68cba6bdd90b65e803ab6a74b97c8b2b391d32c1
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50  public:
51   Sections_element()
52   { }
53
54   virtual ~Sections_element()
55   { }
56
57   // Add any symbol being defined to the symbol table.
58   virtual void
59   add_symbols_to_table(Symbol_table*)
60   { }
61
62   // Finalize symbols and check assertions.
63   virtual void
64   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
65   { }
66
67   // Return the output section name to use for an input file name and
68   // section name.  This only real implementation is in
69   // Output_section_definition.
70   virtual const char*
71   output_section_name(const char*, const char*, Output_section***)
72   { return NULL; }
73
74   // Return whether to place an orphan output section after this
75   // element.
76   virtual bool
77   place_orphan_here(const Output_section *, bool*) const
78   { return false; }
79
80   // Set section addresses.  This includes applying assignments if the
81   // the expression is an absolute value.
82   virtual void
83   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
84   { }
85
86   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
87   // this section is constrained, and the input sections do not match,
88   // return the constraint, and set *POSD.
89   virtual Section_constraint
90   check_constraint(Output_section_definition**)
91   { return CONSTRAINT_NONE; }
92
93   // See if this is the alternate output section for a constrained
94   // output section.  If it is, transfer the Output_section and return
95   // true.  Otherwise return false.
96   virtual bool
97   alternate_constraint(Output_section_definition*, Section_constraint)
98   { return false; }
99
100   // Get the list of segments to use for an allocated section when
101   // using a PHDRS clause.  If this is an allocated section, return
102   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
103   // which it should be attached.  If the PHDRS were not specified,
104   // don't change *PHDRS_LIST.
105   virtual Output_section*
106   allocate_to_segment(String_list**)
107   { return NULL; }
108
109   // Print the element for debugging purposes.
110   virtual void
111   print(FILE* f) const = 0;
112 };
113
114 // An assignment in a SECTIONS clause outside of an output section.
115
116 class Sections_element_assignment : public Sections_element
117 {
118  public:
119   Sections_element_assignment(const char* name, size_t namelen,
120                               Expression* val, bool provide, bool hidden)
121     : assignment_(name, namelen, val, provide, hidden)
122   { }
123
124   // Add the symbol to the symbol table.
125   void
126   add_symbols_to_table(Symbol_table* symtab)
127   { this->assignment_.add_to_table(symtab); }
128
129   // Finalize the symbol.
130   void
131   finalize_symbols(Symbol_table* symtab, const Layout* layout,
132                    uint64_t* dot_value)
133   {
134     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
135   }
136
137   // Set the section address.  There is no section here, but if the
138   // value is absolute, we set the symbol.  This permits us to use
139   // absolute symbols when setting dot.
140   void
141   set_section_addresses(Symbol_table* symtab, Layout* layout,
142                         uint64_t* dot_value, uint64_t*)
143   {
144     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
145   }
146
147   // Print for debugging.
148   void
149   print(FILE* f) const
150   {
151     fprintf(f, "  ");
152     this->assignment_.print(f);
153   }
154
155  private:
156   Symbol_assignment assignment_;
157 };
158
159 // An assignment to the dot symbol in a SECTIONS clause outside of an
160 // output section.
161
162 class Sections_element_dot_assignment : public Sections_element
163 {
164  public:
165   Sections_element_dot_assignment(Expression* val)
166     : val_(val)
167   { }
168
169   // Finalize the symbol.
170   void
171   finalize_symbols(Symbol_table* symtab, const Layout* layout,
172                    uint64_t* dot_value)
173   {
174     // We ignore the section of the result because outside of an
175     // output section definition the dot symbol is always considered
176     // to be absolute.
177     Output_section* dummy;
178     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
179                                            NULL, &dummy);
180   }
181
182   // Update the dot symbol while setting section addresses.
183   void
184   set_section_addresses(Symbol_table* symtab, Layout* layout,
185                         uint64_t* dot_value, uint64_t* load_address)
186   {
187     Output_section* dummy;
188     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
189                                            NULL, &dummy);
190     *load_address = *dot_value;
191   }
192
193   // Print for debugging.
194   void
195   print(FILE* f) const
196   {
197     fprintf(f, "  . = ");
198     this->val_->print(f);
199     fprintf(f, "\n");
200   }
201
202  private:
203   Expression* val_;
204 };
205
206 // An assertion in a SECTIONS clause outside of an output section.
207
208 class Sections_element_assertion : public Sections_element
209 {
210  public:
211   Sections_element_assertion(Expression* check, const char* message,
212                              size_t messagelen)
213     : assertion_(check, message, messagelen)
214   { }
215
216   // Check the assertion.
217   void
218   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
219   { this->assertion_.check(symtab, layout); }
220
221   // Print for debugging.
222   void
223   print(FILE* f) const
224   {
225     fprintf(f, "  ");
226     this->assertion_.print(f);
227   }
228
229  private:
230   Script_assertion assertion_;
231 };
232
233 // An element in an output section in a SECTIONS clause.
234
235 class Output_section_element
236 {
237  public:
238   // A list of input sections.
239   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
240
241   Output_section_element()
242   { }
243
244   virtual ~Output_section_element()
245   { }
246
247   // Add any symbol being defined to the symbol table.
248   virtual void
249   add_symbols_to_table(Symbol_table*)
250   { }
251
252   // Finalize symbols and check assertions.
253   virtual void
254   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
255   { }
256
257   // Return whether this element matches FILE_NAME and SECTION_NAME.
258   // The only real implementation is in Output_section_element_input.
259   virtual bool
260   match_name(const char*, const char*) const
261   { return false; }
262
263   // Set section addresses.  This includes applying assignments if the
264   // the expression is an absolute value.
265   virtual void
266   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
267                         uint64_t*, Output_section**, std::string*,
268                         Input_section_list*)
269   { }
270
271   // Print the element for debugging purposes.
272   virtual void
273   print(FILE* f) const = 0;
274
275  protected:
276   // Return a fill string that is LENGTH bytes long, filling it with
277   // FILL.
278   std::string
279   get_fill_string(const std::string* fill, section_size_type length) const;
280 };
281
282 std::string
283 Output_section_element::get_fill_string(const std::string* fill,
284                                         section_size_type length) const
285 {
286   std::string this_fill;
287   this_fill.reserve(length);
288   while (this_fill.length() + fill->length() <= length)
289     this_fill += *fill;
290   if (this_fill.length() < length)
291     this_fill.append(*fill, 0, length - this_fill.length());
292   return this_fill;
293 }
294
295 // A symbol assignment in an output section.
296
297 class Output_section_element_assignment : public Output_section_element
298 {
299  public:
300   Output_section_element_assignment(const char* name, size_t namelen,
301                                     Expression* val, bool provide,
302                                     bool hidden)
303     : assignment_(name, namelen, val, provide, hidden)
304   { }
305
306   // Add the symbol to the symbol table.
307   void
308   add_symbols_to_table(Symbol_table* symtab)
309   { this->assignment_.add_to_table(symtab); }
310
311   // Finalize the symbol.
312   void
313   finalize_symbols(Symbol_table* symtab, const Layout* layout,
314                    uint64_t* dot_value, Output_section** dot_section)
315   {
316     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
317                                         *dot_section);
318   }
319
320   // Set the section address.  There is no section here, but if the
321   // value is absolute, we set the symbol.  This permits us to use
322   // absolute symbols when setting dot.
323   void
324   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
325                         uint64_t, uint64_t* dot_value, Output_section**,
326                         std::string*, Input_section_list*)
327   {
328     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
329   }
330
331   // Print for debugging.
332   void
333   print(FILE* f) const
334   {
335     fprintf(f, "    ");
336     this->assignment_.print(f);
337   }
338
339  private:
340   Symbol_assignment assignment_;
341 };
342
343 // An assignment to the dot symbol in an output section.
344
345 class Output_section_element_dot_assignment : public Output_section_element
346 {
347  public:
348   Output_section_element_dot_assignment(Expression* val)
349     : val_(val)
350   { }
351
352   // Finalize the symbol.
353   void
354   finalize_symbols(Symbol_table* symtab, const Layout* layout,
355                    uint64_t* dot_value, Output_section** dot_section)
356   {
357     *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
358                                            *dot_section, dot_section);
359   }
360
361   // Update the dot symbol while setting section addresses.
362   void
363   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
364                         uint64_t, uint64_t* dot_value, Output_section**,
365                         std::string*, Input_section_list*);
366
367   // Print for debugging.
368   void
369   print(FILE* f) const
370   {
371     fprintf(f, "    . = ");
372     this->val_->print(f);
373     fprintf(f, "\n");
374   }
375
376  private:
377   Expression* val_;
378 };
379
380 // Update the dot symbol while setting section addresses.
381
382 void
383 Output_section_element_dot_assignment::set_section_addresses(
384     Symbol_table* symtab,
385     Layout* layout,
386     Output_section* output_section,
387     uint64_t,
388     uint64_t* dot_value,
389     Output_section** dot_section,
390     std::string* fill,
391     Input_section_list*)
392 {
393   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, *dot_value,
394                                                 *dot_section, dot_section);
395   if (next_dot < *dot_value)
396     gold_error(_("dot may not move backward"));
397   if (next_dot > *dot_value && output_section != NULL)
398     {
399       section_size_type length = convert_to_section_size_type(next_dot
400                                                               - *dot_value);
401       Output_section_data* posd;
402       if (fill->empty())
403         posd = new Output_data_fixed_space(length, 0);
404       else
405         {
406           std::string this_fill = this->get_fill_string(fill, length);
407           posd = new Output_data_const(this_fill, 0);
408         }
409       output_section->add_output_section_data(posd);
410     }
411   *dot_value = next_dot;
412 }
413
414 // An assertion in an output section.
415
416 class Output_section_element_assertion : public Output_section_element
417 {
418  public:
419   Output_section_element_assertion(Expression* check, const char* message,
420                                    size_t messagelen)
421     : assertion_(check, message, messagelen)
422   { }
423
424   void
425   print(FILE* f) const
426   {
427     fprintf(f, "    ");
428     this->assertion_.print(f);
429   }
430
431  private:
432   Script_assertion assertion_;
433 };
434
435 // We use a special instance of Output_section_data to handle BYTE,
436 // SHORT, etc.  This permits forward references to symbols in the
437 // expressions.
438
439 class Output_data_expression : public Output_section_data
440 {
441  public:
442   Output_data_expression(int size, bool is_signed, Expression* val,
443                          const Symbol_table* symtab, const Layout* layout,
444                          uint64_t dot_value, Output_section* dot_section)
445     : Output_section_data(size, 0),
446       is_signed_(is_signed), val_(val), symtab_(symtab),
447       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
448   { }
449
450  protected:
451   // Write the data to the output file.
452   void
453   do_write(Output_file*);
454
455   // Write the data to a buffer.
456   void
457   do_write_to_buffer(unsigned char*);
458
459  private:
460   template<bool big_endian>
461   void
462   endian_write_to_buffer(uint64_t, unsigned char*);
463
464   bool is_signed_;
465   Expression* val_;
466   const Symbol_table* symtab_;
467   const Layout* layout_;
468   uint64_t dot_value_;
469   Output_section* dot_section_;
470 };
471
472 // Write the data element to the output file.
473
474 void
475 Output_data_expression::do_write(Output_file* of)
476 {
477   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
478   this->write_to_buffer(view);
479   of->write_output_view(this->offset(), this->data_size(), view);
480 }
481
482 // Write the data element to a buffer.
483
484 void
485 Output_data_expression::do_write_to_buffer(unsigned char* buf)
486 {
487   Output_section* dummy;
488   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
489                                            this->dot_value_,
490                                            this->dot_section_, &dummy);
491
492   if (parameters->is_big_endian())
493     this->endian_write_to_buffer<true>(val, buf);
494   else
495     this->endian_write_to_buffer<false>(val, buf);
496 }
497
498 template<bool big_endian>
499 void
500 Output_data_expression::endian_write_to_buffer(uint64_t val,
501                                                unsigned char* buf)
502 {
503   switch (this->data_size())
504     {
505     case 1:
506       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
507       break;
508     case 2:
509       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
510       break;
511     case 4:
512       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
513       break;
514     case 8:
515       if (parameters->get_size() == 32)
516         {
517           val &= 0xffffffff;
518           if (this->is_signed_ && (val & 0x80000000) != 0)
519             val |= 0xffffffff00000000LL;
520         }
521       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
522       break;
523     default:
524       gold_unreachable();
525     }
526 }
527
528 // A data item in an output section.
529
530 class Output_section_element_data : public Output_section_element
531 {
532  public:
533   Output_section_element_data(int size, bool is_signed, Expression* val)
534     : size_(size), is_signed_(is_signed), val_(val)
535   { }
536
537   // Finalize symbols--we just need to update dot.
538   void
539   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
540                    Output_section**)
541   { *dot_value += this->size_; }
542
543   // Store the value in the section.
544   void
545   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
546                         uint64_t* dot_value, Output_section**, std::string*,
547                         Input_section_list*);
548
549   // Print for debugging.
550   void
551   print(FILE*) const;
552
553  private:
554   // The size in bytes.
555   int size_;
556   // Whether the value is signed.
557   bool is_signed_;
558   // The value.
559   Expression* val_;
560 };
561
562 // Store the value in the section.
563
564 void
565 Output_section_element_data::set_section_addresses(
566     Symbol_table* symtab,
567     Layout* layout,
568     Output_section* os,
569     uint64_t,
570     uint64_t* dot_value,
571     Output_section** dot_section,
572     std::string*,
573     Input_section_list*)
574 {
575   gold_assert(os != NULL);
576   os->add_output_section_data(new Output_data_expression(this->size_,
577                                                          this->is_signed_,
578                                                          this->val_,
579                                                          symtab,
580                                                          layout,
581                                                          *dot_value,
582                                                          *dot_section));
583   *dot_value += this->size_;
584 }
585
586 // Print for debugging.
587
588 void
589 Output_section_element_data::print(FILE* f) const
590 {
591   const char* s;
592   switch (this->size_)
593     {
594     case 1:
595       s = "BYTE";
596       break;
597     case 2:
598       s = "SHORT";
599       break;
600     case 4:
601       s = "LONG";
602       break;
603     case 8:
604       if (this->is_signed_)
605         s = "SQUAD";
606       else
607         s = "QUAD";
608       break;
609     default:
610       gold_unreachable();
611     }
612   fprintf(f, "    %s(", s);
613   this->val_->print(f);
614   fprintf(f, ")\n");
615 }
616
617 // A fill value setting in an output section.
618
619 class Output_section_element_fill : public Output_section_element
620 {
621  public:
622   Output_section_element_fill(Expression* val)
623     : val_(val)
624   { }
625
626   // Update the fill value while setting section addresses.
627   void
628   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
629                         uint64_t, uint64_t* dot_value,
630                         Output_section** dot_section,
631                         std::string* fill, Input_section_list*)
632   {
633     Output_section* fill_section;
634     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout,
635                                                   *dot_value, *dot_section,
636                                                   &fill_section);
637     if (fill_section != NULL)
638       gold_warning(_("fill value is not absolute"));
639     // FIXME: The GNU linker supports fill values of arbitrary length.
640     unsigned char fill_buff[4];
641     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
642     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
643   }
644
645   // Print for debugging.
646   void
647   print(FILE* f) const
648   {
649     fprintf(f, "    FILL(");
650     this->val_->print(f);
651     fprintf(f, ")\n");
652   }
653
654  private:
655   // The new fill value.
656   Expression* val_;
657 };
658
659 // Return whether STRING contains a wildcard character.  This is used
660 // to speed up matching.
661
662 static inline bool
663 is_wildcard_string(const std::string& s)
664 {
665   return strpbrk(s.c_str(), "?*[") != NULL;
666 }
667
668 // An input section specification in an output section
669
670 class Output_section_element_input : public Output_section_element
671 {
672  public:
673   Output_section_element_input(const Input_section_spec* spec, bool keep);
674
675   // Finalize symbols--just update the value of the dot symbol.
676   void
677   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
678                    Output_section** dot_section)
679   {
680     *dot_value = this->final_dot_value_;
681     *dot_section = this->final_dot_section_;
682   }
683
684   // See whether we match FILE_NAME and SECTION_NAME as an input
685   // section.
686   bool
687   match_name(const char* file_name, const char* section_name) const;
688
689   // Set the section address.
690   void
691   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
692                         uint64_t subalign, uint64_t* dot_value,
693                         Output_section**, std::string* fill,
694                         Input_section_list*);
695
696   // Print for debugging.
697   void
698   print(FILE* f) const;
699
700  private:
701   // An input section pattern.
702   struct Input_section_pattern
703   {
704     std::string pattern;
705     bool pattern_is_wildcard;
706     Sort_wildcard sort;
707
708     Input_section_pattern(const char* patterna, size_t patternlena,
709                           Sort_wildcard sorta)
710       : pattern(patterna, patternlena),
711         pattern_is_wildcard(is_wildcard_string(this->pattern)),
712         sort(sorta)
713     { }
714   };
715
716   typedef std::vector<Input_section_pattern> Input_section_patterns;
717
718   // Filename_exclusions is a pair of filename pattern and a bool
719   // indicating whether the filename is a wildcard.
720   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
721
722   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
723   // indicates whether this is a wildcard pattern.
724   static inline bool
725   match(const char* string, const char* pattern, bool is_wildcard_pattern)
726   {
727     return (is_wildcard_pattern
728             ? fnmatch(pattern, string, 0) == 0
729             : strcmp(string, pattern) == 0);
730   }
731
732   // See if we match a file name.
733   bool
734   match_file_name(const char* file_name) const;
735
736   // The file name pattern.  If this is the empty string, we match all
737   // files.
738   std::string filename_pattern_;
739   // Whether the file name pattern is a wildcard.
740   bool filename_is_wildcard_;
741   // How the file names should be sorted.  This may only be
742   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
743   Sort_wildcard filename_sort_;
744   // The list of file names to exclude.
745   Filename_exclusions filename_exclusions_;
746   // The list of input section patterns.
747   Input_section_patterns input_section_patterns_;
748   // Whether to keep this section when garbage collecting.
749   bool keep_;
750   // The value of dot after including all matching sections.
751   uint64_t final_dot_value_;
752   // The section where dot is defined after including all matching
753   // sections.
754   Output_section* final_dot_section_;
755 };
756
757 // Construct Output_section_element_input.  The parser records strings
758 // as pointers into a copy of the script file, which will go away when
759 // parsing is complete.  We make sure they are in std::string objects.
760
761 Output_section_element_input::Output_section_element_input(
762     const Input_section_spec* spec,
763     bool keep)
764   : filename_pattern_(),
765     filename_is_wildcard_(false),
766     filename_sort_(spec->file.sort),
767     filename_exclusions_(),
768     input_section_patterns_(),
769     keep_(keep),
770     final_dot_value_(0),
771     final_dot_section_(NULL)
772 {
773   // The filename pattern "*" is common, and matches all files.  Turn
774   // it into the empty string.
775   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
776     this->filename_pattern_.assign(spec->file.name.value,
777                                    spec->file.name.length);
778   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
779
780   if (spec->input_sections.exclude != NULL)
781     {
782       for (String_list::const_iterator p =
783              spec->input_sections.exclude->begin();
784            p != spec->input_sections.exclude->end();
785            ++p)
786         {
787           bool is_wildcard = is_wildcard_string(*p);
788           this->filename_exclusions_.push_back(std::make_pair(*p,
789                                                               is_wildcard));
790         }
791     }
792
793   if (spec->input_sections.sections != NULL)
794     {
795       Input_section_patterns& isp(this->input_section_patterns_);
796       for (String_sort_list::const_iterator p =
797              spec->input_sections.sections->begin();
798            p != spec->input_sections.sections->end();
799            ++p)
800         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
801                                             p->sort));
802     }
803 }
804
805 // See whether we match FILE_NAME.
806
807 bool
808 Output_section_element_input::match_file_name(const char* file_name) const
809 {
810   if (!this->filename_pattern_.empty())
811     {
812       // If we were called with no filename, we refuse to match a
813       // pattern which requires a file name.
814       if (file_name == NULL)
815         return false;
816
817       if (!match(file_name, this->filename_pattern_.c_str(),
818                  this->filename_is_wildcard_))
819         return false;
820     }
821
822   if (file_name != NULL)
823     {
824       // Now we have to see whether FILE_NAME matches one of the
825       // exclusion patterns, if any.
826       for (Filename_exclusions::const_iterator p =
827              this->filename_exclusions_.begin();
828            p != this->filename_exclusions_.end();
829            ++p)
830         {
831           if (match(file_name, p->first.c_str(), p->second))
832             return false;
833         }
834     }
835
836   return true;
837 }
838
839 // See whether we match FILE_NAME and SECTION_NAME.
840
841 bool
842 Output_section_element_input::match_name(const char* file_name,
843                                          const char* section_name) const
844 {
845   if (!this->match_file_name(file_name))
846     return false;
847
848   // If there are no section name patterns, then we match.
849   if (this->input_section_patterns_.empty())
850     return true;
851
852   // See whether we match the section name patterns.
853   for (Input_section_patterns::const_iterator p =
854          this->input_section_patterns_.begin();
855        p != this->input_section_patterns_.end();
856        ++p)
857     {
858       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
859         return true;
860     }
861
862   // We didn't match any section names, so we didn't match.
863   return false;
864 }
865
866 // Information we use to sort the input sections.
867
868 struct Input_section_info
869 {
870   Relobj* relobj;
871   unsigned int shndx;
872   std::string section_name;
873   uint64_t size;
874   uint64_t addralign;
875 };
876
877 // A class to sort the input sections.
878
879 class Input_section_sorter
880 {
881  public:
882   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
883     : filename_sort_(filename_sort), section_sort_(section_sort)
884   { }
885
886   bool
887   operator()(const Input_section_info&, const Input_section_info&) const;
888
889  private:
890   Sort_wildcard filename_sort_;
891   Sort_wildcard section_sort_;
892 };
893
894 bool
895 Input_section_sorter::operator()(const Input_section_info& isi1,
896                                  const Input_section_info& isi2) const
897 {
898   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
899       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
900       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
901           && isi1.addralign == isi2.addralign))
902     {
903       if (isi1.section_name != isi2.section_name)
904         return isi1.section_name < isi2.section_name;
905     }
906   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
907       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
908       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
909     {
910       if (isi1.addralign != isi2.addralign)
911         return isi1.addralign < isi2.addralign;
912     }
913   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
914     {
915       if (isi1.relobj->name() != isi2.relobj->name())
916         return isi1.relobj->name() < isi2.relobj->name();
917     }
918
919   // Otherwise we leave them in the same order.
920   return false;
921 }
922
923 // Set the section address.  Look in INPUT_SECTIONS for sections which
924 // match this spec, sort them as specified, and add them to the output
925 // section.
926
927 void
928 Output_section_element_input::set_section_addresses(
929     Symbol_table*,
930     Layout*,
931     Output_section* output_section,
932     uint64_t subalign,
933     uint64_t* dot_value,
934     Output_section** dot_section,
935     std::string* fill,
936     Input_section_list* input_sections)
937 {
938   // We build a list of sections which match each
939   // Input_section_pattern.
940
941   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
942   size_t input_pattern_count = this->input_section_patterns_.size();
943   if (input_pattern_count == 0)
944     input_pattern_count = 1;
945   Matching_sections matching_sections(input_pattern_count);
946
947   // Look through the list of sections for this output section.  Add
948   // each one which matches to one of the elements of
949   // MATCHING_SECTIONS.
950
951   Input_section_list::iterator p = input_sections->begin();
952   while (p != input_sections->end())
953     {
954       // Calling section_name and section_addralign is not very
955       // efficient.
956       Input_section_info isi;
957       isi.relobj = p->first;
958       isi.shndx = p->second;
959
960       // Lock the object so that we can get information about the
961       // section.  This is OK since we know we are single-threaded
962       // here.
963       {
964         const Task* task = reinterpret_cast<const Task*>(-1);
965         Task_lock_obj<Object> tl(task, p->first);
966
967         isi.section_name = p->first->section_name(p->second);
968         isi.size = p->first->section_size(p->second);
969         isi.addralign = p->first->section_addralign(p->second);
970       }
971
972       if (!this->match_file_name(isi.relobj->name().c_str()))
973         ++p;
974       else if (this->input_section_patterns_.empty())
975         {
976           matching_sections[0].push_back(isi);
977           p = input_sections->erase(p);
978         }
979       else
980         {
981           size_t i;
982           for (i = 0; i < input_pattern_count; ++i)
983             {
984               const Input_section_pattern&
985                 isp(this->input_section_patterns_[i]);
986               if (match(isi.section_name.c_str(), isp.pattern.c_str(),
987                         isp.pattern_is_wildcard))
988                 break;
989             }
990
991           if (i >= this->input_section_patterns_.size())
992             ++p;
993           else
994             {
995               matching_sections[i].push_back(isi);
996               p = input_sections->erase(p);
997             }
998         }
999     }
1000
1001   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1002   // using a stable sort so that we get the default order when
1003   // sections are otherwise equal.  Add each input section to the
1004   // output section.
1005
1006   for (size_t i = 0; i < input_pattern_count; ++i)
1007     {
1008       if (matching_sections[i].empty())
1009         continue;
1010
1011       gold_assert(output_section != NULL);
1012
1013       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1014       if (isp.sort != SORT_WILDCARD_NONE
1015           || this->filename_sort_ != SORT_WILDCARD_NONE)
1016         std::stable_sort(matching_sections[i].begin(),
1017                          matching_sections[i].end(),
1018                          Input_section_sorter(this->filename_sort_,
1019                                               isp.sort));
1020
1021       for (std::vector<Input_section_info>::const_iterator p =
1022              matching_sections[i].begin();
1023            p != matching_sections[i].end();
1024            ++p)
1025         {
1026           uint64_t this_subalign = p->addralign;
1027           if (this_subalign < subalign)
1028             this_subalign = subalign;
1029
1030           uint64_t address = align_address(*dot_value, this_subalign);
1031
1032           if (address > *dot_value && !fill->empty())
1033             {
1034               section_size_type length =
1035                 convert_to_section_size_type(address - *dot_value);
1036               std::string this_fill = this->get_fill_string(fill, length);
1037               Output_section_data* posd = new Output_data_const(this_fill, 0);
1038               output_section->add_output_section_data(posd);
1039             }
1040
1041           output_section->add_input_section_for_script(p->relobj,
1042                                                        p->shndx,
1043                                                        p->size,
1044                                                        this_subalign);
1045
1046           *dot_value = address + p->size;
1047         }
1048     }
1049
1050   this->final_dot_value_ = *dot_value;
1051   this->final_dot_section_ = *dot_section;
1052 }
1053
1054 // Print for debugging.
1055
1056 void
1057 Output_section_element_input::print(FILE* f) const
1058 {
1059   fprintf(f, "    ");
1060
1061   if (this->keep_)
1062     fprintf(f, "KEEP(");
1063
1064   if (!this->filename_pattern_.empty())
1065     {
1066       bool need_close_paren = false;
1067       switch (this->filename_sort_)
1068         {
1069         case SORT_WILDCARD_NONE:
1070           break;
1071         case SORT_WILDCARD_BY_NAME:
1072           fprintf(f, "SORT_BY_NAME(");
1073           need_close_paren = true;
1074           break;
1075         default:
1076           gold_unreachable();
1077         }
1078
1079       fprintf(f, "%s", this->filename_pattern_.c_str());
1080
1081       if (need_close_paren)
1082         fprintf(f, ")");
1083     }
1084
1085   if (!this->input_section_patterns_.empty()
1086       || !this->filename_exclusions_.empty())
1087     {
1088       fprintf(f, "(");
1089
1090       bool need_space = false;
1091       if (!this->filename_exclusions_.empty())
1092         {
1093           fprintf(f, "EXCLUDE_FILE(");
1094           bool need_comma = false;
1095           for (Filename_exclusions::const_iterator p =
1096                  this->filename_exclusions_.begin();
1097                p != this->filename_exclusions_.end();
1098                ++p)
1099             {
1100               if (need_comma)
1101                 fprintf(f, ", ");
1102               fprintf(f, "%s", p->first.c_str());
1103               need_comma = true;
1104             }
1105           fprintf(f, ")");
1106           need_space = true;
1107         }
1108
1109       for (Input_section_patterns::const_iterator p =
1110              this->input_section_patterns_.begin();
1111            p != this->input_section_patterns_.end();
1112            ++p)
1113         {
1114           if (need_space)
1115             fprintf(f, " ");
1116
1117           int close_parens = 0;
1118           switch (p->sort)
1119             {
1120             case SORT_WILDCARD_NONE:
1121               break;
1122             case SORT_WILDCARD_BY_NAME:
1123               fprintf(f, "SORT_BY_NAME(");
1124               close_parens = 1;
1125               break;
1126             case SORT_WILDCARD_BY_ALIGNMENT:
1127               fprintf(f, "SORT_BY_ALIGNMENT(");
1128               close_parens = 1;
1129               break;
1130             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1131               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1132               close_parens = 2;
1133               break;
1134             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1135               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1136               close_parens = 2;
1137               break;
1138             default:
1139               gold_unreachable();
1140             }
1141
1142           fprintf(f, "%s", p->pattern.c_str());
1143
1144           for (int i = 0; i < close_parens; ++i)
1145             fprintf(f, ")");
1146
1147           need_space = true;
1148         }
1149
1150       fprintf(f, ")");
1151     }
1152
1153   if (this->keep_)
1154     fprintf(f, ")");
1155
1156   fprintf(f, "\n");
1157 }
1158
1159 // An output section.
1160
1161 class Output_section_definition : public Sections_element
1162 {
1163  public:
1164   typedef Output_section_element::Input_section_list Input_section_list;
1165
1166   Output_section_definition(const char* name, size_t namelen,
1167                             const Parser_output_section_header* header);
1168
1169   // Finish the output section with the information in the trailer.
1170   void
1171   finish(const Parser_output_section_trailer* trailer);
1172
1173   // Add a symbol to be defined.
1174   void
1175   add_symbol_assignment(const char* name, size_t length, Expression* value,
1176                         bool provide, bool hidden);
1177
1178   // Add an assignment to the special dot symbol.
1179   void
1180   add_dot_assignment(Expression* value);
1181
1182   // Add an assertion.
1183   void
1184   add_assertion(Expression* check, const char* message, size_t messagelen);
1185
1186   // Add a data item to the current output section.
1187   void
1188   add_data(int size, bool is_signed, Expression* val);
1189
1190   // Add a setting for the fill value.
1191   void
1192   add_fill(Expression* val);
1193
1194   // Add an input section specification.
1195   void
1196   add_input_section(const Input_section_spec* spec, bool keep);
1197
1198   // Add any symbols being defined to the symbol table.
1199   void
1200   add_symbols_to_table(Symbol_table* symtab);
1201
1202   // Finalize symbols and check assertions.
1203   void
1204   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1205
1206   // Return the output section name to use for an input file name and
1207   // section name.
1208   const char*
1209   output_section_name(const char* file_name, const char* section_name,
1210                       Output_section***);
1211
1212   // Return whether to place an orphan section after this one.
1213   bool
1214   place_orphan_here(const Output_section *os, bool* exact) const;
1215
1216   // Set the section address.
1217   void
1218   set_section_addresses(Symbol_table* symtab, Layout* layout,
1219                         uint64_t* dot_value, uint64_t* load_address);
1220
1221   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1222   // this section is constrained, and the input sections do not match,
1223   // return the constraint, and set *POSD.
1224   Section_constraint
1225   check_constraint(Output_section_definition** posd);
1226
1227   // See if this is the alternate output section for a constrained
1228   // output section.  If it is, transfer the Output_section and return
1229   // true.  Otherwise return false.
1230   bool
1231   alternate_constraint(Output_section_definition*, Section_constraint);
1232
1233   // Get the list of segments to use for an allocated section when
1234   // using a PHDRS clause.  If this is an allocated section, return
1235   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
1236   // which it should be attached.  If the PHDRS were not specified,
1237   // don't change *PHDRS_LIST.
1238   Output_section*
1239   allocate_to_segment(String_list** phdrs_list);
1240
1241   // Print the contents to the FILE.  This is for debugging.
1242   void
1243   print(FILE*) const;
1244
1245  private:
1246   typedef std::vector<Output_section_element*> Output_section_elements;
1247
1248   // The output section name.
1249   std::string name_;
1250   // The address.  This may be NULL.
1251   Expression* address_;
1252   // The load address.  This may be NULL.
1253   Expression* load_address_;
1254   // The alignment.  This may be NULL.
1255   Expression* align_;
1256   // The input section alignment.  This may be NULL.
1257   Expression* subalign_;
1258   // The constraint, if any.
1259   Section_constraint constraint_;
1260   // The fill value.  This may be NULL.
1261   Expression* fill_;
1262   // The list of segments this section should go into.  This may be
1263   // NULL.
1264   String_list* phdrs_;
1265   // The list of elements defining the section.
1266   Output_section_elements elements_;
1267   // The Output_section created for this definition.  This will be
1268   // NULL if none was created.
1269   Output_section* output_section_;
1270 };
1271
1272 // Constructor.
1273
1274 Output_section_definition::Output_section_definition(
1275     const char* name,
1276     size_t namelen,
1277     const Parser_output_section_header* header)
1278   : name_(name, namelen),
1279     address_(header->address),
1280     load_address_(header->load_address),
1281     align_(header->align),
1282     subalign_(header->subalign),
1283     constraint_(header->constraint),
1284     fill_(NULL),
1285     phdrs_(NULL),
1286     elements_(),
1287     output_section_(NULL)
1288 {
1289 }
1290
1291 // Finish an output section.
1292
1293 void
1294 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1295 {
1296   this->fill_ = trailer->fill;
1297   this->phdrs_ = trailer->phdrs;
1298 }
1299
1300 // Add a symbol to be defined.
1301
1302 void
1303 Output_section_definition::add_symbol_assignment(const char* name,
1304                                                  size_t length,
1305                                                  Expression* value,
1306                                                  bool provide,
1307                                                  bool hidden)
1308 {
1309   Output_section_element* p = new Output_section_element_assignment(name,
1310                                                                     length,
1311                                                                     value,
1312                                                                     provide,
1313                                                                     hidden);
1314   this->elements_.push_back(p);
1315 }
1316
1317 // Add an assignment to the special dot symbol.
1318
1319 void
1320 Output_section_definition::add_dot_assignment(Expression* value)
1321 {
1322   Output_section_element* p = new Output_section_element_dot_assignment(value);
1323   this->elements_.push_back(p);
1324 }
1325
1326 // Add an assertion.
1327
1328 void
1329 Output_section_definition::add_assertion(Expression* check,
1330                                          const char* message,
1331                                          size_t messagelen)
1332 {
1333   Output_section_element* p = new Output_section_element_assertion(check,
1334                                                                    message,
1335                                                                    messagelen);
1336   this->elements_.push_back(p);
1337 }
1338
1339 // Add a data item to the current output section.
1340
1341 void
1342 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1343 {
1344   Output_section_element* p = new Output_section_element_data(size, is_signed,
1345                                                               val);
1346   this->elements_.push_back(p);
1347 }
1348
1349 // Add a setting for the fill value.
1350
1351 void
1352 Output_section_definition::add_fill(Expression* val)
1353 {
1354   Output_section_element* p = new Output_section_element_fill(val);
1355   this->elements_.push_back(p);
1356 }
1357
1358 // Add an input section specification.
1359
1360 void
1361 Output_section_definition::add_input_section(const Input_section_spec* spec,
1362                                              bool keep)
1363 {
1364   Output_section_element* p = new Output_section_element_input(spec, keep);
1365   this->elements_.push_back(p);
1366 }
1367
1368 // Add any symbols being defined to the symbol table.
1369
1370 void
1371 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1372 {
1373   for (Output_section_elements::iterator p = this->elements_.begin();
1374        p != this->elements_.end();
1375        ++p)
1376     (*p)->add_symbols_to_table(symtab);
1377 }
1378
1379 // Finalize symbols and check assertions.
1380
1381 void
1382 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1383                                             const Layout* layout,
1384                                             uint64_t* dot_value)
1385 {
1386   if (this->output_section_ != NULL)
1387     *dot_value = this->output_section_->address();
1388   else
1389     {
1390       uint64_t address = *dot_value;
1391       if (this->address_ != NULL)
1392         {
1393           Output_section* dummy;
1394           address = this->address_->eval_with_dot(symtab, layout,
1395                                                   *dot_value, NULL,
1396                                                   &dummy);
1397         }
1398       if (this->align_ != NULL)
1399         {
1400           Output_section* dummy;
1401           uint64_t align = this->align_->eval_with_dot(symtab, layout,
1402                                                        *dot_value,
1403                                                        NULL,
1404                                                        &dummy);
1405           address = align_address(address, align);
1406         }
1407       *dot_value = address;
1408     }
1409
1410   Output_section* dot_section = this->output_section_;
1411   for (Output_section_elements::iterator p = this->elements_.begin();
1412        p != this->elements_.end();
1413        ++p)
1414     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1415 }
1416
1417 // Return the output section name to use for an input section name.
1418
1419 const char*
1420 Output_section_definition::output_section_name(const char* file_name,
1421                                                const char* section_name,
1422                                                Output_section*** slot)
1423 {
1424   // Ask each element whether it matches NAME.
1425   for (Output_section_elements::const_iterator p = this->elements_.begin();
1426        p != this->elements_.end();
1427        ++p)
1428     {
1429       if ((*p)->match_name(file_name, section_name))
1430         {
1431           // We found a match for NAME, which means that it should go
1432           // into this output section.
1433           *slot = &this->output_section_;
1434           return this->name_.c_str();
1435         }
1436     }
1437
1438   // We don't know about this section name.
1439   return NULL;
1440 }
1441
1442 // Return whether to place an orphan output section after this
1443 // section.
1444
1445 bool
1446 Output_section_definition::place_orphan_here(const Output_section *os,
1447                                              bool* exact) const
1448 {
1449   // Check for the simple case first.
1450   if (this->output_section_ != NULL
1451       && this->output_section_->type() == os->type()
1452       && this->output_section_->flags() == os->flags())
1453     {
1454       *exact = true;
1455       return true;
1456     }
1457
1458   // Otherwise use some heuristics.
1459
1460   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1461     return false;
1462
1463   if (os->type() == elfcpp::SHT_NOBITS)
1464     {
1465       if (this->name_ == ".bss")
1466         {
1467           *exact = true;
1468           return true;
1469         }
1470       if (this->output_section_ != NULL
1471           && this->output_section_->type() == elfcpp::SHT_NOBITS)
1472         return true;
1473     }
1474   else if (os->type() == elfcpp::SHT_NOTE)
1475     {
1476       if (this->output_section_ != NULL
1477           && this->output_section_->type() == elfcpp::SHT_NOTE)
1478         {
1479           *exact = true;
1480           return true;
1481         }
1482       if (this->name_.compare(0, 5, ".note") == 0)
1483         {
1484           *exact = true;
1485           return true;
1486         }
1487       if (this->name_ == ".interp")
1488         return true;
1489       if (this->output_section_ != NULL
1490           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1491           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1492         return true;
1493     }
1494   else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1495     {
1496       if (this->name_.compare(0, 4, ".rel") == 0)
1497         {
1498           *exact = true;
1499           return true;
1500         }
1501       if (this->output_section_ != NULL
1502           && (this->output_section_->type() == elfcpp::SHT_REL
1503               || this->output_section_->type() == elfcpp::SHT_RELA))
1504         {
1505           *exact = true;
1506           return true;
1507         }
1508       if (this->output_section_ != NULL
1509           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1510           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1511         return true;
1512     }
1513   else if (os->type() == elfcpp::SHT_PROGBITS
1514            && (os->flags() & elfcpp::SHF_WRITE) != 0)
1515     {
1516       if (this->name_ == ".data")
1517         {
1518           *exact = true;
1519           return true;
1520         }
1521       if (this->output_section_ != NULL
1522           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1523           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1524         return true;
1525     }
1526   else if (os->type() == elfcpp::SHT_PROGBITS
1527            && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1528     {
1529       if (this->name_ == ".text")
1530         {
1531           *exact = true;
1532           return true;
1533         }
1534       if (this->output_section_ != NULL
1535           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1536           && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1537         return true;
1538     }
1539   else if (os->type() == elfcpp::SHT_PROGBITS
1540            || (os->type() != elfcpp::SHT_PROGBITS
1541                && (os->flags() & elfcpp::SHF_WRITE) == 0))
1542     {
1543       if (this->name_ == ".rodata")
1544         {
1545           *exact = true;
1546           return true;
1547         }
1548       if (this->output_section_ != NULL
1549           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1550           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1551         return true;
1552     }
1553
1554   return false;
1555 }
1556
1557 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1558 // be NULL if no input sections were mapped to this output section.
1559 // We still have to adjust dot and process symbol assignments.
1560
1561 void
1562 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1563                                                  Layout* layout,
1564                                                  uint64_t* dot_value,
1565                                                  uint64_t* load_address)
1566 {
1567   uint64_t address;
1568   if (this->address_ == NULL)
1569     address = *dot_value;
1570   else
1571     {
1572       Output_section* dummy;
1573       address = this->address_->eval_with_dot(symtab, layout, *dot_value,
1574                                               NULL, &dummy);
1575     }
1576
1577   uint64_t align;
1578   if (this->align_ == NULL)
1579     {
1580       if (this->output_section_ == NULL)
1581         align = 0;
1582       else
1583         align = this->output_section_->addralign();
1584     }
1585   else
1586     {
1587       Output_section* align_section;
1588       align = this->align_->eval_with_dot(symtab, layout, *dot_value,
1589                                           NULL, &align_section);
1590       if (align_section != NULL)
1591         gold_warning(_("alignment of section %s is not absolute"),
1592                      this->name_.c_str());
1593       if (this->output_section_ != NULL)
1594         this->output_section_->set_addralign(align);
1595     }
1596
1597   address = align_address(address, align);
1598
1599   uint64_t start_address = address;
1600
1601   *dot_value = address;
1602
1603   // The address of non-SHF_ALLOC sections is forced to zero,
1604   // regardless of what the linker script wants.
1605   if (this->output_section_ != NULL
1606       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1607     this->output_section_->set_address(address);
1608
1609   if (this->load_address_ != NULL && this->output_section_ != NULL)
1610     {
1611       Output_section* dummy;
1612       uint64_t load_address =
1613         this->load_address_->eval_with_dot(symtab, layout, *dot_value,
1614                                            this->output_section_, &dummy);
1615       this->output_section_->set_load_address(load_address);
1616     }
1617
1618   uint64_t subalign;
1619   if (this->subalign_ == NULL)
1620     subalign = 0;
1621   else
1622     {
1623       Output_section* subalign_section;
1624       subalign = this->subalign_->eval_with_dot(symtab, layout, *dot_value,
1625                                                 NULL, &subalign_section);
1626       if (subalign_section != NULL)
1627         gold_warning(_("subalign of section %s is not absolute"),
1628                      this->name_.c_str());
1629     }
1630
1631   std::string fill;
1632   if (this->fill_ != NULL)
1633     {
1634       // FIXME: The GNU linker supports fill values of arbitrary
1635       // length.
1636       Output_section* fill_section;
1637       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout,
1638                                                      *dot_value,
1639                                                      NULL,
1640                                                      &fill_section);
1641       if (fill_section != NULL)
1642         gold_warning(_("fill of section %s is not absolute"),
1643                      this->name_.c_str());
1644       unsigned char fill_buff[4];
1645       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1646       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1647     }
1648
1649   Input_section_list input_sections;
1650   if (this->output_section_ != NULL)
1651     {
1652       // Get the list of input sections attached to this output
1653       // section.  This will leave the output section with only
1654       // Output_section_data entries.
1655       address += this->output_section_->get_input_sections(address,
1656                                                            fill,
1657                                                            &input_sections);
1658       *dot_value = address;
1659     }
1660
1661   Output_section* dot_section = this->output_section_;
1662   for (Output_section_elements::iterator p = this->elements_.begin();
1663        p != this->elements_.end();
1664        ++p)
1665     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1666                                 subalign, dot_value, &dot_section, &fill,
1667                                 &input_sections);
1668
1669   gold_assert(input_sections.empty());
1670
1671   if (this->load_address_ == NULL || this->output_section_ == NULL)
1672     *load_address = *dot_value;
1673   else
1674     *load_address = (this->output_section_->load_address()
1675                      + (*dot_value - start_address));
1676 }
1677
1678 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1679 // this section is constrained, and the input sections do not match,
1680 // return the constraint, and set *POSD.
1681
1682 Section_constraint
1683 Output_section_definition::check_constraint(Output_section_definition** posd)
1684 {
1685   switch (this->constraint_)
1686     {
1687     case CONSTRAINT_NONE:
1688       return CONSTRAINT_NONE;
1689
1690     case CONSTRAINT_ONLY_IF_RO:
1691       if (this->output_section_ != NULL
1692           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1693         {
1694           *posd = this;
1695           return CONSTRAINT_ONLY_IF_RO;
1696         }
1697       return CONSTRAINT_NONE;
1698
1699     case CONSTRAINT_ONLY_IF_RW:
1700       if (this->output_section_ != NULL
1701           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1702         {
1703           *posd = this;
1704           return CONSTRAINT_ONLY_IF_RW;
1705         }
1706       return CONSTRAINT_NONE;
1707
1708     case CONSTRAINT_SPECIAL:
1709       if (this->output_section_ != NULL)
1710         gold_error(_("SPECIAL constraints are not implemented"));
1711       return CONSTRAINT_NONE;
1712
1713     default:
1714       gold_unreachable();
1715     }
1716 }
1717
1718 // See if this is the alternate output section for a constrained
1719 // output section.  If it is, transfer the Output_section and return
1720 // true.  Otherwise return false.
1721
1722 bool
1723 Output_section_definition::alternate_constraint(
1724     Output_section_definition* posd,
1725     Section_constraint constraint)
1726 {
1727   if (this->name_ != posd->name_)
1728     return false;
1729
1730   switch (constraint)
1731     {
1732     case CONSTRAINT_ONLY_IF_RO:
1733       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1734         return false;
1735       break;
1736
1737     case CONSTRAINT_ONLY_IF_RW:
1738       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1739         return false;
1740       break;
1741
1742     default:
1743       gold_unreachable();
1744     }
1745
1746   // We have found the alternate constraint.  We just need to move
1747   // over the Output_section.  When constraints are used properly,
1748   // THIS should not have an output_section pointer, as all the input
1749   // sections should have matched the other definition.
1750
1751   if (this->output_section_ != NULL)
1752     gold_error(_("mismatched definition for constrained sections"));
1753
1754   this->output_section_ = posd->output_section_;
1755   posd->output_section_ = NULL;
1756
1757   return true;
1758 }
1759
1760 // Get the list of segments to use for an allocated section when using
1761 // a PHDRS clause.  If this is an allocated section, return the
1762 // Output_section, and set *PHDRS_LIST to the list of PHDRS to which
1763 // it should be attached.  If the PHDRS were not specified, don't
1764 // change *PHDRS_LIST.
1765
1766 Output_section*
1767 Output_section_definition::allocate_to_segment(String_list** phdrs_list)
1768 {
1769   if (this->output_section_ == NULL)
1770     return NULL;
1771   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1772     return NULL;
1773   if (this->phdrs_ != NULL)
1774     *phdrs_list = this->phdrs_;
1775   return this->output_section_;
1776 }
1777
1778 // Print for debugging.
1779
1780 void
1781 Output_section_definition::print(FILE* f) const
1782 {
1783   fprintf(f, "  %s ", this->name_.c_str());
1784
1785   if (this->address_ != NULL)
1786     {
1787       this->address_->print(f);
1788       fprintf(f, " ");
1789     }
1790
1791   fprintf(f, ": ");
1792
1793   if (this->load_address_ != NULL)
1794     {
1795       fprintf(f, "AT(");
1796       this->load_address_->print(f);
1797       fprintf(f, ") ");
1798     }
1799
1800   if (this->align_ != NULL)
1801     {
1802       fprintf(f, "ALIGN(");
1803       this->align_->print(f);
1804       fprintf(f, ") ");
1805     }
1806
1807   if (this->subalign_ != NULL)
1808     {
1809       fprintf(f, "SUBALIGN(");
1810       this->subalign_->print(f);
1811       fprintf(f, ") ");
1812     }
1813
1814   fprintf(f, "{\n");
1815
1816   for (Output_section_elements::const_iterator p = this->elements_.begin();
1817        p != this->elements_.end();
1818        ++p)
1819     (*p)->print(f);
1820
1821   fprintf(f, "  }");
1822
1823   if (this->fill_ != NULL)
1824     {
1825       fprintf(f, " = ");
1826       this->fill_->print(f);
1827     }
1828
1829   if (this->phdrs_ != NULL)
1830     {
1831       for (String_list::const_iterator p = this->phdrs_->begin();
1832            p != this->phdrs_->end();
1833            ++p)
1834         fprintf(f, " :%s", p->c_str());
1835     }
1836
1837   fprintf(f, "\n");
1838 }
1839
1840 // An output section created to hold orphaned input sections.  These
1841 // do not actually appear in linker scripts.  However, for convenience
1842 // when setting the output section addresses, we put a marker to these
1843 // sections in the appropriate place in the list of SECTIONS elements.
1844
1845 class Orphan_output_section : public Sections_element
1846 {
1847  public:
1848   Orphan_output_section(Output_section* os)
1849     : os_(os)
1850   { }
1851
1852   // Return whether to place an orphan section after this one.
1853   bool
1854   place_orphan_here(const Output_section *os, bool* exact) const;
1855
1856   // Set section addresses.
1857   void
1858   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
1859
1860   // Get the list of segments to use for an allocated section when
1861   // using a PHDRS clause.  If this is an allocated section, return
1862   // the Output_section.
1863   Output_section*
1864   allocate_to_segment(String_list**);
1865
1866   // Print for debugging.
1867   void
1868   print(FILE* f) const
1869   {
1870     fprintf(f, "  marker for orphaned output section %s\n",
1871             this->os_->name());
1872   }
1873
1874  private:
1875   Output_section* os_;
1876 };
1877
1878 // Whether to place another orphan section after this one.
1879
1880 bool
1881 Orphan_output_section::place_orphan_here(const Output_section* os,
1882                                          bool* exact) const
1883 {
1884   if (this->os_->type() == os->type()
1885       && this->os_->flags() == os->flags())
1886     {
1887       *exact = true;
1888       return true;
1889     }
1890   return false;
1891 }
1892
1893 // Set section addresses.
1894
1895 void
1896 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
1897                                              uint64_t* dot_value,
1898                                              uint64_t* load_address)
1899 {
1900   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
1901
1902   bool have_load_address = *load_address != *dot_value;
1903
1904   uint64_t address = *dot_value;
1905   address = align_address(address, this->os_->addralign());
1906
1907   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
1908     {
1909       this->os_->set_address(address);
1910       if (have_load_address)
1911         this->os_->set_load_address(align_address(*load_address,
1912                                                   this->os_->addralign()));
1913     }
1914
1915   Input_section_list input_sections;
1916   address += this->os_->get_input_sections(address, "", &input_sections);
1917
1918   for (Input_section_list::iterator p = input_sections.begin();
1919        p != input_sections.end();
1920        ++p)
1921     {
1922       uint64_t addralign;
1923       uint64_t size;
1924
1925       // We know what are single-threaded, so it is OK to lock the
1926       // object.
1927       {
1928         const Task* task = reinterpret_cast<const Task*>(-1);
1929         Task_lock_obj<Object> tl(task, p->first);
1930         addralign = p->first->section_addralign(p->second);
1931         size = p->first->section_size(p->second);
1932       }
1933
1934       address = align_address(address, addralign);
1935       this->os_->add_input_section_for_script(p->first, p->second, size,
1936                                               addralign);
1937       address += size;
1938     }
1939
1940   if (!have_load_address)
1941     *load_address = address;
1942   else
1943     *load_address += address - *dot_value;
1944
1945   *dot_value = address;
1946 }
1947
1948 // Get the list of segments to use for an allocated section when using
1949 // a PHDRS clause.  If this is an allocated section, return the
1950 // Output_section.  We don't change the list of segments.
1951
1952 Output_section*
1953 Orphan_output_section::allocate_to_segment(String_list**)
1954 {
1955   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
1956     return NULL;
1957   return this->os_;
1958 }
1959
1960 // Class Phdrs_element.  A program header from a PHDRS clause.
1961
1962 class Phdrs_element
1963 {
1964  public:
1965   Phdrs_element(const char* name, size_t namelen, unsigned int type,
1966                 bool includes_filehdr, bool includes_phdrs,
1967                 bool is_flags_valid, unsigned int flags,
1968                 Expression* load_address)
1969     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
1970       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
1971       flags_(flags), load_address_(load_address), load_address_value_(0),
1972       segment_(NULL)
1973   { }
1974
1975   // Return the name of this segment.
1976   const std::string&
1977   name() const
1978   { return this->name_; }
1979
1980   // Return the type of the segment.
1981   unsigned int
1982   type() const
1983   { return this->type_; }
1984
1985   // Whether to include the file header.
1986   bool
1987   includes_filehdr() const
1988   { return this->includes_filehdr_; }
1989
1990   // Whether to include the program headers.
1991   bool
1992   includes_phdrs() const
1993   { return this->includes_phdrs_; }
1994
1995   // Return whether there is a load address.
1996   bool
1997   has_load_address() const
1998   { return this->load_address_ != NULL; }
1999
2000   // Evaluate the load address expression if there is one.
2001   void
2002   eval_load_address(Symbol_table* symtab, Layout* layout)
2003   {
2004     if (this->load_address_ != NULL)
2005       this->load_address_value_ = this->load_address_->eval(symtab, layout);
2006   }
2007
2008   // Return the load address.
2009   uint64_t
2010   load_address() const
2011   {
2012     gold_assert(this->load_address_ != NULL);
2013     return this->load_address_value_;
2014   }
2015
2016   // Create the segment.
2017   Output_segment*
2018   create_segment(Layout* layout)
2019   {
2020     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2021     return this->segment_;
2022   }
2023
2024   // Return the segment.
2025   Output_segment*
2026   segment()
2027   { return this->segment_; }
2028
2029   // Set the segment flags if appropriate.
2030   void
2031   set_flags_if_valid()
2032   {
2033     if (this->is_flags_valid_)
2034       this->segment_->set_flags(this->flags_);
2035   }
2036
2037   // Print for debugging.
2038   void
2039   print(FILE*) const;
2040
2041  private:
2042   // The name used in the script.
2043   std::string name_;
2044   // The type of the segment (PT_LOAD, etc.).
2045   unsigned int type_;
2046   // Whether this segment includes the file header.
2047   bool includes_filehdr_;
2048   // Whether this segment includes the section headers.
2049   bool includes_phdrs_;
2050   // Whether the flags were explicitly specified.
2051   bool is_flags_valid_;
2052   // The flags for this segment (PF_R, etc.) if specified.
2053   unsigned int flags_;
2054   // The expression for the load address for this segment.  This may
2055   // be NULL.
2056   Expression* load_address_;
2057   // The actual load address from evaluating the expression.
2058   uint64_t load_address_value_;
2059   // The segment itself.
2060   Output_segment* segment_;
2061 };
2062
2063 // Print for debugging.
2064
2065 void
2066 Phdrs_element::print(FILE* f) const
2067 {
2068   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2069   if (this->includes_filehdr_)
2070     fprintf(f, " FILEHDR");
2071   if (this->includes_phdrs_)
2072     fprintf(f, " PHDRS");
2073   if (this->is_flags_valid_)
2074     fprintf(f, " FLAGS(%u)", this->flags_);
2075   if (this->load_address_ != NULL)
2076     {
2077       fprintf(f, " AT(");
2078       this->load_address_->print(f);
2079       fprintf(f, ")");
2080     }
2081   fprintf(f, ";\n");
2082 }
2083
2084 // Class Script_sections.
2085
2086 Script_sections::Script_sections()
2087   : saw_sections_clause_(false),
2088     in_sections_clause_(false),
2089     sections_elements_(NULL),
2090     output_section_(NULL),
2091     phdrs_elements_(NULL)
2092 {
2093 }
2094
2095 // Start a SECTIONS clause.
2096
2097 void
2098 Script_sections::start_sections()
2099 {
2100   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2101   this->saw_sections_clause_ = true;
2102   this->in_sections_clause_ = true;
2103   if (this->sections_elements_ == NULL)
2104     this->sections_elements_ = new Sections_elements;
2105 }
2106
2107 // Finish a SECTIONS clause.
2108
2109 void
2110 Script_sections::finish_sections()
2111 {
2112   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2113   this->in_sections_clause_ = false;
2114 }
2115
2116 // Add a symbol to be defined.
2117
2118 void
2119 Script_sections::add_symbol_assignment(const char* name, size_t length,
2120                                        Expression* val, bool provide,
2121                                        bool hidden)
2122 {
2123   if (this->output_section_ != NULL)
2124     this->output_section_->add_symbol_assignment(name, length, val,
2125                                                  provide, hidden);
2126   else
2127     {
2128       Sections_element* p = new Sections_element_assignment(name, length,
2129                                                             val, provide,
2130                                                             hidden);
2131       this->sections_elements_->push_back(p);
2132     }
2133 }
2134
2135 // Add an assignment to the special dot symbol.
2136
2137 void
2138 Script_sections::add_dot_assignment(Expression* val)
2139 {
2140   if (this->output_section_ != NULL)
2141     this->output_section_->add_dot_assignment(val);
2142   else
2143     {
2144       Sections_element* p = new Sections_element_dot_assignment(val);
2145       this->sections_elements_->push_back(p);
2146     }
2147 }
2148
2149 // Add an assertion.
2150
2151 void
2152 Script_sections::add_assertion(Expression* check, const char* message,
2153                                size_t messagelen)
2154 {
2155   if (this->output_section_ != NULL)
2156     this->output_section_->add_assertion(check, message, messagelen);
2157   else
2158     {
2159       Sections_element* p = new Sections_element_assertion(check, message,
2160                                                            messagelen);
2161       this->sections_elements_->push_back(p);
2162     }
2163 }
2164
2165 // Start processing entries for an output section.
2166
2167 void
2168 Script_sections::start_output_section(
2169     const char* name,
2170     size_t namelen,
2171     const Parser_output_section_header *header)
2172 {
2173   Output_section_definition* posd = new Output_section_definition(name,
2174                                                                   namelen,
2175                                                                   header);
2176   this->sections_elements_->push_back(posd);
2177   gold_assert(this->output_section_ == NULL);
2178   this->output_section_ = posd;
2179 }
2180
2181 // Stop processing entries for an output section.
2182
2183 void
2184 Script_sections::finish_output_section(
2185     const Parser_output_section_trailer* trailer)
2186 {
2187   gold_assert(this->output_section_ != NULL);
2188   this->output_section_->finish(trailer);
2189   this->output_section_ = NULL;
2190 }
2191
2192 // Add a data item to the current output section.
2193
2194 void
2195 Script_sections::add_data(int size, bool is_signed, Expression* val)
2196 {
2197   gold_assert(this->output_section_ != NULL);
2198   this->output_section_->add_data(size, is_signed, val);
2199 }
2200
2201 // Add a fill value setting to the current output section.
2202
2203 void
2204 Script_sections::add_fill(Expression* val)
2205 {
2206   gold_assert(this->output_section_ != NULL);
2207   this->output_section_->add_fill(val);
2208 }
2209
2210 // Add an input section specification to the current output section.
2211
2212 void
2213 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2214 {
2215   gold_assert(this->output_section_ != NULL);
2216   this->output_section_->add_input_section(spec, keep);
2217 }
2218
2219 // Add any symbols we are defining to the symbol table.
2220
2221 void
2222 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2223 {
2224   if (!this->saw_sections_clause_)
2225     return;
2226   for (Sections_elements::iterator p = this->sections_elements_->begin();
2227        p != this->sections_elements_->end();
2228        ++p)
2229     (*p)->add_symbols_to_table(symtab);
2230 }
2231
2232 // Finalize symbols and check assertions.
2233
2234 void
2235 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2236 {
2237   if (!this->saw_sections_clause_)
2238     return;
2239   uint64_t dot_value = 0;
2240   for (Sections_elements::iterator p = this->sections_elements_->begin();
2241        p != this->sections_elements_->end();
2242        ++p)
2243     (*p)->finalize_symbols(symtab, layout, &dot_value);
2244 }
2245
2246 // Return the name of the output section to use for an input file name
2247 // and section name.
2248
2249 const char*
2250 Script_sections::output_section_name(const char* file_name,
2251                                      const char* section_name,
2252                                      Output_section*** output_section_slot)
2253 {
2254   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2255        p != this->sections_elements_->end();
2256        ++p)
2257     {
2258       const char* ret = (*p)->output_section_name(file_name, section_name,
2259                                                   output_section_slot);
2260
2261       if (ret != NULL)
2262         {
2263           // The special name /DISCARD/ means that the input section
2264           // should be discarded.
2265           if (strcmp(ret, "/DISCARD/") == 0)
2266             {
2267               *output_section_slot = NULL;
2268               return NULL;
2269             }
2270           return ret;
2271         }
2272     }
2273
2274   // If we couldn't find a mapping for the name, the output section
2275   // gets the name of the input section.
2276
2277   *output_section_slot = NULL;
2278
2279   return section_name;
2280 }
2281
2282 // Place a marker for an orphan output section into the SECTIONS
2283 // clause.
2284
2285 void
2286 Script_sections::place_orphan(Output_section* os)
2287 {
2288   // Look for an output section definition which matches the output
2289   // section.  Put a marker after that section.
2290   Sections_elements::iterator place = this->sections_elements_->end();
2291   for (Sections_elements::iterator p = this->sections_elements_->begin();
2292        p != this->sections_elements_->end();
2293        ++p)
2294     {
2295       bool exact;
2296       if ((*p)->place_orphan_here(os, &exact))
2297         {
2298           place = p;
2299           if (exact)
2300             break;
2301         }
2302     }
2303
2304   // The insert function puts the new element before the iterator.
2305   if (place != this->sections_elements_->end())
2306     ++place;
2307
2308   this->sections_elements_->insert(place, new Orphan_output_section(os));
2309 }
2310
2311 // Set the addresses of all the output sections.  Walk through all the
2312 // elements, tracking the dot symbol.  Apply assignments which set
2313 // absolute symbol values, in case they are used when setting dot.
2314 // Fill in data statement values.  As we find output sections, set the
2315 // address, set the address of all associated input sections, and
2316 // update dot.  Return the segment which should hold the file header
2317 // and segment headers, if any.
2318
2319 Output_segment*
2320 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2321 {
2322   gold_assert(this->saw_sections_clause_);
2323
2324   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2325   // for our representation.
2326   for (Sections_elements::iterator p = this->sections_elements_->begin();
2327        p != this->sections_elements_->end();
2328        ++p)
2329     {
2330       Output_section_definition* posd;
2331       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2332       if (failed_constraint != CONSTRAINT_NONE)
2333         {
2334           Sections_elements::iterator q;
2335           for (q = this->sections_elements_->begin();
2336                q != this->sections_elements_->end();
2337                ++q)
2338             {
2339               if (q != p)
2340                 {
2341                   if ((*q)->alternate_constraint(posd, failed_constraint))
2342                     break;
2343                 }
2344             }
2345
2346           if (q == this->sections_elements_->end())
2347             gold_error(_("no matching section constraint"));
2348         }
2349     }
2350
2351   // For a relocatable link, we implicitly set dot to zero.
2352   uint64_t dot_value = 0;
2353   uint64_t load_address = 0;
2354   for (Sections_elements::iterator p = this->sections_elements_->begin();
2355        p != this->sections_elements_->end();
2356        ++p)
2357     (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2358
2359   if (this->phdrs_elements_ != NULL)
2360     {
2361       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2362            p != this->phdrs_elements_->end();
2363            ++p)
2364         (*p)->eval_load_address(symtab, layout);
2365     }
2366
2367   return this->create_segments(layout);
2368 }
2369
2370 // Sort the sections in order to put them into segments.
2371
2372 class Sort_output_sections
2373 {
2374  public:
2375   bool
2376   operator()(const Output_section* os1, const Output_section* os2) const;
2377 };
2378
2379 bool
2380 Sort_output_sections::operator()(const Output_section* os1,
2381                                  const Output_section* os2) const
2382 {
2383   // Sort first by the load address.
2384   uint64_t lma1 = (os1->has_load_address()
2385                    ? os1->load_address()
2386                    : os1->address());
2387   uint64_t lma2 = (os2->has_load_address()
2388                    ? os2->load_address()
2389                    : os2->address());
2390   if (lma1 != lma2)
2391     return lma1 < lma2;
2392
2393   // Then sort by the virtual address.
2394   if (os1->address() != os2->address())
2395     return os1->address() < os2->address();
2396
2397   // Sort TLS sections to the end.
2398   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2399   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2400   if (tls1 != tls2)
2401     return tls2;
2402
2403   // Sort PROGBITS before NOBITS.
2404   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2405     return true;
2406   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2407     return false;
2408
2409   // Otherwise we don't care.
2410   return false;
2411 }
2412
2413 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2414 // We treat a section with the SHF_TLS flag set as taking up space
2415 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2416 // space for them in the file.
2417
2418 bool
2419 Script_sections::is_bss_section(const Output_section* os)
2420 {
2421   return (os->type() == elfcpp::SHT_NOBITS
2422           && (os->flags() & elfcpp::SHF_TLS) == 0);
2423 }
2424
2425 // Return the size taken by the file header and the program headers.
2426
2427 size_t
2428 Script_sections::total_header_size(Layout* layout) const
2429 {
2430   size_t segment_count = layout->segment_count();
2431   size_t file_header_size;
2432   size_t segment_headers_size;
2433   if (parameters->get_size() == 32)
2434     {
2435       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2436       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2437     }
2438   else if (parameters->get_size() == 64)
2439     {
2440       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2441       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2442     }
2443   else
2444     gold_unreachable();
2445
2446   return file_header_size + segment_headers_size;
2447 }
2448
2449 // Return the amount we have to subtract from the LMA to accomodate
2450 // headers of the given size.  The complication is that the file
2451 // header have to be at the start of a page, as otherwise it will not
2452 // be at the start of the file.
2453
2454 uint64_t
2455 Script_sections::header_size_adjustment(uint64_t lma,
2456                                         size_t sizeof_headers) const
2457 {
2458   const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2459   uint64_t hdr_lma = lma - sizeof_headers;
2460   hdr_lma &= ~(abi_pagesize - 1);
2461   return lma - hdr_lma;
2462 }
2463
2464 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2465 // the segment which should hold the file header and segment headers,
2466 // if any.
2467
2468 Output_segment*
2469 Script_sections::create_segments(Layout* layout)
2470 {
2471   gold_assert(this->saw_sections_clause_);
2472
2473   if (parameters->output_is_object())
2474     return NULL;
2475
2476   if (this->saw_phdrs_clause())
2477     return create_segments_from_phdrs_clause(layout);
2478
2479   Layout::Section_list sections;
2480   layout->get_allocated_sections(&sections);
2481
2482   // Sort the sections by address.
2483   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2484
2485   this->create_note_and_tls_segments(layout, &sections);
2486
2487   // Walk through the sections adding them to PT_LOAD segments.
2488   const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2489   Output_segment* first_seg = NULL;
2490   Output_segment* current_seg = NULL;
2491   bool is_current_seg_readonly = true;
2492   Layout::Section_list::iterator plast = sections.end();
2493   uint64_t last_vma = 0;
2494   uint64_t last_lma = 0;
2495   uint64_t last_size = 0;
2496   for (Layout::Section_list::iterator p = sections.begin();
2497        p != sections.end();
2498        ++p)
2499     {
2500       const uint64_t vma = (*p)->address();
2501       const uint64_t lma = ((*p)->has_load_address()
2502                             ? (*p)->load_address()
2503                             : vma);
2504       const uint64_t size = (*p)->current_data_size();
2505
2506       bool need_new_segment;
2507       if (current_seg == NULL)
2508         need_new_segment = true;
2509       else if (lma - vma != last_lma - last_vma)
2510         {
2511           // This section has a different LMA relationship than the
2512           // last one; we need a new segment.
2513           need_new_segment = true;
2514         }
2515       else if (align_address(last_lma + last_size, abi_pagesize)
2516                < align_address(lma, abi_pagesize))
2517         {
2518           // Putting this section in the segment would require
2519           // skipping a page.
2520           need_new_segment = true;
2521         }
2522       else if (is_bss_section(*plast) && !is_bss_section(*p))
2523         {
2524           // A non-BSS section can not follow a BSS section in the
2525           // same segment.
2526           need_new_segment = true;
2527         }
2528       else if (is_current_seg_readonly
2529                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2530         {
2531           // Don't put a writable section in the same segment as a
2532           // non-writable section.
2533           need_new_segment = true;
2534         }
2535       else
2536         {
2537           // Otherwise, reuse the existing segment.
2538           need_new_segment = false;
2539         }
2540
2541       elfcpp::Elf_Word seg_flags =
2542         Layout::section_flags_to_segment((*p)->flags());
2543
2544       if (need_new_segment)
2545         {
2546           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2547                                                     seg_flags);
2548           current_seg->set_addresses(vma, lma);
2549           if (first_seg == NULL)
2550             first_seg = current_seg;
2551           is_current_seg_readonly = true;
2552         }
2553
2554       current_seg->add_output_section(*p, seg_flags);
2555
2556       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2557         is_current_seg_readonly = false;
2558
2559       plast = p;
2560       last_vma = vma;
2561       last_lma = lma;
2562       last_size = size;
2563     }
2564
2565   // An ELF program should work even if the program headers are not in
2566   // a PT_LOAD segment.  However, it appears that the Linux kernel
2567   // does not set the AT_PHDR auxiliary entry in that case.  It sets
2568   // the load address to p_vaddr - p_offset of the first PT_LOAD
2569   // segment.  It then sets AT_PHDR to the load address plus the
2570   // offset to the program headers, e_phoff in the file header.  This
2571   // fails when the program headers appear in the file before the
2572   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
2573   // segment to hold the file header and the program headers.  This is
2574   // effectively what the GNU linker does, and it is slightly more
2575   // efficient in any case.  We try to use the first PT_LOAD segment
2576   // if we can, otherwise we make a new one.
2577
2578   size_t sizeof_headers = this->total_header_size(layout);
2579
2580   if (first_seg != NULL
2581       && (first_seg->paddr() & (abi_pagesize - 1)) >= sizeof_headers)
2582     {
2583       first_seg->set_addresses(first_seg->vaddr() - sizeof_headers,
2584                                first_seg->paddr() - sizeof_headers);
2585       return first_seg;
2586     }
2587
2588   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2589                                                          elfcpp::PF_R);
2590   if (first_seg == NULL)
2591     load_seg->set_addresses(0, 0);
2592   else
2593     {
2594       uint64_t vma = first_seg->vaddr();
2595       uint64_t lma = first_seg->paddr();
2596
2597       uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2598       if (lma >= subtract && vma >= subtract)
2599         load_seg->set_addresses(vma - subtract, lma - subtract);
2600       else
2601         {
2602           // We could handle this case by create the file header
2603           // outside of any PT_LOAD segment, and creating a new
2604           // PT_LOAD segment after the others to hold the segment
2605           // headers.
2606           gold_error(_("sections loaded on first page without room for "
2607                        "file and program headers are not supported"));
2608         }
2609     }
2610
2611   return load_seg;
2612 }
2613
2614 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2615 // segment if there are any SHT_TLS sections.
2616
2617 void
2618 Script_sections::create_note_and_tls_segments(
2619     Layout* layout,
2620     const Layout::Section_list* sections)
2621 {
2622   gold_assert(!this->saw_phdrs_clause());
2623
2624   bool saw_tls = false;
2625   for (Layout::Section_list::const_iterator p = sections->begin();
2626        p != sections->end();
2627        ++p)
2628     {
2629       if ((*p)->type() == elfcpp::SHT_NOTE)
2630         {
2631           elfcpp::Elf_Word seg_flags =
2632             Layout::section_flags_to_segment((*p)->flags());
2633           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2634                                                              seg_flags);
2635           oseg->add_output_section(*p, seg_flags);
2636
2637           // Incorporate any subsequent SHT_NOTE sections, in the
2638           // hopes that the script is sensible.
2639           Layout::Section_list::const_iterator pnext = p + 1;
2640           while (pnext != sections->end()
2641                  && (*pnext)->type() == elfcpp::SHT_NOTE)
2642             {
2643               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2644               oseg->add_output_section(*pnext, seg_flags);
2645               p = pnext;
2646               ++pnext;
2647             }
2648         }
2649
2650       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2651         {
2652           if (saw_tls)
2653             gold_error(_("TLS sections are not adjacent"));
2654
2655           elfcpp::Elf_Word seg_flags =
2656             Layout::section_flags_to_segment((*p)->flags());
2657           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2658                                                              seg_flags);
2659           oseg->add_output_section(*p, seg_flags);
2660
2661           Layout::Section_list::const_iterator pnext = p + 1;
2662           while (pnext != sections->end()
2663                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2664             {
2665               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2666               oseg->add_output_section(*pnext, seg_flags);
2667               p = pnext;
2668               ++pnext;
2669             }
2670
2671           saw_tls = true;
2672         }
2673     }
2674 }
2675
2676 // Add a program header.  The PHDRS clause is syntactically distinct
2677 // from the SECTIONS clause, but we implement it with the SECTIONS
2678 // support becauase PHDRS is useless if there is no SECTIONS clause.
2679
2680 void
2681 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2682                           bool includes_filehdr, bool includes_phdrs,
2683                           bool is_flags_valid, unsigned int flags,
2684                           Expression* load_address)
2685 {
2686   if (this->phdrs_elements_ == NULL)
2687     this->phdrs_elements_ = new Phdrs_elements();
2688   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2689                                                      includes_filehdr,
2690                                                      includes_phdrs,
2691                                                      is_flags_valid, flags,
2692                                                      load_address));
2693 }
2694
2695 // Return the number of segments we expect to create based on the
2696 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
2697
2698 size_t
2699 Script_sections::expected_segment_count(const Layout* layout) const
2700 {
2701   if (this->saw_phdrs_clause())
2702     return this->phdrs_elements_->size();
2703
2704   Layout::Section_list sections;
2705   layout->get_allocated_sections(&sections);
2706
2707   // We assume that we will need two PT_LOAD segments.
2708   size_t ret = 2;
2709
2710   bool saw_note = false;
2711   bool saw_tls = false;
2712   for (Layout::Section_list::const_iterator p = sections.begin();
2713        p != sections.end();
2714        ++p)
2715     {
2716       if ((*p)->type() == elfcpp::SHT_NOTE)
2717         {
2718           // Assume that all note sections will fit into a single
2719           // PT_NOTE segment.
2720           if (!saw_note)
2721             {
2722               ++ret;
2723               saw_note = true;
2724             }
2725         }
2726       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2727         {
2728           // There can only be one PT_TLS segment.
2729           if (!saw_tls)
2730             {
2731               ++ret;
2732               saw_tls = true;
2733             }
2734         }
2735     }
2736
2737   return ret;
2738 }
2739
2740 // Create the segments from a PHDRS clause.  Return the segment which
2741 // should hold the file header and program headers, if any.
2742
2743 Output_segment*
2744 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2745 {
2746   this->attach_sections_using_phdrs_clause(layout);
2747   return this->set_phdrs_clause_addresses(layout);
2748 }
2749
2750 // Create the segments from the PHDRS clause, and put the output
2751 // sections in them.
2752
2753 void
2754 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2755 {
2756   typedef std::map<std::string, Output_segment*> Name_to_segment;
2757   Name_to_segment name_to_segment;
2758   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2759        p != this->phdrs_elements_->end();
2760        ++p)
2761     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2762
2763   // Walk through the output sections and attach them to segments.
2764   // Output sections in the script which do not list segments are
2765   // attached to the same set of segments as the immediately preceding
2766   // output section.
2767   String_list* phdr_names = NULL;
2768   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2769        p != this->sections_elements_->end();
2770        ++p)
2771     {
2772       Output_section* os = (*p)->allocate_to_segment(&phdr_names);
2773       if (os == NULL)
2774         continue;
2775
2776       if (phdr_names == NULL)
2777         {
2778           gold_error(_("allocated section not in any segment"));
2779           continue;
2780         }
2781
2782       bool in_load_segment = false;
2783       for (String_list::const_iterator q = phdr_names->begin();
2784            q != phdr_names->end();
2785            ++q)
2786         {
2787           Name_to_segment::const_iterator r = name_to_segment.find(*q);
2788           if (r == name_to_segment.end())
2789             gold_error(_("no segment %s"), q->c_str());
2790           else
2791             {
2792               elfcpp::Elf_Word seg_flags =
2793                 Layout::section_flags_to_segment(os->flags());
2794               r->second->add_output_section(os, seg_flags);
2795
2796               if (r->second->type() == elfcpp::PT_LOAD)
2797                 {
2798                   if (in_load_segment)
2799                     gold_error(_("section in two PT_LOAD segments"));
2800                   in_load_segment = true;
2801                 }
2802             }
2803         }
2804
2805       if (!in_load_segment)
2806         gold_error(_("allocated section not in any PT_LOAD segment"));
2807     }
2808 }
2809
2810 // Set the addresses for segments created from a PHDRS clause.  Return
2811 // the segment which should hold the file header and program headers,
2812 // if any.
2813
2814 Output_segment*
2815 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2816 {
2817   Output_segment* load_seg = NULL;
2818   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2819        p != this->phdrs_elements_->end();
2820        ++p)
2821     {
2822       // Note that we have to set the flags after adding the output
2823       // sections to the segment, as adding an output segment can
2824       // change the flags.
2825       (*p)->set_flags_if_valid();
2826
2827       Output_segment* oseg = (*p)->segment();
2828
2829       if (oseg->type() != elfcpp::PT_LOAD)
2830         {
2831           // The addresses of non-PT_LOAD segments are set from the
2832           // PT_LOAD segments.
2833           if ((*p)->has_load_address())
2834             gold_error(_("may only specify load address for PT_LOAD segment"));
2835           continue;
2836         }
2837
2838       // The output sections should have addresses from the SECTIONS
2839       // clause.  The addresses don't have to be in order, so find the
2840       // one with the lowest load address.  Use that to set the
2841       // address of the segment.
2842
2843       Output_section* osec = oseg->section_with_lowest_load_address();
2844       if (osec == NULL)
2845         {
2846           oseg->set_addresses(0, 0);
2847           continue;
2848         }
2849
2850       uint64_t vma = osec->address();
2851       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2852
2853       // Override the load address of the section with the load
2854       // address specified for the segment.
2855       if ((*p)->has_load_address())
2856         {
2857           if (osec->has_load_address())
2858             gold_warning(_("PHDRS load address overrides "
2859                            "section %s load address"),
2860                          osec->name());
2861
2862           lma = (*p)->load_address();
2863         }
2864
2865       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
2866       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
2867         {
2868           // We could support this if we wanted to.
2869           gold_error(_("using only one of FILEHDR and PHDRS is "
2870                        "not currently supported"));
2871         }
2872       if (headers)
2873         {
2874           size_t sizeof_headers = this->total_header_size(layout);
2875           uint64_t subtract = this->header_size_adjustment(lma,
2876                                                            sizeof_headers);
2877           if (lma >= subtract && vma >= subtract)
2878             {
2879               lma -= subtract;
2880               vma -= subtract;
2881             }
2882           else
2883             {
2884               gold_error(_("sections loaded on first page without room "
2885                            "for file and program headers "
2886                            "are not supported"));
2887             }
2888
2889           if (load_seg != NULL)
2890             gold_error(_("using FILEHDR and PHDRS on more than one "
2891                          "PT_LOAD segment is not currently supported"));
2892           load_seg = oseg;
2893         }
2894
2895       oseg->set_addresses(vma, lma);
2896     }
2897
2898   return load_seg;
2899 }
2900
2901 // Add the file header and segment headers to non-load segments
2902 // specified in the PHDRS clause.
2903
2904 void
2905 Script_sections::put_headers_in_phdrs(Output_data* file_header,
2906                                       Output_data* segment_headers)
2907 {
2908   gold_assert(this->saw_phdrs_clause());
2909   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2910        p != this->phdrs_elements_->end();
2911        ++p)
2912     {
2913       if ((*p)->type() != elfcpp::PT_LOAD)
2914         {
2915           if ((*p)->includes_phdrs())
2916             (*p)->segment()->add_initial_output_data(segment_headers);
2917           if ((*p)->includes_filehdr())
2918             (*p)->segment()->add_initial_output_data(file_header);
2919         }
2920     }
2921 }
2922
2923 // Print the SECTIONS clause to F for debugging.
2924
2925 void
2926 Script_sections::print(FILE* f) const
2927 {
2928   if (!this->saw_sections_clause_)
2929     return;
2930
2931   fprintf(f, "SECTIONS {\n");
2932
2933   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2934        p != this->sections_elements_->end();
2935        ++p)
2936     (*p)->print(f);
2937
2938   fprintf(f, "}\n");
2939
2940   if (this->phdrs_elements_ != NULL)
2941     {
2942       fprintf(f, "PHDRS {\n");
2943       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2944            p != this->phdrs_elements_->end();
2945            ++p)
2946         (*p)->print(f);
2947       fprintf(f, "}\n");
2948     }
2949 }
2950
2951 } // End namespace gold.