915  private:
2916   Output_section* os_;
2917 };
2918
2919 // Set section addresses.
2920
2921 void
2922 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2923                                              uint64_t* dot_value,
2924                                              uint64_t*,
2925                                              uint64_t* load_address)
2926 {
2927   typedef std::list<Output_section::Input_section> Input_section_list;
2928
2929   bool have_load_address = *load_address != *dot_value;
2930
2931   uint64_t address = *dot_value;
2932   address = align_address(address, this->os_->addralign());
2933
2934   // If input section sorting is requested via --section-ordering-file or
2935   // linker plugins, then do it here.  This is important because we want 
2936   // any sorting specified in the linker scripts, which will be done after
2937   // this, to take precedence.  The final order of input sections is then 
2938   // guaranteed to be according to the linker script specification.
2939   if (this->os_ != NULL
2940       && this->os_->input_section_order_specified())
2941     this->os_->sort_attached_input_sections();
2942
2943   // For a relocatable link, all orphan sections are put at
2944   // address 0.  In general we expect all sections to be at
2945   // address 0 for a relocatable link, but we permit the linker
2946   // script to override that for specific output sections.
2947   if (parameters->options().relocatable())
2948     {
2949       address = 0;
2950       *load_address = 0;
2951       have_load_address = false;
2952     }
2953
2954   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2955     {
2956       this->os_->set_address(address);
2957       if (have_load_address)
2958         this->os_->set_load_address(align_address(*load_address,
2959                                                   this->os_->addralign()));
2960     }
2961
2962   Input_section_list input_sections;
2963   address += this->os_->get_input_sections(address, "", &input_sections);
2964
2965   for (Input_section_list::iterator p = input_sections.begin();
2966        p != input_sections.end();
2967        ++p)
2968     {
2969       uint64_t addralign = p->addralign();
2970       if (!p->is_input_section())
2971         p->output_section_data()->finalize_data_size(); 
2972       uint64_t size = p->data_size();
2973       address = align_address(address, addralign);
2974       this->os_->add_script_input_section(*p);
2975       address += size;
2976     }
2977
2978   if (parameters->options().relocatable())
2979     {
2980       // For a relocatable link, reset DOT_VALUE to 0.
2981       *dot_value = 0;
2982       *load_address = 0;
2983     }
2984   else if (this->os_ == NULL
2985            || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2986            || this->os_->type() != elfcpp::SHT_NOBITS)
2987     {
2988       // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2989       if (!have_load_address)
2990         *load_address = address;
2991       else
2992         *load_address += address - *dot_value;
2993
2994       *dot_value = address;
2995     }
2996 }
2997
2998 // Get the list of segments to use for an allocated section when using
2999 // a PHDRS clause.  If this is an allocated section, return the
3000 // Output_section.  We don't change the list of segments.
3001
3002 Output_section*
3003 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3004 {
3005   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3006     return NULL;
3007   *orphan = true;
3008   return this->os_;
3009 }
3010
3011 // Class Phdrs_element.  A program header from a PHDRS clause.
3012
3013 class Phdrs_element
3014 {
3015  public:
3016   Phdrs_element(const char* name, size_t namelen, unsigned int type,
3017                 bool includes_filehdr, bool includes_phdrs,
3018                 bool is_flags_valid, unsigned int flags,
3019                 Expression* load_address)
3020     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3021       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3022       flags_(flags), load_address_(load_address), load_address_value_(0),
3023       segment_(NULL)
3024   { }
3025
3026   // Return the name of this segment.
3027   const std::string&
3028   name() const
3029   { return this->name_; }
3030
3031   // Return the type of the segment.
3032   unsigned int
3033   type() const
3034   { return this->type_; }
3035
3036   // Whether to include the file header.
3037   bool
3038   includes_filehdr() const
3039   { return this->includes_filehdr_; }
3040
3041   // Whether to include the program headers.
3042   bool
3043   includes_phdrs() const
3044   { return this->includes_phdrs_; }
3045
3046   // Return whether there is a load address.
3047   bool
3048   has_load_address() const
3049   { return this->load_address_ != NULL; }
3050
3051   // Evaluate the load address expression if there is one.
3052   void
3053   eval_load_address(Symbol_table* symtab, Layout* layout)
3054   {
3055     if (this->load_address_ != NULL)
3056       this->load_address_value_ = this->load_address_->eval(symtab, layout,
3057                                                             true);
3058   }
3059
3060   // Return the load address.
3061   uint64_t
3062   load_address() const
3063   {
3064     gold_assert(this->load_address_ != NULL);
3065     return this->load_address_value_;
3066   }
3067
3068   // Create the segment.
3069   Output_segment*
3070   create_segment(Layout* layout)
3071   {
3072     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3073     return this->segment_;
3074   }
3075
3076   // Return the segment.
3077   Output_segment*
3078   segment()
3079   { return this->segment_; }
3080
3081   // Release the segment.
3082   void
3083   release_segment()
3084   { this->segment_ = NULL; }
3085
3086   // Set the segment flags if appropriate.
3087   void
3088   set_flags_if_valid()
3089   {
3090     if (this->is_flags_valid_)
3091       this->segment_->set_flags(this->flags_);
3092   }
3093
3094   // Print for debugging.
3095   void
3096   print(FILE*) const;
3097
3098  private:
3099   // The name used in the script.
3100   std::string name_;
3101   // The type of the segment (PT_LOAD, etc.).
3102   unsigned int type_;
3103   // Whether this segment includes the file header.
3104   bool includes_filehdr_;
3105   // Whether this segment includes the section headers.
3106   bool includes_phdrs_;
3107   // Whether the flags were explicitly specified.
3108   bool is_flags_valid_;
3109   // The flags for this segment (PF_R, etc.) if specified.
3110   unsigned int flags_;
3111   // The expression for the load address for this segment.  This may
3112   // be NULL.
3113   Expression* load_address_;
3114   // The actual load address from evaluating the expression.
3115   uint64_t load_address_value_;
3116   // The segment itself.
3117   Output_segment* segment_;
3118 };
3119
3120 // Print for debugging.
3121
3122 void
3123 Phdrs_element::print(FILE* f) const
3124 {
3125   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
3126   if (this->includes_filehdr_)
3127     fprintf(f, " FILEHDR");
3128   if (this->includes_phdrs_)
3129     fprintf(f, " PHDRS");
3130   if (this->is_flags_valid_)
3131     fprintf(f, " FLAGS(%u)", this->flags_);
3132   if (this->load_address_ != NULL)
3133     {
3134       fprintf(f, " AT(");
3135       this->load_address_->print(f);
3136       fprintf(f, ")");
3137     }
3138   fprintf(f, ";\n");
3139 }
3140
3141 // Add a memory region.
3142
3143 void
3144 Script_sections::add_memory_region(const char* name, size_t namelen,
3145                                    unsigned int attributes,
3146                                    Expression* start, Expression* length)
3147 {
3148   if (this->memory_regions_ == NULL)
3149     this->memory_regions_ = new Memory_regions();
3150   else if (this->find_memory_region(name, namelen))
3151     {
3152       gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3153                   name);
3154       // FIXME: Add a GOLD extension to allow multiple regions with the same
3155       // name.  This would amount to a single region covering disjoint blocks
3156       // of memory, which is useful for embedded devices.
3157     }
3158
3159   // FIXME: Check the length and start values.  Currently we allow
3160   // non-constant expressions for these values, whereas LD does not.
3161
3162   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
3163   // describe a region that packs from the end address going down, rather
3164   // than the start address going up.  This would be useful for embedded
3165   // devices.
3166
3167   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3168                                                      start, length));
3169 }
3170
3171 // Find a memory region.
3172
3173 Memory_region*
3174 Script_sections::find_memory_region(const char* name, size_t namelen)
3175 {
3176   if (this->memory_regions_ == NULL)
3177     return NULL;
3178
3179   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3180        m != this->memory_regions_->end();
3181        ++m)
3182     if ((*m)->name_match(name, namelen))
3183       return *m;
3184
3185   return NULL;
3186 }
3187
3188 // Find a memory region's origin.
3189
3190 Expression*
3191 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3192 {
3193   Memory_region* mr = find_memory_region(name, namelen);
3194   if (mr == NULL)
3195     return NULL;
3196
3197   return mr->start_address();
3198 }
3199
3200 // Find a memory region's length.
3201
3202 Expression*
3203 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3204 {
3205   Memory_region* mr = find_memory_region(name, namelen);
3206   if (mr == NULL)
3207     return NULL;
3208
3209   return mr->length();
3210 }
3211
3212 // Set the memory region to use for the current section.
3213
3214 void
3215 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3216 {
3217   gold_assert(!this->sections_elements_->empty());
3218   this->sections_elements_->back()->set_memory_region(mr, set_vma);
3219 }
3220
3221 // Class Script_sections.
3222
3223 Script_sections::Script_sections()
3224   : saw_sections_clause_(false),
3225     in_sections_clause_(false),
3226     sections_elements_(NULL),
3227     output_section_(NULL),
3228     memory_regions_(NULL),
3229     phdrs_elements_(NULL),
3230     orphan_section_placement_(NULL),
3231     data_segment_align_start_(),
3232     saw_data_segment_align_(false),
3233     saw_relro_end_(false),
3234     saw_segment_start_expression_(false),
3235     segments_created_(false)
3236 {
3237 }
3238
3239 // Start a SECTIONS clause.
3240
3241 void
3242 Script_sections::start_sections()
3243 {
3244   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3245   this->saw_sections_clause_ = true;
3246   this->in_sections_clause_ = true;
3247   if (this->sections_elements_ == NULL)
3248     this->sections_elements_ = new Sections_elements;
3249 }
3250
3251 // Finish a SECTIONS clause.
3252
3253 void
3254 Script_sections::finish_sections()
3255 {
3256   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3257   this->in_sections_clause_ = false;
3258 }
3259
3260 // Add a symbol to be defined.
3261
3262 void
3263 Script_sections::add_symbol_assignment(const char* name, size_t length,
3264                                        Expression* val, bool provide,
3265                                        bool hidden)
3266 {
3267   if (this->output_section_ != NULL)
3268     this->output_section_->add_symbol_assignment(name, length, val,
3269                                                  provide, hidden);
3270   else
3271     {
3272       Sections_element* p = new Sections_element_assignment(name, length,
3273                                                             val, provide,
3274                                                             hidden);
3275       this->sections_elements_->push_back(p);
3276     }
3277 }
3278
3279 // Add an assignment to the special dot symbol.
3280
3281 void
3282 Script_sections::add_dot_assignment(Expression* val)
3283 {
3284   if (this->output_section_ != NULL)
3285     this->output_section_->add_dot_assignment(val);
3286   else
3287     {
3288       // The GNU linker permits assignments to . to appears outside of
3289       // a SECTIONS clause, and treats it as appearing inside, so
3290       // sections_elements_ may be NULL here.
3291       if (this->sections_elements_ == NULL)
3292         {
3293           this->sections_elements_ = new Sections_elements;
3294           this->saw_sections_clause_ = true;
3295         }
3296
3297       Sections_element* p = new Sections_element_dot_assignment(val);
3298       this->sections_elements_->push_back(p);
3299     }
3300 }
3301
3302 // Add an assertion.
3303
3304 void
3305 Script_sections::add_assertion(Expression* check, const char* message,
3306                                size_t messagelen)
3307 {
3308   if (this->output_section_ != NULL)
3309     this->output_section_->add_assertion(check, message, messagelen);
3310   else
3311     {
3312       Sections_element* p = new Sections_element_assertion(check, message,
3313                                                            messagelen);
3314       this->sections_elements_->push_back(p);
3315     }
3316 }
3317
3318 // Start processing entries for an output section.
3319
3320 void
3321 Script_sections::start_output_section(
3322     const char* name,
3323     size_t namelen,
3324     const Parser_output_section_header* header)
3325 {
3326   Output_section_definition* posd = new Output_section_definition(name,
3327                                                                   namelen,
3328                                                                   header);
3329   this->sections_elements_->push_back(posd);
3330   gold_assert(this->output_section_ == NULL);
3331   this->output_section_ = posd;
3332 }
3333
3334 // Stop processing entries for an output section.
3335
3336 void
3337 Script_sections::finish_output_section(
3338     const Parser_output_section_trailer* trailer)
3339 {
3340   gold_assert(this->output_section_ != NULL);
3341   this->output_section_->finish(trailer);
3342   this->output_section_ = NULL;
3343 }
3344
3345 // Add a data item to the current output section.
3346
3347 void
3348 Script_sections::add_data(int size, bool is_signed, Expression* val)
3349 {
3350   gold_assert(this->output_section_ != NULL);
3351   this->output_section_->add_data(size, is_signed, val);
3352 }
3353
3354 // Add a fill value setting to the current output section.
3355
3356 void
3357 Script_sections::add_fill(Expression* val)
3358 {
3359   gold_assert(this->output_section_ != NULL);
3360   this->output_section_->add_fill(val);
3361 }
3362
3363 // Add an input section specification to the current output section.
3364
3365 void
3366 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3367 {
3368   gold_assert(this->output_section_ != NULL);
3369   this->output_section_->add_input_section(spec, keep);
3370 }
3371
3372 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3373 // subsequent output sections may be relro.
3374
3375 void
3376 Script_sections::data_segment_align()
3377 {
3378   if (this->saw_data_segment_align_)
3379     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3380   gold_assert(!this->sections_elements_->empty());
3381   Sections_elements::iterator p = this->sections_elements_->end();
3382   --p;
3383   this->data_segment_align_start_ = p;
3384   this->saw_data_segment_align_ = true;
3385 }
3386
3387 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3388 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3389
3390 void
3391 Script_sections::data_segment_relro_end()
3392 {
3393   if (this->saw_relro_end_)
3394     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3395                  "in a linker script"));
3396   this->saw_relro_end_ = true;
3397
3398   if (!this->saw_data_segment_align_)
3399     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3400   else
3401     {
3402       Sections_elements::iterator p = this->data_segment_align_start_;
3403       for (++p; p != this->sections_elements_->end(); ++p)
3404         (*p)->set_is_relro();
3405     }
3406 }
3407
3408 // Create any required sections.
3409
3410 void
3411 Script_sections::create_sections(Layout* layout)
3412 {
3413   if (!this->saw_sections_clause_)
3414     return;
3415   for (Sections_elements::iterator p = this->sections_elements_->begin();
3416        p != this->sections_elements_->end();
3417        ++p)
3418     (*p)->create_sections(layout);
3419 }
3420
3421 // Add any symbols we are defining to the symbol table.
3422
3423 void
3424 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3425 {
3426   if (!this->saw_sections_clause_)
3427     return;
3428   for (Sections_elements::iterator p = this->sections_elements_->begin();
3429        p != this->sections_elements_->end();
3430        ++p)
3431     (*p)->add_symbols_to_table(symtab);
3432 }
3433
3434 // Finalize symbols and check assertions.
3435
3436 void
3437 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3438 {
3439   if (!this->saw_sections_clause_)
3440     return;
3441   uint64_t dot_value = 0;
3442   for (Sections_elements::iterator p = this->sections_elements_->begin();
3443        p != this->sections_elements_->end();
3444        ++p)
3445     (*p)->finalize_symbols(symtab, layout, &dot_value);
3446 }
3447
3448 // Return the name of the output section to use for an input file name
3449 // and section name.
3450
3451 const char*
3452 Script_sections::output_section_name(
3453     const char* file_name,
3454     const char* section_name,
3455     Output_section*** output_section_slot,
3456     Script_sections::Section_type* psection_type,
3457     bool* keep)
3458 {
3459   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3460        p != this->sections_elements_->end();
3461        ++p)
3462     {
3463       const char* ret = (*p)->output_section_name(file_name, section_name,
3464                                                   output_section_slot,
3465                                                   psection_type, keep);
3466
3467       if (ret != NULL)
3468         {
3469           // The special name /DISCARD/ means that the input section
3470           // should be discarded.
3471           if (strcmp(ret, "/DISCARD/") == 0)
3472             {
3473               *output_section_slot = NULL;
3474               *psection_type = Script_sections::ST_NONE;
3475               return NULL;
3476             }
3477           return ret;
3478         }
3479     }
3480
3481   // If we couldn't find a mapping for the name, the output section
3482   // gets the name of the input section.
3483
3484   *output_section_slot = NULL;
3485   *psection_type = Script_sections::ST_NONE;
3486
3487   return section_name;
3488 }
3489
3490 // Place a marker for an orphan output section into the SECTIONS
3491 // clause.
3492
3493 void
3494 Script_sections::place_orphan(Output_section* os)
3495 {
3496   Orphan_section_placement* osp = this->orphan_section_placement_;
3497   if (osp == NULL)
3498     {
3499       // Initialize the Orphan_section_placement structure.
3500       osp = new Orphan_section_placement();
3501       for (Sections_elements::iterator p = this->sections_elements_->begin();
3502            p != this->sections_elements_->end();
3503            ++p)
3504         (*p)->orphan_section_init(osp, p);
3505       gold_assert(!this->sections_elements_->empty());
3506       Sections_elements::iterator last = this->sections_elements_->end();
3507       --last;
3508       osp->last_init(last);
3509       this->orphan_section_placement_ = osp;
3510     }
3511
3512   Orphan_output_section* orphan = new Orphan_output_section(os);
3513
3514   // Look for where to put ORPHAN.
3515   Sections_elements::iterator* where;
3516   if (osp->find_place(os, &where))
3517     {
3518       if ((**where)->is_relro())
3519         os->set_is_relro();
3520       else
3521         os->clear_is_relro();
3522
3523       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3524       // so that the next one goes after this one.
3525       Sections_elements::iterator p = *where;
3526       gold_assert(p != this->sections_elements_->end());
3527       ++p;
3528       *where = this->sections_elements_->insert(p, orphan);
3529     }
3530   else
3531     {
3532       os->clear_is_relro();
3533       // We don't have a place to put this orphan section.  Put it,
3534       // and all other sections like it, at the end, but before the
3535       // sections which always come at the end.
3536       Sections_elements::iterator last = osp->last_place();
3537       *where = this->sections_elements_->insert(last, orphan);
3538     }
3539 }
3540
3541 // Set the addresses of all the output sections.  Walk through all the
3542 // elements, tracking the dot symbol.  Apply assignments which set
3543 // absolute symbol values, in case they are used when setting dot.
3544 // Fill in data statement values.  As we find output sections, set the
3545 // address, set the address of all associated input sections, and
3546 // update dot.  Return the segment which should hold the file header
3547 // and segment headers, if any.
3548
3549 Output_segment*
3550 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3551 {
3552   gold_assert(this->saw_sections_clause_);
3553          
3554   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3555   // for our representation.
3556   for (Sections_elements::iterator p = this->sections_elements_->begin();
3557        p != this->sections_elements_->end();
3558        ++p)
3559     {
3560       Output_section_definition* posd;
3561       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3562       if (failed_constraint != CONSTRAINT_NONE)
3563         {
3564           Sections_elements::iterator q;
3565           for (q = this->sections_elements_->begin();
3566                q != this->sections_elements_->end();
3567                ++q)
3568             {
3569               if (q != p)
3570                 {
3571                   if ((*q)->alternate_constraint(posd, failed_constraint))
3572                     break;
3573                 }
3574             }
3575
3576           if (q == this->sections_elements_->end())
3577             gold_error(_("no matching section constraint"));
3578         }
3579     }
3580
3581   // Force the alignment of the first TLS section to be the maximum
3582   // alignment of all TLS sections.
3583   Output_section* first_tls = NULL;
3584   uint64_t tls_align = 0;
3585   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3586        p != this->sections_elements_->end();
3587        ++p)
3588     {
3589       Output_section* os = (*p)->get_output_section();
3590       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3591         {
3592           if (first_tls == NULL)
3593             first_tls = os;
3594           if (os->addralign() > tls_align)
3595             tls_align = os->addralign();
3596         }
3597     }
3598   if (first_tls != NULL)
3599     first_tls->set_addralign(tls_align);
3600
3601   // For a relocatable link, we implicitly set dot to zero.
3602   uint64_t dot_value = 0;
3603   uint64_t dot_alignment = 0;
3604   uint64_t load_address = 0;
3605
3606   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3607   // to set section addresses.  If the script has any SEGMENT_START
3608   // expression, we do not set the section addresses.
3609   bool use_tsection_options =
3610     (!this->saw_segment_start_expression_
3611      && (parameters->options().user_set_Ttext()
3612          || parameters->options().user_set_Tdata()
3613          || parameters->options().user_set_Tbss()));
3614
3615   for (Sections_elements::iterator p = this->sections_elements_->begin();
3616        p != this->sections_elements_->end();
3617        ++p)
3618     {
3619       Output_section* os = (*p)->get_output_section();
3620
3621       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3622       // the special sections by names and doing dot assignments. 
3623       if (use_tsection_options
3624           && os != NULL
3625           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3626         {
3627           uint64_t new_dot_value = dot_value;
3628
3629           if (parameters->options().user_set_Ttext()
3630               && strcmp(os->name(), ".text") == 0)
3631             new_dot_value = parameters->options().Ttext();
3632           else if (parameters->options().user_set_Tdata()
3633               && strcmp(os->name(), ".data") == 0)
3634             new_dot_value = parameters->options().Tdata();
3635           else if (parameters->options().user_set_Tbss()
3636               && strcmp(os->name(), ".bss") == 0)
3637             new_dot_value = parameters->options().Tbss();
3638
3639           // Update dot and load address if necessary.
3640           if (new_dot_value < dot_value)
3641             gold_error(_("dot may not move backward"));
3642           else if (new_dot_value != dot_value)
3643             {
3644               dot_value = new_dot_value;
3645               load_address = new_dot_value;
3646             }
3647         }
3648
3649       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3650                                   &load_address);
3651     } 
3652
3653   if (this->phdrs_elements_ != NULL)
3654     {
3655       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3656            p != this->phdrs_elements_->end();
3657            ++p)
3658         (*p)->eval_load_address(symtab, layout);
3659     }
3660
3661   return this->create_segments(layout, dot_alignment);
3662 }
3663
3664 // Sort the sections in order to put them into segments.
3665
3666 class Sort_output_sections
3667 {
3668  public:
3669   Sort_output_sections(const Script_sections::Sections_elements* elements)
3670    : elements_(elements)
3671   { }
3672
3673   bool
3674   operator()(const Output_section* os1, const Output_section* os2) const;
3675
3676  private:
3677   int
3678   script_compare(const Output_section* os1, const Output_section* os2) const;
3679
3680  private:
3681   const Script_sections::Sections_elements* elements_;
3682 };
3683
3684 bool
3685 Sort_output_sections::operator()(const Output_section* os1,
3686                                  const Output_section* os2) const
3687 {
3688   // Sort first by the load address.
3689   uint64_t lma1 = (os1->has_load_address()
3690                    ? os1->load_address()
3691                    : os1->address());
3692   uint64_t lma2 = (os2->has_load_address()
3693                    ? os2->load_address()
3694                    : os2->address());
3695   if (lma1 != lma2)
3696     return lma1 < lma2;
3697
3698   // Then sort by the virtual address.
3699   if (os1->address() != os2->address())
3700     return os1->address() < os2->address();
3701
3702   // If the linker script says which of these sections is first, go
3703   // with what it says.
3704   int i = this->script_compare(os1, os2);
3705   if (i != 0)
3706     return i < 0;
3707
3708   // Sort PROGBITS before NOBITS.
3709   bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3710   bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3711   if (nobits1 != nobits2)
3712     return nobits2;
3713
3714   // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3715   // beginning.
3716   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3717   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3718   if (tls1 != tls2)
3719     return nobits1 ? tls1 : tls2;
3720
3721   // Sort non-NOLOAD before NOLOAD.
3722   if (os1->is_noload() && !os2->is_noload())
3723     return true;
3724   if (!os1->is_noload() && os2->is_noload())
3725     return true;
3726
3727   // The sections seem practically identical.  Sort by name to get a
3728   // stable sort.
3729   return os1->name() < os2->name();
3730 }
3731
3732 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3733 // if either OS1 or OS2 is not mentioned.  This ensures that we keep
3734 // empty sections in the order in which they appear in a linker
3735 // script.
3736
3737 int
3738 Sort_output_sections::script_compare(const Output_section* os1,
3739                                      const Output_section* os2) const
3740 {
3741   if (this->elements_ == NULL)
3742     return 0;
3743
3744   bool found_os1 = false;
3745   bool found_os2 = false;
3746   for (Script_sections::Sections_elements::const_iterator
3747          p = this->elements_->begin();
3748        p != this->elements_->end();
3749        ++p)
3750     {
3751       if (os2 == (*p)->get_output_section())
3752         {
3753           if (found_os1)
3754             return -1;
3755           found_os2 = true;
3756         }
3757       else if (os1 == (*p)->get_output_section())
3758         {
3759           if (found_os2)
3760             return 1;
3761           found_os1 = true;
3762         }
3763     }
3764
3765   return 0;
3766 }
3767
3768 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3769 // We treat a section with the SHF_TLS flag set as taking up space
3770 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3771 // space for them in the file.
3772
3773 bool
3774 Script_sections::is_bss_section(const Output_section* os)
3775 {
3776   return (os->type() == elfcpp::SHT_NOBITS
3777           && (os->flags() & elfcpp::SHF_TLS) == 0);
3778 }
3779
3780 // Return the size taken by the file header and the program headers.
3781
3782 size_t
3783 Script_sections::total_header_size(Layout* layout) const
3784 {
3785   size_t segment_count = layout->segment_count();
3786   size_t file_header_size;
3787   size_t segment_headers_size;
3788   if (parameters->target().get_size() == 32)
3789     {
3790       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3791       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3792     }
3793   else if (parameters->target().get_size() == 64)
3794     {
3795       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3796       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3797     }
3798   else
3799     gold_unreachable();
3800
3801   return file_header_size + segment_headers_size;
3802 }
3803
3804 // Return the amount we have to subtract from the LMA to accommodate
3805 // headers of the given size.  The complication is that the file
3806 // header have to be at the start of a page, as otherwise it will not
3807 // be at the start of the file.
3808
3809 uint64_t
3810 Script_sections::header_size_adjustment(uint64_t lma,
3811                                         size_t sizeof_headers) const
3812 {
3813   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3814   uint64_t hdr_lma = lma - sizeof_headers;
3815   hdr_lma &= ~(abi_pagesize - 1);
3816   return lma - hdr_lma;
3817 }
3818
3819 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3820 // the segment which should hold the file header and segment headers,
3821 // if any.
3822
3823 Output_segment*
3824 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3825 {
3826   gold_assert(this->saw_sections_clause_);
3827
3828   if (parameters->options().relocatable())
3829     return NULL;
3830
3831   if (this->saw_phdrs_clause())
3832     return create_segments_from_phdrs_clause(layout, dot_alignment);
3833
3834   Layout::Section_list sections;
3835   layout->get_allocated_sections(&sections);
3836
3837   // Sort the sections by address.
3838   std::stable_sort(sections.begin(), sections.end(), 
3839                    Sort_output_sections(this->sections_elements_));
3840
3841   this->create_note_and_tls_segments(layout, &sections);
3842
3843   // Walk through the sections adding them to PT_LOAD segments.
3844   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3845   Output_segment* first_seg = NULL;
3846   Output_segment* current_seg = NULL;
3847   bool is_current_seg_readonly = true;
3848   Layout::Section_list::iterator plast = sections.end();
3849   uint64_t last_vma = 0;
3850   uint64_t last_lma = 0;
3851   uint64_t last_size = 0;
3852   for (Layout::Section_list::iterator p = sections.begin();
3853        p != sections.end();
3854        ++p)
3855     {
3856       const uint64_t vma = (*p)->address();
3857       const uint64_t lma = ((*p)->has_load_address()
3858                             ? (*p)->load_address()
3859                             : vma);
3860       const uint64_t size = (*p)->current_data_size();
3861
3862       bool need_new_segment;
3863       if (current_seg == NULL)
3864         need_new_segment = true;
3865       else if (lma - vma != last_lma - last_vma)
3866         {
3867           // This section has a different LMA relationship than the
3868           // last one; we need a new segment.
3869           need_new_segment = true;
3870         }
3871       else if (align_address(last_lma + last_size, abi_pagesize)
3872                < align_address(lma, abi_pagesize))
3873         {
3874           // Putting this section in the segment would require
3875           // skipping a page.
3876           need_new_segment = true;
3877         }
3878       else if (is_bss_section(*plast) && !is_bss_section(*p))
3879         {
3880           // A non-BSS section can not follow a BSS section in the
3881           // same segment.
3882           need_new_segment = true;
3883         }
3884       else if (is_current_seg_readonly
3885                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3886                && !parameters->options().omagic())
3887         {
3888           // Don't put a writable section in the same segment as a
3889           // non-writable section.
3890           need_new_segment = true;
3891         }
3892       else
3893         {
3894           // Otherwise, reuse the existing segment.
3895           need_new_segment = false;
3896         }
3897
3898       elfcpp::Elf_Word seg_flags =
3899         Layout::section_flags_to_segment((*p)->flags());
3900
3901       if (need_new_segment)
3902         {
3903           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3904                                                     seg_flags);
3905           current_seg->set_addresses(vma, lma);
3906           current_seg->set_minimum_p_align(dot_alignment);
3907           if (first_seg == NULL)
3908             first_seg = current_seg;
3909           is_current_seg_readonly = true;
3910         }
3911
3912       current_seg->add_output_section_to_load(layout, *p, seg_flags);
3913
3914       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3915         is_current_seg_readonly = false;
3916
3917       plast = p;
3918       last_vma = vma;
3919       last_lma = lma;
3920       last_size = size;
3921     }
3922
3923   // An ELF program should work even if the program headers are not in
3924   // a PT_LOAD segment.  However, it appears that the Linux kernel
3925   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3926   // the load address to p_vaddr - p_offset of the first PT_LOAD
3927   // segment.  It then sets AT_PHDR to the load address plus the
3928   // offset to the program headers, e_phoff in the file header.  This
3929   // fails when the program headers appear in the file before the
3930   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3931   // segment to hold the file header and the program headers.  This is
3932   // effectively what the GNU linker does, and it is slightly more
3933   // efficient in any case.  We try to use the first PT_LOAD segment
3934   // if we can, otherwise we make a new one.
3935
3936   if (first_seg == NULL)
3937     return NULL;
3938
3939   // -n or -N mean that the program is not demand paged and there is
3940   // no need to put the program headers in a PT_LOAD segment.
3941   if (parameters->options().nmagic() || parameters->options().omagic())
3942     return NULL;
3943
3944   size_t sizeof_headers = this->total_header_size(layout);
3945
3946   uint64_t vma = first_seg->vaddr();
3947   uint64_t lma = first_seg->paddr();
3948
3949   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3950
3951   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3952     {
3953       first_seg->set_addresses(vma - subtract, lma - subtract);
3954       return first_seg;
3955     }
3956
3957   // If there is no room to squeeze in the headers, then punt.  The
3958   // resulting executable probably won't run on GNU/Linux, but we
3959   // trust that the user knows what they are doing.
3960   if (lma < subtract || vma < subtract)
3961     return NULL;
3962
3963   // If memory regions have been specified and the address range
3964   // we are about to use is not contained within any region then
3965   // issue a warning message about the segment we are going to
3966   // create.  It will be outside of any region and so possibly
3967   // using non-existent or protected memory.  We test LMA rather
3968   // than VMA since we assume that the headers will never be
3969   // relocated.
3970   if (this->memory_regions_ != NULL
3971       && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3972     gold_warning(_("creating a segment to contain the file and program"
3973                    " headers outside of any MEMORY region"));
3974
3975   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3976                                                          elfcpp::PF_R);
3977   load_seg->set_addresses(vma - subtract, lma - subtract);
3978
3979   return load_seg;
3980 }
3981
3982 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3983 // segment if there are any SHT_TLS sections.
3984
3985 void
3986 Script_sections::create_note_and_tls_segments(
3987     Layout* layout,
3988     const Layout::Section_list* sections)
3989 {
3990   gold_assert(!this->saw_phdrs_clause());
3991
3992   bool saw_tls = false;
3993   for (Layout::Section_list::const_iterator p = sections->begin();
3994        p != sections->end();
3995        ++p)
3996     {
3997       if ((*p)->type() == elfcpp::SHT_NOTE)
3998         {
3999           elfcpp::Elf_Word seg_flags =
4000             Layout::section_flags_to_segment((*p)->flags());
4001           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4002                                                              seg_flags);
4003           oseg->add_output_section_to_nonload(*p, seg_flags);
4004
4005           // Incorporate any subsequent SHT_NOTE sections, in the
4006           // hopes that the script is sensible.
4007           Layout::Section_list::const_iterator pnext = p + 1;
4008           while (pnext != sections->end()
4009                  && (*pnext)->type() == elfcpp::SHT_NOTE)
4010             {
4011               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4012               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4013               p = pnext;
4014               ++pnext;
4015             }
4016         }
4017
4018       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4019         {
4020           if (saw_tls)
4021             gold_error(_("TLS sections are not adjacent"));
4022
4023           elfcpp::Elf_Word seg_flags =
4024             Layout::section_flags_to_segment((*p)->flags());
4025           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4026                                                              seg_flags);
4027           oseg->add_output_section_to_nonload(*p, seg_flags);
4028
4029           Layout::Section_list::const_iterator pnext = p + 1;
4030           while (pnext != sections->end()
4031                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4032             {
4033               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4034               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4035               p = pnext;
4036               ++pnext;
4037             }
4038
4039           saw_tls = true;
4040         }
4041
4042       // If we see a section named .interp then put the .interp section
4043       // in a PT_INTERP segment.
4044       // This is for GNU ld compatibility.
4045       if (strcmp((*p)->name(), ".interp") == 0)
4046         {
4047           elfcpp::Elf_Word seg_flags =
4048             Layout::section_flags_to_segment((*p)->flags());
4049           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4050                                                              seg_flags);
4051           oseg->add_output_section_to_nonload(*p, seg_flags);
4052         }
4053     }
4054
4055     this->segments_created_ = true;
4056 }
4057
4058 // Add a program header.  The PHDRS clause is syntactically distinct
4059 // from the SECTIONS clause, but we implement it with the SECTIONS
4060 // support because PHDRS is useless if there is no SECTIONS clause.
4061
4062 void
4063 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4064                           bool includes_filehdr, bool includes_phdrs,
4065                           bool is_flags_valid, unsigned int flags,
4066                           Expression* load_address)
4067 {
4068   if (this->phdrs_elements_ == NULL)
4069     this->phdrs_elements_ = new Phdrs_elements();
4070   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4071                                                      includes_filehdr,
4072                                                      includes_phdrs,
4073                                                      is_flags_valid, flags,
4074                                                      load_address));
4075 }
4076
4077 // Return the number of segments we expect to create based on the
4078 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
4079
4080 size_t
4081 Script_sections::expected_segment_count(const Layout* layout) const
4082 {
4083   // If we've already created the segments, we won't be adding any more.
4084   if (this->segments_created_)
4085     return 0;
4086
4087   if (this->saw_phdrs_clause())
4088     return this->phdrs_elements_->size();
4089
4090   Layout::Section_list sections;
4091   layout->get_allocated_sections(&sections);
4092
4093   // We assume that we will need two PT_LOAD segments.
4094   size_t ret = 2;
4095
4096   bool saw_note = false;
4097   bool saw_tls = false;
4098   bool saw_interp = false;
4099   for (Layout::Section_list::const_iterator p = sections.begin();
4100        p != sections.end();
4101        ++p)
4102     {
4103       if ((*p)->type() == elfcpp::SHT_NOTE)
4104         {
4105           // Assume that all note sections will fit into a single
4106           // PT_NOTE segment.
4107           if (!saw_note)
4108             {
4109               ++ret;
4110               saw_note = true;
4111             }
4112         }
4113       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4114         {
4115           // There can only be one PT_TLS segment.
4116           if (!saw_tls)
4117             {
4118               ++ret;
4119               saw_tls = true;
4120             }
4121         }
4122       else if (strcmp((*p)->name(), ".interp") == 0)
4123         {
4124           // There can only be one PT_INTERP segment.
4125           if (!saw_interp)
4126             {
4127               ++ret;
4128               saw_interp = true;
4129             }
4130         }
4131     }
4132
4133   return ret;
4134 }
4135
4136 // Create the segments from a PHDRS clause.  Return the segment which
4137 // should hold the file header and program headers, if any.
4138
4139 Output_segment*
4140 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4141                                                    uint64_t dot_alignment)
4142 {
4143   this->attach_sections_using_phdrs_clause(layout);
4144   return this->set_phdrs_clause_addresses(layout, dot_alignment);
4145 }
4146
4147 // Create the segments from the PHDRS clause, and put the output
4148 // sections in them.
4149
4150 void
4151 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4152 {
4153   typedef std::map<std::string, Output_segment*> Name_to_segment;
4154   Name_to_segment name_to_segment;
4155   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4156        p != this->phdrs_elements_->end();
4157        ++p)
4158     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4159   this->segments_created_ = true;
4160
4161   // Walk through the output sections and attach them to segments.
4162   // Output sections in the script which do not list segments are
4163   // attached to the same set of segments as the immediately preceding
4164   // output section.
4165   
4166   String_list* phdr_names = NULL;
4167   bool load_segments_only = false;
4168   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4169        p != this->sections_elements_->end();
4170        ++p)
4171     {
4172       bool is_orphan;
4173       String_list* old_phdr_names = phdr_names;
4174       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4175       if (os == NULL)
4176         continue;
4177
4178       elfcpp::Elf_Word seg_flags =
4179         Layout::section_flags_to_segment(os->flags());
4180
4181       if (phdr_names == NULL)
4182         {
4183           // Don't worry about empty orphan sections.
4184           if (is_orphan && os->current_data_size() > 0)
4185             gold_error(_("allocated section %s not in any segment"),
4186                        os->name());
4187
4188           // To avoid later crashes drop this section into the first
4189           // PT_LOAD segment.
4190           for (Phdrs_elements::const_iterator ppe =
4191                  this->phdrs_elements_->begin();
4192                ppe != this->phdrs_elements_->end();
4193                ++ppe)
4194             {
4195               Output_segment* oseg = (*ppe)->segment();
4196               if (oseg->type() == elfcpp::PT_LOAD)
4197                 {
4198                   oseg->add_output_section_to_load(layout, os, seg_flags);
4199                   break;
4200                 }
4201             }
4202
4203           continue;
4204         }
4205
4206       // We see a list of segments names.  Disable PT_LOAD segment only
4207       // filtering.
4208       if (old_phdr_names != phdr_names)
4209         load_segments_only = false;
4210                 
4211       // If this is an orphan section--one that was not explicitly
4212       // mentioned in the linker script--then it should not inherit
4213       // any segment type other than PT_LOAD.  Otherwise, e.g., the
4214       // PT_INTERP segment will pick up following orphan sections,
4215       // which does not make sense.  If this is not an orphan section,
4216       // we trust the linker script.
4217       if (is_orphan)
4218         {
4219           // Enable PT_LOAD segments only filtering until we see another
4220           // list of segment names.
4221           load_segments_only = true;
4222         }
4223
4224       bool in_load_segment = false;
4225       for (String_list::const_iterator q = phdr_names->begin();
4226            q != phdr_names->end();
4227            ++q)
4228         {
4229           Name_to_segment::const_iterator r = name_to_segment.find(*q);
4230           if (r == name_to_segment.end())
4231             gold_error(_("no segment %s"), q->c_str());
4232           else
4233             {
4234               if (load_segments_only
4235                   && r->second->type() != elfcpp::PT_LOAD)
4236                 continue;
4237
4238               if (r->second->type() != elfcpp::PT_LOAD)
4239                 r->second->add_output_section_to_nonload(os, seg_flags);
4240               else
4241                 {
4242                   r->second->add_output_section_to_load(layout, os, seg_flags);
4243                   if (in_load_segment)
4244                     gold_error(_("section in two PT_LOAD segments"));
4245                   in_load_segment = true;
4246                 }
4247             }
4248         }
4249
4250       if (!in_load_segment)
4251         gold_error(_("allocated section not in any PT_LOAD segment"));
4252     }
4253 }
4254
4255 // Set the addresses for segments created from a PHDRS clause.  Return
4256 // the segment which should hold the file header and program headers,
4257 // if any.
4258
4259 Output_segment*
4260 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4261                                             uint64_t dot_alignment)
4262 {
4263   Output_segment* load_seg = NULL;
4264   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4265        p != this->phdrs_elements_->end();
4266        ++p)
4267     {
4268       // Note that we have to set the flags after adding the output
4269       // sections to the segment, as adding an output segment can
4270       // change the flags.
4271       (*p)->set_flags_if_valid();
4272
4273       Output_segment* oseg = (*p)->segment();
4274
4275       if (oseg->type() != elfcpp::PT_LOAD)
4276         {
4277           // The addresses of non-PT_LOAD segments are set from the
4278           // PT_LOAD segments.
4279           if ((*p)->has_load_address())
4280             gold_error(_("may only specify load address for PT_LOAD segment"));
4281           continue;
4282         }
4283
4284       oseg->set_minimum_p_align(dot_alignment);
4285
4286       // The output sections should have addresses from the SECTIONS
4287       // clause.  The addresses don't have to be in order, so find the
4288       // one with the lowest load address.  Use that to set the
4289       // address of the segment.
4290
4291       Output_section* osec = oseg->section_with_lowest_load_address();
4292       if (osec == NULL)
4293         {
4294           oseg->set_addresses(0, 0);
4295           continue;
4296         }
4297
4298       uint64_t vma = osec->address();
4299       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4300
4301       // Override the load address of the section with the load
4302       // address specified for the segment.
4303       if ((*p)->has_load_address())
4304         {
4305           if (osec->has_load_address())
4306             gold_warning(_("PHDRS load address overrides "
4307                            "section %s load address"),
4308                          osec->name());
4309
4310           lma = (*p)->load_address();
4311         }
4312
4313       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4314       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4315         {
4316           // We could support this if we wanted to.
4317           gold_error(_("using only one of FILEHDR and PHDRS is "
4318                        "not currently supported"));
4319         }
4320       if (headers)
4321         {
4322           size_t sizeof_headers = this->total_header_size(layout);
4323           uint64_t subtract = this->header_size_adjustment(lma,
4324                                                            sizeof_headers);
4325           if (lma >= subtract && vma >= subtract)
4326             {
4327               lma -= subtract;
4328               vma -= subtract;
4329             }
4330           else
4331             {
4332               gold_error(_("sections loaded on first page without room "
4333                            "for file and program headers "
4334                            "are not supported"));
4335             }
4336
4337           if (load_seg != NULL)
4338             gold_error(_("using FILEHDR and PHDRS on more than one "
4339                          "PT_LOAD segment is not currently supported"));
4340           load_seg = oseg;
4341         }
4342
4343       oseg->set_addresses(vma, lma);
4344     }
4345
4346   return load_seg;
4347 }
4348
4349 // Add the file header and segment headers to non-load segments
4350 // specified in the PHDRS clause.
4351
4352 void
4353 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4354                                       Output_data* segment_headers)
4355 {
4356   gold_assert(this->saw_phdrs_clause());
4357   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4358        p != this->phdrs_elements_->end();
4359        ++p)
4360     {
4361       if ((*p)->type() != elfcpp::PT_LOAD)
4362         {
4363           if ((*p)->includes_phdrs())
4364             (*p)->segment()->add_initial_output_data(segment_headers);
4365           if ((*p)->includes_filehdr())
4366             (*p)->segment()->add_initial_output_data(file_header);
4367         }
4368     }
4369 }
4370
4371 // Look for an output section by name and return the address, the load
4372 // address, the alignment, and the size.  This is used when an
4373 // expression refers to an output section which was not actually
4374 // created.  This returns true if the section was found, false
4375 // otherwise.
4376
4377 bool
4378 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4379                                          uint64_t* load_address,
4380                                          uint64_t* addralign,
4381                                          uint64_t* size) const
4382 {
4383   if (!this->saw_sections_clause_)
4384     return false;
4385   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4386        p != this->sections_elements_->end();
4387        ++p)
4388     if ((*p)->get_output_section_info(name, address, load_address, addralign,
4389                                       size))
4390       return true;
4391   return false;
4392 }
4393
4394 // Release all Output_segments.  This remove all pointers to all
4395 // Output_segments.
4396
4397 void
4398 Script_sections::release_segments()
4399 {
4400   if (this->saw_phdrs_clause())
4401     {
4402       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4403            p != this->phdrs_elements_->end();
4404            ++p)
4405         (*p)->release_segment();
4406     }
4407 }
4408
4409 // Print the SECTIONS clause to F for debugging.
4410
4411 void
4412 Script_sections::print(FILE* f) const
4413 {
4414   if (this->phdrs_elements_ != NULL)
4415     {
4416       fprintf(f, "PHDRS {\n");
4417       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4418            p != this->phdrs_elements_->end();
4419            ++p)
4420         (*p)->print(f);
4421       fprintf(f, "}\n");
4422     }
4423
4424   if (this->memory_regions_ != NULL)
4425     {
4426       fprintf(f, "MEMORY {\n");
4427       for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4428            m != this->memory_regions_->end();
4429            ++m)
4430         (*m)->print(f);
4431       fprintf(f, "}\n");
4432     }
4433
4434   if (!this->saw_sections_clause_)
4435     return;
4436
4437   fprintf(f, "SECTIONS {\n");
4438
4439   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4440        p != this->sections_elements_->end();
4441        ++p)
4442     (*p)->print(f);
4443
4444   fprintf(f, "}\n");
4445 }
4446
4447 } // End namespace gold.