2009-09-17 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections.  This is intended to be largely compatible
47 // with the GNU linker.  The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement.  We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54  private:
55   typedef Script_sections::Elements_iterator Elements_iterator;
56
57  public:
58   Orphan_section_placement();
59
60   // Handle an output section during initialization of this mapping.
61   void
62   output_section_init(const std::string& name, Output_section*,
63                       Elements_iterator location);
64
65   // Initialize the last location.
66   void
67   last_init(Elements_iterator location);
68
69   // Set *PWHERE to the address of an iterator pointing to the
70   // location to use for an orphan section.  Return true if the
71   // iterator has a value, false otherwise.
72   bool
73   find_place(Output_section*, Elements_iterator** pwhere);
74
75   // Return the iterator being used for sections at the very end of
76   // the linker script.
77   Elements_iterator
78   last_place() const;
79
80  private:
81   // The places that we specifically recognize.  This list is copied
82   // from the GNU linker.
83   enum Place_index
84   {
85     PLACE_TEXT,
86     PLACE_RODATA,
87     PLACE_DATA,
88     PLACE_BSS,
89     PLACE_REL,
90     PLACE_INTERP,
91     PLACE_NONALLOC,
92     PLACE_LAST,
93     PLACE_MAX
94   };
95
96   // The information we keep for a specific place.
97   struct Place
98   {
99     // The name of sections for this place.
100     const char* name;
101     // Whether we have a location for this place.
102     bool have_location;
103     // The iterator for this place.
104     Elements_iterator location;
105   };
106
107   // Initialize one place element.
108   void
109   initialize_place(Place_index, const char*);
110
111   // The places.
112   Place places_[PLACE_MAX];
113   // True if this is the first call to output_section_init.
114   bool first_init_;
115 };
116
117 // Initialize Orphan_section_placement.
118
119 Orphan_section_placement::Orphan_section_placement()
120   : first_init_(true)
121 {
122   this->initialize_place(PLACE_TEXT, ".text");
123   this->initialize_place(PLACE_RODATA, ".rodata");
124   this->initialize_place(PLACE_DATA, ".data");
125   this->initialize_place(PLACE_BSS, ".bss");
126   this->initialize_place(PLACE_REL, NULL);
127   this->initialize_place(PLACE_INTERP, ".interp");
128   this->initialize_place(PLACE_NONALLOC, NULL);
129   this->initialize_place(PLACE_LAST, NULL);
130 }
131
132 // Initialize one place element.
133
134 void
135 Orphan_section_placement::initialize_place(Place_index index, const char* name)
136 {
137   this->places_[index].name = name;
138   this->places_[index].have_location = false;
139 }
140
141 // While initializing the Orphan_section_placement information, this
142 // is called once for each output section named in the linker script.
143 // If we found an output section during the link, it will be passed in
144 // OS.
145
146 void
147 Orphan_section_placement::output_section_init(const std::string& name,
148                                               Output_section* os,
149                                               Elements_iterator location)
150 {
151   bool first_init = this->first_init_;
152   this->first_init_ = false;
153
154   for (int i = 0; i < PLACE_MAX; ++i)
155     {
156       if (this->places_[i].name != NULL && this->places_[i].name == name)
157         {
158           if (this->places_[i].have_location)
159             {
160               // We have already seen a section with this name.
161               return;
162             }
163
164           this->places_[i].location = location;
165           this->places_[i].have_location = true;
166
167           // If we just found the .bss section, restart the search for
168           // an unallocated section.  This follows the GNU linker's
169           // behaviour.
170           if (i == PLACE_BSS)
171             this->places_[PLACE_NONALLOC].have_location = false;
172
173           return;
174         }
175     }
176
177   // Relocation sections.
178   if (!this->places_[PLACE_REL].have_location
179       && os != NULL
180       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
181       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
182     {
183       this->places_[PLACE_REL].location = location;
184       this->places_[PLACE_REL].have_location = true;
185     }
186
187   // We find the location for unallocated sections by finding the
188   // first debugging or comment section after the BSS section (if
189   // there is one).
190   if (!this->places_[PLACE_NONALLOC].have_location
191       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
192     {
193       // We add orphan sections after the location in PLACES_.  We
194       // want to store unallocated sections before LOCATION.  If this
195       // is the very first section, we can't use it.
196       if (!first_init)
197         {
198           --location;
199           this->places_[PLACE_NONALLOC].location = location;
200           this->places_[PLACE_NONALLOC].have_location = true;
201         }
202     }
203 }
204
205 // Initialize the last location.
206
207 void
208 Orphan_section_placement::last_init(Elements_iterator location)
209 {
210   this->places_[PLACE_LAST].location = location;
211   this->places_[PLACE_LAST].have_location = true;
212 }
213
214 // Set *PWHERE to the address of an iterator pointing to the location
215 // to use for an orphan section.  Return true if the iterator has a
216 // value, false otherwise.
217
218 bool
219 Orphan_section_placement::find_place(Output_section* os,
220                                      Elements_iterator** pwhere)
221 {
222   // Figure out where OS should go.  This is based on the GNU linker
223   // code.  FIXME: The GNU linker handles small data sections
224   // specially, but we don't.
225   elfcpp::Elf_Word type = os->type();
226   elfcpp::Elf_Xword flags = os->flags();
227   Place_index index;
228   if ((flags & elfcpp::SHF_ALLOC) == 0
229       && !Layout::is_debug_info_section(os->name()))
230     index = PLACE_NONALLOC;
231   else if ((flags & elfcpp::SHF_ALLOC) == 0)
232     index = PLACE_LAST;
233   else if (type == elfcpp::SHT_NOTE)
234     index = PLACE_INTERP;
235   else if (type == elfcpp::SHT_NOBITS)
236     index = PLACE_BSS;
237   else if ((flags & elfcpp::SHF_WRITE) != 0)
238     index = PLACE_DATA;
239   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
240     index = PLACE_REL;
241   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
242     index = PLACE_RODATA;
243   else
244     index = PLACE_TEXT;
245
246   // If we don't have a location yet, try to find one based on a
247   // plausible ordering of sections.
248   if (!this->places_[index].have_location)
249     {
250       Place_index follow;
251       switch (index)
252         {
253         default:
254           follow = PLACE_MAX;
255           break;
256         case PLACE_RODATA:
257           follow = PLACE_TEXT;
258           break;
259         case PLACE_BSS:
260           follow = PLACE_DATA;
261           break;
262         case PLACE_REL:
263           follow = PLACE_TEXT;
264           break;
265         case PLACE_INTERP:
266           follow = PLACE_TEXT;
267           break;
268         }
269       if (follow != PLACE_MAX && this->places_[follow].have_location)
270         {
271           // Set the location of INDEX to the location of FOLLOW.  The
272           // location of INDEX will then be incremented by the caller,
273           // so anything in INDEX will continue to be after anything
274           // in FOLLOW.
275           this->places_[index].location = this->places_[follow].location;
276           this->places_[index].have_location = true;
277         }
278     }
279
280   *pwhere = &this->places_[index].location;
281   bool ret = this->places_[index].have_location;
282
283   // The caller will set the location.
284   this->places_[index].have_location = true;
285
286   return ret;
287 }
288
289 // Return the iterator being used for sections at the very end of the
290 // linker script.
291
292 Orphan_section_placement::Elements_iterator
293 Orphan_section_placement::last_place() const
294 {
295   gold_assert(this->places_[PLACE_LAST].have_location);
296   return this->places_[PLACE_LAST].location;
297 }
298
299 // An element in a SECTIONS clause.
300
301 class Sections_element
302 {
303  public:
304   Sections_element()
305   { }
306
307   virtual ~Sections_element()
308   { }
309
310   // Return whether an output section is relro.
311   virtual bool
312   is_relro() const
313   { return false; }
314
315   // Record that an output section is relro.
316   virtual void
317   set_is_relro()
318   { }
319
320   // Create any required output sections.  The only real
321   // implementation is in Output_section_definition.
322   virtual void
323   create_sections(Layout*)
324   { }
325
326   // Add any symbol being defined to the symbol table.
327   virtual void
328   add_symbols_to_table(Symbol_table*)
329   { }
330
331   // Finalize symbols and check assertions.
332   virtual void
333   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
334   { }
335
336   // Return the output section name to use for an input file name and
337   // section name.  This only real implementation is in
338   // Output_section_definition.
339   virtual const char*
340   output_section_name(const char*, const char*, Output_section***)
341   { return NULL; }
342
343   // Initialize OSP with an output section.
344   virtual void
345   orphan_section_init(Orphan_section_placement*,
346                       Script_sections::Elements_iterator)
347   { }
348
349   // Set section addresses.  This includes applying assignments if the
350   // the expression is an absolute value.
351   virtual void
352   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
353   { }
354
355   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
356   // this section is constrained, and the input sections do not match,
357   // return the constraint, and set *POSD.
358   virtual Section_constraint
359   check_constraint(Output_section_definition**)
360   { return CONSTRAINT_NONE; }
361
362   // See if this is the alternate output section for a constrained
363   // output section.  If it is, transfer the Output_section and return
364   // true.  Otherwise return false.
365   virtual bool
366   alternate_constraint(Output_section_definition*, Section_constraint)
367   { return false; }
368
369   // Get the list of segments to use for an allocated section when
370   // using a PHDRS clause.  If this is an allocated section, return
371   // the Output_section, and set *PHDRS_LIST (the first parameter) to
372   // the list of PHDRS to which it should be attached.  If the PHDRS
373   // were not specified, don't change *PHDRS_LIST.  When not returning
374   // NULL, set *ORPHAN (the second parameter) according to whether
375   // this is an orphan section--one that is not mentioned in the
376   // linker script.
377   virtual Output_section*
378   allocate_to_segment(String_list**, bool*)
379   { return NULL; }
380
381   // Look for an output section by name and return the address, the
382   // load address, the alignment, and the size.  This is used when an
383   // expression refers to an output section which was not actually
384   // created.  This returns true if the section was found, false
385   // otherwise.  The only real definition is for
386   // Output_section_definition.
387   virtual bool
388   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
389                           uint64_t*) const
390   { return false; }
391
392   // Return the associated Output_section if there is one.
393   virtual Output_section*
394   get_output_section() const
395   { return NULL; }
396
397   // Print the element for debugging purposes.
398   virtual void
399   print(FILE* f) const = 0;
400 };
401
402 // An assignment in a SECTIONS clause outside of an output section.
403
404 class Sections_element_assignment : public Sections_element
405 {
406  public:
407   Sections_element_assignment(const char* name, size_t namelen,
408                               Expression* val, bool provide, bool hidden)
409     : assignment_(name, namelen, val, provide, hidden)
410   { }
411
412   // Add the symbol to the symbol table.
413   void
414   add_symbols_to_table(Symbol_table* symtab)
415   { this->assignment_.add_to_table(symtab); }
416
417   // Finalize the symbol.
418   void
419   finalize_symbols(Symbol_table* symtab, const Layout* layout,
420                    uint64_t* dot_value)
421   {
422     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
423   }
424
425   // Set the section address.  There is no section here, but if the
426   // value is absolute, we set the symbol.  This permits us to use
427   // absolute symbols when setting dot.
428   void
429   set_section_addresses(Symbol_table* symtab, Layout* layout,
430                         uint64_t* dot_value, uint64_t*)
431   {
432     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
433   }
434
435   // Print for debugging.
436   void
437   print(FILE* f) const
438   {
439     fprintf(f, "  ");
440     this->assignment_.print(f);
441   }
442
443  private:
444   Symbol_assignment assignment_;
445 };
446
447 // An assignment to the dot symbol in a SECTIONS clause outside of an
448 // output section.
449
450 class Sections_element_dot_assignment : public Sections_element
451 {
452  public:
453   Sections_element_dot_assignment(Expression* val)
454     : val_(val)
455   { }
456
457   // Finalize the symbol.
458   void
459   finalize_symbols(Symbol_table* symtab, const Layout* layout,
460                    uint64_t* dot_value)
461   {
462     // We ignore the section of the result because outside of an
463     // output section definition the dot symbol is always considered
464     // to be absolute.
465     Output_section* dummy;
466     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
467                                            NULL, &dummy);
468   }
469
470   // Update the dot symbol while setting section addresses.
471   void
472   set_section_addresses(Symbol_table* symtab, Layout* layout,
473                         uint64_t* dot_value, uint64_t* load_address)
474   {
475     Output_section* dummy;
476     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
477                                            NULL, &dummy);
478     *load_address = *dot_value;
479   }
480
481   // Print for debugging.
482   void
483   print(FILE* f) const
484   {
485     fprintf(f, "  . = ");
486     this->val_->print(f);
487     fprintf(f, "\n");
488   }
489
490  private:
491   Expression* val_;
492 };
493
494 // An assertion in a SECTIONS clause outside of an output section.
495
496 class Sections_element_assertion : public Sections_element
497 {
498  public:
499   Sections_element_assertion(Expression* check, const char* message,
500                              size_t messagelen)
501     : assertion_(check, message, messagelen)
502   { }
503
504   // Check the assertion.
505   void
506   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
507   { this->assertion_.check(symtab, layout); }
508
509   // Print for debugging.
510   void
511   print(FILE* f) const
512   {
513     fprintf(f, "  ");
514     this->assertion_.print(f);
515   }
516
517  private:
518   Script_assertion assertion_;
519 };
520
521 // An element in an output section in a SECTIONS clause.
522
523 class Output_section_element
524 {
525  public:
526   // A list of input sections.
527   typedef std::list<Output_section::Simple_input_section> Input_section_list;
528
529   Output_section_element()
530   { }
531
532   virtual ~Output_section_element()
533   { }
534
535   // Return whether this element requires an output section to exist.
536   virtual bool
537   needs_output_section() const
538   { return false; }
539
540   // Add any symbol being defined to the symbol table.
541   virtual void
542   add_symbols_to_table(Symbol_table*)
543   { }
544
545   // Finalize symbols and check assertions.
546   virtual void
547   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
548   { }
549
550   // Return whether this element matches FILE_NAME and SECTION_NAME.
551   // The only real implementation is in Output_section_element_input.
552   virtual bool
553   match_name(const char*, const char*) const
554   { return false; }
555
556   // Set section addresses.  This includes applying assignments if the
557   // the expression is an absolute value.
558   virtual void
559   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
560                         uint64_t*, Output_section**, std::string*,
561                         Input_section_list*)
562   { }
563
564   // Print the element for debugging purposes.
565   virtual void
566   print(FILE* f) const = 0;
567
568  protected:
569   // Return a fill string that is LENGTH bytes long, filling it with
570   // FILL.
571   std::string
572   get_fill_string(const std::string* fill, section_size_type length) const;
573 };
574
575 std::string
576 Output_section_element::get_fill_string(const std::string* fill,
577                                         section_size_type length) const
578 {
579   std::string this_fill;
580   this_fill.reserve(length);
581   while (this_fill.length() + fill->length() <= length)
582     this_fill += *fill;
583   if (this_fill.length() < length)
584     this_fill.append(*fill, 0, length - this_fill.length());
585   return this_fill;
586 }
587
588 // A symbol assignment in an output section.
589
590 class Output_section_element_assignment : public Output_section_element
591 {
592  public:
593   Output_section_element_assignment(const char* name, size_t namelen,
594                                     Expression* val, bool provide,
595                                     bool hidden)
596     : assignment_(name, namelen, val, provide, hidden)
597   { }
598
599   // Add the symbol to the symbol table.
600   void
601   add_symbols_to_table(Symbol_table* symtab)
602   { this->assignment_.add_to_table(symtab); }
603
604   // Finalize the symbol.
605   void
606   finalize_symbols(Symbol_table* symtab, const Layout* layout,
607                    uint64_t* dot_value, Output_section** dot_section)
608   {
609     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
610                                         *dot_section);
611   }
612
613   // Set the section address.  There is no section here, but if the
614   // value is absolute, we set the symbol.  This permits us to use
615   // absolute symbols when setting dot.
616   void
617   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
618                         uint64_t, uint64_t* dot_value, Output_section**,
619                         std::string*, Input_section_list*)
620   {
621     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
622   }
623
624   // Print for debugging.
625   void
626   print(FILE* f) const
627   {
628     fprintf(f, "    ");
629     this->assignment_.print(f);
630   }
631
632  private:
633   Symbol_assignment assignment_;
634 };
635
636 // An assignment to the dot symbol in an output section.
637
638 class Output_section_element_dot_assignment : public Output_section_element
639 {
640  public:
641   Output_section_element_dot_assignment(Expression* val)
642     : val_(val)
643   { }
644
645   // Finalize the symbol.
646   void
647   finalize_symbols(Symbol_table* symtab, const Layout* layout,
648                    uint64_t* dot_value, Output_section** dot_section)
649   {
650     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
651                                            *dot_section, dot_section);
652   }
653
654   // Update the dot symbol while setting section addresses.
655   void
656   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657                         uint64_t, uint64_t* dot_value, Output_section**,
658                         std::string*, Input_section_list*);
659
660   // Print for debugging.
661   void
662   print(FILE* f) const
663   {
664     fprintf(f, "    . = ");
665     this->val_->print(f);
666     fprintf(f, "\n");
667   }
668
669  private:
670   Expression* val_;
671 };
672
673 // Update the dot symbol while setting section addresses.
674
675 void
676 Output_section_element_dot_assignment::set_section_addresses(
677     Symbol_table* symtab,
678     Layout* layout,
679     Output_section* output_section,
680     uint64_t,
681     uint64_t* dot_value,
682     Output_section** dot_section,
683     std::string* fill,
684     Input_section_list*)
685 {
686   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
687                                                 *dot_value, *dot_section,
688                                                 dot_section);
689   if (next_dot < *dot_value)
690     gold_error(_("dot may not move backward"));
691   if (next_dot > *dot_value && output_section != NULL)
692     {
693       section_size_type length = convert_to_section_size_type(next_dot
694                                                               - *dot_value);
695       Output_section_data* posd;
696       if (fill->empty())
697         posd = new Output_data_zero_fill(length, 0);
698       else
699         {
700           std::string this_fill = this->get_fill_string(fill, length);
701           posd = new Output_data_const(this_fill, 0);
702         }
703       output_section->add_output_section_data(posd);
704       layout->new_output_section_data_from_script(posd);
705     }
706   *dot_value = next_dot;
707 }
708
709 // An assertion in an output section.
710
711 class Output_section_element_assertion : public Output_section_element
712 {
713  public:
714   Output_section_element_assertion(Expression* check, const char* message,
715                                    size_t messagelen)
716     : assertion_(check, message, messagelen)
717   { }
718
719   void
720   print(FILE* f) const
721   {
722     fprintf(f, "    ");
723     this->assertion_.print(f);
724   }
725
726  private:
727   Script_assertion assertion_;
728 };
729
730 // We use a special instance of Output_section_data to handle BYTE,
731 // SHORT, etc.  This permits forward references to symbols in the
732 // expressions.
733
734 class Output_data_expression : public Output_section_data
735 {
736  public:
737   Output_data_expression(int size, bool is_signed, Expression* val,
738                          const Symbol_table* symtab, const Layout* layout,
739                          uint64_t dot_value, Output_section* dot_section)
740     : Output_section_data(size, 0, true),
741       is_signed_(is_signed), val_(val), symtab_(symtab),
742       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
743   { }
744
745  protected:
746   // Write the data to the output file.
747   void
748   do_write(Output_file*);
749
750   // Write the data to a buffer.
751   void
752   do_write_to_buffer(unsigned char*);
753
754   // Write to a map file.
755   void
756   do_print_to_mapfile(Mapfile* mapfile) const
757   { mapfile->print_output_data(this, _("** expression")); }
758
759  private:
760   template<bool big_endian>
761   void
762   endian_write_to_buffer(uint64_t, unsigned char*);
763
764   bool is_signed_;
765   Expression* val_;
766   const Symbol_table* symtab_;
767   const Layout* layout_;
768   uint64_t dot_value_;
769   Output_section* dot_section_;
770 };
771
772 // Write the data element to the output file.
773
774 void
775 Output_data_expression::do_write(Output_file* of)
776 {
777   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
778   this->write_to_buffer(view);
779   of->write_output_view(this->offset(), this->data_size(), view);
780 }
781
782 // Write the data element to a buffer.
783
784 void
785 Output_data_expression::do_write_to_buffer(unsigned char* buf)
786 {
787   Output_section* dummy;
788   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
789                                            true, this->dot_value_,
790                                            this->dot_section_, &dummy);
791
792   if (parameters->target().is_big_endian())
793     this->endian_write_to_buffer<true>(val, buf);
794   else
795     this->endian_write_to_buffer<false>(val, buf);
796 }
797
798 template<bool big_endian>
799 void
800 Output_data_expression::endian_write_to_buffer(uint64_t val,
801                                                unsigned char* buf)
802 {
803   switch (this->data_size())
804     {
805     case 1:
806       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
807       break;
808     case 2:
809       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
810       break;
811     case 4:
812       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
813       break;
814     case 8:
815       if (parameters->target().get_size() == 32)
816         {
817           val &= 0xffffffff;
818           if (this->is_signed_ && (val & 0x80000000) != 0)
819             val |= 0xffffffff00000000LL;
820         }
821       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
822       break;
823     default:
824       gold_unreachable();
825     }
826 }
827
828 // A data item in an output section.
829
830 class Output_section_element_data : public Output_section_element
831 {
832  public:
833   Output_section_element_data(int size, bool is_signed, Expression* val)
834     : size_(size), is_signed_(is_signed), val_(val)
835   { }
836
837   // If there is a data item, then we must create an output section.
838   bool
839   needs_output_section() const
840   { return true; }
841
842   // Finalize symbols--we just need to update dot.
843   void
844   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
845                    Output_section**)
846   { *dot_value += this->size_; }
847
848   // Store the value in the section.
849   void
850   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
851                         uint64_t* dot_value, Output_section**, std::string*,
852                         Input_section_list*);
853
854   // Print for debugging.
855   void
856   print(FILE*) const;
857
858  private:
859   // The size in bytes.
860   int size_;
861   // Whether the value is signed.
862   bool is_signed_;
863   // The value.
864   Expression* val_;
865 };
866
867 // Store the value in the section.
868
869 void
870 Output_section_element_data::set_section_addresses(
871     Symbol_table* symtab,
872     Layout* layout,
873     Output_section* os,
874     uint64_t,
875     uint64_t* dot_value,
876     Output_section** dot_section,
877     std::string*,
878     Input_section_list*)
879 {
880   gold_assert(os != NULL);
881   Output_data_expression* expression =
882     new Output_data_expression(this->size_, this->is_signed_, this->val_,
883                                symtab, layout, *dot_value, *dot_section);
884   os->add_output_section_data(expression);
885   layout->new_output_section_data_from_script(expression);
886   *dot_value += this->size_;
887 }
888
889 // Print for debugging.
890
891 void
892 Output_section_element_data::print(FILE* f) const
893 {
894   const char* s;
895   switch (this->size_)
896     {
897     case 1:
898       s = "BYTE";
899       break;
900     case 2:
901       s = "SHORT";
902       break;
903     case 4:
904       s = "LONG";
905       break;
906     case 8:
907       if (this->is_signed_)
908         s = "SQUAD";
909       else
910         s = "QUAD";
911       break;
912     default:
913       gold_unreachable();
914     }
915   fprintf(f, "    %s(", s);
916   this->val_->print(f);
917   fprintf(f, ")\n");
918 }
919
920 // A fill value setting in an output section.
921
922 class Output_section_element_fill : public Output_section_element
923 {
924  public:
925   Output_section_element_fill(Expression* val)
926     : val_(val)
927   { }
928
929   // Update the fill value while setting section addresses.
930   void
931   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932                         uint64_t, uint64_t* dot_value,
933                         Output_section** dot_section,
934                         std::string* fill, Input_section_list*)
935   {
936     Output_section* fill_section;
937     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
938                                                   *dot_value, *dot_section,
939                                                   &fill_section);
940     if (fill_section != NULL)
941       gold_warning(_("fill value is not absolute"));
942     // FIXME: The GNU linker supports fill values of arbitrary length.
943     unsigned char fill_buff[4];
944     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
945     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
946   }
947
948   // Print for debugging.
949   void
950   print(FILE* f) const
951   {
952     fprintf(f, "    FILL(");
953     this->val_->print(f);
954     fprintf(f, ")\n");
955   }
956
957  private:
958   // The new fill value.
959   Expression* val_;
960 };
961
962 // Return whether STRING contains a wildcard character.  This is used
963 // to speed up matching.
964
965 static inline bool
966 is_wildcard_string(const std::string& s)
967 {
968   return strpbrk(s.c_str(), "?*[") != NULL;
969 }
970
971 // An input section specification in an output section
972
973 class Output_section_element_input : public Output_section_element
974 {
975  public:
976   Output_section_element_input(const Input_section_spec* spec, bool keep);
977
978   // Finalize symbols--just update the value of the dot symbol.
979   void
980   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
981                    Output_section** dot_section)
982   {
983     *dot_value = this->final_dot_value_;
984     *dot_section = this->final_dot_section_;
985   }
986
987   // See whether we match FILE_NAME and SECTION_NAME as an input
988   // section.
989   bool
990   match_name(const char* file_name, const char* section_name) const;
991
992   // Set the section address.
993   void
994   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
995                         uint64_t subalign, uint64_t* dot_value,
996                         Output_section**, std::string* fill,
997                         Input_section_list*);
998
999   // Print for debugging.
1000   void
1001   print(FILE* f) const;
1002
1003  private:
1004   // An input section pattern.
1005   struct Input_section_pattern
1006   {
1007     std::string pattern;
1008     bool pattern_is_wildcard;
1009     Sort_wildcard sort;
1010
1011     Input_section_pattern(const char* patterna, size_t patternlena,
1012                           Sort_wildcard sorta)
1013       : pattern(patterna, patternlena),
1014         pattern_is_wildcard(is_wildcard_string(this->pattern)),
1015         sort(sorta)
1016     { }
1017   };
1018
1019   typedef std::vector<Input_section_pattern> Input_section_patterns;
1020
1021   // Filename_exclusions is a pair of filename pattern and a bool
1022   // indicating whether the filename is a wildcard.
1023   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1024
1025   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1026   // indicates whether this is a wildcard pattern.
1027   static inline bool
1028   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1029   {
1030     return (is_wildcard_pattern
1031             ? fnmatch(pattern, string, 0) == 0
1032             : strcmp(string, pattern) == 0);
1033   }
1034
1035   // See if we match a file name.
1036   bool
1037   match_file_name(const char* file_name) const;
1038
1039   // The file name pattern.  If this is the empty string, we match all
1040   // files.
1041   std::string filename_pattern_;
1042   // Whether the file name pattern is a wildcard.
1043   bool filename_is_wildcard_;
1044   // How the file names should be sorted.  This may only be
1045   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1046   Sort_wildcard filename_sort_;
1047   // The list of file names to exclude.
1048   Filename_exclusions filename_exclusions_;
1049   // The list of input section patterns.
1050   Input_section_patterns input_section_patterns_;
1051   // Whether to keep this section when garbage collecting.
1052   bool keep_;
1053   // The value of dot after including all matching sections.
1054   uint64_t final_dot_value_;
1055   // The section where dot is defined after including all matching
1056   // sections.
1057   Output_section* final_dot_section_;
1058 };
1059
1060 // Construct Output_section_element_input.  The parser records strings
1061 // as pointers into a copy of the script file, which will go away when
1062 // parsing is complete.  We make sure they are in std::string objects.
1063
1064 Output_section_element_input::Output_section_element_input(
1065     const Input_section_spec* spec,
1066     bool keep)
1067   : filename_pattern_(),
1068     filename_is_wildcard_(false),
1069     filename_sort_(spec->file.sort),
1070     filename_exclusions_(),
1071     input_section_patterns_(),
1072     keep_(keep),
1073     final_dot_value_(0),
1074     final_dot_section_(NULL)
1075 {
1076   // The filename pattern "*" is common, and matches all files.  Turn
1077   // it into the empty string.
1078   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1079     this->filename_pattern_.assign(spec->file.name.value,
1080                                    spec->file.name.length);
1081   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1082
1083   if (spec->input_sections.exclude != NULL)
1084     {
1085       for (String_list::const_iterator p =
1086              spec->input_sections.exclude->begin();
1087            p != spec->input_sections.exclude->end();
1088            ++p)
1089         {
1090           bool is_wildcard = is_wildcard_string(*p);
1091           this->filename_exclusions_.push_back(std::make_pair(*p,
1092                                                               is_wildcard));
1093         }
1094     }
1095
1096   if (spec->input_sections.sections != NULL)
1097     {
1098       Input_section_patterns& isp(this->input_section_patterns_);
1099       for (String_sort_list::const_iterator p =
1100              spec->input_sections.sections->begin();
1101            p != spec->input_sections.sections->end();
1102            ++p)
1103         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1104                                             p->sort));
1105     }
1106 }
1107
1108 // See whether we match FILE_NAME.
1109
1110 bool
1111 Output_section_element_input::match_file_name(const char* file_name) const
1112 {
1113   if (!this->filename_pattern_.empty())
1114     {
1115       // If we were called with no filename, we refuse to match a
1116       // pattern which requires a file name.
1117       if (file_name == NULL)
1118         return false;
1119
1120       if (!match(file_name, this->filename_pattern_.c_str(),
1121                  this->filename_is_wildcard_))
1122         return false;
1123     }
1124
1125   if (file_name != NULL)
1126     {
1127       // Now we have to see whether FILE_NAME matches one of the
1128       // exclusion patterns, if any.
1129       for (Filename_exclusions::const_iterator p =
1130              this->filename_exclusions_.begin();
1131            p != this->filename_exclusions_.end();
1132            ++p)
1133         {
1134           if (match(file_name, p->first.c_str(), p->second))
1135             return false;
1136         }
1137     }
1138
1139   return true;
1140 }
1141
1142 // See whether we match FILE_NAME and SECTION_NAME.
1143
1144 bool
1145 Output_section_element_input::match_name(const char* file_name,
1146                                          const char* section_name) const
1147 {
1148   if (!this->match_file_name(file_name))
1149     return false;
1150
1151   // If there are no section name patterns, then we match.
1152   if (this->input_section_patterns_.empty())
1153     return true;
1154
1155   // See whether we match the section name patterns.
1156   for (Input_section_patterns::const_iterator p =
1157          this->input_section_patterns_.begin();
1158        p != this->input_section_patterns_.end();
1159        ++p)
1160     {
1161       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1162         return true;
1163     }
1164
1165   // We didn't match any section names, so we didn't match.
1166   return false;
1167 }
1168
1169 // Information we use to sort the input sections.
1170
1171 class Input_section_info
1172 {
1173  public:
1174   Input_section_info(const Output_section::Simple_input_section& input_section)
1175     : input_section_(input_section), section_name_(),
1176       size_(0), addralign_(1)
1177   { }
1178
1179   // Return the simple input section.
1180   const Output_section::Simple_input_section&
1181   input_section() const
1182   { return this->input_section_; }
1183
1184   // Return the object.
1185   Relobj*
1186   relobj() const
1187   { return this->input_section_.relobj(); }
1188
1189   // Return the section index.
1190   unsigned int
1191   shndx()
1192   { return this->input_section_.shndx(); }
1193
1194   // Return the section name.
1195   const std::string&
1196   section_name() const
1197   { return this->section_name_; }
1198
1199   // Set the section name.
1200   void
1201   set_section_name(const std::string name)
1202   { this->section_name_ = name; }
1203
1204   // Return the section size.
1205   uint64_t
1206   size() const
1207   { return this->size_; }
1208
1209   // Set the section size.
1210   void
1211   set_size(uint64_t size)
1212   { this->size_ = size; }
1213
1214   // Return the address alignment.
1215   uint64_t
1216   addralign() const
1217   { return this->addralign_; }
1218
1219   // Set the address alignment.
1220   void
1221   set_addralign(uint64_t addralign)
1222   { this->addralign_ = addralign; }
1223
1224  private:
1225   // Input section, can be a relaxed section.
1226   Output_section::Simple_input_section input_section_;
1227   // Name of the section. 
1228   std::string section_name_;
1229   // Section size.
1230   uint64_t size_;
1231   // Address alignment.
1232   uint64_t addralign_;
1233 };
1234
1235 // A class to sort the input sections.
1236
1237 class Input_section_sorter
1238 {
1239  public:
1240   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1241     : filename_sort_(filename_sort), section_sort_(section_sort)
1242   { }
1243
1244   bool
1245   operator()(const Input_section_info&, const Input_section_info&) const;
1246
1247  private:
1248   Sort_wildcard filename_sort_;
1249   Sort_wildcard section_sort_;
1250 };
1251
1252 bool
1253 Input_section_sorter::operator()(const Input_section_info& isi1,
1254                                  const Input_section_info& isi2) const
1255 {
1256   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1257       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1258       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1259           && isi1.addralign() == isi2.addralign()))
1260     {
1261       if (isi1.section_name() != isi2.section_name())
1262         return isi1.section_name() < isi2.section_name();
1263     }
1264   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1265       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1266       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1267     {
1268       if (isi1.addralign() != isi2.addralign())
1269         return isi1.addralign() < isi2.addralign();
1270     }
1271   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1272     {
1273       if (isi1.relobj()->name() != isi2.relobj()->name())
1274         return (isi1.relobj()->name() < isi2.relobj()->name());
1275     }
1276
1277   // Otherwise we leave them in the same order.
1278   return false;
1279 }
1280
1281 // Set the section address.  Look in INPUT_SECTIONS for sections which
1282 // match this spec, sort them as specified, and add them to the output
1283 // section.
1284
1285 void
1286 Output_section_element_input::set_section_addresses(
1287     Symbol_table*,
1288     Layout* layout,
1289     Output_section* output_section,
1290     uint64_t subalign,
1291     uint64_t* dot_value,
1292     Output_section** dot_section,
1293     std::string* fill,
1294     Input_section_list* input_sections)
1295 {
1296   // We build a list of sections which match each
1297   // Input_section_pattern.
1298
1299   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1300   size_t input_pattern_count = this->input_section_patterns_.size();
1301   if (input_pattern_count == 0)
1302     input_pattern_count = 1;
1303   Matching_sections matching_sections(input_pattern_count);
1304
1305   // Look through the list of sections for this output section.  Add
1306   // each one which matches to one of the elements of
1307   // MATCHING_SECTIONS.
1308
1309   Input_section_list::iterator p = input_sections->begin();
1310   while (p != input_sections->end())
1311     {
1312       Relobj* relobj = p->relobj();
1313       unsigned int shndx = p->shndx();      
1314       Input_section_info isi(*p);
1315
1316       // Calling section_name and section_addralign is not very
1317       // efficient.
1318
1319       // Lock the object so that we can get information about the
1320       // section.  This is OK since we know we are single-threaded
1321       // here.
1322       {
1323         const Task* task = reinterpret_cast<const Task*>(-1);
1324         Task_lock_obj<Object> tl(task, relobj);
1325
1326         isi.set_section_name(relobj->section_name(shndx));
1327         if (p->is_relaxed_input_section())
1328           isi.set_size(p->relaxed_input_section()->data_size());
1329         else
1330           isi.set_size(relobj->section_size(shndx));
1331         isi.set_addralign(relobj->section_addralign(shndx));
1332       }
1333
1334       if (!this->match_file_name(relobj->name().c_str()))
1335         ++p;
1336       else if (this->input_section_patterns_.empty())
1337         {
1338           matching_sections[0].push_back(isi);
1339           p = input_sections->erase(p);
1340         }
1341       else
1342         {
1343           size_t i;
1344           for (i = 0; i < input_pattern_count; ++i)
1345             {
1346               const Input_section_pattern&
1347                 isp(this->input_section_patterns_[i]);
1348               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1349                         isp.pattern_is_wildcard))
1350                 break;
1351             }
1352
1353           if (i >= this->input_section_patterns_.size())
1354             ++p;
1355           else
1356             {
1357               matching_sections[i].push_back(isi);
1358               p = input_sections->erase(p);
1359             }
1360         }
1361     }
1362
1363   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1364   // using a stable sort so that we get the default order when
1365   // sections are otherwise equal.  Add each input section to the
1366   // output section.
1367
1368   for (size_t i = 0; i < input_pattern_count; ++i)
1369     {
1370       if (matching_sections[i].empty())
1371         continue;
1372
1373       gold_assert(output_section != NULL);
1374
1375       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1376       if (isp.sort != SORT_WILDCARD_NONE
1377           || this->filename_sort_ != SORT_WILDCARD_NONE)
1378         std::stable_sort(matching_sections[i].begin(),
1379                          matching_sections[i].end(),
1380                          Input_section_sorter(this->filename_sort_,
1381                                               isp.sort));
1382
1383       for (std::vector<Input_section_info>::const_iterator p =
1384              matching_sections[i].begin();
1385            p != matching_sections[i].end();
1386            ++p)
1387         {
1388           uint64_t this_subalign = p->addralign();
1389           if (this_subalign < subalign)
1390             this_subalign = subalign;
1391
1392           uint64_t address = align_address(*dot_value, this_subalign);
1393
1394           if (address > *dot_value && !fill->empty())
1395             {
1396               section_size_type length =
1397                 convert_to_section_size_type(address - *dot_value);
1398               std::string this_fill = this->get_fill_string(fill, length);
1399               Output_section_data* posd = new Output_data_const(this_fill, 0);
1400               output_section->add_output_section_data(posd);
1401               layout->new_output_section_data_from_script(posd);
1402             }
1403
1404           output_section->add_input_section_for_script(p->input_section(),
1405                                                        p->size(),
1406                                                        this_subalign);
1407
1408           *dot_value = address + p->size();
1409         }
1410     }
1411
1412   this->final_dot_value_ = *dot_value;
1413   this->final_dot_section_ = *dot_section;
1414 }
1415
1416 // Print for debugging.
1417
1418 void
1419 Output_section_element_input::print(FILE* f) const
1420 {
1421   fprintf(f, "    ");
1422
1423   if (this->keep_)
1424     fprintf(f, "KEEP(");
1425
1426   if (!this->filename_pattern_.empty())
1427     {
1428       bool need_close_paren = false;
1429       switch (this->filename_sort_)
1430         {
1431         case SORT_WILDCARD_NONE:
1432           break;
1433         case SORT_WILDCARD_BY_NAME:
1434           fprintf(f, "SORT_BY_NAME(");
1435           need_close_paren = true;
1436           break;
1437         default:
1438           gold_unreachable();
1439         }
1440
1441       fprintf(f, "%s", this->filename_pattern_.c_str());
1442
1443       if (need_close_paren)
1444         fprintf(f, ")");
1445     }
1446
1447   if (!this->input_section_patterns_.empty()
1448       || !this->filename_exclusions_.empty())
1449     {
1450       fprintf(f, "(");
1451
1452       bool need_space = false;
1453       if (!this->filename_exclusions_.empty())
1454         {
1455           fprintf(f, "EXCLUDE_FILE(");
1456           bool need_comma = false;
1457           for (Filename_exclusions::const_iterator p =
1458                  this->filename_exclusions_.begin();
1459                p != this->filename_exclusions_.end();
1460                ++p)
1461             {
1462               if (need_comma)
1463                 fprintf(f, ", ");
1464               fprintf(f, "%s", p->first.c_str());
1465               need_comma = true;
1466             }
1467           fprintf(f, ")");
1468           need_space = true;
1469         }
1470
1471       for (Input_section_patterns::const_iterator p =
1472              this->input_section_patterns_.begin();
1473            p != this->input_section_patterns_.end();
1474            ++p)
1475         {
1476           if (need_space)
1477             fprintf(f, " ");
1478
1479           int close_parens = 0;
1480           switch (p->sort)
1481             {
1482             case SORT_WILDCARD_NONE:
1483               break;
1484             case SORT_WILDCARD_BY_NAME:
1485               fprintf(f, "SORT_BY_NAME(");
1486               close_parens = 1;
1487               break;
1488             case SORT_WILDCARD_BY_ALIGNMENT:
1489               fprintf(f, "SORT_BY_ALIGNMENT(");
1490               close_parens = 1;
1491               break;
1492             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1493               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1494               close_parens = 2;
1495               break;
1496             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1497               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1498               close_parens = 2;
1499               break;
1500             default:
1501               gold_unreachable();
1502             }
1503
1504           fprintf(f, "%s", p->pattern.c_str());
1505
1506           for (int i = 0; i < close_parens; ++i)
1507             fprintf(f, ")");
1508
1509           need_space = true;
1510         }
1511
1512       fprintf(f, ")");
1513     }
1514
1515   if (this->keep_)
1516     fprintf(f, ")");
1517
1518   fprintf(f, "\n");
1519 }
1520
1521 // An output section.
1522
1523 class Output_section_definition : public Sections_element
1524 {
1525  public:
1526   typedef Output_section_element::Input_section_list Input_section_list;
1527
1528   Output_section_definition(const char* name, size_t namelen,
1529                             const Parser_output_section_header* header);
1530
1531   // Finish the output section with the information in the trailer.
1532   void
1533   finish(const Parser_output_section_trailer* trailer);
1534
1535   // Add a symbol to be defined.
1536   void
1537   add_symbol_assignment(const char* name, size_t length, Expression* value,
1538                         bool provide, bool hidden);
1539
1540   // Add an assignment to the special dot symbol.
1541   void
1542   add_dot_assignment(Expression* value);
1543
1544   // Add an assertion.
1545   void
1546   add_assertion(Expression* check, const char* message, size_t messagelen);
1547
1548   // Add a data item to the current output section.
1549   void
1550   add_data(int size, bool is_signed, Expression* val);
1551
1552   // Add a setting for the fill value.
1553   void
1554   add_fill(Expression* val);
1555
1556   // Add an input section specification.
1557   void
1558   add_input_section(const Input_section_spec* spec, bool keep);
1559
1560   // Return whether the output section is relro.
1561   bool
1562   is_relro() const
1563   { return this->is_relro_; }
1564
1565   // Record that the output section is relro.
1566   void
1567   set_is_relro()
1568   { this->is_relro_ = true; }
1569
1570   // Create any required output sections.
1571   void
1572   create_sections(Layout*);
1573
1574   // Add any symbols being defined to the symbol table.
1575   void
1576   add_symbols_to_table(Symbol_table* symtab);
1577
1578   // Finalize symbols and check assertions.
1579   void
1580   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1581
1582   // Return the output section name to use for an input file name and
1583   // section name.
1584   const char*
1585   output_section_name(const char* file_name, const char* section_name,
1586                       Output_section***);
1587
1588   // Initialize OSP with an output section.
1589   void
1590   orphan_section_init(Orphan_section_placement* osp,
1591                       Script_sections::Elements_iterator p)
1592   { osp->output_section_init(this->name_, this->output_section_, p); }
1593
1594   // Set the section address.
1595   void
1596   set_section_addresses(Symbol_table* symtab, Layout* layout,
1597                         uint64_t* dot_value, uint64_t* load_address);
1598
1599   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1600   // this section is constrained, and the input sections do not match,
1601   // return the constraint, and set *POSD.
1602   Section_constraint
1603   check_constraint(Output_section_definition** posd);
1604
1605   // See if this is the alternate output section for a constrained
1606   // output section.  If it is, transfer the Output_section and return
1607   // true.  Otherwise return false.
1608   bool
1609   alternate_constraint(Output_section_definition*, Section_constraint);
1610
1611   // Get the list of segments to use for an allocated section when
1612   // using a PHDRS clause.
1613   Output_section*
1614   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1615
1616   // Look for an output section by name and return the address, the
1617   // load address, the alignment, and the size.  This is used when an
1618   // expression refers to an output section which was not actually
1619   // created.  This returns true if the section was found, false
1620   // otherwise.
1621   bool
1622   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1623                           uint64_t*) const;
1624
1625   // Return the associated Output_section if there is one.
1626   Output_section*
1627   get_output_section() const
1628   { return this->output_section_; }
1629
1630   // Print the contents to the FILE.  This is for debugging.
1631   void
1632   print(FILE*) const;
1633
1634  private:
1635   typedef std::vector<Output_section_element*> Output_section_elements;
1636
1637   // The output section name.
1638   std::string name_;
1639   // The address.  This may be NULL.
1640   Expression* address_;
1641   // The load address.  This may be NULL.
1642   Expression* load_address_;
1643   // The alignment.  This may be NULL.
1644   Expression* align_;
1645   // The input section alignment.  This may be NULL.
1646   Expression* subalign_;
1647   // The constraint, if any.
1648   Section_constraint constraint_;
1649   // The fill value.  This may be NULL.
1650   Expression* fill_;
1651   // The list of segments this section should go into.  This may be
1652   // NULL.
1653   String_list* phdrs_;
1654   // The list of elements defining the section.
1655   Output_section_elements elements_;
1656   // The Output_section created for this definition.  This will be
1657   // NULL if none was created.
1658   Output_section* output_section_;
1659   // The address after it has been evaluated.
1660   uint64_t evaluated_address_;
1661   // The load address after it has been evaluated.
1662   uint64_t evaluated_load_address_;
1663   // The alignment after it has been evaluated.
1664   uint64_t evaluated_addralign_;
1665   // The output section is relro.
1666   bool is_relro_;
1667 };
1668
1669 // Constructor.
1670
1671 Output_section_definition::Output_section_definition(
1672     const char* name,
1673     size_t namelen,
1674     const Parser_output_section_header* header)
1675   : name_(name, namelen),
1676     address_(header->address),
1677     load_address_(header->load_address),
1678     align_(header->align),
1679     subalign_(header->subalign),
1680     constraint_(header->constraint),
1681     fill_(NULL),
1682     phdrs_(NULL),
1683     elements_(),
1684     output_section_(NULL),
1685     evaluated_address_(0),
1686     evaluated_load_address_(0),
1687     evaluated_addralign_(0),
1688     is_relro_(false)
1689 {
1690 }
1691
1692 // Finish an output section.
1693
1694 void
1695 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1696 {
1697   this->fill_ = trailer->fill;
1698   this->phdrs_ = trailer->phdrs;
1699 }
1700
1701 // Add a symbol to be defined.
1702
1703 void
1704 Output_section_definition::add_symbol_assignment(const char* name,
1705                                                  size_t length,
1706                                                  Expression* value,
1707                                                  bool provide,
1708                                                  bool hidden)
1709 {
1710   Output_section_element* p = new Output_section_element_assignment(name,
1711                                                                     length,
1712                                                                     value,
1713                                                                     provide,
1714                                                                     hidden);
1715   this->elements_.push_back(p);
1716 }
1717
1718 // Add an assignment to the special dot symbol.
1719
1720 void
1721 Output_section_definition::add_dot_assignment(Expression* value)
1722 {
1723   Output_section_element* p = new Output_section_element_dot_assignment(value);
1724   this->elements_.push_back(p);
1725 }
1726
1727 // Add an assertion.
1728
1729 void
1730 Output_section_definition::add_assertion(Expression* check,
1731                                          const char* message,
1732                                          size_t messagelen)
1733 {
1734   Output_section_element* p = new Output_section_element_assertion(check,
1735                                                                    message,
1736                                                                    messagelen);
1737   this->elements_.push_back(p);
1738 }
1739
1740 // Add a data item to the current output section.
1741
1742 void
1743 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1744 {
1745   Output_section_element* p = new Output_section_element_data(size, is_signed,
1746                                                               val);
1747   this->elements_.push_back(p);
1748 }
1749
1750 // Add a setting for the fill value.
1751
1752 void
1753 Output_section_definition::add_fill(Expression* val)
1754 {
1755   Output_section_element* p = new Output_section_element_fill(val);
1756   this->elements_.push_back(p);
1757 }
1758
1759 // Add an input section specification.
1760
1761 void
1762 Output_section_definition::add_input_section(const Input_section_spec* spec,
1763                                              bool keep)
1764 {
1765   Output_section_element* p = new Output_section_element_input(spec, keep);
1766   this->elements_.push_back(p);
1767 }
1768
1769 // Create any required output sections.  We need an output section if
1770 // there is a data statement here.
1771
1772 void
1773 Output_section_definition::create_sections(Layout* layout)
1774 {
1775   if (this->output_section_ != NULL)
1776     return;
1777   for (Output_section_elements::const_iterator p = this->elements_.begin();
1778        p != this->elements_.end();
1779        ++p)
1780     {
1781       if ((*p)->needs_output_section())
1782         {
1783           const char* name = this->name_.c_str();
1784           this->output_section_ = layout->make_output_section_for_script(name);
1785           return;
1786         }
1787     }
1788 }
1789
1790 // Add any symbols being defined to the symbol table.
1791
1792 void
1793 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1794 {
1795   for (Output_section_elements::iterator p = this->elements_.begin();
1796        p != this->elements_.end();
1797        ++p)
1798     (*p)->add_symbols_to_table(symtab);
1799 }
1800
1801 // Finalize symbols and check assertions.
1802
1803 void
1804 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1805                                             const Layout* layout,
1806                                             uint64_t* dot_value)
1807 {
1808   if (this->output_section_ != NULL)
1809     *dot_value = this->output_section_->address();
1810   else
1811     {
1812       uint64_t address = *dot_value;
1813       if (this->address_ != NULL)
1814         {
1815           Output_section* dummy;
1816           address = this->address_->eval_with_dot(symtab, layout, true,
1817                                                   *dot_value, NULL,
1818                                                   &dummy);
1819         }
1820       if (this->align_ != NULL)
1821         {
1822           Output_section* dummy;
1823           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1824                                                        *dot_value,
1825                                                        NULL,
1826                                                        &dummy);
1827           address = align_address(address, align);
1828         }
1829       *dot_value = address;
1830     }
1831
1832   Output_section* dot_section = this->output_section_;
1833   for (Output_section_elements::iterator p = this->elements_.begin();
1834        p != this->elements_.end();
1835        ++p)
1836     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1837 }
1838
1839 // Return the output section name to use for an input section name.
1840
1841 const char*
1842 Output_section_definition::output_section_name(const char* file_name,
1843                                                const char* section_name,
1844                                                Output_section*** slot)
1845 {
1846   // Ask each element whether it matches NAME.
1847   for (Output_section_elements::const_iterator p = this->elements_.begin();
1848        p != this->elements_.end();
1849        ++p)
1850     {
1851       if ((*p)->match_name(file_name, section_name))
1852         {
1853           // We found a match for NAME, which means that it should go
1854           // into this output section.
1855           *slot = &this->output_section_;
1856           return this->name_.c_str();
1857         }
1858     }
1859
1860   // We don't know about this section name.
1861   return NULL;
1862 }
1863
1864 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1865 // be NULL if no input sections were mapped to this output section.
1866 // We still have to adjust dot and process symbol assignments.
1867
1868 void
1869 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1870                                                  Layout* layout,
1871                                                  uint64_t* dot_value,
1872                                                  uint64_t* load_address)
1873 {
1874   uint64_t address;
1875   if (this->address_ == NULL)
1876     address = *dot_value;
1877   else
1878     {
1879       Output_section* dummy;
1880       address = this->address_->eval_with_dot(symtab, layout, true,
1881                                               *dot_value, NULL, &dummy);
1882     }
1883
1884   uint64_t align;
1885   if (this->align_ == NULL)
1886     {
1887       if (this->output_section_ == NULL)
1888         align = 0;
1889       else
1890         align = this->output_section_->addralign();
1891     }
1892   else
1893     {
1894       Output_section* align_section;
1895       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1896                                           NULL, &align_section);
1897       if (align_section != NULL)
1898         gold_warning(_("alignment of section %s is not absolute"),
1899                      this->name_.c_str());
1900       if (this->output_section_ != NULL)
1901         this->output_section_->set_addralign(align);
1902     }
1903
1904   address = align_address(address, align);
1905
1906   uint64_t start_address = address;
1907
1908   *dot_value = address;
1909
1910   // The address of non-SHF_ALLOC sections is forced to zero,
1911   // regardless of what the linker script wants.
1912   if (this->output_section_ != NULL
1913       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1914     this->output_section_->set_address(address);
1915
1916   this->evaluated_address_ = address;
1917   this->evaluated_addralign_ = align;
1918
1919   if (this->load_address_ == NULL)
1920     this->evaluated_load_address_ = address;
1921   else
1922     {
1923       Output_section* dummy;
1924       uint64_t laddr =
1925         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1926                                            this->output_section_, &dummy);
1927       if (this->output_section_ != NULL)
1928         this->output_section_->set_load_address(laddr);
1929       this->evaluated_load_address_ = laddr;
1930     }
1931
1932   uint64_t subalign;
1933   if (this->subalign_ == NULL)
1934     subalign = 0;
1935   else
1936     {
1937       Output_section* subalign_section;
1938       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1939                                                 *dot_value, NULL,
1940                                                 &subalign_section);
1941       if (subalign_section != NULL)
1942         gold_warning(_("subalign of section %s is not absolute"),
1943                      this->name_.c_str());
1944     }
1945
1946   std::string fill;
1947   if (this->fill_ != NULL)
1948     {
1949       // FIXME: The GNU linker supports fill values of arbitrary
1950       // length.
1951       Output_section* fill_section;
1952       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1953                                                      *dot_value,
1954                                                      NULL,
1955                                                      &fill_section);
1956       if (fill_section != NULL)
1957         gold_warning(_("fill of section %s is not absolute"),
1958                      this->name_.c_str());
1959       unsigned char fill_buff[4];
1960       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1961       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1962     }
1963
1964   Input_section_list input_sections;
1965   if (this->output_section_ != NULL)
1966     {
1967       // Get the list of input sections attached to this output
1968       // section.  This will leave the output section with only
1969       // Output_section_data entries.
1970       address += this->output_section_->get_input_sections(address,
1971                                                            fill,
1972                                                            &input_sections);
1973       *dot_value = address;
1974     }
1975
1976   Output_section* dot_section = this->output_section_;
1977   for (Output_section_elements::iterator p = this->elements_.begin();
1978        p != this->elements_.end();
1979        ++p)
1980     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1981                                 subalign, dot_value, &dot_section, &fill,
1982                                 &input_sections);
1983
1984   gold_assert(input_sections.empty());
1985
1986   if (this->load_address_ == NULL || this->output_section_ == NULL)
1987     *load_address = *dot_value;
1988   else
1989     *load_address = (this->output_section_->load_address()
1990                      + (*dot_value - start_address));
1991
1992   if (this->output_section_ != NULL)
1993     {
1994       if (this->is_relro_)
1995         this->output_section_->set_is_relro();
1996       else
1997         this->output_section_->clear_is_relro();
1998     }
1999 }
2000
2001 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2002 // this section is constrained, and the input sections do not match,
2003 // return the constraint, and set *POSD.
2004
2005 Section_constraint
2006 Output_section_definition::check_constraint(Output_section_definition** posd)
2007 {
2008   switch (this->constraint_)
2009     {
2010     case CONSTRAINT_NONE:
2011       return CONSTRAINT_NONE;
2012
2013     case CONSTRAINT_ONLY_IF_RO:
2014       if (this->output_section_ != NULL
2015           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2016         {
2017           *posd = this;
2018           return CONSTRAINT_ONLY_IF_RO;
2019         }
2020       return CONSTRAINT_NONE;
2021
2022     case CONSTRAINT_ONLY_IF_RW:
2023       if (this->output_section_ != NULL
2024           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2025         {
2026           *posd = this;
2027           return CONSTRAINT_ONLY_IF_RW;
2028         }
2029       return CONSTRAINT_NONE;
2030
2031     case CONSTRAINT_SPECIAL:
2032       if (this->output_section_ != NULL)
2033         gold_error(_("SPECIAL constraints are not implemented"));
2034       return CONSTRAINT_NONE;
2035
2036     default:
2037       gold_unreachable();
2038     }
2039 }
2040
2041 // See if this is the alternate output section for a constrained
2042 // output section.  If it is, transfer the Output_section and return
2043 // true.  Otherwise return false.
2044
2045 bool
2046 Output_section_definition::alternate_constraint(
2047     Output_section_definition* posd,
2048     Section_constraint constraint)
2049 {
2050   if (this->name_ != posd->name_)
2051     return false;
2052
2053   switch (constraint)
2054     {
2055     case CONSTRAINT_ONLY_IF_RO:
2056       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2057         return false;
2058       break;
2059
2060     case CONSTRAINT_ONLY_IF_RW:
2061       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2062         return false;
2063       break;
2064
2065     default:
2066       gold_unreachable();
2067     }
2068
2069   // We have found the alternate constraint.  We just need to move
2070   // over the Output_section.  When constraints are used properly,
2071   // THIS should not have an output_section pointer, as all the input
2072   // sections should have matched the other definition.
2073
2074   if (this->output_section_ != NULL)
2075     gold_error(_("mismatched definition for constrained sections"));
2076
2077   this->output_section_ = posd->output_section_;
2078   posd->output_section_ = NULL;
2079
2080   if (this->is_relro_)
2081     this->output_section_->set_is_relro();
2082   else
2083     this->output_section_->clear_is_relro();
2084
2085   return true;
2086 }
2087
2088 // Get the list of segments to use for an allocated section when using
2089 // a PHDRS clause.
2090
2091 Output_section*
2092 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2093                                                bool* orphan)
2094 {
2095   if (this->output_section_ == NULL)
2096     return NULL;
2097   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2098     return NULL;
2099   *orphan = false;
2100   if (this->phdrs_ != NULL)
2101     *phdrs_list = this->phdrs_;
2102   return this->output_section_;
2103 }
2104
2105 // Look for an output section by name and return the address, the load
2106 // address, the alignment, and the size.  This is used when an
2107 // expression refers to an output section which was not actually
2108 // created.  This returns true if the section was found, false
2109 // otherwise.
2110
2111 bool
2112 Output_section_definition::get_output_section_info(const char* name,
2113                                                    uint64_t* address,
2114                                                    uint64_t* load_address,
2115                                                    uint64_t* addralign,
2116                                                    uint64_t* size) const
2117 {
2118   if (this->name_ != name)
2119     return false;
2120
2121   if (this->output_section_ != NULL)
2122     {
2123       *address = this->output_section_->address();
2124       if (this->output_section_->has_load_address())
2125         *load_address = this->output_section_->load_address();
2126       else
2127         *load_address = *address;
2128       *addralign = this->output_section_->addralign();
2129       *size = this->output_section_->current_data_size();
2130     }
2131   else
2132     {
2133       *address = this->evaluated_address_;
2134       *load_address = this->evaluated_load_address_;
2135       *addralign = this->evaluated_addralign_;
2136       *size = 0;
2137     }
2138
2139   return true;
2140 }
2141
2142 // Print for debugging.
2143
2144 void
2145 Output_section_definition::print(FILE* f) const
2146 {
2147   fprintf(f, "  %s ", this->name_.c_str());
2148
2149   if (this->address_ != NULL)
2150     {
2151       this->address_->print(f);
2152       fprintf(f, " ");
2153     }
2154
2155   fprintf(f, ": ");
2156
2157   if (this->load_address_ != NULL)
2158     {
2159       fprintf(f, "AT(");
2160       this->load_address_->print(f);
2161       fprintf(f, ") ");
2162     }
2163
2164   if (this->align_ != NULL)
2165     {
2166       fprintf(f, "ALIGN(");
2167       this->align_->print(f);
2168       fprintf(f, ") ");
2169     }
2170
2171   if (this->subalign_ != NULL)
2172     {
2173       fprintf(f, "SUBALIGN(");
2174       this->subalign_->print(f);
2175       fprintf(f, ") ");
2176     }
2177
2178   fprintf(f, "{\n");
2179
2180   for (Output_section_elements::const_iterator p = this->elements_.begin();
2181        p != this->elements_.end();
2182        ++p)
2183     (*p)->print(f);
2184
2185   fprintf(f, "  }");
2186
2187   if (this->fill_ != NULL)
2188     {
2189       fprintf(f, " = ");
2190       this->fill_->print(f);
2191     }
2192
2193   if (this->phdrs_ != NULL)
2194     {
2195       for (String_list::const_iterator p = this->phdrs_->begin();
2196            p != this->phdrs_->end();
2197            ++p)
2198         fprintf(f, " :%s", p->c_str());
2199     }
2200
2201   fprintf(f, "\n");
2202 }
2203
2204 // An output section created to hold orphaned input sections.  These
2205 // do not actually appear in linker scripts.  However, for convenience
2206 // when setting the output section addresses, we put a marker to these
2207 // sections in the appropriate place in the list of SECTIONS elements.
2208
2209 class Orphan_output_section : public Sections_element
2210 {
2211  public:
2212   Orphan_output_section(Output_section* os)
2213     : os_(os)
2214   { }
2215
2216   // Return whether the orphan output section is relro.  We can just
2217   // check the output section because we always set the flag, if
2218   // needed, just after we create the Orphan_output_section.
2219   bool
2220   is_relro() const
2221   { return this->os_->is_relro(); }
2222
2223   // Initialize OSP with an output section.  This should have been
2224   // done already.
2225   void
2226   orphan_section_init(Orphan_section_placement*,
2227                       Script_sections::Elements_iterator)
2228   { gold_unreachable(); }
2229
2230   // Set section addresses.
2231   void
2232   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2233
2234   // Get the list of segments to use for an allocated section when
2235   // using a PHDRS clause.
2236   Output_section*
2237   allocate_to_segment(String_list**, bool*);
2238
2239   // Return the associated Output_section.
2240   Output_section*
2241   get_output_section() const
2242   { return this->os_; }
2243
2244   // Print for debugging.
2245   void
2246   print(FILE* f) const
2247   {
2248     fprintf(f, "  marker for orphaned output section %s\n",
2249             this->os_->name());
2250   }
2251
2252  private:
2253   Output_section* os_;
2254 };
2255
2256 // Set section addresses.
2257
2258 void
2259 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2260                                              uint64_t* dot_value,
2261                                              uint64_t* load_address)
2262 {
2263   typedef std::list<Output_section::Simple_input_section> Input_section_list;
2264
2265   bool have_load_address = *load_address != *dot_value;
2266
2267   uint64_t address = *dot_value;
2268   address = align_address(address, this->os_->addralign());
2269
2270   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2271     {
2272       this->os_->set_address(address);
2273       if (have_load_address)
2274         this->os_->set_load_address(align_address(*load_address,
2275                                                   this->os_->addralign()));
2276     }
2277
2278   Input_section_list input_sections;
2279   address += this->os_->get_input_sections(address, "", &input_sections);
2280
2281   for (Input_section_list::iterator p = input_sections.begin();
2282        p != input_sections.end();
2283        ++p)
2284     {
2285       uint64_t addralign;
2286       uint64_t size;
2287
2288       // We know what are single-threaded, so it is OK to lock the
2289       // object.
2290       {
2291         const Task* task = reinterpret_cast<const Task*>(-1);
2292         Task_lock_obj<Object> tl(task, p->relobj());
2293         addralign = p->relobj()->section_addralign(p->shndx());
2294         if (p->is_relaxed_input_section())
2295           size = p->relaxed_input_section()->data_size();
2296         else
2297           size = p->relobj()->section_size(p->shndx());
2298       }
2299
2300       address = align_address(address, addralign);
2301       this->os_->add_input_section_for_script(*p, size, addralign);
2302       address += size;
2303     }
2304
2305   if (!have_load_address)
2306     *load_address = address;
2307   else
2308     *load_address += address - *dot_value;
2309
2310   *dot_value = address;
2311 }
2312
2313 // Get the list of segments to use for an allocated section when using
2314 // a PHDRS clause.  If this is an allocated section, return the
2315 // Output_section.  We don't change the list of segments.
2316
2317 Output_section*
2318 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2319 {
2320   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2321     return NULL;
2322   *orphan = true;
2323   return this->os_;
2324 }
2325
2326 // Class Phdrs_element.  A program header from a PHDRS clause.
2327
2328 class Phdrs_element
2329 {
2330  public:
2331   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2332                 bool includes_filehdr, bool includes_phdrs,
2333                 bool is_flags_valid, unsigned int flags,
2334                 Expression* load_address)
2335     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2336       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2337       flags_(flags), load_address_(load_address), load_address_value_(0),
2338       segment_(NULL)
2339   { }
2340
2341   // Return the name of this segment.
2342   const std::string&
2343   name() const
2344   { return this->name_; }
2345
2346   // Return the type of the segment.
2347   unsigned int
2348   type() const
2349   { return this->type_; }
2350
2351   // Whether to include the file header.
2352   bool
2353   includes_filehdr() const
2354   { return this->includes_filehdr_; }
2355
2356   // Whether to include the program headers.
2357   bool
2358   includes_phdrs() const
2359   { return this->includes_phdrs_; }
2360
2361   // Return whether there is a load address.
2362   bool
2363   has_load_address() const
2364   { return this->load_address_ != NULL; }
2365
2366   // Evaluate the load address expression if there is one.
2367   void
2368   eval_load_address(Symbol_table* symtab, Layout* layout)
2369   {
2370     if (this->load_address_ != NULL)
2371       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2372                                                             true);
2373   }
2374
2375   // Return the load address.
2376   uint64_t
2377   load_address() const
2378   {
2379     gold_assert(this->load_address_ != NULL);
2380     return this->load_address_value_;
2381   }
2382
2383   // Create the segment.
2384   Output_segment*
2385   create_segment(Layout* layout)
2386   {
2387     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2388     return this->segment_;
2389   }
2390
2391   // Return the segment.
2392   Output_segment*
2393   segment()
2394   { return this->segment_; }
2395
2396   // Release the segment.
2397   void
2398   release_segment()
2399   { this->segment_ = NULL; }
2400
2401   // Set the segment flags if appropriate.
2402   void
2403   set_flags_if_valid()
2404   {
2405     if (this->is_flags_valid_)
2406       this->segment_->set_flags(this->flags_);
2407   }
2408
2409   // Print for debugging.
2410   void
2411   print(FILE*) const;
2412
2413  private:
2414   // The name used in the script.
2415   std::string name_;
2416   // The type of the segment (PT_LOAD, etc.).
2417   unsigned int type_;
2418   // Whether this segment includes the file header.
2419   bool includes_filehdr_;
2420   // Whether this segment includes the section headers.
2421   bool includes_phdrs_;
2422   // Whether the flags were explicitly specified.
2423   bool is_flags_valid_;
2424   // The flags for this segment (PF_R, etc.) if specified.
2425   unsigned int flags_;
2426   // The expression for the load address for this segment.  This may
2427   // be NULL.
2428   Expression* load_address_;
2429   // The actual load address from evaluating the expression.
2430   uint64_t load_address_value_;
2431   // The segment itself.
2432   Output_segment* segment_;
2433 };
2434
2435 // Print for debugging.
2436
2437 void
2438 Phdrs_element::print(FILE* f) const
2439 {
2440   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2441   if (this->includes_filehdr_)
2442     fprintf(f, " FILEHDR");
2443   if (this->includes_phdrs_)
2444     fprintf(f, " PHDRS");
2445   if (this->is_flags_valid_)
2446     fprintf(f, " FLAGS(%u)", this->flags_);
2447   if (this->load_address_ != NULL)
2448     {
2449       fprintf(f, " AT(");
2450       this->load_address_->print(f);
2451       fprintf(f, ")");
2452     }
2453   fprintf(f, ";\n");
2454 }
2455
2456 // Class Script_sections.
2457
2458 Script_sections::Script_sections()
2459   : saw_sections_clause_(false),
2460     in_sections_clause_(false),
2461     sections_elements_(NULL),
2462     output_section_(NULL),
2463     phdrs_elements_(NULL),
2464     orphan_section_placement_(NULL),
2465     data_segment_align_start_(),
2466     saw_data_segment_align_(false),
2467     saw_relro_end_(false)
2468 {
2469 }
2470
2471 // Start a SECTIONS clause.
2472
2473 void
2474 Script_sections::start_sections()
2475 {
2476   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2477   this->saw_sections_clause_ = true;
2478   this->in_sections_clause_ = true;
2479   if (this->sections_elements_ == NULL)
2480     this->sections_elements_ = new Sections_elements;
2481 }
2482
2483 // Finish a SECTIONS clause.
2484
2485 void
2486 Script_sections::finish_sections()
2487 {
2488   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2489   this->in_sections_clause_ = false;
2490 }
2491
2492 // Add a symbol to be defined.
2493
2494 void
2495 Script_sections::add_symbol_assignment(const char* name, size_t length,
2496                                        Expression* val, bool provide,
2497                                        bool hidden)
2498 {
2499   if (this->output_section_ != NULL)
2500     this->output_section_->add_symbol_assignment(name, length, val,
2501                                                  provide, hidden);
2502   else
2503     {
2504       Sections_element* p = new Sections_element_assignment(name, length,
2505                                                             val, provide,
2506                                                             hidden);
2507       this->sections_elements_->push_back(p);
2508     }
2509 }
2510
2511 // Add an assignment to the special dot symbol.
2512
2513 void
2514 Script_sections::add_dot_assignment(Expression* val)
2515 {
2516   if (this->output_section_ != NULL)
2517     this->output_section_->add_dot_assignment(val);
2518   else
2519     {
2520       Sections_element* p = new Sections_element_dot_assignment(val);
2521       this->sections_elements_->push_back(p);
2522     }
2523 }
2524
2525 // Add an assertion.
2526
2527 void
2528 Script_sections::add_assertion(Expression* check, const char* message,
2529                                size_t messagelen)
2530 {
2531   if (this->output_section_ != NULL)
2532     this->output_section_->add_assertion(check, message, messagelen);
2533   else
2534     {
2535       Sections_element* p = new Sections_element_assertion(check, message,
2536                                                            messagelen);
2537       this->sections_elements_->push_back(p);
2538     }
2539 }
2540
2541 // Start processing entries for an output section.
2542
2543 void
2544 Script_sections::start_output_section(
2545     const char* name,
2546     size_t namelen,
2547     const Parser_output_section_header *header)
2548 {
2549   Output_section_definition* posd = new Output_section_definition(name,
2550                                                                   namelen,
2551                                                                   header);
2552   this->sections_elements_->push_back(posd);
2553   gold_assert(this->output_section_ == NULL);
2554   this->output_section_ = posd;
2555 }
2556
2557 // Stop processing entries for an output section.
2558
2559 void
2560 Script_sections::finish_output_section(
2561     const Parser_output_section_trailer* trailer)
2562 {
2563   gold_assert(this->output_section_ != NULL);
2564   this->output_section_->finish(trailer);
2565   this->output_section_ = NULL;
2566 }
2567
2568 // Add a data item to the current output section.
2569
2570 void
2571 Script_sections::add_data(int size, bool is_signed, Expression* val)
2572 {
2573   gold_assert(this->output_section_ != NULL);
2574   this->output_section_->add_data(size, is_signed, val);
2575 }
2576
2577 // Add a fill value setting to the current output section.
2578
2579 void
2580 Script_sections::add_fill(Expression* val)
2581 {
2582   gold_assert(this->output_section_ != NULL);
2583   this->output_section_->add_fill(val);
2584 }
2585
2586 // Add an input section specification to the current output section.
2587
2588 void
2589 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2590 {
2591   gold_assert(this->output_section_ != NULL);
2592   this->output_section_->add_input_section(spec, keep);
2593 }
2594
2595 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
2596 // subsequent output sections may be relro.
2597
2598 void
2599 Script_sections::data_segment_align()
2600 {
2601   if (this->saw_data_segment_align_)
2602     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2603   gold_assert(!this->sections_elements_->empty());
2604   Sections_elements::iterator p = this->sections_elements_->end();
2605   --p;
2606   this->data_segment_align_start_ = p;
2607   this->saw_data_segment_align_ = true;
2608 }
2609
2610 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
2611 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2612
2613 void
2614 Script_sections::data_segment_relro_end()
2615 {
2616   if (this->saw_relro_end_)
2617     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2618                  "in a linker script"));
2619   this->saw_relro_end_ = true;
2620
2621   if (!this->saw_data_segment_align_)
2622     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2623   else
2624     {
2625       Sections_elements::iterator p = this->data_segment_align_start_;
2626       for (++p; p != this->sections_elements_->end(); ++p)
2627         (*p)->set_is_relro();
2628     }
2629 }
2630
2631 // Create any required sections.
2632
2633 void
2634 Script_sections::create_sections(Layout* layout)
2635 {
2636   if (!this->saw_sections_clause_)
2637     return;
2638   for (Sections_elements::iterator p = this->sections_elements_->begin();
2639        p != this->sections_elements_->end();
2640        ++p)
2641     (*p)->create_sections(layout);
2642 }
2643
2644 // Add any symbols we are defining to the symbol table.
2645
2646 void
2647 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2648 {
2649   if (!this->saw_sections_clause_)
2650     return;
2651   for (Sections_elements::iterator p = this->sections_elements_->begin();
2652        p != this->sections_elements_->end();
2653        ++p)
2654     (*p)->add_symbols_to_table(symtab);
2655 }
2656
2657 // Finalize symbols and check assertions.
2658
2659 void
2660 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2661 {
2662   if (!this->saw_sections_clause_)
2663     return;
2664   uint64_t dot_value = 0;
2665   for (Sections_elements::iterator p = this->sections_elements_->begin();
2666        p != this->sections_elements_->end();
2667        ++p)
2668     (*p)->finalize_symbols(symtab, layout, &dot_value);
2669 }
2670
2671 // Return the name of the output section to use for an input file name
2672 // and section name.
2673
2674 const char*
2675 Script_sections::output_section_name(const char* file_name,
2676                                      const char* section_name,
2677                                      Output_section*** output_section_slot)
2678 {
2679   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2680        p != this->sections_elements_->end();
2681        ++p)
2682     {
2683       const char* ret = (*p)->output_section_name(file_name, section_name,
2684                                                   output_section_slot);
2685
2686       if (ret != NULL)
2687         {
2688           // The special name /DISCARD/ means that the input section
2689           // should be discarded.
2690           if (strcmp(ret, "/DISCARD/") == 0)
2691             {
2692               *output_section_slot = NULL;
2693               return NULL;
2694             }
2695           return ret;
2696         }
2697     }
2698
2699   // If we couldn't find a mapping for the name, the output section
2700   // gets the name of the input section.
2701
2702   *output_section_slot = NULL;
2703
2704   return section_name;
2705 }
2706
2707 // Place a marker for an orphan output section into the SECTIONS
2708 // clause.
2709
2710 void
2711 Script_sections::place_orphan(Output_section* os)
2712 {
2713   Orphan_section_placement* osp = this->orphan_section_placement_;
2714   if (osp == NULL)
2715     {
2716       // Initialize the Orphan_section_placement structure.
2717       osp = new Orphan_section_placement();
2718       for (Sections_elements::iterator p = this->sections_elements_->begin();
2719            p != this->sections_elements_->end();
2720            ++p)
2721         (*p)->orphan_section_init(osp, p);
2722       gold_assert(!this->sections_elements_->empty());
2723       Sections_elements::iterator last = this->sections_elements_->end();
2724       --last;
2725       osp->last_init(last);
2726       this->orphan_section_placement_ = osp;
2727     }
2728
2729   Orphan_output_section* orphan = new Orphan_output_section(os);
2730
2731   // Look for where to put ORPHAN.
2732   Sections_elements::iterator* where;
2733   if (osp->find_place(os, &where))
2734     {
2735       if ((**where)->is_relro())
2736         os->set_is_relro();
2737       else
2738         os->clear_is_relro();
2739
2740       // We want to insert ORPHAN after *WHERE, and then update *WHERE
2741       // so that the next one goes after this one.
2742       Sections_elements::iterator p = *where;
2743       gold_assert(p != this->sections_elements_->end());
2744       ++p;
2745       *where = this->sections_elements_->insert(p, orphan);
2746     }
2747   else
2748     {
2749       os->clear_is_relro();
2750       // We don't have a place to put this orphan section.  Put it,
2751       // and all other sections like it, at the end, but before the
2752       // sections which always come at the end.
2753       Sections_elements::iterator last = osp->last_place();
2754       *where = this->sections_elements_->insert(last, orphan);
2755     }
2756 }
2757
2758 // Set the addresses of all the output sections.  Walk through all the
2759 // elements, tracking the dot symbol.  Apply assignments which set
2760 // absolute symbol values, in case they are used when setting dot.
2761 // Fill in data statement values.  As we find output sections, set the
2762 // address, set the address of all associated input sections, and
2763 // update dot.  Return the segment which should hold the file header
2764 // and segment headers, if any.
2765
2766 Output_segment*
2767 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2768 {
2769   gold_assert(this->saw_sections_clause_);
2770
2771   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2772   // for our representation.
2773   for (Sections_elements::iterator p = this->sections_elements_->begin();
2774        p != this->sections_elements_->end();
2775        ++p)
2776     {
2777       Output_section_definition* posd;
2778       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2779       if (failed_constraint != CONSTRAINT_NONE)
2780         {
2781           Sections_elements::iterator q;
2782           for (q = this->sections_elements_->begin();
2783                q != this->sections_elements_->end();
2784                ++q)
2785             {
2786               if (q != p)
2787                 {
2788                   if ((*q)->alternate_constraint(posd, failed_constraint))
2789                     break;
2790                 }
2791             }
2792
2793           if (q == this->sections_elements_->end())
2794             gold_error(_("no matching section constraint"));
2795         }
2796     }
2797
2798   // Force the alignment of the first TLS section to be the maximum
2799   // alignment of all TLS sections.
2800   Output_section* first_tls = NULL;
2801   uint64_t tls_align = 0;
2802   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2803        p != this->sections_elements_->end();
2804        ++p)
2805     {
2806       Output_section *os = (*p)->get_output_section();
2807       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2808         {
2809           if (first_tls == NULL)
2810             first_tls = os;
2811           if (os->addralign() > tls_align)
2812             tls_align = os->addralign();
2813         }
2814     }
2815   if (first_tls != NULL)
2816     first_tls->set_addralign(tls_align);
2817
2818   // For a relocatable link, we implicitly set dot to zero.
2819   uint64_t dot_value = 0;
2820   uint64_t load_address = 0;
2821   for (Sections_elements::iterator p = this->sections_elements_->begin();
2822        p != this->sections_elements_->end();
2823        ++p)
2824     (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2825
2826   if (this->phdrs_elements_ != NULL)
2827     {
2828       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2829            p != this->phdrs_elements_->end();
2830            ++p)
2831         (*p)->eval_load_address(symtab, layout);
2832     }
2833
2834   return this->create_segments(layout);
2835 }
2836
2837 // Sort the sections in order to put them into segments.
2838
2839 class Sort_output_sections
2840 {
2841  public:
2842   bool
2843   operator()(const Output_section* os1, const Output_section* os2) const;
2844 };
2845
2846 bool
2847 Sort_output_sections::operator()(const Output_section* os1,
2848                                  const Output_section* os2) const
2849 {
2850   // Sort first by the load address.
2851   uint64_t lma1 = (os1->has_load_address()
2852                    ? os1->load_address()
2853                    : os1->address());
2854   uint64_t lma2 = (os2->has_load_address()
2855                    ? os2->load_address()
2856                    : os2->address());
2857   if (lma1 != lma2)
2858     return lma1 < lma2;
2859
2860   // Then sort by the virtual address.
2861   if (os1->address() != os2->address())
2862     return os1->address() < os2->address();
2863
2864   // Sort TLS sections to the end.
2865   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2866   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2867   if (tls1 != tls2)
2868     return tls2;
2869
2870   // Sort PROGBITS before NOBITS.
2871   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2872     return true;
2873   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2874     return false;
2875
2876   // Otherwise we don't care.
2877   return false;
2878 }
2879
2880 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2881 // We treat a section with the SHF_TLS flag set as taking up space
2882 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2883 // space for them in the file.
2884
2885 bool
2886 Script_sections::is_bss_section(const Output_section* os)
2887 {
2888   return (os->type() == elfcpp::SHT_NOBITS
2889           && (os->flags() & elfcpp::SHF_TLS) == 0);
2890 }
2891
2892 // Return the size taken by the file header and the program headers.
2893
2894 size_t
2895 Script_sections::total_header_size(Layout* layout) const
2896 {
2897   size_t segment_count = layout->segment_count();
2898   size_t file_header_size;
2899   size_t segment_headers_size;
2900   if (parameters->target().get_size() == 32)
2901     {
2902       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2903       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2904     }
2905   else if (parameters->target().get_size() == 64)
2906     {
2907       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2908       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2909     }
2910   else
2911     gold_unreachable();
2912
2913   return file_header_size + segment_headers_size;
2914 }
2915
2916 // Return the amount we have to subtract from the LMA to accomodate
2917 // headers of the given size.  The complication is that the file
2918 // header have to be at the start of a page, as otherwise it will not
2919 // be at the start of the file.
2920
2921 uint64_t
2922 Script_sections::header_size_adjustment(uint64_t lma,
2923                                         size_t sizeof_headers) const
2924 {
2925   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2926   uint64_t hdr_lma = lma - sizeof_headers;
2927   hdr_lma &= ~(abi_pagesize - 1);
2928   return lma - hdr_lma;
2929 }
2930
2931 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2932 // the segment which should hold the file header and segment headers,
2933 // if any.
2934
2935 Output_segment*
2936 Script_sections::create_segments(Layout* layout)
2937 {
2938   gold_assert(this->saw_sections_clause_);
2939
2940   if (parameters->options().relocatable())
2941     return NULL;
2942
2943   if (this->saw_phdrs_clause())
2944     return create_segments_from_phdrs_clause(layout);
2945
2946   Layout::Section_list sections;
2947   layout->get_allocated_sections(&sections);
2948
2949   // Sort the sections by address.
2950   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2951
2952   this->create_note_and_tls_segments(layout, &sections);
2953
2954   // Walk through the sections adding them to PT_LOAD segments.
2955   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2956   Output_segment* first_seg = NULL;
2957   Output_segment* current_seg = NULL;
2958   bool is_current_seg_readonly = true;
2959   Layout::Section_list::iterator plast = sections.end();
2960   uint64_t last_vma = 0;
2961   uint64_t last_lma = 0;
2962   uint64_t last_size = 0;
2963   for (Layout::Section_list::iterator p = sections.begin();
2964        p != sections.end();
2965        ++p)
2966     {
2967       const uint64_t vma = (*p)->address();
2968       const uint64_t lma = ((*p)->has_load_address()
2969                             ? (*p)->load_address()
2970                             : vma);
2971       const uint64_t size = (*p)->current_data_size();
2972
2973       bool need_new_segment;
2974       if (current_seg == NULL)
2975         need_new_segment = true;
2976       else if (lma - vma != last_lma - last_vma)
2977         {
2978           // This section has a different LMA relationship than the
2979           // last one; we need a new segment.
2980           need_new_segment = true;
2981         }
2982       else if (align_address(last_lma + last_size, abi_pagesize)
2983                < align_address(lma, abi_pagesize))
2984         {
2985           // Putting this section in the segment would require
2986           // skipping a page.
2987           need_new_segment = true;
2988         }
2989       else if (is_bss_section(*plast) && !is_bss_section(*p))
2990         {
2991           // A non-BSS section can not follow a BSS section in the
2992           // same segment.
2993           need_new_segment = true;
2994         }
2995       else if (is_current_seg_readonly
2996                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
2997                && !parameters->options().omagic())
2998         {
2999           // Don't put a writable section in the same segment as a
3000           // non-writable section.
3001           need_new_segment = true;
3002         }
3003       else
3004         {
3005           // Otherwise, reuse the existing segment.
3006           need_new_segment = false;
3007         }
3008
3009       elfcpp::Elf_Word seg_flags =
3010         Layout::section_flags_to_segment((*p)->flags());
3011
3012       if (need_new_segment)
3013         {
3014           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3015                                                     seg_flags);
3016           current_seg->set_addresses(vma, lma);
3017           if (first_seg == NULL)
3018             first_seg = current_seg;
3019           is_current_seg_readonly = true;
3020         }
3021
3022       current_seg->add_output_section(*p, seg_flags);
3023
3024       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3025         is_current_seg_readonly = false;
3026
3027       plast = p;
3028       last_vma = vma;
3029       last_lma = lma;
3030       last_size = size;
3031     }
3032
3033   // An ELF program should work even if the program headers are not in
3034   // a PT_LOAD segment.  However, it appears that the Linux kernel
3035   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3036   // the load address to p_vaddr - p_offset of the first PT_LOAD
3037   // segment.  It then sets AT_PHDR to the load address plus the
3038   // offset to the program headers, e_phoff in the file header.  This
3039   // fails when the program headers appear in the file before the
3040   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3041   // segment to hold the file header and the program headers.  This is
3042   // effectively what the GNU linker does, and it is slightly more
3043   // efficient in any case.  We try to use the first PT_LOAD segment
3044   // if we can, otherwise we make a new one.
3045
3046   if (first_seg == NULL)
3047     return NULL;
3048
3049   // -n or -N mean that the program is not demand paged and there is
3050   // no need to put the program headers in a PT_LOAD segment.
3051   if (parameters->options().nmagic() || parameters->options().omagic())
3052     return NULL;
3053
3054   size_t sizeof_headers = this->total_header_size(layout);
3055
3056   uint64_t vma = first_seg->vaddr();
3057   uint64_t lma = first_seg->paddr();
3058
3059   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3060
3061   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3062     {
3063       first_seg->set_addresses(vma - subtract, lma - subtract);
3064       return first_seg;
3065     }
3066
3067   // If there is no room to squeeze in the headers, then punt.  The
3068   // resulting executable probably won't run on GNU/Linux, but we
3069   // trust that the user knows what they are doing.
3070   if (lma < subtract || vma < subtract)
3071     return NULL;
3072
3073   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3074                                                          elfcpp::PF_R);
3075   load_seg->set_addresses(vma - subtract, lma - subtract);
3076
3077   return load_seg;
3078 }
3079
3080 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3081 // segment if there are any SHT_TLS sections.
3082
3083 void
3084 Script_sections::create_note_and_tls_segments(
3085     Layout* layout,
3086     const Layout::Section_list* sections)
3087 {
3088   gold_assert(!this->saw_phdrs_clause());
3089
3090   bool saw_tls = false;
3091   for (Layout::Section_list::const_iterator p = sections->begin();
3092        p != sections->end();
3093        ++p)
3094     {
3095       if ((*p)->type() == elfcpp::SHT_NOTE)
3096         {
3097           elfcpp::Elf_Word seg_flags =
3098             Layout::section_flags_to_segment((*p)->flags());
3099           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3100                                                              seg_flags);
3101           oseg->add_output_section(*p, seg_flags);
3102
3103           // Incorporate any subsequent SHT_NOTE sections, in the
3104           // hopes that the script is sensible.
3105           Layout::Section_list::const_iterator pnext = p + 1;
3106           while (pnext != sections->end()
3107                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3108             {
3109               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3110               oseg->add_output_section(*pnext, seg_flags);
3111               p = pnext;
3112               ++pnext;
3113             }
3114         }
3115
3116       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3117         {
3118           if (saw_tls)
3119             gold_error(_("TLS sections are not adjacent"));
3120
3121           elfcpp::Elf_Word seg_flags =
3122             Layout::section_flags_to_segment((*p)->flags());
3123           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3124                                                              seg_flags);
3125           oseg->add_output_section(*p, seg_flags);
3126
3127           Layout::Section_list::const_iterator pnext = p + 1;
3128           while (pnext != sections->end()
3129                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3130             {
3131               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3132               oseg->add_output_section(*pnext, seg_flags);
3133               p = pnext;
3134               ++pnext;
3135             }
3136
3137           saw_tls = true;
3138         }
3139     }
3140 }
3141
3142 // Add a program header.  The PHDRS clause is syntactically distinct
3143 // from the SECTIONS clause, but we implement it with the SECTIONS
3144 // support because PHDRS is useless if there is no SECTIONS clause.
3145
3146 void
3147 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3148                           bool includes_filehdr, bool includes_phdrs,
3149                           bool is_flags_valid, unsigned int flags,
3150                           Expression* load_address)
3151 {
3152   if (this->phdrs_elements_ == NULL)
3153     this->phdrs_elements_ = new Phdrs_elements();
3154   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3155                                                      includes_filehdr,
3156                                                      includes_phdrs,
3157                                                      is_flags_valid, flags,
3158                                                      load_address));
3159 }
3160
3161 // Return the number of segments we expect to create based on the
3162 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3163
3164 size_t
3165 Script_sections::expected_segment_count(const Layout* layout) const
3166 {
3167   if (this->saw_phdrs_clause())
3168     return this->phdrs_elements_->size();
3169
3170   Layout::Section_list sections;
3171   layout->get_allocated_sections(&sections);
3172
3173   // We assume that we will need two PT_LOAD segments.
3174   size_t ret = 2;
3175
3176   bool saw_note = false;
3177   bool saw_tls = false;
3178   for (Layout::Section_list::const_iterator p = sections.begin();
3179        p != sections.end();
3180        ++p)
3181     {
3182       if ((*p)->type() == elfcpp::SHT_NOTE)
3183         {
3184           // Assume that all note sections will fit into a single
3185           // PT_NOTE segment.
3186           if (!saw_note)
3187             {
3188               ++ret;
3189               saw_note = true;
3190             }
3191         }
3192       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3193         {
3194           // There can only be one PT_TLS segment.
3195           if (!saw_tls)
3196             {
3197               ++ret;
3198               saw_tls = true;
3199             }
3200         }
3201     }
3202
3203   return ret;
3204 }
3205
3206 // Create the segments from a PHDRS clause.  Return the segment which
3207 // should hold the file header and program headers, if any.
3208
3209 Output_segment*
3210 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
3211 {
3212   this->attach_sections_using_phdrs_clause(layout);
3213   return this->set_phdrs_clause_addresses(layout);
3214 }
3215
3216 // Create the segments from the PHDRS clause, and put the output
3217 // sections in them.
3218
3219 void
3220 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3221 {
3222   typedef std::map<std::string, Output_segment*> Name_to_segment;
3223   Name_to_segment name_to_segment;
3224   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3225        p != this->phdrs_elements_->end();
3226        ++p)
3227     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3228
3229   // Walk through the output sections and attach them to segments.
3230   // Output sections in the script which do not list segments are
3231   // attached to the same set of segments as the immediately preceding
3232   // output section.
3233   
3234   String_list* phdr_names = NULL;
3235   bool load_segments_only = false;
3236   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3237        p != this->sections_elements_->end();
3238        ++p)
3239     {
3240       bool orphan;
3241       String_list* old_phdr_names = phdr_names;
3242       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3243       if (os == NULL)
3244         continue;
3245
3246       if (phdr_names == NULL)
3247         {
3248           gold_error(_("allocated section not in any segment"));
3249           continue;
3250         }
3251
3252       // We see a list of segments names.  Disable PT_LOAD segment only
3253       // filtering.
3254       if (old_phdr_names != phdr_names)
3255         load_segments_only = false;
3256                 
3257       // If this is an orphan section--one that was not explicitly
3258       // mentioned in the linker script--then it should not inherit
3259       // any segment type other than PT_LOAD.  Otherwise, e.g., the
3260       // PT_INTERP segment will pick up following orphan sections,
3261       // which does not make sense.  If this is not an orphan section,
3262       // we trust the linker script.
3263       if (orphan)
3264         {
3265           // Enable PT_LOAD segments only filtering until we see another
3266           // list of segment names.
3267           load_segments_only = true;
3268         }
3269
3270       bool in_load_segment = false;
3271       for (String_list::const_iterator q = phdr_names->begin();
3272            q != phdr_names->end();
3273            ++q)
3274         {
3275           Name_to_segment::const_iterator r = name_to_segment.find(*q);
3276           if (r == name_to_segment.end())
3277             gold_error(_("no segment %s"), q->c_str());
3278           else
3279             {
3280               if (load_segments_only
3281                   && r->second->type() != elfcpp::PT_LOAD)
3282                 continue;
3283
3284               elfcpp::Elf_Word seg_flags =
3285                 Layout::section_flags_to_segment(os->flags());
3286               r->second->add_output_section(os, seg_flags);
3287
3288               if (r->second->type() == elfcpp::PT_LOAD)
3289                 {
3290                   if (in_load_segment)
3291                     gold_error(_("section in two PT_LOAD segments"));
3292                   in_load_segment = true;
3293                 }
3294             }
3295         }
3296
3297       if (!in_load_segment)
3298         gold_error(_("allocated section not in any PT_LOAD segment"));
3299     }
3300 }
3301
3302 // Set the addresses for segments created from a PHDRS clause.  Return
3303 // the segment which should hold the file header and program headers,
3304 // if any.
3305
3306 Output_segment*
3307 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3308 {
3309   Output_segment* load_seg = NULL;
3310   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3311        p != this->phdrs_elements_->end();
3312        ++p)
3313     {
3314       // Note that we have to set the flags after adding the output
3315       // sections to the segment, as adding an output segment can
3316       // change the flags.
3317       (*p)->set_flags_if_valid();
3318
3319       Output_segment* oseg = (*p)->segment();
3320
3321       if (oseg->type() != elfcpp::PT_LOAD)
3322         {
3323           // The addresses of non-PT_LOAD segments are set from the
3324           // PT_LOAD segments.
3325           if ((*p)->has_load_address())
3326             gold_error(_("may only specify load address for PT_LOAD segment"));
3327           continue;
3328         }
3329
3330       // The output sections should have addresses from the SECTIONS
3331       // clause.  The addresses don't have to be in order, so find the
3332       // one with the lowest load address.  Use that to set the
3333       // address of the segment.
3334
3335       Output_section* osec = oseg->section_with_lowest_load_address();
3336       if (osec == NULL)
3337         {
3338           oseg->set_addresses(0, 0);
3339           continue;
3340         }
3341
3342       uint64_t vma = osec->address();
3343       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3344
3345       // Override the load address of the section with the load
3346       // address specified for the segment.
3347       if ((*p)->has_load_address())
3348         {
3349           if (osec->has_load_address())
3350             gold_warning(_("PHDRS load address overrides "
3351                            "section %s load address"),
3352                          osec->name());
3353
3354           lma = (*p)->load_address();
3355         }
3356
3357       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3358       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3359         {
3360           // We could support this if we wanted to.
3361           gold_error(_("using only one of FILEHDR and PHDRS is "
3362                        "not currently supported"));
3363         }
3364       if (headers)
3365         {
3366           size_t sizeof_headers = this->total_header_size(layout);
3367           uint64_t subtract = this->header_size_adjustment(lma,
3368                                                            sizeof_headers);
3369           if (lma >= subtract && vma >= subtract)
3370             {
3371               lma -= subtract;
3372               vma -= subtract;
3373             }
3374           else
3375             {
3376               gold_error(_("sections loaded on first page without room "
3377                            "for file and program headers "
3378                            "are not supported"));
3379             }
3380
3381           if (load_seg != NULL)
3382             gold_error(_("using FILEHDR and PHDRS on more than one "
3383                          "PT_LOAD segment is not currently supported"));
3384           load_seg = oseg;
3385         }
3386
3387       oseg->set_addresses(vma, lma);
3388     }
3389
3390   return load_seg;
3391 }
3392
3393 // Add the file header and segment headers to non-load segments
3394 // specified in the PHDRS clause.
3395
3396 void
3397 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3398                                       Output_data* segment_headers)
3399 {
3400   gold_assert(this->saw_phdrs_clause());
3401   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3402        p != this->phdrs_elements_->end();
3403        ++p)
3404     {
3405       if ((*p)->type() != elfcpp::PT_LOAD)
3406         {
3407           if ((*p)->includes_phdrs())
3408             (*p)->segment()->add_initial_output_data(segment_headers);
3409           if ((*p)->includes_filehdr())
3410             (*p)->segment()->add_initial_output_data(file_header);
3411         }
3412     }
3413 }
3414
3415 // Look for an output section by name and return the address, the load
3416 // address, the alignment, and the size.  This is used when an
3417 // expression refers to an output section which was not actually
3418 // created.  This returns true if the section was found, false
3419 // otherwise.
3420
3421 bool
3422 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3423                                          uint64_t* load_address,
3424                                          uint64_t* addralign,
3425                                          uint64_t* size) const
3426 {
3427   if (!this->saw_sections_clause_)
3428     return false;
3429   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3430        p != this->sections_elements_->end();
3431        ++p)
3432     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3433                                       size))
3434       return true;
3435   return false;
3436 }
3437
3438 // Release all Output_segments.  This remove all pointers to all
3439 // Output_segments.
3440
3441 void
3442 Script_sections::release_segments()
3443 {
3444   if (this->saw_phdrs_clause())
3445     {
3446       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3447            p != this->phdrs_elements_->end();
3448            ++p)
3449         (*p)->release_segment();
3450     }
3451 }
3452
3453 // Print the SECTIONS clause to F for debugging.
3454
3455 void
3456 Script_sections::print(FILE* f) const
3457 {
3458   if (!this->saw_sections_clause_)
3459     return;
3460
3461   fprintf(f, "SECTIONS {\n");
3462
3463   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3464        p != this->sections_elements_->end();
3465        ++p)
3466     (*p)->print(f);
3467
3468   fprintf(f, "}\n");
3469
3470   if (this->phdrs_elements_ != NULL)
3471     {
3472       fprintf(f, "PHDRS {\n");
3473       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3474            p != this->phdrs_elements_->end();
3475            ++p)
3476         (*p)->print(f);
3477       fprintf(f, "}\n");
3478     }
3479 }
3480
3481 } // End namespace gold.