Automatic date update in version.in
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51                 Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_offset_(0),
57       vma_sections_(),
58       lma_sections_(),
59       last_section_(NULL)
60   { }
61
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86             && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88
89   Expression*
90   get_current_address() const
91   {
92     return
93       script_exp_binary_add(this->start_,
94                             script_exp_integer(this->current_offset_));
95   }
96
97   void
98   set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99   {
100     uint64_t start = this->start_->eval(symtab, layout, false);
101     uint64_t len = this->length_->eval(symtab, layout, false);
102     if (addr < start || addr >= start + len)
103       gold_error(_("address 0x%llx is not within region %s"),
104                  static_cast<unsigned long long>(addr),
105                  this->name_.c_str());
106     else if (addr < start + this->current_offset_)
107       gold_error(_("address 0x%llx moves dot backwards in region %s"),
108                  static_cast<unsigned long long>(addr),
109                  this->name_.c_str());
110     this->current_offset_ = addr - start;
111   }
112
113   void
114   increment_offset(std::string section_name, uint64_t amount,
115                    const Symbol_table* symtab, const Layout* layout)
116   {
117     this->current_offset_ += amount;
118
119     if (this->current_offset_
120         > this->length_->eval(symtab, layout, false))
121       gold_error(_("section %s overflows end of region %s"),
122                  section_name.c_str(), this->name_.c_str());
123   }
124
125   // Returns true iff there is room left in this region
126   // for AMOUNT more bytes of data.
127   bool
128   has_room_for(const Symbol_table* symtab, const Layout* layout,
129                uint64_t amount) const
130   {
131     return (this->current_offset_ + amount
132             < this->length_->eval(symtab, layout, false));
133   }
134
135   // Return true if the provided section flags
136   // are compatible with this region's attributes.
137   bool
138   attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140   void
141   add_section(Output_section_definition* sec, bool vma)
142   {
143     if (vma)
144       this->vma_sections_.push_back(sec);
145     else
146       this->lma_sections_.push_back(sec);
147   }
148
149   typedef std::vector<Output_section_definition*> Section_list;
150
151   // Return the start of the list of sections
152   // whose VMAs are taken from this region.
153   Section_list::const_iterator
154   get_vma_section_list_start() const
155   { return this->vma_sections_.begin(); }
156
157   // Return the start of the list of sections
158   // whose LMAs are taken from this region.
159   Section_list::const_iterator
160   get_lma_section_list_start() const
161   { return this->lma_sections_.begin(); }
162
163   // Return the end of the list of sections
164   // whose VMAs are taken from this region.
165   Section_list::const_iterator
166   get_vma_section_list_end() const
167   { return this->vma_sections_.end(); }
168
169   // Return the end of the list of sections
170   // whose LMAs are taken from this region.
171   Section_list::const_iterator
172   get_lma_section_list_end() const
173   { return this->lma_sections_.end(); }
174
175   Output_section_definition*
176   get_last_section() const
177   { return this->last_section_; }
178
179   void
180   set_last_section(Output_section_definition* sec)
181   { this->last_section_ = sec; }
182
183  private:
184
185   std::string name_;
186   unsigned int attributes_;
187   Expression* start_;
188   Expression* length_;
189   // The offset to the next free byte in the region.
190   // Note - for compatibility with GNU LD we only maintain one offset
191   // regardless of whether the region is being used for VMA values,
192   // LMA values, or both.
193   uint64_t current_offset_;
194   // A list of sections whose VMAs are set inside this region.
195   Section_list vma_sections_;
196   // A list of sections whose LMAs are set inside this region.
197   Section_list lma_sections_;
198   // The latest section to make use of this region.
199   Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207                                      elfcpp::Elf_Xword type) const
208 {
209   unsigned int attrs = this->attributes_;
210
211   // No attributes means that this region is not compatible with anything.
212   if (attrs == 0)
213     return false;
214
215   bool match = true;
216   do
217     {
218       switch (attrs & - attrs)
219         {
220         case MEM_EXECUTABLE:
221           if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222             match = false;
223           break;
224
225         case MEM_WRITEABLE:
226           if ((flags & elfcpp::SHF_WRITE) == 0)
227             match = false;
228           break;
229
230         case MEM_READABLE:
231           // All sections are presumed readable.
232           break;
233
234         case MEM_ALLOCATABLE:
235           if ((flags & elfcpp::SHF_ALLOC) == 0)
236             match = false;
237           break;
238
239         case MEM_INITIALIZED:
240           if ((type & elfcpp::SHT_NOBITS) != 0)
241             match = false;
242           break;
243         }
244       attrs &= ~ (attrs & - attrs);
245     }
246   while (attrs != 0);
247
248   return match;
249 }
250
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256   fprintf(f, "  %s", this->name_.c_str());
257
258   unsigned int attrs = this->attributes_;
259   if (attrs != 0)
260     {
261       fprintf(f, " (");
262       do
263         {
264           switch (attrs & - attrs)
265             {
266             case MEM_EXECUTABLE:  fputc('x', f); break;
267             case MEM_WRITEABLE:   fputc('w', f); break;
268             case MEM_READABLE:    fputc('r', f); break;
269             case MEM_ALLOCATABLE: fputc('a', f); break;
270             case MEM_INITIALIZED: fputc('i', f); break;
271             default:
272               gold_unreachable();
273             }
274           attrs &= ~ (attrs & - attrs);
275         }
276       while (attrs != 0);
277       fputc(')', f);
278     }
279
280   fprintf(f, " : origin = ");
281   this->start_->print(f);
282   fprintf(f, ", length = ");
283   this->length_->print(f);
284   fprintf(f, "\n");
285 }
286
287 // Manage orphan sections.  This is intended to be largely compatible
288 // with the GNU linker.  The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement.  We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295  private:
296   typedef Script_sections::Elements_iterator Elements_iterator;
297
298  public:
299   Orphan_section_placement();
300
301   // Handle an output section during initialization of this mapping.
302   void
303   output_section_init(const std::string& name, Output_section*,
304                       Elements_iterator location);
305
306   // Initialize the last location.
307   void
308   last_init(Elements_iterator location);
309
310   // Set *PWHERE to the address of an iterator pointing to the
311   // location to use for an orphan section.  Return true if the
312   // iterator has a value, false otherwise.
313   bool
314   find_place(Output_section*, Elements_iterator** pwhere);
315
316   // Update PLACE_LAST_ALLOC.
317   void
318   update_last_alloc(Elements_iterator where);
319
320   // Return the iterator being used for sections at the very end of
321   // the linker script.
322   Elements_iterator
323   last_place() const;
324
325  private:
326   // The places that we specifically recognize.  This list is copied
327   // from the GNU linker.
328   enum Place_index
329   {
330     PLACE_TEXT,
331     PLACE_RODATA,
332     PLACE_DATA,
333     PLACE_TLS,
334     PLACE_TLS_BSS,
335     PLACE_BSS,
336     PLACE_LAST_ALLOC,
337     PLACE_REL,
338     PLACE_INTERP,
339     PLACE_NONALLOC,
340     PLACE_LAST,
341     PLACE_MAX
342   };
343
344   // The information we keep for a specific place.
345   struct Place
346   {
347     // The name of sections for this place.
348     const char* name;
349     // Whether we have a location for this place.
350     bool have_location;
351     // The iterator for this place.
352     Elements_iterator location;
353   };
354
355   // Initialize one place element.
356   void
357   initialize_place(Place_index, const char*);
358
359   // The places.
360   Place places_[PLACE_MAX];
361   // True if this is the first call to output_section_init.
362   bool first_init_;
363 };
364
365 // Initialize Orphan_section_placement.
366
367 Orphan_section_placement::Orphan_section_placement()
368   : first_init_(true)
369 {
370   this->initialize_place(PLACE_TEXT, ".text");
371   this->initialize_place(PLACE_RODATA, ".rodata");
372   this->initialize_place(PLACE_DATA, ".data");
373   this->initialize_place(PLACE_TLS, NULL);
374   this->initialize_place(PLACE_TLS_BSS, NULL);
375   this->initialize_place(PLACE_BSS, ".bss");
376   this->initialize_place(PLACE_LAST_ALLOC, NULL);
377   this->initialize_place(PLACE_REL, NULL);
378   this->initialize_place(PLACE_INTERP, ".interp");
379   this->initialize_place(PLACE_NONALLOC, NULL);
380   this->initialize_place(PLACE_LAST, NULL);
381 }
382
383 // Initialize one place element.
384
385 void
386 Orphan_section_placement::initialize_place(Place_index index, const char* name)
387 {
388   this->places_[index].name = name;
389   this->places_[index].have_location = false;
390 }
391
392 // While initializing the Orphan_section_placement information, this
393 // is called once for each output section named in the linker script.
394 // If we found an output section during the link, it will be passed in
395 // OS.
396
397 void
398 Orphan_section_placement::output_section_init(const std::string& name,
399                                               Output_section* os,
400                                               Elements_iterator location)
401 {
402   bool first_init = this->first_init_;
403   this->first_init_ = false;
404
405   // Remember the last allocated section. Any orphan bss sections
406   // will be placed after it.
407   if (os != NULL
408       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
409     {
410       this->places_[PLACE_LAST_ALLOC].location = location;
411       this->places_[PLACE_LAST_ALLOC].have_location = true;
412     }
413
414   for (int i = 0; i < PLACE_MAX; ++i)
415     {
416       if (this->places_[i].name != NULL && this->places_[i].name == name)
417         {
418           if (this->places_[i].have_location)
419             {
420               // We have already seen a section with this name.
421               return;
422             }
423
424           this->places_[i].location = location;
425           this->places_[i].have_location = true;
426
427           // If we just found the .bss section, restart the search for
428           // an unallocated section.  This follows the GNU linker's
429           // behaviour.
430           if (i == PLACE_BSS)
431             this->places_[PLACE_NONALLOC].have_location = false;
432
433           return;
434         }
435     }
436
437   // Relocation sections.
438   if (!this->places_[PLACE_REL].have_location
439       && os != NULL
440       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
441       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
442     {
443       this->places_[PLACE_REL].location = location;
444       this->places_[PLACE_REL].have_location = true;
445     }
446
447   // We find the location for unallocated sections by finding the
448   // first debugging or comment section after the BSS section (if
449   // there is one).
450   if (!this->places_[PLACE_NONALLOC].have_location
451       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
452     {
453       // We add orphan sections after the location in PLACES_.  We
454       // want to store unallocated sections before LOCATION.  If this
455       // is the very first section, we can't use it.
456       if (!first_init)
457         {
458           --location;
459           this->places_[PLACE_NONALLOC].location = location;
460           this->places_[PLACE_NONALLOC].have_location = true;
461         }
462     }
463 }
464
465 // Initialize the last location.
466
467 void
468 Orphan_section_placement::last_init(Elements_iterator location)
469 {
470   this->places_[PLACE_LAST].location = location;
471   this->places_[PLACE_LAST].have_location = true;
472 }
473
474 // Set *PWHERE to the address of an iterator pointing to the location
475 // to use for an orphan section.  Return true if the iterator has a
476 // value, false otherwise.
477
478 bool
479 Orphan_section_placement::find_place(Output_section* os,
480                                      Elements_iterator** pwhere)
481 {
482   // Figure out where OS should go.  This is based on the GNU linker
483   // code.  FIXME: The GNU linker handles small data sections
484   // specially, but we don't.
485   elfcpp::Elf_Word type = os->type();
486   elfcpp::Elf_Xword flags = os->flags();
487   Place_index index;
488   if ((flags & elfcpp::SHF_ALLOC) == 0
489       && !Layout::is_debug_info_section(os->name()))
490     index = PLACE_NONALLOC;
491   else if ((flags & elfcpp::SHF_ALLOC) == 0)
492     index = PLACE_LAST;
493   else if (type == elfcpp::SHT_NOTE)
494     index = PLACE_INTERP;
495   else if ((flags & elfcpp::SHF_TLS) != 0)
496     {
497       if (type == elfcpp::SHT_NOBITS)
498         index = PLACE_TLS_BSS;
499       else
500         index = PLACE_TLS;
501     }
502   else if (type == elfcpp::SHT_NOBITS)
503     index = PLACE_BSS;
504   else if ((flags & elfcpp::SHF_WRITE) != 0)
505     index = PLACE_DATA;
506   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
507     index = PLACE_REL;
508   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
509     index = PLACE_RODATA;
510   else
511     index = PLACE_TEXT;
512
513   // If we don't have a location yet, try to find one based on a
514   // plausible ordering of sections.
515   if (!this->places_[index].have_location)
516     {
517       Place_index follow;
518       switch (index)
519         {
520         default:
521           follow = PLACE_MAX;
522           break;
523         case PLACE_RODATA:
524           follow = PLACE_TEXT;
525           break;
526         case PLACE_DATA:
527           follow = PLACE_RODATA;
528           if (!this->places_[PLACE_RODATA].have_location)
529             follow = PLACE_TEXT;
530           break;
531         case PLACE_BSS:
532           follow = PLACE_LAST_ALLOC;
533           break;
534         case PLACE_REL:
535           follow = PLACE_TEXT;
536           break;
537         case PLACE_INTERP:
538           follow = PLACE_TEXT;
539           break;
540         case PLACE_TLS:
541           follow = PLACE_DATA;
542           break;
543         case PLACE_TLS_BSS:
544           follow = PLACE_TLS;
545           if (!this->places_[PLACE_TLS].have_location)
546             follow = PLACE_DATA;
547           break;
548         }
549       if (follow != PLACE_MAX && this->places_[follow].have_location)
550         {
551           // Set the location of INDEX to the location of FOLLOW.  The
552           // location of INDEX will then be incremented by the caller,
553           // so anything in INDEX will continue to be after anything
554           // in FOLLOW.
555           this->places_[index].location = this->places_[follow].location;
556           this->places_[index].have_location = true;
557         }
558     }
559
560   *pwhere = &this->places_[index].location;
561   bool ret = this->places_[index].have_location;
562
563   // The caller will set the location.
564   this->places_[index].have_location = true;
565
566   return ret;
567 }
568
569 // Update PLACE_LAST_ALLOC.
570 void
571 Orphan_section_placement::update_last_alloc(Elements_iterator elem)
572 {
573   Elements_iterator prev = elem;
574   --prev;
575   if (this->places_[PLACE_LAST_ALLOC].have_location
576       && this->places_[PLACE_LAST_ALLOC].location == prev)
577     {
578       this->places_[PLACE_LAST_ALLOC].have_location = true;
579       this->places_[PLACE_LAST_ALLOC].location = elem;
580     }
581 }
582
583 // Return the iterator being used for sections at the very end of the
584 // linker script.
585
586 Orphan_section_placement::Elements_iterator
587 Orphan_section_placement::last_place() const
588 {
589   gold_assert(this->places_[PLACE_LAST].have_location);
590   return this->places_[PLACE_LAST].location;
591 }
592
593 // An element in a SECTIONS clause.
594
595 class Sections_element
596 {
597  public:
598   Sections_element()
599   { }
600
601   virtual ~Sections_element()
602   { }
603
604   // Return whether an output section is relro.
605   virtual bool
606   is_relro() const
607   { return false; }
608
609   // Record that an output section is relro.
610   virtual void
611   set_is_relro()
612   { }
613
614   // Create any required output sections.  The only real
615   // implementation is in Output_section_definition.
616   virtual void
617   create_sections(Layout*)
618   { }
619
620   // Add any symbol being defined to the symbol table.
621   virtual void
622   add_symbols_to_table(Symbol_table*)
623   { }
624
625   // Finalize symbols and check assertions.
626   virtual void
627   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
628   { }
629
630   // Return the output section name to use for an input file name and
631   // section name.  This only real implementation is in
632   // Output_section_definition.
633   virtual const char*
634   output_section_name(const char*, const char*, Output_section***,
635                       Script_sections::Section_type*, bool*, bool)
636   { return NULL; }
637
638   // Initialize OSP with an output section.
639   virtual void
640   orphan_section_init(Orphan_section_placement*,
641                       Script_sections::Elements_iterator)
642   { }
643
644   // Set section addresses.  This includes applying assignments if the
645   // expression is an absolute value.
646   virtual void
647   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
648                         uint64_t*)
649   { }
650
651   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
652   // this section is constrained, and the input sections do not match,
653   // return the constraint, and set *POSD.
654   virtual Section_constraint
655   check_constraint(Output_section_definition**)
656   { return CONSTRAINT_NONE; }
657
658   // See if this is the alternate output section for a constrained
659   // output section.  If it is, transfer the Output_section and return
660   // true.  Otherwise return false.
661   virtual bool
662   alternate_constraint(Output_section_definition*, Section_constraint)
663   { return false; }
664
665   // Get the list of segments to use for an allocated section when
666   // using a PHDRS clause.  If this is an allocated section, return
667   // the Output_section, and set *PHDRS_LIST (the first parameter) to
668   // the list of PHDRS to which it should be attached.  If the PHDRS
669   // were not specified, don't change *PHDRS_LIST.  When not returning
670   // NULL, set *ORPHAN (the second parameter) according to whether
671   // this is an orphan section--one that is not mentioned in the
672   // linker script.
673   virtual Output_section*
674   allocate_to_segment(String_list**, bool*)
675   { return NULL; }
676
677   // Look for an output section by name and return the address, the
678   // load address, the alignment, and the size.  This is used when an
679   // expression refers to an output section which was not actually
680   // created.  This returns true if the section was found, false
681   // otherwise.  The only real definition is for
682   // Output_section_definition.
683   virtual bool
684   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
685                           uint64_t*) const
686   { return false; }
687
688   // Return the associated Output_section if there is one.
689   virtual Output_section*
690   get_output_section() const
691   { return NULL; }
692
693   // Set the section's memory regions.
694   virtual void
695   set_memory_region(Memory_region*, bool)
696   { gold_error(_("Attempt to set a memory region for a non-output section")); }
697
698   // Print the element for debugging purposes.
699   virtual void
700   print(FILE* f) const = 0;
701 };
702
703 // An assignment in a SECTIONS clause outside of an output section.
704
705 class Sections_element_assignment : public Sections_element
706 {
707  public:
708   Sections_element_assignment(const char* name, size_t namelen,
709                               Expression* val, bool provide, bool hidden)
710     : assignment_(name, namelen, false, val, provide, hidden)
711   { }
712
713   // Add the symbol to the symbol table.
714   void
715   add_symbols_to_table(Symbol_table* symtab)
716   { this->assignment_.add_to_table(symtab); }
717
718   // Finalize the symbol.
719   void
720   finalize_symbols(Symbol_table* symtab, const Layout* layout,
721                    uint64_t* dot_value)
722   {
723     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
724   }
725
726   // Set the section address.  There is no section here, but if the
727   // value is absolute, we set the symbol.  This permits us to use
728   // absolute symbols when setting dot.
729   void
730   set_section_addresses(Symbol_table* symtab, Layout* layout,
731                         uint64_t* dot_value, uint64_t*, uint64_t*)
732   {
733     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
734   }
735
736   // Print for debugging.
737   void
738   print(FILE* f) const
739   {
740     fprintf(f, "  ");
741     this->assignment_.print(f);
742   }
743
744  private:
745   Symbol_assignment assignment_;
746 };
747
748 // An assignment to the dot symbol in a SECTIONS clause outside of an
749 // output section.
750
751 class Sections_element_dot_assignment : public Sections_element
752 {
753  public:
754   Sections_element_dot_assignment(Expression* val)
755     : val_(val)
756   { }
757
758   // Finalize the symbol.
759   void
760   finalize_symbols(Symbol_table* symtab, const Layout* layout,
761                    uint64_t* dot_value)
762   {
763     // We ignore the section of the result because outside of an
764     // output section definition the dot symbol is always considered
765     // to be absolute.
766     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
767                                            NULL, NULL, NULL, false);
768   }
769
770   // Update the dot symbol while setting section addresses.
771   void
772   set_section_addresses(Symbol_table* symtab, Layout* layout,
773                         uint64_t* dot_value, uint64_t* dot_alignment,
774                         uint64_t* load_address)
775   {
776     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
777                                            NULL, NULL, dot_alignment, false);
778     *load_address = *dot_value;
779   }
780
781   // Print for debugging.
782   void
783   print(FILE* f) const
784   {
785     fprintf(f, "  . = ");
786     this->val_->print(f);
787     fprintf(f, "\n");
788   }
789
790  private:
791   Expression* val_;
792 };
793
794 // An assertion in a SECTIONS clause outside of an output section.
795
796 class Sections_element_assertion : public Sections_element
797 {
798  public:
799   Sections_element_assertion(Expression* check, const char* message,
800                              size_t messagelen)
801     : assertion_(check, message, messagelen)
802   { }
803
804   // Check the assertion.
805   void
806   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
807   { this->assertion_.check(symtab, layout); }
808
809   // Print for debugging.
810   void
811   print(FILE* f) const
812   {
813     fprintf(f, "  ");
814     this->assertion_.print(f);
815   }
816
817  private:
818   Script_assertion assertion_;
819 };
820
821 // An element in an output section in a SECTIONS clause.
822
823 class Output_section_element
824 {
825  public:
826   // A list of input sections.
827   typedef std::list<Output_section::Input_section> Input_section_list;
828
829   Output_section_element()
830   { }
831
832   virtual ~Output_section_element()
833   { }
834
835   // Return whether this element requires an output section to exist.
836   virtual bool
837   needs_output_section() const
838   { return false; }
839
840   // Add any symbol being defined to the symbol table.
841   virtual void
842   add_symbols_to_table(Symbol_table*)
843   { }
844
845   // Finalize symbols and check assertions.
846   virtual void
847   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
848   { }
849
850   // Return whether this element matches FILE_NAME and SECTION_NAME.
851   // The only real implementation is in Output_section_element_input.
852   virtual bool
853   match_name(const char*, const char*, bool *) const
854   { return false; }
855
856   // Set section addresses.  This includes applying assignments if the
857   // expression is an absolute value.
858   virtual void
859   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
860                         uint64_t*, uint64_t*, Output_section**, std::string*,
861                         Input_section_list*)
862   { }
863
864   // Print the element for debugging purposes.
865   virtual void
866   print(FILE* f) const = 0;
867
868  protected:
869   // Return a fill string that is LENGTH bytes long, filling it with
870   // FILL.
871   std::string
872   get_fill_string(const std::string* fill, section_size_type length) const;
873 };
874
875 std::string
876 Output_section_element::get_fill_string(const std::string* fill,
877                                         section_size_type length) const
878 {
879   std::string this_fill;
880   this_fill.reserve(length);
881   while (this_fill.length() + fill->length() <= length)
882     this_fill += *fill;
883   if (this_fill.length() < length)
884     this_fill.append(*fill, 0, length - this_fill.length());
885   return this_fill;
886 }
887
888 // A symbol assignment in an output section.
889
890 class Output_section_element_assignment : public Output_section_element
891 {
892  public:
893   Output_section_element_assignment(const char* name, size_t namelen,
894                                     Expression* val, bool provide,
895                                     bool hidden)
896     : assignment_(name, namelen, false, val, provide, hidden)
897   { }
898
899   // Add the symbol to the symbol table.
900   void
901   add_symbols_to_table(Symbol_table* symtab)
902   { this->assignment_.add_to_table(symtab); }
903
904   // Finalize the symbol.
905   void
906   finalize_symbols(Symbol_table* symtab, const Layout* layout,
907                    uint64_t* dot_value, Output_section** dot_section)
908   {
909     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
910                                         *dot_section);
911   }
912
913   // Set the section address.  There is no section here, but if the
914   // value is absolute, we set the symbol.  This permits us to use
915   // absolute symbols when setting dot.
916   void
917   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
918                         uint64_t, uint64_t* dot_value, uint64_t*,
919                         Output_section** dot_section, std::string*,
920                         Input_section_list*)
921   {
922     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
923                                       *dot_section);
924   }
925
926   // Print for debugging.
927   void
928   print(FILE* f) const
929   {
930     fprintf(f, "    ");
931     this->assignment_.print(f);
932   }
933
934  private:
935   Symbol_assignment assignment_;
936 };
937
938 // An assignment to the dot symbol in an output section.
939
940 class Output_section_element_dot_assignment : public Output_section_element
941 {
942  public:
943   Output_section_element_dot_assignment(Expression* val)
944     : val_(val)
945   { }
946
947   // An assignment to dot within an output section is enough to force
948   // the output section to exist.
949   bool
950   needs_output_section() const
951   { return true; }
952
953   // Finalize the symbol.
954   void
955   finalize_symbols(Symbol_table* symtab, const Layout* layout,
956                    uint64_t* dot_value, Output_section** dot_section)
957   {
958     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
959                                            *dot_section, dot_section, NULL,
960                                            true);
961   }
962
963   // Update the dot symbol while setting section addresses.
964   void
965   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
966                         uint64_t, uint64_t* dot_value, uint64_t*,
967                         Output_section** dot_section, std::string*,
968                         Input_section_list*);
969
970   // Print for debugging.
971   void
972   print(FILE* f) const
973   {
974     fprintf(f, "    . = ");
975     this->val_->print(f);
976     fprintf(f, "\n");
977   }
978
979  private:
980   Expression* val_;
981 };
982
983 // Update the dot symbol while setting section addresses.
984
985 void
986 Output_section_element_dot_assignment::set_section_addresses(
987     Symbol_table* symtab,
988     Layout* layout,
989     Output_section* output_section,
990     uint64_t,
991     uint64_t* dot_value,
992     uint64_t* dot_alignment,
993     Output_section** dot_section,
994     std::string* fill,
995     Input_section_list*)
996 {
997   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
998                                                 *dot_value, *dot_section,
999                                                 dot_section, dot_alignment,
1000                                                 true);
1001   if (next_dot < *dot_value)
1002     gold_error(_("dot may not move backward"));
1003   if (next_dot > *dot_value && output_section != NULL)
1004     {
1005       section_size_type length = convert_to_section_size_type(next_dot
1006                                                               - *dot_value);
1007       Output_section_data* posd;
1008       if (fill->empty())
1009         posd = new Output_data_zero_fill(length, 0);
1010       else
1011         {
1012           std::string this_fill = this->get_fill_string(fill, length);
1013           posd = new Output_data_const(this_fill, 0);
1014         }
1015       output_section->add_output_section_data(posd);
1016       layout->new_output_section_data_from_script(posd);
1017     }
1018   *dot_value = next_dot;
1019 }
1020
1021 // An assertion in an output section.
1022
1023 class Output_section_element_assertion : public Output_section_element
1024 {
1025  public:
1026   Output_section_element_assertion(Expression* check, const char* message,
1027                                    size_t messagelen)
1028     : assertion_(check, message, messagelen)
1029   { }
1030
1031   void
1032   print(FILE* f) const
1033   {
1034     fprintf(f, "    ");
1035     this->assertion_.print(f);
1036   }
1037
1038  private:
1039   Script_assertion assertion_;
1040 };
1041
1042 // We use a special instance of Output_section_data to handle BYTE,
1043 // SHORT, etc.  This permits forward references to symbols in the
1044 // expressions.
1045
1046 class Output_data_expression : public Output_section_data
1047 {
1048  public:
1049   Output_data_expression(int size, bool is_signed, Expression* val,
1050                          const Symbol_table* symtab, const Layout* layout,
1051                          uint64_t dot_value, Output_section* dot_section)
1052     : Output_section_data(size, 0, true),
1053       is_signed_(is_signed), val_(val), symtab_(symtab),
1054       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1055   { }
1056
1057  protected:
1058   // Write the data to the output file.
1059   void
1060   do_write(Output_file*);
1061
1062   // Write the data to a buffer.
1063   void
1064   do_write_to_buffer(unsigned char*);
1065
1066   // Write to a map file.
1067   void
1068   do_print_to_mapfile(Mapfile* mapfile) const
1069   { mapfile->print_output_data(this, _("** expression")); }
1070
1071  private:
1072   template<bool big_endian>
1073   void
1074   endian_write_to_buffer(uint64_t, unsigned char*);
1075
1076   bool is_signed_;
1077   Expression* val_;
1078   const Symbol_table* symtab_;
1079   const Layout* layout_;
1080   uint64_t dot_value_;
1081   Output_section* dot_section_;
1082 };
1083
1084 // Write the data element to the output file.
1085
1086 void
1087 Output_data_expression::do_write(Output_file* of)
1088 {
1089   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1090   this->write_to_buffer(view);
1091   of->write_output_view(this->offset(), this->data_size(), view);
1092 }
1093
1094 // Write the data element to a buffer.
1095
1096 void
1097 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1098 {
1099   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1100                                            true, this->dot_value_,
1101                                            this->dot_section_, NULL, NULL,
1102                                            false);
1103
1104   if (parameters->target().is_big_endian())
1105     this->endian_write_to_buffer<true>(val, buf);
1106   else
1107     this->endian_write_to_buffer<false>(val, buf);
1108 }
1109
1110 template<bool big_endian>
1111 void
1112 Output_data_expression::endian_write_to_buffer(uint64_t val,
1113                                                unsigned char* buf)
1114 {
1115   switch (this->data_size())
1116     {
1117     case 1:
1118       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1119       break;
1120     case 2:
1121       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1122       break;
1123     case 4:
1124       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1125       break;
1126     case 8:
1127       if (parameters->target().get_size() == 32)
1128         {
1129           val &= 0xffffffff;
1130           if (this->is_signed_ && (val & 0x80000000) != 0)
1131             val |= 0xffffffff00000000LL;
1132         }
1133       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1134       break;
1135     default:
1136       gold_unreachable();
1137     }
1138 }
1139
1140 // A data item in an output section.
1141
1142 class Output_section_element_data : public Output_section_element
1143 {
1144  public:
1145   Output_section_element_data(int size, bool is_signed, Expression* val)
1146     : size_(size), is_signed_(is_signed), val_(val)
1147   { }
1148
1149   // If there is a data item, then we must create an output section.
1150   bool
1151   needs_output_section() const
1152   { return true; }
1153
1154   // Finalize symbols--we just need to update dot.
1155   void
1156   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1157                    Output_section**)
1158   { *dot_value += this->size_; }
1159
1160   // Store the value in the section.
1161   void
1162   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1163                         uint64_t* dot_value, uint64_t*, Output_section**,
1164                         std::string*, Input_section_list*);
1165
1166   // Print for debugging.
1167   void
1168   print(FILE*) const;
1169
1170  private:
1171   // The size in bytes.
1172   int size_;
1173   // Whether the value is signed.
1174   bool is_signed_;
1175   // The value.
1176   Expression* val_;
1177 };
1178
1179 // Store the value in the section.
1180
1181 void
1182 Output_section_element_data::set_section_addresses(
1183     Symbol_table* symtab,
1184     Layout* layout,
1185     Output_section* os,
1186     uint64_t,
1187     uint64_t* dot_value,
1188     uint64_t*,
1189     Output_section** dot_section,
1190     std::string*,
1191     Input_section_list*)
1192 {
1193   gold_assert(os != NULL);
1194   Output_data_expression* expression =
1195     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1196                                symtab, layout, *dot_value, *dot_section);
1197   os->add_output_section_data(expression);
1198   layout->new_output_section_data_from_script(expression);
1199   *dot_value += this->size_;
1200 }
1201
1202 // Print for debugging.
1203
1204 void
1205 Output_section_element_data::print(FILE* f) const
1206 {
1207   const char* s;
1208   switch (this->size_)
1209     {
1210     case 1:
1211       s = "BYTE";
1212       break;
1213     case 2:
1214       s = "SHORT";
1215       break;
1216     case 4:
1217       s = "LONG";
1218       break;
1219     case 8:
1220       if (this->is_signed_)
1221         s = "SQUAD";
1222       else
1223         s = "QUAD";
1224       break;
1225     default:
1226       gold_unreachable();
1227     }
1228   fprintf(f, "    %s(", s);
1229   this->val_->print(f);
1230   fprintf(f, ")\n");
1231 }
1232
1233 // A fill value setting in an output section.
1234
1235 class Output_section_element_fill : public Output_section_element
1236 {
1237  public:
1238   Output_section_element_fill(Expression* val)
1239     : val_(val)
1240   { }
1241
1242   // Update the fill value while setting section addresses.
1243   void
1244   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1245                         uint64_t, uint64_t* dot_value, uint64_t*,
1246                         Output_section** dot_section,
1247                         std::string* fill, Input_section_list*)
1248   {
1249     Output_section* fill_section;
1250     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1251                                                   *dot_value, *dot_section,
1252                                                   &fill_section, NULL, false);
1253     if (fill_section != NULL)
1254       gold_warning(_("fill value is not absolute"));
1255     // FIXME: The GNU linker supports fill values of arbitrary length.
1256     unsigned char fill_buff[4];
1257     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1258     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1259   }
1260
1261   // Print for debugging.
1262   void
1263   print(FILE* f) const
1264   {
1265     fprintf(f, "    FILL(");
1266     this->val_->print(f);
1267     fprintf(f, ")\n");
1268   }
1269
1270  private:
1271   // The new fill value.
1272   Expression* val_;
1273 };
1274
1275 // An input section specification in an output section
1276
1277 class Output_section_element_input : public Output_section_element
1278 {
1279  public:
1280   Output_section_element_input(const Input_section_spec* spec, bool keep);
1281
1282   // Finalize symbols--just update the value of the dot symbol.
1283   void
1284   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1285                    Output_section** dot_section)
1286   {
1287     *dot_value = this->final_dot_value_;
1288     *dot_section = this->final_dot_section_;
1289   }
1290
1291   // See whether we match FILE_NAME and SECTION_NAME as an input section.
1292   // If we do then also indicate whether the section should be KEPT.
1293   bool
1294   match_name(const char* file_name, const char* section_name, bool* keep) const;
1295
1296   // Set the section address.
1297   void
1298   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1299                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1300                         Output_section**, std::string* fill,
1301                         Input_section_list*);
1302
1303   // Print for debugging.
1304   void
1305   print(FILE* f) const;
1306
1307  private:
1308   // An input section pattern.
1309   struct Input_section_pattern
1310   {
1311     std::string pattern;
1312     bool pattern_is_wildcard;
1313     Sort_wildcard sort;
1314
1315     Input_section_pattern(const char* patterna, size_t patternlena,
1316                           Sort_wildcard sorta)
1317       : pattern(patterna, patternlena),
1318         pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1319         sort(sorta)
1320     { }
1321   };
1322
1323   typedef std::vector<Input_section_pattern> Input_section_patterns;
1324
1325   // Filename_exclusions is a pair of filename pattern and a bool
1326   // indicating whether the filename is a wildcard.
1327   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1328
1329   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1330   // indicates whether this is a wildcard pattern.
1331   static inline bool
1332   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1333   {
1334     return (is_wildcard_pattern
1335             ? fnmatch(pattern, string, 0) == 0
1336             : strcmp(string, pattern) == 0);
1337   }
1338
1339   // See if we match a file name.
1340   bool
1341   match_file_name(const char* file_name) const;
1342
1343   // The file name pattern.  If this is the empty string, we match all
1344   // files.
1345   std::string filename_pattern_;
1346   // Whether the file name pattern is a wildcard.
1347   bool filename_is_wildcard_;
1348   // How the file names should be sorted.  This may only be
1349   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1350   Sort_wildcard filename_sort_;
1351   // The list of file names to exclude.
1352   Filename_exclusions filename_exclusions_;
1353   // The list of input section patterns.
1354   Input_section_patterns input_section_patterns_;
1355   // Whether to keep this section when garbage collecting.
1356   bool keep_;
1357   // The value of dot after including all matching sections.
1358   uint64_t final_dot_value_;
1359   // The section where dot is defined after including all matching
1360   // sections.
1361   Output_section* final_dot_section_;
1362 };
1363
1364 // Construct Output_section_element_input.  The parser records strings
1365 // as pointers into a copy of the script file, which will go away when
1366 // parsing is complete.  We make sure they are in std::string objects.
1367
1368 Output_section_element_input::Output_section_element_input(
1369     const Input_section_spec* spec,
1370     bool keep)
1371   : filename_pattern_(),
1372     filename_is_wildcard_(false),
1373     filename_sort_(spec->file.sort),
1374     filename_exclusions_(),
1375     input_section_patterns_(),
1376     keep_(keep),
1377     final_dot_value_(0),
1378     final_dot_section_(NULL)
1379 {
1380   // The filename pattern "*" is common, and matches all files.  Turn
1381   // it into the empty string.
1382   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1383     this->filename_pattern_.assign(spec->file.name.value,
1384                                    spec->file.name.length);
1385   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1386
1387   if (spec->input_sections.exclude != NULL)
1388     {
1389       for (String_list::const_iterator p =
1390              spec->input_sections.exclude->begin();
1391            p != spec->input_sections.exclude->end();
1392            ++p)
1393         {
1394           bool is_wildcard = is_wildcard_string((*p).c_str());
1395           this->filename_exclusions_.push_back(std::make_pair(*p,
1396                                                               is_wildcard));
1397         }
1398     }
1399
1400   if (spec->input_sections.sections != NULL)
1401     {
1402       Input_section_patterns& isp(this->input_section_patterns_);
1403       for (String_sort_list::const_iterator p =
1404              spec->input_sections.sections->begin();
1405            p != spec->input_sections.sections->end();
1406            ++p)
1407         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1408                                             p->sort));
1409     }
1410 }
1411
1412 // See whether we match FILE_NAME.
1413
1414 bool
1415 Output_section_element_input::match_file_name(const char* file_name) const
1416 {
1417   if (!this->filename_pattern_.empty())
1418     {
1419       // If we were called with no filename, we refuse to match a
1420       // pattern which requires a file name.
1421       if (file_name == NULL)
1422         return false;
1423
1424       if (!match(file_name, this->filename_pattern_.c_str(),
1425                  this->filename_is_wildcard_))
1426         return false;
1427     }
1428
1429   if (file_name != NULL)
1430     {
1431       // Now we have to see whether FILE_NAME matches one of the
1432       // exclusion patterns, if any.
1433       for (Filename_exclusions::const_iterator p =
1434              this->filename_exclusions_.begin();
1435            p != this->filename_exclusions_.end();
1436            ++p)
1437         {
1438           if (match(file_name, p->first.c_str(), p->second))
1439             return false;
1440         }
1441     }
1442
1443   return true;
1444 }
1445
1446 // See whether we match FILE_NAME and SECTION_NAME.  If we do then
1447 // KEEP indicates whether the section should survive garbage collection.
1448
1449 bool
1450 Output_section_element_input::match_name(const char* file_name,
1451                                          const char* section_name,
1452                                          bool *keep) const
1453 {
1454   if (!this->match_file_name(file_name))
1455     return false;
1456
1457   *keep = this->keep_;
1458
1459   // If there are no section name patterns, then we match.
1460   if (this->input_section_patterns_.empty())
1461     return true;
1462
1463   // See whether we match the section name patterns.
1464   for (Input_section_patterns::const_iterator p =
1465          this->input_section_patterns_.begin();
1466        p != this->input_section_patterns_.end();
1467        ++p)
1468     {
1469       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1470         return true;
1471     }
1472
1473   // We didn't match any section names, so we didn't match.
1474   return false;
1475 }
1476
1477 // Information we use to sort the input sections.
1478
1479 class Input_section_info
1480 {
1481  public:
1482   Input_section_info(const Output_section::Input_section& input_section)
1483     : input_section_(input_section), section_name_(),
1484       size_(0), addralign_(1)
1485   { }
1486
1487   // Return the simple input section.
1488   const Output_section::Input_section&
1489   input_section() const
1490   { return this->input_section_; }
1491
1492   // Return the object.
1493   Relobj*
1494   relobj() const
1495   { return this->input_section_.relobj(); }
1496
1497   // Return the section index.
1498   unsigned int
1499   shndx()
1500   { return this->input_section_.shndx(); }
1501
1502   // Return the section name.
1503   const std::string&
1504   section_name() const
1505   { return this->section_name_; }
1506
1507   // Set the section name.
1508   void
1509   set_section_name(const std::string name)
1510   {
1511     if (is_compressed_debug_section(name.c_str()))
1512       this->section_name_ = corresponding_uncompressed_section_name(name);
1513     else
1514       this->section_name_ = name;
1515   }
1516
1517   // Return the section size.
1518   uint64_t
1519   size() const
1520   { return this->size_; }
1521
1522   // Set the section size.
1523   void
1524   set_size(uint64_t size)
1525   { this->size_ = size; }
1526
1527   // Return the address alignment.
1528   uint64_t
1529   addralign() const
1530   { return this->addralign_; }
1531
1532   // Set the address alignment.
1533   void
1534   set_addralign(uint64_t addralign)
1535   { this->addralign_ = addralign; }
1536
1537  private:
1538   // Input section, can be a relaxed section.
1539   Output_section::Input_section input_section_;
1540   // Name of the section.
1541   std::string section_name_;
1542   // Section size.
1543   uint64_t size_;
1544   // Address alignment.
1545   uint64_t addralign_;
1546 };
1547
1548 // A class to sort the input sections.
1549
1550 class Input_section_sorter
1551 {
1552  public:
1553   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1554     : filename_sort_(filename_sort), section_sort_(section_sort)
1555   { }
1556
1557   bool
1558   operator()(const Input_section_info&, const Input_section_info&) const;
1559
1560  private:
1561   static unsigned long
1562   get_init_priority(const char*);
1563
1564   Sort_wildcard filename_sort_;
1565   Sort_wildcard section_sort_;
1566 };
1567
1568 // Return a relative priority of the section with the specified NAME
1569 // (a lower value meand a higher priority), or 0 if it should be compared
1570 // with others as strings.
1571 // The implementation of this function is copied from ld/ldlang.c.
1572
1573 unsigned long
1574 Input_section_sorter::get_init_priority(const char* name)
1575 {
1576   char* end;
1577   unsigned long init_priority;
1578
1579   // GCC uses the following section names for the init_priority
1580   // attribute with numerical values 101 and 65535 inclusive. A
1581   // lower value means a higher priority.
1582   //
1583   // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1584   //    decimal numerical value of the init_priority attribute.
1585   //    The order of execution in .init_array is forward and
1586   //    .fini_array is backward.
1587   // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1588   //    decimal numerical value of the init_priority attribute.
1589   //    The order of execution in .ctors is backward and .dtors
1590   //    is forward.
1591
1592   if (strncmp(name, ".init_array.", 12) == 0
1593       || strncmp(name, ".fini_array.", 12) == 0)
1594     {
1595       init_priority = strtoul(name + 12, &end, 10);
1596       return *end ? 0 : init_priority;
1597     }
1598   else if (strncmp(name, ".ctors.", 7) == 0
1599            || strncmp(name, ".dtors.", 7) == 0)
1600     {
1601       init_priority = strtoul(name + 7, &end, 10);
1602       return *end ? 0 : 65535 - init_priority;
1603     }
1604
1605   return 0;
1606 }
1607
1608 bool
1609 Input_section_sorter::operator()(const Input_section_info& isi1,
1610                                  const Input_section_info& isi2) const
1611 {
1612   if (this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1613     {
1614       unsigned long ip1 = get_init_priority(isi1.section_name().c_str());
1615       unsigned long ip2 = get_init_priority(isi2.section_name().c_str());
1616       if (ip1 != 0 && ip2 != 0 && ip1 != ip2)
1617         return ip1 < ip2;
1618     }
1619   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1620       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1621       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1622           && isi1.addralign() == isi2.addralign())
1623       || this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1624     {
1625       if (isi1.section_name() != isi2.section_name())
1626         return isi1.section_name() < isi2.section_name();
1627     }
1628   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1629       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1630       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1631     {
1632       if (isi1.addralign() != isi2.addralign())
1633         return isi1.addralign() < isi2.addralign();
1634     }
1635   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1636     {
1637       if (isi1.relobj()->name() != isi2.relobj()->name())
1638         return (isi1.relobj()->name() < isi2.relobj()->name());
1639     }
1640
1641   // Otherwise we leave them in the same order.
1642   return false;
1643 }
1644
1645 // Set the section address.  Look in INPUT_SECTIONS for sections which
1646 // match this spec, sort them as specified, and add them to the output
1647 // section.
1648
1649 void
1650 Output_section_element_input::set_section_addresses(
1651     Symbol_table*,
1652     Layout* layout,
1653     Output_section* output_section,
1654     uint64_t subalign,
1655     uint64_t* dot_value,
1656     uint64_t*,
1657     Output_section** dot_section,
1658     std::string* fill,
1659     Input_section_list* input_sections)
1660 {
1661   // We build a list of sections which match each
1662   // Input_section_pattern.
1663
1664   // If none of the patterns specify a sort option, we throw all
1665   // matching input sections into a single bin, in the order we
1666   // find them.  Otherwise, we put matching input sections into
1667   // a separate bin for each pattern, and sort each one as
1668   // specified.  Thus, an input section spec like this:
1669   //   *(.foo .bar)
1670   // will group all .foo and .bar sections in the order seen,
1671   // whereas this:
1672   //   *(.foo) *(.bar)
1673   // will group all .foo sections followed by all .bar sections.
1674   // This matches Gnu ld behavior.
1675
1676   // Things get really weird, though, when you add a sort spec
1677   // on some, but not all, of the patterns, like this:
1678   //   *(SORT_BY_NAME(.foo) .bar)
1679   // We do not attempt to match Gnu ld behavior in this case.
1680
1681   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1682   size_t input_pattern_count = this->input_section_patterns_.size();
1683   size_t bin_count = 1;
1684   bool any_patterns_with_sort = false;
1685   for (size_t i = 0; i < input_pattern_count; ++i)
1686     {
1687       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1688       if (isp.sort != SORT_WILDCARD_NONE)
1689         any_patterns_with_sort = true;
1690     }
1691   if (any_patterns_with_sort)
1692     bin_count = input_pattern_count;
1693   Matching_sections matching_sections(bin_count);
1694
1695   // Look through the list of sections for this output section.  Add
1696   // each one which matches to one of the elements of
1697   // MATCHING_SECTIONS.
1698
1699   Input_section_list::iterator p = input_sections->begin();
1700   while (p != input_sections->end())
1701     {
1702       Relobj* relobj = p->relobj();
1703       unsigned int shndx = p->shndx();
1704       Input_section_info isi(*p);
1705
1706       // Calling section_name and section_addralign is not very
1707       // efficient.
1708
1709       // Lock the object so that we can get information about the
1710       // section.  This is OK since we know we are single-threaded
1711       // here.
1712       {
1713         const Task* task = reinterpret_cast<const Task*>(-1);
1714         Task_lock_obj<Object> tl(task, relobj);
1715
1716         isi.set_section_name(relobj->section_name(shndx));
1717         if (p->is_relaxed_input_section())
1718           {
1719             // We use current data size because relaxed section sizes may not
1720             // have finalized yet.
1721             isi.set_size(p->relaxed_input_section()->current_data_size());
1722             isi.set_addralign(p->relaxed_input_section()->addralign());
1723           }
1724         else
1725           {
1726             isi.set_size(relobj->section_size(shndx));
1727             isi.set_addralign(relobj->section_addralign(shndx));
1728           }
1729       }
1730
1731       if (!this->match_file_name(relobj->name().c_str()))
1732         ++p;
1733       else if (this->input_section_patterns_.empty())
1734         {
1735           matching_sections[0].push_back(isi);
1736           p = input_sections->erase(p);
1737         }
1738       else
1739         {
1740           size_t i;
1741           for (i = 0; i < input_pattern_count; ++i)
1742             {
1743               const Input_section_pattern&
1744                 isp(this->input_section_patterns_[i]);
1745               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1746                         isp.pattern_is_wildcard))
1747                 break;
1748             }
1749
1750           if (i >= input_pattern_count)
1751             ++p;
1752           else
1753             {
1754               if (i >= bin_count)
1755                 i = 0;
1756               matching_sections[i].push_back(isi);
1757               p = input_sections->erase(p);
1758             }
1759         }
1760     }
1761
1762   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1763   // using a stable sort so that we get the default order when
1764   // sections are otherwise equal.  Add each input section to the
1765   // output section.
1766
1767   uint64_t dot = *dot_value;
1768   for (size_t i = 0; i < bin_count; ++i)
1769     {
1770       if (matching_sections[i].empty())
1771         continue;
1772
1773       gold_assert(output_section != NULL);
1774
1775       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1776       if (isp.sort != SORT_WILDCARD_NONE
1777           || this->filename_sort_ != SORT_WILDCARD_NONE)
1778         std::stable_sort(matching_sections[i].begin(),
1779                          matching_sections[i].end(),
1780                          Input_section_sorter(this->filename_sort_,
1781                                               isp.sort));
1782
1783       for (std::vector<Input_section_info>::const_iterator p =
1784              matching_sections[i].begin();
1785            p != matching_sections[i].end();
1786            ++p)
1787         {
1788           // Override the original address alignment if SUBALIGN is specified.
1789           // We need to make a copy of the input section to modify the
1790           // alignment.
1791           Output_section::Input_section sis(p->input_section());
1792
1793           uint64_t this_subalign = sis.addralign();
1794           if (!sis.is_input_section())
1795             sis.output_section_data()->finalize_data_size();
1796           uint64_t data_size = sis.data_size();
1797           if (subalign > 0)
1798             {
1799               this_subalign = subalign;
1800               sis.set_addralign(subalign);
1801             }
1802
1803           uint64_t address = align_address(dot, this_subalign);
1804
1805           if (address > dot && !fill->empty())
1806             {
1807               section_size_type length =
1808                 convert_to_section_size_type(address - dot);
1809               std::string this_fill = this->get_fill_string(fill, length);
1810               Output_section_data* posd = new Output_data_const(this_fill, 0);
1811               output_section->add_output_section_data(posd);
1812               layout->new_output_section_data_from_script(posd);
1813             }
1814
1815           output_section->add_script_input_section(sis);
1816           dot = address + data_size;
1817         }
1818     }
1819
1820   // An SHF_TLS/SHT_NOBITS section does not take up any
1821   // address space.
1822   if (output_section == NULL
1823       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1824       || output_section->type() != elfcpp::SHT_NOBITS)
1825     *dot_value = dot;
1826
1827   this->final_dot_value_ = *dot_value;
1828   this->final_dot_section_ = *dot_section;
1829 }
1830
1831 // Print for debugging.
1832
1833 void
1834 Output_section_element_input::print(FILE* f) const
1835 {
1836   fprintf(f, "    ");
1837
1838   if (this->keep_)
1839     fprintf(f, "KEEP(");
1840
1841   if (!this->filename_pattern_.empty())
1842     {
1843       bool need_close_paren = false;
1844       switch (this->filename_sort_)
1845         {
1846         case SORT_WILDCARD_NONE:
1847           break;
1848         case SORT_WILDCARD_BY_NAME:
1849           fprintf(f, "SORT_BY_NAME(");
1850           need_close_paren = true;
1851           break;
1852         default:
1853           gold_unreachable();
1854         }
1855
1856       fprintf(f, "%s", this->filename_pattern_.c_str());
1857
1858       if (need_close_paren)
1859         fprintf(f, ")");
1860     }
1861
1862   if (!this->input_section_patterns_.empty()
1863       || !this->filename_exclusions_.empty())
1864     {
1865       fprintf(f, "(");
1866
1867       bool need_space = false;
1868       if (!this->filename_exclusions_.empty())
1869         {
1870           fprintf(f, "EXCLUDE_FILE(");
1871           bool need_comma = false;
1872           for (Filename_exclusions::const_iterator p =
1873                  this->filename_exclusions_.begin();
1874                p != this->filename_exclusions_.end();
1875                ++p)
1876             {
1877               if (need_comma)
1878                 fprintf(f, ", ");
1879               fprintf(f, "%s", p->first.c_str());
1880               need_comma = true;
1881             }
1882           fprintf(f, ")");
1883           need_space = true;
1884         }
1885
1886       for (Input_section_patterns::const_iterator p =
1887              this->input_section_patterns_.begin();
1888            p != this->input_section_patterns_.end();
1889            ++p)
1890         {
1891           if (need_space)
1892             fprintf(f, " ");
1893
1894           int close_parens = 0;
1895           switch (p->sort)
1896             {
1897             case SORT_WILDCARD_NONE:
1898               break;
1899             case SORT_WILDCARD_BY_NAME:
1900               fprintf(f, "SORT_BY_NAME(");
1901               close_parens = 1;
1902               break;
1903             case SORT_WILDCARD_BY_ALIGNMENT:
1904               fprintf(f, "SORT_BY_ALIGNMENT(");
1905               close_parens = 1;
1906               break;
1907             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1908               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1909               close_parens = 2;
1910               break;
1911             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1912               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1913               close_parens = 2;
1914               break;
1915             case SORT_WILDCARD_BY_INIT_PRIORITY:
1916               fprintf(f, "SORT_BY_INIT_PRIORITY(");
1917               close_parens = 1;
1918               break;
1919             default:
1920               gold_unreachable();
1921             }
1922
1923           fprintf(f, "%s", p->pattern.c_str());
1924
1925           for (int i = 0; i < close_parens; ++i)
1926             fprintf(f, ")");
1927
1928           need_space = true;
1929         }
1930
1931       fprintf(f, ")");
1932     }
1933
1934   if (this->keep_)
1935     fprintf(f, ")");
1936
1937   fprintf(f, "\n");
1938 }
1939
1940 // An output section.
1941
1942 class Output_section_definition : public Sections_element
1943 {
1944  public:
1945   typedef Output_section_element::Input_section_list Input_section_list;
1946
1947   Output_section_definition(const char* name, size_t namelen,
1948                             const Parser_output_section_header* header);
1949
1950   // Finish the output section with the information in the trailer.
1951   void
1952   finish(const Parser_output_section_trailer* trailer);
1953
1954   // Add a symbol to be defined.
1955   void
1956   add_symbol_assignment(const char* name, size_t length, Expression* value,
1957                         bool provide, bool hidden);
1958
1959   // Add an assignment to the special dot symbol.
1960   void
1961   add_dot_assignment(Expression* value);
1962
1963   // Add an assertion.
1964   void
1965   add_assertion(Expression* check, const char* message, size_t messagelen);
1966
1967   // Add a data item to the current output section.
1968   void
1969   add_data(int size, bool is_signed, Expression* val);
1970
1971   // Add a setting for the fill value.
1972   void
1973   add_fill(Expression* val);
1974
1975   // Add an input section specification.
1976   void
1977   add_input_section(const Input_section_spec* spec, bool keep);
1978
1979   // Return whether the output section is relro.
1980   bool
1981   is_relro() const
1982   { return this->is_relro_; }
1983
1984   // Record that the output section is relro.
1985   void
1986   set_is_relro()
1987   { this->is_relro_ = true; }
1988
1989   // Create any required output sections.
1990   void
1991   create_sections(Layout*);
1992
1993   // Add any symbols being defined to the symbol table.
1994   void
1995   add_symbols_to_table(Symbol_table* symtab);
1996
1997   // Finalize symbols and check assertions.
1998   void
1999   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
2000
2001   // Return the output section name to use for an input file name and
2002   // section name.
2003   const char*
2004   output_section_name(const char* file_name, const char* section_name,
2005                       Output_section***, Script_sections::Section_type*,
2006                       bool*, bool);
2007
2008   // Initialize OSP with an output section.
2009   void
2010   orphan_section_init(Orphan_section_placement* osp,
2011                       Script_sections::Elements_iterator p)
2012   { osp->output_section_init(this->name_, this->output_section_, p); }
2013
2014   // Set the section address.
2015   void
2016   set_section_addresses(Symbol_table* symtab, Layout* layout,
2017                         uint64_t* dot_value, uint64_t*,
2018                         uint64_t* load_address);
2019
2020   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2021   // this section is constrained, and the input sections do not match,
2022   // return the constraint, and set *POSD.
2023   Section_constraint
2024   check_constraint(Output_section_definition** posd);
2025
2026   // See if this is the alternate output section for a constrained
2027   // output section.  If it is, transfer the Output_section and return
2028   // true.  Otherwise return false.
2029   bool
2030   alternate_constraint(Output_section_definition*, Section_constraint);
2031
2032   // Get the list of segments to use for an allocated section when
2033   // using a PHDRS clause.
2034   Output_section*
2035   allocate_to_segment(String_list** phdrs_list, bool* orphan);
2036
2037   // Look for an output section by name and return the address, the
2038   // load address, the alignment, and the size.  This is used when an
2039   // expression refers to an output section which was not actually
2040   // created.  This returns true if the section was found, false
2041   // otherwise.
2042   bool
2043   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2044                           uint64_t*) const;
2045
2046   // Return the associated Output_section if there is one.
2047   Output_section*
2048   get_output_section() const
2049   { return this->output_section_; }
2050
2051   // Print the contents to the FILE.  This is for debugging.
2052   void
2053   print(FILE*) const;
2054
2055   // Return the output section type if specified or Script_sections::ST_NONE.
2056   Script_sections::Section_type
2057   section_type() const;
2058
2059   // Store the memory region to use.
2060   void
2061   set_memory_region(Memory_region*, bool set_vma);
2062
2063   void
2064   set_section_vma(Expression* address)
2065   { this->address_ = address; }
2066
2067   void
2068   set_section_lma(Expression* address)
2069   { this->load_address_ = address; }
2070
2071   const std::string&
2072   get_section_name() const
2073   { return this->name_; }
2074
2075  private:
2076   static const char*
2077   script_section_type_name(Script_section_type);
2078
2079   typedef std::vector<Output_section_element*> Output_section_elements;
2080
2081   // The output section name.
2082   std::string name_;
2083   // The address.  This may be NULL.
2084   Expression* address_;
2085   // The load address.  This may be NULL.
2086   Expression* load_address_;
2087   // The alignment.  This may be NULL.
2088   Expression* align_;
2089   // The input section alignment.  This may be NULL.
2090   Expression* subalign_;
2091   // The constraint, if any.
2092   Section_constraint constraint_;
2093   // The fill value.  This may be NULL.
2094   Expression* fill_;
2095   // The list of segments this section should go into.  This may be
2096   // NULL.
2097   String_list* phdrs_;
2098   // The list of elements defining the section.
2099   Output_section_elements elements_;
2100   // The Output_section created for this definition.  This will be
2101   // NULL if none was created.
2102   Output_section* output_section_;
2103   // The address after it has been evaluated.
2104   uint64_t evaluated_address_;
2105   // The load address after it has been evaluated.
2106   uint64_t evaluated_load_address_;
2107   // The alignment after it has been evaluated.
2108   uint64_t evaluated_addralign_;
2109   // The output section is relro.
2110   bool is_relro_;
2111   // The output section type if specified.
2112   enum Script_section_type script_section_type_;
2113 };
2114
2115 // Constructor.
2116
2117 Output_section_definition::Output_section_definition(
2118     const char* name,
2119     size_t namelen,
2120     const Parser_output_section_header* header)
2121   : name_(name, namelen),
2122     address_(header->address),
2123     load_address_(header->load_address),
2124     align_(header->align),
2125     subalign_(header->subalign),
2126     constraint_(header->constraint),
2127     fill_(NULL),
2128     phdrs_(NULL),
2129     elements_(),
2130     output_section_(NULL),
2131     evaluated_address_(0),
2132     evaluated_load_address_(0),
2133     evaluated_addralign_(0),
2134     is_relro_(false),
2135     script_section_type_(header->section_type)
2136 {
2137 }
2138
2139 // Finish an output section.
2140
2141 void
2142 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2143 {
2144   this->fill_ = trailer->fill;
2145   this->phdrs_ = trailer->phdrs;
2146 }
2147
2148 // Add a symbol to be defined.
2149
2150 void
2151 Output_section_definition::add_symbol_assignment(const char* name,
2152                                                  size_t length,
2153                                                  Expression* value,
2154                                                  bool provide,
2155                                                  bool hidden)
2156 {
2157   Output_section_element* p = new Output_section_element_assignment(name,
2158                                                                     length,
2159                                                                     value,
2160                                                                     provide,
2161                                                                     hidden);
2162   this->elements_.push_back(p);
2163 }
2164
2165 // Add an assignment to the special dot symbol.
2166
2167 void
2168 Output_section_definition::add_dot_assignment(Expression* value)
2169 {
2170   Output_section_element* p = new Output_section_element_dot_assignment(value);
2171   this->elements_.push_back(p);
2172 }
2173
2174 // Add an assertion.
2175
2176 void
2177 Output_section_definition::add_assertion(Expression* check,
2178                                          const char* message,
2179                                          size_t messagelen)
2180 {
2181   Output_section_element* p = new Output_section_element_assertion(check,
2182                                                                    message,
2183                                                                    messagelen);
2184   this->elements_.push_back(p);
2185 }
2186
2187 // Add a data item to the current output section.
2188
2189 void
2190 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2191 {
2192   Output_section_element* p = new Output_section_element_data(size, is_signed,
2193                                                               val);
2194   this->elements_.push_back(p);
2195 }
2196
2197 // Add a setting for the fill value.
2198
2199 void
2200 Output_section_definition::add_fill(Expression* val)
2201 {
2202   Output_section_element* p = new Output_section_element_fill(val);
2203   this->elements_.push_back(p);
2204 }
2205
2206 // Add an input section specification.
2207
2208 void
2209 Output_section_definition::add_input_section(const Input_section_spec* spec,
2210                                              bool keep)
2211 {
2212   Output_section_element* p = new Output_section_element_input(spec, keep);
2213   this->elements_.push_back(p);
2214 }
2215
2216 // Create any required output sections.  We need an output section if
2217 // there is a data statement here.
2218
2219 void
2220 Output_section_definition::create_sections(Layout* layout)
2221 {
2222   if (this->output_section_ != NULL)
2223     return;
2224   for (Output_section_elements::const_iterator p = this->elements_.begin();
2225        p != this->elements_.end();
2226        ++p)
2227     {
2228       if ((*p)->needs_output_section())
2229         {
2230           const char* name = this->name_.c_str();
2231           this->output_section_ =
2232             layout->make_output_section_for_script(name, this->section_type());
2233           return;
2234         }
2235     }
2236 }
2237
2238 // Add any symbols being defined to the symbol table.
2239
2240 void
2241 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2242 {
2243   for (Output_section_elements::iterator p = this->elements_.begin();
2244        p != this->elements_.end();
2245        ++p)
2246     (*p)->add_symbols_to_table(symtab);
2247 }
2248
2249 // Finalize symbols and check assertions.
2250
2251 void
2252 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2253                                             const Layout* layout,
2254                                             uint64_t* dot_value)
2255 {
2256   if (this->output_section_ != NULL)
2257     *dot_value = this->output_section_->address();
2258   else
2259     {
2260       uint64_t address = *dot_value;
2261       if (this->address_ != NULL)
2262         {
2263           address = this->address_->eval_with_dot(symtab, layout, true,
2264                                                   *dot_value, NULL,
2265                                                   NULL, NULL, false);
2266         }
2267       if (this->align_ != NULL)
2268         {
2269           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2270                                                        *dot_value, NULL,
2271                                                        NULL, NULL, false);
2272           address = align_address(address, align);
2273         }
2274       *dot_value = address;
2275     }
2276
2277   Output_section* dot_section = this->output_section_;
2278   for (Output_section_elements::iterator p = this->elements_.begin();
2279        p != this->elements_.end();
2280        ++p)
2281     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2282 }
2283
2284 // Return the output section name to use for an input section name.
2285
2286 const char*
2287 Output_section_definition::output_section_name(
2288     const char* file_name,
2289     const char* section_name,
2290     Output_section*** slot,
2291     Script_sections::Section_type* psection_type,
2292     bool* keep,
2293     bool match_input_spec)
2294 {
2295   // If the section is a linker-created output section, just look for a match
2296   // on the output section name.
2297   if (!match_input_spec && this->name_ != "/DISCARD/")
2298     {
2299       if (this->name_ != section_name)
2300         return NULL;
2301       *slot = &this->output_section_;
2302       *psection_type = this->section_type();
2303       return this->name_.c_str();
2304     }
2305
2306   // Ask each element whether it matches NAME.
2307   for (Output_section_elements::const_iterator p = this->elements_.begin();
2308        p != this->elements_.end();
2309        ++p)
2310     {
2311       if ((*p)->match_name(file_name, section_name, keep))
2312         {
2313           // We found a match for NAME, which means that it should go
2314           // into this output section.
2315           *slot = &this->output_section_;
2316           *psection_type = this->section_type();
2317           return this->name_.c_str();
2318         }
2319     }
2320
2321   // We don't know about this section name.
2322   return NULL;
2323 }
2324
2325 // Return true if memory from START to START + LENGTH is contained
2326 // within a memory region.
2327
2328 bool
2329 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2330                                  uint64_t start, uint64_t length) const
2331 {
2332   if (this->memory_regions_ == NULL)
2333     return false;
2334
2335   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2336        mr != this->memory_regions_->end();
2337        ++mr)
2338     {
2339       uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2340       uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2341
2342       if (s <= start
2343           && (s + l) >= (start + length))
2344         return true;
2345     }
2346
2347   return false;
2348 }
2349
2350 // Find a memory region that should be used by a given output SECTION.
2351 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2352 // that used the return memory region.
2353
2354 Memory_region*
2355 Script_sections::find_memory_region(
2356     Output_section_definition* section,
2357     bool find_vma_region,
2358     bool explicit_only,
2359     Output_section_definition** previous_section_return)
2360 {
2361   if (previous_section_return != NULL)
2362     * previous_section_return = NULL;
2363
2364   // Walk the memory regions specified in this script, if any.
2365   if (this->memory_regions_ == NULL)
2366     return NULL;
2367
2368   // The /DISCARD/ section never gets assigned to any region.
2369   if (section->get_section_name() == "/DISCARD/")
2370     return NULL;
2371
2372   Memory_region* first_match = NULL;
2373
2374   // First check to see if a region has been assigned to this section.
2375   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2376        mr != this->memory_regions_->end();
2377        ++mr)
2378     {
2379       if (find_vma_region)
2380         {
2381           for (Memory_region::Section_list::const_iterator s =
2382                  (*mr)->get_vma_section_list_start();
2383                s != (*mr)->get_vma_section_list_end();
2384                ++s)
2385             if ((*s) == section)
2386               {
2387                 (*mr)->set_last_section(section);
2388                 return *mr;
2389               }
2390         }
2391       else
2392         {
2393           for (Memory_region::Section_list::const_iterator s =
2394                  (*mr)->get_lma_section_list_start();
2395                s != (*mr)->get_lma_section_list_end();
2396                ++s)
2397             if ((*s) == section)
2398               {
2399                 (*mr)->set_last_section(section);
2400                 return *mr;
2401               }
2402         }
2403
2404       if (!explicit_only)
2405         {
2406           // Make a note of the first memory region whose attributes
2407           // are compatible with the section.  If we do not find an
2408           // explicit region assignment, then we will return this region.
2409           Output_section* out_sec = section->get_output_section();
2410           if (first_match == NULL
2411               && out_sec != NULL
2412               && (*mr)->attributes_compatible(out_sec->flags(),
2413                                               out_sec->type()))
2414             first_match = *mr;
2415         }
2416     }
2417
2418   // With LMA computations, if an explicit region has not been specified then
2419   // we will want to set the difference between the VMA and the LMA of the
2420   // section were searching for to be the same as the difference between the
2421   // VMA and LMA of the last section to be added to first matched region.
2422   // Hence, if it was asked for, we return a pointer to the last section
2423   // known to be used by the first matched region.
2424   if (first_match != NULL
2425       && previous_section_return != NULL)
2426     *previous_section_return = first_match->get_last_section();
2427
2428   return first_match;
2429 }
2430
2431 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2432 // be NULL if no input sections were mapped to this output section.
2433 // We still have to adjust dot and process symbol assignments.
2434
2435 void
2436 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2437                                                  Layout* layout,
2438                                                  uint64_t* dot_value,
2439                                                  uint64_t* dot_alignment,
2440                                                  uint64_t* load_address)
2441 {
2442   Memory_region* vma_region = NULL;
2443   Memory_region* lma_region = NULL;
2444   Script_sections* script_sections =
2445     layout->script_options()->script_sections();
2446   uint64_t address;
2447   uint64_t old_dot_value = *dot_value;
2448   uint64_t old_load_address = *load_address;
2449
2450   // If input section sorting is requested via --section-ordering-file or
2451   // linker plugins, then do it here.  This is important because we want
2452   // any sorting specified in the linker scripts, which will be done after
2453   // this, to take precedence.  The final order of input sections is then
2454   // guaranteed to be according to the linker script specification.
2455   if (this->output_section_ != NULL
2456       && this->output_section_->input_section_order_specified())
2457     this->output_section_->sort_attached_input_sections();
2458
2459   // Decide the start address for the section.  The algorithm is:
2460   // 1) If an address has been specified in a linker script, use that.
2461   // 2) Otherwise if a memory region has been specified for the section,
2462   //    use the next free address in the region.
2463   // 3) Otherwise if memory regions have been specified find the first
2464   //    region whose attributes are compatible with this section and
2465   //    install it into that region.
2466   // 4) Otherwise use the current location counter.
2467
2468   if (this->output_section_ != NULL
2469       // Check for --section-start.
2470       && parameters->options().section_start(this->output_section_->name(),
2471                                              &address))
2472     ;
2473   else if (this->address_ == NULL)
2474     {
2475       vma_region = script_sections->find_memory_region(this, true, false, NULL);
2476       if (vma_region != NULL)
2477         address = vma_region->get_current_address()->eval(symtab, layout,
2478                                                           false);
2479       else
2480         address = *dot_value;
2481     }
2482   else
2483     {
2484       vma_region = script_sections->find_memory_region(this, true, true, NULL);
2485       address = this->address_->eval_with_dot(symtab, layout, true,
2486                                               *dot_value, NULL, NULL,
2487                                               dot_alignment, false);
2488       if (vma_region != NULL)
2489         vma_region->set_address(address, symtab, layout);
2490     }
2491
2492   uint64_t align;
2493   if (this->align_ == NULL)
2494     {
2495       if (this->output_section_ == NULL)
2496         align = 0;
2497       else
2498         align = this->output_section_->addralign();
2499     }
2500   else
2501     {
2502       Output_section* align_section;
2503       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2504                                           NULL, &align_section, NULL, false);
2505       if (align_section != NULL)
2506         gold_warning(_("alignment of section %s is not absolute"),
2507                      this->name_.c_str());
2508       if (this->output_section_ != NULL)
2509         this->output_section_->set_addralign(align);
2510     }
2511
2512   uint64_t subalign;
2513   if (this->subalign_ == NULL)
2514     subalign = 0;
2515   else
2516     {
2517       Output_section* subalign_section;
2518       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2519                                                 *dot_value, NULL,
2520                                                 &subalign_section, NULL,
2521                                                 false);
2522       if (subalign_section != NULL)
2523         gold_warning(_("subalign of section %s is not absolute"),
2524                      this->name_.c_str());
2525
2526       // Reserve a value of 0 to mean there is no SUBALIGN property.
2527       if (subalign == 0)
2528         subalign = 1;
2529
2530       // The external alignment of the output section must be at least
2531       // as large as that of the input sections.  If there is no
2532       // explicit ALIGN property, we set the output section alignment
2533       // to match the input section alignment.
2534       if (align < subalign || this->align_ == NULL)
2535         {
2536           align = subalign;
2537           this->output_section_->set_addralign(align);
2538         }
2539     }
2540
2541   address = align_address(address, align);
2542
2543   uint64_t start_address = address;
2544
2545   *dot_value = address;
2546
2547   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2548   // forced to zero, regardless of what the linker script wants.
2549   if (this->output_section_ != NULL
2550       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2551           || this->output_section_->is_noload()))
2552     this->output_section_->set_address(address);
2553
2554   this->evaluated_address_ = address;
2555   this->evaluated_addralign_ = align;
2556
2557   uint64_t laddr;
2558
2559   if (this->load_address_ == NULL)
2560     {
2561       Output_section_definition* previous_section;
2562
2563       // Determine if an LMA region has been set for this section.
2564       lma_region = script_sections->find_memory_region(this, false, false,
2565                                                        &previous_section);
2566
2567       if (lma_region != NULL)
2568         {
2569           if (previous_section == NULL)
2570             // The LMA address was explicitly set to the given region.
2571             laddr = lma_region->get_current_address()->eval(symtab, layout,
2572                                                             false);
2573           else
2574             {
2575               // We are not going to use the discovered lma_region, so
2576               // make sure that we do not update it in the code below.
2577               lma_region = NULL;
2578
2579               if (this->address_ != NULL || previous_section == this)
2580                 {
2581                   // Either an explicit VMA address has been set, or an
2582                   // explicit VMA region has been set, so set the LMA equal to
2583                   // the VMA.
2584                   laddr = address;
2585                 }
2586               else
2587                 {
2588                   // The LMA address was not explicitly or implicitly set.
2589                   //
2590                   // We have been given the first memory region that is
2591                   // compatible with the current section and a pointer to the
2592                   // last section to use this region.  Set the LMA of this
2593                   // section so that the difference between its' VMA and LMA
2594                   // is the same as the difference between the VMA and LMA of
2595                   // the last section in the given region.
2596                   laddr = address + (previous_section->evaluated_load_address_
2597                                      - previous_section->evaluated_address_);
2598                 }
2599             }
2600
2601           if (this->output_section_ != NULL)
2602             this->output_section_->set_load_address(laddr);
2603         }
2604       else
2605         {
2606           // Do not set the load address of the output section, if one exists.
2607           // This allows future sections to determine what the load address
2608           // should be.  If none is ever set, it will default to being the
2609           // same as the vma address.
2610           laddr = address;
2611         }
2612     }
2613   else
2614     {
2615       laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2616                                                  *dot_value,
2617                                                  this->output_section_,
2618                                                  NULL, NULL, false);
2619       if (this->output_section_ != NULL)
2620         this->output_section_->set_load_address(laddr);
2621     }
2622
2623   this->evaluated_load_address_ = laddr;
2624
2625   std::string fill;
2626   if (this->fill_ != NULL)
2627     {
2628       // FIXME: The GNU linker supports fill values of arbitrary
2629       // length.
2630       Output_section* fill_section;
2631       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2632                                                      *dot_value,
2633                                                      NULL, &fill_section,
2634                                                      NULL, false);
2635       if (fill_section != NULL)
2636         gold_warning(_("fill of section %s is not absolute"),
2637                      this->name_.c_str());
2638       unsigned char fill_buff[4];
2639       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2640       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2641     }
2642
2643   Input_section_list input_sections;
2644   if (this->output_section_ != NULL)
2645     {
2646       // Get the list of input sections attached to this output
2647       // section.  This will leave the output section with only
2648       // Output_section_data entries.
2649       address += this->output_section_->get_input_sections(address,
2650                                                            fill,
2651                                                            &input_sections);
2652       *dot_value = address;
2653     }
2654
2655   Output_section* dot_section = this->output_section_;
2656   for (Output_section_elements::iterator p = this->elements_.begin();
2657        p != this->elements_.end();
2658        ++p)
2659     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2660                                 subalign, dot_value, dot_alignment,
2661                                 &dot_section, &fill, &input_sections);
2662
2663   gold_assert(input_sections.empty());
2664
2665   if (vma_region != NULL)
2666     {
2667       // Update the VMA region being used by the section now that we know how
2668       // big it is.  Use the current address in the region, rather than
2669       // start_address because that might have been aligned upwards and we
2670       // need to allow for the padding.
2671       Expression* addr = vma_region->get_current_address();
2672       uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2673
2674       vma_region->increment_offset(this->get_section_name(), size,
2675                                    symtab, layout);
2676     }
2677
2678   // If the LMA region is different from the VMA region, then increment the
2679   // offset there as well.  Note that we use the same "dot_value -
2680   // start_address" formula that is used in the load_address assignment below.
2681   if (lma_region != NULL && lma_region != vma_region)
2682     lma_region->increment_offset(this->get_section_name(),
2683                                  *dot_value - start_address,
2684                                  symtab, layout);
2685
2686   // Compute the load address for the following section.
2687   if (this->output_section_ == NULL)
2688     *load_address = *dot_value;
2689   else if (this->load_address_ == NULL)
2690     {
2691       if (lma_region == NULL)
2692         *load_address = *dot_value;
2693       else
2694         *load_address =
2695           lma_region->get_current_address()->eval(symtab, layout, false);
2696     }
2697   else
2698     *load_address = (this->output_section_->load_address()
2699                      + (*dot_value - start_address));
2700
2701   if (this->output_section_ != NULL)
2702     {
2703       if (this->is_relro_)
2704         this->output_section_->set_is_relro();
2705       else
2706         this->output_section_->clear_is_relro();
2707
2708       // If this is a NOLOAD section, keep dot and load address unchanged.
2709       if (this->output_section_->is_noload())
2710         {
2711           *dot_value = old_dot_value;
2712           *load_address = old_load_address;
2713         }
2714     }
2715 }
2716
2717 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2718 // this section is constrained, and the input sections do not match,
2719 // return the constraint, and set *POSD.
2720
2721 Section_constraint
2722 Output_section_definition::check_constraint(Output_section_definition** posd)
2723 {
2724   switch (this->constraint_)
2725     {
2726     case CONSTRAINT_NONE:
2727       return CONSTRAINT_NONE;
2728
2729     case CONSTRAINT_ONLY_IF_RO:
2730       if (this->output_section_ != NULL
2731           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2732         {
2733           *posd = this;
2734           return CONSTRAINT_ONLY_IF_RO;
2735         }
2736       return CONSTRAINT_NONE;
2737
2738     case CONSTRAINT_ONLY_IF_RW:
2739       if (this->output_section_ != NULL
2740           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2741         {
2742           *posd = this;
2743           return CONSTRAINT_ONLY_IF_RW;
2744         }
2745       return CONSTRAINT_NONE;
2746
2747     case CONSTRAINT_SPECIAL:
2748       if (this->output_section_ != NULL)
2749         gold_error(_("SPECIAL constraints are not implemented"));
2750       return CONSTRAINT_NONE;
2751
2752     default:
2753       gold_unreachable();
2754     }
2755 }
2756
2757 // See if this is the alternate output section for a constrained
2758 // output section.  If it is, transfer the Output_section and return
2759 // true.  Otherwise return false.
2760
2761 bool
2762 Output_section_definition::alternate_constraint(
2763     Output_section_definition* posd,
2764     Section_constraint constraint)
2765 {
2766   if (this->name_ != posd->name_)
2767     return false;
2768
2769   switch (constraint)
2770     {
2771     case CONSTRAINT_ONLY_IF_RO:
2772       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2773         return false;
2774       break;
2775
2776     case CONSTRAINT_ONLY_IF_RW:
2777       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2778         return false;
2779       break;
2780
2781     default:
2782       gold_unreachable();
2783     }
2784
2785   // We have found the alternate constraint.  We just need to move
2786   // over the Output_section.  When constraints are used properly,
2787   // THIS should not have an output_section pointer, as all the input
2788   // sections should have matched the other definition.
2789
2790   if (this->output_section_ != NULL)
2791     gold_error(_("mismatched definition for constrained sections"));
2792
2793   this->output_section_ = posd->output_section_;
2794   posd->output_section_ = NULL;
2795
2796   if (this->is_relro_)
2797     this->output_section_->set_is_relro();
2798   else
2799     this->output_section_->clear_is_relro();
2800
2801   return true;
2802 }
2803
2804 // Get the list of segments to use for an allocated section when using
2805 // a PHDRS clause.
2806
2807 Output_section*
2808 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2809                                                bool* orphan)
2810 {
2811   // Update phdrs_list even if we don't have an output section. It
2812   // might be used by the following sections.
2813   if (this->phdrs_ != NULL)
2814     *phdrs_list = this->phdrs_;
2815
2816   if (this->output_section_ == NULL)
2817     return NULL;
2818   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2819     return NULL;
2820   *orphan = false;
2821   return this->output_section_;
2822 }
2823
2824 // Look for an output section by name and return the address, the load
2825 // address, the alignment, and the size.  This is used when an
2826 // expression refers to an output section which was not actually
2827 // created.  This returns true if the section was found, false
2828 // otherwise.
2829
2830 bool
2831 Output_section_definition::get_output_section_info(const char* name,
2832                                                    uint64_t* address,
2833                                                    uint64_t* load_address,
2834                                                    uint64_t* addralign,
2835                                                    uint64_t* size) const
2836 {
2837   if (this->name_ != name)
2838     return false;
2839
2840   if (this->output_section_ != NULL)
2841     {
2842       *address = this->output_section_->address();
2843       if (this->output_section_->has_load_address())
2844         *load_address = this->output_section_->load_address();
2845       else
2846         *load_address = *address;
2847       *addralign = this->output_section_->addralign();
2848       *size = this->output_section_->current_data_size();
2849     }
2850   else
2851     {
2852       *address = this->evaluated_address_;
2853       *load_address = this->evaluated_load_address_;
2854       *addralign = this->evaluated_addralign_;
2855       *size = 0;
2856     }
2857
2858   return true;
2859 }
2860
2861 // Print for debugging.
2862
2863 void
2864 Output_section_definition::print(FILE* f) const
2865 {
2866   fprintf(f, "  %s ", this->name_.c_str());
2867
2868   if (this->address_ != NULL)
2869     {
2870       this->address_->print(f);
2871       fprintf(f, " ");
2872     }
2873
2874   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2875       fprintf(f, "(%s) ",
2876               this->script_section_type_name(this->script_section_type_));
2877
2878   fprintf(f, ": ");
2879
2880   if (this->load_address_ != NULL)
2881     {
2882       fprintf(f, "AT(");
2883       this->load_address_->print(f);
2884       fprintf(f, ") ");
2885     }
2886
2887   if (this->align_ != NULL)
2888     {
2889       fprintf(f, "ALIGN(");
2890       this->align_->print(f);
2891       fprintf(f, ") ");
2892     }
2893
2894   if (this->subalign_ != NULL)
2895     {
2896       fprintf(f, "SUBALIGN(");
2897       this->subalign_->print(f);
2898       fprintf(f, ") ");
2899     }
2900
2901   fprintf(f, "{\n");
2902
2903   for (Output_section_elements::const_iterator p = this->elements_.begin();
2904        p != this->elements_.end();
2905        ++p)
2906     (*p)->print(f);
2907
2908   fprintf(f, "  }");
2909
2910   if (this->fill_ != NULL)
2911     {
2912       fprintf(f, " = ");
2913       this->fill_->print(f);
2914     }
2915
2916   if (this->phdrs_ != NULL)
2917     {
2918       for (String_list::const_iterator p = this->phdrs_->begin();
2919            p != this->phdrs_->end();
2920            ++p)
2921         fprintf(f, " :%s", p->c_str());
2922     }
2923
2924   fprintf(f, "\n");
2925 }
2926
2927 Script_sections::Section_type
2928 Output_section_definition::section_type() const
2929 {
2930   switch (this->script_section_type_)
2931     {
2932     case SCRIPT_SECTION_TYPE_NONE:
2933       return Script_sections::ST_NONE;
2934     case SCRIPT_SECTION_TYPE_NOLOAD:
2935       return Script_sections::ST_NOLOAD;
2936     case SCRIPT_SECTION_TYPE_COPY:
2937     case SCRIPT_SECTION_TYPE_DSECT:
2938     case SCRIPT_SECTION_TYPE_INFO:
2939     case SCRIPT_SECTION_TYPE_OVERLAY:
2940       // There are not really support so we treat them as ST_NONE.  The
2941       // parse should have issued errors for them already.
2942       return Script_sections::ST_NONE;
2943     default:
2944       gold_unreachable();
2945     }
2946 }
2947
2948 // Return the name of a script section type.
2949
2950 const char*
2951 Output_section_definition::script_section_type_name(
2952     Script_section_type script_section_type)
2953 {
2954   switch (script_section_type)
2955     {
2956     case SCRIPT_SECTION_TYPE_NONE:
2957       return "NONE";
2958     case SCRIPT_SECTION_TYPE_NOLOAD:
2959       return "NOLOAD";
2960     case SCRIPT_SECTION_TYPE_DSECT:
2961       return "DSECT";
2962     case SCRIPT_SECTION_TYPE_COPY:
2963       return "COPY";
2964     case SCRIPT_SECTION_TYPE_INFO:
2965       return "INFO";
2966     case SCRIPT_SECTION_TYPE_OVERLAY:
2967       return "OVERLAY";
2968     default:
2969       gold_unreachable();
2970     }
2971 }
2972
2973 void
2974 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2975 {
2976   gold_assert(mr != NULL);
2977   // Add the current section to the specified region's list.
2978   mr->add_section(this, set_vma);
2979 }
2980
2981 // An output section created to hold orphaned input sections.  These
2982 // do not actually appear in linker scripts.  However, for convenience
2983 // when setting the output section addresses, we put a marker to these
2984 // sections in the appropriate place in the list of SECTIONS elements.
2985
2986 class Orphan_output_section : public Sections_element
2987 {
2988  public:
2989   Orphan_output_section(Output_section* os)
2990     : os_(os)
2991   { }
2992
2993   // Return whether the orphan output section is relro.  We can just
2994   // check the output section because we always set the flag, if
2995   // needed, just after we create the Orphan_output_section.
2996   bool
2997   is_relro() const
2998   { return this->os_->is_relro(); }
2999
3000   // Initialize OSP with an output section.  This should have been
3001   // done already.
3002   void
3003   orphan_section_init(Orphan_section_placement*,
3004                       Script_sections::Elements_iterator)
3005   { gold_unreachable(); }
3006
3007   // Set section addresses.
3008   void
3009   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
3010                         uint64_t*);
3011
3012   // Get the list of segments to use for an allocated section when
3013   // using a PHDRS clause.
3014   Output_section*
3015   allocate_to_segment(String_list**, bool*);
3016
3017   // Return the associated Output_section.
3018   Output_section*
3019   get_output_section() const
3020   { return this->os_; }
3021
3022   // Print for debugging.
3023   void
3024   print(FILE* f) const
3025   {
3026     fprintf(f, "  marker for orphaned output section %s\n",
3027             this->os_->name());
3028   }
3029
3030  private:
3031   Output_section* os_;
3032 };
3033
3034 // Set section addresses.
3035
3036 void
3037 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
3038                                              uint64_t* dot_value,
3039                                              uint64_t*,
3040                                              uint64_t* load_address)
3041 {
3042   typedef std::list<Output_section::Input_section> Input_section_list;
3043
3044   bool have_load_address = *load_address != *dot_value;
3045
3046   uint64_t address = *dot_value;
3047   address = align_address(address, this->os_->addralign());
3048
3049   // If input section sorting is requested via --section-ordering-file or
3050   // linker plugins, then do it here.  This is important because we want
3051   // any sorting specified in the linker scripts, which will be done after
3052   // this, to take precedence.  The final order of input sections is then
3053   // guaranteed to be according to the linker script specification.
3054   if (this->os_ != NULL
3055       && this->os_->input_section_order_specified())
3056     this->os_->sort_attached_input_sections();
3057
3058   // For a relocatable link, all orphan sections are put at
3059   // address 0.  In general we expect all sections to be at
3060   // address 0 for a relocatable link, but we permit the linker
3061   // script to override that for specific output sections.
3062   if (parameters->options().relocatable())
3063     {
3064       address = 0;
3065       *load_address = 0;
3066       have_load_address = false;
3067     }
3068
3069   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
3070     {
3071       this->os_->set_address(address);
3072       if (have_load_address)
3073         this->os_->set_load_address(align_address(*load_address,
3074                                                   this->os_->addralign()));
3075     }
3076
3077   Input_section_list input_sections;
3078   address += this->os_->get_input_sections(address, "", &input_sections);
3079
3080   for (Input_section_list::iterator p = input_sections.begin();
3081        p != input_sections.end();
3082        ++p)
3083     {
3084       uint64_t addralign = p->addralign();
3085       if (!p->is_input_section())
3086         p->output_section_data()->finalize_data_size();
3087       uint64_t size = p->data_size();
3088       address = align_address(address, addralign);
3089       this->os_->add_script_input_section(*p);
3090       address += size;
3091     }
3092
3093   if (parameters->options().relocatable())
3094     {
3095       // For a relocatable link, reset DOT_VALUE to 0.
3096       *dot_value = 0;
3097       *load_address = 0;
3098     }
3099   else if (this->os_ == NULL
3100            || (this->os_->flags() & elfcpp::SHF_TLS) == 0
3101            || this->os_->type() != elfcpp::SHT_NOBITS)
3102     {
3103       // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3104       if (!have_load_address)
3105         *load_address = address;
3106       else
3107         *load_address += address - *dot_value;
3108
3109       *dot_value = address;
3110     }
3111 }
3112
3113 // Get the list of segments to use for an allocated section when using
3114 // a PHDRS clause.  If this is an allocated section, return the
3115 // Output_section.  We don't change the list of segments.
3116
3117 Output_section*
3118 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3119 {
3120   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3121     return NULL;
3122   *orphan = true;
3123   return this->os_;
3124 }
3125
3126 // Class Phdrs_element.  A program header from a PHDRS clause.
3127
3128 class Phdrs_element
3129 {
3130  public:
3131   Phdrs_element(const char* name, size_t namelen, unsigned int type,
3132                 bool includes_filehdr, bool includes_phdrs,
3133                 bool is_flags_valid, unsigned int flags,
3134                 Expression* load_address)
3135     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3136       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3137       flags_(flags), load_address_(load_address), load_address_value_(0),
3138       segment_(NULL)
3139   { }
3140
3141   // Return the name of this segment.
3142   const std::string&
3143   name() const
3144   { return this->name_; }
3145
3146   // Return the type of the segment.
3147   unsigned int
3148   type() const
3149   { return this->type_; }
3150
3151   // Whether to include the file header.
3152   bool
3153   includes_filehdr() const
3154   { return this->includes_filehdr_; }
3155
3156   // Whether to include the program headers.
3157   bool
3158   includes_phdrs() const
3159   { return this->includes_phdrs_; }
3160
3161   // Return whether there is a load address.
3162   bool
3163   has_load_address() const
3164   { return this->load_address_ != NULL; }
3165
3166   // Evaluate the load address expression if there is one.
3167   void
3168   eval_load_address(Symbol_table* symtab, Layout* layout)
3169   {
3170     if (this->load_address_ != NULL)
3171       this->load_address_value_ = this->load_address_->eval(symtab, layout,
3172                                                             true);
3173   }
3174
3175   // Return the load address.
3176   uint64_t
3177   load_address() const
3178   {
3179     gold_assert(this->load_address_ != NULL);
3180     return this->load_address_value_;
3181   }
3182
3183   // Create the segment.
3184   Output_segment*
3185   create_segment(Layout* layout)
3186   {
3187     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3188     return this->segment_;
3189   }
3190
3191   // Return the segment.
3192   Output_segment*
3193   segment()
3194   { return this->segment_; }
3195
3196   // Release the segment.
3197   void
3198   release_segment()
3199   { this->segment_ = NULL; }
3200
3201   // Set the segment flags if appropriate.
3202   void
3203   set_flags_if_valid()
3204   {
3205     if (this->is_flags_valid_)
3206       this->segment_->set_flags(this->flags_);
3207   }
3208
3209   // Print for debugging.
3210   void
3211   print(FILE*) const;
3212
3213  private:
3214   // The name used in the script.
3215   std::string name_;
3216   // The type of the segment (PT_LOAD, etc.).
3217   unsigned int type_;
3218   // Whether this segment includes the file header.
3219   bool includes_filehdr_;
3220   // Whether this segment includes the section headers.
3221   bool includes_phdrs_;
3222   // Whether the flags were explicitly specified.
3223   bool is_flags_valid_;
3224   // The flags for this segment (PF_R, etc.) if specified.
3225   unsigned int flags_;
3226   // The expression for the load address for this segment.  This may
3227   // be NULL.
3228   Expression* load_address_;
3229   // The actual load address from evaluating the expression.
3230   uint64_t load_address_value_;
3231   // The segment itself.
3232   Output_segment* segment_;
3233 };
3234
3235 // Print for debugging.
3236
3237 void
3238 Phdrs_element::print(FILE* f) const
3239 {
3240   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
3241   if (this->includes_filehdr_)
3242     fprintf(f, " FILEHDR");
3243   if (this->includes_phdrs_)
3244     fprintf(f, " PHDRS");
3245   if (this->is_flags_valid_)
3246     fprintf(f, " FLAGS(%u)", this->flags_);
3247   if (this->load_address_ != NULL)
3248     {
3249       fprintf(f, " AT(");
3250       this->load_address_->print(f);
3251       fprintf(f, ")");
3252     }
3253   fprintf(f, ";\n");
3254 }
3255
3256 // Add a memory region.
3257
3258 void
3259 Script_sections::add_memory_region(const char* name, size_t namelen,
3260                                    unsigned int attributes,
3261                                    Expression* start, Expression* length)
3262 {
3263   if (this->memory_regions_ == NULL)
3264     this->memory_regions_ = new Memory_regions();
3265   else if (this->find_memory_region(name, namelen))
3266     {
3267       gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3268                   name);
3269       // FIXME: Add a GOLD extension to allow multiple regions with the same
3270       // name.  This would amount to a single region covering disjoint blocks
3271       // of memory, which is useful for embedded devices.
3272     }
3273
3274   // FIXME: Check the length and start values.  Currently we allow
3275   // non-constant expressions for these values, whereas LD does not.
3276
3277   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
3278   // describe a region that packs from the end address going down, rather
3279   // than the start address going up.  This would be useful for embedded
3280   // devices.
3281
3282   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3283                                                      start, length));
3284 }
3285
3286 // Find a memory region.
3287
3288 Memory_region*
3289 Script_sections::find_memory_region(const char* name, size_t namelen)
3290 {
3291   if (this->memory_regions_ == NULL)
3292     return NULL;
3293
3294   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3295        m != this->memory_regions_->end();
3296        ++m)
3297     if ((*m)->name_match(name, namelen))
3298       return *m;
3299
3300   return NULL;
3301 }
3302
3303 // Find a memory region's origin.
3304
3305 Expression*
3306 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3307 {
3308   Memory_region* mr = find_memory_region(name, namelen);
3309   if (mr == NULL)
3310     return NULL;
3311
3312   return mr->start_address();
3313 }
3314
3315 // Find a memory region's length.
3316
3317 Expression*
3318 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3319 {
3320   Memory_region* mr = find_memory_region(name, namelen);
3321   if (mr == NULL)
3322     return NULL;
3323
3324   return mr->length();
3325 }
3326
3327 // Set the memory region to use for the current section.
3328
3329 void
3330 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3331 {
3332   gold_assert(!this->sections_elements_->empty());
3333   this->sections_elements_->back()->set_memory_region(mr, set_vma);
3334 }
3335
3336 // Class Script_sections.
3337
3338 Script_sections::Script_sections()
3339   : saw_sections_clause_(false),
3340     in_sections_clause_(false),
3341     sections_elements_(NULL),
3342     output_section_(NULL),
3343     memory_regions_(NULL),
3344     phdrs_elements_(NULL),
3345     orphan_section_placement_(NULL),
3346     data_segment_align_start_(),
3347     saw_data_segment_align_(false),
3348     saw_relro_end_(false),
3349     saw_segment_start_expression_(false),
3350     segments_created_(false)
3351 {
3352 }
3353
3354 // Start a SECTIONS clause.
3355
3356 void
3357 Script_sections::start_sections()
3358 {
3359   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3360   this->saw_sections_clause_ = true;
3361   this->in_sections_clause_ = true;
3362   if (this->sections_elements_ == NULL)
3363     this->sections_elements_ = new Sections_elements;
3364 }
3365
3366 // Finish a SECTIONS clause.
3367
3368 void
3369 Script_sections::finish_sections()
3370 {
3371   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3372   this->in_sections_clause_ = false;
3373 }
3374
3375 // Add a symbol to be defined.
3376
3377 void
3378 Script_sections::add_symbol_assignment(const char* name, size_t length,
3379                                        Expression* val, bool provide,
3380                                        bool hidden)
3381 {
3382   if (this->output_section_ != NULL)
3383     this->output_section_->add_symbol_assignment(name, length, val,
3384                                                  provide, hidden);
3385   else
3386     {
3387       Sections_element* p = new Sections_element_assignment(name, length,
3388                                                             val, provide,
3389                                                             hidden);
3390       this->sections_elements_->push_back(p);
3391     }
3392 }
3393
3394 // Add an assignment to the special dot symbol.
3395
3396 void
3397 Script_sections::add_dot_assignment(Expression* val)
3398 {
3399   if (this->output_section_ != NULL)
3400     this->output_section_->add_dot_assignment(val);
3401   else
3402     {
3403       // The GNU linker permits assignments to . to appears outside of
3404       // a SECTIONS clause, and treats it as appearing inside, so
3405       // sections_elements_ may be NULL here.
3406       if (this->sections_elements_ == NULL)
3407         {
3408           this->sections_elements_ = new Sections_elements;
3409           this->saw_sections_clause_ = true;
3410         }
3411
3412       Sections_element* p = new Sections_element_dot_assignment(val);
3413       this->sections_elements_->push_back(p);
3414     }
3415 }
3416
3417 // Add an assertion.
3418
3419 void
3420 Script_sections::add_assertion(Expression* check, const char* message,
3421                                size_t messagelen)
3422 {
3423   if (this->output_section_ != NULL)
3424     this->output_section_->add_assertion(check, message, messagelen);
3425   else
3426     {
3427       Sections_element* p = new Sections_element_assertion(check, message,
3428                                                            messagelen);
3429       this->sections_elements_->push_back(p);
3430     }
3431 }
3432
3433 // Start processing entries for an output section.
3434
3435 void
3436 Script_sections::start_output_section(
3437     const char* name,
3438     size_t namelen,
3439     const Parser_output_section_header* header)
3440 {
3441   Output_section_definition* posd = new Output_section_definition(name,
3442                                                                   namelen,
3443                                                                   header);
3444   this->sections_elements_->push_back(posd);
3445   gold_assert(this->output_section_ == NULL);
3446   this->output_section_ = posd;
3447 }
3448
3449 // Stop processing entries for an output section.
3450
3451 void
3452 Script_sections::finish_output_section(
3453     const Parser_output_section_trailer* trailer)
3454 {
3455   gold_assert(this->output_section_ != NULL);
3456   this->output_section_->finish(trailer);
3457   this->output_section_ = NULL;
3458 }
3459
3460 // Add a data item to the current output section.
3461
3462 void
3463 Script_sections::add_data(int size, bool is_signed, Expression* val)
3464 {
3465   gold_assert(this->output_section_ != NULL);
3466   this->output_section_->add_data(size, is_signed, val);
3467 }
3468
3469 // Add a fill value setting to the current output section.
3470
3471 void
3472 Script_sections::add_fill(Expression* val)
3473 {
3474   gold_assert(this->output_section_ != NULL);
3475   this->output_section_->add_fill(val);
3476 }
3477
3478 // Add an input section specification to the current output section.
3479
3480 void
3481 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3482 {
3483   gold_assert(this->output_section_ != NULL);
3484   this->output_section_->add_input_section(spec, keep);
3485 }
3486
3487 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3488 // subsequent output sections may be relro.
3489
3490 void
3491 Script_sections::data_segment_align()
3492 {
3493   if (this->saw_data_segment_align_)
3494     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3495   gold_assert(!this->sections_elements_->empty());
3496   Sections_elements::iterator p = this->sections_elements_->end();
3497   --p;
3498   this->data_segment_align_start_ = p;
3499   this->saw_data_segment_align_ = true;
3500 }
3501
3502 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3503 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3504
3505 void
3506 Script_sections::data_segment_relro_end()
3507 {
3508   if (this->saw_relro_end_)
3509     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3510                  "in a linker script"));
3511   this->saw_relro_end_ = true;
3512
3513   if (!this->saw_data_segment_align_)
3514     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3515   else
3516     {
3517       Sections_elements::iterator p = this->data_segment_align_start_;
3518       for (++p; p != this->sections_elements_->end(); ++p)
3519         (*p)->set_is_relro();
3520     }
3521 }
3522
3523 // Create any required sections.
3524
3525 void
3526 Script_sections::create_sections(Layout* layout)
3527 {
3528   if (!this->saw_sections_clause_)
3529     return;
3530   for (Sections_elements::iterator p = this->sections_elements_->begin();
3531        p != this->sections_elements_->end();
3532        ++p)
3533     (*p)->create_sections(layout);
3534 }
3535
3536 // Add any symbols we are defining to the symbol table.
3537
3538 void
3539 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3540 {
3541   if (!this->saw_sections_clause_)
3542     return;
3543   for (Sections_elements::iterator p = this->sections_elements_->begin();
3544        p != this->sections_elements_->end();
3545        ++p)
3546     (*p)->add_symbols_to_table(symtab);
3547 }
3548
3549 // Finalize symbols and check assertions.
3550
3551 void
3552 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3553 {
3554   if (!this->saw_sections_clause_)
3555     return;
3556   uint64_t dot_value = 0;
3557   for (Sections_elements::iterator p = this->sections_elements_->begin();
3558        p != this->sections_elements_->end();
3559        ++p)
3560     (*p)->finalize_symbols(symtab, layout, &dot_value);
3561 }
3562
3563 // Return the name of the output section to use for an input file name
3564 // and section name.
3565
3566 const char*
3567 Script_sections::output_section_name(
3568     const char* file_name,
3569     const char* section_name,
3570     Output_section*** output_section_slot,
3571     Script_sections::Section_type* psection_type,
3572     bool* keep,
3573     bool is_input_section)
3574 {
3575   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3576        p != this->sections_elements_->end();
3577        ++p)
3578     {
3579       const char* ret = (*p)->output_section_name(file_name, section_name,
3580                                                   output_section_slot,
3581                                                   psection_type, keep,
3582                                                   is_input_section);
3583
3584       if (ret != NULL)
3585         {
3586           // The special name /DISCARD/ means that the input section
3587           // should be discarded.
3588           if (strcmp(ret, "/DISCARD/") == 0)
3589             {
3590               *output_section_slot = NULL;
3591               *psection_type = Script_sections::ST_NONE;
3592               return NULL;
3593             }
3594           return ret;
3595         }
3596     }
3597
3598   // We have an orphan section.
3599   *output_section_slot = NULL;
3600   *psection_type = Script_sections::ST_NONE;
3601   *keep = false;
3602
3603   General_options::Orphan_handling orphan_handling =
3604       parameters->options().orphan_handling_enum();
3605   if (orphan_handling == General_options::ORPHAN_DISCARD)
3606     return NULL;
3607   if (orphan_handling == General_options::ORPHAN_ERROR)
3608     {
3609       if (file_name == NULL)
3610         gold_error(_("unplaced orphan section '%s'"), section_name);
3611       else
3612         gold_error(_("unplaced orphan section '%s' from '%s'"),
3613                    section_name, file_name);
3614       return NULL;
3615     }
3616   if (orphan_handling == General_options::ORPHAN_WARN)
3617     {
3618       if (file_name == NULL)
3619         gold_warning(_("orphan section '%s' is being placed in section '%s'"),
3620                      section_name, section_name);
3621       else
3622         gold_warning(_("orphan section '%s' from '%s' is being placed "
3623                        "in section '%s'"),
3624                      section_name, file_name, section_name);
3625     }
3626
3627   // If we couldn't find a mapping for the name, the output section
3628   // gets the name of the input section.
3629   return section_name;
3630 }
3631
3632 // Place a marker for an orphan output section into the SECTIONS
3633 // clause.
3634
3635 void
3636 Script_sections::place_orphan(Output_section* os)
3637 {
3638   Orphan_section_placement* osp = this->orphan_section_placement_;
3639   if (osp == NULL)
3640     {
3641       // Initialize the Orphan_section_placement structure.
3642       osp = new Orphan_section_placement();
3643       for (Sections_elements::iterator p = this->sections_elements_->begin();
3644            p != this->sections_elements_->end();
3645            ++p)
3646         (*p)->orphan_section_init(osp, p);
3647       gold_assert(!this->sections_elements_->empty());
3648       Sections_elements::iterator last = this->sections_elements_->end();
3649       --last;
3650       osp->last_init(last);
3651       this->orphan_section_placement_ = osp;
3652     }
3653
3654   Orphan_output_section* orphan = new Orphan_output_section(os);
3655
3656   // Look for where to put ORPHAN.
3657   Sections_elements::iterator* where;
3658   if (osp->find_place(os, &where))
3659     {
3660       if ((**where)->is_relro())
3661         os->set_is_relro();
3662       else
3663         os->clear_is_relro();
3664
3665       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3666       // so that the next one goes after this one.
3667       Sections_elements::iterator p = *where;
3668       gold_assert(p != this->sections_elements_->end());
3669       ++p;
3670       *where = this->sections_elements_->insert(p, orphan);
3671     }
3672   else
3673     {
3674       os->clear_is_relro();
3675       // We don't have a place to put this orphan section.  Put it,
3676       // and all other sections like it, at the end, but before the
3677       // sections which always come at the end.
3678       Sections_elements::iterator last = osp->last_place();
3679       *where = this->sections_elements_->insert(last, orphan);
3680     }
3681
3682   if ((os->flags() & elfcpp::SHF_ALLOC) != 0)
3683     osp->update_last_alloc(*where);
3684 }
3685
3686 // Set the addresses of all the output sections.  Walk through all the
3687 // elements, tracking the dot symbol.  Apply assignments which set
3688 // absolute symbol values, in case they are used when setting dot.
3689 // Fill in data statement values.  As we find output sections, set the
3690 // address, set the address of all associated input sections, and
3691 // update dot.  Return the segment which should hold the file header
3692 // and segment headers, if any.
3693
3694 Output_segment*
3695 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3696 {
3697   gold_assert(this->saw_sections_clause_);
3698
3699   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3700   // for our representation.
3701   for (Sections_elements::iterator p = this->sections_elements_->begin();
3702        p != this->sections_elements_->end();
3703        ++p)
3704     {
3705       Output_section_definition* posd;
3706       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3707       if (failed_constraint != CONSTRAINT_NONE)
3708         {
3709           Sections_elements::iterator q;
3710           for (q = this->sections_elements_->begin();
3711                q != this->sections_elements_->end();
3712                ++q)
3713             {
3714               if (q != p)
3715                 {
3716                   if ((*q)->alternate_constraint(posd, failed_constraint))
3717                     break;
3718                 }
3719             }
3720
3721           if (q == this->sections_elements_->end())
3722             gold_error(_("no matching section constraint"));
3723         }
3724     }
3725
3726   // Force the alignment of the first TLS section to be the maximum
3727   // alignment of all TLS sections.
3728   Output_section* first_tls = NULL;
3729   uint64_t tls_align = 0;
3730   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3731        p != this->sections_elements_->end();
3732        ++p)
3733     {
3734       Output_section* os = (*p)->get_output_section();
3735       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3736         {
3737           if (first_tls == NULL)
3738             first_tls = os;
3739           if (os->addralign() > tls_align)
3740             tls_align = os->addralign();
3741         }
3742     }
3743   if (first_tls != NULL)
3744     first_tls->set_addralign(tls_align);
3745
3746   // For a relocatable link, we implicitly set dot to zero.
3747   uint64_t dot_value = 0;
3748   uint64_t dot_alignment = 0;
3749   uint64_t load_address = 0;
3750
3751   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3752   // to set section addresses.  If the script has any SEGMENT_START
3753   // expression, we do not set the section addresses.
3754   bool use_tsection_options =
3755     (!this->saw_segment_start_expression_
3756      && (parameters->options().user_set_Ttext()
3757          || parameters->options().user_set_Tdata()
3758          || parameters->options().user_set_Tbss()));
3759
3760   for (Sections_elements::iterator p = this->sections_elements_->begin();
3761        p != this->sections_elements_->end();
3762        ++p)
3763     {
3764       Output_section* os = (*p)->get_output_section();
3765
3766       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3767       // the special sections by names and doing dot assignments.
3768       if (use_tsection_options
3769           && os != NULL
3770           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3771         {
3772           uint64_t new_dot_value = dot_value;
3773
3774           if (parameters->options().user_set_Ttext()
3775               && strcmp(os->name(), ".text") == 0)
3776             new_dot_value = parameters->options().Ttext();
3777           else if (parameters->options().user_set_Tdata()
3778               && strcmp(os->name(), ".data") == 0)
3779             new_dot_value = parameters->options().Tdata();
3780           else if (parameters->options().user_set_Tbss()
3781               && strcmp(os->name(), ".bss") == 0)
3782             new_dot_value = parameters->options().Tbss();
3783
3784           // Update dot and load address if necessary.
3785           if (new_dot_value < dot_value)
3786             gold_error(_("dot may not move backward"));
3787           else if (new_dot_value != dot_value)
3788             {
3789               dot_value = new_dot_value;
3790               load_address = new_dot_value;
3791             }
3792         }
3793
3794       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3795                                   &load_address);
3796     }
3797
3798   if (this->phdrs_elements_ != NULL)
3799     {
3800       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3801            p != this->phdrs_elements_->end();
3802            ++p)
3803         (*p)->eval_load_address(symtab, layout);
3804     }
3805
3806   return this->create_segments(layout, dot_alignment);
3807 }
3808
3809 // Sort the sections in order to put them into segments.
3810
3811 class Sort_output_sections
3812 {
3813  public:
3814   Sort_output_sections(const Script_sections::Sections_elements* elements)
3815    : elements_(elements)
3816   { }
3817
3818   bool
3819   operator()(const Output_section* os1, const Output_section* os2) const;
3820
3821  private:
3822   int
3823   script_compare(const Output_section* os1, const Output_section* os2) const;
3824
3825  private:
3826   const Script_sections::Sections_elements* elements_;
3827 };
3828
3829 bool
3830 Sort_output_sections::operator()(const Output_section* os1,
3831                                  const Output_section* os2) const
3832 {
3833   // Sort first by the load address.
3834   uint64_t lma1 = (os1->has_load_address()
3835                    ? os1->load_address()
3836                    : os1->address());
3837   uint64_t lma2 = (os2->has_load_address()
3838                    ? os2->load_address()
3839                    : os2->address());
3840   if (lma1 != lma2)
3841     return lma1 < lma2;
3842
3843   // Then sort by the virtual address.
3844   if (os1->address() != os2->address())
3845     return os1->address() < os2->address();
3846
3847   // If the linker script says which of these sections is first, go
3848   // with what it says.
3849   int i = this->script_compare(os1, os2);
3850   if (i != 0)
3851     return i < 0;
3852
3853   // Sort PROGBITS before NOBITS.
3854   bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3855   bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3856   if (nobits1 != nobits2)
3857     return nobits2;
3858
3859   // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3860   // beginning.
3861   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3862   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3863   if (tls1 != tls2)
3864     return nobits1 ? tls1 : tls2;
3865
3866   // Sort non-NOLOAD before NOLOAD.
3867   if (os1->is_noload() && !os2->is_noload())
3868     return true;
3869   if (!os1->is_noload() && os2->is_noload())
3870     return true;
3871
3872   // The sections seem practically identical.  Sort by name to get a
3873   // stable sort.
3874   return os1->name() < os2->name();
3875 }
3876
3877 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3878 // if either OS1 or OS2 is not mentioned.  This ensures that we keep
3879 // empty sections in the order in which they appear in a linker
3880 // script.
3881
3882 int
3883 Sort_output_sections::script_compare(const Output_section* os1,
3884                                      const Output_section* os2) const
3885 {
3886   if (this->elements_ == NULL)
3887     return 0;
3888
3889   bool found_os1 = false;
3890   bool found_os2 = false;
3891   for (Script_sections::Sections_elements::const_iterator
3892          p = this->elements_->begin();
3893        p != this->elements_->end();
3894        ++p)
3895     {
3896       if (os2 == (*p)->get_output_section())
3897         {
3898           if (found_os1)
3899             return -1;
3900           found_os2 = true;
3901         }
3902       else if (os1 == (*p)->get_output_section())
3903         {
3904           if (found_os2)
3905             return 1;
3906           found_os1 = true;
3907         }
3908     }
3909
3910   return 0;
3911 }
3912
3913 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3914 // We treat a section with the SHF_TLS flag set as taking up space
3915 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3916 // space for them in the file.
3917
3918 bool
3919 Script_sections::is_bss_section(const Output_section* os)
3920 {
3921   return (os->type() == elfcpp::SHT_NOBITS
3922           && (os->flags() & elfcpp::SHF_TLS) == 0);
3923 }
3924
3925 // Return the size taken by the file header and the program headers.
3926
3927 size_t
3928 Script_sections::total_header_size(Layout* layout) const
3929 {
3930   size_t segment_count = layout->segment_count();
3931   size_t file_header_size;
3932   size_t segment_headers_size;
3933   if (parameters->target().get_size() == 32)
3934     {
3935       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3936       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3937     }
3938   else if (parameters->target().get_size() == 64)
3939     {
3940       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3941       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3942     }
3943   else
3944     gold_unreachable();
3945
3946   return file_header_size + segment_headers_size;
3947 }
3948
3949 // Return the amount we have to subtract from the LMA to accommodate
3950 // headers of the given size.  The complication is that the file
3951 // header have to be at the start of a page, as otherwise it will not
3952 // be at the start of the file.
3953
3954 uint64_t
3955 Script_sections::header_size_adjustment(uint64_t lma,
3956                                         size_t sizeof_headers) const
3957 {
3958   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3959   uint64_t hdr_lma = lma - sizeof_headers;
3960   hdr_lma &= ~(abi_pagesize - 1);
3961   return lma - hdr_lma;
3962 }
3963
3964 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3965 // the segment which should hold the file header and segment headers,
3966 // if any.
3967
3968 Output_segment*
3969 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3970 {
3971   gold_assert(this->saw_sections_clause_);
3972
3973   if (parameters->options().relocatable())
3974     return NULL;
3975
3976   if (this->saw_phdrs_clause())
3977     return create_segments_from_phdrs_clause(layout, dot_alignment);
3978
3979   Layout::Section_list sections;
3980   layout->get_allocated_sections(&sections);
3981
3982   // Sort the sections by address.
3983   std::stable_sort(sections.begin(), sections.end(),
3984                    Sort_output_sections(this->sections_elements_));
3985
3986   this->create_note_and_tls_segments(layout, &sections);
3987
3988   // Walk through the sections adding them to PT_LOAD segments.
3989   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3990   Output_segment* first_seg = NULL;
3991   Output_segment* current_seg = NULL;
3992   bool is_current_seg_readonly = true;
3993   uint64_t last_vma = 0;
3994   uint64_t last_lma = 0;
3995   uint64_t last_size = 0;
3996   bool in_bss = false;
3997   for (Layout::Section_list::iterator p = sections.begin();
3998        p != sections.end();
3999        ++p)
4000     {
4001       const uint64_t vma = (*p)->address();
4002       const uint64_t lma = ((*p)->has_load_address()
4003                             ? (*p)->load_address()
4004                             : vma);
4005       const uint64_t size = (*p)->current_data_size();
4006
4007       bool need_new_segment;
4008       if (current_seg == NULL)
4009         need_new_segment = true;
4010       else if (lma - vma != last_lma - last_vma)
4011         {
4012           // This section has a different LMA relationship than the
4013           // last one; we need a new segment.
4014           need_new_segment = true;
4015         }
4016       else if (align_address(last_lma + last_size, abi_pagesize)
4017                < align_address(lma, abi_pagesize))
4018         {
4019           // Putting this section in the segment would require
4020           // skipping a page.
4021           need_new_segment = true;
4022         }
4023       else if (in_bss && !is_bss_section(*p))
4024         {
4025           // A non-BSS section can not follow a BSS section in the
4026           // same segment.
4027           need_new_segment = true;
4028         }
4029       else if (is_current_seg_readonly
4030                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
4031                && !parameters->options().omagic())
4032         {
4033           // Don't put a writable section in the same segment as a
4034           // non-writable section.
4035           need_new_segment = true;
4036         }
4037       else
4038         {
4039           // Otherwise, reuse the existing segment.
4040           need_new_segment = false;
4041         }
4042
4043       elfcpp::Elf_Word seg_flags =
4044         Layout::section_flags_to_segment((*p)->flags());
4045
4046       if (need_new_segment)
4047         {
4048           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4049                                                     seg_flags);
4050           current_seg->set_addresses(vma, lma);
4051           current_seg->set_minimum_p_align(dot_alignment);
4052           if (first_seg == NULL)
4053             first_seg = current_seg;
4054           is_current_seg_readonly = true;
4055           in_bss = false;
4056         }
4057
4058       current_seg->add_output_section_to_load(layout, *p, seg_flags);
4059
4060       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
4061         is_current_seg_readonly = false;
4062
4063       if (is_bss_section(*p) && size > 0)
4064         in_bss = true;
4065
4066       last_vma = vma;
4067       last_lma = lma;
4068       last_size = size;
4069     }
4070
4071   // An ELF program should work even if the program headers are not in
4072   // a PT_LOAD segment.  However, it appears that the Linux kernel
4073   // does not set the AT_PHDR auxiliary entry in that case.  It sets
4074   // the load address to p_vaddr - p_offset of the first PT_LOAD
4075   // segment.  It then sets AT_PHDR to the load address plus the
4076   // offset to the program headers, e_phoff in the file header.  This
4077   // fails when the program headers appear in the file before the
4078   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
4079   // segment to hold the file header and the program headers.  This is
4080   // effectively what the GNU linker does, and it is slightly more
4081   // efficient in any case.  We try to use the first PT_LOAD segment
4082   // if we can, otherwise we make a new one.
4083
4084   if (first_seg == NULL)
4085     return NULL;
4086
4087   // -n or -N mean that the program is not demand paged and there is
4088   // no need to put the program headers in a PT_LOAD segment.
4089   if (parameters->options().nmagic() || parameters->options().omagic())
4090     return NULL;
4091
4092   size_t sizeof_headers = this->total_header_size(layout);
4093
4094   uint64_t vma = first_seg->vaddr();
4095   uint64_t lma = first_seg->paddr();
4096
4097   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
4098
4099   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
4100     {
4101       first_seg->set_addresses(vma - subtract, lma - subtract);
4102       return first_seg;
4103     }
4104
4105   // If there is no room to squeeze in the headers, then punt.  The
4106   // resulting executable probably won't run on GNU/Linux, but we
4107   // trust that the user knows what they are doing.
4108   if (lma < subtract || vma < subtract)
4109     return NULL;
4110
4111   // If memory regions have been specified and the address range
4112   // we are about to use is not contained within any region then
4113   // issue a warning message about the segment we are going to
4114   // create.  It will be outside of any region and so possibly
4115   // using non-existent or protected memory.  We test LMA rather
4116   // than VMA since we assume that the headers will never be
4117   // relocated.
4118   if (this->memory_regions_ != NULL
4119       && !this->block_in_region (NULL, layout, lma - subtract, subtract))
4120     gold_warning(_("creating a segment to contain the file and program"
4121                    " headers outside of any MEMORY region"));
4122
4123   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4124                                                          elfcpp::PF_R);
4125   load_seg->set_addresses(vma - subtract, lma - subtract);
4126
4127   return load_seg;
4128 }
4129
4130 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4131 // segment if there are any SHT_TLS sections.
4132
4133 void
4134 Script_sections::create_note_and_tls_segments(
4135     Layout* layout,
4136     const Layout::Section_list* sections)
4137 {
4138   gold_assert(!this->saw_phdrs_clause());
4139
4140   bool saw_tls = false;
4141   for (Layout::Section_list::const_iterator p = sections->begin();
4142        p != sections->end();
4143        ++p)
4144     {
4145       if ((*p)->type() == elfcpp::SHT_NOTE)
4146         {
4147           elfcpp::Elf_Word seg_flags =
4148             Layout::section_flags_to_segment((*p)->flags());
4149           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4150                                                              seg_flags);
4151           oseg->add_output_section_to_nonload(*p, seg_flags);
4152
4153           // Incorporate any subsequent SHT_NOTE sections, in the
4154           // hopes that the script is sensible.
4155           Layout::Section_list::const_iterator pnext = p + 1;
4156           while (pnext != sections->end()
4157                  && (*pnext)->type() == elfcpp::SHT_NOTE)
4158             {
4159               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4160               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4161               p = pnext;
4162               ++pnext;
4163             }
4164         }
4165
4166       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4167         {
4168           if (saw_tls)
4169             gold_error(_("TLS sections are not adjacent"));
4170
4171           elfcpp::Elf_Word seg_flags =
4172             Layout::section_flags_to_segment((*p)->flags());
4173           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4174                                                              seg_flags);
4175           oseg->add_output_section_to_nonload(*p, seg_flags);
4176
4177           Layout::Section_list::const_iterator pnext = p + 1;
4178           while (pnext != sections->end()
4179                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4180             {
4181               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4182               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4183               p = pnext;
4184               ++pnext;
4185             }
4186
4187           saw_tls = true;
4188         }
4189
4190       // If we see a section named .interp then put the .interp section
4191       // in a PT_INTERP segment.
4192       // This is for GNU ld compatibility.
4193       if (strcmp((*p)->name(), ".interp") == 0)
4194         {
4195           elfcpp::Elf_Word seg_flags =
4196             Layout::section_flags_to_segment((*p)->flags());
4197           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4198                                                              seg_flags);
4199           oseg->add_output_section_to_nonload(*p, seg_flags);
4200         }
4201     }
4202
4203     this->segments_created_ = true;
4204 }
4205
4206 // Add a program header.  The PHDRS clause is syntactically distinct
4207 // from the SECTIONS clause, but we implement it with the SECTIONS
4208 // support because PHDRS is useless if there is no SECTIONS clause.
4209
4210 void
4211 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4212                           bool includes_filehdr, bool includes_phdrs,
4213                           bool is_flags_valid, unsigned int flags,
4214                           Expression* load_address)
4215 {
4216   if (this->phdrs_elements_ == NULL)
4217     this->phdrs_elements_ = new Phdrs_elements();
4218   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4219                                                      includes_filehdr,
4220                                                      includes_phdrs,
4221                                                      is_flags_valid, flags,
4222                                                      load_address));
4223 }
4224
4225 // Return the number of segments we expect to create based on the
4226 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
4227
4228 size_t
4229 Script_sections::expected_segment_count(const Layout* layout) const
4230 {
4231   // If we've already created the segments, we won't be adding any more.
4232   if (this->segments_created_)
4233     return 0;
4234
4235   if (this->saw_phdrs_clause())
4236     return this->phdrs_elements_->size();
4237
4238   Layout::Section_list sections;
4239   layout->get_allocated_sections(&sections);
4240
4241   // We assume that we will need two PT_LOAD segments.
4242   size_t ret = 2;
4243
4244   bool saw_note = false;
4245   bool saw_tls = false;
4246   bool saw_interp = false;
4247   for (Layout::Section_list::const_iterator p = sections.begin();
4248        p != sections.end();
4249        ++p)
4250     {
4251       if ((*p)->type() == elfcpp::SHT_NOTE)
4252         {
4253           // Assume that all note sections will fit into a single
4254           // PT_NOTE segment.
4255           if (!saw_note)
4256             {
4257               ++ret;
4258               saw_note = true;
4259             }
4260         }
4261       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4262         {
4263           // There can only be one PT_TLS segment.
4264           if (!saw_tls)
4265             {
4266               ++ret;
4267               saw_tls = true;
4268             }
4269         }
4270       else if (strcmp((*p)->name(), ".interp") == 0)
4271         {
4272           // There can only be one PT_INTERP segment.
4273           if (!saw_interp)
4274             {
4275               ++ret;
4276               saw_interp = true;
4277             }
4278         }
4279     }
4280
4281   return ret;
4282 }
4283
4284 // Create the segments from a PHDRS clause.  Return the segment which
4285 // should hold the file header and program headers, if any.
4286
4287 Output_segment*
4288 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4289                                                    uint64_t dot_alignment)
4290 {
4291   this->attach_sections_using_phdrs_clause(layout);
4292   return this->set_phdrs_clause_addresses(layout, dot_alignment);
4293 }
4294
4295 // Create the segments from the PHDRS clause, and put the output
4296 // sections in them.
4297
4298 void
4299 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4300 {
4301   typedef std::map<std::string, Output_segment*> Name_to_segment;
4302   Name_to_segment name_to_segment;
4303   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4304        p != this->phdrs_elements_->end();
4305        ++p)
4306     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4307   this->segments_created_ = true;
4308
4309   // Walk through the output sections and attach them to segments.
4310   // Output sections in the script which do not list segments are
4311   // attached to the same set of segments as the immediately preceding
4312   // output section.
4313
4314   String_list* phdr_names = NULL;
4315   bool load_segments_only = false;
4316   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4317        p != this->sections_elements_->end();
4318        ++p)
4319     {
4320       bool is_orphan;
4321       String_list* old_phdr_names = phdr_names;
4322       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4323       if (os == NULL)
4324         continue;
4325
4326       elfcpp::Elf_Word seg_flags =
4327         Layout::section_flags_to_segment(os->flags());
4328
4329       if (phdr_names == NULL)
4330         {
4331           // Don't worry about empty orphan sections.
4332           if (is_orphan && os->current_data_size() > 0)
4333             gold_error(_("allocated section %s not in any segment"),
4334                        os->name());
4335
4336           // To avoid later crashes drop this section into the first
4337           // PT_LOAD segment.
4338           for (Phdrs_elements::const_iterator ppe =
4339                  this->phdrs_elements_->begin();
4340                ppe != this->phdrs_elements_->end();
4341                ++ppe)
4342             {
4343               Output_segment* oseg = (*ppe)->segment();
4344               if (oseg->type() == elfcpp::PT_LOAD)
4345                 {
4346                   oseg->add_output_section_to_load(layout, os, seg_flags);
4347                   break;
4348                 }
4349             }
4350
4351           continue;
4352         }
4353
4354       // We see a list of segments names.  Disable PT_LOAD segment only
4355       // filtering.
4356       if (old_phdr_names != phdr_names)
4357         load_segments_only = false;
4358
4359       // If this is an orphan section--one that was not explicitly
4360       // mentioned in the linker script--then it should not inherit
4361       // any segment type other than PT_LOAD.  Otherwise, e.g., the
4362       // PT_INTERP segment will pick up following orphan sections,
4363       // which does not make sense.  If this is not an orphan section,
4364       // we trust the linker script.
4365       if (is_orphan)
4366         {
4367           // Enable PT_LOAD segments only filtering until we see another
4368           // list of segment names.
4369           load_segments_only = true;
4370         }
4371
4372       bool in_load_segment = false;
4373       for (String_list::const_iterator q = phdr_names->begin();
4374            q != phdr_names->end();
4375            ++q)
4376         {
4377           Name_to_segment::const_iterator r = name_to_segment.find(*q);
4378           if (r == name_to_segment.end())
4379             gold_error(_("no segment %s"), q->c_str());
4380           else
4381             {
4382               if (load_segments_only
4383                   && r->second->type() != elfcpp::PT_LOAD)
4384                 continue;
4385
4386               if (r->second->type() != elfcpp::PT_LOAD)
4387                 r->second->add_output_section_to_nonload(os, seg_flags);
4388               else
4389                 {
4390                   r->second->add_output_section_to_load(layout, os, seg_flags);
4391                   if (in_load_segment)
4392                     gold_error(_("section in two PT_LOAD segments"));
4393                   in_load_segment = true;
4394                 }
4395             }
4396         }
4397
4398       if (!in_load_segment)
4399         gold_error(_("allocated section not in any PT_LOAD segment"));
4400     }
4401 }
4402
4403 // Set the addresses for segments created from a PHDRS clause.  Return
4404 // the segment which should hold the file header and program headers,
4405 // if any.
4406
4407 Output_segment*
4408 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4409                                             uint64_t dot_alignment)
4410 {
4411   Output_segment* load_seg = NULL;
4412   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4413        p != this->phdrs_elements_->end();
4414        ++p)
4415     {
4416       // Note that we have to set the flags after adding the output
4417       // sections to the segment, as adding an output segment can
4418       // change the flags.
4419       (*p)->set_flags_if_valid();
4420
4421       Output_segment* oseg = (*p)->segment();
4422
4423       if (oseg->type() != elfcpp::PT_LOAD)
4424         {
4425           // The addresses of non-PT_LOAD segments are set from the
4426           // PT_LOAD segments.
4427           if ((*p)->has_load_address())
4428             gold_error(_("may only specify load address for PT_LOAD segment"));
4429           continue;
4430         }
4431
4432       oseg->set_minimum_p_align(dot_alignment);
4433
4434       // The output sections should have addresses from the SECTIONS
4435       // clause.  The addresses don't have to be in order, so find the
4436       // one with the lowest load address.  Use that to set the
4437       // address of the segment.
4438
4439       Output_section* osec = oseg->section_with_lowest_load_address();
4440       if (osec == NULL)
4441         {
4442           oseg->set_addresses(0, 0);
4443           continue;
4444         }
4445
4446       uint64_t vma = osec->address();
4447       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4448
4449       // Override the load address of the section with the load
4450       // address specified for the segment.
4451       if ((*p)->has_load_address())
4452         {
4453           if (osec->has_load_address())
4454             gold_warning(_("PHDRS load address overrides "
4455                            "section %s load address"),
4456                          osec->name());
4457
4458           lma = (*p)->load_address();
4459         }
4460
4461       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4462       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4463         {
4464           // We could support this if we wanted to.
4465           gold_error(_("using only one of FILEHDR and PHDRS is "
4466                        "not currently supported"));
4467         }
4468       if (headers)
4469         {
4470           size_t sizeof_headers = this->total_header_size(layout);
4471           uint64_t subtract = this->header_size_adjustment(lma,
4472                                                            sizeof_headers);
4473           if (lma >= subtract && vma >= subtract)
4474             {
4475               lma -= subtract;
4476               vma -= subtract;
4477             }
4478           else
4479             {
4480               gold_error(_("sections loaded on first page without room "
4481                            "for file and program headers "
4482                            "are not supported"));
4483             }
4484
4485           if (load_seg != NULL)
4486             gold_error(_("using FILEHDR and PHDRS on more than one "
4487                          "PT_LOAD segment is not currently supported"));
4488           load_seg = oseg;
4489         }
4490
4491       oseg->set_addresses(vma, lma);
4492     }
4493
4494   return load_seg;
4495 }
4496
4497 // Add the file header and segment headers to non-load segments
4498 // specified in the PHDRS clause.
4499
4500 void
4501 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4502                                       Output_data* segment_headers)
4503 {
4504   gold_assert(this->saw_phdrs_clause());
4505   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4506        p != this->phdrs_elements_->end();
4507        ++p)
4508     {
4509       if ((*p)->type() != elfcpp::PT_LOAD)
4510         {
4511           if ((*p)->includes_phdrs())
4512             (*p)->segment()->add_initial_output_data(segment_headers);
4513           if ((*p)->includes_filehdr())
4514             (*p)->segment()->add_initial_output_data(file_header);
4515         }
4516     }
4517 }
4518
4519 // Look for an output section by name and return the address, the load
4520 // address, the alignment, and the size.  This is used when an
4521 // expression refers to an output section which was not actually
4522 // created.  This returns true if the section was found, false
4523 // otherwise.
4524
4525 bool
4526 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4527                                          uint64_t* load_address,
4528                                          uint64_t* addralign,
4529                                          uint64_t* size) const
4530 {
4531   if (!this->saw_sections_clause_)
4532     return false;
4533   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4534        p != this->sections_elements_->end();
4535        ++p)
4536     if ((*p)->get_output_section_info(name, address, load_address, addralign,
4537                                       size))
4538       return true;
4539   return false;
4540 }
4541
4542 // Release all Output_segments.  This remove all pointers to all
4543 // Output_segments.
4544
4545 void
4546 Script_sections::release_segments()
4547 {
4548   if (this->saw_phdrs_clause())
4549     {
4550       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4551            p != this->phdrs_elements_->end();
4552            ++p)
4553         (*p)->release_segment();
4554     }
4555   this->segments_created_ = false;
4556 }
4557
4558 // Print the SECTIONS clause to F for debugging.
4559
4560 void
4561 Script_sections::print(FILE* f) const
4562 {
4563   if (this->phdrs_elements_ != NULL)
4564     {
4565       fprintf(f, "PHDRS {\n");
4566       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4567            p != this->phdrs_elements_->end();
4568            ++p)
4569         (*p)->print(f);
4570       fprintf(f, "}\n");
4571     }
4572
4573   if (this->memory_regions_ != NULL)
4574     {
4575       fprintf(f, "MEMORY {\n");
4576       for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4577            m != this->memory_regions_->end();
4578            ++m)
4579         (*m)->print(f);
4580       fprintf(f, "}\n");
4581     }
4582
4583   if (!this->saw_sections_clause_)
4584     return;
4585
4586   fprintf(f, "SECTIONS {\n");
4587
4588   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4589        p != this->sections_elements_->end();
4590        ++p)
4591     (*p)->print(f);
4592
4593   fprintf(f, "}\n");
4594 }
4595
4596 } // End namespace gold.