1 // script-sections.cc -- linker script SECTIONS for gold
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "parameters.h"
39 #include "script-sections.h"
41 // Support for the SECTIONS clause in linker scripts.
46 // A region of memory.
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
62 // Return the name of this region.
65 { return this->name_; }
67 // Return the start address of this region.
70 { return this->start_; }
72 // Return the length of this region.
75 { return this->length_; }
77 // Print the region (when debugging).
81 // Return true if <name,namelen> matches this region.
83 name_match(const char* name, size_t namelen)
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
90 get_current_address() const
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
98 set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
100 uint64_t start = this->start_->eval(symtab, layout, false);
101 uint64_t len = this->length_->eval(symtab, layout, false);
102 if (addr < start || addr >= start + len)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr),
105 this->name_.c_str());
106 else if (addr < start + this->current_offset_)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr),
109 this->name_.c_str());
110 this->current_offset_ = addr - start;
114 increment_offset(std::string section_name, uint64_t amount,
115 const Symbol_table* symtab, const Layout* layout)
117 this->current_offset_ += amount;
119 if (this->current_offset_
120 > this->length_->eval(symtab, layout, false))
121 gold_error(_("section %s overflows end of region %s"),
122 section_name.c_str(), this->name_.c_str());
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
128 has_room_for(const Symbol_table* symtab, const Layout* layout,
129 uint64_t amount) const
131 return (this->current_offset_ + amount
132 < this->length_->eval(symtab, layout, false));
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
138 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
141 add_section(Output_section_definition* sec, bool vma)
144 this->vma_sections_.push_back(sec);
146 this->lma_sections_.push_back(sec);
149 typedef std::vector<Output_section_definition*> Section_list;
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
154 get_vma_section_list_start() const
155 { return this->vma_sections_.begin(); }
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
160 get_lma_section_list_start() const
161 { return this->lma_sections_.begin(); }
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
166 get_vma_section_list_end() const
167 { return this->vma_sections_.end(); }
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
172 get_lma_section_list_end() const
173 { return this->lma_sections_.end(); }
175 Output_section_definition*
176 get_last_section() const
177 { return this->last_section_; }
180 set_last_section(Output_section_definition* sec)
181 { this->last_section_ = sec; }
186 unsigned int attributes_;
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_;
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_;
198 // The latest section to make use of this region.
199 Output_section_definition* last_section_;
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207 elfcpp::Elf_Xword type) const
209 unsigned int attrs = this->attributes_;
211 // No attributes means that this region is not compatible with anything.
218 switch (attrs & - attrs)
221 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
226 if ((flags & elfcpp::SHF_WRITE) == 0)
231 // All sections are presumed readable.
234 case MEM_ALLOCATABLE:
235 if ((flags & elfcpp::SHF_ALLOC) == 0)
239 case MEM_INITIALIZED:
240 if ((type & elfcpp::SHT_NOBITS) != 0)
244 attrs &= ~ (attrs & - attrs);
251 // Print a memory region.
254 Memory_region::print(FILE* f) const
256 fprintf(f, " %s", this->name_.c_str());
258 unsigned int attrs = this->attributes_;
264 switch (attrs & - attrs)
266 case MEM_EXECUTABLE: fputc('x', f); break;
267 case MEM_WRITEABLE: fputc('w', f); break;
268 case MEM_READABLE: fputc('r', f); break;
269 case MEM_ALLOCATABLE: fputc('a', f); break;
270 case MEM_INITIALIZED: fputc('i', f); break;
274 attrs &= ~ (attrs & - attrs);
280 fprintf(f, " : origin = ");
281 this->start_->print(f);
282 fprintf(f, ", length = ");
283 this->length_->print(f);
287 // Manage orphan sections. This is intended to be largely compatible
288 // with the GNU linker. The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement. We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
293 class Orphan_section_placement
296 typedef Script_sections::Elements_iterator Elements_iterator;
299 Orphan_section_placement();
301 // Handle an output section during initialization of this mapping.
303 output_section_init(const std::string& name, Output_section*,
304 Elements_iterator location);
306 // Initialize the last location.
308 last_init(Elements_iterator location);
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
314 find_place(Output_section*, Elements_iterator** pwhere);
316 // Return the iterator being used for sections at the very end of
317 // the linker script.
322 // The places that we specifically recognize. This list is copied
323 // from the GNU linker.
339 // The information we keep for a specific place.
342 // The name of sections for this place.
344 // Whether we have a location for this place.
346 // The iterator for this place.
347 Elements_iterator location;
350 // Initialize one place element.
352 initialize_place(Place_index, const char*);
355 Place places_[PLACE_MAX];
356 // True if this is the first call to output_section_init.
360 // Initialize Orphan_section_placement.
362 Orphan_section_placement::Orphan_section_placement()
365 this->initialize_place(PLACE_TEXT, ".text");
366 this->initialize_place(PLACE_RODATA, ".rodata");
367 this->initialize_place(PLACE_DATA, ".data");
368 this->initialize_place(PLACE_TLS, NULL);
369 this->initialize_place(PLACE_TLS_BSS, NULL);
370 this->initialize_place(PLACE_BSS, ".bss");
371 this->initialize_place(PLACE_REL, NULL);
372 this->initialize_place(PLACE_INTERP, ".interp");
373 this->initialize_place(PLACE_NONALLOC, NULL);
374 this->initialize_place(PLACE_LAST, NULL);
377 // Initialize one place element.
380 Orphan_section_placement::initialize_place(Place_index index, const char* name)
382 this->places_[index].name = name;
383 this->places_[index].have_location = false;
386 // While initializing the Orphan_section_placement information, this
387 // is called once for each output section named in the linker script.
388 // If we found an output section during the link, it will be passed in
392 Orphan_section_placement::output_section_init(const std::string& name,
394 Elements_iterator location)
396 bool first_init = this->first_init_;
397 this->first_init_ = false;
399 for (int i = 0; i < PLACE_MAX; ++i)
401 if (this->places_[i].name != NULL && this->places_[i].name == name)
403 if (this->places_[i].have_location)
405 // We have already seen a section with this name.
409 this->places_[i].location = location;
410 this->places_[i].have_location = true;
412 // If we just found the .bss section, restart the search for
413 // an unallocated section. This follows the GNU linker's
416 this->places_[PLACE_NONALLOC].have_location = false;
422 // Relocation sections.
423 if (!this->places_[PLACE_REL].have_location
425 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
426 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
428 this->places_[PLACE_REL].location = location;
429 this->places_[PLACE_REL].have_location = true;
432 // We find the location for unallocated sections by finding the
433 // first debugging or comment section after the BSS section (if
435 if (!this->places_[PLACE_NONALLOC].have_location
436 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
438 // We add orphan sections after the location in PLACES_. We
439 // want to store unallocated sections before LOCATION. If this
440 // is the very first section, we can't use it.
444 this->places_[PLACE_NONALLOC].location = location;
445 this->places_[PLACE_NONALLOC].have_location = true;
450 // Initialize the last location.
453 Orphan_section_placement::last_init(Elements_iterator location)
455 this->places_[PLACE_LAST].location = location;
456 this->places_[PLACE_LAST].have_location = true;
459 // Set *PWHERE to the address of an iterator pointing to the location
460 // to use for an orphan section. Return true if the iterator has a
461 // value, false otherwise.
464 Orphan_section_placement::find_place(Output_section* os,
465 Elements_iterator** pwhere)
467 // Figure out where OS should go. This is based on the GNU linker
468 // code. FIXME: The GNU linker handles small data sections
469 // specially, but we don't.
470 elfcpp::Elf_Word type = os->type();
471 elfcpp::Elf_Xword flags = os->flags();
473 if ((flags & elfcpp::SHF_ALLOC) == 0
474 && !Layout::is_debug_info_section(os->name()))
475 index = PLACE_NONALLOC;
476 else if ((flags & elfcpp::SHF_ALLOC) == 0)
478 else if (type == elfcpp::SHT_NOTE)
479 index = PLACE_INTERP;
480 else if ((flags & elfcpp::SHF_TLS) != 0)
482 if (type == elfcpp::SHT_NOBITS)
483 index = PLACE_TLS_BSS;
487 else if (type == elfcpp::SHT_NOBITS)
489 else if ((flags & elfcpp::SHF_WRITE) != 0)
491 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
493 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
494 index = PLACE_RODATA;
498 // If we don't have a location yet, try to find one based on a
499 // plausible ordering of sections.
500 if (!this->places_[index].have_location)
525 if (!this->places_[PLACE_TLS].have_location)
529 if (follow != PLACE_MAX && this->places_[follow].have_location)
531 // Set the location of INDEX to the location of FOLLOW. The
532 // location of INDEX will then be incremented by the caller,
533 // so anything in INDEX will continue to be after anything
535 this->places_[index].location = this->places_[follow].location;
536 this->places_[index].have_location = true;
540 *pwhere = &this->places_[index].location;
541 bool ret = this->places_[index].have_location;
543 // The caller will set the location.
544 this->places_[index].have_location = true;
549 // Return the iterator being used for sections at the very end of the
552 Orphan_section_placement::Elements_iterator
553 Orphan_section_placement::last_place() const
555 gold_assert(this->places_[PLACE_LAST].have_location);
556 return this->places_[PLACE_LAST].location;
559 // An element in a SECTIONS clause.
561 class Sections_element
567 virtual ~Sections_element()
570 // Return whether an output section is relro.
575 // Record that an output section is relro.
580 // Create any required output sections. The only real
581 // implementation is in Output_section_definition.
583 create_sections(Layout*)
586 // Add any symbol being defined to the symbol table.
588 add_symbols_to_table(Symbol_table*)
591 // Finalize symbols and check assertions.
593 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
596 // Return the output section name to use for an input file name and
597 // section name. This only real implementation is in
598 // Output_section_definition.
600 output_section_name(const char*, const char*, Output_section***,
601 Script_sections::Section_type*, bool*)
604 // Initialize OSP with an output section.
606 orphan_section_init(Orphan_section_placement*,
607 Script_sections::Elements_iterator)
610 // Set section addresses. This includes applying assignments if the
611 // expression is an absolute value.
613 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
617 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
618 // this section is constrained, and the input sections do not match,
619 // return the constraint, and set *POSD.
620 virtual Section_constraint
621 check_constraint(Output_section_definition**)
622 { return CONSTRAINT_NONE; }
624 // See if this is the alternate output section for a constrained
625 // output section. If it is, transfer the Output_section and return
626 // true. Otherwise return false.
628 alternate_constraint(Output_section_definition*, Section_constraint)
631 // Get the list of segments to use for an allocated section when
632 // using a PHDRS clause. If this is an allocated section, return
633 // the Output_section, and set *PHDRS_LIST (the first parameter) to
634 // the list of PHDRS to which it should be attached. If the PHDRS
635 // were not specified, don't change *PHDRS_LIST. When not returning
636 // NULL, set *ORPHAN (the second parameter) according to whether
637 // this is an orphan section--one that is not mentioned in the
639 virtual Output_section*
640 allocate_to_segment(String_list**, bool*)
643 // Look for an output section by name and return the address, the
644 // load address, the alignment, and the size. This is used when an
645 // expression refers to an output section which was not actually
646 // created. This returns true if the section was found, false
647 // otherwise. The only real definition is for
648 // Output_section_definition.
650 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
654 // Return the associated Output_section if there is one.
655 virtual Output_section*
656 get_output_section() const
659 // Set the section's memory regions.
661 set_memory_region(Memory_region*, bool)
662 { gold_error(_("Attempt to set a memory region for a non-output section")); }
664 // Print the element for debugging purposes.
666 print(FILE* f) const = 0;
669 // An assignment in a SECTIONS clause outside of an output section.
671 class Sections_element_assignment : public Sections_element
674 Sections_element_assignment(const char* name, size_t namelen,
675 Expression* val, bool provide, bool hidden)
676 : assignment_(name, namelen, false, val, provide, hidden)
679 // Add the symbol to the symbol table.
681 add_symbols_to_table(Symbol_table* symtab)
682 { this->assignment_.add_to_table(symtab); }
684 // Finalize the symbol.
686 finalize_symbols(Symbol_table* symtab, const Layout* layout,
689 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
692 // Set the section address. There is no section here, but if the
693 // value is absolute, we set the symbol. This permits us to use
694 // absolute symbols when setting dot.
696 set_section_addresses(Symbol_table* symtab, Layout* layout,
697 uint64_t* dot_value, uint64_t*, uint64_t*)
699 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
702 // Print for debugging.
707 this->assignment_.print(f);
711 Symbol_assignment assignment_;
714 // An assignment to the dot symbol in a SECTIONS clause outside of an
717 class Sections_element_dot_assignment : public Sections_element
720 Sections_element_dot_assignment(Expression* val)
724 // Finalize the symbol.
726 finalize_symbols(Symbol_table* symtab, const Layout* layout,
729 // We ignore the section of the result because outside of an
730 // output section definition the dot symbol is always considered
732 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
733 NULL, NULL, NULL, false);
736 // Update the dot symbol while setting section addresses.
738 set_section_addresses(Symbol_table* symtab, Layout* layout,
739 uint64_t* dot_value, uint64_t* dot_alignment,
740 uint64_t* load_address)
742 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
743 NULL, NULL, dot_alignment, false);
744 *load_address = *dot_value;
747 // Print for debugging.
752 this->val_->print(f);
760 // An assertion in a SECTIONS clause outside of an output section.
762 class Sections_element_assertion : public Sections_element
765 Sections_element_assertion(Expression* check, const char* message,
767 : assertion_(check, message, messagelen)
770 // Check the assertion.
772 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
773 { this->assertion_.check(symtab, layout); }
775 // Print for debugging.
780 this->assertion_.print(f);
784 Script_assertion assertion_;
787 // An element in an output section in a SECTIONS clause.
789 class Output_section_element
792 // A list of input sections.
793 typedef std::list<Output_section::Input_section> Input_section_list;
795 Output_section_element()
798 virtual ~Output_section_element()
801 // Return whether this element requires an output section to exist.
803 needs_output_section() const
806 // Add any symbol being defined to the symbol table.
808 add_symbols_to_table(Symbol_table*)
811 // Finalize symbols and check assertions.
813 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
816 // Return whether this element matches FILE_NAME and SECTION_NAME.
817 // The only real implementation is in Output_section_element_input.
819 match_name(const char*, const char*, bool *) const
822 // Set section addresses. This includes applying assignments if the
823 // expression is an absolute value.
825 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
826 uint64_t*, uint64_t*, Output_section**, std::string*,
830 // Print the element for debugging purposes.
832 print(FILE* f) const = 0;
835 // Return a fill string that is LENGTH bytes long, filling it with
838 get_fill_string(const std::string* fill, section_size_type length) const;
842 Output_section_element::get_fill_string(const std::string* fill,
843 section_size_type length) const
845 std::string this_fill;
846 this_fill.reserve(length);
847 while (this_fill.length() + fill->length() <= length)
849 if (this_fill.length() < length)
850 this_fill.append(*fill, 0, length - this_fill.length());
854 // A symbol assignment in an output section.
856 class Output_section_element_assignment : public Output_section_element
859 Output_section_element_assignment(const char* name, size_t namelen,
860 Expression* val, bool provide,
862 : assignment_(name, namelen, false, val, provide, hidden)
865 // Add the symbol to the symbol table.
867 add_symbols_to_table(Symbol_table* symtab)
868 { this->assignment_.add_to_table(symtab); }
870 // Finalize the symbol.
872 finalize_symbols(Symbol_table* symtab, const Layout* layout,
873 uint64_t* dot_value, Output_section** dot_section)
875 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
879 // Set the section address. There is no section here, but if the
880 // value is absolute, we set the symbol. This permits us to use
881 // absolute symbols when setting dot.
883 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
884 uint64_t, uint64_t* dot_value, uint64_t*,
885 Output_section** dot_section, std::string*,
888 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
892 // Print for debugging.
897 this->assignment_.print(f);
901 Symbol_assignment assignment_;
904 // An assignment to the dot symbol in an output section.
906 class Output_section_element_dot_assignment : public Output_section_element
909 Output_section_element_dot_assignment(Expression* val)
913 // An assignment to dot within an output section is enough to force
914 // the output section to exist.
916 needs_output_section() const
919 // Finalize the symbol.
921 finalize_symbols(Symbol_table* symtab, const Layout* layout,
922 uint64_t* dot_value, Output_section** dot_section)
924 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
925 *dot_section, dot_section, NULL,
929 // Update the dot symbol while setting section addresses.
931 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932 uint64_t, uint64_t* dot_value, uint64_t*,
933 Output_section** dot_section, std::string*,
934 Input_section_list*);
936 // Print for debugging.
941 this->val_->print(f);
949 // Update the dot symbol while setting section addresses.
952 Output_section_element_dot_assignment::set_section_addresses(
953 Symbol_table* symtab,
955 Output_section* output_section,
958 uint64_t* dot_alignment,
959 Output_section** dot_section,
963 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
964 *dot_value, *dot_section,
965 dot_section, dot_alignment,
967 if (next_dot < *dot_value)
968 gold_error(_("dot may not move backward"));
969 if (next_dot > *dot_value && output_section != NULL)
971 section_size_type length = convert_to_section_size_type(next_dot
973 Output_section_data* posd;
975 posd = new Output_data_zero_fill(length, 0);
978 std::string this_fill = this->get_fill_string(fill, length);
979 posd = new Output_data_const(this_fill, 0);
981 output_section->add_output_section_data(posd);
982 layout->new_output_section_data_from_script(posd);
984 *dot_value = next_dot;
987 // An assertion in an output section.
989 class Output_section_element_assertion : public Output_section_element
992 Output_section_element_assertion(Expression* check, const char* message,
994 : assertion_(check, message, messagelen)
1001 this->assertion_.print(f);
1005 Script_assertion assertion_;
1008 // We use a special instance of Output_section_data to handle BYTE,
1009 // SHORT, etc. This permits forward references to symbols in the
1012 class Output_data_expression : public Output_section_data
1015 Output_data_expression(int size, bool is_signed, Expression* val,
1016 const Symbol_table* symtab, const Layout* layout,
1017 uint64_t dot_value, Output_section* dot_section)
1018 : Output_section_data(size, 0, true),
1019 is_signed_(is_signed), val_(val), symtab_(symtab),
1020 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1024 // Write the data to the output file.
1026 do_write(Output_file*);
1028 // Write the data to a buffer.
1030 do_write_to_buffer(unsigned char*);
1032 // Write to a map file.
1034 do_print_to_mapfile(Mapfile* mapfile) const
1035 { mapfile->print_output_data(this, _("** expression")); }
1038 template<bool big_endian>
1040 endian_write_to_buffer(uint64_t, unsigned char*);
1044 const Symbol_table* symtab_;
1045 const Layout* layout_;
1046 uint64_t dot_value_;
1047 Output_section* dot_section_;
1050 // Write the data element to the output file.
1053 Output_data_expression::do_write(Output_file* of)
1055 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1056 this->write_to_buffer(view);
1057 of->write_output_view(this->offset(), this->data_size(), view);
1060 // Write the data element to a buffer.
1063 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1065 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1066 true, this->dot_value_,
1067 this->dot_section_, NULL, NULL,
1070 if (parameters->target().is_big_endian())
1071 this->endian_write_to_buffer<true>(val, buf);
1073 this->endian_write_to_buffer<false>(val, buf);
1076 template<bool big_endian>
1078 Output_data_expression::endian_write_to_buffer(uint64_t val,
1081 switch (this->data_size())
1084 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1087 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1090 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1093 if (parameters->target().get_size() == 32)
1096 if (this->is_signed_ && (val & 0x80000000) != 0)
1097 val |= 0xffffffff00000000LL;
1099 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1106 // A data item in an output section.
1108 class Output_section_element_data : public Output_section_element
1111 Output_section_element_data(int size, bool is_signed, Expression* val)
1112 : size_(size), is_signed_(is_signed), val_(val)
1115 // If there is a data item, then we must create an output section.
1117 needs_output_section() const
1120 // Finalize symbols--we just need to update dot.
1122 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1124 { *dot_value += this->size_; }
1126 // Store the value in the section.
1128 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1129 uint64_t* dot_value, uint64_t*, Output_section**,
1130 std::string*, Input_section_list*);
1132 // Print for debugging.
1137 // The size in bytes.
1139 // Whether the value is signed.
1145 // Store the value in the section.
1148 Output_section_element_data::set_section_addresses(
1149 Symbol_table* symtab,
1153 uint64_t* dot_value,
1155 Output_section** dot_section,
1157 Input_section_list*)
1159 gold_assert(os != NULL);
1160 Output_data_expression* expression =
1161 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1162 symtab, layout, *dot_value, *dot_section);
1163 os->add_output_section_data(expression);
1164 layout->new_output_section_data_from_script(expression);
1165 *dot_value += this->size_;
1168 // Print for debugging.
1171 Output_section_element_data::print(FILE* f) const
1174 switch (this->size_)
1186 if (this->is_signed_)
1194 fprintf(f, " %s(", s);
1195 this->val_->print(f);
1199 // A fill value setting in an output section.
1201 class Output_section_element_fill : public Output_section_element
1204 Output_section_element_fill(Expression* val)
1208 // Update the fill value while setting section addresses.
1210 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1211 uint64_t, uint64_t* dot_value, uint64_t*,
1212 Output_section** dot_section,
1213 std::string* fill, Input_section_list*)
1215 Output_section* fill_section;
1216 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1217 *dot_value, *dot_section,
1218 &fill_section, NULL, false);
1219 if (fill_section != NULL)
1220 gold_warning(_("fill value is not absolute"));
1221 // FIXME: The GNU linker supports fill values of arbitrary length.
1222 unsigned char fill_buff[4];
1223 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1224 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1227 // Print for debugging.
1229 print(FILE* f) const
1231 fprintf(f, " FILL(");
1232 this->val_->print(f);
1237 // The new fill value.
1241 // An input section specification in an output section
1243 class Output_section_element_input : public Output_section_element
1246 Output_section_element_input(const Input_section_spec* spec, bool keep);
1248 // Finalize symbols--just update the value of the dot symbol.
1250 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1251 Output_section** dot_section)
1253 *dot_value = this->final_dot_value_;
1254 *dot_section = this->final_dot_section_;
1257 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258 // If we do then also indicate whether the section should be KEPT.
1260 match_name(const char* file_name, const char* section_name, bool* keep) const;
1262 // Set the section address.
1264 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1265 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1266 Output_section**, std::string* fill,
1267 Input_section_list*);
1269 // Print for debugging.
1271 print(FILE* f) const;
1274 // An input section pattern.
1275 struct Input_section_pattern
1277 std::string pattern;
1278 bool pattern_is_wildcard;
1281 Input_section_pattern(const char* patterna, size_t patternlena,
1282 Sort_wildcard sorta)
1283 : pattern(patterna, patternlena),
1284 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1289 typedef std::vector<Input_section_pattern> Input_section_patterns;
1291 // Filename_exclusions is a pair of filename pattern and a bool
1292 // indicating whether the filename is a wildcard.
1293 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1295 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296 // indicates whether this is a wildcard pattern.
1298 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1300 return (is_wildcard_pattern
1301 ? fnmatch(pattern, string, 0) == 0
1302 : strcmp(string, pattern) == 0);
1305 // See if we match a file name.
1307 match_file_name(const char* file_name) const;
1309 // The file name pattern. If this is the empty string, we match all
1311 std::string filename_pattern_;
1312 // Whether the file name pattern is a wildcard.
1313 bool filename_is_wildcard_;
1314 // How the file names should be sorted. This may only be
1315 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316 Sort_wildcard filename_sort_;
1317 // The list of file names to exclude.
1318 Filename_exclusions filename_exclusions_;
1319 // The list of input section patterns.
1320 Input_section_patterns input_section_patterns_;
1321 // Whether to keep this section when garbage collecting.
1323 // The value of dot after including all matching sections.
1324 uint64_t final_dot_value_;
1325 // The section where dot is defined after including all matching
1327 Output_section* final_dot_section_;
1330 // Construct Output_section_element_input. The parser records strings
1331 // as pointers into a copy of the script file, which will go away when
1332 // parsing is complete. We make sure they are in std::string objects.
1334 Output_section_element_input::Output_section_element_input(
1335 const Input_section_spec* spec,
1337 : filename_pattern_(),
1338 filename_is_wildcard_(false),
1339 filename_sort_(spec->file.sort),
1340 filename_exclusions_(),
1341 input_section_patterns_(),
1343 final_dot_value_(0),
1344 final_dot_section_(NULL)
1346 // The filename pattern "*" is common, and matches all files. Turn
1347 // it into the empty string.
1348 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1349 this->filename_pattern_.assign(spec->file.name.value,
1350 spec->file.name.length);
1351 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1353 if (spec->input_sections.exclude != NULL)
1355 for (String_list::const_iterator p =
1356 spec->input_sections.exclude->begin();
1357 p != spec->input_sections.exclude->end();
1360 bool is_wildcard = is_wildcard_string((*p).c_str());
1361 this->filename_exclusions_.push_back(std::make_pair(*p,
1366 if (spec->input_sections.sections != NULL)
1368 Input_section_patterns& isp(this->input_section_patterns_);
1369 for (String_sort_list::const_iterator p =
1370 spec->input_sections.sections->begin();
1371 p != spec->input_sections.sections->end();
1373 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1378 // See whether we match FILE_NAME.
1381 Output_section_element_input::match_file_name(const char* file_name) const
1383 if (!this->filename_pattern_.empty())
1385 // If we were called with no filename, we refuse to match a
1386 // pattern which requires a file name.
1387 if (file_name == NULL)
1390 if (!match(file_name, this->filename_pattern_.c_str(),
1391 this->filename_is_wildcard_))
1395 if (file_name != NULL)
1397 // Now we have to see whether FILE_NAME matches one of the
1398 // exclusion patterns, if any.
1399 for (Filename_exclusions::const_iterator p =
1400 this->filename_exclusions_.begin();
1401 p != this->filename_exclusions_.end();
1404 if (match(file_name, p->first.c_str(), p->second))
1412 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1413 // KEEP indicates whether the section should survive garbage collection.
1416 Output_section_element_input::match_name(const char* file_name,
1417 const char* section_name,
1420 if (!this->match_file_name(file_name))
1423 *keep = this->keep_;
1425 // If there are no section name patterns, then we match.
1426 if (this->input_section_patterns_.empty())
1429 // See whether we match the section name patterns.
1430 for (Input_section_patterns::const_iterator p =
1431 this->input_section_patterns_.begin();
1432 p != this->input_section_patterns_.end();
1435 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1439 // We didn't match any section names, so we didn't match.
1443 // Information we use to sort the input sections.
1445 class Input_section_info
1448 Input_section_info(const Output_section::Input_section& input_section)
1449 : input_section_(input_section), section_name_(),
1450 size_(0), addralign_(1)
1453 // Return the simple input section.
1454 const Output_section::Input_section&
1455 input_section() const
1456 { return this->input_section_; }
1458 // Return the object.
1461 { return this->input_section_.relobj(); }
1463 // Return the section index.
1466 { return this->input_section_.shndx(); }
1468 // Return the section name.
1470 section_name() const
1471 { return this->section_name_; }
1473 // Set the section name.
1475 set_section_name(const std::string name)
1477 if (is_compressed_debug_section(name.c_str()))
1478 this->section_name_ = corresponding_uncompressed_section_name(name);
1480 this->section_name_ = name;
1483 // Return the section size.
1486 { return this->size_; }
1488 // Set the section size.
1490 set_size(uint64_t size)
1491 { this->size_ = size; }
1493 // Return the address alignment.
1496 { return this->addralign_; }
1498 // Set the address alignment.
1500 set_addralign(uint64_t addralign)
1501 { this->addralign_ = addralign; }
1504 // Input section, can be a relaxed section.
1505 Output_section::Input_section input_section_;
1506 // Name of the section.
1507 std::string section_name_;
1510 // Address alignment.
1511 uint64_t addralign_;
1514 // A class to sort the input sections.
1516 class Input_section_sorter
1519 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1520 : filename_sort_(filename_sort), section_sort_(section_sort)
1524 operator()(const Input_section_info&, const Input_section_info&) const;
1527 Sort_wildcard filename_sort_;
1528 Sort_wildcard section_sort_;
1532 Input_section_sorter::operator()(const Input_section_info& isi1,
1533 const Input_section_info& isi2) const
1535 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1536 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1537 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1538 && isi1.addralign() == isi2.addralign()))
1540 if (isi1.section_name() != isi2.section_name())
1541 return isi1.section_name() < isi2.section_name();
1543 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1544 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1545 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1547 if (isi1.addralign() != isi2.addralign())
1548 return isi1.addralign() < isi2.addralign();
1550 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1552 if (isi1.relobj()->name() != isi2.relobj()->name())
1553 return (isi1.relobj()->name() < isi2.relobj()->name());
1556 // Otherwise we leave them in the same order.
1560 // Set the section address. Look in INPUT_SECTIONS for sections which
1561 // match this spec, sort them as specified, and add them to the output
1565 Output_section_element_input::set_section_addresses(
1568 Output_section* output_section,
1570 uint64_t* dot_value,
1572 Output_section** dot_section,
1574 Input_section_list* input_sections)
1576 // We build a list of sections which match each
1577 // Input_section_pattern.
1579 // If none of the patterns specify a sort option, we throw all
1580 // matching input sections into a single bin, in the order we
1581 // find them. Otherwise, we put matching input sections into
1582 // a separate bin for each pattern, and sort each one as
1583 // specified. Thus, an input section spec like this:
1585 // will group all .foo and .bar sections in the order seen,
1588 // will group all .foo sections followed by all .bar sections.
1589 // This matches Gnu ld behavior.
1591 // Things get really weird, though, when you add a sort spec
1592 // on some, but not all, of the patterns, like this:
1593 // *(SORT_BY_NAME(.foo) .bar)
1594 // We do not attempt to match Gnu ld behavior in this case.
1596 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1597 size_t input_pattern_count = this->input_section_patterns_.size();
1598 bool any_patterns_with_sort = false;
1599 for (size_t i = 0; i < input_pattern_count; ++i)
1601 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1602 if (isp.sort != SORT_WILDCARD_NONE)
1603 any_patterns_with_sort = true;
1605 if (input_pattern_count == 0 || !any_patterns_with_sort)
1606 input_pattern_count = 1;
1607 Matching_sections matching_sections(input_pattern_count);
1609 // Look through the list of sections for this output section. Add
1610 // each one which matches to one of the elements of
1611 // MATCHING_SECTIONS.
1613 Input_section_list::iterator p = input_sections->begin();
1614 while (p != input_sections->end())
1616 Relobj* relobj = p->relobj();
1617 unsigned int shndx = p->shndx();
1618 Input_section_info isi(*p);
1620 // Calling section_name and section_addralign is not very
1623 // Lock the object so that we can get information about the
1624 // section. This is OK since we know we are single-threaded
1627 const Task* task = reinterpret_cast<const Task*>(-1);
1628 Task_lock_obj<Object> tl(task, relobj);
1630 isi.set_section_name(relobj->section_name(shndx));
1631 if (p->is_relaxed_input_section())
1633 // We use current data size because relaxed section sizes may not
1634 // have finalized yet.
1635 isi.set_size(p->relaxed_input_section()->current_data_size());
1636 isi.set_addralign(p->relaxed_input_section()->addralign());
1640 isi.set_size(relobj->section_size(shndx));
1641 isi.set_addralign(relobj->section_addralign(shndx));
1645 if (!this->match_file_name(relobj->name().c_str()))
1647 else if (this->input_section_patterns_.empty())
1649 matching_sections[0].push_back(isi);
1650 p = input_sections->erase(p);
1655 for (i = 0; i < input_pattern_count; ++i)
1657 const Input_section_pattern&
1658 isp(this->input_section_patterns_[i]);
1659 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1660 isp.pattern_is_wildcard))
1664 if (i >= this->input_section_patterns_.size())
1668 if (!any_patterns_with_sort)
1670 matching_sections[i].push_back(isi);
1671 p = input_sections->erase(p);
1676 // Look through MATCHING_SECTIONS. Sort each one as specified,
1677 // using a stable sort so that we get the default order when
1678 // sections are otherwise equal. Add each input section to the
1681 uint64_t dot = *dot_value;
1682 for (size_t i = 0; i < input_pattern_count; ++i)
1684 if (matching_sections[i].empty())
1687 gold_assert(output_section != NULL);
1689 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1690 if (isp.sort != SORT_WILDCARD_NONE
1691 || this->filename_sort_ != SORT_WILDCARD_NONE)
1692 std::stable_sort(matching_sections[i].begin(),
1693 matching_sections[i].end(),
1694 Input_section_sorter(this->filename_sort_,
1697 for (std::vector<Input_section_info>::const_iterator p =
1698 matching_sections[i].begin();
1699 p != matching_sections[i].end();
1702 // Override the original address alignment if SUBALIGN is specified
1703 // and is greater than the original alignment. We need to make a
1704 // copy of the input section to modify the alignment.
1705 Output_section::Input_section sis(p->input_section());
1707 uint64_t this_subalign = sis.addralign();
1708 if (!sis.is_input_section())
1709 sis.output_section_data()->finalize_data_size();
1710 uint64_t data_size = sis.data_size();
1711 if (this_subalign < subalign)
1713 this_subalign = subalign;
1714 sis.set_addralign(subalign);
1717 uint64_t address = align_address(dot, this_subalign);
1719 if (address > dot && !fill->empty())
1721 section_size_type length =
1722 convert_to_section_size_type(address - dot);
1723 std::string this_fill = this->get_fill_string(fill, length);
1724 Output_section_data* posd = new Output_data_const(this_fill, 0);
1725 output_section->add_output_section_data(posd);
1726 layout->new_output_section_data_from_script(posd);
1729 output_section->add_script_input_section(sis);
1730 dot = address + data_size;
1734 // An SHF_TLS/SHT_NOBITS section does not take up any
1736 if (output_section == NULL
1737 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1738 || output_section->type() != elfcpp::SHT_NOBITS)
1741 this->final_dot_value_ = *dot_value;
1742 this->final_dot_section_ = *dot_section;
1745 // Print for debugging.
1748 Output_section_element_input::print(FILE* f) const
1753 fprintf(f, "KEEP(");
1755 if (!this->filename_pattern_.empty())
1757 bool need_close_paren = false;
1758 switch (this->filename_sort_)
1760 case SORT_WILDCARD_NONE:
1762 case SORT_WILDCARD_BY_NAME:
1763 fprintf(f, "SORT_BY_NAME(");
1764 need_close_paren = true;
1770 fprintf(f, "%s", this->filename_pattern_.c_str());
1772 if (need_close_paren)
1776 if (!this->input_section_patterns_.empty()
1777 || !this->filename_exclusions_.empty())
1781 bool need_space = false;
1782 if (!this->filename_exclusions_.empty())
1784 fprintf(f, "EXCLUDE_FILE(");
1785 bool need_comma = false;
1786 for (Filename_exclusions::const_iterator p =
1787 this->filename_exclusions_.begin();
1788 p != this->filename_exclusions_.end();
1793 fprintf(f, "%s", p->first.c_str());
1800 for (Input_section_patterns::const_iterator p =
1801 this->input_section_patterns_.begin();
1802 p != this->input_section_patterns_.end();
1808 int close_parens = 0;
1811 case SORT_WILDCARD_NONE:
1813 case SORT_WILDCARD_BY_NAME:
1814 fprintf(f, "SORT_BY_NAME(");
1817 case SORT_WILDCARD_BY_ALIGNMENT:
1818 fprintf(f, "SORT_BY_ALIGNMENT(");
1821 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1822 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1825 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1826 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1833 fprintf(f, "%s", p->pattern.c_str());
1835 for (int i = 0; i < close_parens; ++i)
1850 // An output section.
1852 class Output_section_definition : public Sections_element
1855 typedef Output_section_element::Input_section_list Input_section_list;
1857 Output_section_definition(const char* name, size_t namelen,
1858 const Parser_output_section_header* header);
1860 // Finish the output section with the information in the trailer.
1862 finish(const Parser_output_section_trailer* trailer);
1864 // Add a symbol to be defined.
1866 add_symbol_assignment(const char* name, size_t length, Expression* value,
1867 bool provide, bool hidden);
1869 // Add an assignment to the special dot symbol.
1871 add_dot_assignment(Expression* value);
1873 // Add an assertion.
1875 add_assertion(Expression* check, const char* message, size_t messagelen);
1877 // Add a data item to the current output section.
1879 add_data(int size, bool is_signed, Expression* val);
1881 // Add a setting for the fill value.
1883 add_fill(Expression* val);
1885 // Add an input section specification.
1887 add_input_section(const Input_section_spec* spec, bool keep);
1889 // Return whether the output section is relro.
1892 { return this->is_relro_; }
1894 // Record that the output section is relro.
1897 { this->is_relro_ = true; }
1899 // Create any required output sections.
1901 create_sections(Layout*);
1903 // Add any symbols being defined to the symbol table.
1905 add_symbols_to_table(Symbol_table* symtab);
1907 // Finalize symbols and check assertions.
1909 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1911 // Return the output section name to use for an input file name and
1914 output_section_name(const char* file_name, const char* section_name,
1915 Output_section***, Script_sections::Section_type*,
1918 // Initialize OSP with an output section.
1920 orphan_section_init(Orphan_section_placement* osp,
1921 Script_sections::Elements_iterator p)
1922 { osp->output_section_init(this->name_, this->output_section_, p); }
1924 // Set the section address.
1926 set_section_addresses(Symbol_table* symtab, Layout* layout,
1927 uint64_t* dot_value, uint64_t*,
1928 uint64_t* load_address);
1930 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1931 // this section is constrained, and the input sections do not match,
1932 // return the constraint, and set *POSD.
1934 check_constraint(Output_section_definition** posd);
1936 // See if this is the alternate output section for a constrained
1937 // output section. If it is, transfer the Output_section and return
1938 // true. Otherwise return false.
1940 alternate_constraint(Output_section_definition*, Section_constraint);
1942 // Get the list of segments to use for an allocated section when
1943 // using a PHDRS clause.
1945 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1947 // Look for an output section by name and return the address, the
1948 // load address, the alignment, and the size. This is used when an
1949 // expression refers to an output section which was not actually
1950 // created. This returns true if the section was found, false
1953 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1956 // Return the associated Output_section if there is one.
1958 get_output_section() const
1959 { return this->output_section_; }
1961 // Print the contents to the FILE. This is for debugging.
1965 // Return the output section type if specified or Script_sections::ST_NONE.
1966 Script_sections::Section_type
1967 section_type() const;
1969 // Store the memory region to use.
1971 set_memory_region(Memory_region*, bool set_vma);
1974 set_section_vma(Expression* address)
1975 { this->address_ = address; }
1978 set_section_lma(Expression* address)
1979 { this->load_address_ = address; }
1982 get_section_name() const
1983 { return this->name_; }
1987 script_section_type_name(Script_section_type);
1989 typedef std::vector<Output_section_element*> Output_section_elements;
1991 // The output section name.
1993 // The address. This may be NULL.
1994 Expression* address_;
1995 // The load address. This may be NULL.
1996 Expression* load_address_;
1997 // The alignment. This may be NULL.
1999 // The input section alignment. This may be NULL.
2000 Expression* subalign_;
2001 // The constraint, if any.
2002 Section_constraint constraint_;
2003 // The fill value. This may be NULL.
2005 // The list of segments this section should go into. This may be
2007 String_list* phdrs_;
2008 // The list of elements defining the section.
2009 Output_section_elements elements_;
2010 // The Output_section created for this definition. This will be
2011 // NULL if none was created.
2012 Output_section* output_section_;
2013 // The address after it has been evaluated.
2014 uint64_t evaluated_address_;
2015 // The load address after it has been evaluated.
2016 uint64_t evaluated_load_address_;
2017 // The alignment after it has been evaluated.
2018 uint64_t evaluated_addralign_;
2019 // The output section is relro.
2021 // The output section type if specified.
2022 enum Script_section_type script_section_type_;
2027 Output_section_definition::Output_section_definition(
2030 const Parser_output_section_header* header)
2031 : name_(name, namelen),
2032 address_(header->address),
2033 load_address_(header->load_address),
2034 align_(header->align),
2035 subalign_(header->subalign),
2036 constraint_(header->constraint),
2040 output_section_(NULL),
2041 evaluated_address_(0),
2042 evaluated_load_address_(0),
2043 evaluated_addralign_(0),
2045 script_section_type_(header->section_type)
2049 // Finish an output section.
2052 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2054 this->fill_ = trailer->fill;
2055 this->phdrs_ = trailer->phdrs;
2058 // Add a symbol to be defined.
2061 Output_section_definition::add_symbol_assignment(const char* name,
2067 Output_section_element* p = new Output_section_element_assignment(name,
2072 this->elements_.push_back(p);
2075 // Add an assignment to the special dot symbol.
2078 Output_section_definition::add_dot_assignment(Expression* value)
2080 Output_section_element* p = new Output_section_element_dot_assignment(value);
2081 this->elements_.push_back(p);
2084 // Add an assertion.
2087 Output_section_definition::add_assertion(Expression* check,
2088 const char* message,
2091 Output_section_element* p = new Output_section_element_assertion(check,
2094 this->elements_.push_back(p);
2097 // Add a data item to the current output section.
2100 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2102 Output_section_element* p = new Output_section_element_data(size, is_signed,
2104 this->elements_.push_back(p);
2107 // Add a setting for the fill value.
2110 Output_section_definition::add_fill(Expression* val)
2112 Output_section_element* p = new Output_section_element_fill(val);
2113 this->elements_.push_back(p);
2116 // Add an input section specification.
2119 Output_section_definition::add_input_section(const Input_section_spec* spec,
2122 Output_section_element* p = new Output_section_element_input(spec, keep);
2123 this->elements_.push_back(p);
2126 // Create any required output sections. We need an output section if
2127 // there is a data statement here.
2130 Output_section_definition::create_sections(Layout* layout)
2132 if (this->output_section_ != NULL)
2134 for (Output_section_elements::const_iterator p = this->elements_.begin();
2135 p != this->elements_.end();
2138 if ((*p)->needs_output_section())
2140 const char* name = this->name_.c_str();
2141 this->output_section_ =
2142 layout->make_output_section_for_script(name, this->section_type());
2148 // Add any symbols being defined to the symbol table.
2151 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2153 for (Output_section_elements::iterator p = this->elements_.begin();
2154 p != this->elements_.end();
2156 (*p)->add_symbols_to_table(symtab);
2159 // Finalize symbols and check assertions.
2162 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2163 const Layout* layout,
2164 uint64_t* dot_value)
2166 if (this->output_section_ != NULL)
2167 *dot_value = this->output_section_->address();
2170 uint64_t address = *dot_value;
2171 if (this->address_ != NULL)
2173 address = this->address_->eval_with_dot(symtab, layout, true,
2177 if (this->align_ != NULL)
2179 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2182 address = align_address(address, align);
2184 *dot_value = address;
2187 Output_section* dot_section = this->output_section_;
2188 for (Output_section_elements::iterator p = this->elements_.begin();
2189 p != this->elements_.end();
2191 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2194 // Return the output section name to use for an input section name.
2197 Output_section_definition::output_section_name(
2198 const char* file_name,
2199 const char* section_name,
2200 Output_section*** slot,
2201 Script_sections::Section_type* psection_type,
2204 // Ask each element whether it matches NAME.
2205 for (Output_section_elements::const_iterator p = this->elements_.begin();
2206 p != this->elements_.end();
2209 if ((*p)->match_name(file_name, section_name, keep))
2211 // We found a match for NAME, which means that it should go
2212 // into this output section.
2213 *slot = &this->output_section_;
2214 *psection_type = this->section_type();
2215 return this->name_.c_str();
2219 // We don't know about this section name.
2223 // Return true if memory from START to START + LENGTH is contained
2224 // within a memory region.
2227 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2228 uint64_t start, uint64_t length) const
2230 if (this->memory_regions_ == NULL)
2233 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2234 mr != this->memory_regions_->end();
2237 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2238 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2241 && (s + l) >= (start + length))
2248 // Find a memory region that should be used by a given output SECTION.
2249 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2250 // that used the return memory region.
2253 Script_sections::find_memory_region(
2254 Output_section_definition* section,
2255 bool find_vma_region,
2257 Output_section_definition** previous_section_return)
2259 if (previous_section_return != NULL)
2260 * previous_section_return = NULL;
2262 // Walk the memory regions specified in this script, if any.
2263 if (this->memory_regions_ == NULL)
2266 // The /DISCARD/ section never gets assigned to any region.
2267 if (section->get_section_name() == "/DISCARD/")
2270 Memory_region* first_match = NULL;
2272 // First check to see if a region has been assigned to this section.
2273 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2274 mr != this->memory_regions_->end();
2277 if (find_vma_region)
2279 for (Memory_region::Section_list::const_iterator s =
2280 (*mr)->get_vma_section_list_start();
2281 s != (*mr)->get_vma_section_list_end();
2283 if ((*s) == section)
2285 (*mr)->set_last_section(section);
2291 for (Memory_region::Section_list::const_iterator s =
2292 (*mr)->get_lma_section_list_start();
2293 s != (*mr)->get_lma_section_list_end();
2295 if ((*s) == section)
2297 (*mr)->set_last_section(section);
2304 // Make a note of the first memory region whose attributes
2305 // are compatible with the section. If we do not find an
2306 // explicit region assignment, then we will return this region.
2307 Output_section* out_sec = section->get_output_section();
2308 if (first_match == NULL
2310 && (*mr)->attributes_compatible(out_sec->flags(),
2316 // With LMA computations, if an explicit region has not been specified then
2317 // we will want to set the difference between the VMA and the LMA of the
2318 // section were searching for to be the same as the difference between the
2319 // VMA and LMA of the last section to be added to first matched region.
2320 // Hence, if it was asked for, we return a pointer to the last section
2321 // known to be used by the first matched region.
2322 if (first_match != NULL
2323 && previous_section_return != NULL)
2324 *previous_section_return = first_match->get_last_section();
2329 // Set the section address. Note that the OUTPUT_SECTION_ field will
2330 // be NULL if no input sections were mapped to this output section.
2331 // We still have to adjust dot and process symbol assignments.
2334 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2336 uint64_t* dot_value,
2337 uint64_t* dot_alignment,
2338 uint64_t* load_address)
2340 Memory_region* vma_region = NULL;
2341 Memory_region* lma_region = NULL;
2342 Script_sections* script_sections =
2343 layout->script_options()->script_sections();
2345 uint64_t old_dot_value = *dot_value;
2346 uint64_t old_load_address = *load_address;
2348 // If input section sorting is requested via --section-ordering-file or
2349 // linker plugins, then do it here. This is important because we want
2350 // any sorting specified in the linker scripts, which will be done after
2351 // this, to take precedence. The final order of input sections is then
2352 // guaranteed to be according to the linker script specification.
2353 if (this->output_section_ != NULL
2354 && this->output_section_->input_section_order_specified())
2355 this->output_section_->sort_attached_input_sections();
2357 // Decide the start address for the section. The algorithm is:
2358 // 1) If an address has been specified in a linker script, use that.
2359 // 2) Otherwise if a memory region has been specified for the section,
2360 // use the next free address in the region.
2361 // 3) Otherwise if memory regions have been specified find the first
2362 // region whose attributes are compatible with this section and
2363 // install it into that region.
2364 // 4) Otherwise use the current location counter.
2366 if (this->output_section_ != NULL
2367 // Check for --section-start.
2368 && parameters->options().section_start(this->output_section_->name(),
2371 else if (this->address_ == NULL)
2373 vma_region = script_sections->find_memory_region(this, true, false, NULL);
2374 if (vma_region != NULL)
2375 address = vma_region->get_current_address()->eval(symtab, layout,
2378 address = *dot_value;
2382 vma_region = script_sections->find_memory_region(this, true, true, NULL);
2383 address = this->address_->eval_with_dot(symtab, layout, true,
2384 *dot_value, NULL, NULL,
2385 dot_alignment, false);
2386 if (vma_region != NULL)
2387 vma_region->set_address(address, symtab, layout);
2391 if (this->align_ == NULL)
2393 if (this->output_section_ == NULL)
2396 align = this->output_section_->addralign();
2400 Output_section* align_section;
2401 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2402 NULL, &align_section, NULL, false);
2403 if (align_section != NULL)
2404 gold_warning(_("alignment of section %s is not absolute"),
2405 this->name_.c_str());
2406 if (this->output_section_ != NULL)
2407 this->output_section_->set_addralign(align);
2410 address = align_address(address, align);
2412 uint64_t start_address = address;
2414 *dot_value = address;
2416 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2417 // forced to zero, regardless of what the linker script wants.
2418 if (this->output_section_ != NULL
2419 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2420 || this->output_section_->is_noload()))
2421 this->output_section_->set_address(address);
2423 this->evaluated_address_ = address;
2424 this->evaluated_addralign_ = align;
2428 if (this->load_address_ == NULL)
2430 Output_section_definition* previous_section;
2432 // Determine if an LMA region has been set for this section.
2433 lma_region = script_sections->find_memory_region(this, false, false,
2436 if (lma_region != NULL)
2438 if (previous_section == NULL)
2439 // The LMA address was explicitly set to the given region.
2440 laddr = lma_region->get_current_address()->eval(symtab, layout,
2444 // We are not going to use the discovered lma_region, so
2445 // make sure that we do not update it in the code below.
2448 if (this->address_ != NULL || previous_section == this)
2450 // Either an explicit VMA address has been set, or an
2451 // explicit VMA region has been set, so set the LMA equal to
2457 // The LMA address was not explicitly or implicitly set.
2459 // We have been given the first memory region that is
2460 // compatible with the current section and a pointer to the
2461 // last section to use this region. Set the LMA of this
2462 // section so that the difference between its' VMA and LMA
2463 // is the same as the difference between the VMA and LMA of
2464 // the last section in the given region.
2465 laddr = address + (previous_section->evaluated_load_address_
2466 - previous_section->evaluated_address_);
2470 if (this->output_section_ != NULL)
2471 this->output_section_->set_load_address(laddr);
2475 // Do not set the load address of the output section, if one exists.
2476 // This allows future sections to determine what the load address
2477 // should be. If none is ever set, it will default to being the
2478 // same as the vma address.
2484 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2486 this->output_section_,
2488 if (this->output_section_ != NULL)
2489 this->output_section_->set_load_address(laddr);
2492 this->evaluated_load_address_ = laddr;
2495 if (this->subalign_ == NULL)
2499 Output_section* subalign_section;
2500 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2502 &subalign_section, NULL,
2504 if (subalign_section != NULL)
2505 gold_warning(_("subalign of section %s is not absolute"),
2506 this->name_.c_str());
2510 if (this->fill_ != NULL)
2512 // FIXME: The GNU linker supports fill values of arbitrary
2514 Output_section* fill_section;
2515 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2517 NULL, &fill_section,
2519 if (fill_section != NULL)
2520 gold_warning(_("fill of section %s is not absolute"),
2521 this->name_.c_str());
2522 unsigned char fill_buff[4];
2523 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2524 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2527 Input_section_list input_sections;
2528 if (this->output_section_ != NULL)
2530 // Get the list of input sections attached to this output
2531 // section. This will leave the output section with only
2532 // Output_section_data entries.
2533 address += this->output_section_->get_input_sections(address,
2536 *dot_value = address;
2539 Output_section* dot_section = this->output_section_;
2540 for (Output_section_elements::iterator p = this->elements_.begin();
2541 p != this->elements_.end();
2543 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2544 subalign, dot_value, dot_alignment,
2545 &dot_section, &fill, &input_sections);
2547 gold_assert(input_sections.empty());
2549 if (vma_region != NULL)
2551 // Update the VMA region being used by the section now that we know how
2552 // big it is. Use the current address in the region, rather than
2553 // start_address because that might have been aligned upwards and we
2554 // need to allow for the padding.
2555 Expression* addr = vma_region->get_current_address();
2556 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2558 vma_region->increment_offset(this->get_section_name(), size,
2562 // If the LMA region is different from the VMA region, then increment the
2563 // offset there as well. Note that we use the same "dot_value -
2564 // start_address" formula that is used in the load_address assignment below.
2565 if (lma_region != NULL && lma_region != vma_region)
2566 lma_region->increment_offset(this->get_section_name(),
2567 *dot_value - start_address,
2570 // Compute the load address for the following section.
2571 if (this->output_section_ == NULL)
2572 *load_address = *dot_value;
2573 else if (this->load_address_ == NULL)
2575 if (lma_region == NULL)
2576 *load_address = *dot_value;
2579 lma_region->get_current_address()->eval(symtab, layout, false);
2582 *load_address = (this->output_section_->load_address()
2583 + (*dot_value - start_address));
2585 if (this->output_section_ != NULL)
2587 if (this->is_relro_)
2588 this->output_section_->set_is_relro();
2590 this->output_section_->clear_is_relro();
2592 // If this is a NOLOAD section, keep dot and load address unchanged.
2593 if (this->output_section_->is_noload())
2595 *dot_value = old_dot_value;
2596 *load_address = old_load_address;
2601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2602 // this section is constrained, and the input sections do not match,
2603 // return the constraint, and set *POSD.
2606 Output_section_definition::check_constraint(Output_section_definition** posd)
2608 switch (this->constraint_)
2610 case CONSTRAINT_NONE:
2611 return CONSTRAINT_NONE;
2613 case CONSTRAINT_ONLY_IF_RO:
2614 if (this->output_section_ != NULL
2615 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2618 return CONSTRAINT_ONLY_IF_RO;
2620 return CONSTRAINT_NONE;
2622 case CONSTRAINT_ONLY_IF_RW:
2623 if (this->output_section_ != NULL
2624 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2627 return CONSTRAINT_ONLY_IF_RW;
2629 return CONSTRAINT_NONE;
2631 case CONSTRAINT_SPECIAL:
2632 if (this->output_section_ != NULL)
2633 gold_error(_("SPECIAL constraints are not implemented"));
2634 return CONSTRAINT_NONE;
2641 // See if this is the alternate output section for a constrained
2642 // output section. If it is, transfer the Output_section and return
2643 // true. Otherwise return false.
2646 Output_section_definition::alternate_constraint(
2647 Output_section_definition* posd,
2648 Section_constraint constraint)
2650 if (this->name_ != posd->name_)
2655 case CONSTRAINT_ONLY_IF_RO:
2656 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2660 case CONSTRAINT_ONLY_IF_RW:
2661 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2669 // We have found the alternate constraint. We just need to move
2670 // over the Output_section. When constraints are used properly,
2671 // THIS should not have an output_section pointer, as all the input
2672 // sections should have matched the other definition.
2674 if (this->output_section_ != NULL)
2675 gold_error(_("mismatched definition for constrained sections"));
2677 this->output_section_ = posd->output_section_;
2678 posd->output_section_ = NULL;
2680 if (this->is_relro_)
2681 this->output_section_->set_is_relro();
2683 this->output_section_->clear_is_relro();
2688 // Get the list of segments to use for an allocated section when using
2692 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2695 // Update phdrs_list even if we don't have an output section. It
2696 // might be used by the following sections.
2697 if (this->phdrs_ != NULL)
2698 *phdrs_list = this->phdrs_;
2700 if (this->output_section_ == NULL)
2702 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2705 return this->output_section_;
2708 // Look for an output section by name and return the address, the load
2709 // address, the alignment, and the size. This is used when an
2710 // expression refers to an output section which was not actually
2711 // created. This returns true if the section was found, false
2715 Output_section_definition::get_output_section_info(const char* name,
2717 uint64_t* load_address,
2718 uint64_t* addralign,
2719 uint64_t* size) const
2721 if (this->name_ != name)
2724 if (this->output_section_ != NULL)
2726 *address = this->output_section_->address();
2727 if (this->output_section_->has_load_address())
2728 *load_address = this->output_section_->load_address();
2730 *load_address = *address;
2731 *addralign = this->output_section_->addralign();
2732 *size = this->output_section_->current_data_size();
2736 *address = this->evaluated_address_;
2737 *load_address = this->evaluated_load_address_;
2738 *addralign = this->evaluated_addralign_;
2745 // Print for debugging.
2748 Output_section_definition::print(FILE* f) const
2750 fprintf(f, " %s ", this->name_.c_str());
2752 if (this->address_ != NULL)
2754 this->address_->print(f);
2758 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2760 this->script_section_type_name(this->script_section_type_));
2764 if (this->load_address_ != NULL)
2767 this->load_address_->print(f);
2771 if (this->align_ != NULL)
2773 fprintf(f, "ALIGN(");
2774 this->align_->print(f);
2778 if (this->subalign_ != NULL)
2780 fprintf(f, "SUBALIGN(");
2781 this->subalign_->print(f);
2787 for (Output_section_elements::const_iterator p = this->elements_.begin();
2788 p != this->elements_.end();
2794 if (this->fill_ != NULL)
2797 this->fill_->print(f);
2800 if (this->phdrs_ != NULL)
2802 for (String_list::const_iterator p = this->phdrs_->begin();
2803 p != this->phdrs_->end();
2805 fprintf(f, " :%s", p->c_str());
2811 Script_sections::Section_type
2812 Output_section_definition::section_type() const
2814 switch (this->script_section_type_)
2816 case SCRIPT_SECTION_TYPE_NONE:
2817 return Script_sections::ST_NONE;
2818 case SCRIPT_SECTION_TYPE_NOLOAD:
2819 return Script_sections::ST_NOLOAD;
2820 case SCRIPT_SECTION_TYPE_COPY:
2821 case SCRIPT_SECTION_TYPE_DSECT:
2822 case SCRIPT_SECTION_TYPE_INFO:
2823 case SCRIPT_SECTION_TYPE_OVERLAY:
2824 // There are not really support so we treat them as ST_NONE. The
2825 // parse should have issued errors for them already.
2826 return Script_sections::ST_NONE;
2832 // Return the name of a script section type.
2835 Output_section_definition::script_section_type_name(
2836 Script_section_type script_section_type)
2838 switch (script_section_type)
2840 case SCRIPT_SECTION_TYPE_NONE:
2842 case SCRIPT_SECTION_TYPE_NOLOAD:
2844 case SCRIPT_SECTION_TYPE_DSECT:
2846 case SCRIPT_SECTION_TYPE_COPY:
2848 case SCRIPT_SECTION_TYPE_INFO:
2850 case SCRIPT_SECTION_TYPE_OVERLAY:
2858 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2860 gold_assert(mr != NULL);
2861 // Add the current section to the specified region's list.
2862 mr->add_section(this, set_vma);
2865 // An output section created to hold orphaned input sections. These
2866 // do not actually appear in linker scripts. However, for convenience
2867 // when setting the output section addresses, we put a marker to these
2868 // sections in the appropriate place in the list of SECTIONS elements.
2870 class Orphan_output_section : public Sections_element
2873 Orphan_output_section(Output_section* os)
2877 // Return whether the orphan output section is relro. We can just
2878 // check the output section because we always set the flag, if
2879 // needed, just after we create the Orphan_output_section.
2882 { return this->os_->is_relro(); }
2884 // Initialize OSP with an output section. This should have been
2887 orphan_section_init(Orphan_section_placement*,
2888 Script_sections::Elements_iterator)
2889 { gold_unreachable(); }
2891 // Set section addresses.
2893 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2896 // Get the list of segments to use for an allocated section when
2897 // using a PHDRS clause.
2899 allocate_to_segment(String_list**, bool*);
2901 // Return the associated Output_section.
2903 get_output_section() const
2904 { return this->os_; }
2906 // Print for debugging.
2908 print(FILE* f) const
2910 fprintf(f, " marker for orphaned output section %s\n",
2915 Output_section* os_;
2918 // Set section addresses.
2921 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2922 uint64_t* dot_value,
2924 uint64_t* load_address)
2926 typedef std::list<Output_section::Input_section> Input_section_list;
2928 bool have_load_address = *load_address != *dot_value;
2930 uint64_t address = *dot_value;
2931 address = align_address(address, this->os_->addralign());
2933 // If input section sorting is requested via --section-ordering-file or
2934 // linker plugins, then do it here. This is important because we want
2935 // any sorting specified in the linker scripts, which will be done after
2936 // this, to take precedence. The final order of input sections is then
2937 // guaranteed to be according to the linker script specification.
2938 if (this->os_ != NULL
2939 && this->os_->input_section_order_specified())
2940 this->os_->sort_attached_input_sections();
2942 // For a relocatable link, all orphan sections are put at
2943 // address 0. In general we expect all sections to be at
2944 // address 0 for a relocatable link, but we permit the linker
2945 // script to override that for specific output sections.
2946 if (parameters->options().relocatable())
2950 have_load_address = false;
2953 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2955 this->os_->set_address(address);
2956 if (have_load_address)
2957 this->os_->set_load_address(align_address(*load_address,
2958 this->os_->addralign()));
2961 Input_section_list input_sections;
2962 address += this->os_->get_input_sections(address, "", &input_sections);
2964 for (Input_section_list::iterator p = input_sections.begin();
2965 p != input_sections.end();
2968 uint64_t addralign = p->addralign();
2969 if (!p->is_input_section())
2970 p->output_section_data()->finalize_data_size();
2971 uint64_t size = p->data_size();
2972 address = align_address(address, addralign);
2973 this->os_->add_script_input_section(*p);
2977 if (parameters->options().relocatable())
2979 // For a relocatable link, reset DOT_VALUE to 0.
2983 else if (this->os_ == NULL
2984 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2985 || this->os_->type() != elfcpp::SHT_NOBITS)
2987 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2988 if (!have_load_address)
2989 *load_address = address;
2991 *load_address += address - *dot_value;
2993 *dot_value = address;
2997 // Get the list of segments to use for an allocated section when using
2998 // a PHDRS clause. If this is an allocated section, return the
2999 // Output_section. We don't change the list of segments.
3002 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3004 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3010 // Class Phdrs_element. A program header from a PHDRS clause.
3015 Phdrs_element(const char* name, size_t namelen, unsigned int type,
3016 bool includes_filehdr, bool includes_phdrs,
3017 bool is_flags_valid, unsigned int flags,
3018 Expression* load_address)
3019 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3020 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3021 flags_(flags), load_address_(load_address), load_address_value_(0),
3025 // Return the name of this segment.
3028 { return this->name_; }
3030 // Return the type of the segment.
3033 { return this->type_; }
3035 // Whether to include the file header.
3037 includes_filehdr() const
3038 { return this->includes_filehdr_; }
3040 // Whether to include the program headers.
3042 includes_phdrs() const
3043 { return this->includes_phdrs_; }
3045 // Return whether there is a load address.
3047 has_load_address() const
3048 { return this->load_address_ != NULL; }
3050 // Evaluate the load address expression if there is one.
3052 eval_load_address(Symbol_table* symtab, Layout* layout)
3054 if (this->load_address_ != NULL)
3055 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3059 // Return the load address.
3061 load_address() const
3063 gold_assert(this->load_address_ != NULL);
3064 return this->load_address_value_;
3067 // Create the segment.
3069 create_segment(Layout* layout)
3071 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3072 return this->segment_;
3075 // Return the segment.
3078 { return this->segment_; }
3080 // Release the segment.
3083 { this->segment_ = NULL; }
3085 // Set the segment flags if appropriate.
3087 set_flags_if_valid()
3089 if (this->is_flags_valid_)
3090 this->segment_->set_flags(this->flags_);
3093 // Print for debugging.
3098 // The name used in the script.
3100 // The type of the segment (PT_LOAD, etc.).
3102 // Whether this segment includes the file header.
3103 bool includes_filehdr_;
3104 // Whether this segment includes the section headers.
3105 bool includes_phdrs_;
3106 // Whether the flags were explicitly specified.
3107 bool is_flags_valid_;
3108 // The flags for this segment (PF_R, etc.) if specified.
3109 unsigned int flags_;
3110 // The expression for the load address for this segment. This may
3112 Expression* load_address_;
3113 // The actual load address from evaluating the expression.
3114 uint64_t load_address_value_;
3115 // The segment itself.
3116 Output_segment* segment_;
3119 // Print for debugging.
3122 Phdrs_element::print(FILE* f) const
3124 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3125 if (this->includes_filehdr_)
3126 fprintf(f, " FILEHDR");
3127 if (this->includes_phdrs_)
3128 fprintf(f, " PHDRS");
3129 if (this->is_flags_valid_)
3130 fprintf(f, " FLAGS(%u)", this->flags_);
3131 if (this->load_address_ != NULL)
3134 this->load_address_->print(f);
3140 // Add a memory region.
3143 Script_sections::add_memory_region(const char* name, size_t namelen,
3144 unsigned int attributes,
3145 Expression* start, Expression* length)
3147 if (this->memory_regions_ == NULL)
3148 this->memory_regions_ = new Memory_regions();
3149 else if (this->find_memory_region(name, namelen))
3151 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3153 // FIXME: Add a GOLD extension to allow multiple regions with the same
3154 // name. This would amount to a single region covering disjoint blocks
3155 // of memory, which is useful for embedded devices.
3158 // FIXME: Check the length and start values. Currently we allow
3159 // non-constant expressions for these values, whereas LD does not.
3161 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3162 // describe a region that packs from the end address going down, rather
3163 // than the start address going up. This would be useful for embedded
3166 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3170 // Find a memory region.
3173 Script_sections::find_memory_region(const char* name, size_t namelen)
3175 if (this->memory_regions_ == NULL)
3178 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3179 m != this->memory_regions_->end();
3181 if ((*m)->name_match(name, namelen))
3187 // Find a memory region's origin.
3190 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3192 Memory_region* mr = find_memory_region(name, namelen);
3196 return mr->start_address();
3199 // Find a memory region's length.
3202 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3204 Memory_region* mr = find_memory_region(name, namelen);
3208 return mr->length();
3211 // Set the memory region to use for the current section.
3214 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3216 gold_assert(!this->sections_elements_->empty());
3217 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3220 // Class Script_sections.
3222 Script_sections::Script_sections()
3223 : saw_sections_clause_(false),
3224 in_sections_clause_(false),
3225 sections_elements_(NULL),
3226 output_section_(NULL),
3227 memory_regions_(NULL),
3228 phdrs_elements_(NULL),
3229 orphan_section_placement_(NULL),
3230 data_segment_align_start_(),
3231 saw_data_segment_align_(false),
3232 saw_relro_end_(false),
3233 saw_segment_start_expression_(false),
3234 segments_created_(false)
3238 // Start a SECTIONS clause.
3241 Script_sections::start_sections()
3243 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3244 this->saw_sections_clause_ = true;
3245 this->in_sections_clause_ = true;
3246 if (this->sections_elements_ == NULL)
3247 this->sections_elements_ = new Sections_elements;
3250 // Finish a SECTIONS clause.
3253 Script_sections::finish_sections()
3255 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3256 this->in_sections_clause_ = false;
3259 // Add a symbol to be defined.
3262 Script_sections::add_symbol_assignment(const char* name, size_t length,
3263 Expression* val, bool provide,
3266 if (this->output_section_ != NULL)
3267 this->output_section_->add_symbol_assignment(name, length, val,
3271 Sections_element* p = new Sections_element_assignment(name, length,
3274 this->sections_elements_->push_back(p);
3278 // Add an assignment to the special dot symbol.
3281 Script_sections::add_dot_assignment(Expression* val)
3283 if (this->output_section_ != NULL)
3284 this->output_section_->add_dot_assignment(val);
3287 // The GNU linker permits assignments to . to appears outside of
3288 // a SECTIONS clause, and treats it as appearing inside, so
3289 // sections_elements_ may be NULL here.
3290 if (this->sections_elements_ == NULL)
3292 this->sections_elements_ = new Sections_elements;
3293 this->saw_sections_clause_ = true;
3296 Sections_element* p = new Sections_element_dot_assignment(val);
3297 this->sections_elements_->push_back(p);
3301 // Add an assertion.
3304 Script_sections::add_assertion(Expression* check, const char* message,
3307 if (this->output_section_ != NULL)
3308 this->output_section_->add_assertion(check, message, messagelen);
3311 Sections_element* p = new Sections_element_assertion(check, message,
3313 this->sections_elements_->push_back(p);
3317 // Start processing entries for an output section.
3320 Script_sections::start_output_section(
3323 const Parser_output_section_header* header)
3325 Output_section_definition* posd = new Output_section_definition(name,
3328 this->sections_elements_->push_back(posd);
3329 gold_assert(this->output_section_ == NULL);
3330 this->output_section_ = posd;
3333 // Stop processing entries for an output section.
3336 Script_sections::finish_output_section(
3337 const Parser_output_section_trailer* trailer)
3339 gold_assert(this->output_section_ != NULL);
3340 this->output_section_->finish(trailer);
3341 this->output_section_ = NULL;
3344 // Add a data item to the current output section.
3347 Script_sections::add_data(int size, bool is_signed, Expression* val)
3349 gold_assert(this->output_section_ != NULL);
3350 this->output_section_->add_data(size, is_signed, val);
3353 // Add a fill value setting to the current output section.
3356 Script_sections::add_fill(Expression* val)
3358 gold_assert(this->output_section_ != NULL);
3359 this->output_section_->add_fill(val);
3362 // Add an input section specification to the current output section.
3365 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3367 gold_assert(this->output_section_ != NULL);
3368 this->output_section_->add_input_section(spec, keep);
3371 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3372 // subsequent output sections may be relro.
3375 Script_sections::data_segment_align()
3377 if (this->saw_data_segment_align_)
3378 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3379 gold_assert(!this->sections_elements_->empty());
3380 Sections_elements::iterator p = this->sections_elements_->end();
3382 this->data_segment_align_start_ = p;
3383 this->saw_data_segment_align_ = true;
3386 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3387 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3390 Script_sections::data_segment_relro_end()
3392 if (this->saw_relro_end_)
3393 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3394 "in a linker script"));
3395 this->saw_relro_end_ = true;
3397 if (!this->saw_data_segment_align_)
3398 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3401 Sections_elements::iterator p = this->data_segment_align_start_;
3402 for (++p; p != this->sections_elements_->end(); ++p)
3403 (*p)->set_is_relro();
3407 // Create any required sections.
3410 Script_sections::create_sections(Layout* layout)
3412 if (!this->saw_sections_clause_)
3414 for (Sections_elements::iterator p = this->sections_elements_->begin();
3415 p != this->sections_elements_->end();
3417 (*p)->create_sections(layout);
3420 // Add any symbols we are defining to the symbol table.
3423 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3425 if (!this->saw_sections_clause_)
3427 for (Sections_elements::iterator p = this->sections_elements_->begin();
3428 p != this->sections_elements_->end();
3430 (*p)->add_symbols_to_table(symtab);
3433 // Finalize symbols and check assertions.
3436 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3438 if (!this->saw_sections_clause_)
3440 uint64_t dot_value = 0;
3441 for (Sections_elements::iterator p = this->sections_elements_->begin();
3442 p != this->sections_elements_->end();
3444 (*p)->finalize_symbols(symtab, layout, &dot_value);
3447 // Return the name of the output section to use for an input file name
3448 // and section name.
3451 Script_sections::output_section_name(
3452 const char* file_name,
3453 const char* section_name,
3454 Output_section*** output_section_slot,
3455 Script_sections::Section_type* psection_type,
3458 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3459 p != this->sections_elements_->end();
3462 const char* ret = (*p)->output_section_name(file_name, section_name,
3463 output_section_slot,
3464 psection_type, keep);
3468 // The special name /DISCARD/ means that the input section
3469 // should be discarded.
3470 if (strcmp(ret, "/DISCARD/") == 0)
3472 *output_section_slot = NULL;
3473 *psection_type = Script_sections::ST_NONE;
3480 // If we couldn't find a mapping for the name, the output section
3481 // gets the name of the input section.
3483 *output_section_slot = NULL;
3484 *psection_type = Script_sections::ST_NONE;
3486 return section_name;
3489 // Place a marker for an orphan output section into the SECTIONS
3493 Script_sections::place_orphan(Output_section* os)
3495 Orphan_section_placement* osp = this->orphan_section_placement_;
3498 // Initialize the Orphan_section_placement structure.
3499 osp = new Orphan_section_placement();
3500 for (Sections_elements::iterator p = this->sections_elements_->begin();
3501 p != this->sections_elements_->end();
3503 (*p)->orphan_section_init(osp, p);
3504 gold_assert(!this->sections_elements_->empty());
3505 Sections_elements::iterator last = this->sections_elements_->end();
3507 osp->last_init(last);
3508 this->orphan_section_placement_ = osp;
3511 Orphan_output_section* orphan = new Orphan_output_section(os);
3513 // Look for where to put ORPHAN.
3514 Sections_elements::iterator* where;
3515 if (osp->find_place(os, &where))
3517 if ((**where)->is_relro())
3520 os->clear_is_relro();
3522 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3523 // so that the next one goes after this one.
3524 Sections_elements::iterator p = *where;
3525 gold_assert(p != this->sections_elements_->end());
3527 *where = this->sections_elements_->insert(p, orphan);
3531 os->clear_is_relro();
3532 // We don't have a place to put this orphan section. Put it,
3533 // and all other sections like it, at the end, but before the
3534 // sections which always come at the end.
3535 Sections_elements::iterator last = osp->last_place();
3536 *where = this->sections_elements_->insert(last, orphan);
3540 // Set the addresses of all the output sections. Walk through all the
3541 // elements, tracking the dot symbol. Apply assignments which set
3542 // absolute symbol values, in case they are used when setting dot.
3543 // Fill in data statement values. As we find output sections, set the
3544 // address, set the address of all associated input sections, and
3545 // update dot. Return the segment which should hold the file header
3546 // and segment headers, if any.
3549 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3551 gold_assert(this->saw_sections_clause_);
3553 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3554 // for our representation.
3555 for (Sections_elements::iterator p = this->sections_elements_->begin();
3556 p != this->sections_elements_->end();
3559 Output_section_definition* posd;
3560 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3561 if (failed_constraint != CONSTRAINT_NONE)
3563 Sections_elements::iterator q;
3564 for (q = this->sections_elements_->begin();
3565 q != this->sections_elements_->end();
3570 if ((*q)->alternate_constraint(posd, failed_constraint))
3575 if (q == this->sections_elements_->end())
3576 gold_error(_("no matching section constraint"));
3580 // Force the alignment of the first TLS section to be the maximum
3581 // alignment of all TLS sections.
3582 Output_section* first_tls = NULL;
3583 uint64_t tls_align = 0;
3584 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3585 p != this->sections_elements_->end();
3588 Output_section* os = (*p)->get_output_section();
3589 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3591 if (first_tls == NULL)
3593 if (os->addralign() > tls_align)
3594 tls_align = os->addralign();
3597 if (first_tls != NULL)
3598 first_tls->set_addralign(tls_align);
3600 // For a relocatable link, we implicitly set dot to zero.
3601 uint64_t dot_value = 0;
3602 uint64_t dot_alignment = 0;
3603 uint64_t load_address = 0;
3605 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3606 // to set section addresses. If the script has any SEGMENT_START
3607 // expression, we do not set the section addresses.
3608 bool use_tsection_options =
3609 (!this->saw_segment_start_expression_
3610 && (parameters->options().user_set_Ttext()
3611 || parameters->options().user_set_Tdata()
3612 || parameters->options().user_set_Tbss()));
3614 for (Sections_elements::iterator p = this->sections_elements_->begin();
3615 p != this->sections_elements_->end();
3618 Output_section* os = (*p)->get_output_section();
3620 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3621 // the special sections by names and doing dot assignments.
3622 if (use_tsection_options
3624 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3626 uint64_t new_dot_value = dot_value;
3628 if (parameters->options().user_set_Ttext()
3629 && strcmp(os->name(), ".text") == 0)
3630 new_dot_value = parameters->options().Ttext();
3631 else if (parameters->options().user_set_Tdata()
3632 && strcmp(os->name(), ".data") == 0)
3633 new_dot_value = parameters->options().Tdata();
3634 else if (parameters->options().user_set_Tbss()
3635 && strcmp(os->name(), ".bss") == 0)
3636 new_dot_value = parameters->options().Tbss();
3638 // Update dot and load address if necessary.
3639 if (new_dot_value < dot_value)
3640 gold_error(_("dot may not move backward"));
3641 else if (new_dot_value != dot_value)
3643 dot_value = new_dot_value;
3644 load_address = new_dot_value;
3648 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3652 if (this->phdrs_elements_ != NULL)
3654 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3655 p != this->phdrs_elements_->end();
3657 (*p)->eval_load_address(symtab, layout);
3660 return this->create_segments(layout, dot_alignment);
3663 // Sort the sections in order to put them into segments.
3665 class Sort_output_sections
3668 Sort_output_sections(const Script_sections::Sections_elements* elements)
3669 : elements_(elements)
3673 operator()(const Output_section* os1, const Output_section* os2) const;
3677 script_compare(const Output_section* os1, const Output_section* os2) const;
3680 const Script_sections::Sections_elements* elements_;
3684 Sort_output_sections::operator()(const Output_section* os1,
3685 const Output_section* os2) const
3687 // Sort first by the load address.
3688 uint64_t lma1 = (os1->has_load_address()
3689 ? os1->load_address()
3691 uint64_t lma2 = (os2->has_load_address()
3692 ? os2->load_address()
3697 // Then sort by the virtual address.
3698 if (os1->address() != os2->address())
3699 return os1->address() < os2->address();
3701 // If the linker script says which of these sections is first, go
3702 // with what it says.
3703 int i = this->script_compare(os1, os2);
3707 // Sort PROGBITS before NOBITS.
3708 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3709 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3710 if (nobits1 != nobits2)
3713 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3715 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3716 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3718 return nobits1 ? tls1 : tls2;
3720 // Sort non-NOLOAD before NOLOAD.
3721 if (os1->is_noload() && !os2->is_noload())
3723 if (!os1->is_noload() && os2->is_noload())
3726 // The sections seem practically identical. Sort by name to get a
3728 return os1->name() < os2->name();
3731 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3732 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3733 // empty sections in the order in which they appear in a linker
3737 Sort_output_sections::script_compare(const Output_section* os1,
3738 const Output_section* os2) const
3740 if (this->elements_ == NULL)
3743 bool found_os1 = false;
3744 bool found_os2 = false;
3745 for (Script_sections::Sections_elements::const_iterator
3746 p = this->elements_->begin();
3747 p != this->elements_->end();
3750 if (os2 == (*p)->get_output_section())
3756 else if (os1 == (*p)->get_output_section())
3767 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3768 // We treat a section with the SHF_TLS flag set as taking up space
3769 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3770 // space for them in the file.
3773 Script_sections::is_bss_section(const Output_section* os)
3775 return (os->type() == elfcpp::SHT_NOBITS
3776 && (os->flags() & elfcpp::SHF_TLS) == 0);
3779 // Return the size taken by the file header and the program headers.
3782 Script_sections::total_header_size(Layout* layout) const
3784 size_t segment_count = layout->segment_count();
3785 size_t file_header_size;
3786 size_t segment_headers_size;
3787 if (parameters->target().get_size() == 32)
3789 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3790 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3792 else if (parameters->target().get_size() == 64)
3794 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3795 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3800 return file_header_size + segment_headers_size;
3803 // Return the amount we have to subtract from the LMA to accommodate
3804 // headers of the given size. The complication is that the file
3805 // header have to be at the start of a page, as otherwise it will not
3806 // be at the start of the file.
3809 Script_sections::header_size_adjustment(uint64_t lma,
3810 size_t sizeof_headers) const
3812 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3813 uint64_t hdr_lma = lma - sizeof_headers;
3814 hdr_lma &= ~(abi_pagesize - 1);
3815 return lma - hdr_lma;
3818 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3819 // the segment which should hold the file header and segment headers,
3823 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3825 gold_assert(this->saw_sections_clause_);
3827 if (parameters->options().relocatable())
3830 if (this->saw_phdrs_clause())
3831 return create_segments_from_phdrs_clause(layout, dot_alignment);
3833 Layout::Section_list sections;
3834 layout->get_allocated_sections(§ions);
3836 // Sort the sections by address.
3837 std::stable_sort(sections.begin(), sections.end(),
3838 Sort_output_sections(this->sections_elements_));
3840 this->create_note_and_tls_segments(layout, §ions);
3842 // Walk through the sections adding them to PT_LOAD segments.
3843 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3844 Output_segment* first_seg = NULL;
3845 Output_segment* current_seg = NULL;
3846 bool is_current_seg_readonly = true;
3847 Layout::Section_list::iterator plast = sections.end();
3848 uint64_t last_vma = 0;
3849 uint64_t last_lma = 0;
3850 uint64_t last_size = 0;
3851 for (Layout::Section_list::iterator p = sections.begin();
3852 p != sections.end();
3855 const uint64_t vma = (*p)->address();
3856 const uint64_t lma = ((*p)->has_load_address()
3857 ? (*p)->load_address()
3859 const uint64_t size = (*p)->current_data_size();
3861 bool need_new_segment;
3862 if (current_seg == NULL)
3863 need_new_segment = true;
3864 else if (lma - vma != last_lma - last_vma)
3866 // This section has a different LMA relationship than the
3867 // last one; we need a new segment.
3868 need_new_segment = true;
3870 else if (align_address(last_lma + last_size, abi_pagesize)
3871 < align_address(lma, abi_pagesize))
3873 // Putting this section in the segment would require
3875 need_new_segment = true;
3877 else if (is_bss_section(*plast) && !is_bss_section(*p))
3879 // A non-BSS section can not follow a BSS section in the
3881 need_new_segment = true;
3883 else if (is_current_seg_readonly
3884 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3885 && !parameters->options().omagic())
3887 // Don't put a writable section in the same segment as a
3888 // non-writable section.
3889 need_new_segment = true;
3893 // Otherwise, reuse the existing segment.
3894 need_new_segment = false;
3897 elfcpp::Elf_Word seg_flags =
3898 Layout::section_flags_to_segment((*p)->flags());
3900 if (need_new_segment)
3902 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3904 current_seg->set_addresses(vma, lma);
3905 current_seg->set_minimum_p_align(dot_alignment);
3906 if (first_seg == NULL)
3907 first_seg = current_seg;
3908 is_current_seg_readonly = true;
3911 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3913 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3914 is_current_seg_readonly = false;
3922 // An ELF program should work even if the program headers are not in
3923 // a PT_LOAD segment. However, it appears that the Linux kernel
3924 // does not set the AT_PHDR auxiliary entry in that case. It sets
3925 // the load address to p_vaddr - p_offset of the first PT_LOAD
3926 // segment. It then sets AT_PHDR to the load address plus the
3927 // offset to the program headers, e_phoff in the file header. This
3928 // fails when the program headers appear in the file before the
3929 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3930 // segment to hold the file header and the program headers. This is
3931 // effectively what the GNU linker does, and it is slightly more
3932 // efficient in any case. We try to use the first PT_LOAD segment
3933 // if we can, otherwise we make a new one.
3935 if (first_seg == NULL)
3938 // -n or -N mean that the program is not demand paged and there is
3939 // no need to put the program headers in a PT_LOAD segment.
3940 if (parameters->options().nmagic() || parameters->options().omagic())
3943 size_t sizeof_headers = this->total_header_size(layout);
3945 uint64_t vma = first_seg->vaddr();
3946 uint64_t lma = first_seg->paddr();
3948 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3950 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3952 first_seg->set_addresses(vma - subtract, lma - subtract);
3956 // If there is no room to squeeze in the headers, then punt. The
3957 // resulting executable probably won't run on GNU/Linux, but we
3958 // trust that the user knows what they are doing.
3959 if (lma < subtract || vma < subtract)
3962 // If memory regions have been specified and the address range
3963 // we are about to use is not contained within any region then
3964 // issue a warning message about the segment we are going to
3965 // create. It will be outside of any region and so possibly
3966 // using non-existent or protected memory. We test LMA rather
3967 // than VMA since we assume that the headers will never be
3969 if (this->memory_regions_ != NULL
3970 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3971 gold_warning(_("creating a segment to contain the file and program"
3972 " headers outside of any MEMORY region"));
3974 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3976 load_seg->set_addresses(vma - subtract, lma - subtract);
3981 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3982 // segment if there are any SHT_TLS sections.
3985 Script_sections::create_note_and_tls_segments(
3987 const Layout::Section_list* sections)
3989 gold_assert(!this->saw_phdrs_clause());
3991 bool saw_tls = false;
3992 for (Layout::Section_list::const_iterator p = sections->begin();
3993 p != sections->end();
3996 if ((*p)->type() == elfcpp::SHT_NOTE)
3998 elfcpp::Elf_Word seg_flags =
3999 Layout::section_flags_to_segment((*p)->flags());
4000 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4002 oseg->add_output_section_to_nonload(*p, seg_flags);
4004 // Incorporate any subsequent SHT_NOTE sections, in the
4005 // hopes that the script is sensible.
4006 Layout::Section_list::const_iterator pnext = p + 1;
4007 while (pnext != sections->end()
4008 && (*pnext)->type() == elfcpp::SHT_NOTE)
4010 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4011 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4017 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4020 gold_error(_("TLS sections are not adjacent"));
4022 elfcpp::Elf_Word seg_flags =
4023 Layout::section_flags_to_segment((*p)->flags());
4024 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4026 oseg->add_output_section_to_nonload(*p, seg_flags);
4028 Layout::Section_list::const_iterator pnext = p + 1;
4029 while (pnext != sections->end()
4030 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4032 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4033 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4041 // If we see a section named .interp then put the .interp section
4042 // in a PT_INTERP segment.
4043 // This is for GNU ld compatibility.
4044 if (strcmp((*p)->name(), ".interp") == 0)
4046 elfcpp::Elf_Word seg_flags =
4047 Layout::section_flags_to_segment((*p)->flags());
4048 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4050 oseg->add_output_section_to_nonload(*p, seg_flags);
4054 this->segments_created_ = true;
4057 // Add a program header. The PHDRS clause is syntactically distinct
4058 // from the SECTIONS clause, but we implement it with the SECTIONS
4059 // support because PHDRS is useless if there is no SECTIONS clause.
4062 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4063 bool includes_filehdr, bool includes_phdrs,
4064 bool is_flags_valid, unsigned int flags,
4065 Expression* load_address)
4067 if (this->phdrs_elements_ == NULL)
4068 this->phdrs_elements_ = new Phdrs_elements();
4069 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4072 is_flags_valid, flags,
4076 // Return the number of segments we expect to create based on the
4077 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4080 Script_sections::expected_segment_count(const Layout* layout) const
4082 // If we've already created the segments, we won't be adding any more.
4083 if (this->segments_created_)
4086 if (this->saw_phdrs_clause())
4087 return this->phdrs_elements_->size();
4089 Layout::Section_list sections;
4090 layout->get_allocated_sections(§ions);
4092 // We assume that we will need two PT_LOAD segments.
4095 bool saw_note = false;
4096 bool saw_tls = false;
4097 bool saw_interp = false;
4098 for (Layout::Section_list::const_iterator p = sections.begin();
4099 p != sections.end();
4102 if ((*p)->type() == elfcpp::SHT_NOTE)
4104 // Assume that all note sections will fit into a single
4112 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4114 // There can only be one PT_TLS segment.
4121 else if (strcmp((*p)->name(), ".interp") == 0)
4123 // There can only be one PT_INTERP segment.
4135 // Create the segments from a PHDRS clause. Return the segment which
4136 // should hold the file header and program headers, if any.
4139 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4140 uint64_t dot_alignment)
4142 this->attach_sections_using_phdrs_clause(layout);
4143 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4146 // Create the segments from the PHDRS clause, and put the output
4147 // sections in them.
4150 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4152 typedef std::map<std::string, Output_segment*> Name_to_segment;
4153 Name_to_segment name_to_segment;
4154 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4155 p != this->phdrs_elements_->end();
4157 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4158 this->segments_created_ = true;
4160 // Walk through the output sections and attach them to segments.
4161 // Output sections in the script which do not list segments are
4162 // attached to the same set of segments as the immediately preceding
4165 String_list* phdr_names = NULL;
4166 bool load_segments_only = false;
4167 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4168 p != this->sections_elements_->end();
4172 String_list* old_phdr_names = phdr_names;
4173 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4177 elfcpp::Elf_Word seg_flags =
4178 Layout::section_flags_to_segment(os->flags());
4180 if (phdr_names == NULL)
4182 // Don't worry about empty orphan sections.
4183 if (is_orphan && os->current_data_size() > 0)
4184 gold_error(_("allocated section %s not in any segment"),
4187 // To avoid later crashes drop this section into the first
4189 for (Phdrs_elements::const_iterator ppe =
4190 this->phdrs_elements_->begin();
4191 ppe != this->phdrs_elements_->end();
4194 Output_segment* oseg = (*ppe)->segment();
4195 if (oseg->type() == elfcpp::PT_LOAD)
4197 oseg->add_output_section_to_load(layout, os, seg_flags);
4205 // We see a list of segments names. Disable PT_LOAD segment only
4207 if (old_phdr_names != phdr_names)
4208 load_segments_only = false;
4210 // If this is an orphan section--one that was not explicitly
4211 // mentioned in the linker script--then it should not inherit
4212 // any segment type other than PT_LOAD. Otherwise, e.g., the
4213 // PT_INTERP segment will pick up following orphan sections,
4214 // which does not make sense. If this is not an orphan section,
4215 // we trust the linker script.
4218 // Enable PT_LOAD segments only filtering until we see another
4219 // list of segment names.
4220 load_segments_only = true;
4223 bool in_load_segment = false;
4224 for (String_list::const_iterator q = phdr_names->begin();
4225 q != phdr_names->end();
4228 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4229 if (r == name_to_segment.end())
4230 gold_error(_("no segment %s"), q->c_str());
4233 if (load_segments_only
4234 && r->second->type() != elfcpp::PT_LOAD)
4237 if (r->second->type() != elfcpp::PT_LOAD)
4238 r->second->add_output_section_to_nonload(os, seg_flags);
4241 r->second->add_output_section_to_load(layout, os, seg_flags);
4242 if (in_load_segment)
4243 gold_error(_("section in two PT_LOAD segments"));
4244 in_load_segment = true;
4249 if (!in_load_segment)
4250 gold_error(_("allocated section not in any PT_LOAD segment"));
4254 // Set the addresses for segments created from a PHDRS clause. Return
4255 // the segment which should hold the file header and program headers,
4259 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4260 uint64_t dot_alignment)
4262 Output_segment* load_seg = NULL;
4263 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4264 p != this->phdrs_elements_->end();
4267 // Note that we have to set the flags after adding the output
4268 // sections to the segment, as adding an output segment can
4269 // change the flags.
4270 (*p)->set_flags_if_valid();
4272 Output_segment* oseg = (*p)->segment();
4274 if (oseg->type() != elfcpp::PT_LOAD)
4276 // The addresses of non-PT_LOAD segments are set from the
4277 // PT_LOAD segments.
4278 if ((*p)->has_load_address())
4279 gold_error(_("may only specify load address for PT_LOAD segment"));
4283 oseg->set_minimum_p_align(dot_alignment);
4285 // The output sections should have addresses from the SECTIONS
4286 // clause. The addresses don't have to be in order, so find the
4287 // one with the lowest load address. Use that to set the
4288 // address of the segment.
4290 Output_section* osec = oseg->section_with_lowest_load_address();
4293 oseg->set_addresses(0, 0);
4297 uint64_t vma = osec->address();
4298 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4300 // Override the load address of the section with the load
4301 // address specified for the segment.
4302 if ((*p)->has_load_address())
4304 if (osec->has_load_address())
4305 gold_warning(_("PHDRS load address overrides "
4306 "section %s load address"),
4309 lma = (*p)->load_address();
4312 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4313 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4315 // We could support this if we wanted to.
4316 gold_error(_("using only one of FILEHDR and PHDRS is "
4317 "not currently supported"));
4321 size_t sizeof_headers = this->total_header_size(layout);
4322 uint64_t subtract = this->header_size_adjustment(lma,
4324 if (lma >= subtract && vma >= subtract)
4331 gold_error(_("sections loaded on first page without room "
4332 "for file and program headers "
4333 "are not supported"));
4336 if (load_seg != NULL)
4337 gold_error(_("using FILEHDR and PHDRS on more than one "
4338 "PT_LOAD segment is not currently supported"));
4342 oseg->set_addresses(vma, lma);
4348 // Add the file header and segment headers to non-load segments
4349 // specified in the PHDRS clause.
4352 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4353 Output_data* segment_headers)
4355 gold_assert(this->saw_phdrs_clause());
4356 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4357 p != this->phdrs_elements_->end();
4360 if ((*p)->type() != elfcpp::PT_LOAD)
4362 if ((*p)->includes_phdrs())
4363 (*p)->segment()->add_initial_output_data(segment_headers);
4364 if ((*p)->includes_filehdr())
4365 (*p)->segment()->add_initial_output_data(file_header);
4370 // Look for an output section by name and return the address, the load
4371 // address, the alignment, and the size. This is used when an
4372 // expression refers to an output section which was not actually
4373 // created. This returns true if the section was found, false
4377 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4378 uint64_t* load_address,
4379 uint64_t* addralign,
4380 uint64_t* size) const
4382 if (!this->saw_sections_clause_)
4384 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4385 p != this->sections_elements_->end();
4387 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4393 // Release all Output_segments. This remove all pointers to all
4397 Script_sections::release_segments()
4399 if (this->saw_phdrs_clause())
4401 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4402 p != this->phdrs_elements_->end();
4404 (*p)->release_segment();
4408 // Print the SECTIONS clause to F for debugging.
4411 Script_sections::print(FILE* f) const
4413 if (this->phdrs_elements_ != NULL)
4415 fprintf(f, "PHDRS {\n");
4416 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4417 p != this->phdrs_elements_->end();
4423 if (this->memory_regions_ != NULL)
4425 fprintf(f, "MEMORY {\n");
4426 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4427 m != this->memory_regions_->end();
4433 if (!this->saw_sections_clause_)
4436 fprintf(f, "SECTIONS {\n");
4438 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4439 p != this->sections_elements_->end();
4446 } // End namespace gold.