2010-09-28 Sriraman Tallam <tmsriram@google.com>
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51                 Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_vma_offset_(0),
57       current_lma_offset_(0),
58       vma_sections_(),
59       lma_sections_()
60   { }
61
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86             && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88
89   Expression*
90   get_current_vma_address(void) const
91   {
92     return
93       script_exp_binary_add(this->start_,
94                             script_exp_integer(this->current_vma_offset_));
95   }
96   
97   Expression*
98   get_current_lma_address(void) const
99   {
100     return
101       script_exp_binary_add(this->start_,
102                             script_exp_integer(this->current_lma_offset_));
103   }
104   
105   void
106   increment_vma_offset(std::string section_name, uint64_t amount,
107                        const Symbol_table* symtab, const Layout* layout)
108   {
109     this->current_vma_offset_ += amount;
110
111     if (this->current_vma_offset_
112         > this->length_->eval(symtab, layout, false))
113       gold_error (_("section %s overflows end of region %s"),
114                   section_name.c_str(), this->name_.c_str());
115   }
116   
117   void
118   increment_lma_offset(std::string section_name, uint64_t amount,
119                        const Symbol_table* symtab, const Layout* layout)
120   {
121     this->current_lma_offset_ += amount;
122
123     if (this->current_lma_offset_
124         > this->length_->eval(symtab, layout, false))
125       gold_error (_("section %s overflows end of region %s (based on load address)"),
126                   section_name.c_str(), this->name_.c_str());
127   }
128
129   void
130   add_section(Output_section_definition* sec, bool vma)
131   {
132     if (vma)
133       this->vma_sections_.push_back(sec);
134     else
135       this->lma_sections_.push_back(sec);
136   }
137
138   typedef std::vector<Output_section_definition*> Section_list;
139
140   // Return the start of the list of sections
141   // whose VMAs are taken from this region.
142   Section_list::const_iterator
143   get_vma_section_list_start(void) const
144   { return this->vma_sections_.begin(); }
145
146   // Return the start of the list of sections
147   // whose LMAs are taken from this region.
148   Section_list::const_iterator
149   get_lma_section_list_start(void) const
150   { return this->lma_sections_.begin(); }
151
152   // Return the end of the list of sections
153   // whose VMAs are taken from this region.
154   Section_list::const_iterator
155   get_vma_section_list_end(void) const
156   { return this->vma_sections_.end(); }
157
158   // Return the end of the list of sections
159   // whose LMAs are taken from this region.
160   Section_list::const_iterator
161   get_lma_section_list_end(void) const
162   { return this->lma_sections_.end(); }
163
164  private:
165
166   std::string name_;
167   unsigned int attributes_;
168   Expression* start_;
169   Expression* length_;
170   uint64_t current_vma_offset_;
171   uint64_t current_lma_offset_;
172   // A list of sections whose VMAs are set inside this region.
173   Section_list vma_sections_;
174   // A list of sections whose LMAs are set inside this region.
175   Section_list lma_sections_;
176 };
177
178 // Print a memory region.
179
180 void
181 Memory_region::print(FILE* f) const
182 {
183   fprintf(f, "  %s", this->name_.c_str());
184
185   unsigned int attrs = this->attributes_;
186   if (attrs != 0)
187     {
188       fprintf(f, " (");
189       do
190         {
191           switch (attrs & - attrs)
192             {
193             case MEM_EXECUTABLE:  fputc('x', f); break;
194             case MEM_WRITEABLE:   fputc('w', f); break;
195             case MEM_READABLE:    fputc('r', f); break;
196             case MEM_ALLOCATABLE: fputc('a', f); break;
197             case MEM_INITIALIZED: fputc('i', f); break;
198             default:
199               gold_unreachable();
200             }
201           attrs &= ~ (attrs & - attrs);
202         }
203       while (attrs != 0);
204       fputc(')', f);
205     }
206
207   fprintf(f, " : origin = ");
208   this->start_->print(f);
209   fprintf(f, ", length = ");
210   this->length_->print(f);
211   fprintf(f, "\n");
212 }
213
214 // Manage orphan sections.  This is intended to be largely compatible
215 // with the GNU linker.  The Linux kernel implicitly relies on
216 // something similar to the GNU linker's orphan placement.  We
217 // originally used a simpler scheme here, but it caused the kernel
218 // build to fail, and was also rather inefficient.
219
220 class Orphan_section_placement
221 {
222  private:
223   typedef Script_sections::Elements_iterator Elements_iterator;
224
225  public:
226   Orphan_section_placement();
227
228   // Handle an output section during initialization of this mapping.
229   void
230   output_section_init(const std::string& name, Output_section*,
231                       Elements_iterator location);
232
233   // Initialize the last location.
234   void
235   last_init(Elements_iterator location);
236
237   // Set *PWHERE to the address of an iterator pointing to the
238   // location to use for an orphan section.  Return true if the
239   // iterator has a value, false otherwise.
240   bool
241   find_place(Output_section*, Elements_iterator** pwhere);
242
243   // Return the iterator being used for sections at the very end of
244   // the linker script.
245   Elements_iterator
246   last_place() const;
247
248  private:
249   // The places that we specifically recognize.  This list is copied
250   // from the GNU linker.
251   enum Place_index
252   {
253     PLACE_TEXT,
254     PLACE_RODATA,
255     PLACE_DATA,
256     PLACE_TLS,
257     PLACE_TLS_BSS,
258     PLACE_BSS,
259     PLACE_REL,
260     PLACE_INTERP,
261     PLACE_NONALLOC,
262     PLACE_LAST,
263     PLACE_MAX
264   };
265
266   // The information we keep for a specific place.
267   struct Place
268   {
269     // The name of sections for this place.
270     const char* name;
271     // Whether we have a location for this place.
272     bool have_location;
273     // The iterator for this place.
274     Elements_iterator location;
275   };
276
277   // Initialize one place element.
278   void
279   initialize_place(Place_index, const char*);
280
281   // The places.
282   Place places_[PLACE_MAX];
283   // True if this is the first call to output_section_init.
284   bool first_init_;
285 };
286
287 // Initialize Orphan_section_placement.
288
289 Orphan_section_placement::Orphan_section_placement()
290   : first_init_(true)
291 {
292   this->initialize_place(PLACE_TEXT, ".text");
293   this->initialize_place(PLACE_RODATA, ".rodata");
294   this->initialize_place(PLACE_DATA, ".data");
295   this->initialize_place(PLACE_TLS, NULL);
296   this->initialize_place(PLACE_TLS_BSS, NULL);
297   this->initialize_place(PLACE_BSS, ".bss");
298   this->initialize_place(PLACE_REL, NULL);
299   this->initialize_place(PLACE_INTERP, ".interp");
300   this->initialize_place(PLACE_NONALLOC, NULL);
301   this->initialize_place(PLACE_LAST, NULL);
302 }
303
304 // Initialize one place element.
305
306 void
307 Orphan_section_placement::initialize_place(Place_index index, const char* name)
308 {
309   this->places_[index].name = name;
310   this->places_[index].have_location = false;
311 }
312
313 // While initializing the Orphan_section_placement information, this
314 // is called once for each output section named in the linker script.
315 // If we found an output section during the link, it will be passed in
316 // OS.
317
318 void
319 Orphan_section_placement::output_section_init(const std::string& name,
320                                               Output_section* os,
321                                               Elements_iterator location)
322 {
323   bool first_init = this->first_init_;
324   this->first_init_ = false;
325
326   for (int i = 0; i < PLACE_MAX; ++i)
327     {
328       if (this->places_[i].name != NULL && this->places_[i].name == name)
329         {
330           if (this->places_[i].have_location)
331             {
332               // We have already seen a section with this name.
333               return;
334             }
335
336           this->places_[i].location = location;
337           this->places_[i].have_location = true;
338
339           // If we just found the .bss section, restart the search for
340           // an unallocated section.  This follows the GNU linker's
341           // behaviour.
342           if (i == PLACE_BSS)
343             this->places_[PLACE_NONALLOC].have_location = false;
344
345           return;
346         }
347     }
348
349   // Relocation sections.
350   if (!this->places_[PLACE_REL].have_location
351       && os != NULL
352       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
353       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
354     {
355       this->places_[PLACE_REL].location = location;
356       this->places_[PLACE_REL].have_location = true;
357     }
358
359   // We find the location for unallocated sections by finding the
360   // first debugging or comment section after the BSS section (if
361   // there is one).
362   if (!this->places_[PLACE_NONALLOC].have_location
363       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
364     {
365       // We add orphan sections after the location in PLACES_.  We
366       // want to store unallocated sections before LOCATION.  If this
367       // is the very first section, we can't use it.
368       if (!first_init)
369         {
370           --location;
371           this->places_[PLACE_NONALLOC].location = location;
372           this->places_[PLACE_NONALLOC].have_location = true;
373         }
374     }
375 }
376
377 // Initialize the last location.
378
379 void
380 Orphan_section_placement::last_init(Elements_iterator location)
381 {
382   this->places_[PLACE_LAST].location = location;
383   this->places_[PLACE_LAST].have_location = true;
384 }
385
386 // Set *PWHERE to the address of an iterator pointing to the location
387 // to use for an orphan section.  Return true if the iterator has a
388 // value, false otherwise.
389
390 bool
391 Orphan_section_placement::find_place(Output_section* os,
392                                      Elements_iterator** pwhere)
393 {
394   // Figure out where OS should go.  This is based on the GNU linker
395   // code.  FIXME: The GNU linker handles small data sections
396   // specially, but we don't.
397   elfcpp::Elf_Word type = os->type();
398   elfcpp::Elf_Xword flags = os->flags();
399   Place_index index;
400   if ((flags & elfcpp::SHF_ALLOC) == 0
401       && !Layout::is_debug_info_section(os->name()))
402     index = PLACE_NONALLOC;
403   else if ((flags & elfcpp::SHF_ALLOC) == 0)
404     index = PLACE_LAST;
405   else if (type == elfcpp::SHT_NOTE)
406     index = PLACE_INTERP;
407   else if ((flags & elfcpp::SHF_TLS) != 0)
408     {
409       if (type == elfcpp::SHT_NOBITS)
410         index = PLACE_TLS_BSS;
411       else
412         index = PLACE_TLS;
413     }
414   else if (type == elfcpp::SHT_NOBITS)
415     index = PLACE_BSS;
416   else if ((flags & elfcpp::SHF_WRITE) != 0)
417     index = PLACE_DATA;
418   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
419     index = PLACE_REL;
420   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
421     index = PLACE_RODATA;
422   else
423     index = PLACE_TEXT;
424
425   // If we don't have a location yet, try to find one based on a
426   // plausible ordering of sections.
427   if (!this->places_[index].have_location)
428     {
429       Place_index follow;
430       switch (index)
431         {
432         default:
433           follow = PLACE_MAX;
434           break;
435         case PLACE_RODATA:
436           follow = PLACE_TEXT;
437           break;
438         case PLACE_BSS:
439           follow = PLACE_DATA;
440           break;
441         case PLACE_REL:
442           follow = PLACE_TEXT;
443           break;
444         case PLACE_INTERP:
445           follow = PLACE_TEXT;
446           break;
447         case PLACE_TLS:
448           follow = PLACE_DATA;
449           break;
450         case PLACE_TLS_BSS:
451           follow = PLACE_TLS;
452           if (!this->places_[PLACE_TLS].have_location)
453             follow = PLACE_DATA;
454           break;
455         }
456       if (follow != PLACE_MAX && this->places_[follow].have_location)
457         {
458           // Set the location of INDEX to the location of FOLLOW.  The
459           // location of INDEX will then be incremented by the caller,
460           // so anything in INDEX will continue to be after anything
461           // in FOLLOW.
462           this->places_[index].location = this->places_[follow].location;
463           this->places_[index].have_location = true;
464         }
465     }
466
467   *pwhere = &this->places_[index].location;
468   bool ret = this->places_[index].have_location;
469
470   // The caller will set the location.
471   this->places_[index].have_location = true;
472
473   return ret;
474 }
475
476 // Return the iterator being used for sections at the very end of the
477 // linker script.
478
479 Orphan_section_placement::Elements_iterator
480 Orphan_section_placement::last_place() const
481 {
482   gold_assert(this->places_[PLACE_LAST].have_location);
483   return this->places_[PLACE_LAST].location;
484 }
485
486 // An element in a SECTIONS clause.
487
488 class Sections_element
489 {
490  public:
491   Sections_element()
492   { }
493
494   virtual ~Sections_element()
495   { }
496
497   // Return whether an output section is relro.
498   virtual bool
499   is_relro() const
500   { return false; }
501
502   // Record that an output section is relro.
503   virtual void
504   set_is_relro()
505   { }
506
507   // Create any required output sections.  The only real
508   // implementation is in Output_section_definition.
509   virtual void
510   create_sections(Layout*)
511   { }
512
513   // Add any symbol being defined to the symbol table.
514   virtual void
515   add_symbols_to_table(Symbol_table*)
516   { }
517
518   // Finalize symbols and check assertions.
519   virtual void
520   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
521   { }
522
523   // Return the output section name to use for an input file name and
524   // section name.  This only real implementation is in
525   // Output_section_definition.
526   virtual const char*
527   output_section_name(const char*, const char*, Output_section***,
528                       Script_sections::Section_type*)
529   { return NULL; }
530
531   // Initialize OSP with an output section.
532   virtual void
533   orphan_section_init(Orphan_section_placement*,
534                       Script_sections::Elements_iterator)
535   { }
536
537   // Set section addresses.  This includes applying assignments if the
538   // the expression is an absolute value.
539   virtual void
540   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
541                         uint64_t*)
542   { }
543
544   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
545   // this section is constrained, and the input sections do not match,
546   // return the constraint, and set *POSD.
547   virtual Section_constraint
548   check_constraint(Output_section_definition**)
549   { return CONSTRAINT_NONE; }
550
551   // See if this is the alternate output section for a constrained
552   // output section.  If it is, transfer the Output_section and return
553   // true.  Otherwise return false.
554   virtual bool
555   alternate_constraint(Output_section_definition*, Section_constraint)
556   { return false; }
557
558   // Get the list of segments to use for an allocated section when
559   // using a PHDRS clause.  If this is an allocated section, return
560   // the Output_section, and set *PHDRS_LIST (the first parameter) to
561   // the list of PHDRS to which it should be attached.  If the PHDRS
562   // were not specified, don't change *PHDRS_LIST.  When not returning
563   // NULL, set *ORPHAN (the second parameter) according to whether
564   // this is an orphan section--one that is not mentioned in the
565   // linker script.
566   virtual Output_section*
567   allocate_to_segment(String_list**, bool*)
568   { return NULL; }
569
570   // Look for an output section by name and return the address, the
571   // load address, the alignment, and the size.  This is used when an
572   // expression refers to an output section which was not actually
573   // created.  This returns true if the section was found, false
574   // otherwise.  The only real definition is for
575   // Output_section_definition.
576   virtual bool
577   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
578                           uint64_t*) const
579   { return false; }
580
581   // Return the associated Output_section if there is one.
582   virtual Output_section*
583   get_output_section() const
584   { return NULL; }
585
586   // Set the section's memory regions.
587   virtual void
588   set_memory_region(Memory_region*, bool)
589   { gold_error(_("Attempt to set a memory region for a non-output section")); }
590
591   // Print the element for debugging purposes.
592   virtual void
593   print(FILE* f) const = 0;
594 };
595
596 // An assignment in a SECTIONS clause outside of an output section.
597
598 class Sections_element_assignment : public Sections_element
599 {
600  public:
601   Sections_element_assignment(const char* name, size_t namelen,
602                               Expression* val, bool provide, bool hidden)
603     : assignment_(name, namelen, false, val, provide, hidden)
604   { }
605
606   // Add the symbol to the symbol table.
607   void
608   add_symbols_to_table(Symbol_table* symtab)
609   { this->assignment_.add_to_table(symtab); }
610
611   // Finalize the symbol.
612   void
613   finalize_symbols(Symbol_table* symtab, const Layout* layout,
614                    uint64_t* dot_value)
615   {
616     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
617   }
618
619   // Set the section address.  There is no section here, but if the
620   // value is absolute, we set the symbol.  This permits us to use
621   // absolute symbols when setting dot.
622   void
623   set_section_addresses(Symbol_table* symtab, Layout* layout,
624                         uint64_t* dot_value, uint64_t*, uint64_t*)
625   {
626     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
627   }
628
629   // Print for debugging.
630   void
631   print(FILE* f) const
632   {
633     fprintf(f, "  ");
634     this->assignment_.print(f);
635   }
636
637  private:
638   Symbol_assignment assignment_;
639 };
640
641 // An assignment to the dot symbol in a SECTIONS clause outside of an
642 // output section.
643
644 class Sections_element_dot_assignment : public Sections_element
645 {
646  public:
647   Sections_element_dot_assignment(Expression* val)
648     : val_(val)
649   { }
650
651   // Finalize the symbol.
652   void
653   finalize_symbols(Symbol_table* symtab, const Layout* layout,
654                    uint64_t* dot_value)
655   {
656     // We ignore the section of the result because outside of an
657     // output section definition the dot symbol is always considered
658     // to be absolute.
659     Output_section* dummy;
660     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
661                                            NULL, &dummy, NULL);
662   }
663
664   // Update the dot symbol while setting section addresses.
665   void
666   set_section_addresses(Symbol_table* symtab, Layout* layout,
667                         uint64_t* dot_value, uint64_t* dot_alignment,
668                         uint64_t* load_address)
669   {
670     Output_section* dummy;
671     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
672                                            NULL, &dummy, dot_alignment);
673     *load_address = *dot_value;
674   }
675
676   // Print for debugging.
677   void
678   print(FILE* f) const
679   {
680     fprintf(f, "  . = ");
681     this->val_->print(f);
682     fprintf(f, "\n");
683   }
684
685  private:
686   Expression* val_;
687 };
688
689 // An assertion in a SECTIONS clause outside of an output section.
690
691 class Sections_element_assertion : public Sections_element
692 {
693  public:
694   Sections_element_assertion(Expression* check, const char* message,
695                              size_t messagelen)
696     : assertion_(check, message, messagelen)
697   { }
698
699   // Check the assertion.
700   void
701   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
702   { this->assertion_.check(symtab, layout); }
703
704   // Print for debugging.
705   void
706   print(FILE* f) const
707   {
708     fprintf(f, "  ");
709     this->assertion_.print(f);
710   }
711
712  private:
713   Script_assertion assertion_;
714 };
715
716 // An element in an output section in a SECTIONS clause.
717
718 class Output_section_element
719 {
720  public:
721   // A list of input sections.
722   typedef std::list<Output_section::Input_section> Input_section_list;
723
724   Output_section_element()
725   { }
726
727   virtual ~Output_section_element()
728   { }
729
730   // Return whether this element requires an output section to exist.
731   virtual bool
732   needs_output_section() const
733   { return false; }
734
735   // Add any symbol being defined to the symbol table.
736   virtual void
737   add_symbols_to_table(Symbol_table*)
738   { }
739
740   // Finalize symbols and check assertions.
741   virtual void
742   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
743   { }
744
745   // Return whether this element matches FILE_NAME and SECTION_NAME.
746   // The only real implementation is in Output_section_element_input.
747   virtual bool
748   match_name(const char*, const char*) const
749   { return false; }
750
751   // Set section addresses.  This includes applying assignments if the
752   // the expression is an absolute value.
753   virtual void
754   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
755                         uint64_t*, uint64_t*, Output_section**, std::string*,
756                         Input_section_list*)
757   { }
758
759   // Print the element for debugging purposes.
760   virtual void
761   print(FILE* f) const = 0;
762
763  protected:
764   // Return a fill string that is LENGTH bytes long, filling it with
765   // FILL.
766   std::string
767   get_fill_string(const std::string* fill, section_size_type length) const;
768 };
769
770 std::string
771 Output_section_element::get_fill_string(const std::string* fill,
772                                         section_size_type length) const
773 {
774   std::string this_fill;
775   this_fill.reserve(length);
776   while (this_fill.length() + fill->length() <= length)
777     this_fill += *fill;
778   if (this_fill.length() < length)
779     this_fill.append(*fill, 0, length - this_fill.length());
780   return this_fill;
781 }
782
783 // A symbol assignment in an output section.
784
785 class Output_section_element_assignment : public Output_section_element
786 {
787  public:
788   Output_section_element_assignment(const char* name, size_t namelen,
789                                     Expression* val, bool provide,
790                                     bool hidden)
791     : assignment_(name, namelen, false, val, provide, hidden)
792   { }
793
794   // Add the symbol to the symbol table.
795   void
796   add_symbols_to_table(Symbol_table* symtab)
797   { this->assignment_.add_to_table(symtab); }
798
799   // Finalize the symbol.
800   void
801   finalize_symbols(Symbol_table* symtab, const Layout* layout,
802                    uint64_t* dot_value, Output_section** dot_section)
803   {
804     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
805                                         *dot_section);
806   }
807
808   // Set the section address.  There is no section here, but if the
809   // value is absolute, we set the symbol.  This permits us to use
810   // absolute symbols when setting dot.
811   void
812   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
813                         uint64_t, uint64_t* dot_value, uint64_t*,
814                         Output_section**, std::string*, Input_section_list*)
815   {
816     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
817   }
818
819   // Print for debugging.
820   void
821   print(FILE* f) const
822   {
823     fprintf(f, "    ");
824     this->assignment_.print(f);
825   }
826
827  private:
828   Symbol_assignment assignment_;
829 };
830
831 // An assignment to the dot symbol in an output section.
832
833 class Output_section_element_dot_assignment : public Output_section_element
834 {
835  public:
836   Output_section_element_dot_assignment(Expression* val)
837     : val_(val)
838   { }
839
840   // Finalize the symbol.
841   void
842   finalize_symbols(Symbol_table* symtab, const Layout* layout,
843                    uint64_t* dot_value, Output_section** dot_section)
844   {
845     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
846                                            *dot_section, dot_section, NULL);
847   }
848
849   // Update the dot symbol while setting section addresses.
850   void
851   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
852                         uint64_t, uint64_t* dot_value, uint64_t*,
853                         Output_section**, std::string*, Input_section_list*);
854
855   // Print for debugging.
856   void
857   print(FILE* f) const
858   {
859     fprintf(f, "    . = ");
860     this->val_->print(f);
861     fprintf(f, "\n");
862   }
863
864  private:
865   Expression* val_;
866 };
867
868 // Update the dot symbol while setting section addresses.
869
870 void
871 Output_section_element_dot_assignment::set_section_addresses(
872     Symbol_table* symtab,
873     Layout* layout,
874     Output_section* output_section,
875     uint64_t,
876     uint64_t* dot_value,
877     uint64_t* dot_alignment,
878     Output_section** dot_section,
879     std::string* fill,
880     Input_section_list*)
881 {
882   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
883                                                 *dot_value, *dot_section,
884                                                 dot_section, dot_alignment);
885   if (next_dot < *dot_value)
886     gold_error(_("dot may not move backward"));
887   if (next_dot > *dot_value && output_section != NULL)
888     {
889       section_size_type length = convert_to_section_size_type(next_dot
890                                                               - *dot_value);
891       Output_section_data* posd;
892       if (fill->empty())
893         posd = new Output_data_zero_fill(length, 0);
894       else
895         {
896           std::string this_fill = this->get_fill_string(fill, length);
897           posd = new Output_data_const(this_fill, 0);
898         }
899       output_section->add_output_section_data(posd);
900       layout->new_output_section_data_from_script(posd);
901     }
902   *dot_value = next_dot;
903 }
904
905 // An assertion in an output section.
906
907 class Output_section_element_assertion : public Output_section_element
908 {
909  public:
910   Output_section_element_assertion(Expression* check, const char* message,
911                                    size_t messagelen)
912     : assertion_(check, message, messagelen)
913   { }
914
915   void
916   print(FILE* f) const
917   {
918     fprintf(f, "    ");
919     this->assertion_.print(f);
920   }
921
922  private:
923   Script_assertion assertion_;
924 };
925
926 // We use a special instance of Output_section_data to handle BYTE,
927 // SHORT, etc.  This permits forward references to symbols in the
928 // expressions.
929
930 class Output_data_expression : public Output_section_data
931 {
932  public:
933   Output_data_expression(int size, bool is_signed, Expression* val,
934                          const Symbol_table* symtab, const Layout* layout,
935                          uint64_t dot_value, Output_section* dot_section)
936     : Output_section_data(size, 0, true),
937       is_signed_(is_signed), val_(val), symtab_(symtab),
938       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
939   { }
940
941  protected:
942   // Write the data to the output file.
943   void
944   do_write(Output_file*);
945
946   // Write the data to a buffer.
947   void
948   do_write_to_buffer(unsigned char*);
949
950   // Write to a map file.
951   void
952   do_print_to_mapfile(Mapfile* mapfile) const
953   { mapfile->print_output_data(this, _("** expression")); }
954
955  private:
956   template<bool big_endian>
957   void
958   endian_write_to_buffer(uint64_t, unsigned char*);
959
960   bool is_signed_;
961   Expression* val_;
962   const Symbol_table* symtab_;
963   const Layout* layout_;
964   uint64_t dot_value_;
965   Output_section* dot_section_;
966 };
967
968 // Write the data element to the output file.
969
970 void
971 Output_data_expression::do_write(Output_file* of)
972 {
973   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
974   this->write_to_buffer(view);
975   of->write_output_view(this->offset(), this->data_size(), view);
976 }
977
978 // Write the data element to a buffer.
979
980 void
981 Output_data_expression::do_write_to_buffer(unsigned char* buf)
982 {
983   Output_section* dummy;
984   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
985                                            true, this->dot_value_,
986                                            this->dot_section_, &dummy, NULL);
987
988   if (parameters->target().is_big_endian())
989     this->endian_write_to_buffer<true>(val, buf);
990   else
991     this->endian_write_to_buffer<false>(val, buf);
992 }
993
994 template<bool big_endian>
995 void
996 Output_data_expression::endian_write_to_buffer(uint64_t val,
997                                                unsigned char* buf)
998 {
999   switch (this->data_size())
1000     {
1001     case 1:
1002       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1003       break;
1004     case 2:
1005       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1006       break;
1007     case 4:
1008       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1009       break;
1010     case 8:
1011       if (parameters->target().get_size() == 32)
1012         {
1013           val &= 0xffffffff;
1014           if (this->is_signed_ && (val & 0x80000000) != 0)
1015             val |= 0xffffffff00000000LL;
1016         }
1017       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1018       break;
1019     default:
1020       gold_unreachable();
1021     }
1022 }
1023
1024 // A data item in an output section.
1025
1026 class Output_section_element_data : public Output_section_element
1027 {
1028  public:
1029   Output_section_element_data(int size, bool is_signed, Expression* val)
1030     : size_(size), is_signed_(is_signed), val_(val)
1031   { }
1032
1033   // If there is a data item, then we must create an output section.
1034   bool
1035   needs_output_section() const
1036   { return true; }
1037
1038   // Finalize symbols--we just need to update dot.
1039   void
1040   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1041                    Output_section**)
1042   { *dot_value += this->size_; }
1043
1044   // Store the value in the section.
1045   void
1046   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1047                         uint64_t* dot_value, uint64_t*, Output_section**,
1048                         std::string*, Input_section_list*);
1049
1050   // Print for debugging.
1051   void
1052   print(FILE*) const;
1053
1054  private:
1055   // The size in bytes.
1056   int size_;
1057   // Whether the value is signed.
1058   bool is_signed_;
1059   // The value.
1060   Expression* val_;
1061 };
1062
1063 // Store the value in the section.
1064
1065 void
1066 Output_section_element_data::set_section_addresses(
1067     Symbol_table* symtab,
1068     Layout* layout,
1069     Output_section* os,
1070     uint64_t,
1071     uint64_t* dot_value,
1072     uint64_t*,
1073     Output_section** dot_section,
1074     std::string*,
1075     Input_section_list*)
1076 {
1077   gold_assert(os != NULL);
1078   Output_data_expression* expression =
1079     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1080                                symtab, layout, *dot_value, *dot_section);
1081   os->add_output_section_data(expression);
1082   layout->new_output_section_data_from_script(expression);
1083   *dot_value += this->size_;
1084 }
1085
1086 // Print for debugging.
1087
1088 void
1089 Output_section_element_data::print(FILE* f) const
1090 {
1091   const char* s;
1092   switch (this->size_)
1093     {
1094     case 1:
1095       s = "BYTE";
1096       break;
1097     case 2:
1098       s = "SHORT";
1099       break;
1100     case 4:
1101       s = "LONG";
1102       break;
1103     case 8:
1104       if (this->is_signed_)
1105         s = "SQUAD";
1106       else
1107         s = "QUAD";
1108       break;
1109     default:
1110       gold_unreachable();
1111     }
1112   fprintf(f, "    %s(", s);
1113   this->val_->print(f);
1114   fprintf(f, ")\n");
1115 }
1116
1117 // A fill value setting in an output section.
1118
1119 class Output_section_element_fill : public Output_section_element
1120 {
1121  public:
1122   Output_section_element_fill(Expression* val)
1123     : val_(val)
1124   { }
1125
1126   // Update the fill value while setting section addresses.
1127   void
1128   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1129                         uint64_t, uint64_t* dot_value, uint64_t*,
1130                         Output_section** dot_section,
1131                         std::string* fill, Input_section_list*)
1132   {
1133     Output_section* fill_section;
1134     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1135                                                   *dot_value, *dot_section,
1136                                                   &fill_section, NULL);
1137     if (fill_section != NULL)
1138       gold_warning(_("fill value is not absolute"));
1139     // FIXME: The GNU linker supports fill values of arbitrary length.
1140     unsigned char fill_buff[4];
1141     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1142     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1143   }
1144
1145   // Print for debugging.
1146   void
1147   print(FILE* f) const
1148   {
1149     fprintf(f, "    FILL(");
1150     this->val_->print(f);
1151     fprintf(f, ")\n");
1152   }
1153
1154  private:
1155   // The new fill value.
1156   Expression* val_;
1157 };
1158
1159 // An input section specification in an output section
1160
1161 class Output_section_element_input : public Output_section_element
1162 {
1163  public:
1164   Output_section_element_input(const Input_section_spec* spec, bool keep);
1165
1166   // Finalize symbols--just update the value of the dot symbol.
1167   void
1168   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1169                    Output_section** dot_section)
1170   {
1171     *dot_value = this->final_dot_value_;
1172     *dot_section = this->final_dot_section_;
1173   }
1174
1175   // See whether we match FILE_NAME and SECTION_NAME as an input
1176   // section.
1177   bool
1178   match_name(const char* file_name, const char* section_name) const;
1179
1180   // Set the section address.
1181   void
1182   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1183                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1184                         Output_section**, std::string* fill,
1185                         Input_section_list*);
1186
1187   // Print for debugging.
1188   void
1189   print(FILE* f) const;
1190
1191  private:
1192   // An input section pattern.
1193   struct Input_section_pattern
1194   {
1195     std::string pattern;
1196     bool pattern_is_wildcard;
1197     Sort_wildcard sort;
1198
1199     Input_section_pattern(const char* patterna, size_t patternlena,
1200                           Sort_wildcard sorta)
1201       : pattern(patterna, patternlena),
1202         pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1203         sort(sorta)
1204     { }
1205   };
1206
1207   typedef std::vector<Input_section_pattern> Input_section_patterns;
1208
1209   // Filename_exclusions is a pair of filename pattern and a bool
1210   // indicating whether the filename is a wildcard.
1211   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1212
1213   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1214   // indicates whether this is a wildcard pattern.
1215   static inline bool
1216   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1217   {
1218     return (is_wildcard_pattern
1219             ? fnmatch(pattern, string, 0) == 0
1220             : strcmp(string, pattern) == 0);
1221   }
1222
1223   // See if we match a file name.
1224   bool
1225   match_file_name(const char* file_name) const;
1226
1227   // The file name pattern.  If this is the empty string, we match all
1228   // files.
1229   std::string filename_pattern_;
1230   // Whether the file name pattern is a wildcard.
1231   bool filename_is_wildcard_;
1232   // How the file names should be sorted.  This may only be
1233   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1234   Sort_wildcard filename_sort_;
1235   // The list of file names to exclude.
1236   Filename_exclusions filename_exclusions_;
1237   // The list of input section patterns.
1238   Input_section_patterns input_section_patterns_;
1239   // Whether to keep this section when garbage collecting.
1240   bool keep_;
1241   // The value of dot after including all matching sections.
1242   uint64_t final_dot_value_;
1243   // The section where dot is defined after including all matching
1244   // sections.
1245   Output_section* final_dot_section_;
1246 };
1247
1248 // Construct Output_section_element_input.  The parser records strings
1249 // as pointers into a copy of the script file, which will go away when
1250 // parsing is complete.  We make sure they are in std::string objects.
1251
1252 Output_section_element_input::Output_section_element_input(
1253     const Input_section_spec* spec,
1254     bool keep)
1255   : filename_pattern_(),
1256     filename_is_wildcard_(false),
1257     filename_sort_(spec->file.sort),
1258     filename_exclusions_(),
1259     input_section_patterns_(),
1260     keep_(keep),
1261     final_dot_value_(0),
1262     final_dot_section_(NULL)
1263 {
1264   // The filename pattern "*" is common, and matches all files.  Turn
1265   // it into the empty string.
1266   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1267     this->filename_pattern_.assign(spec->file.name.value,
1268                                    spec->file.name.length);
1269   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1270
1271   if (spec->input_sections.exclude != NULL)
1272     {
1273       for (String_list::const_iterator p =
1274              spec->input_sections.exclude->begin();
1275            p != spec->input_sections.exclude->end();
1276            ++p)
1277         {
1278           bool is_wildcard = is_wildcard_string((*p).c_str());
1279           this->filename_exclusions_.push_back(std::make_pair(*p,
1280                                                               is_wildcard));
1281         }
1282     }
1283
1284   if (spec->input_sections.sections != NULL)
1285     {
1286       Input_section_patterns& isp(this->input_section_patterns_);
1287       for (String_sort_list::const_iterator p =
1288              spec->input_sections.sections->begin();
1289            p != spec->input_sections.sections->end();
1290            ++p)
1291         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1292                                             p->sort));
1293     }
1294 }
1295
1296 // See whether we match FILE_NAME.
1297
1298 bool
1299 Output_section_element_input::match_file_name(const char* file_name) const
1300 {
1301   if (!this->filename_pattern_.empty())
1302     {
1303       // If we were called with no filename, we refuse to match a
1304       // pattern which requires a file name.
1305       if (file_name == NULL)
1306         return false;
1307
1308       if (!match(file_name, this->filename_pattern_.c_str(),
1309                  this->filename_is_wildcard_))
1310         return false;
1311     }
1312
1313   if (file_name != NULL)
1314     {
1315       // Now we have to see whether FILE_NAME matches one of the
1316       // exclusion patterns, if any.
1317       for (Filename_exclusions::const_iterator p =
1318              this->filename_exclusions_.begin();
1319            p != this->filename_exclusions_.end();
1320            ++p)
1321         {
1322           if (match(file_name, p->first.c_str(), p->second))
1323             return false;
1324         }
1325     }
1326
1327   return true;
1328 }
1329
1330 // See whether we match FILE_NAME and SECTION_NAME.
1331
1332 bool
1333 Output_section_element_input::match_name(const char* file_name,
1334                                          const char* section_name) const
1335 {
1336   if (!this->match_file_name(file_name))
1337     return false;
1338
1339   // If there are no section name patterns, then we match.
1340   if (this->input_section_patterns_.empty())
1341     return true;
1342
1343   // See whether we match the section name patterns.
1344   for (Input_section_patterns::const_iterator p =
1345          this->input_section_patterns_.begin();
1346        p != this->input_section_patterns_.end();
1347        ++p)
1348     {
1349       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1350         return true;
1351     }
1352
1353   // We didn't match any section names, so we didn't match.
1354   return false;
1355 }
1356
1357 // Information we use to sort the input sections.
1358
1359 class Input_section_info
1360 {
1361  public:
1362   Input_section_info(const Output_section::Input_section& input_section)
1363     : input_section_(input_section), section_name_(),
1364       size_(0), addralign_(1)
1365   { }
1366
1367   // Return the simple input section.
1368   const Output_section::Input_section&
1369   input_section() const
1370   { return this->input_section_; }
1371
1372   // Return the object.
1373   Relobj*
1374   relobj() const
1375   { return this->input_section_.relobj(); }
1376
1377   // Return the section index.
1378   unsigned int
1379   shndx()
1380   { return this->input_section_.shndx(); }
1381
1382   // Return the section name.
1383   const std::string&
1384   section_name() const
1385   { return this->section_name_; }
1386
1387   // Set the section name.
1388   void
1389   set_section_name(const std::string name)
1390   { this->section_name_ = name; }
1391
1392   // Return the section size.
1393   uint64_t
1394   size() const
1395   { return this->size_; }
1396
1397   // Set the section size.
1398   void
1399   set_size(uint64_t size)
1400   { this->size_ = size; }
1401
1402   // Return the address alignment.
1403   uint64_t
1404   addralign() const
1405   { return this->addralign_; }
1406
1407   // Set the address alignment.
1408   void
1409   set_addralign(uint64_t addralign)
1410   { this->addralign_ = addralign; }
1411
1412  private:
1413   // Input section, can be a relaxed section.
1414   Output_section::Input_section input_section_;
1415   // Name of the section. 
1416   std::string section_name_;
1417   // Section size.
1418   uint64_t size_;
1419   // Address alignment.
1420   uint64_t addralign_;
1421 };
1422
1423 // A class to sort the input sections.
1424
1425 class Input_section_sorter
1426 {
1427  public:
1428   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1429     : filename_sort_(filename_sort), section_sort_(section_sort)
1430   { }
1431
1432   bool
1433   operator()(const Input_section_info&, const Input_section_info&) const;
1434
1435  private:
1436   Sort_wildcard filename_sort_;
1437   Sort_wildcard section_sort_;
1438 };
1439
1440 bool
1441 Input_section_sorter::operator()(const Input_section_info& isi1,
1442                                  const Input_section_info& isi2) const
1443 {
1444   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1445       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1446       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1447           && isi1.addralign() == isi2.addralign()))
1448     {
1449       if (isi1.section_name() != isi2.section_name())
1450         return isi1.section_name() < isi2.section_name();
1451     }
1452   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1453       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1454       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1455     {
1456       if (isi1.addralign() != isi2.addralign())
1457         return isi1.addralign() < isi2.addralign();
1458     }
1459   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1460     {
1461       if (isi1.relobj()->name() != isi2.relobj()->name())
1462         return (isi1.relobj()->name() < isi2.relobj()->name());
1463     }
1464
1465   // Otherwise we leave them in the same order.
1466   return false;
1467 }
1468
1469 // Set the section address.  Look in INPUT_SECTIONS for sections which
1470 // match this spec, sort them as specified, and add them to the output
1471 // section.
1472
1473 void
1474 Output_section_element_input::set_section_addresses(
1475     Symbol_table*,
1476     Layout* layout,
1477     Output_section* output_section,
1478     uint64_t subalign,
1479     uint64_t* dot_value,
1480     uint64_t*,
1481     Output_section** dot_section,
1482     std::string* fill,
1483     Input_section_list* input_sections)
1484 {
1485   // We build a list of sections which match each
1486   // Input_section_pattern.
1487
1488   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1489   size_t input_pattern_count = this->input_section_patterns_.size();
1490   if (input_pattern_count == 0)
1491     input_pattern_count = 1;
1492   Matching_sections matching_sections(input_pattern_count);
1493
1494   // Look through the list of sections for this output section.  Add
1495   // each one which matches to one of the elements of
1496   // MATCHING_SECTIONS.
1497
1498   Input_section_list::iterator p = input_sections->begin();
1499   while (p != input_sections->end())
1500     {
1501       Relobj* relobj = p->relobj();
1502       unsigned int shndx = p->shndx();      
1503       Input_section_info isi(*p);
1504
1505       // Calling section_name and section_addralign is not very
1506       // efficient.
1507
1508       // Lock the object so that we can get information about the
1509       // section.  This is OK since we know we are single-threaded
1510       // here.
1511       {
1512         const Task* task = reinterpret_cast<const Task*>(-1);
1513         Task_lock_obj<Object> tl(task, relobj);
1514
1515         isi.set_section_name(relobj->section_name(shndx));
1516         if (p->is_relaxed_input_section())
1517           {
1518             // We use current data size because relxed section sizes may not
1519             // have finalized yet.
1520             isi.set_size(p->relaxed_input_section()->current_data_size());
1521             isi.set_addralign(p->relaxed_input_section()->addralign());
1522           }
1523         else
1524           {
1525             isi.set_size(relobj->section_size(shndx));
1526             isi.set_addralign(relobj->section_addralign(shndx));
1527           }
1528       }
1529
1530       if (!this->match_file_name(relobj->name().c_str()))
1531         ++p;
1532       else if (this->input_section_patterns_.empty())
1533         {
1534           matching_sections[0].push_back(isi);
1535           p = input_sections->erase(p);
1536         }
1537       else
1538         {
1539           size_t i;
1540           for (i = 0; i < input_pattern_count; ++i)
1541             {
1542               const Input_section_pattern&
1543                 isp(this->input_section_patterns_[i]);
1544               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1545                         isp.pattern_is_wildcard))
1546                 break;
1547             }
1548
1549           if (i >= this->input_section_patterns_.size())
1550             ++p;
1551           else
1552             {
1553               matching_sections[i].push_back(isi);
1554               p = input_sections->erase(p);
1555             }
1556         }
1557     }
1558
1559   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1560   // using a stable sort so that we get the default order when
1561   // sections are otherwise equal.  Add each input section to the
1562   // output section.
1563
1564   uint64_t dot = *dot_value;
1565   for (size_t i = 0; i < input_pattern_count; ++i)
1566     {
1567       if (matching_sections[i].empty())
1568         continue;
1569
1570       gold_assert(output_section != NULL);
1571
1572       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1573       if (isp.sort != SORT_WILDCARD_NONE
1574           || this->filename_sort_ != SORT_WILDCARD_NONE)
1575         std::stable_sort(matching_sections[i].begin(),
1576                          matching_sections[i].end(),
1577                          Input_section_sorter(this->filename_sort_,
1578                                               isp.sort));
1579
1580       for (std::vector<Input_section_info>::const_iterator p =
1581              matching_sections[i].begin();
1582            p != matching_sections[i].end();
1583            ++p)
1584         {
1585           // Override the original address alignment if SUBALIGN is specified
1586           // and is greater than the original alignment.  We need to make a
1587           // copy of the input section to modify the alignment.
1588           Output_section::Input_section sis(p->input_section());
1589
1590           uint64_t this_subalign = sis.addralign();
1591           if (!sis.is_input_section())
1592             sis.output_section_data()->finalize_data_size();    
1593           uint64_t data_size = sis.data_size();
1594           if (this_subalign < subalign)
1595             {
1596               this_subalign = subalign;
1597               sis.set_addralign(subalign);
1598             }
1599
1600           uint64_t address = align_address(dot, this_subalign);
1601
1602           if (address > dot && !fill->empty())
1603             {
1604               section_size_type length =
1605                 convert_to_section_size_type(address - dot);
1606               std::string this_fill = this->get_fill_string(fill, length);
1607               Output_section_data* posd = new Output_data_const(this_fill, 0);
1608               output_section->add_output_section_data(posd);
1609               layout->new_output_section_data_from_script(posd);
1610             }
1611
1612           output_section->add_script_input_section(sis);
1613           dot = address + data_size;
1614         }
1615     }
1616
1617   // An SHF_TLS/SHT_NOBITS section does not take up any
1618   // address space.
1619   if (output_section == NULL
1620       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1621       || output_section->type() != elfcpp::SHT_NOBITS)
1622     *dot_value = dot;
1623
1624   this->final_dot_value_ = *dot_value;
1625   this->final_dot_section_ = *dot_section;
1626 }
1627
1628 // Print for debugging.
1629
1630 void
1631 Output_section_element_input::print(FILE* f) const
1632 {
1633   fprintf(f, "    ");
1634
1635   if (this->keep_)
1636     fprintf(f, "KEEP(");
1637
1638   if (!this->filename_pattern_.empty())
1639     {
1640       bool need_close_paren = false;
1641       switch (this->filename_sort_)
1642         {
1643         case SORT_WILDCARD_NONE:
1644           break;
1645         case SORT_WILDCARD_BY_NAME:
1646           fprintf(f, "SORT_BY_NAME(");
1647           need_close_paren = true;
1648           break;
1649         default:
1650           gold_unreachable();
1651         }
1652
1653       fprintf(f, "%s", this->filename_pattern_.c_str());
1654
1655       if (need_close_paren)
1656         fprintf(f, ")");
1657     }
1658
1659   if (!this->input_section_patterns_.empty()
1660       || !this->filename_exclusions_.empty())
1661     {
1662       fprintf(f, "(");
1663
1664       bool need_space = false;
1665       if (!this->filename_exclusions_.empty())
1666         {
1667           fprintf(f, "EXCLUDE_FILE(");
1668           bool need_comma = false;
1669           for (Filename_exclusions::const_iterator p =
1670                  this->filename_exclusions_.begin();
1671                p != this->filename_exclusions_.end();
1672                ++p)
1673             {
1674               if (need_comma)
1675                 fprintf(f, ", ");
1676               fprintf(f, "%s", p->first.c_str());
1677               need_comma = true;
1678             }
1679           fprintf(f, ")");
1680           need_space = true;
1681         }
1682
1683       for (Input_section_patterns::const_iterator p =
1684              this->input_section_patterns_.begin();
1685            p != this->input_section_patterns_.end();
1686            ++p)
1687         {
1688           if (need_space)
1689             fprintf(f, " ");
1690
1691           int close_parens = 0;
1692           switch (p->sort)
1693             {
1694             case SORT_WILDCARD_NONE:
1695               break;
1696             case SORT_WILDCARD_BY_NAME:
1697               fprintf(f, "SORT_BY_NAME(");
1698               close_parens = 1;
1699               break;
1700             case SORT_WILDCARD_BY_ALIGNMENT:
1701               fprintf(f, "SORT_BY_ALIGNMENT(");
1702               close_parens = 1;
1703               break;
1704             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1705               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1706               close_parens = 2;
1707               break;
1708             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1709               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1710               close_parens = 2;
1711               break;
1712             default:
1713               gold_unreachable();
1714             }
1715
1716           fprintf(f, "%s", p->pattern.c_str());
1717
1718           for (int i = 0; i < close_parens; ++i)
1719             fprintf(f, ")");
1720
1721           need_space = true;
1722         }
1723
1724       fprintf(f, ")");
1725     }
1726
1727   if (this->keep_)
1728     fprintf(f, ")");
1729
1730   fprintf(f, "\n");
1731 }
1732
1733 // An output section.
1734
1735 class Output_section_definition : public Sections_element
1736 {
1737  public:
1738   typedef Output_section_element::Input_section_list Input_section_list;
1739
1740   Output_section_definition(const char* name, size_t namelen,
1741                             const Parser_output_section_header* header);
1742
1743   // Finish the output section with the information in the trailer.
1744   void
1745   finish(const Parser_output_section_trailer* trailer);
1746
1747   // Add a symbol to be defined.
1748   void
1749   add_symbol_assignment(const char* name, size_t length, Expression* value,
1750                         bool provide, bool hidden);
1751
1752   // Add an assignment to the special dot symbol.
1753   void
1754   add_dot_assignment(Expression* value);
1755
1756   // Add an assertion.
1757   void
1758   add_assertion(Expression* check, const char* message, size_t messagelen);
1759
1760   // Add a data item to the current output section.
1761   void
1762   add_data(int size, bool is_signed, Expression* val);
1763
1764   // Add a setting for the fill value.
1765   void
1766   add_fill(Expression* val);
1767
1768   // Add an input section specification.
1769   void
1770   add_input_section(const Input_section_spec* spec, bool keep);
1771
1772   // Return whether the output section is relro.
1773   bool
1774   is_relro() const
1775   { return this->is_relro_; }
1776
1777   // Record that the output section is relro.
1778   void
1779   set_is_relro()
1780   { this->is_relro_ = true; }
1781
1782   // Create any required output sections.
1783   void
1784   create_sections(Layout*);
1785
1786   // Add any symbols being defined to the symbol table.
1787   void
1788   add_symbols_to_table(Symbol_table* symtab);
1789
1790   // Finalize symbols and check assertions.
1791   void
1792   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1793
1794   // Return the output section name to use for an input file name and
1795   // section name.
1796   const char*
1797   output_section_name(const char* file_name, const char* section_name,
1798                       Output_section***, Script_sections::Section_type*);
1799
1800   // Initialize OSP with an output section.
1801   void
1802   orphan_section_init(Orphan_section_placement* osp,
1803                       Script_sections::Elements_iterator p)
1804   { osp->output_section_init(this->name_, this->output_section_, p); }
1805
1806   // Set the section address.
1807   void
1808   set_section_addresses(Symbol_table* symtab, Layout* layout,
1809                         uint64_t* dot_value, uint64_t*,
1810                         uint64_t* load_address);
1811
1812   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1813   // this section is constrained, and the input sections do not match,
1814   // return the constraint, and set *POSD.
1815   Section_constraint
1816   check_constraint(Output_section_definition** posd);
1817
1818   // See if this is the alternate output section for a constrained
1819   // output section.  If it is, transfer the Output_section and return
1820   // true.  Otherwise return false.
1821   bool
1822   alternate_constraint(Output_section_definition*, Section_constraint);
1823
1824   // Get the list of segments to use for an allocated section when
1825   // using a PHDRS clause.
1826   Output_section*
1827   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1828
1829   // Look for an output section by name and return the address, the
1830   // load address, the alignment, and the size.  This is used when an
1831   // expression refers to an output section which was not actually
1832   // created.  This returns true if the section was found, false
1833   // otherwise.
1834   bool
1835   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1836                           uint64_t*) const;
1837
1838   // Return the associated Output_section if there is one.
1839   Output_section*
1840   get_output_section() const
1841   { return this->output_section_; }
1842
1843   // Print the contents to the FILE.  This is for debugging.
1844   void
1845   print(FILE*) const;
1846
1847   // Return the output section type if specified or Script_sections::ST_NONE.
1848   Script_sections::Section_type
1849   section_type() const;
1850
1851   // Store the memory region to use.
1852   void
1853   set_memory_region(Memory_region*, bool set_vma);
1854
1855   void
1856   set_section_vma(Expression* address)
1857   { this->address_ = address; }
1858   
1859   void
1860   set_section_lma(Expression* address)
1861   { this->load_address_ = address; }
1862
1863   std::string
1864   get_section_name(void) const
1865   { return this->name_; }
1866   
1867  private:
1868   static const char*
1869   script_section_type_name(Script_section_type);
1870
1871   typedef std::vector<Output_section_element*> Output_section_elements;
1872
1873   // The output section name.
1874   std::string name_;
1875   // The address.  This may be NULL.
1876   Expression* address_;
1877   // The load address.  This may be NULL.
1878   Expression* load_address_;
1879   // The alignment.  This may be NULL.
1880   Expression* align_;
1881   // The input section alignment.  This may be NULL.
1882   Expression* subalign_;
1883   // The constraint, if any.
1884   Section_constraint constraint_;
1885   // The fill value.  This may be NULL.
1886   Expression* fill_;
1887   // The list of segments this section should go into.  This may be
1888   // NULL.
1889   String_list* phdrs_;
1890   // The list of elements defining the section.
1891   Output_section_elements elements_;
1892   // The Output_section created for this definition.  This will be
1893   // NULL if none was created.
1894   Output_section* output_section_;
1895   // The address after it has been evaluated.
1896   uint64_t evaluated_address_;
1897   // The load address after it has been evaluated.
1898   uint64_t evaluated_load_address_;
1899   // The alignment after it has been evaluated.
1900   uint64_t evaluated_addralign_;
1901   // The output section is relro.
1902   bool is_relro_;
1903   // The output section type if specified.
1904   enum Script_section_type script_section_type_;
1905 };
1906
1907 // Constructor.
1908
1909 Output_section_definition::Output_section_definition(
1910     const char* name,
1911     size_t namelen,
1912     const Parser_output_section_header* header)
1913   : name_(name, namelen),
1914     address_(header->address),
1915     load_address_(header->load_address),
1916     align_(header->align),
1917     subalign_(header->subalign),
1918     constraint_(header->constraint),
1919     fill_(NULL),
1920     phdrs_(NULL),
1921     elements_(),
1922     output_section_(NULL),
1923     evaluated_address_(0),
1924     evaluated_load_address_(0),
1925     evaluated_addralign_(0),
1926     is_relro_(false),
1927     script_section_type_(header->section_type)
1928 {
1929 }
1930
1931 // Finish an output section.
1932
1933 void
1934 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1935 {
1936   this->fill_ = trailer->fill;
1937   this->phdrs_ = trailer->phdrs;
1938 }
1939
1940 // Add a symbol to be defined.
1941
1942 void
1943 Output_section_definition::add_symbol_assignment(const char* name,
1944                                                  size_t length,
1945                                                  Expression* value,
1946                                                  bool provide,
1947                                                  bool hidden)
1948 {
1949   Output_section_element* p = new Output_section_element_assignment(name,
1950                                                                     length,
1951                                                                     value,
1952                                                                     provide,
1953                                                                     hidden);
1954   this->elements_.push_back(p);
1955 }
1956
1957 // Add an assignment to the special dot symbol.
1958
1959 void
1960 Output_section_definition::add_dot_assignment(Expression* value)
1961 {
1962   Output_section_element* p = new Output_section_element_dot_assignment(value);
1963   this->elements_.push_back(p);
1964 }
1965
1966 // Add an assertion.
1967
1968 void
1969 Output_section_definition::add_assertion(Expression* check,
1970                                          const char* message,
1971                                          size_t messagelen)
1972 {
1973   Output_section_element* p = new Output_section_element_assertion(check,
1974                                                                    message,
1975                                                                    messagelen);
1976   this->elements_.push_back(p);
1977 }
1978
1979 // Add a data item to the current output section.
1980
1981 void
1982 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1983 {
1984   Output_section_element* p = new Output_section_element_data(size, is_signed,
1985                                                               val);
1986   this->elements_.push_back(p);
1987 }
1988
1989 // Add a setting for the fill value.
1990
1991 void
1992 Output_section_definition::add_fill(Expression* val)
1993 {
1994   Output_section_element* p = new Output_section_element_fill(val);
1995   this->elements_.push_back(p);
1996 }
1997
1998 // Add an input section specification.
1999
2000 void
2001 Output_section_definition::add_input_section(const Input_section_spec* spec,
2002                                              bool keep)
2003 {
2004   Output_section_element* p = new Output_section_element_input(spec, keep);
2005   this->elements_.push_back(p);
2006 }
2007
2008 // Create any required output sections.  We need an output section if
2009 // there is a data statement here.
2010
2011 void
2012 Output_section_definition::create_sections(Layout* layout)
2013 {
2014   if (this->output_section_ != NULL)
2015     return;
2016   for (Output_section_elements::const_iterator p = this->elements_.begin();
2017        p != this->elements_.end();
2018        ++p)
2019     {
2020       if ((*p)->needs_output_section())
2021         {
2022           const char* name = this->name_.c_str();
2023           this->output_section_ =
2024             layout->make_output_section_for_script(name, this->section_type());
2025           return;
2026         }
2027     }
2028 }
2029
2030 // Add any symbols being defined to the symbol table.
2031
2032 void
2033 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2034 {
2035   for (Output_section_elements::iterator p = this->elements_.begin();
2036        p != this->elements_.end();
2037        ++p)
2038     (*p)->add_symbols_to_table(symtab);
2039 }
2040
2041 // Finalize symbols and check assertions.
2042
2043 void
2044 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2045                                             const Layout* layout,
2046                                             uint64_t* dot_value)
2047 {
2048   if (this->output_section_ != NULL)
2049     *dot_value = this->output_section_->address();
2050   else
2051     {
2052       uint64_t address = *dot_value;
2053       if (this->address_ != NULL)
2054         {
2055           Output_section* dummy;
2056           address = this->address_->eval_with_dot(symtab, layout, true,
2057                                                   *dot_value, NULL,
2058                                                   &dummy, NULL);
2059         }
2060       if (this->align_ != NULL)
2061         {
2062           Output_section* dummy;
2063           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2064                                                        *dot_value,
2065                                                        NULL,
2066                                                        &dummy, NULL);
2067           address = align_address(address, align);
2068         }
2069       *dot_value = address;
2070     }
2071
2072   Output_section* dot_section = this->output_section_;
2073   for (Output_section_elements::iterator p = this->elements_.begin();
2074        p != this->elements_.end();
2075        ++p)
2076     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2077 }
2078
2079 // Return the output section name to use for an input section name.
2080
2081 const char*
2082 Output_section_definition::output_section_name(
2083     const char* file_name,
2084     const char* section_name,
2085     Output_section*** slot,
2086     Script_sections::Section_type* psection_type)
2087 {
2088   // Ask each element whether it matches NAME.
2089   for (Output_section_elements::const_iterator p = this->elements_.begin();
2090        p != this->elements_.end();
2091        ++p)
2092     {
2093       if ((*p)->match_name(file_name, section_name))
2094         {
2095           // We found a match for NAME, which means that it should go
2096           // into this output section.
2097           *slot = &this->output_section_;
2098           *psection_type = this->section_type();
2099           return this->name_.c_str();
2100         }
2101     }
2102
2103   // We don't know about this section name.
2104   return NULL;
2105 }
2106
2107 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2108 // be NULL if no input sections were mapped to this output section.
2109 // We still have to adjust dot and process symbol assignments.
2110
2111 void
2112 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2113                                                  Layout* layout,
2114                                                  uint64_t* dot_value,
2115                                                  uint64_t* dot_alignment,
2116                                                  uint64_t* load_address)
2117 {
2118   uint64_t address;
2119   uint64_t old_dot_value = *dot_value;
2120   uint64_t old_load_address = *load_address;
2121
2122   // Check for --section-start.
2123   bool is_address_set = false;
2124   if (this->output_section_ != NULL)
2125     is_address_set =
2126       parameters->options().section_start(this->output_section_->name(),
2127                                           &address);
2128   if (!is_address_set)
2129     {
2130       if (this->address_ == NULL)
2131         address = *dot_value;
2132       else
2133         {
2134           Output_section* dummy;
2135           address = this->address_->eval_with_dot(symtab, layout, true,
2136                                                   *dot_value, NULL, &dummy,
2137                                                   dot_alignment);
2138         }
2139     }
2140
2141   uint64_t align;
2142   if (this->align_ == NULL)
2143     {
2144       if (this->output_section_ == NULL)
2145         align = 0;
2146       else
2147         align = this->output_section_->addralign();
2148     }
2149   else
2150     {
2151       Output_section* align_section;
2152       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2153                                           NULL, &align_section, NULL);
2154       if (align_section != NULL)
2155         gold_warning(_("alignment of section %s is not absolute"),
2156                      this->name_.c_str());
2157       if (this->output_section_ != NULL)
2158         this->output_section_->set_addralign(align);
2159     }
2160
2161   address = align_address(address, align);
2162
2163   uint64_t start_address = address;
2164
2165   *dot_value = address;
2166
2167   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2168   // forced to zero, regardless of what the linker script wants.
2169   if (this->output_section_ != NULL
2170       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2171           || this->output_section_->is_noload()))
2172     this->output_section_->set_address(address);
2173
2174   this->evaluated_address_ = address;
2175   this->evaluated_addralign_ = align;
2176
2177   if (this->load_address_ == NULL)
2178     this->evaluated_load_address_ = address;
2179   else
2180     {
2181       Output_section* dummy;
2182       uint64_t laddr =
2183         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
2184                                            this->output_section_, &dummy,
2185                                            NULL);
2186       if (this->output_section_ != NULL)
2187         this->output_section_->set_load_address(laddr);
2188       this->evaluated_load_address_ = laddr;
2189     }
2190
2191   uint64_t subalign;
2192   if (this->subalign_ == NULL)
2193     subalign = 0;
2194   else
2195     {
2196       Output_section* subalign_section;
2197       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2198                                                 *dot_value, NULL,
2199                                                 &subalign_section, NULL);
2200       if (subalign_section != NULL)
2201         gold_warning(_("subalign of section %s is not absolute"),
2202                      this->name_.c_str());
2203     }
2204
2205   std::string fill;
2206   if (this->fill_ != NULL)
2207     {
2208       // FIXME: The GNU linker supports fill values of arbitrary
2209       // length.
2210       Output_section* fill_section;
2211       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2212                                                      *dot_value,
2213                                                      NULL, &fill_section,
2214                                                      NULL);
2215       if (fill_section != NULL)
2216         gold_warning(_("fill of section %s is not absolute"),
2217                      this->name_.c_str());
2218       unsigned char fill_buff[4];
2219       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2220       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2221     }
2222
2223   Input_section_list input_sections;
2224   if (this->output_section_ != NULL)
2225     {
2226       // Get the list of input sections attached to this output
2227       // section.  This will leave the output section with only
2228       // Output_section_data entries.
2229       address += this->output_section_->get_input_sections(address,
2230                                                            fill,
2231                                                            &input_sections);
2232       *dot_value = address;
2233     }
2234
2235   Output_section* dot_section = this->output_section_;
2236   for (Output_section_elements::iterator p = this->elements_.begin();
2237        p != this->elements_.end();
2238        ++p)
2239     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2240                                 subalign, dot_value, dot_alignment,
2241                                 &dot_section, &fill, &input_sections);
2242
2243   gold_assert(input_sections.empty());
2244
2245   if (this->load_address_ == NULL || this->output_section_ == NULL)
2246     *load_address = *dot_value;
2247   else
2248     *load_address = (this->output_section_->load_address()
2249                      + (*dot_value - start_address));
2250
2251   if (this->output_section_ != NULL)
2252     {
2253       if (this->is_relro_)
2254         this->output_section_->set_is_relro();
2255       else
2256         this->output_section_->clear_is_relro();
2257
2258       // If this is a NOLOAD section, keep dot and load address unchanged.
2259       if (this->output_section_->is_noload())
2260         {
2261           *dot_value = old_dot_value;
2262           *load_address = old_load_address;
2263         }
2264     }
2265 }
2266
2267 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2268 // this section is constrained, and the input sections do not match,
2269 // return the constraint, and set *POSD.
2270
2271 Section_constraint
2272 Output_section_definition::check_constraint(Output_section_definition** posd)
2273 {
2274   switch (this->constraint_)
2275     {
2276     case CONSTRAINT_NONE:
2277       return CONSTRAINT_NONE;
2278
2279     case CONSTRAINT_ONLY_IF_RO:
2280       if (this->output_section_ != NULL
2281           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2282         {
2283           *posd = this;
2284           return CONSTRAINT_ONLY_IF_RO;
2285         }
2286       return CONSTRAINT_NONE;
2287
2288     case CONSTRAINT_ONLY_IF_RW:
2289       if (this->output_section_ != NULL
2290           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2291         {
2292           *posd = this;
2293           return CONSTRAINT_ONLY_IF_RW;
2294         }
2295       return CONSTRAINT_NONE;
2296
2297     case CONSTRAINT_SPECIAL:
2298       if (this->output_section_ != NULL)
2299         gold_error(_("SPECIAL constraints are not implemented"));
2300       return CONSTRAINT_NONE;
2301
2302     default:
2303       gold_unreachable();
2304     }
2305 }
2306
2307 // See if this is the alternate output section for a constrained
2308 // output section.  If it is, transfer the Output_section and return
2309 // true.  Otherwise return false.
2310
2311 bool
2312 Output_section_definition::alternate_constraint(
2313     Output_section_definition* posd,
2314     Section_constraint constraint)
2315 {
2316   if (this->name_ != posd->name_)
2317     return false;
2318
2319   switch (constraint)
2320     {
2321     case CONSTRAINT_ONLY_IF_RO:
2322       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2323         return false;
2324       break;
2325
2326     case CONSTRAINT_ONLY_IF_RW:
2327       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2328         return false;
2329       break;
2330
2331     default:
2332       gold_unreachable();
2333     }
2334
2335   // We have found the alternate constraint.  We just need to move
2336   // over the Output_section.  When constraints are used properly,
2337   // THIS should not have an output_section pointer, as all the input
2338   // sections should have matched the other definition.
2339
2340   if (this->output_section_ != NULL)
2341     gold_error(_("mismatched definition for constrained sections"));
2342
2343   this->output_section_ = posd->output_section_;
2344   posd->output_section_ = NULL;
2345
2346   if (this->is_relro_)
2347     this->output_section_->set_is_relro();
2348   else
2349     this->output_section_->clear_is_relro();
2350
2351   return true;
2352 }
2353
2354 // Get the list of segments to use for an allocated section when using
2355 // a PHDRS clause.
2356
2357 Output_section*
2358 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2359                                                bool* orphan)
2360 {
2361   // Update phdrs_list even if we don't have an output section. It
2362   // might be used by the following sections.
2363   if (this->phdrs_ != NULL)
2364     *phdrs_list = this->phdrs_;
2365
2366   if (this->output_section_ == NULL)
2367     return NULL;
2368   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2369     return NULL;
2370   *orphan = false;
2371   return this->output_section_;
2372 }
2373
2374 // Look for an output section by name and return the address, the load
2375 // address, the alignment, and the size.  This is used when an
2376 // expression refers to an output section which was not actually
2377 // created.  This returns true if the section was found, false
2378 // otherwise.
2379
2380 bool
2381 Output_section_definition::get_output_section_info(const char* name,
2382                                                    uint64_t* address,
2383                                                    uint64_t* load_address,
2384                                                    uint64_t* addralign,
2385                                                    uint64_t* size) const
2386 {
2387   if (this->name_ != name)
2388     return false;
2389
2390   if (this->output_section_ != NULL)
2391     {
2392       *address = this->output_section_->address();
2393       if (this->output_section_->has_load_address())
2394         *load_address = this->output_section_->load_address();
2395       else
2396         *load_address = *address;
2397       *addralign = this->output_section_->addralign();
2398       *size = this->output_section_->current_data_size();
2399     }
2400   else
2401     {
2402       *address = this->evaluated_address_;
2403       *load_address = this->evaluated_load_address_;
2404       *addralign = this->evaluated_addralign_;
2405       *size = 0;
2406     }
2407
2408   return true;
2409 }
2410
2411 // Print for debugging.
2412
2413 void
2414 Output_section_definition::print(FILE* f) const
2415 {
2416   fprintf(f, "  %s ", this->name_.c_str());
2417
2418   if (this->address_ != NULL)
2419     {
2420       this->address_->print(f);
2421       fprintf(f, " ");
2422     }
2423
2424   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2425       fprintf(f, "(%s) ",
2426               this->script_section_type_name(this->script_section_type_));
2427
2428   fprintf(f, ": ");
2429
2430   if (this->load_address_ != NULL)
2431     {
2432       fprintf(f, "AT(");
2433       this->load_address_->print(f);
2434       fprintf(f, ") ");
2435     }
2436
2437   if (this->align_ != NULL)
2438     {
2439       fprintf(f, "ALIGN(");
2440       this->align_->print(f);
2441       fprintf(f, ") ");
2442     }
2443
2444   if (this->subalign_ != NULL)
2445     {
2446       fprintf(f, "SUBALIGN(");
2447       this->subalign_->print(f);
2448       fprintf(f, ") ");
2449     }
2450
2451   fprintf(f, "{\n");
2452
2453   for (Output_section_elements::const_iterator p = this->elements_.begin();
2454        p != this->elements_.end();
2455        ++p)
2456     (*p)->print(f);
2457
2458   fprintf(f, "  }");
2459
2460   if (this->fill_ != NULL)
2461     {
2462       fprintf(f, " = ");
2463       this->fill_->print(f);
2464     }
2465
2466   if (this->phdrs_ != NULL)
2467     {
2468       for (String_list::const_iterator p = this->phdrs_->begin();
2469            p != this->phdrs_->end();
2470            ++p)
2471         fprintf(f, " :%s", p->c_str());
2472     }
2473
2474   fprintf(f, "\n");
2475 }
2476
2477 Script_sections::Section_type
2478 Output_section_definition::section_type() const
2479 {
2480   switch (this->script_section_type_)
2481     {
2482     case SCRIPT_SECTION_TYPE_NONE:
2483       return Script_sections::ST_NONE;
2484     case SCRIPT_SECTION_TYPE_NOLOAD:
2485       return Script_sections::ST_NOLOAD;
2486     case SCRIPT_SECTION_TYPE_COPY:
2487     case SCRIPT_SECTION_TYPE_DSECT:
2488     case SCRIPT_SECTION_TYPE_INFO:
2489     case SCRIPT_SECTION_TYPE_OVERLAY:
2490       // There are not really support so we treat them as ST_NONE.  The
2491       // parse should have issued errors for them already.
2492       return Script_sections::ST_NONE;
2493     default:
2494       gold_unreachable();
2495     }
2496 }
2497
2498 // Return the name of a script section type.
2499
2500 const char*
2501 Output_section_definition::script_section_type_name(
2502     Script_section_type script_section_type)
2503 {
2504   switch (script_section_type)
2505     {
2506     case SCRIPT_SECTION_TYPE_NONE:
2507       return "NONE";
2508     case SCRIPT_SECTION_TYPE_NOLOAD:
2509       return "NOLOAD";
2510     case SCRIPT_SECTION_TYPE_DSECT:
2511       return "DSECT";
2512     case SCRIPT_SECTION_TYPE_COPY:
2513       return "COPY";
2514     case SCRIPT_SECTION_TYPE_INFO:
2515       return "INFO";
2516     case SCRIPT_SECTION_TYPE_OVERLAY:
2517       return "OVERLAY";
2518     default:
2519       gold_unreachable();
2520     }
2521 }
2522
2523 void
2524 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2525 {
2526   gold_assert(mr != NULL);
2527   // Add the current section to the specified region's list.
2528   mr->add_section(this, set_vma);
2529 }
2530
2531 // An output section created to hold orphaned input sections.  These
2532 // do not actually appear in linker scripts.  However, for convenience
2533 // when setting the output section addresses, we put a marker to these
2534 // sections in the appropriate place in the list of SECTIONS elements.
2535
2536 class Orphan_output_section : public Sections_element
2537 {
2538  public:
2539   Orphan_output_section(Output_section* os)
2540     : os_(os)
2541   { }
2542
2543   // Return whether the orphan output section is relro.  We can just
2544   // check the output section because we always set the flag, if
2545   // needed, just after we create the Orphan_output_section.
2546   bool
2547   is_relro() const
2548   { return this->os_->is_relro(); }
2549
2550   // Initialize OSP with an output section.  This should have been
2551   // done already.
2552   void
2553   orphan_section_init(Orphan_section_placement*,
2554                       Script_sections::Elements_iterator)
2555   { gold_unreachable(); }
2556
2557   // Set section addresses.
2558   void
2559   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2560                         uint64_t*);
2561
2562   // Get the list of segments to use for an allocated section when
2563   // using a PHDRS clause.
2564   Output_section*
2565   allocate_to_segment(String_list**, bool*);
2566
2567   // Return the associated Output_section.
2568   Output_section*
2569   get_output_section() const
2570   { return this->os_; }
2571
2572   // Print for debugging.
2573   void
2574   print(FILE* f) const
2575   {
2576     fprintf(f, "  marker for orphaned output section %s\n",
2577             this->os_->name());
2578   }
2579
2580  private:
2581   Output_section* os_;
2582 };
2583
2584 // Set section addresses.
2585
2586 void
2587 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2588                                              uint64_t* dot_value,
2589                                              uint64_t*,
2590                                              uint64_t* load_address)
2591 {
2592   typedef std::list<Output_section::Input_section> Input_section_list;
2593
2594   bool have_load_address = *load_address != *dot_value;
2595
2596   uint64_t address = *dot_value;
2597   address = align_address(address, this->os_->addralign());
2598
2599   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2600     {
2601       this->os_->set_address(address);
2602       if (have_load_address)
2603         this->os_->set_load_address(align_address(*load_address,
2604                                                   this->os_->addralign()));
2605     }
2606
2607   Input_section_list input_sections;
2608   address += this->os_->get_input_sections(address, "", &input_sections);
2609
2610   for (Input_section_list::iterator p = input_sections.begin();
2611        p != input_sections.end();
2612        ++p)
2613     {
2614       uint64_t addralign = p->addralign();
2615       if (!p->is_input_section())
2616         p->output_section_data()->finalize_data_size(); 
2617       uint64_t size = p->data_size();
2618       address = align_address(address, addralign);
2619       this->os_->add_script_input_section(*p);
2620       address += size;
2621     }
2622
2623   // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2624   if (this->os_ == NULL
2625       || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2626       || this->os_->type() != elfcpp::SHT_NOBITS)
2627     {
2628       if (!have_load_address)
2629         *load_address = address;
2630       else
2631         *load_address += address - *dot_value;
2632
2633       *dot_value = address;
2634     }
2635 }
2636
2637 // Get the list of segments to use for an allocated section when using
2638 // a PHDRS clause.  If this is an allocated section, return the
2639 // Output_section.  We don't change the list of segments.
2640
2641 Output_section*
2642 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2643 {
2644   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2645     return NULL;
2646   *orphan = true;
2647   return this->os_;
2648 }
2649
2650 // Class Phdrs_element.  A program header from a PHDRS clause.
2651
2652 class Phdrs_element
2653 {
2654  public:
2655   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2656                 bool includes_filehdr, bool includes_phdrs,
2657                 bool is_flags_valid, unsigned int flags,
2658                 Expression* load_address)
2659     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2660       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2661       flags_(flags), load_address_(load_address), load_address_value_(0),
2662       segment_(NULL)
2663   { }
2664
2665   // Return the name of this segment.
2666   const std::string&
2667   name() const
2668   { return this->name_; }
2669
2670   // Return the type of the segment.
2671   unsigned int
2672   type() const
2673   { return this->type_; }
2674
2675   // Whether to include the file header.
2676   bool
2677   includes_filehdr() const
2678   { return this->includes_filehdr_; }
2679
2680   // Whether to include the program headers.
2681   bool
2682   includes_phdrs() const
2683   { return this->includes_phdrs_; }
2684
2685   // Return whether there is a load address.
2686   bool
2687   has_load_address() const
2688   { return this->load_address_ != NULL; }
2689
2690   // Evaluate the load address expression if there is one.
2691   void
2692   eval_load_address(Symbol_table* symtab, Layout* layout)
2693   {
2694     if (this->load_address_ != NULL)
2695       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2696                                                             true);
2697   }
2698
2699   // Return the load address.
2700   uint64_t
2701   load_address() const
2702   {
2703     gold_assert(this->load_address_ != NULL);
2704     return this->load_address_value_;
2705   }
2706
2707   // Create the segment.
2708   Output_segment*
2709   create_segment(Layout* layout)
2710   {
2711     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2712     return this->segment_;
2713   }
2714
2715   // Return the segment.
2716   Output_segment*
2717   segment()
2718   { return this->segment_; }
2719
2720   // Release the segment.
2721   void
2722   release_segment()
2723   { this->segment_ = NULL; }
2724
2725   // Set the segment flags if appropriate.
2726   void
2727   set_flags_if_valid()
2728   {
2729     if (this->is_flags_valid_)
2730       this->segment_->set_flags(this->flags_);
2731   }
2732
2733   // Print for debugging.
2734   void
2735   print(FILE*) const;
2736
2737  private:
2738   // The name used in the script.
2739   std::string name_;
2740   // The type of the segment (PT_LOAD, etc.).
2741   unsigned int type_;
2742   // Whether this segment includes the file header.
2743   bool includes_filehdr_;
2744   // Whether this segment includes the section headers.
2745   bool includes_phdrs_;
2746   // Whether the flags were explicitly specified.
2747   bool is_flags_valid_;
2748   // The flags for this segment (PF_R, etc.) if specified.
2749   unsigned int flags_;
2750   // The expression for the load address for this segment.  This may
2751   // be NULL.
2752   Expression* load_address_;
2753   // The actual load address from evaluating the expression.
2754   uint64_t load_address_value_;
2755   // The segment itself.
2756   Output_segment* segment_;
2757 };
2758
2759 // Print for debugging.
2760
2761 void
2762 Phdrs_element::print(FILE* f) const
2763 {
2764   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2765   if (this->includes_filehdr_)
2766     fprintf(f, " FILEHDR");
2767   if (this->includes_phdrs_)
2768     fprintf(f, " PHDRS");
2769   if (this->is_flags_valid_)
2770     fprintf(f, " FLAGS(%u)", this->flags_);
2771   if (this->load_address_ != NULL)
2772     {
2773       fprintf(f, " AT(");
2774       this->load_address_->print(f);
2775       fprintf(f, ")");
2776     }
2777   fprintf(f, ";\n");
2778 }
2779
2780 // Add a memory region.
2781
2782 void
2783 Script_sections::add_memory_region(const char* name, size_t namelen,
2784                                    unsigned int attributes,
2785                                    Expression* start, Expression* length)
2786 {
2787   if (this->memory_regions_ == NULL)
2788     this->memory_regions_ = new Memory_regions();
2789   else if (this->find_memory_region(name, namelen))
2790     {
2791       gold_error (_("region '%.*s' already defined"), static_cast<int>(namelen),
2792                   name);
2793       // FIXME: Add a GOLD extension to allow multiple regions with the same
2794       // name.  This would amount to a single region covering disjoint blocks
2795       // of memory, which is useful for embedded devices.
2796     }
2797
2798   // FIXME: Check the length and start values.  Currently we allow
2799   // non-constant expressions for these values, whereas LD does not.
2800
2801   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
2802   // describe a region that packs from the end address going down, rather
2803   // than the start address going up.  This would be useful for embedded
2804   // devices.
2805
2806   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
2807                                                      start, length));
2808 }
2809
2810 // Find a memory region.
2811
2812 Memory_region*
2813 Script_sections::find_memory_region(const char* name, size_t namelen)
2814 {
2815   if (this->memory_regions_ == NULL)
2816     return NULL;
2817
2818   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
2819        m != this->memory_regions_->end();
2820        ++m)
2821     if ((*m)->name_match(name, namelen))
2822       return *m;
2823
2824   return NULL;
2825 }
2826
2827 // Find a memory region's origin.
2828
2829 Expression*
2830 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
2831 {
2832   Memory_region* mr = find_memory_region(name, namelen);
2833   if (mr == NULL)
2834     return NULL;
2835
2836   return mr->start_address();
2837 }
2838
2839 // Find a memory region's length.
2840
2841 Expression*
2842 Script_sections::find_memory_region_length(const char* name, size_t namelen)
2843 {
2844   Memory_region* mr = find_memory_region(name, namelen);
2845   if (mr == NULL)
2846     return NULL;
2847
2848   return mr->length();
2849 }
2850
2851 // Set the memory region to use for the current section.
2852
2853 void
2854 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
2855 {
2856   gold_assert(!this->sections_elements_->empty());
2857   this->sections_elements_->back()->set_memory_region(mr, set_vma);
2858 }
2859
2860 // Class Script_sections.
2861
2862 Script_sections::Script_sections()
2863   : saw_sections_clause_(false),
2864     in_sections_clause_(false),
2865     sections_elements_(NULL),
2866     output_section_(NULL),
2867     memory_regions_(NULL),
2868     phdrs_elements_(NULL),
2869     orphan_section_placement_(NULL),
2870     data_segment_align_start_(),
2871     saw_data_segment_align_(false),
2872     saw_relro_end_(false),
2873     saw_segment_start_expression_(false)
2874 {
2875 }
2876
2877 // Start a SECTIONS clause.
2878
2879 void
2880 Script_sections::start_sections()
2881 {
2882   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2883   this->saw_sections_clause_ = true;
2884   this->in_sections_clause_ = true;
2885   if (this->sections_elements_ == NULL)
2886     this->sections_elements_ = new Sections_elements;
2887 }
2888
2889 // Finish a SECTIONS clause.
2890
2891 void
2892 Script_sections::finish_sections()
2893 {
2894   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2895   this->in_sections_clause_ = false;
2896 }
2897
2898 // Add a symbol to be defined.
2899
2900 void
2901 Script_sections::add_symbol_assignment(const char* name, size_t length,
2902                                        Expression* val, bool provide,
2903                                        bool hidden)
2904 {
2905   if (this->output_section_ != NULL)
2906     this->output_section_->add_symbol_assignment(name, length, val,
2907                                                  provide, hidden);
2908   else
2909     {
2910       Sections_element* p = new Sections_element_assignment(name, length,
2911                                                             val, provide,
2912                                                             hidden);
2913       this->sections_elements_->push_back(p);
2914     }
2915 }
2916
2917 // Add an assignment to the special dot symbol.
2918
2919 void
2920 Script_sections::add_dot_assignment(Expression* val)
2921 {
2922   if (this->output_section_ != NULL)
2923     this->output_section_->add_dot_assignment(val);
2924   else
2925     {
2926       // The GNU linker permits assignments to . to appears outside of
2927       // a SECTIONS clause, and treats it as appearing inside, so
2928       // sections_elements_ may be NULL here.
2929       if (this->sections_elements_ == NULL)
2930         {
2931           this->sections_elements_ = new Sections_elements;
2932           this->saw_sections_clause_ = true;
2933         }
2934
2935       Sections_element* p = new Sections_element_dot_assignment(val);
2936       this->sections_elements_->push_back(p);
2937     }
2938 }
2939
2940 // Add an assertion.
2941
2942 void
2943 Script_sections::add_assertion(Expression* check, const char* message,
2944                                size_t messagelen)
2945 {
2946   if (this->output_section_ != NULL)
2947     this->output_section_->add_assertion(check, message, messagelen);
2948   else
2949     {
2950       Sections_element* p = new Sections_element_assertion(check, message,
2951                                                            messagelen);
2952       this->sections_elements_->push_back(p);
2953     }
2954 }
2955
2956 // Start processing entries for an output section.
2957
2958 void
2959 Script_sections::start_output_section(
2960     const char* name,
2961     size_t namelen,
2962     const Parser_output_section_header* header)
2963 {
2964   Output_section_definition* posd = new Output_section_definition(name,
2965                                                                   namelen,
2966                                                                   header);
2967   this->sections_elements_->push_back(posd);
2968   gold_assert(this->output_section_ == NULL);
2969   this->output_section_ = posd;
2970 }
2971
2972 // Stop processing entries for an output section.
2973
2974 void
2975 Script_sections::finish_output_section(
2976     const Parser_output_section_trailer* trailer)
2977 {
2978   gold_assert(this->output_section_ != NULL);
2979   this->output_section_->finish(trailer);
2980   this->output_section_ = NULL;
2981 }
2982
2983 // Add a data item to the current output section.
2984
2985 void
2986 Script_sections::add_data(int size, bool is_signed, Expression* val)
2987 {
2988   gold_assert(this->output_section_ != NULL);
2989   this->output_section_->add_data(size, is_signed, val);
2990 }
2991
2992 // Add a fill value setting to the current output section.
2993
2994 void
2995 Script_sections::add_fill(Expression* val)
2996 {
2997   gold_assert(this->output_section_ != NULL);
2998   this->output_section_->add_fill(val);
2999 }
3000
3001 // Add an input section specification to the current output section.
3002
3003 void
3004 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3005 {
3006   gold_assert(this->output_section_ != NULL);
3007   this->output_section_->add_input_section(spec, keep);
3008 }
3009
3010 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3011 // subsequent output sections may be relro.
3012
3013 void
3014 Script_sections::data_segment_align()
3015 {
3016   if (this->saw_data_segment_align_)
3017     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3018   gold_assert(!this->sections_elements_->empty());
3019   Sections_elements::iterator p = this->sections_elements_->end();
3020   --p;
3021   this->data_segment_align_start_ = p;
3022   this->saw_data_segment_align_ = true;
3023 }
3024
3025 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3026 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3027
3028 void
3029 Script_sections::data_segment_relro_end()
3030 {
3031   if (this->saw_relro_end_)
3032     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3033                  "in a linker script"));
3034   this->saw_relro_end_ = true;
3035
3036   if (!this->saw_data_segment_align_)
3037     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3038   else
3039     {
3040       Sections_elements::iterator p = this->data_segment_align_start_;
3041       for (++p; p != this->sections_elements_->end(); ++p)
3042         (*p)->set_is_relro();
3043     }
3044 }
3045
3046 // Create any required sections.
3047
3048 void
3049 Script_sections::create_sections(Layout* layout)
3050 {
3051   if (!this->saw_sections_clause_)
3052     return;
3053   for (Sections_elements::iterator p = this->sections_elements_->begin();
3054        p != this->sections_elements_->end();
3055        ++p)
3056     (*p)->create_sections(layout);
3057 }
3058
3059 // Add any symbols we are defining to the symbol table.
3060
3061 void
3062 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3063 {
3064   if (!this->saw_sections_clause_)
3065     return;
3066   for (Sections_elements::iterator p = this->sections_elements_->begin();
3067        p != this->sections_elements_->end();
3068        ++p)
3069     (*p)->add_symbols_to_table(symtab);
3070 }
3071
3072 // Finalize symbols and check assertions.
3073
3074 void
3075 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3076 {
3077   if (!this->saw_sections_clause_)
3078     return;
3079   uint64_t dot_value = 0;
3080   for (Sections_elements::iterator p = this->sections_elements_->begin();
3081        p != this->sections_elements_->end();
3082        ++p)
3083     (*p)->finalize_symbols(symtab, layout, &dot_value);
3084 }
3085
3086 // Return the name of the output section to use for an input file name
3087 // and section name.
3088
3089 const char*
3090 Script_sections::output_section_name(
3091     const char* file_name,
3092     const char* section_name,
3093     Output_section*** output_section_slot,
3094     Script_sections::Section_type* psection_type)
3095 {
3096   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3097        p != this->sections_elements_->end();
3098        ++p)
3099     {
3100       const char* ret = (*p)->output_section_name(file_name, section_name,
3101                                                   output_section_slot,
3102                                                   psection_type);
3103
3104       if (ret != NULL)
3105         {
3106           // The special name /DISCARD/ means that the input section
3107           // should be discarded.
3108           if (strcmp(ret, "/DISCARD/") == 0)
3109             {
3110               *output_section_slot = NULL;
3111               *psection_type = Script_sections::ST_NONE;
3112               return NULL;
3113             }
3114           return ret;
3115         }
3116     }
3117
3118   // If we couldn't find a mapping for the name, the output section
3119   // gets the name of the input section.
3120
3121   *output_section_slot = NULL;
3122   *psection_type = Script_sections::ST_NONE;
3123
3124   return section_name;
3125 }
3126
3127 // Place a marker for an orphan output section into the SECTIONS
3128 // clause.
3129
3130 void
3131 Script_sections::place_orphan(Output_section* os)
3132 {
3133   Orphan_section_placement* osp = this->orphan_section_placement_;
3134   if (osp == NULL)
3135     {
3136       // Initialize the Orphan_section_placement structure.
3137       osp = new Orphan_section_placement();
3138       for (Sections_elements::iterator p = this->sections_elements_->begin();
3139            p != this->sections_elements_->end();
3140            ++p)
3141         (*p)->orphan_section_init(osp, p);
3142       gold_assert(!this->sections_elements_->empty());
3143       Sections_elements::iterator last = this->sections_elements_->end();
3144       --last;
3145       osp->last_init(last);
3146       this->orphan_section_placement_ = osp;
3147     }
3148
3149   Orphan_output_section* orphan = new Orphan_output_section(os);
3150
3151   // Look for where to put ORPHAN.
3152   Sections_elements::iterator* where;
3153   if (osp->find_place(os, &where))
3154     {
3155       if ((**where)->is_relro())
3156         os->set_is_relro();
3157       else
3158         os->clear_is_relro();
3159
3160       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3161       // so that the next one goes after this one.
3162       Sections_elements::iterator p = *where;
3163       gold_assert(p != this->sections_elements_->end());
3164       ++p;
3165       *where = this->sections_elements_->insert(p, orphan);
3166     }
3167   else
3168     {
3169       os->clear_is_relro();
3170       // We don't have a place to put this orphan section.  Put it,
3171       // and all other sections like it, at the end, but before the
3172       // sections which always come at the end.
3173       Sections_elements::iterator last = osp->last_place();
3174       *where = this->sections_elements_->insert(last, orphan);
3175     }
3176 }
3177
3178 // Set the addresses of all the output sections.  Walk through all the
3179 // elements, tracking the dot symbol.  Apply assignments which set
3180 // absolute symbol values, in case they are used when setting dot.
3181 // Fill in data statement values.  As we find output sections, set the
3182 // address, set the address of all associated input sections, and
3183 // update dot.  Return the segment which should hold the file header
3184 // and segment headers, if any.
3185
3186 Output_segment*
3187 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3188 {
3189   gold_assert(this->saw_sections_clause_);
3190
3191   // Walk the memory regions specified in this script, if any.
3192   if (this->memory_regions_ != NULL)
3193     {
3194       for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
3195            mr != this->memory_regions_->end();
3196            ++mr)
3197         {
3198           // FIXME: What should we do with the attributes of the regions ?
3199
3200           // For each region, set the VMA of the sections associated with it.
3201           for (Memory_region::Section_list::const_iterator s =
3202                  (*mr)->get_vma_section_list_start();
3203                s != (*mr)->get_vma_section_list_end();
3204                ++s)
3205             {
3206               (*s)->set_section_vma((*mr)->get_current_vma_address());
3207               (*mr)->increment_vma_offset((*s)->get_section_name(),
3208                                           (*s)->get_output_section()->current_data_size(),
3209                                           symtab, layout);
3210             }
3211
3212           // Similarly, set the LMA values.
3213           for (Memory_region::Section_list::const_iterator s =
3214                  (*mr)->get_lma_section_list_start();
3215                s != (*mr)->get_lma_section_list_end();
3216                ++s)
3217             {
3218               (*s)->set_section_lma((*mr)->get_current_lma_address());
3219               (*mr)->increment_lma_offset((*s)->get_section_name(),
3220                                           (*s)->get_output_section()->current_data_size(),
3221                                           symtab, layout);
3222             }
3223         }
3224     }
3225          
3226   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3227   // for our representation.
3228   for (Sections_elements::iterator p = this->sections_elements_->begin();
3229        p != this->sections_elements_->end();
3230        ++p)
3231     {
3232       Output_section_definition* posd;
3233       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3234       if (failed_constraint != CONSTRAINT_NONE)
3235         {
3236           Sections_elements::iterator q;
3237           for (q = this->sections_elements_->begin();
3238                q != this->sections_elements_->end();
3239                ++q)
3240             {
3241               if (q != p)
3242                 {
3243                   if ((*q)->alternate_constraint(posd, failed_constraint))
3244                     break;
3245                 }
3246             }
3247
3248           if (q == this->sections_elements_->end())
3249             gold_error(_("no matching section constraint"));
3250         }
3251     }
3252
3253   // Force the alignment of the first TLS section to be the maximum
3254   // alignment of all TLS sections.
3255   Output_section* first_tls = NULL;
3256   uint64_t tls_align = 0;
3257   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3258        p != this->sections_elements_->end();
3259        ++p)
3260     {
3261       Output_section* os = (*p)->get_output_section();
3262       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3263         {
3264           if (first_tls == NULL)
3265             first_tls = os;
3266           if (os->addralign() > tls_align)
3267             tls_align = os->addralign();
3268         }
3269     }
3270   if (first_tls != NULL)
3271     first_tls->set_addralign(tls_align);
3272
3273   // For a relocatable link, we implicitly set dot to zero.
3274   uint64_t dot_value = 0;
3275   uint64_t dot_alignment = 0;
3276   uint64_t load_address = 0;
3277
3278   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3279   // to set section addresses.  If the script has any SEGMENT_START
3280   // expression, we do not set the section addresses.
3281   bool use_tsection_options =
3282     (!this->saw_segment_start_expression_
3283      && (parameters->options().user_set_Ttext()
3284          || parameters->options().user_set_Tdata()
3285          || parameters->options().user_set_Tbss()));
3286
3287   for (Sections_elements::iterator p = this->sections_elements_->begin();
3288        p != this->sections_elements_->end();
3289        ++p)
3290     {
3291       Output_section* os = (*p)->get_output_section();
3292
3293       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3294       // the special sections by names and doing dot assignments. 
3295       if (use_tsection_options
3296           && os != NULL
3297           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3298         {
3299           uint64_t new_dot_value = dot_value;
3300
3301           if (parameters->options().user_set_Ttext()
3302               && strcmp(os->name(), ".text") == 0)
3303             new_dot_value = parameters->options().Ttext();
3304           else if (parameters->options().user_set_Tdata()
3305               && strcmp(os->name(), ".data") == 0)
3306             new_dot_value = parameters->options().Tdata();
3307           else if (parameters->options().user_set_Tbss()
3308               && strcmp(os->name(), ".bss") == 0)
3309             new_dot_value = parameters->options().Tbss();
3310
3311           // Update dot and load address if necessary.
3312           if (new_dot_value < dot_value)
3313             gold_error(_("dot may not move backward"));
3314           else if (new_dot_value != dot_value)
3315             {
3316               dot_value = new_dot_value;
3317               load_address = new_dot_value;
3318             }
3319         }
3320
3321       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3322                                   &load_address);
3323     } 
3324
3325   if (this->phdrs_elements_ != NULL)
3326     {
3327       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3328            p != this->phdrs_elements_->end();
3329            ++p)
3330         (*p)->eval_load_address(symtab, layout);
3331     }
3332
3333   return this->create_segments(layout, dot_alignment);
3334 }
3335
3336 // Sort the sections in order to put them into segments.
3337
3338 class Sort_output_sections
3339 {
3340  public:
3341   bool
3342   operator()(const Output_section* os1, const Output_section* os2) const;
3343 };
3344
3345 bool
3346 Sort_output_sections::operator()(const Output_section* os1,
3347                                  const Output_section* os2) const
3348 {
3349   // Sort first by the load address.
3350   uint64_t lma1 = (os1->has_load_address()
3351                    ? os1->load_address()
3352                    : os1->address());
3353   uint64_t lma2 = (os2->has_load_address()
3354                    ? os2->load_address()
3355                    : os2->address());
3356   if (lma1 != lma2)
3357     return lma1 < lma2;
3358
3359   // Then sort by the virtual address.
3360   if (os1->address() != os2->address())
3361     return os1->address() < os2->address();
3362
3363   // Sort TLS sections to the end.
3364   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3365   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3366   if (tls1 != tls2)
3367     return tls2;
3368
3369   // Sort PROGBITS before NOBITS.
3370   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
3371     return true;
3372   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
3373     return false;
3374
3375   // Sort non-NOLOAD before NOLOAD.
3376   if (os1->is_noload() && !os2->is_noload())
3377     return true;
3378   if (!os1->is_noload() && os2->is_noload())
3379     return true;
3380   
3381   // Otherwise we don't care.
3382   return false;
3383 }
3384
3385 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3386 // We treat a section with the SHF_TLS flag set as taking up space
3387 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3388 // space for them in the file.
3389
3390 bool
3391 Script_sections::is_bss_section(const Output_section* os)
3392 {
3393   return (os->type() == elfcpp::SHT_NOBITS
3394           && (os->flags() & elfcpp::SHF_TLS) == 0);
3395 }
3396
3397 // Return the size taken by the file header and the program headers.
3398
3399 size_t
3400 Script_sections::total_header_size(Layout* layout) const
3401 {
3402   size_t segment_count = layout->segment_count();
3403   size_t file_header_size;
3404   size_t segment_headers_size;
3405   if (parameters->target().get_size() == 32)
3406     {
3407       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3408       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3409     }
3410   else if (parameters->target().get_size() == 64)
3411     {
3412       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3413       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3414     }
3415   else
3416     gold_unreachable();
3417
3418   return file_header_size + segment_headers_size;
3419 }
3420
3421 // Return the amount we have to subtract from the LMA to accomodate
3422 // headers of the given size.  The complication is that the file
3423 // header have to be at the start of a page, as otherwise it will not
3424 // be at the start of the file.
3425
3426 uint64_t
3427 Script_sections::header_size_adjustment(uint64_t lma,
3428                                         size_t sizeof_headers) const
3429 {
3430   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3431   uint64_t hdr_lma = lma - sizeof_headers;
3432   hdr_lma &= ~(abi_pagesize - 1);
3433   return lma - hdr_lma;
3434 }
3435
3436 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3437 // the segment which should hold the file header and segment headers,
3438 // if any.
3439
3440 Output_segment*
3441 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3442 {
3443   gold_assert(this->saw_sections_clause_);
3444
3445   if (parameters->options().relocatable())
3446     return NULL;
3447
3448   if (this->saw_phdrs_clause())
3449     return create_segments_from_phdrs_clause(layout, dot_alignment);
3450
3451   Layout::Section_list sections;
3452   layout->get_allocated_sections(&sections);
3453
3454   // Sort the sections by address.
3455   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
3456
3457   this->create_note_and_tls_segments(layout, &sections);
3458
3459   // Walk through the sections adding them to PT_LOAD segments.
3460   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3461   Output_segment* first_seg = NULL;
3462   Output_segment* current_seg = NULL;
3463   bool is_current_seg_readonly = true;
3464   Layout::Section_list::iterator plast = sections.end();
3465   uint64_t last_vma = 0;
3466   uint64_t last_lma = 0;
3467   uint64_t last_size = 0;
3468   for (Layout::Section_list::iterator p = sections.begin();
3469        p != sections.end();
3470        ++p)
3471     {
3472       const uint64_t vma = (*p)->address();
3473       const uint64_t lma = ((*p)->has_load_address()
3474                             ? (*p)->load_address()
3475                             : vma);
3476       const uint64_t size = (*p)->current_data_size();
3477
3478       bool need_new_segment;
3479       if (current_seg == NULL)
3480         need_new_segment = true;
3481       else if (lma - vma != last_lma - last_vma)
3482         {
3483           // This section has a different LMA relationship than the
3484           // last one; we need a new segment.
3485           need_new_segment = true;
3486         }
3487       else if (align_address(last_lma + last_size, abi_pagesize)
3488                < align_address(lma, abi_pagesize))
3489         {
3490           // Putting this section in the segment would require
3491           // skipping a page.
3492           need_new_segment = true;
3493         }
3494       else if (is_bss_section(*plast) && !is_bss_section(*p))
3495         {
3496           // A non-BSS section can not follow a BSS section in the
3497           // same segment.
3498           need_new_segment = true;
3499         }
3500       else if (is_current_seg_readonly
3501                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3502                && !parameters->options().omagic())
3503         {
3504           // Don't put a writable section in the same segment as a
3505           // non-writable section.
3506           need_new_segment = true;
3507         }
3508       else
3509         {
3510           // Otherwise, reuse the existing segment.
3511           need_new_segment = false;
3512         }
3513
3514       elfcpp::Elf_Word seg_flags =
3515         Layout::section_flags_to_segment((*p)->flags());
3516
3517       if (need_new_segment)
3518         {
3519           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3520                                                     seg_flags);
3521           current_seg->set_addresses(vma, lma);
3522           current_seg->set_minimum_p_align(dot_alignment);
3523           if (first_seg == NULL)
3524             first_seg = current_seg;
3525           is_current_seg_readonly = true;
3526         }
3527
3528       current_seg->add_output_section_to_load(layout, *p, seg_flags);
3529
3530       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3531         is_current_seg_readonly = false;
3532
3533       plast = p;
3534       last_vma = vma;
3535       last_lma = lma;
3536       last_size = size;
3537     }
3538
3539   // An ELF program should work even if the program headers are not in
3540   // a PT_LOAD segment.  However, it appears that the Linux kernel
3541   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3542   // the load address to p_vaddr - p_offset of the first PT_LOAD
3543   // segment.  It then sets AT_PHDR to the load address plus the
3544   // offset to the program headers, e_phoff in the file header.  This
3545   // fails when the program headers appear in the file before the
3546   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3547   // segment to hold the file header and the program headers.  This is
3548   // effectively what the GNU linker does, and it is slightly more
3549   // efficient in any case.  We try to use the first PT_LOAD segment
3550   // if we can, otherwise we make a new one.
3551
3552   if (first_seg == NULL)
3553     return NULL;
3554
3555   // -n or -N mean that the program is not demand paged and there is
3556   // no need to put the program headers in a PT_LOAD segment.
3557   if (parameters->options().nmagic() || parameters->options().omagic())
3558     return NULL;
3559
3560   size_t sizeof_headers = this->total_header_size(layout);
3561
3562   uint64_t vma = first_seg->vaddr();
3563   uint64_t lma = first_seg->paddr();
3564
3565   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3566
3567   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3568     {
3569       first_seg->set_addresses(vma - subtract, lma - subtract);
3570       return first_seg;
3571     }
3572
3573   // If there is no room to squeeze in the headers, then punt.  The
3574   // resulting executable probably won't run on GNU/Linux, but we
3575   // trust that the user knows what they are doing.
3576   if (lma < subtract || vma < subtract)
3577     return NULL;
3578
3579   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3580                                                          elfcpp::PF_R);
3581   load_seg->set_addresses(vma - subtract, lma - subtract);
3582
3583   return load_seg;
3584 }
3585
3586 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3587 // segment if there are any SHT_TLS sections.
3588
3589 void
3590 Script_sections::create_note_and_tls_segments(
3591     Layout* layout,
3592     const Layout::Section_list* sections)
3593 {
3594   gold_assert(!this->saw_phdrs_clause());
3595
3596   bool saw_tls = false;
3597   for (Layout::Section_list::const_iterator p = sections->begin();
3598        p != sections->end();
3599        ++p)
3600     {
3601       if ((*p)->type() == elfcpp::SHT_NOTE)
3602         {
3603           elfcpp::Elf_Word seg_flags =
3604             Layout::section_flags_to_segment((*p)->flags());
3605           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3606                                                              seg_flags);
3607           oseg->add_output_section_to_nonload(*p, seg_flags);
3608
3609           // Incorporate any subsequent SHT_NOTE sections, in the
3610           // hopes that the script is sensible.
3611           Layout::Section_list::const_iterator pnext = p + 1;
3612           while (pnext != sections->end()
3613                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3614             {
3615               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3616               oseg->add_output_section_to_nonload(*pnext, seg_flags);
3617               p = pnext;
3618               ++pnext;
3619             }
3620         }
3621
3622       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3623         {
3624           if (saw_tls)
3625             gold_error(_("TLS sections are not adjacent"));
3626
3627           elfcpp::Elf_Word seg_flags =
3628             Layout::section_flags_to_segment((*p)->flags());
3629           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3630                                                              seg_flags);
3631           oseg->add_output_section_to_nonload(*p, seg_flags);
3632
3633           Layout::Section_list::const_iterator pnext = p + 1;
3634           while (pnext != sections->end()
3635                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3636             {
3637               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3638               oseg->add_output_section_to_nonload(*pnext, seg_flags);
3639               p = pnext;
3640               ++pnext;
3641             }
3642
3643           saw_tls = true;
3644         }
3645     }
3646 }
3647
3648 // Add a program header.  The PHDRS clause is syntactically distinct
3649 // from the SECTIONS clause, but we implement it with the SECTIONS
3650 // support because PHDRS is useless if there is no SECTIONS clause.
3651
3652 void
3653 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3654                           bool includes_filehdr, bool includes_phdrs,
3655                           bool is_flags_valid, unsigned int flags,
3656                           Expression* load_address)
3657 {
3658   if (this->phdrs_elements_ == NULL)
3659     this->phdrs_elements_ = new Phdrs_elements();
3660   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3661                                                      includes_filehdr,
3662                                                      includes_phdrs,
3663                                                      is_flags_valid, flags,
3664                                                      load_address));
3665 }
3666
3667 // Return the number of segments we expect to create based on the
3668 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3669
3670 size_t
3671 Script_sections::expected_segment_count(const Layout* layout) const
3672 {
3673   if (this->saw_phdrs_clause())
3674     return this->phdrs_elements_->size();
3675
3676   Layout::Section_list sections;
3677   layout->get_allocated_sections(&sections);
3678
3679   // We assume that we will need two PT_LOAD segments.
3680   size_t ret = 2;
3681
3682   bool saw_note = false;
3683   bool saw_tls = false;
3684   for (Layout::Section_list::const_iterator p = sections.begin();
3685        p != sections.end();
3686        ++p)
3687     {
3688       if ((*p)->type() == elfcpp::SHT_NOTE)
3689         {
3690           // Assume that all note sections will fit into a single
3691           // PT_NOTE segment.
3692           if (!saw_note)
3693             {
3694               ++ret;
3695               saw_note = true;
3696             }
3697         }
3698       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3699         {
3700           // There can only be one PT_TLS segment.
3701           if (!saw_tls)
3702             {
3703               ++ret;
3704               saw_tls = true;
3705             }
3706         }
3707     }
3708
3709   return ret;
3710 }
3711
3712 // Create the segments from a PHDRS clause.  Return the segment which
3713 // should hold the file header and program headers, if any.
3714
3715 Output_segment*
3716 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
3717                                                    uint64_t dot_alignment)
3718 {
3719   this->attach_sections_using_phdrs_clause(layout);
3720   return this->set_phdrs_clause_addresses(layout, dot_alignment);
3721 }
3722
3723 // Create the segments from the PHDRS clause, and put the output
3724 // sections in them.
3725
3726 void
3727 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3728 {
3729   typedef std::map<std::string, Output_segment*> Name_to_segment;
3730   Name_to_segment name_to_segment;
3731   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3732        p != this->phdrs_elements_->end();
3733        ++p)
3734     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3735
3736   // Walk through the output sections and attach them to segments.
3737   // Output sections in the script which do not list segments are
3738   // attached to the same set of segments as the immediately preceding
3739   // output section.
3740   
3741   String_list* phdr_names = NULL;
3742   bool load_segments_only = false;
3743   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3744        p != this->sections_elements_->end();
3745        ++p)
3746     {
3747       bool orphan;
3748       String_list* old_phdr_names = phdr_names;
3749       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3750       if (os == NULL)
3751         continue;
3752
3753       if (phdr_names == NULL)
3754         {
3755           gold_error(_("allocated section not in any segment"));
3756           continue;
3757         }
3758
3759       // We see a list of segments names.  Disable PT_LOAD segment only
3760       // filtering.
3761       if (old_phdr_names != phdr_names)
3762         load_segments_only = false;
3763                 
3764       // If this is an orphan section--one that was not explicitly
3765       // mentioned in the linker script--then it should not inherit
3766       // any segment type other than PT_LOAD.  Otherwise, e.g., the
3767       // PT_INTERP segment will pick up following orphan sections,
3768       // which does not make sense.  If this is not an orphan section,
3769       // we trust the linker script.
3770       if (orphan)
3771         {
3772           // Enable PT_LOAD segments only filtering until we see another
3773           // list of segment names.
3774           load_segments_only = true;
3775         }
3776
3777       bool in_load_segment = false;
3778       for (String_list::const_iterator q = phdr_names->begin();
3779            q != phdr_names->end();
3780            ++q)
3781         {
3782           Name_to_segment::const_iterator r = name_to_segment.find(*q);
3783           if (r == name_to_segment.end())
3784             gold_error(_("no segment %s"), q->c_str());
3785           else
3786             {
3787               if (load_segments_only
3788                   && r->second->type() != elfcpp::PT_LOAD)
3789                 continue;
3790
3791               elfcpp::Elf_Word seg_flags =
3792                 Layout::section_flags_to_segment(os->flags());
3793
3794               if (r->second->type() != elfcpp::PT_LOAD)
3795                 r->second->add_output_section_to_nonload(os, seg_flags);
3796               else
3797                 {
3798                   r->second->add_output_section_to_load(layout, os, seg_flags);
3799                   if (in_load_segment)
3800                     gold_error(_("section in two PT_LOAD segments"));
3801                   in_load_segment = true;
3802                 }
3803             }
3804         }
3805
3806       if (!in_load_segment)
3807         gold_error(_("allocated section not in any PT_LOAD segment"));
3808     }
3809 }
3810
3811 // Set the addresses for segments created from a PHDRS clause.  Return
3812 // the segment which should hold the file header and program headers,
3813 // if any.
3814
3815 Output_segment*
3816 Script_sections::set_phdrs_clause_addresses(Layout* layout,
3817                                             uint64_t dot_alignment)
3818 {
3819   Output_segment* load_seg = NULL;
3820   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3821        p != this->phdrs_elements_->end();
3822        ++p)
3823     {
3824       // Note that we have to set the flags after adding the output
3825       // sections to the segment, as adding an output segment can
3826       // change the flags.
3827       (*p)->set_flags_if_valid();
3828
3829       Output_segment* oseg = (*p)->segment();
3830
3831       if (oseg->type() != elfcpp::PT_LOAD)
3832         {
3833           // The addresses of non-PT_LOAD segments are set from the
3834           // PT_LOAD segments.
3835           if ((*p)->has_load_address())
3836             gold_error(_("may only specify load address for PT_LOAD segment"));
3837           continue;
3838         }
3839
3840       oseg->set_minimum_p_align(dot_alignment);
3841
3842       // The output sections should have addresses from the SECTIONS
3843       // clause.  The addresses don't have to be in order, so find the
3844       // one with the lowest load address.  Use that to set the
3845       // address of the segment.
3846
3847       Output_section* osec = oseg->section_with_lowest_load_address();
3848       if (osec == NULL)
3849         {
3850           oseg->set_addresses(0, 0);
3851           continue;
3852         }
3853
3854       uint64_t vma = osec->address();
3855       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3856
3857       // Override the load address of the section with the load
3858       // address specified for the segment.
3859       if ((*p)->has_load_address())
3860         {
3861           if (osec->has_load_address())
3862             gold_warning(_("PHDRS load address overrides "
3863                            "section %s load address"),
3864                          osec->name());
3865
3866           lma = (*p)->load_address();
3867         }
3868
3869       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3870       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3871         {
3872           // We could support this if we wanted to.
3873           gold_error(_("using only one of FILEHDR and PHDRS is "
3874                        "not currently supported"));
3875         }
3876       if (headers)
3877         {
3878           size_t sizeof_headers = this->total_header_size(layout);
3879           uint64_t subtract = this->header_size_adjustment(lma,
3880                                                            sizeof_headers);
3881           if (lma >= subtract && vma >= subtract)
3882             {
3883               lma -= subtract;
3884               vma -= subtract;
3885             }
3886           else
3887             {
3888               gold_error(_("sections loaded on first page without room "
3889                            "for file and program headers "
3890                            "are not supported"));
3891             }
3892
3893           if (load_seg != NULL)
3894             gold_error(_("using FILEHDR and PHDRS on more than one "
3895                          "PT_LOAD segment is not currently supported"));
3896           load_seg = oseg;
3897         }
3898
3899       oseg->set_addresses(vma, lma);
3900     }
3901
3902   return load_seg;
3903 }
3904
3905 // Add the file header and segment headers to non-load segments
3906 // specified in the PHDRS clause.
3907
3908 void
3909 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3910                                       Output_data* segment_headers)
3911 {
3912   gold_assert(this->saw_phdrs_clause());
3913   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3914        p != this->phdrs_elements_->end();
3915        ++p)
3916     {
3917       if ((*p)->type() != elfcpp::PT_LOAD)
3918         {
3919           if ((*p)->includes_phdrs())
3920             (*p)->segment()->add_initial_output_data(segment_headers);
3921           if ((*p)->includes_filehdr())
3922             (*p)->segment()->add_initial_output_data(file_header);
3923         }
3924     }
3925 }
3926
3927 // Look for an output section by name and return the address, the load
3928 // address, the alignment, and the size.  This is used when an
3929 // expression refers to an output section which was not actually
3930 // created.  This returns true if the section was found, false
3931 // otherwise.
3932
3933 bool
3934 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3935                                          uint64_t* load_address,
3936                                          uint64_t* addralign,
3937                                          uint64_t* size) const
3938 {
3939   if (!this->saw_sections_clause_)
3940     return false;
3941   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3942        p != this->sections_elements_->end();
3943        ++p)
3944     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3945                                       size))
3946       return true;
3947   return false;
3948 }
3949
3950 // Release all Output_segments.  This remove all pointers to all
3951 // Output_segments.
3952
3953 void
3954 Script_sections::release_segments()
3955 {
3956   if (this->saw_phdrs_clause())
3957     {
3958       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3959            p != this->phdrs_elements_->end();
3960            ++p)
3961         (*p)->release_segment();
3962     }
3963 }
3964
3965 // Print the SECTIONS clause to F for debugging.
3966
3967 void
3968 Script_sections::print(FILE* f) const
3969 {
3970   if (this->phdrs_elements_ != NULL)
3971     {
3972       fprintf(f, "PHDRS {\n");
3973       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3974            p != this->phdrs_elements_->end();
3975            ++p)
3976         (*p)->print(f);
3977       fprintf(f, "}\n");
3978     }
3979
3980   if (this->memory_regions_ != NULL)
3981     {
3982       fprintf(f, "MEMORY {\n");
3983       for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3984            m != this->memory_regions_->end();
3985            ++m)
3986         (*m)->print(f);
3987       fprintf(f, "}\n");
3988     }
3989
3990   if (!this->saw_sections_clause_)
3991     return;
3992
3993   fprintf(f, "SECTIONS {\n");
3994
3995   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3996        p != this->sections_elements_->end();
3997        ++p)
3998     (*p)->print(f);
3999
4000   fprintf(f, "}\n");
4001 }
4002
4003 } // End namespace gold.