1 // script-sections.cc -- linker script SECTIONS for gold
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "parameters.h"
39 #include "script-sections.h"
41 // Support for the SECTIONS clause in linker scripts.
46 // A region of memory.
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
56 current_vma_offset_(0),
57 current_lma_offset_(0),
62 // Return the name of this region.
65 { return this->name_; }
67 // Return the start address of this region.
70 { return this->start_; }
72 // Return the length of this region.
75 { return this->length_; }
77 // Print the region (when debugging).
81 // Return true if <name,namelen> matches this region.
83 name_match(const char* name, size_t namelen)
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
90 get_current_vma_address(void) const
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_vma_offset_));
98 get_current_lma_address(void) const
101 script_exp_binary_add(this->start_,
102 script_exp_integer(this->current_lma_offset_));
106 increment_vma_offset(std::string section_name, uint64_t amount,
107 const Symbol_table* symtab, const Layout* layout)
109 this->current_vma_offset_ += amount;
111 if (this->current_vma_offset_
112 > this->length_->eval(symtab, layout, false))
113 gold_error (_("section %s overflows end of region %s"),
114 section_name.c_str(), this->name_.c_str());
118 increment_lma_offset(std::string section_name, uint64_t amount,
119 const Symbol_table* symtab, const Layout* layout)
121 this->current_lma_offset_ += amount;
123 if (this->current_lma_offset_
124 > this->length_->eval(symtab, layout, false))
125 gold_error (_("section %s overflows end of region %s (based on load address)"),
126 section_name.c_str(), this->name_.c_str());
130 add_section(Output_section_definition* sec, bool vma)
133 this->vma_sections_.push_back(sec);
135 this->lma_sections_.push_back(sec);
138 typedef std::vector<Output_section_definition*> Section_list;
140 // Return the start of the list of sections
141 // whose VMAs are taken from this region.
142 Section_list::const_iterator
143 get_vma_section_list_start(void) const
144 { return this->vma_sections_.begin(); }
146 // Return the start of the list of sections
147 // whose LMAs are taken from this region.
148 Section_list::const_iterator
149 get_lma_section_list_start(void) const
150 { return this->lma_sections_.begin(); }
152 // Return the end of the list of sections
153 // whose VMAs are taken from this region.
154 Section_list::const_iterator
155 get_vma_section_list_end(void) const
156 { return this->vma_sections_.end(); }
158 // Return the end of the list of sections
159 // whose LMAs are taken from this region.
160 Section_list::const_iterator
161 get_lma_section_list_end(void) const
162 { return this->lma_sections_.end(); }
167 unsigned int attributes_;
170 uint64_t current_vma_offset_;
171 uint64_t current_lma_offset_;
172 // A list of sections whose VMAs are set inside this region.
173 Section_list vma_sections_;
174 // A list of sections whose LMAs are set inside this region.
175 Section_list lma_sections_;
178 // Print a memory region.
181 Memory_region::print(FILE* f) const
183 fprintf(f, " %s", this->name_.c_str());
185 unsigned int attrs = this->attributes_;
191 switch (attrs & - attrs)
193 case MEM_EXECUTABLE: fputc('x', f); break;
194 case MEM_WRITEABLE: fputc('w', f); break;
195 case MEM_READABLE: fputc('r', f); break;
196 case MEM_ALLOCATABLE: fputc('a', f); break;
197 case MEM_INITIALIZED: fputc('i', f); break;
201 attrs &= ~ (attrs & - attrs);
207 fprintf(f, " : origin = ");
208 this->start_->print(f);
209 fprintf(f, ", length = ");
210 this->length_->print(f);
214 // Manage orphan sections. This is intended to be largely compatible
215 // with the GNU linker. The Linux kernel implicitly relies on
216 // something similar to the GNU linker's orphan placement. We
217 // originally used a simpler scheme here, but it caused the kernel
218 // build to fail, and was also rather inefficient.
220 class Orphan_section_placement
223 typedef Script_sections::Elements_iterator Elements_iterator;
226 Orphan_section_placement();
228 // Handle an output section during initialization of this mapping.
230 output_section_init(const std::string& name, Output_section*,
231 Elements_iterator location);
233 // Initialize the last location.
235 last_init(Elements_iterator location);
237 // Set *PWHERE to the address of an iterator pointing to the
238 // location to use for an orphan section. Return true if the
239 // iterator has a value, false otherwise.
241 find_place(Output_section*, Elements_iterator** pwhere);
243 // Return the iterator being used for sections at the very end of
244 // the linker script.
249 // The places that we specifically recognize. This list is copied
250 // from the GNU linker.
266 // The information we keep for a specific place.
269 // The name of sections for this place.
271 // Whether we have a location for this place.
273 // The iterator for this place.
274 Elements_iterator location;
277 // Initialize one place element.
279 initialize_place(Place_index, const char*);
282 Place places_[PLACE_MAX];
283 // True if this is the first call to output_section_init.
287 // Initialize Orphan_section_placement.
289 Orphan_section_placement::Orphan_section_placement()
292 this->initialize_place(PLACE_TEXT, ".text");
293 this->initialize_place(PLACE_RODATA, ".rodata");
294 this->initialize_place(PLACE_DATA, ".data");
295 this->initialize_place(PLACE_TLS, NULL);
296 this->initialize_place(PLACE_TLS_BSS, NULL);
297 this->initialize_place(PLACE_BSS, ".bss");
298 this->initialize_place(PLACE_REL, NULL);
299 this->initialize_place(PLACE_INTERP, ".interp");
300 this->initialize_place(PLACE_NONALLOC, NULL);
301 this->initialize_place(PLACE_LAST, NULL);
304 // Initialize one place element.
307 Orphan_section_placement::initialize_place(Place_index index, const char* name)
309 this->places_[index].name = name;
310 this->places_[index].have_location = false;
313 // While initializing the Orphan_section_placement information, this
314 // is called once for each output section named in the linker script.
315 // If we found an output section during the link, it will be passed in
319 Orphan_section_placement::output_section_init(const std::string& name,
321 Elements_iterator location)
323 bool first_init = this->first_init_;
324 this->first_init_ = false;
326 for (int i = 0; i < PLACE_MAX; ++i)
328 if (this->places_[i].name != NULL && this->places_[i].name == name)
330 if (this->places_[i].have_location)
332 // We have already seen a section with this name.
336 this->places_[i].location = location;
337 this->places_[i].have_location = true;
339 // If we just found the .bss section, restart the search for
340 // an unallocated section. This follows the GNU linker's
343 this->places_[PLACE_NONALLOC].have_location = false;
349 // Relocation sections.
350 if (!this->places_[PLACE_REL].have_location
352 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
353 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
355 this->places_[PLACE_REL].location = location;
356 this->places_[PLACE_REL].have_location = true;
359 // We find the location for unallocated sections by finding the
360 // first debugging or comment section after the BSS section (if
362 if (!this->places_[PLACE_NONALLOC].have_location
363 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
365 // We add orphan sections after the location in PLACES_. We
366 // want to store unallocated sections before LOCATION. If this
367 // is the very first section, we can't use it.
371 this->places_[PLACE_NONALLOC].location = location;
372 this->places_[PLACE_NONALLOC].have_location = true;
377 // Initialize the last location.
380 Orphan_section_placement::last_init(Elements_iterator location)
382 this->places_[PLACE_LAST].location = location;
383 this->places_[PLACE_LAST].have_location = true;
386 // Set *PWHERE to the address of an iterator pointing to the location
387 // to use for an orphan section. Return true if the iterator has a
388 // value, false otherwise.
391 Orphan_section_placement::find_place(Output_section* os,
392 Elements_iterator** pwhere)
394 // Figure out where OS should go. This is based on the GNU linker
395 // code. FIXME: The GNU linker handles small data sections
396 // specially, but we don't.
397 elfcpp::Elf_Word type = os->type();
398 elfcpp::Elf_Xword flags = os->flags();
400 if ((flags & elfcpp::SHF_ALLOC) == 0
401 && !Layout::is_debug_info_section(os->name()))
402 index = PLACE_NONALLOC;
403 else if ((flags & elfcpp::SHF_ALLOC) == 0)
405 else if (type == elfcpp::SHT_NOTE)
406 index = PLACE_INTERP;
407 else if ((flags & elfcpp::SHF_TLS) != 0)
409 if (type == elfcpp::SHT_NOBITS)
410 index = PLACE_TLS_BSS;
414 else if (type == elfcpp::SHT_NOBITS)
416 else if ((flags & elfcpp::SHF_WRITE) != 0)
418 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
420 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
421 index = PLACE_RODATA;
425 // If we don't have a location yet, try to find one based on a
426 // plausible ordering of sections.
427 if (!this->places_[index].have_location)
452 if (!this->places_[PLACE_TLS].have_location)
456 if (follow != PLACE_MAX && this->places_[follow].have_location)
458 // Set the location of INDEX to the location of FOLLOW. The
459 // location of INDEX will then be incremented by the caller,
460 // so anything in INDEX will continue to be after anything
462 this->places_[index].location = this->places_[follow].location;
463 this->places_[index].have_location = true;
467 *pwhere = &this->places_[index].location;
468 bool ret = this->places_[index].have_location;
470 // The caller will set the location.
471 this->places_[index].have_location = true;
476 // Return the iterator being used for sections at the very end of the
479 Orphan_section_placement::Elements_iterator
480 Orphan_section_placement::last_place() const
482 gold_assert(this->places_[PLACE_LAST].have_location);
483 return this->places_[PLACE_LAST].location;
486 // An element in a SECTIONS clause.
488 class Sections_element
494 virtual ~Sections_element()
497 // Return whether an output section is relro.
502 // Record that an output section is relro.
507 // Create any required output sections. The only real
508 // implementation is in Output_section_definition.
510 create_sections(Layout*)
513 // Add any symbol being defined to the symbol table.
515 add_symbols_to_table(Symbol_table*)
518 // Finalize symbols and check assertions.
520 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
523 // Return the output section name to use for an input file name and
524 // section name. This only real implementation is in
525 // Output_section_definition.
527 output_section_name(const char*, const char*, Output_section***,
528 Script_sections::Section_type*)
531 // Initialize OSP with an output section.
533 orphan_section_init(Orphan_section_placement*,
534 Script_sections::Elements_iterator)
537 // Set section addresses. This includes applying assignments if the
538 // the expression is an absolute value.
540 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
544 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
545 // this section is constrained, and the input sections do not match,
546 // return the constraint, and set *POSD.
547 virtual Section_constraint
548 check_constraint(Output_section_definition**)
549 { return CONSTRAINT_NONE; }
551 // See if this is the alternate output section for a constrained
552 // output section. If it is, transfer the Output_section and return
553 // true. Otherwise return false.
555 alternate_constraint(Output_section_definition*, Section_constraint)
558 // Get the list of segments to use for an allocated section when
559 // using a PHDRS clause. If this is an allocated section, return
560 // the Output_section, and set *PHDRS_LIST (the first parameter) to
561 // the list of PHDRS to which it should be attached. If the PHDRS
562 // were not specified, don't change *PHDRS_LIST. When not returning
563 // NULL, set *ORPHAN (the second parameter) according to whether
564 // this is an orphan section--one that is not mentioned in the
566 virtual Output_section*
567 allocate_to_segment(String_list**, bool*)
570 // Look for an output section by name and return the address, the
571 // load address, the alignment, and the size. This is used when an
572 // expression refers to an output section which was not actually
573 // created. This returns true if the section was found, false
574 // otherwise. The only real definition is for
575 // Output_section_definition.
577 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
581 // Return the associated Output_section if there is one.
582 virtual Output_section*
583 get_output_section() const
586 // Set the section's memory regions.
588 set_memory_region(Memory_region*, bool)
589 { gold_error(_("Attempt to set a memory region for a non-output section")); }
591 // Print the element for debugging purposes.
593 print(FILE* f) const = 0;
596 // An assignment in a SECTIONS clause outside of an output section.
598 class Sections_element_assignment : public Sections_element
601 Sections_element_assignment(const char* name, size_t namelen,
602 Expression* val, bool provide, bool hidden)
603 : assignment_(name, namelen, false, val, provide, hidden)
606 // Add the symbol to the symbol table.
608 add_symbols_to_table(Symbol_table* symtab)
609 { this->assignment_.add_to_table(symtab); }
611 // Finalize the symbol.
613 finalize_symbols(Symbol_table* symtab, const Layout* layout,
616 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
619 // Set the section address. There is no section here, but if the
620 // value is absolute, we set the symbol. This permits us to use
621 // absolute symbols when setting dot.
623 set_section_addresses(Symbol_table* symtab, Layout* layout,
624 uint64_t* dot_value, uint64_t*, uint64_t*)
626 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
629 // Print for debugging.
634 this->assignment_.print(f);
638 Symbol_assignment assignment_;
641 // An assignment to the dot symbol in a SECTIONS clause outside of an
644 class Sections_element_dot_assignment : public Sections_element
647 Sections_element_dot_assignment(Expression* val)
651 // Finalize the symbol.
653 finalize_symbols(Symbol_table* symtab, const Layout* layout,
656 // We ignore the section of the result because outside of an
657 // output section definition the dot symbol is always considered
659 Output_section* dummy;
660 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
664 // Update the dot symbol while setting section addresses.
666 set_section_addresses(Symbol_table* symtab, Layout* layout,
667 uint64_t* dot_value, uint64_t* dot_alignment,
668 uint64_t* load_address)
670 Output_section* dummy;
671 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
672 NULL, &dummy, dot_alignment);
673 *load_address = *dot_value;
676 // Print for debugging.
681 this->val_->print(f);
689 // An assertion in a SECTIONS clause outside of an output section.
691 class Sections_element_assertion : public Sections_element
694 Sections_element_assertion(Expression* check, const char* message,
696 : assertion_(check, message, messagelen)
699 // Check the assertion.
701 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
702 { this->assertion_.check(symtab, layout); }
704 // Print for debugging.
709 this->assertion_.print(f);
713 Script_assertion assertion_;
716 // An element in an output section in a SECTIONS clause.
718 class Output_section_element
721 // A list of input sections.
722 typedef std::list<Output_section::Input_section> Input_section_list;
724 Output_section_element()
727 virtual ~Output_section_element()
730 // Return whether this element requires an output section to exist.
732 needs_output_section() const
735 // Add any symbol being defined to the symbol table.
737 add_symbols_to_table(Symbol_table*)
740 // Finalize symbols and check assertions.
742 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
745 // Return whether this element matches FILE_NAME and SECTION_NAME.
746 // The only real implementation is in Output_section_element_input.
748 match_name(const char*, const char*) const
751 // Set section addresses. This includes applying assignments if the
752 // the expression is an absolute value.
754 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
755 uint64_t*, uint64_t*, Output_section**, std::string*,
759 // Print the element for debugging purposes.
761 print(FILE* f) const = 0;
764 // Return a fill string that is LENGTH bytes long, filling it with
767 get_fill_string(const std::string* fill, section_size_type length) const;
771 Output_section_element::get_fill_string(const std::string* fill,
772 section_size_type length) const
774 std::string this_fill;
775 this_fill.reserve(length);
776 while (this_fill.length() + fill->length() <= length)
778 if (this_fill.length() < length)
779 this_fill.append(*fill, 0, length - this_fill.length());
783 // A symbol assignment in an output section.
785 class Output_section_element_assignment : public Output_section_element
788 Output_section_element_assignment(const char* name, size_t namelen,
789 Expression* val, bool provide,
791 : assignment_(name, namelen, false, val, provide, hidden)
794 // Add the symbol to the symbol table.
796 add_symbols_to_table(Symbol_table* symtab)
797 { this->assignment_.add_to_table(symtab); }
799 // Finalize the symbol.
801 finalize_symbols(Symbol_table* symtab, const Layout* layout,
802 uint64_t* dot_value, Output_section** dot_section)
804 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
808 // Set the section address. There is no section here, but if the
809 // value is absolute, we set the symbol. This permits us to use
810 // absolute symbols when setting dot.
812 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
813 uint64_t, uint64_t* dot_value, uint64_t*,
814 Output_section**, std::string*, Input_section_list*)
816 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
819 // Print for debugging.
824 this->assignment_.print(f);
828 Symbol_assignment assignment_;
831 // An assignment to the dot symbol in an output section.
833 class Output_section_element_dot_assignment : public Output_section_element
836 Output_section_element_dot_assignment(Expression* val)
840 // Finalize the symbol.
842 finalize_symbols(Symbol_table* symtab, const Layout* layout,
843 uint64_t* dot_value, Output_section** dot_section)
845 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
846 *dot_section, dot_section, NULL);
849 // Update the dot symbol while setting section addresses.
851 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
852 uint64_t, uint64_t* dot_value, uint64_t*,
853 Output_section**, std::string*, Input_section_list*);
855 // Print for debugging.
860 this->val_->print(f);
868 // Update the dot symbol while setting section addresses.
871 Output_section_element_dot_assignment::set_section_addresses(
872 Symbol_table* symtab,
874 Output_section* output_section,
877 uint64_t* dot_alignment,
878 Output_section** dot_section,
882 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
883 *dot_value, *dot_section,
884 dot_section, dot_alignment);
885 if (next_dot < *dot_value)
886 gold_error(_("dot may not move backward"));
887 if (next_dot > *dot_value && output_section != NULL)
889 section_size_type length = convert_to_section_size_type(next_dot
891 Output_section_data* posd;
893 posd = new Output_data_zero_fill(length, 0);
896 std::string this_fill = this->get_fill_string(fill, length);
897 posd = new Output_data_const(this_fill, 0);
899 output_section->add_output_section_data(posd);
900 layout->new_output_section_data_from_script(posd);
902 *dot_value = next_dot;
905 // An assertion in an output section.
907 class Output_section_element_assertion : public Output_section_element
910 Output_section_element_assertion(Expression* check, const char* message,
912 : assertion_(check, message, messagelen)
919 this->assertion_.print(f);
923 Script_assertion assertion_;
926 // We use a special instance of Output_section_data to handle BYTE,
927 // SHORT, etc. This permits forward references to symbols in the
930 class Output_data_expression : public Output_section_data
933 Output_data_expression(int size, bool is_signed, Expression* val,
934 const Symbol_table* symtab, const Layout* layout,
935 uint64_t dot_value, Output_section* dot_section)
936 : Output_section_data(size, 0, true),
937 is_signed_(is_signed), val_(val), symtab_(symtab),
938 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
942 // Write the data to the output file.
944 do_write(Output_file*);
946 // Write the data to a buffer.
948 do_write_to_buffer(unsigned char*);
950 // Write to a map file.
952 do_print_to_mapfile(Mapfile* mapfile) const
953 { mapfile->print_output_data(this, _("** expression")); }
956 template<bool big_endian>
958 endian_write_to_buffer(uint64_t, unsigned char*);
962 const Symbol_table* symtab_;
963 const Layout* layout_;
965 Output_section* dot_section_;
968 // Write the data element to the output file.
971 Output_data_expression::do_write(Output_file* of)
973 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
974 this->write_to_buffer(view);
975 of->write_output_view(this->offset(), this->data_size(), view);
978 // Write the data element to a buffer.
981 Output_data_expression::do_write_to_buffer(unsigned char* buf)
983 Output_section* dummy;
984 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
985 true, this->dot_value_,
986 this->dot_section_, &dummy, NULL);
988 if (parameters->target().is_big_endian())
989 this->endian_write_to_buffer<true>(val, buf);
991 this->endian_write_to_buffer<false>(val, buf);
994 template<bool big_endian>
996 Output_data_expression::endian_write_to_buffer(uint64_t val,
999 switch (this->data_size())
1002 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1005 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1008 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1011 if (parameters->target().get_size() == 32)
1014 if (this->is_signed_ && (val & 0x80000000) != 0)
1015 val |= 0xffffffff00000000LL;
1017 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1024 // A data item in an output section.
1026 class Output_section_element_data : public Output_section_element
1029 Output_section_element_data(int size, bool is_signed, Expression* val)
1030 : size_(size), is_signed_(is_signed), val_(val)
1033 // If there is a data item, then we must create an output section.
1035 needs_output_section() const
1038 // Finalize symbols--we just need to update dot.
1040 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1042 { *dot_value += this->size_; }
1044 // Store the value in the section.
1046 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1047 uint64_t* dot_value, uint64_t*, Output_section**,
1048 std::string*, Input_section_list*);
1050 // Print for debugging.
1055 // The size in bytes.
1057 // Whether the value is signed.
1063 // Store the value in the section.
1066 Output_section_element_data::set_section_addresses(
1067 Symbol_table* symtab,
1071 uint64_t* dot_value,
1073 Output_section** dot_section,
1075 Input_section_list*)
1077 gold_assert(os != NULL);
1078 Output_data_expression* expression =
1079 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1080 symtab, layout, *dot_value, *dot_section);
1081 os->add_output_section_data(expression);
1082 layout->new_output_section_data_from_script(expression);
1083 *dot_value += this->size_;
1086 // Print for debugging.
1089 Output_section_element_data::print(FILE* f) const
1092 switch (this->size_)
1104 if (this->is_signed_)
1112 fprintf(f, " %s(", s);
1113 this->val_->print(f);
1117 // A fill value setting in an output section.
1119 class Output_section_element_fill : public Output_section_element
1122 Output_section_element_fill(Expression* val)
1126 // Update the fill value while setting section addresses.
1128 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1129 uint64_t, uint64_t* dot_value, uint64_t*,
1130 Output_section** dot_section,
1131 std::string* fill, Input_section_list*)
1133 Output_section* fill_section;
1134 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1135 *dot_value, *dot_section,
1136 &fill_section, NULL);
1137 if (fill_section != NULL)
1138 gold_warning(_("fill value is not absolute"));
1139 // FIXME: The GNU linker supports fill values of arbitrary length.
1140 unsigned char fill_buff[4];
1141 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1142 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1145 // Print for debugging.
1147 print(FILE* f) const
1149 fprintf(f, " FILL(");
1150 this->val_->print(f);
1155 // The new fill value.
1159 // An input section specification in an output section
1161 class Output_section_element_input : public Output_section_element
1164 Output_section_element_input(const Input_section_spec* spec, bool keep);
1166 // Finalize symbols--just update the value of the dot symbol.
1168 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1169 Output_section** dot_section)
1171 *dot_value = this->final_dot_value_;
1172 *dot_section = this->final_dot_section_;
1175 // See whether we match FILE_NAME and SECTION_NAME as an input
1178 match_name(const char* file_name, const char* section_name) const;
1180 // Set the section address.
1182 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1183 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1184 Output_section**, std::string* fill,
1185 Input_section_list*);
1187 // Print for debugging.
1189 print(FILE* f) const;
1192 // An input section pattern.
1193 struct Input_section_pattern
1195 std::string pattern;
1196 bool pattern_is_wildcard;
1199 Input_section_pattern(const char* patterna, size_t patternlena,
1200 Sort_wildcard sorta)
1201 : pattern(patterna, patternlena),
1202 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1207 typedef std::vector<Input_section_pattern> Input_section_patterns;
1209 // Filename_exclusions is a pair of filename pattern and a bool
1210 // indicating whether the filename is a wildcard.
1211 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1213 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1214 // indicates whether this is a wildcard pattern.
1216 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1218 return (is_wildcard_pattern
1219 ? fnmatch(pattern, string, 0) == 0
1220 : strcmp(string, pattern) == 0);
1223 // See if we match a file name.
1225 match_file_name(const char* file_name) const;
1227 // The file name pattern. If this is the empty string, we match all
1229 std::string filename_pattern_;
1230 // Whether the file name pattern is a wildcard.
1231 bool filename_is_wildcard_;
1232 // How the file names should be sorted. This may only be
1233 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1234 Sort_wildcard filename_sort_;
1235 // The list of file names to exclude.
1236 Filename_exclusions filename_exclusions_;
1237 // The list of input section patterns.
1238 Input_section_patterns input_section_patterns_;
1239 // Whether to keep this section when garbage collecting.
1241 // The value of dot after including all matching sections.
1242 uint64_t final_dot_value_;
1243 // The section where dot is defined after including all matching
1245 Output_section* final_dot_section_;
1248 // Construct Output_section_element_input. The parser records strings
1249 // as pointers into a copy of the script file, which will go away when
1250 // parsing is complete. We make sure they are in std::string objects.
1252 Output_section_element_input::Output_section_element_input(
1253 const Input_section_spec* spec,
1255 : filename_pattern_(),
1256 filename_is_wildcard_(false),
1257 filename_sort_(spec->file.sort),
1258 filename_exclusions_(),
1259 input_section_patterns_(),
1261 final_dot_value_(0),
1262 final_dot_section_(NULL)
1264 // The filename pattern "*" is common, and matches all files. Turn
1265 // it into the empty string.
1266 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1267 this->filename_pattern_.assign(spec->file.name.value,
1268 spec->file.name.length);
1269 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1271 if (spec->input_sections.exclude != NULL)
1273 for (String_list::const_iterator p =
1274 spec->input_sections.exclude->begin();
1275 p != spec->input_sections.exclude->end();
1278 bool is_wildcard = is_wildcard_string((*p).c_str());
1279 this->filename_exclusions_.push_back(std::make_pair(*p,
1284 if (spec->input_sections.sections != NULL)
1286 Input_section_patterns& isp(this->input_section_patterns_);
1287 for (String_sort_list::const_iterator p =
1288 spec->input_sections.sections->begin();
1289 p != spec->input_sections.sections->end();
1291 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1296 // See whether we match FILE_NAME.
1299 Output_section_element_input::match_file_name(const char* file_name) const
1301 if (!this->filename_pattern_.empty())
1303 // If we were called with no filename, we refuse to match a
1304 // pattern which requires a file name.
1305 if (file_name == NULL)
1308 if (!match(file_name, this->filename_pattern_.c_str(),
1309 this->filename_is_wildcard_))
1313 if (file_name != NULL)
1315 // Now we have to see whether FILE_NAME matches one of the
1316 // exclusion patterns, if any.
1317 for (Filename_exclusions::const_iterator p =
1318 this->filename_exclusions_.begin();
1319 p != this->filename_exclusions_.end();
1322 if (match(file_name, p->first.c_str(), p->second))
1330 // See whether we match FILE_NAME and SECTION_NAME.
1333 Output_section_element_input::match_name(const char* file_name,
1334 const char* section_name) const
1336 if (!this->match_file_name(file_name))
1339 // If there are no section name patterns, then we match.
1340 if (this->input_section_patterns_.empty())
1343 // See whether we match the section name patterns.
1344 for (Input_section_patterns::const_iterator p =
1345 this->input_section_patterns_.begin();
1346 p != this->input_section_patterns_.end();
1349 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1353 // We didn't match any section names, so we didn't match.
1357 // Information we use to sort the input sections.
1359 class Input_section_info
1362 Input_section_info(const Output_section::Input_section& input_section)
1363 : input_section_(input_section), section_name_(),
1364 size_(0), addralign_(1)
1367 // Return the simple input section.
1368 const Output_section::Input_section&
1369 input_section() const
1370 { return this->input_section_; }
1372 // Return the object.
1375 { return this->input_section_.relobj(); }
1377 // Return the section index.
1380 { return this->input_section_.shndx(); }
1382 // Return the section name.
1384 section_name() const
1385 { return this->section_name_; }
1387 // Set the section name.
1389 set_section_name(const std::string name)
1390 { this->section_name_ = name; }
1392 // Return the section size.
1395 { return this->size_; }
1397 // Set the section size.
1399 set_size(uint64_t size)
1400 { this->size_ = size; }
1402 // Return the address alignment.
1405 { return this->addralign_; }
1407 // Set the address alignment.
1409 set_addralign(uint64_t addralign)
1410 { this->addralign_ = addralign; }
1413 // Input section, can be a relaxed section.
1414 Output_section::Input_section input_section_;
1415 // Name of the section.
1416 std::string section_name_;
1419 // Address alignment.
1420 uint64_t addralign_;
1423 // A class to sort the input sections.
1425 class Input_section_sorter
1428 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1429 : filename_sort_(filename_sort), section_sort_(section_sort)
1433 operator()(const Input_section_info&, const Input_section_info&) const;
1436 Sort_wildcard filename_sort_;
1437 Sort_wildcard section_sort_;
1441 Input_section_sorter::operator()(const Input_section_info& isi1,
1442 const Input_section_info& isi2) const
1444 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1445 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1446 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1447 && isi1.addralign() == isi2.addralign()))
1449 if (isi1.section_name() != isi2.section_name())
1450 return isi1.section_name() < isi2.section_name();
1452 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1453 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1454 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1456 if (isi1.addralign() != isi2.addralign())
1457 return isi1.addralign() < isi2.addralign();
1459 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1461 if (isi1.relobj()->name() != isi2.relobj()->name())
1462 return (isi1.relobj()->name() < isi2.relobj()->name());
1465 // Otherwise we leave them in the same order.
1469 // Set the section address. Look in INPUT_SECTIONS for sections which
1470 // match this spec, sort them as specified, and add them to the output
1474 Output_section_element_input::set_section_addresses(
1477 Output_section* output_section,
1479 uint64_t* dot_value,
1481 Output_section** dot_section,
1483 Input_section_list* input_sections)
1485 // We build a list of sections which match each
1486 // Input_section_pattern.
1488 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1489 size_t input_pattern_count = this->input_section_patterns_.size();
1490 if (input_pattern_count == 0)
1491 input_pattern_count = 1;
1492 Matching_sections matching_sections(input_pattern_count);
1494 // Look through the list of sections for this output section. Add
1495 // each one which matches to one of the elements of
1496 // MATCHING_SECTIONS.
1498 Input_section_list::iterator p = input_sections->begin();
1499 while (p != input_sections->end())
1501 Relobj* relobj = p->relobj();
1502 unsigned int shndx = p->shndx();
1503 Input_section_info isi(*p);
1505 // Calling section_name and section_addralign is not very
1508 // Lock the object so that we can get information about the
1509 // section. This is OK since we know we are single-threaded
1512 const Task* task = reinterpret_cast<const Task*>(-1);
1513 Task_lock_obj<Object> tl(task, relobj);
1515 isi.set_section_name(relobj->section_name(shndx));
1516 if (p->is_relaxed_input_section())
1518 // We use current data size because relxed section sizes may not
1519 // have finalized yet.
1520 isi.set_size(p->relaxed_input_section()->current_data_size());
1521 isi.set_addralign(p->relaxed_input_section()->addralign());
1525 isi.set_size(relobj->section_size(shndx));
1526 isi.set_addralign(relobj->section_addralign(shndx));
1530 if (!this->match_file_name(relobj->name().c_str()))
1532 else if (this->input_section_patterns_.empty())
1534 matching_sections[0].push_back(isi);
1535 p = input_sections->erase(p);
1540 for (i = 0; i < input_pattern_count; ++i)
1542 const Input_section_pattern&
1543 isp(this->input_section_patterns_[i]);
1544 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1545 isp.pattern_is_wildcard))
1549 if (i >= this->input_section_patterns_.size())
1553 matching_sections[i].push_back(isi);
1554 p = input_sections->erase(p);
1559 // Look through MATCHING_SECTIONS. Sort each one as specified,
1560 // using a stable sort so that we get the default order when
1561 // sections are otherwise equal. Add each input section to the
1564 uint64_t dot = *dot_value;
1565 for (size_t i = 0; i < input_pattern_count; ++i)
1567 if (matching_sections[i].empty())
1570 gold_assert(output_section != NULL);
1572 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1573 if (isp.sort != SORT_WILDCARD_NONE
1574 || this->filename_sort_ != SORT_WILDCARD_NONE)
1575 std::stable_sort(matching_sections[i].begin(),
1576 matching_sections[i].end(),
1577 Input_section_sorter(this->filename_sort_,
1580 for (std::vector<Input_section_info>::const_iterator p =
1581 matching_sections[i].begin();
1582 p != matching_sections[i].end();
1585 // Override the original address alignment if SUBALIGN is specified
1586 // and is greater than the original alignment. We need to make a
1587 // copy of the input section to modify the alignment.
1588 Output_section::Input_section sis(p->input_section());
1590 uint64_t this_subalign = sis.addralign();
1591 if (!sis.is_input_section())
1592 sis.output_section_data()->finalize_data_size();
1593 uint64_t data_size = sis.data_size();
1594 if (this_subalign < subalign)
1596 this_subalign = subalign;
1597 sis.set_addralign(subalign);
1600 uint64_t address = align_address(dot, this_subalign);
1602 if (address > dot && !fill->empty())
1604 section_size_type length =
1605 convert_to_section_size_type(address - dot);
1606 std::string this_fill = this->get_fill_string(fill, length);
1607 Output_section_data* posd = new Output_data_const(this_fill, 0);
1608 output_section->add_output_section_data(posd);
1609 layout->new_output_section_data_from_script(posd);
1612 output_section->add_script_input_section(sis);
1613 dot = address + data_size;
1617 // An SHF_TLS/SHT_NOBITS section does not take up any
1619 if (output_section == NULL
1620 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1621 || output_section->type() != elfcpp::SHT_NOBITS)
1624 this->final_dot_value_ = *dot_value;
1625 this->final_dot_section_ = *dot_section;
1628 // Print for debugging.
1631 Output_section_element_input::print(FILE* f) const
1636 fprintf(f, "KEEP(");
1638 if (!this->filename_pattern_.empty())
1640 bool need_close_paren = false;
1641 switch (this->filename_sort_)
1643 case SORT_WILDCARD_NONE:
1645 case SORT_WILDCARD_BY_NAME:
1646 fprintf(f, "SORT_BY_NAME(");
1647 need_close_paren = true;
1653 fprintf(f, "%s", this->filename_pattern_.c_str());
1655 if (need_close_paren)
1659 if (!this->input_section_patterns_.empty()
1660 || !this->filename_exclusions_.empty())
1664 bool need_space = false;
1665 if (!this->filename_exclusions_.empty())
1667 fprintf(f, "EXCLUDE_FILE(");
1668 bool need_comma = false;
1669 for (Filename_exclusions::const_iterator p =
1670 this->filename_exclusions_.begin();
1671 p != this->filename_exclusions_.end();
1676 fprintf(f, "%s", p->first.c_str());
1683 for (Input_section_patterns::const_iterator p =
1684 this->input_section_patterns_.begin();
1685 p != this->input_section_patterns_.end();
1691 int close_parens = 0;
1694 case SORT_WILDCARD_NONE:
1696 case SORT_WILDCARD_BY_NAME:
1697 fprintf(f, "SORT_BY_NAME(");
1700 case SORT_WILDCARD_BY_ALIGNMENT:
1701 fprintf(f, "SORT_BY_ALIGNMENT(");
1704 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1705 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1708 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1709 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1716 fprintf(f, "%s", p->pattern.c_str());
1718 for (int i = 0; i < close_parens; ++i)
1733 // An output section.
1735 class Output_section_definition : public Sections_element
1738 typedef Output_section_element::Input_section_list Input_section_list;
1740 Output_section_definition(const char* name, size_t namelen,
1741 const Parser_output_section_header* header);
1743 // Finish the output section with the information in the trailer.
1745 finish(const Parser_output_section_trailer* trailer);
1747 // Add a symbol to be defined.
1749 add_symbol_assignment(const char* name, size_t length, Expression* value,
1750 bool provide, bool hidden);
1752 // Add an assignment to the special dot symbol.
1754 add_dot_assignment(Expression* value);
1756 // Add an assertion.
1758 add_assertion(Expression* check, const char* message, size_t messagelen);
1760 // Add a data item to the current output section.
1762 add_data(int size, bool is_signed, Expression* val);
1764 // Add a setting for the fill value.
1766 add_fill(Expression* val);
1768 // Add an input section specification.
1770 add_input_section(const Input_section_spec* spec, bool keep);
1772 // Return whether the output section is relro.
1775 { return this->is_relro_; }
1777 // Record that the output section is relro.
1780 { this->is_relro_ = true; }
1782 // Create any required output sections.
1784 create_sections(Layout*);
1786 // Add any symbols being defined to the symbol table.
1788 add_symbols_to_table(Symbol_table* symtab);
1790 // Finalize symbols and check assertions.
1792 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1794 // Return the output section name to use for an input file name and
1797 output_section_name(const char* file_name, const char* section_name,
1798 Output_section***, Script_sections::Section_type*);
1800 // Initialize OSP with an output section.
1802 orphan_section_init(Orphan_section_placement* osp,
1803 Script_sections::Elements_iterator p)
1804 { osp->output_section_init(this->name_, this->output_section_, p); }
1806 // Set the section address.
1808 set_section_addresses(Symbol_table* symtab, Layout* layout,
1809 uint64_t* dot_value, uint64_t*,
1810 uint64_t* load_address);
1812 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1813 // this section is constrained, and the input sections do not match,
1814 // return the constraint, and set *POSD.
1816 check_constraint(Output_section_definition** posd);
1818 // See if this is the alternate output section for a constrained
1819 // output section. If it is, transfer the Output_section and return
1820 // true. Otherwise return false.
1822 alternate_constraint(Output_section_definition*, Section_constraint);
1824 // Get the list of segments to use for an allocated section when
1825 // using a PHDRS clause.
1827 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1829 // Look for an output section by name and return the address, the
1830 // load address, the alignment, and the size. This is used when an
1831 // expression refers to an output section which was not actually
1832 // created. This returns true if the section was found, false
1835 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1838 // Return the associated Output_section if there is one.
1840 get_output_section() const
1841 { return this->output_section_; }
1843 // Print the contents to the FILE. This is for debugging.
1847 // Return the output section type if specified or Script_sections::ST_NONE.
1848 Script_sections::Section_type
1849 section_type() const;
1851 // Store the memory region to use.
1853 set_memory_region(Memory_region*, bool set_vma);
1856 set_section_vma(Expression* address)
1857 { this->address_ = address; }
1860 set_section_lma(Expression* address)
1861 { this->load_address_ = address; }
1864 get_section_name(void) const
1865 { return this->name_; }
1869 script_section_type_name(Script_section_type);
1871 typedef std::vector<Output_section_element*> Output_section_elements;
1873 // The output section name.
1875 // The address. This may be NULL.
1876 Expression* address_;
1877 // The load address. This may be NULL.
1878 Expression* load_address_;
1879 // The alignment. This may be NULL.
1881 // The input section alignment. This may be NULL.
1882 Expression* subalign_;
1883 // The constraint, if any.
1884 Section_constraint constraint_;
1885 // The fill value. This may be NULL.
1887 // The list of segments this section should go into. This may be
1889 String_list* phdrs_;
1890 // The list of elements defining the section.
1891 Output_section_elements elements_;
1892 // The Output_section created for this definition. This will be
1893 // NULL if none was created.
1894 Output_section* output_section_;
1895 // The address after it has been evaluated.
1896 uint64_t evaluated_address_;
1897 // The load address after it has been evaluated.
1898 uint64_t evaluated_load_address_;
1899 // The alignment after it has been evaluated.
1900 uint64_t evaluated_addralign_;
1901 // The output section is relro.
1903 // The output section type if specified.
1904 enum Script_section_type script_section_type_;
1909 Output_section_definition::Output_section_definition(
1912 const Parser_output_section_header* header)
1913 : name_(name, namelen),
1914 address_(header->address),
1915 load_address_(header->load_address),
1916 align_(header->align),
1917 subalign_(header->subalign),
1918 constraint_(header->constraint),
1922 output_section_(NULL),
1923 evaluated_address_(0),
1924 evaluated_load_address_(0),
1925 evaluated_addralign_(0),
1927 script_section_type_(header->section_type)
1931 // Finish an output section.
1934 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1936 this->fill_ = trailer->fill;
1937 this->phdrs_ = trailer->phdrs;
1940 // Add a symbol to be defined.
1943 Output_section_definition::add_symbol_assignment(const char* name,
1949 Output_section_element* p = new Output_section_element_assignment(name,
1954 this->elements_.push_back(p);
1957 // Add an assignment to the special dot symbol.
1960 Output_section_definition::add_dot_assignment(Expression* value)
1962 Output_section_element* p = new Output_section_element_dot_assignment(value);
1963 this->elements_.push_back(p);
1966 // Add an assertion.
1969 Output_section_definition::add_assertion(Expression* check,
1970 const char* message,
1973 Output_section_element* p = new Output_section_element_assertion(check,
1976 this->elements_.push_back(p);
1979 // Add a data item to the current output section.
1982 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1984 Output_section_element* p = new Output_section_element_data(size, is_signed,
1986 this->elements_.push_back(p);
1989 // Add a setting for the fill value.
1992 Output_section_definition::add_fill(Expression* val)
1994 Output_section_element* p = new Output_section_element_fill(val);
1995 this->elements_.push_back(p);
1998 // Add an input section specification.
2001 Output_section_definition::add_input_section(const Input_section_spec* spec,
2004 Output_section_element* p = new Output_section_element_input(spec, keep);
2005 this->elements_.push_back(p);
2008 // Create any required output sections. We need an output section if
2009 // there is a data statement here.
2012 Output_section_definition::create_sections(Layout* layout)
2014 if (this->output_section_ != NULL)
2016 for (Output_section_elements::const_iterator p = this->elements_.begin();
2017 p != this->elements_.end();
2020 if ((*p)->needs_output_section())
2022 const char* name = this->name_.c_str();
2023 this->output_section_ =
2024 layout->make_output_section_for_script(name, this->section_type());
2030 // Add any symbols being defined to the symbol table.
2033 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2035 for (Output_section_elements::iterator p = this->elements_.begin();
2036 p != this->elements_.end();
2038 (*p)->add_symbols_to_table(symtab);
2041 // Finalize symbols and check assertions.
2044 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2045 const Layout* layout,
2046 uint64_t* dot_value)
2048 if (this->output_section_ != NULL)
2049 *dot_value = this->output_section_->address();
2052 uint64_t address = *dot_value;
2053 if (this->address_ != NULL)
2055 Output_section* dummy;
2056 address = this->address_->eval_with_dot(symtab, layout, true,
2060 if (this->align_ != NULL)
2062 Output_section* dummy;
2063 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2067 address = align_address(address, align);
2069 *dot_value = address;
2072 Output_section* dot_section = this->output_section_;
2073 for (Output_section_elements::iterator p = this->elements_.begin();
2074 p != this->elements_.end();
2076 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2079 // Return the output section name to use for an input section name.
2082 Output_section_definition::output_section_name(
2083 const char* file_name,
2084 const char* section_name,
2085 Output_section*** slot,
2086 Script_sections::Section_type* psection_type)
2088 // Ask each element whether it matches NAME.
2089 for (Output_section_elements::const_iterator p = this->elements_.begin();
2090 p != this->elements_.end();
2093 if ((*p)->match_name(file_name, section_name))
2095 // We found a match for NAME, which means that it should go
2096 // into this output section.
2097 *slot = &this->output_section_;
2098 *psection_type = this->section_type();
2099 return this->name_.c_str();
2103 // We don't know about this section name.
2107 // Set the section address. Note that the OUTPUT_SECTION_ field will
2108 // be NULL if no input sections were mapped to this output section.
2109 // We still have to adjust dot and process symbol assignments.
2112 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2114 uint64_t* dot_value,
2115 uint64_t* dot_alignment,
2116 uint64_t* load_address)
2119 uint64_t old_dot_value = *dot_value;
2120 uint64_t old_load_address = *load_address;
2122 // Check for --section-start.
2123 bool is_address_set = false;
2124 if (this->output_section_ != NULL)
2126 parameters->options().section_start(this->output_section_->name(),
2128 if (!is_address_set)
2130 if (this->address_ == NULL)
2131 address = *dot_value;
2134 Output_section* dummy;
2135 address = this->address_->eval_with_dot(symtab, layout, true,
2136 *dot_value, NULL, &dummy,
2142 if (this->align_ == NULL)
2144 if (this->output_section_ == NULL)
2147 align = this->output_section_->addralign();
2151 Output_section* align_section;
2152 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2153 NULL, &align_section, NULL);
2154 if (align_section != NULL)
2155 gold_warning(_("alignment of section %s is not absolute"),
2156 this->name_.c_str());
2157 if (this->output_section_ != NULL)
2158 this->output_section_->set_addralign(align);
2161 address = align_address(address, align);
2163 uint64_t start_address = address;
2165 *dot_value = address;
2167 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2168 // forced to zero, regardless of what the linker script wants.
2169 if (this->output_section_ != NULL
2170 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2171 || this->output_section_->is_noload()))
2172 this->output_section_->set_address(address);
2174 this->evaluated_address_ = address;
2175 this->evaluated_addralign_ = align;
2177 if (this->load_address_ == NULL)
2178 this->evaluated_load_address_ = address;
2181 Output_section* dummy;
2183 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
2184 this->output_section_, &dummy,
2186 if (this->output_section_ != NULL)
2187 this->output_section_->set_load_address(laddr);
2188 this->evaluated_load_address_ = laddr;
2192 if (this->subalign_ == NULL)
2196 Output_section* subalign_section;
2197 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2199 &subalign_section, NULL);
2200 if (subalign_section != NULL)
2201 gold_warning(_("subalign of section %s is not absolute"),
2202 this->name_.c_str());
2206 if (this->fill_ != NULL)
2208 // FIXME: The GNU linker supports fill values of arbitrary
2210 Output_section* fill_section;
2211 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2213 NULL, &fill_section,
2215 if (fill_section != NULL)
2216 gold_warning(_("fill of section %s is not absolute"),
2217 this->name_.c_str());
2218 unsigned char fill_buff[4];
2219 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2220 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2223 Input_section_list input_sections;
2224 if (this->output_section_ != NULL)
2226 // Get the list of input sections attached to this output
2227 // section. This will leave the output section with only
2228 // Output_section_data entries.
2229 address += this->output_section_->get_input_sections(address,
2232 *dot_value = address;
2235 Output_section* dot_section = this->output_section_;
2236 for (Output_section_elements::iterator p = this->elements_.begin();
2237 p != this->elements_.end();
2239 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2240 subalign, dot_value, dot_alignment,
2241 &dot_section, &fill, &input_sections);
2243 gold_assert(input_sections.empty());
2245 if (this->load_address_ == NULL || this->output_section_ == NULL)
2246 *load_address = *dot_value;
2248 *load_address = (this->output_section_->load_address()
2249 + (*dot_value - start_address));
2251 if (this->output_section_ != NULL)
2253 if (this->is_relro_)
2254 this->output_section_->set_is_relro();
2256 this->output_section_->clear_is_relro();
2258 // If this is a NOLOAD section, keep dot and load address unchanged.
2259 if (this->output_section_->is_noload())
2261 *dot_value = old_dot_value;
2262 *load_address = old_load_address;
2267 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2268 // this section is constrained, and the input sections do not match,
2269 // return the constraint, and set *POSD.
2272 Output_section_definition::check_constraint(Output_section_definition** posd)
2274 switch (this->constraint_)
2276 case CONSTRAINT_NONE:
2277 return CONSTRAINT_NONE;
2279 case CONSTRAINT_ONLY_IF_RO:
2280 if (this->output_section_ != NULL
2281 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2284 return CONSTRAINT_ONLY_IF_RO;
2286 return CONSTRAINT_NONE;
2288 case CONSTRAINT_ONLY_IF_RW:
2289 if (this->output_section_ != NULL
2290 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2293 return CONSTRAINT_ONLY_IF_RW;
2295 return CONSTRAINT_NONE;
2297 case CONSTRAINT_SPECIAL:
2298 if (this->output_section_ != NULL)
2299 gold_error(_("SPECIAL constraints are not implemented"));
2300 return CONSTRAINT_NONE;
2307 // See if this is the alternate output section for a constrained
2308 // output section. If it is, transfer the Output_section and return
2309 // true. Otherwise return false.
2312 Output_section_definition::alternate_constraint(
2313 Output_section_definition* posd,
2314 Section_constraint constraint)
2316 if (this->name_ != posd->name_)
2321 case CONSTRAINT_ONLY_IF_RO:
2322 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2326 case CONSTRAINT_ONLY_IF_RW:
2327 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2335 // We have found the alternate constraint. We just need to move
2336 // over the Output_section. When constraints are used properly,
2337 // THIS should not have an output_section pointer, as all the input
2338 // sections should have matched the other definition.
2340 if (this->output_section_ != NULL)
2341 gold_error(_("mismatched definition for constrained sections"));
2343 this->output_section_ = posd->output_section_;
2344 posd->output_section_ = NULL;
2346 if (this->is_relro_)
2347 this->output_section_->set_is_relro();
2349 this->output_section_->clear_is_relro();
2354 // Get the list of segments to use for an allocated section when using
2358 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2361 // Update phdrs_list even if we don't have an output section. It
2362 // might be used by the following sections.
2363 if (this->phdrs_ != NULL)
2364 *phdrs_list = this->phdrs_;
2366 if (this->output_section_ == NULL)
2368 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2371 return this->output_section_;
2374 // Look for an output section by name and return the address, the load
2375 // address, the alignment, and the size. This is used when an
2376 // expression refers to an output section which was not actually
2377 // created. This returns true if the section was found, false
2381 Output_section_definition::get_output_section_info(const char* name,
2383 uint64_t* load_address,
2384 uint64_t* addralign,
2385 uint64_t* size) const
2387 if (this->name_ != name)
2390 if (this->output_section_ != NULL)
2392 *address = this->output_section_->address();
2393 if (this->output_section_->has_load_address())
2394 *load_address = this->output_section_->load_address();
2396 *load_address = *address;
2397 *addralign = this->output_section_->addralign();
2398 *size = this->output_section_->current_data_size();
2402 *address = this->evaluated_address_;
2403 *load_address = this->evaluated_load_address_;
2404 *addralign = this->evaluated_addralign_;
2411 // Print for debugging.
2414 Output_section_definition::print(FILE* f) const
2416 fprintf(f, " %s ", this->name_.c_str());
2418 if (this->address_ != NULL)
2420 this->address_->print(f);
2424 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2426 this->script_section_type_name(this->script_section_type_));
2430 if (this->load_address_ != NULL)
2433 this->load_address_->print(f);
2437 if (this->align_ != NULL)
2439 fprintf(f, "ALIGN(");
2440 this->align_->print(f);
2444 if (this->subalign_ != NULL)
2446 fprintf(f, "SUBALIGN(");
2447 this->subalign_->print(f);
2453 for (Output_section_elements::const_iterator p = this->elements_.begin();
2454 p != this->elements_.end();
2460 if (this->fill_ != NULL)
2463 this->fill_->print(f);
2466 if (this->phdrs_ != NULL)
2468 for (String_list::const_iterator p = this->phdrs_->begin();
2469 p != this->phdrs_->end();
2471 fprintf(f, " :%s", p->c_str());
2477 Script_sections::Section_type
2478 Output_section_definition::section_type() const
2480 switch (this->script_section_type_)
2482 case SCRIPT_SECTION_TYPE_NONE:
2483 return Script_sections::ST_NONE;
2484 case SCRIPT_SECTION_TYPE_NOLOAD:
2485 return Script_sections::ST_NOLOAD;
2486 case SCRIPT_SECTION_TYPE_COPY:
2487 case SCRIPT_SECTION_TYPE_DSECT:
2488 case SCRIPT_SECTION_TYPE_INFO:
2489 case SCRIPT_SECTION_TYPE_OVERLAY:
2490 // There are not really support so we treat them as ST_NONE. The
2491 // parse should have issued errors for them already.
2492 return Script_sections::ST_NONE;
2498 // Return the name of a script section type.
2501 Output_section_definition::script_section_type_name(
2502 Script_section_type script_section_type)
2504 switch (script_section_type)
2506 case SCRIPT_SECTION_TYPE_NONE:
2508 case SCRIPT_SECTION_TYPE_NOLOAD:
2510 case SCRIPT_SECTION_TYPE_DSECT:
2512 case SCRIPT_SECTION_TYPE_COPY:
2514 case SCRIPT_SECTION_TYPE_INFO:
2516 case SCRIPT_SECTION_TYPE_OVERLAY:
2524 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2526 gold_assert(mr != NULL);
2527 // Add the current section to the specified region's list.
2528 mr->add_section(this, set_vma);
2531 // An output section created to hold orphaned input sections. These
2532 // do not actually appear in linker scripts. However, for convenience
2533 // when setting the output section addresses, we put a marker to these
2534 // sections in the appropriate place in the list of SECTIONS elements.
2536 class Orphan_output_section : public Sections_element
2539 Orphan_output_section(Output_section* os)
2543 // Return whether the orphan output section is relro. We can just
2544 // check the output section because we always set the flag, if
2545 // needed, just after we create the Orphan_output_section.
2548 { return this->os_->is_relro(); }
2550 // Initialize OSP with an output section. This should have been
2553 orphan_section_init(Orphan_section_placement*,
2554 Script_sections::Elements_iterator)
2555 { gold_unreachable(); }
2557 // Set section addresses.
2559 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2562 // Get the list of segments to use for an allocated section when
2563 // using a PHDRS clause.
2565 allocate_to_segment(String_list**, bool*);
2567 // Return the associated Output_section.
2569 get_output_section() const
2570 { return this->os_; }
2572 // Print for debugging.
2574 print(FILE* f) const
2576 fprintf(f, " marker for orphaned output section %s\n",
2581 Output_section* os_;
2584 // Set section addresses.
2587 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2588 uint64_t* dot_value,
2590 uint64_t* load_address)
2592 typedef std::list<Output_section::Input_section> Input_section_list;
2594 bool have_load_address = *load_address != *dot_value;
2596 uint64_t address = *dot_value;
2597 address = align_address(address, this->os_->addralign());
2599 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2601 this->os_->set_address(address);
2602 if (have_load_address)
2603 this->os_->set_load_address(align_address(*load_address,
2604 this->os_->addralign()));
2607 Input_section_list input_sections;
2608 address += this->os_->get_input_sections(address, "", &input_sections);
2610 for (Input_section_list::iterator p = input_sections.begin();
2611 p != input_sections.end();
2614 uint64_t addralign = p->addralign();
2615 if (!p->is_input_section())
2616 p->output_section_data()->finalize_data_size();
2617 uint64_t size = p->data_size();
2618 address = align_address(address, addralign);
2619 this->os_->add_script_input_section(*p);
2623 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2624 if (this->os_ == NULL
2625 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2626 || this->os_->type() != elfcpp::SHT_NOBITS)
2628 if (!have_load_address)
2629 *load_address = address;
2631 *load_address += address - *dot_value;
2633 *dot_value = address;
2637 // Get the list of segments to use for an allocated section when using
2638 // a PHDRS clause. If this is an allocated section, return the
2639 // Output_section. We don't change the list of segments.
2642 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2644 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2650 // Class Phdrs_element. A program header from a PHDRS clause.
2655 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2656 bool includes_filehdr, bool includes_phdrs,
2657 bool is_flags_valid, unsigned int flags,
2658 Expression* load_address)
2659 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2660 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2661 flags_(flags), load_address_(load_address), load_address_value_(0),
2665 // Return the name of this segment.
2668 { return this->name_; }
2670 // Return the type of the segment.
2673 { return this->type_; }
2675 // Whether to include the file header.
2677 includes_filehdr() const
2678 { return this->includes_filehdr_; }
2680 // Whether to include the program headers.
2682 includes_phdrs() const
2683 { return this->includes_phdrs_; }
2685 // Return whether there is a load address.
2687 has_load_address() const
2688 { return this->load_address_ != NULL; }
2690 // Evaluate the load address expression if there is one.
2692 eval_load_address(Symbol_table* symtab, Layout* layout)
2694 if (this->load_address_ != NULL)
2695 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2699 // Return the load address.
2701 load_address() const
2703 gold_assert(this->load_address_ != NULL);
2704 return this->load_address_value_;
2707 // Create the segment.
2709 create_segment(Layout* layout)
2711 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2712 return this->segment_;
2715 // Return the segment.
2718 { return this->segment_; }
2720 // Release the segment.
2723 { this->segment_ = NULL; }
2725 // Set the segment flags if appropriate.
2727 set_flags_if_valid()
2729 if (this->is_flags_valid_)
2730 this->segment_->set_flags(this->flags_);
2733 // Print for debugging.
2738 // The name used in the script.
2740 // The type of the segment (PT_LOAD, etc.).
2742 // Whether this segment includes the file header.
2743 bool includes_filehdr_;
2744 // Whether this segment includes the section headers.
2745 bool includes_phdrs_;
2746 // Whether the flags were explicitly specified.
2747 bool is_flags_valid_;
2748 // The flags for this segment (PF_R, etc.) if specified.
2749 unsigned int flags_;
2750 // The expression for the load address for this segment. This may
2752 Expression* load_address_;
2753 // The actual load address from evaluating the expression.
2754 uint64_t load_address_value_;
2755 // The segment itself.
2756 Output_segment* segment_;
2759 // Print for debugging.
2762 Phdrs_element::print(FILE* f) const
2764 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2765 if (this->includes_filehdr_)
2766 fprintf(f, " FILEHDR");
2767 if (this->includes_phdrs_)
2768 fprintf(f, " PHDRS");
2769 if (this->is_flags_valid_)
2770 fprintf(f, " FLAGS(%u)", this->flags_);
2771 if (this->load_address_ != NULL)
2774 this->load_address_->print(f);
2780 // Add a memory region.
2783 Script_sections::add_memory_region(const char* name, size_t namelen,
2784 unsigned int attributes,
2785 Expression* start, Expression* length)
2787 if (this->memory_regions_ == NULL)
2788 this->memory_regions_ = new Memory_regions();
2789 else if (this->find_memory_region(name, namelen))
2791 gold_error (_("region '%.*s' already defined"), static_cast<int>(namelen),
2793 // FIXME: Add a GOLD extension to allow multiple regions with the same
2794 // name. This would amount to a single region covering disjoint blocks
2795 // of memory, which is useful for embedded devices.
2798 // FIXME: Check the length and start values. Currently we allow
2799 // non-constant expressions for these values, whereas LD does not.
2801 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
2802 // describe a region that packs from the end address going down, rather
2803 // than the start address going up. This would be useful for embedded
2806 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
2810 // Find a memory region.
2813 Script_sections::find_memory_region(const char* name, size_t namelen)
2815 if (this->memory_regions_ == NULL)
2818 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
2819 m != this->memory_regions_->end();
2821 if ((*m)->name_match(name, namelen))
2827 // Find a memory region's origin.
2830 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
2832 Memory_region* mr = find_memory_region(name, namelen);
2836 return mr->start_address();
2839 // Find a memory region's length.
2842 Script_sections::find_memory_region_length(const char* name, size_t namelen)
2844 Memory_region* mr = find_memory_region(name, namelen);
2848 return mr->length();
2851 // Set the memory region to use for the current section.
2854 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
2856 gold_assert(!this->sections_elements_->empty());
2857 this->sections_elements_->back()->set_memory_region(mr, set_vma);
2860 // Class Script_sections.
2862 Script_sections::Script_sections()
2863 : saw_sections_clause_(false),
2864 in_sections_clause_(false),
2865 sections_elements_(NULL),
2866 output_section_(NULL),
2867 memory_regions_(NULL),
2868 phdrs_elements_(NULL),
2869 orphan_section_placement_(NULL),
2870 data_segment_align_start_(),
2871 saw_data_segment_align_(false),
2872 saw_relro_end_(false),
2873 saw_segment_start_expression_(false)
2877 // Start a SECTIONS clause.
2880 Script_sections::start_sections()
2882 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2883 this->saw_sections_clause_ = true;
2884 this->in_sections_clause_ = true;
2885 if (this->sections_elements_ == NULL)
2886 this->sections_elements_ = new Sections_elements;
2889 // Finish a SECTIONS clause.
2892 Script_sections::finish_sections()
2894 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2895 this->in_sections_clause_ = false;
2898 // Add a symbol to be defined.
2901 Script_sections::add_symbol_assignment(const char* name, size_t length,
2902 Expression* val, bool provide,
2905 if (this->output_section_ != NULL)
2906 this->output_section_->add_symbol_assignment(name, length, val,
2910 Sections_element* p = new Sections_element_assignment(name, length,
2913 this->sections_elements_->push_back(p);
2917 // Add an assignment to the special dot symbol.
2920 Script_sections::add_dot_assignment(Expression* val)
2922 if (this->output_section_ != NULL)
2923 this->output_section_->add_dot_assignment(val);
2926 // The GNU linker permits assignments to . to appears outside of
2927 // a SECTIONS clause, and treats it as appearing inside, so
2928 // sections_elements_ may be NULL here.
2929 if (this->sections_elements_ == NULL)
2931 this->sections_elements_ = new Sections_elements;
2932 this->saw_sections_clause_ = true;
2935 Sections_element* p = new Sections_element_dot_assignment(val);
2936 this->sections_elements_->push_back(p);
2940 // Add an assertion.
2943 Script_sections::add_assertion(Expression* check, const char* message,
2946 if (this->output_section_ != NULL)
2947 this->output_section_->add_assertion(check, message, messagelen);
2950 Sections_element* p = new Sections_element_assertion(check, message,
2952 this->sections_elements_->push_back(p);
2956 // Start processing entries for an output section.
2959 Script_sections::start_output_section(
2962 const Parser_output_section_header* header)
2964 Output_section_definition* posd = new Output_section_definition(name,
2967 this->sections_elements_->push_back(posd);
2968 gold_assert(this->output_section_ == NULL);
2969 this->output_section_ = posd;
2972 // Stop processing entries for an output section.
2975 Script_sections::finish_output_section(
2976 const Parser_output_section_trailer* trailer)
2978 gold_assert(this->output_section_ != NULL);
2979 this->output_section_->finish(trailer);
2980 this->output_section_ = NULL;
2983 // Add a data item to the current output section.
2986 Script_sections::add_data(int size, bool is_signed, Expression* val)
2988 gold_assert(this->output_section_ != NULL);
2989 this->output_section_->add_data(size, is_signed, val);
2992 // Add a fill value setting to the current output section.
2995 Script_sections::add_fill(Expression* val)
2997 gold_assert(this->output_section_ != NULL);
2998 this->output_section_->add_fill(val);
3001 // Add an input section specification to the current output section.
3004 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3006 gold_assert(this->output_section_ != NULL);
3007 this->output_section_->add_input_section(spec, keep);
3010 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3011 // subsequent output sections may be relro.
3014 Script_sections::data_segment_align()
3016 if (this->saw_data_segment_align_)
3017 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3018 gold_assert(!this->sections_elements_->empty());
3019 Sections_elements::iterator p = this->sections_elements_->end();
3021 this->data_segment_align_start_ = p;
3022 this->saw_data_segment_align_ = true;
3025 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3026 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3029 Script_sections::data_segment_relro_end()
3031 if (this->saw_relro_end_)
3032 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3033 "in a linker script"));
3034 this->saw_relro_end_ = true;
3036 if (!this->saw_data_segment_align_)
3037 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3040 Sections_elements::iterator p = this->data_segment_align_start_;
3041 for (++p; p != this->sections_elements_->end(); ++p)
3042 (*p)->set_is_relro();
3046 // Create any required sections.
3049 Script_sections::create_sections(Layout* layout)
3051 if (!this->saw_sections_clause_)
3053 for (Sections_elements::iterator p = this->sections_elements_->begin();
3054 p != this->sections_elements_->end();
3056 (*p)->create_sections(layout);
3059 // Add any symbols we are defining to the symbol table.
3062 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3064 if (!this->saw_sections_clause_)
3066 for (Sections_elements::iterator p = this->sections_elements_->begin();
3067 p != this->sections_elements_->end();
3069 (*p)->add_symbols_to_table(symtab);
3072 // Finalize symbols and check assertions.
3075 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3077 if (!this->saw_sections_clause_)
3079 uint64_t dot_value = 0;
3080 for (Sections_elements::iterator p = this->sections_elements_->begin();
3081 p != this->sections_elements_->end();
3083 (*p)->finalize_symbols(symtab, layout, &dot_value);
3086 // Return the name of the output section to use for an input file name
3087 // and section name.
3090 Script_sections::output_section_name(
3091 const char* file_name,
3092 const char* section_name,
3093 Output_section*** output_section_slot,
3094 Script_sections::Section_type* psection_type)
3096 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3097 p != this->sections_elements_->end();
3100 const char* ret = (*p)->output_section_name(file_name, section_name,
3101 output_section_slot,
3106 // The special name /DISCARD/ means that the input section
3107 // should be discarded.
3108 if (strcmp(ret, "/DISCARD/") == 0)
3110 *output_section_slot = NULL;
3111 *psection_type = Script_sections::ST_NONE;
3118 // If we couldn't find a mapping for the name, the output section
3119 // gets the name of the input section.
3121 *output_section_slot = NULL;
3122 *psection_type = Script_sections::ST_NONE;
3124 return section_name;
3127 // Place a marker for an orphan output section into the SECTIONS
3131 Script_sections::place_orphan(Output_section* os)
3133 Orphan_section_placement* osp = this->orphan_section_placement_;
3136 // Initialize the Orphan_section_placement structure.
3137 osp = new Orphan_section_placement();
3138 for (Sections_elements::iterator p = this->sections_elements_->begin();
3139 p != this->sections_elements_->end();
3141 (*p)->orphan_section_init(osp, p);
3142 gold_assert(!this->sections_elements_->empty());
3143 Sections_elements::iterator last = this->sections_elements_->end();
3145 osp->last_init(last);
3146 this->orphan_section_placement_ = osp;
3149 Orphan_output_section* orphan = new Orphan_output_section(os);
3151 // Look for where to put ORPHAN.
3152 Sections_elements::iterator* where;
3153 if (osp->find_place(os, &where))
3155 if ((**where)->is_relro())
3158 os->clear_is_relro();
3160 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3161 // so that the next one goes after this one.
3162 Sections_elements::iterator p = *where;
3163 gold_assert(p != this->sections_elements_->end());
3165 *where = this->sections_elements_->insert(p, orphan);
3169 os->clear_is_relro();
3170 // We don't have a place to put this orphan section. Put it,
3171 // and all other sections like it, at the end, but before the
3172 // sections which always come at the end.
3173 Sections_elements::iterator last = osp->last_place();
3174 *where = this->sections_elements_->insert(last, orphan);
3178 // Set the addresses of all the output sections. Walk through all the
3179 // elements, tracking the dot symbol. Apply assignments which set
3180 // absolute symbol values, in case they are used when setting dot.
3181 // Fill in data statement values. As we find output sections, set the
3182 // address, set the address of all associated input sections, and
3183 // update dot. Return the segment which should hold the file header
3184 // and segment headers, if any.
3187 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3189 gold_assert(this->saw_sections_clause_);
3191 // Walk the memory regions specified in this script, if any.
3192 if (this->memory_regions_ != NULL)
3194 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
3195 mr != this->memory_regions_->end();
3198 // FIXME: What should we do with the attributes of the regions ?
3200 // For each region, set the VMA of the sections associated with it.
3201 for (Memory_region::Section_list::const_iterator s =
3202 (*mr)->get_vma_section_list_start();
3203 s != (*mr)->get_vma_section_list_end();
3206 (*s)->set_section_vma((*mr)->get_current_vma_address());
3207 (*mr)->increment_vma_offset((*s)->get_section_name(),
3208 (*s)->get_output_section()->current_data_size(),
3212 // Similarly, set the LMA values.
3213 for (Memory_region::Section_list::const_iterator s =
3214 (*mr)->get_lma_section_list_start();
3215 s != (*mr)->get_lma_section_list_end();
3218 (*s)->set_section_lma((*mr)->get_current_lma_address());
3219 (*mr)->increment_lma_offset((*s)->get_section_name(),
3220 (*s)->get_output_section()->current_data_size(),
3226 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3227 // for our representation.
3228 for (Sections_elements::iterator p = this->sections_elements_->begin();
3229 p != this->sections_elements_->end();
3232 Output_section_definition* posd;
3233 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3234 if (failed_constraint != CONSTRAINT_NONE)
3236 Sections_elements::iterator q;
3237 for (q = this->sections_elements_->begin();
3238 q != this->sections_elements_->end();
3243 if ((*q)->alternate_constraint(posd, failed_constraint))
3248 if (q == this->sections_elements_->end())
3249 gold_error(_("no matching section constraint"));
3253 // Force the alignment of the first TLS section to be the maximum
3254 // alignment of all TLS sections.
3255 Output_section* first_tls = NULL;
3256 uint64_t tls_align = 0;
3257 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3258 p != this->sections_elements_->end();
3261 Output_section* os = (*p)->get_output_section();
3262 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3264 if (first_tls == NULL)
3266 if (os->addralign() > tls_align)
3267 tls_align = os->addralign();
3270 if (first_tls != NULL)
3271 first_tls->set_addralign(tls_align);
3273 // For a relocatable link, we implicitly set dot to zero.
3274 uint64_t dot_value = 0;
3275 uint64_t dot_alignment = 0;
3276 uint64_t load_address = 0;
3278 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3279 // to set section addresses. If the script has any SEGMENT_START
3280 // expression, we do not set the section addresses.
3281 bool use_tsection_options =
3282 (!this->saw_segment_start_expression_
3283 && (parameters->options().user_set_Ttext()
3284 || parameters->options().user_set_Tdata()
3285 || parameters->options().user_set_Tbss()));
3287 for (Sections_elements::iterator p = this->sections_elements_->begin();
3288 p != this->sections_elements_->end();
3291 Output_section* os = (*p)->get_output_section();
3293 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3294 // the special sections by names and doing dot assignments.
3295 if (use_tsection_options
3297 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3299 uint64_t new_dot_value = dot_value;
3301 if (parameters->options().user_set_Ttext()
3302 && strcmp(os->name(), ".text") == 0)
3303 new_dot_value = parameters->options().Ttext();
3304 else if (parameters->options().user_set_Tdata()
3305 && strcmp(os->name(), ".data") == 0)
3306 new_dot_value = parameters->options().Tdata();
3307 else if (parameters->options().user_set_Tbss()
3308 && strcmp(os->name(), ".bss") == 0)
3309 new_dot_value = parameters->options().Tbss();
3311 // Update dot and load address if necessary.
3312 if (new_dot_value < dot_value)
3313 gold_error(_("dot may not move backward"));
3314 else if (new_dot_value != dot_value)
3316 dot_value = new_dot_value;
3317 load_address = new_dot_value;
3321 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3325 if (this->phdrs_elements_ != NULL)
3327 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3328 p != this->phdrs_elements_->end();
3330 (*p)->eval_load_address(symtab, layout);
3333 return this->create_segments(layout, dot_alignment);
3336 // Sort the sections in order to put them into segments.
3338 class Sort_output_sections
3342 operator()(const Output_section* os1, const Output_section* os2) const;
3346 Sort_output_sections::operator()(const Output_section* os1,
3347 const Output_section* os2) const
3349 // Sort first by the load address.
3350 uint64_t lma1 = (os1->has_load_address()
3351 ? os1->load_address()
3353 uint64_t lma2 = (os2->has_load_address()
3354 ? os2->load_address()
3359 // Then sort by the virtual address.
3360 if (os1->address() != os2->address())
3361 return os1->address() < os2->address();
3363 // Sort TLS sections to the end.
3364 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3365 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3369 // Sort PROGBITS before NOBITS.
3370 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
3372 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
3375 // Sort non-NOLOAD before NOLOAD.
3376 if (os1->is_noload() && !os2->is_noload())
3378 if (!os1->is_noload() && os2->is_noload())
3381 // Otherwise we don't care.
3385 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3386 // We treat a section with the SHF_TLS flag set as taking up space
3387 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3388 // space for them in the file.
3391 Script_sections::is_bss_section(const Output_section* os)
3393 return (os->type() == elfcpp::SHT_NOBITS
3394 && (os->flags() & elfcpp::SHF_TLS) == 0);
3397 // Return the size taken by the file header and the program headers.
3400 Script_sections::total_header_size(Layout* layout) const
3402 size_t segment_count = layout->segment_count();
3403 size_t file_header_size;
3404 size_t segment_headers_size;
3405 if (parameters->target().get_size() == 32)
3407 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3408 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3410 else if (parameters->target().get_size() == 64)
3412 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3413 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3418 return file_header_size + segment_headers_size;
3421 // Return the amount we have to subtract from the LMA to accomodate
3422 // headers of the given size. The complication is that the file
3423 // header have to be at the start of a page, as otherwise it will not
3424 // be at the start of the file.
3427 Script_sections::header_size_adjustment(uint64_t lma,
3428 size_t sizeof_headers) const
3430 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3431 uint64_t hdr_lma = lma - sizeof_headers;
3432 hdr_lma &= ~(abi_pagesize - 1);
3433 return lma - hdr_lma;
3436 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3437 // the segment which should hold the file header and segment headers,
3441 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3443 gold_assert(this->saw_sections_clause_);
3445 if (parameters->options().relocatable())
3448 if (this->saw_phdrs_clause())
3449 return create_segments_from_phdrs_clause(layout, dot_alignment);
3451 Layout::Section_list sections;
3452 layout->get_allocated_sections(§ions);
3454 // Sort the sections by address.
3455 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
3457 this->create_note_and_tls_segments(layout, §ions);
3459 // Walk through the sections adding them to PT_LOAD segments.
3460 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3461 Output_segment* first_seg = NULL;
3462 Output_segment* current_seg = NULL;
3463 bool is_current_seg_readonly = true;
3464 Layout::Section_list::iterator plast = sections.end();
3465 uint64_t last_vma = 0;
3466 uint64_t last_lma = 0;
3467 uint64_t last_size = 0;
3468 for (Layout::Section_list::iterator p = sections.begin();
3469 p != sections.end();
3472 const uint64_t vma = (*p)->address();
3473 const uint64_t lma = ((*p)->has_load_address()
3474 ? (*p)->load_address()
3476 const uint64_t size = (*p)->current_data_size();
3478 bool need_new_segment;
3479 if (current_seg == NULL)
3480 need_new_segment = true;
3481 else if (lma - vma != last_lma - last_vma)
3483 // This section has a different LMA relationship than the
3484 // last one; we need a new segment.
3485 need_new_segment = true;
3487 else if (align_address(last_lma + last_size, abi_pagesize)
3488 < align_address(lma, abi_pagesize))
3490 // Putting this section in the segment would require
3492 need_new_segment = true;
3494 else if (is_bss_section(*plast) && !is_bss_section(*p))
3496 // A non-BSS section can not follow a BSS section in the
3498 need_new_segment = true;
3500 else if (is_current_seg_readonly
3501 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3502 && !parameters->options().omagic())
3504 // Don't put a writable section in the same segment as a
3505 // non-writable section.
3506 need_new_segment = true;
3510 // Otherwise, reuse the existing segment.
3511 need_new_segment = false;
3514 elfcpp::Elf_Word seg_flags =
3515 Layout::section_flags_to_segment((*p)->flags());
3517 if (need_new_segment)
3519 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3521 current_seg->set_addresses(vma, lma);
3522 current_seg->set_minimum_p_align(dot_alignment);
3523 if (first_seg == NULL)
3524 first_seg = current_seg;
3525 is_current_seg_readonly = true;
3528 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3530 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3531 is_current_seg_readonly = false;
3539 // An ELF program should work even if the program headers are not in
3540 // a PT_LOAD segment. However, it appears that the Linux kernel
3541 // does not set the AT_PHDR auxiliary entry in that case. It sets
3542 // the load address to p_vaddr - p_offset of the first PT_LOAD
3543 // segment. It then sets AT_PHDR to the load address plus the
3544 // offset to the program headers, e_phoff in the file header. This
3545 // fails when the program headers appear in the file before the
3546 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3547 // segment to hold the file header and the program headers. This is
3548 // effectively what the GNU linker does, and it is slightly more
3549 // efficient in any case. We try to use the first PT_LOAD segment
3550 // if we can, otherwise we make a new one.
3552 if (first_seg == NULL)
3555 // -n or -N mean that the program is not demand paged and there is
3556 // no need to put the program headers in a PT_LOAD segment.
3557 if (parameters->options().nmagic() || parameters->options().omagic())
3560 size_t sizeof_headers = this->total_header_size(layout);
3562 uint64_t vma = first_seg->vaddr();
3563 uint64_t lma = first_seg->paddr();
3565 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3567 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3569 first_seg->set_addresses(vma - subtract, lma - subtract);
3573 // If there is no room to squeeze in the headers, then punt. The
3574 // resulting executable probably won't run on GNU/Linux, but we
3575 // trust that the user knows what they are doing.
3576 if (lma < subtract || vma < subtract)
3579 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3581 load_seg->set_addresses(vma - subtract, lma - subtract);
3586 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3587 // segment if there are any SHT_TLS sections.
3590 Script_sections::create_note_and_tls_segments(
3592 const Layout::Section_list* sections)
3594 gold_assert(!this->saw_phdrs_clause());
3596 bool saw_tls = false;
3597 for (Layout::Section_list::const_iterator p = sections->begin();
3598 p != sections->end();
3601 if ((*p)->type() == elfcpp::SHT_NOTE)
3603 elfcpp::Elf_Word seg_flags =
3604 Layout::section_flags_to_segment((*p)->flags());
3605 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3607 oseg->add_output_section_to_nonload(*p, seg_flags);
3609 // Incorporate any subsequent SHT_NOTE sections, in the
3610 // hopes that the script is sensible.
3611 Layout::Section_list::const_iterator pnext = p + 1;
3612 while (pnext != sections->end()
3613 && (*pnext)->type() == elfcpp::SHT_NOTE)
3615 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3616 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3622 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3625 gold_error(_("TLS sections are not adjacent"));
3627 elfcpp::Elf_Word seg_flags =
3628 Layout::section_flags_to_segment((*p)->flags());
3629 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3631 oseg->add_output_section_to_nonload(*p, seg_flags);
3633 Layout::Section_list::const_iterator pnext = p + 1;
3634 while (pnext != sections->end()
3635 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3637 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3638 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3648 // Add a program header. The PHDRS clause is syntactically distinct
3649 // from the SECTIONS clause, but we implement it with the SECTIONS
3650 // support because PHDRS is useless if there is no SECTIONS clause.
3653 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3654 bool includes_filehdr, bool includes_phdrs,
3655 bool is_flags_valid, unsigned int flags,
3656 Expression* load_address)
3658 if (this->phdrs_elements_ == NULL)
3659 this->phdrs_elements_ = new Phdrs_elements();
3660 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3663 is_flags_valid, flags,
3667 // Return the number of segments we expect to create based on the
3668 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3671 Script_sections::expected_segment_count(const Layout* layout) const
3673 if (this->saw_phdrs_clause())
3674 return this->phdrs_elements_->size();
3676 Layout::Section_list sections;
3677 layout->get_allocated_sections(§ions);
3679 // We assume that we will need two PT_LOAD segments.
3682 bool saw_note = false;
3683 bool saw_tls = false;
3684 for (Layout::Section_list::const_iterator p = sections.begin();
3685 p != sections.end();
3688 if ((*p)->type() == elfcpp::SHT_NOTE)
3690 // Assume that all note sections will fit into a single
3698 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3700 // There can only be one PT_TLS segment.
3712 // Create the segments from a PHDRS clause. Return the segment which
3713 // should hold the file header and program headers, if any.
3716 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
3717 uint64_t dot_alignment)
3719 this->attach_sections_using_phdrs_clause(layout);
3720 return this->set_phdrs_clause_addresses(layout, dot_alignment);
3723 // Create the segments from the PHDRS clause, and put the output
3724 // sections in them.
3727 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3729 typedef std::map<std::string, Output_segment*> Name_to_segment;
3730 Name_to_segment name_to_segment;
3731 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3732 p != this->phdrs_elements_->end();
3734 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3736 // Walk through the output sections and attach them to segments.
3737 // Output sections in the script which do not list segments are
3738 // attached to the same set of segments as the immediately preceding
3741 String_list* phdr_names = NULL;
3742 bool load_segments_only = false;
3743 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3744 p != this->sections_elements_->end();
3748 String_list* old_phdr_names = phdr_names;
3749 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3753 if (phdr_names == NULL)
3755 gold_error(_("allocated section not in any segment"));
3759 // We see a list of segments names. Disable PT_LOAD segment only
3761 if (old_phdr_names != phdr_names)
3762 load_segments_only = false;
3764 // If this is an orphan section--one that was not explicitly
3765 // mentioned in the linker script--then it should not inherit
3766 // any segment type other than PT_LOAD. Otherwise, e.g., the
3767 // PT_INTERP segment will pick up following orphan sections,
3768 // which does not make sense. If this is not an orphan section,
3769 // we trust the linker script.
3772 // Enable PT_LOAD segments only filtering until we see another
3773 // list of segment names.
3774 load_segments_only = true;
3777 bool in_load_segment = false;
3778 for (String_list::const_iterator q = phdr_names->begin();
3779 q != phdr_names->end();
3782 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3783 if (r == name_to_segment.end())
3784 gold_error(_("no segment %s"), q->c_str());
3787 if (load_segments_only
3788 && r->second->type() != elfcpp::PT_LOAD)
3791 elfcpp::Elf_Word seg_flags =
3792 Layout::section_flags_to_segment(os->flags());
3794 if (r->second->type() != elfcpp::PT_LOAD)
3795 r->second->add_output_section_to_nonload(os, seg_flags);
3798 r->second->add_output_section_to_load(layout, os, seg_flags);
3799 if (in_load_segment)
3800 gold_error(_("section in two PT_LOAD segments"));
3801 in_load_segment = true;
3806 if (!in_load_segment)
3807 gold_error(_("allocated section not in any PT_LOAD segment"));
3811 // Set the addresses for segments created from a PHDRS clause. Return
3812 // the segment which should hold the file header and program headers,
3816 Script_sections::set_phdrs_clause_addresses(Layout* layout,
3817 uint64_t dot_alignment)
3819 Output_segment* load_seg = NULL;
3820 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3821 p != this->phdrs_elements_->end();
3824 // Note that we have to set the flags after adding the output
3825 // sections to the segment, as adding an output segment can
3826 // change the flags.
3827 (*p)->set_flags_if_valid();
3829 Output_segment* oseg = (*p)->segment();
3831 if (oseg->type() != elfcpp::PT_LOAD)
3833 // The addresses of non-PT_LOAD segments are set from the
3834 // PT_LOAD segments.
3835 if ((*p)->has_load_address())
3836 gold_error(_("may only specify load address for PT_LOAD segment"));
3840 oseg->set_minimum_p_align(dot_alignment);
3842 // The output sections should have addresses from the SECTIONS
3843 // clause. The addresses don't have to be in order, so find the
3844 // one with the lowest load address. Use that to set the
3845 // address of the segment.
3847 Output_section* osec = oseg->section_with_lowest_load_address();
3850 oseg->set_addresses(0, 0);
3854 uint64_t vma = osec->address();
3855 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3857 // Override the load address of the section with the load
3858 // address specified for the segment.
3859 if ((*p)->has_load_address())
3861 if (osec->has_load_address())
3862 gold_warning(_("PHDRS load address overrides "
3863 "section %s load address"),
3866 lma = (*p)->load_address();
3869 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3870 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3872 // We could support this if we wanted to.
3873 gold_error(_("using only one of FILEHDR and PHDRS is "
3874 "not currently supported"));
3878 size_t sizeof_headers = this->total_header_size(layout);
3879 uint64_t subtract = this->header_size_adjustment(lma,
3881 if (lma >= subtract && vma >= subtract)
3888 gold_error(_("sections loaded on first page without room "
3889 "for file and program headers "
3890 "are not supported"));
3893 if (load_seg != NULL)
3894 gold_error(_("using FILEHDR and PHDRS on more than one "
3895 "PT_LOAD segment is not currently supported"));
3899 oseg->set_addresses(vma, lma);
3905 // Add the file header and segment headers to non-load segments
3906 // specified in the PHDRS clause.
3909 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3910 Output_data* segment_headers)
3912 gold_assert(this->saw_phdrs_clause());
3913 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3914 p != this->phdrs_elements_->end();
3917 if ((*p)->type() != elfcpp::PT_LOAD)
3919 if ((*p)->includes_phdrs())
3920 (*p)->segment()->add_initial_output_data(segment_headers);
3921 if ((*p)->includes_filehdr())
3922 (*p)->segment()->add_initial_output_data(file_header);
3927 // Look for an output section by name and return the address, the load
3928 // address, the alignment, and the size. This is used when an
3929 // expression refers to an output section which was not actually
3930 // created. This returns true if the section was found, false
3934 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3935 uint64_t* load_address,
3936 uint64_t* addralign,
3937 uint64_t* size) const
3939 if (!this->saw_sections_clause_)
3941 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3942 p != this->sections_elements_->end();
3944 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3950 // Release all Output_segments. This remove all pointers to all
3954 Script_sections::release_segments()
3956 if (this->saw_phdrs_clause())
3958 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3959 p != this->phdrs_elements_->end();
3961 (*p)->release_segment();
3965 // Print the SECTIONS clause to F for debugging.
3968 Script_sections::print(FILE* f) const
3970 if (this->phdrs_elements_ != NULL)
3972 fprintf(f, "PHDRS {\n");
3973 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3974 p != this->phdrs_elements_->end();
3980 if (this->memory_regions_ != NULL)
3982 fprintf(f, "MEMORY {\n");
3983 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3984 m != this->memory_regions_->end();
3990 if (!this->saw_sections_clause_)
3993 fprintf(f, "SECTIONS {\n");
3995 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3996 p != this->sections_elements_->end();
4003 } // End namespace gold.