Remove partial implementation that was never completed. This was
[external/binutils.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50  public:
51   Sections_element()
52   { }
53
54   virtual ~Sections_element()
55   { }
56
57   // Create any required output sections.  The only real
58   // implementation is in Output_section_definition.
59   virtual void
60   create_sections(Layout*)
61   { }
62
63   // Add any symbol being defined to the symbol table.
64   virtual void
65   add_symbols_to_table(Symbol_table*)
66   { }
67
68   // Finalize symbols and check assertions.
69   virtual void
70   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
71   { }
72
73   // Return the output section name to use for an input file name and
74   // section name.  This only real implementation is in
75   // Output_section_definition.
76   virtual const char*
77   output_section_name(const char*, const char*, Output_section***)
78   { return NULL; }
79
80   // Return whether to place an orphan output section after this
81   // element.
82   virtual bool
83   place_orphan_here(const Output_section *, bool*) const
84   { return false; }
85
86   // Set section addresses.  This includes applying assignments if the
87   // the expression is an absolute value.
88   virtual void
89   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
90   { }
91
92   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
93   // this section is constrained, and the input sections do not match,
94   // return the constraint, and set *POSD.
95   virtual Section_constraint
96   check_constraint(Output_section_definition**)
97   { return CONSTRAINT_NONE; }
98
99   // See if this is the alternate output section for a constrained
100   // output section.  If it is, transfer the Output_section and return
101   // true.  Otherwise return false.
102   virtual bool
103   alternate_constraint(Output_section_definition*, Section_constraint)
104   { return false; }
105
106   // Get the list of segments to use for an allocated section when
107   // using a PHDRS clause.  If this is an allocated section, return
108   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
109   // which it should be attached.  If the PHDRS were not specified,
110   // don't change *PHDRS_LIST.
111   virtual Output_section*
112   allocate_to_segment(String_list**)
113   { return NULL; }
114
115   // Look for an output section by name and return the address, the
116   // load address, the alignment, and the size.  This is used when an
117   // expression refers to an output section which was not actually
118   // created.  This returns true if the section was found, false
119   // otherwise.  The only real definition is for
120   // Output_section_definition.
121   virtual bool
122   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
123                           uint64_t*) const
124   { return false; }
125
126   // Print the element for debugging purposes.
127   virtual void
128   print(FILE* f) const = 0;
129 };
130
131 // An assignment in a SECTIONS clause outside of an output section.
132
133 class Sections_element_assignment : public Sections_element
134 {
135  public:
136   Sections_element_assignment(const char* name, size_t namelen,
137                               Expression* val, bool provide, bool hidden)
138     : assignment_(name, namelen, val, provide, hidden)
139   { }
140
141   // Add the symbol to the symbol table.
142   void
143   add_symbols_to_table(Symbol_table* symtab)
144   { this->assignment_.add_to_table(symtab); }
145
146   // Finalize the symbol.
147   void
148   finalize_symbols(Symbol_table* symtab, const Layout* layout,
149                    uint64_t* dot_value)
150   {
151     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
152   }
153
154   // Set the section address.  There is no section here, but if the
155   // value is absolute, we set the symbol.  This permits us to use
156   // absolute symbols when setting dot.
157   void
158   set_section_addresses(Symbol_table* symtab, Layout* layout,
159                         uint64_t* dot_value, uint64_t*)
160   {
161     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
162   }
163
164   // Print for debugging.
165   void
166   print(FILE* f) const
167   {
168     fprintf(f, "  ");
169     this->assignment_.print(f);
170   }
171
172  private:
173   Symbol_assignment assignment_;
174 };
175
176 // An assignment to the dot symbol in a SECTIONS clause outside of an
177 // output section.
178
179 class Sections_element_dot_assignment : public Sections_element
180 {
181  public:
182   Sections_element_dot_assignment(Expression* val)
183     : val_(val)
184   { }
185
186   // Finalize the symbol.
187   void
188   finalize_symbols(Symbol_table* symtab, const Layout* layout,
189                    uint64_t* dot_value)
190   {
191     // We ignore the section of the result because outside of an
192     // output section definition the dot symbol is always considered
193     // to be absolute.
194     Output_section* dummy;
195     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
196                                            NULL, &dummy);
197   }
198
199   // Update the dot symbol while setting section addresses.
200   void
201   set_section_addresses(Symbol_table* symtab, Layout* layout,
202                         uint64_t* dot_value, uint64_t* load_address)
203   {
204     Output_section* dummy;
205     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
206                                            NULL, &dummy);
207     *load_address = *dot_value;
208   }
209
210   // Print for debugging.
211   void
212   print(FILE* f) const
213   {
214     fprintf(f, "  . = ");
215     this->val_->print(f);
216     fprintf(f, "\n");
217   }
218
219  private:
220   Expression* val_;
221 };
222
223 // An assertion in a SECTIONS clause outside of an output section.
224
225 class Sections_element_assertion : public Sections_element
226 {
227  public:
228   Sections_element_assertion(Expression* check, const char* message,
229                              size_t messagelen)
230     : assertion_(check, message, messagelen)
231   { }
232
233   // Check the assertion.
234   void
235   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
236   { this->assertion_.check(symtab, layout); }
237
238   // Print for debugging.
239   void
240   print(FILE* f) const
241   {
242     fprintf(f, "  ");
243     this->assertion_.print(f);
244   }
245
246  private:
247   Script_assertion assertion_;
248 };
249
250 // An element in an output section in a SECTIONS clause.
251
252 class Output_section_element
253 {
254  public:
255   // A list of input sections.
256   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
257
258   Output_section_element()
259   { }
260
261   virtual ~Output_section_element()
262   { }
263
264   // Return whether this element requires an output section to exist.
265   virtual bool
266   needs_output_section() const
267   { return false; }
268
269   // Add any symbol being defined to the symbol table.
270   virtual void
271   add_symbols_to_table(Symbol_table*)
272   { }
273
274   // Finalize symbols and check assertions.
275   virtual void
276   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
277   { }
278
279   // Return whether this element matches FILE_NAME and SECTION_NAME.
280   // The only real implementation is in Output_section_element_input.
281   virtual bool
282   match_name(const char*, const char*) const
283   { return false; }
284
285   // Set section addresses.  This includes applying assignments if the
286   // the expression is an absolute value.
287   virtual void
288   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
289                         uint64_t*, Output_section**, std::string*,
290                         Input_section_list*)
291   { }
292
293   // Print the element for debugging purposes.
294   virtual void
295   print(FILE* f) const = 0;
296
297  protected:
298   // Return a fill string that is LENGTH bytes long, filling it with
299   // FILL.
300   std::string
301   get_fill_string(const std::string* fill, section_size_type length) const;
302 };
303
304 std::string
305 Output_section_element::get_fill_string(const std::string* fill,
306                                         section_size_type length) const
307 {
308   std::string this_fill;
309   this_fill.reserve(length);
310   while (this_fill.length() + fill->length() <= length)
311     this_fill += *fill;
312   if (this_fill.length() < length)
313     this_fill.append(*fill, 0, length - this_fill.length());
314   return this_fill;
315 }
316
317 // A symbol assignment in an output section.
318
319 class Output_section_element_assignment : public Output_section_element
320 {
321  public:
322   Output_section_element_assignment(const char* name, size_t namelen,
323                                     Expression* val, bool provide,
324                                     bool hidden)
325     : assignment_(name, namelen, val, provide, hidden)
326   { }
327
328   // Add the symbol to the symbol table.
329   void
330   add_symbols_to_table(Symbol_table* symtab)
331   { this->assignment_.add_to_table(symtab); }
332
333   // Finalize the symbol.
334   void
335   finalize_symbols(Symbol_table* symtab, const Layout* layout,
336                    uint64_t* dot_value, Output_section** dot_section)
337   {
338     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
339                                         *dot_section);
340   }
341
342   // Set the section address.  There is no section here, but if the
343   // value is absolute, we set the symbol.  This permits us to use
344   // absolute symbols when setting dot.
345   void
346   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
347                         uint64_t, uint64_t* dot_value, Output_section**,
348                         std::string*, Input_section_list*)
349   {
350     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
351   }
352
353   // Print for debugging.
354   void
355   print(FILE* f) const
356   {
357     fprintf(f, "    ");
358     this->assignment_.print(f);
359   }
360
361  private:
362   Symbol_assignment assignment_;
363 };
364
365 // An assignment to the dot symbol in an output section.
366
367 class Output_section_element_dot_assignment : public Output_section_element
368 {
369  public:
370   Output_section_element_dot_assignment(Expression* val)
371     : val_(val)
372   { }
373
374   // Finalize the symbol.
375   void
376   finalize_symbols(Symbol_table* symtab, const Layout* layout,
377                    uint64_t* dot_value, Output_section** dot_section)
378   {
379     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
380                                            *dot_section, dot_section);
381   }
382
383   // Update the dot symbol while setting section addresses.
384   void
385   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
386                         uint64_t, uint64_t* dot_value, Output_section**,
387                         std::string*, Input_section_list*);
388
389   // Print for debugging.
390   void
391   print(FILE* f) const
392   {
393     fprintf(f, "    . = ");
394     this->val_->print(f);
395     fprintf(f, "\n");
396   }
397
398  private:
399   Expression* val_;
400 };
401
402 // Update the dot symbol while setting section addresses.
403
404 void
405 Output_section_element_dot_assignment::set_section_addresses(
406     Symbol_table* symtab,
407     Layout* layout,
408     Output_section* output_section,
409     uint64_t,
410     uint64_t* dot_value,
411     Output_section** dot_section,
412     std::string* fill,
413     Input_section_list*)
414 {
415   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
416                                                 *dot_value, *dot_section,
417                                                 dot_section);
418   if (next_dot < *dot_value)
419     gold_error(_("dot may not move backward"));
420   if (next_dot > *dot_value && output_section != NULL)
421     {
422       section_size_type length = convert_to_section_size_type(next_dot
423                                                               - *dot_value);
424       Output_section_data* posd;
425       if (fill->empty())
426         posd = new Output_data_fixed_space(length, 0);
427       else
428         {
429           std::string this_fill = this->get_fill_string(fill, length);
430           posd = new Output_data_const(this_fill, 0);
431         }
432       output_section->add_output_section_data(posd);
433     }
434   *dot_value = next_dot;
435 }
436
437 // An assertion in an output section.
438
439 class Output_section_element_assertion : public Output_section_element
440 {
441  public:
442   Output_section_element_assertion(Expression* check, const char* message,
443                                    size_t messagelen)
444     : assertion_(check, message, messagelen)
445   { }
446
447   void
448   print(FILE* f) const
449   {
450     fprintf(f, "    ");
451     this->assertion_.print(f);
452   }
453
454  private:
455   Script_assertion assertion_;
456 };
457
458 // We use a special instance of Output_section_data to handle BYTE,
459 // SHORT, etc.  This permits forward references to symbols in the
460 // expressions.
461
462 class Output_data_expression : public Output_section_data
463 {
464  public:
465   Output_data_expression(int size, bool is_signed, Expression* val,
466                          const Symbol_table* symtab, const Layout* layout,
467                          uint64_t dot_value, Output_section* dot_section)
468     : Output_section_data(size, 0),
469       is_signed_(is_signed), val_(val), symtab_(symtab),
470       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
471   { }
472
473  protected:
474   // Write the data to the output file.
475   void
476   do_write(Output_file*);
477
478   // Write the data to a buffer.
479   void
480   do_write_to_buffer(unsigned char*);
481
482  private:
483   template<bool big_endian>
484   void
485   endian_write_to_buffer(uint64_t, unsigned char*);
486
487   bool is_signed_;
488   Expression* val_;
489   const Symbol_table* symtab_;
490   const Layout* layout_;
491   uint64_t dot_value_;
492   Output_section* dot_section_;
493 };
494
495 // Write the data element to the output file.
496
497 void
498 Output_data_expression::do_write(Output_file* of)
499 {
500   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
501   this->write_to_buffer(view);
502   of->write_output_view(this->offset(), this->data_size(), view);
503 }
504
505 // Write the data element to a buffer.
506
507 void
508 Output_data_expression::do_write_to_buffer(unsigned char* buf)
509 {
510   Output_section* dummy;
511   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
512                                            true, this->dot_value_,
513                                            this->dot_section_, &dummy);
514
515   if (parameters->target().is_big_endian())
516     this->endian_write_to_buffer<true>(val, buf);
517   else
518     this->endian_write_to_buffer<false>(val, buf);
519 }
520
521 template<bool big_endian>
522 void
523 Output_data_expression::endian_write_to_buffer(uint64_t val,
524                                                unsigned char* buf)
525 {
526   switch (this->data_size())
527     {
528     case 1:
529       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
530       break;
531     case 2:
532       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
533       break;
534     case 4:
535       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
536       break;
537     case 8:
538       if (parameters->target().get_size() == 32)
539         {
540           val &= 0xffffffff;
541           if (this->is_signed_ && (val & 0x80000000) != 0)
542             val |= 0xffffffff00000000LL;
543         }
544       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
545       break;
546     default:
547       gold_unreachable();
548     }
549 }
550
551 // A data item in an output section.
552
553 class Output_section_element_data : public Output_section_element
554 {
555  public:
556   Output_section_element_data(int size, bool is_signed, Expression* val)
557     : size_(size), is_signed_(is_signed), val_(val)
558   { }
559
560   // If there is a data item, then we must create an output section.
561   bool
562   needs_output_section() const
563   { return true; }
564
565   // Finalize symbols--we just need to update dot.
566   void
567   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
568                    Output_section**)
569   { *dot_value += this->size_; }
570
571   // Store the value in the section.
572   void
573   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
574                         uint64_t* dot_value, Output_section**, std::string*,
575                         Input_section_list*);
576
577   // Print for debugging.
578   void
579   print(FILE*) const;
580
581  private:
582   // The size in bytes.
583   int size_;
584   // Whether the value is signed.
585   bool is_signed_;
586   // The value.
587   Expression* val_;
588 };
589
590 // Store the value in the section.
591
592 void
593 Output_section_element_data::set_section_addresses(
594     Symbol_table* symtab,
595     Layout* layout,
596     Output_section* os,
597     uint64_t,
598     uint64_t* dot_value,
599     Output_section** dot_section,
600     std::string*,
601     Input_section_list*)
602 {
603   gold_assert(os != NULL);
604   os->add_output_section_data(new Output_data_expression(this->size_,
605                                                          this->is_signed_,
606                                                          this->val_,
607                                                          symtab,
608                                                          layout,
609                                                          *dot_value,
610                                                          *dot_section));
611   *dot_value += this->size_;
612 }
613
614 // Print for debugging.
615
616 void
617 Output_section_element_data::print(FILE* f) const
618 {
619   const char* s;
620   switch (this->size_)
621     {
622     case 1:
623       s = "BYTE";
624       break;
625     case 2:
626       s = "SHORT";
627       break;
628     case 4:
629       s = "LONG";
630       break;
631     case 8:
632       if (this->is_signed_)
633         s = "SQUAD";
634       else
635         s = "QUAD";
636       break;
637     default:
638       gold_unreachable();
639     }
640   fprintf(f, "    %s(", s);
641   this->val_->print(f);
642   fprintf(f, ")\n");
643 }
644
645 // A fill value setting in an output section.
646
647 class Output_section_element_fill : public Output_section_element
648 {
649  public:
650   Output_section_element_fill(Expression* val)
651     : val_(val)
652   { }
653
654   // Update the fill value while setting section addresses.
655   void
656   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657                         uint64_t, uint64_t* dot_value,
658                         Output_section** dot_section,
659                         std::string* fill, Input_section_list*)
660   {
661     Output_section* fill_section;
662     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
663                                                   *dot_value, *dot_section,
664                                                   &fill_section);
665     if (fill_section != NULL)
666       gold_warning(_("fill value is not absolute"));
667     // FIXME: The GNU linker supports fill values of arbitrary length.
668     unsigned char fill_buff[4];
669     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
670     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
671   }
672
673   // Print for debugging.
674   void
675   print(FILE* f) const
676   {
677     fprintf(f, "    FILL(");
678     this->val_->print(f);
679     fprintf(f, ")\n");
680   }
681
682  private:
683   // The new fill value.
684   Expression* val_;
685 };
686
687 // Return whether STRING contains a wildcard character.  This is used
688 // to speed up matching.
689
690 static inline bool
691 is_wildcard_string(const std::string& s)
692 {
693   return strpbrk(s.c_str(), "?*[") != NULL;
694 }
695
696 // An input section specification in an output section
697
698 class Output_section_element_input : public Output_section_element
699 {
700  public:
701   Output_section_element_input(const Input_section_spec* spec, bool keep);
702
703   // Finalize symbols--just update the value of the dot symbol.
704   void
705   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
706                    Output_section** dot_section)
707   {
708     *dot_value = this->final_dot_value_;
709     *dot_section = this->final_dot_section_;
710   }
711
712   // See whether we match FILE_NAME and SECTION_NAME as an input
713   // section.
714   bool
715   match_name(const char* file_name, const char* section_name) const;
716
717   // Set the section address.
718   void
719   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
720                         uint64_t subalign, uint64_t* dot_value,
721                         Output_section**, std::string* fill,
722                         Input_section_list*);
723
724   // Print for debugging.
725   void
726   print(FILE* f) const;
727
728  private:
729   // An input section pattern.
730   struct Input_section_pattern
731   {
732     std::string pattern;
733     bool pattern_is_wildcard;
734     Sort_wildcard sort;
735
736     Input_section_pattern(const char* patterna, size_t patternlena,
737                           Sort_wildcard sorta)
738       : pattern(patterna, patternlena),
739         pattern_is_wildcard(is_wildcard_string(this->pattern)),
740         sort(sorta)
741     { }
742   };
743
744   typedef std::vector<Input_section_pattern> Input_section_patterns;
745
746   // Filename_exclusions is a pair of filename pattern and a bool
747   // indicating whether the filename is a wildcard.
748   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
749
750   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
751   // indicates whether this is a wildcard pattern.
752   static inline bool
753   match(const char* string, const char* pattern, bool is_wildcard_pattern)
754   {
755     return (is_wildcard_pattern
756             ? fnmatch(pattern, string, 0) == 0
757             : strcmp(string, pattern) == 0);
758   }
759
760   // See if we match a file name.
761   bool
762   match_file_name(const char* file_name) const;
763
764   // The file name pattern.  If this is the empty string, we match all
765   // files.
766   std::string filename_pattern_;
767   // Whether the file name pattern is a wildcard.
768   bool filename_is_wildcard_;
769   // How the file names should be sorted.  This may only be
770   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
771   Sort_wildcard filename_sort_;
772   // The list of file names to exclude.
773   Filename_exclusions filename_exclusions_;
774   // The list of input section patterns.
775   Input_section_patterns input_section_patterns_;
776   // Whether to keep this section when garbage collecting.
777   bool keep_;
778   // The value of dot after including all matching sections.
779   uint64_t final_dot_value_;
780   // The section where dot is defined after including all matching
781   // sections.
782   Output_section* final_dot_section_;
783 };
784
785 // Construct Output_section_element_input.  The parser records strings
786 // as pointers into a copy of the script file, which will go away when
787 // parsing is complete.  We make sure they are in std::string objects.
788
789 Output_section_element_input::Output_section_element_input(
790     const Input_section_spec* spec,
791     bool keep)
792   : filename_pattern_(),
793     filename_is_wildcard_(false),
794     filename_sort_(spec->file.sort),
795     filename_exclusions_(),
796     input_section_patterns_(),
797     keep_(keep),
798     final_dot_value_(0),
799     final_dot_section_(NULL)
800 {
801   // The filename pattern "*" is common, and matches all files.  Turn
802   // it into the empty string.
803   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
804     this->filename_pattern_.assign(spec->file.name.value,
805                                    spec->file.name.length);
806   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
807
808   if (spec->input_sections.exclude != NULL)
809     {
810       for (String_list::const_iterator p =
811              spec->input_sections.exclude->begin();
812            p != spec->input_sections.exclude->end();
813            ++p)
814         {
815           bool is_wildcard = is_wildcard_string(*p);
816           this->filename_exclusions_.push_back(std::make_pair(*p,
817                                                               is_wildcard));
818         }
819     }
820
821   if (spec->input_sections.sections != NULL)
822     {
823       Input_section_patterns& isp(this->input_section_patterns_);
824       for (String_sort_list::const_iterator p =
825              spec->input_sections.sections->begin();
826            p != spec->input_sections.sections->end();
827            ++p)
828         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
829                                             p->sort));
830     }
831 }
832
833 // See whether we match FILE_NAME.
834
835 bool
836 Output_section_element_input::match_file_name(const char* file_name) const
837 {
838   if (!this->filename_pattern_.empty())
839     {
840       // If we were called with no filename, we refuse to match a
841       // pattern which requires a file name.
842       if (file_name == NULL)
843         return false;
844
845       if (!match(file_name, this->filename_pattern_.c_str(),
846                  this->filename_is_wildcard_))
847         return false;
848     }
849
850   if (file_name != NULL)
851     {
852       // Now we have to see whether FILE_NAME matches one of the
853       // exclusion patterns, if any.
854       for (Filename_exclusions::const_iterator p =
855              this->filename_exclusions_.begin();
856            p != this->filename_exclusions_.end();
857            ++p)
858         {
859           if (match(file_name, p->first.c_str(), p->second))
860             return false;
861         }
862     }
863
864   return true;
865 }
866
867 // See whether we match FILE_NAME and SECTION_NAME.
868
869 bool
870 Output_section_element_input::match_name(const char* file_name,
871                                          const char* section_name) const
872 {
873   if (!this->match_file_name(file_name))
874     return false;
875
876   // If there are no section name patterns, then we match.
877   if (this->input_section_patterns_.empty())
878     return true;
879
880   // See whether we match the section name patterns.
881   for (Input_section_patterns::const_iterator p =
882          this->input_section_patterns_.begin();
883        p != this->input_section_patterns_.end();
884        ++p)
885     {
886       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
887         return true;
888     }
889
890   // We didn't match any section names, so we didn't match.
891   return false;
892 }
893
894 // Information we use to sort the input sections.
895
896 struct Input_section_info
897 {
898   Relobj* relobj;
899   unsigned int shndx;
900   std::string section_name;
901   uint64_t size;
902   uint64_t addralign;
903 };
904
905 // A class to sort the input sections.
906
907 class Input_section_sorter
908 {
909  public:
910   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
911     : filename_sort_(filename_sort), section_sort_(section_sort)
912   { }
913
914   bool
915   operator()(const Input_section_info&, const Input_section_info&) const;
916
917  private:
918   Sort_wildcard filename_sort_;
919   Sort_wildcard section_sort_;
920 };
921
922 bool
923 Input_section_sorter::operator()(const Input_section_info& isi1,
924                                  const Input_section_info& isi2) const
925 {
926   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
927       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
928       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
929           && isi1.addralign == isi2.addralign))
930     {
931       if (isi1.section_name != isi2.section_name)
932         return isi1.section_name < isi2.section_name;
933     }
934   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
935       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
936       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
937     {
938       if (isi1.addralign != isi2.addralign)
939         return isi1.addralign < isi2.addralign;
940     }
941   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
942     {
943       if (isi1.relobj->name() != isi2.relobj->name())
944         return isi1.relobj->name() < isi2.relobj->name();
945     }
946
947   // Otherwise we leave them in the same order.
948   return false;
949 }
950
951 // Set the section address.  Look in INPUT_SECTIONS for sections which
952 // match this spec, sort them as specified, and add them to the output
953 // section.
954
955 void
956 Output_section_element_input::set_section_addresses(
957     Symbol_table*,
958     Layout*,
959     Output_section* output_section,
960     uint64_t subalign,
961     uint64_t* dot_value,
962     Output_section** dot_section,
963     std::string* fill,
964     Input_section_list* input_sections)
965 {
966   // We build a list of sections which match each
967   // Input_section_pattern.
968
969   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
970   size_t input_pattern_count = this->input_section_patterns_.size();
971   if (input_pattern_count == 0)
972     input_pattern_count = 1;
973   Matching_sections matching_sections(input_pattern_count);
974
975   // Look through the list of sections for this output section.  Add
976   // each one which matches to one of the elements of
977   // MATCHING_SECTIONS.
978
979   Input_section_list::iterator p = input_sections->begin();
980   while (p != input_sections->end())
981     {
982       // Calling section_name and section_addralign is not very
983       // efficient.
984       Input_section_info isi;
985       isi.relobj = p->first;
986       isi.shndx = p->second;
987
988       // Lock the object so that we can get information about the
989       // section.  This is OK since we know we are single-threaded
990       // here.
991       {
992         const Task* task = reinterpret_cast<const Task*>(-1);
993         Task_lock_obj<Object> tl(task, p->first);
994
995         isi.section_name = p->first->section_name(p->second);
996         isi.size = p->first->section_size(p->second);
997         isi.addralign = p->first->section_addralign(p->second);
998       }
999
1000       if (!this->match_file_name(isi.relobj->name().c_str()))
1001         ++p;
1002       else if (this->input_section_patterns_.empty())
1003         {
1004           matching_sections[0].push_back(isi);
1005           p = input_sections->erase(p);
1006         }
1007       else
1008         {
1009           size_t i;
1010           for (i = 0; i < input_pattern_count; ++i)
1011             {
1012               const Input_section_pattern&
1013                 isp(this->input_section_patterns_[i]);
1014               if (match(isi.section_name.c_str(), isp.pattern.c_str(),
1015                         isp.pattern_is_wildcard))
1016                 break;
1017             }
1018
1019           if (i >= this->input_section_patterns_.size())
1020             ++p;
1021           else
1022             {
1023               matching_sections[i].push_back(isi);
1024               p = input_sections->erase(p);
1025             }
1026         }
1027     }
1028
1029   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1030   // using a stable sort so that we get the default order when
1031   // sections are otherwise equal.  Add each input section to the
1032   // output section.
1033
1034   for (size_t i = 0; i < input_pattern_count; ++i)
1035     {
1036       if (matching_sections[i].empty())
1037         continue;
1038
1039       gold_assert(output_section != NULL);
1040
1041       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1042       if (isp.sort != SORT_WILDCARD_NONE
1043           || this->filename_sort_ != SORT_WILDCARD_NONE)
1044         std::stable_sort(matching_sections[i].begin(),
1045                          matching_sections[i].end(),
1046                          Input_section_sorter(this->filename_sort_,
1047                                               isp.sort));
1048
1049       for (std::vector<Input_section_info>::const_iterator p =
1050              matching_sections[i].begin();
1051            p != matching_sections[i].end();
1052            ++p)
1053         {
1054           uint64_t this_subalign = p->addralign;
1055           if (this_subalign < subalign)
1056             this_subalign = subalign;
1057
1058           uint64_t address = align_address(*dot_value, this_subalign);
1059
1060           if (address > *dot_value && !fill->empty())
1061             {
1062               section_size_type length =
1063                 convert_to_section_size_type(address - *dot_value);
1064               std::string this_fill = this->get_fill_string(fill, length);
1065               Output_section_data* posd = new Output_data_const(this_fill, 0);
1066               output_section->add_output_section_data(posd);
1067             }
1068
1069           output_section->add_input_section_for_script(p->relobj,
1070                                                        p->shndx,
1071                                                        p->size,
1072                                                        this_subalign);
1073
1074           *dot_value = address + p->size;
1075         }
1076     }
1077
1078   this->final_dot_value_ = *dot_value;
1079   this->final_dot_section_ = *dot_section;
1080 }
1081
1082 // Print for debugging.
1083
1084 void
1085 Output_section_element_input::print(FILE* f) const
1086 {
1087   fprintf(f, "    ");
1088
1089   if (this->keep_)
1090     fprintf(f, "KEEP(");
1091
1092   if (!this->filename_pattern_.empty())
1093     {
1094       bool need_close_paren = false;
1095       switch (this->filename_sort_)
1096         {
1097         case SORT_WILDCARD_NONE:
1098           break;
1099         case SORT_WILDCARD_BY_NAME:
1100           fprintf(f, "SORT_BY_NAME(");
1101           need_close_paren = true;
1102           break;
1103         default:
1104           gold_unreachable();
1105         }
1106
1107       fprintf(f, "%s", this->filename_pattern_.c_str());
1108
1109       if (need_close_paren)
1110         fprintf(f, ")");
1111     }
1112
1113   if (!this->input_section_patterns_.empty()
1114       || !this->filename_exclusions_.empty())
1115     {
1116       fprintf(f, "(");
1117
1118       bool need_space = false;
1119       if (!this->filename_exclusions_.empty())
1120         {
1121           fprintf(f, "EXCLUDE_FILE(");
1122           bool need_comma = false;
1123           for (Filename_exclusions::const_iterator p =
1124                  this->filename_exclusions_.begin();
1125                p != this->filename_exclusions_.end();
1126                ++p)
1127             {
1128               if (need_comma)
1129                 fprintf(f, ", ");
1130               fprintf(f, "%s", p->first.c_str());
1131               need_comma = true;
1132             }
1133           fprintf(f, ")");
1134           need_space = true;
1135         }
1136
1137       for (Input_section_patterns::const_iterator p =
1138              this->input_section_patterns_.begin();
1139            p != this->input_section_patterns_.end();
1140            ++p)
1141         {
1142           if (need_space)
1143             fprintf(f, " ");
1144
1145           int close_parens = 0;
1146           switch (p->sort)
1147             {
1148             case SORT_WILDCARD_NONE:
1149               break;
1150             case SORT_WILDCARD_BY_NAME:
1151               fprintf(f, "SORT_BY_NAME(");
1152               close_parens = 1;
1153               break;
1154             case SORT_WILDCARD_BY_ALIGNMENT:
1155               fprintf(f, "SORT_BY_ALIGNMENT(");
1156               close_parens = 1;
1157               break;
1158             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1159               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1160               close_parens = 2;
1161               break;
1162             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1163               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1164               close_parens = 2;
1165               break;
1166             default:
1167               gold_unreachable();
1168             }
1169
1170           fprintf(f, "%s", p->pattern.c_str());
1171
1172           for (int i = 0; i < close_parens; ++i)
1173             fprintf(f, ")");
1174
1175           need_space = true;
1176         }
1177
1178       fprintf(f, ")");
1179     }
1180
1181   if (this->keep_)
1182     fprintf(f, ")");
1183
1184   fprintf(f, "\n");
1185 }
1186
1187 // An output section.
1188
1189 class Output_section_definition : public Sections_element
1190 {
1191  public:
1192   typedef Output_section_element::Input_section_list Input_section_list;
1193
1194   Output_section_definition(const char* name, size_t namelen,
1195                             const Parser_output_section_header* header);
1196
1197   // Finish the output section with the information in the trailer.
1198   void
1199   finish(const Parser_output_section_trailer* trailer);
1200
1201   // Add a symbol to be defined.
1202   void
1203   add_symbol_assignment(const char* name, size_t length, Expression* value,
1204                         bool provide, bool hidden);
1205
1206   // Add an assignment to the special dot symbol.
1207   void
1208   add_dot_assignment(Expression* value);
1209
1210   // Add an assertion.
1211   void
1212   add_assertion(Expression* check, const char* message, size_t messagelen);
1213
1214   // Add a data item to the current output section.
1215   void
1216   add_data(int size, bool is_signed, Expression* val);
1217
1218   // Add a setting for the fill value.
1219   void
1220   add_fill(Expression* val);
1221
1222   // Add an input section specification.
1223   void
1224   add_input_section(const Input_section_spec* spec, bool keep);
1225
1226   // Create any required output sections.
1227   void
1228   create_sections(Layout*);
1229
1230   // Add any symbols being defined to the symbol table.
1231   void
1232   add_symbols_to_table(Symbol_table* symtab);
1233
1234   // Finalize symbols and check assertions.
1235   void
1236   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1237
1238   // Return the output section name to use for an input file name and
1239   // section name.
1240   const char*
1241   output_section_name(const char* file_name, const char* section_name,
1242                       Output_section***);
1243
1244   // Return whether to place an orphan section after this one.
1245   bool
1246   place_orphan_here(const Output_section *os, bool* exact) const;
1247
1248   // Set the section address.
1249   void
1250   set_section_addresses(Symbol_table* symtab, Layout* layout,
1251                         uint64_t* dot_value, uint64_t* load_address);
1252
1253   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1254   // this section is constrained, and the input sections do not match,
1255   // return the constraint, and set *POSD.
1256   Section_constraint
1257   check_constraint(Output_section_definition** posd);
1258
1259   // See if this is the alternate output section for a constrained
1260   // output section.  If it is, transfer the Output_section and return
1261   // true.  Otherwise return false.
1262   bool
1263   alternate_constraint(Output_section_definition*, Section_constraint);
1264
1265   // Get the list of segments to use for an allocated section when
1266   // using a PHDRS clause.  If this is an allocated section, return
1267   // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
1268   // which it should be attached.  If the PHDRS were not specified,
1269   // don't change *PHDRS_LIST.
1270   Output_section*
1271   allocate_to_segment(String_list** phdrs_list);
1272
1273   // Look for an output section by name and return the address, the
1274   // load address, the alignment, and the size.  This is used when an
1275   // expression refers to an output section which was not actually
1276   // created.  This returns true if the section was found, false
1277   // otherwise.
1278   bool
1279   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1280                           uint64_t*) const;
1281
1282   // Print the contents to the FILE.  This is for debugging.
1283   void
1284   print(FILE*) const;
1285
1286  private:
1287   typedef std::vector<Output_section_element*> Output_section_elements;
1288
1289   // The output section name.
1290   std::string name_;
1291   // The address.  This may be NULL.
1292   Expression* address_;
1293   // The load address.  This may be NULL.
1294   Expression* load_address_;
1295   // The alignment.  This may be NULL.
1296   Expression* align_;
1297   // The input section alignment.  This may be NULL.
1298   Expression* subalign_;
1299   // The constraint, if any.
1300   Section_constraint constraint_;
1301   // The fill value.  This may be NULL.
1302   Expression* fill_;
1303   // The list of segments this section should go into.  This may be
1304   // NULL.
1305   String_list* phdrs_;
1306   // The list of elements defining the section.
1307   Output_section_elements elements_;
1308   // The Output_section created for this definition.  This will be
1309   // NULL if none was created.
1310   Output_section* output_section_;
1311   // The address after it has been evaluated.
1312   uint64_t evaluated_address_;
1313   // The load address after it has been evaluated.
1314   uint64_t evaluated_load_address_;
1315   // The alignment after it has been evaluated.
1316   uint64_t evaluated_addralign_;
1317 };
1318
1319 // Constructor.
1320
1321 Output_section_definition::Output_section_definition(
1322     const char* name,
1323     size_t namelen,
1324     const Parser_output_section_header* header)
1325   : name_(name, namelen),
1326     address_(header->address),
1327     load_address_(header->load_address),
1328     align_(header->align),
1329     subalign_(header->subalign),
1330     constraint_(header->constraint),
1331     fill_(NULL),
1332     phdrs_(NULL),
1333     elements_(),
1334     output_section_(NULL)
1335 {
1336 }
1337
1338 // Finish an output section.
1339
1340 void
1341 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1342 {
1343   this->fill_ = trailer->fill;
1344   this->phdrs_ = trailer->phdrs;
1345 }
1346
1347 // Add a symbol to be defined.
1348
1349 void
1350 Output_section_definition::add_symbol_assignment(const char* name,
1351                                                  size_t length,
1352                                                  Expression* value,
1353                                                  bool provide,
1354                                                  bool hidden)
1355 {
1356   Output_section_element* p = new Output_section_element_assignment(name,
1357                                                                     length,
1358                                                                     value,
1359                                                                     provide,
1360                                                                     hidden);
1361   this->elements_.push_back(p);
1362 }
1363
1364 // Add an assignment to the special dot symbol.
1365
1366 void
1367 Output_section_definition::add_dot_assignment(Expression* value)
1368 {
1369   Output_section_element* p = new Output_section_element_dot_assignment(value);
1370   this->elements_.push_back(p);
1371 }
1372
1373 // Add an assertion.
1374
1375 void
1376 Output_section_definition::add_assertion(Expression* check,
1377                                          const char* message,
1378                                          size_t messagelen)
1379 {
1380   Output_section_element* p = new Output_section_element_assertion(check,
1381                                                                    message,
1382                                                                    messagelen);
1383   this->elements_.push_back(p);
1384 }
1385
1386 // Add a data item to the current output section.
1387
1388 void
1389 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1390 {
1391   Output_section_element* p = new Output_section_element_data(size, is_signed,
1392                                                               val);
1393   this->elements_.push_back(p);
1394 }
1395
1396 // Add a setting for the fill value.
1397
1398 void
1399 Output_section_definition::add_fill(Expression* val)
1400 {
1401   Output_section_element* p = new Output_section_element_fill(val);
1402   this->elements_.push_back(p);
1403 }
1404
1405 // Add an input section specification.
1406
1407 void
1408 Output_section_definition::add_input_section(const Input_section_spec* spec,
1409                                              bool keep)
1410 {
1411   Output_section_element* p = new Output_section_element_input(spec, keep);
1412   this->elements_.push_back(p);
1413 }
1414
1415 // Create any required output sections.  We need an output section if
1416 // there is a data statement here.
1417
1418 void
1419 Output_section_definition::create_sections(Layout* layout)
1420 {
1421   if (this->output_section_ != NULL)
1422     return;
1423   for (Output_section_elements::const_iterator p = this->elements_.begin();
1424        p != this->elements_.end();
1425        ++p)
1426     {
1427       if ((*p)->needs_output_section())
1428         {
1429           const char* name = this->name_.c_str();
1430           this->output_section_ = layout->make_output_section_for_script(name);
1431           return;
1432         }
1433     }
1434 }
1435
1436 // Add any symbols being defined to the symbol table.
1437
1438 void
1439 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1440 {
1441   for (Output_section_elements::iterator p = this->elements_.begin();
1442        p != this->elements_.end();
1443        ++p)
1444     (*p)->add_symbols_to_table(symtab);
1445 }
1446
1447 // Finalize symbols and check assertions.
1448
1449 void
1450 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1451                                             const Layout* layout,
1452                                             uint64_t* dot_value)
1453 {
1454   if (this->output_section_ != NULL)
1455     *dot_value = this->output_section_->address();
1456   else
1457     {
1458       uint64_t address = *dot_value;
1459       if (this->address_ != NULL)
1460         {
1461           Output_section* dummy;
1462           address = this->address_->eval_with_dot(symtab, layout, true,
1463                                                   *dot_value, NULL,
1464                                                   &dummy);
1465         }
1466       if (this->align_ != NULL)
1467         {
1468           Output_section* dummy;
1469           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1470                                                        *dot_value,
1471                                                        NULL,
1472                                                        &dummy);
1473           address = align_address(address, align);
1474         }
1475       *dot_value = address;
1476     }
1477
1478   Output_section* dot_section = this->output_section_;
1479   for (Output_section_elements::iterator p = this->elements_.begin();
1480        p != this->elements_.end();
1481        ++p)
1482     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1483 }
1484
1485 // Return the output section name to use for an input section name.
1486
1487 const char*
1488 Output_section_definition::output_section_name(const char* file_name,
1489                                                const char* section_name,
1490                                                Output_section*** slot)
1491 {
1492   // Ask each element whether it matches NAME.
1493   for (Output_section_elements::const_iterator p = this->elements_.begin();
1494        p != this->elements_.end();
1495        ++p)
1496     {
1497       if ((*p)->match_name(file_name, section_name))
1498         {
1499           // We found a match for NAME, which means that it should go
1500           // into this output section.
1501           *slot = &this->output_section_;
1502           return this->name_.c_str();
1503         }
1504     }
1505
1506   // We don't know about this section name.
1507   return NULL;
1508 }
1509
1510 // Return whether to place an orphan output section after this
1511 // section.
1512
1513 bool
1514 Output_section_definition::place_orphan_here(const Output_section *os,
1515                                              bool* exact) const
1516 {
1517   // Check for the simple case first.
1518   if (this->output_section_ != NULL
1519       && this->output_section_->type() == os->type()
1520       && this->output_section_->flags() == os->flags())
1521     {
1522       *exact = true;
1523       return true;
1524     }
1525
1526   // Otherwise use some heuristics.
1527
1528   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1529     return false;
1530
1531   if (os->type() == elfcpp::SHT_NOBITS)
1532     {
1533       if (this->name_ == ".bss")
1534         {
1535           *exact = true;
1536           return true;
1537         }
1538       if (this->output_section_ != NULL
1539           && this->output_section_->type() == elfcpp::SHT_NOBITS)
1540         return true;
1541     }
1542   else if (os->type() == elfcpp::SHT_NOTE)
1543     {
1544       if (this->output_section_ != NULL
1545           && this->output_section_->type() == elfcpp::SHT_NOTE)
1546         {
1547           *exact = true;
1548           return true;
1549         }
1550       if (this->name_.compare(0, 5, ".note") == 0)
1551         {
1552           *exact = true;
1553           return true;
1554         }
1555       if (this->name_ == ".interp")
1556         return true;
1557       if (this->output_section_ != NULL
1558           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1559           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1560         return true;
1561     }
1562   else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1563     {
1564       if (this->name_.compare(0, 4, ".rel") == 0)
1565         {
1566           *exact = true;
1567           return true;
1568         }
1569       if (this->output_section_ != NULL
1570           && (this->output_section_->type() == elfcpp::SHT_REL
1571               || this->output_section_->type() == elfcpp::SHT_RELA))
1572         {
1573           *exact = true;
1574           return true;
1575         }
1576       if (this->output_section_ != NULL
1577           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1578           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1579         return true;
1580     }
1581   else if (os->type() == elfcpp::SHT_PROGBITS
1582            && (os->flags() & elfcpp::SHF_WRITE) != 0)
1583     {
1584       if (this->name_ == ".data")
1585         {
1586           *exact = true;
1587           return true;
1588         }
1589       if (this->output_section_ != NULL
1590           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1591           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1592         return true;
1593     }
1594   else if (os->type() == elfcpp::SHT_PROGBITS
1595            && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1596     {
1597       if (this->name_ == ".text")
1598         {
1599           *exact = true;
1600           return true;
1601         }
1602       if (this->output_section_ != NULL
1603           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1604           && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1605         return true;
1606     }
1607   else if (os->type() == elfcpp::SHT_PROGBITS
1608            || (os->type() != elfcpp::SHT_PROGBITS
1609                && (os->flags() & elfcpp::SHF_WRITE) == 0))
1610     {
1611       if (this->name_ == ".rodata")
1612         {
1613           *exact = true;
1614           return true;
1615         }
1616       if (this->output_section_ != NULL
1617           && this->output_section_->type() == elfcpp::SHT_PROGBITS
1618           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1619         return true;
1620     }
1621
1622   return false;
1623 }
1624
1625 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1626 // be NULL if no input sections were mapped to this output section.
1627 // We still have to adjust dot and process symbol assignments.
1628
1629 void
1630 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1631                                                  Layout* layout,
1632                                                  uint64_t* dot_value,
1633                                                  uint64_t* load_address)
1634 {
1635   uint64_t address;
1636   if (this->address_ == NULL)
1637     address = *dot_value;
1638   else
1639     {
1640       Output_section* dummy;
1641       address = this->address_->eval_with_dot(symtab, layout, true,
1642                                               *dot_value, NULL, &dummy);
1643     }
1644
1645   uint64_t align;
1646   if (this->align_ == NULL)
1647     {
1648       if (this->output_section_ == NULL)
1649         align = 0;
1650       else
1651         align = this->output_section_->addralign();
1652     }
1653   else
1654     {
1655       Output_section* align_section;
1656       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1657                                           NULL, &align_section);
1658       if (align_section != NULL)
1659         gold_warning(_("alignment of section %s is not absolute"),
1660                      this->name_.c_str());
1661       if (this->output_section_ != NULL)
1662         this->output_section_->set_addralign(align);
1663     }
1664
1665   address = align_address(address, align);
1666
1667   uint64_t start_address = address;
1668
1669   *dot_value = address;
1670
1671   // The address of non-SHF_ALLOC sections is forced to zero,
1672   // regardless of what the linker script wants.
1673   if (this->output_section_ != NULL
1674       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1675     this->output_section_->set_address(address);
1676
1677   this->evaluated_address_ = address;
1678   this->evaluated_addralign_ = align;
1679
1680   if (this->load_address_ == NULL)
1681     this->evaluated_load_address_ = address;
1682   else
1683     {
1684       Output_section* dummy;
1685       uint64_t load_address =
1686         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1687                                            this->output_section_, &dummy);
1688       if (this->output_section_ != NULL)
1689         this->output_section_->set_load_address(load_address);
1690       this->evaluated_load_address_ = load_address;
1691     }
1692
1693   uint64_t subalign;
1694   if (this->subalign_ == NULL)
1695     subalign = 0;
1696   else
1697     {
1698       Output_section* subalign_section;
1699       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1700                                                 *dot_value, NULL,
1701                                                 &subalign_section);
1702       if (subalign_section != NULL)
1703         gold_warning(_("subalign of section %s is not absolute"),
1704                      this->name_.c_str());
1705     }
1706
1707   std::string fill;
1708   if (this->fill_ != NULL)
1709     {
1710       // FIXME: The GNU linker supports fill values of arbitrary
1711       // length.
1712       Output_section* fill_section;
1713       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1714                                                      *dot_value,
1715                                                      NULL,
1716                                                      &fill_section);
1717       if (fill_section != NULL)
1718         gold_warning(_("fill of section %s is not absolute"),
1719                      this->name_.c_str());
1720       unsigned char fill_buff[4];
1721       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1722       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1723     }
1724
1725   Input_section_list input_sections;
1726   if (this->output_section_ != NULL)
1727     {
1728       // Get the list of input sections attached to this output
1729       // section.  This will leave the output section with only
1730       // Output_section_data entries.
1731       address += this->output_section_->get_input_sections(address,
1732                                                            fill,
1733                                                            &input_sections);
1734       *dot_value = address;
1735     }
1736
1737   Output_section* dot_section = this->output_section_;
1738   for (Output_section_elements::iterator p = this->elements_.begin();
1739        p != this->elements_.end();
1740        ++p)
1741     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1742                                 subalign, dot_value, &dot_section, &fill,
1743                                 &input_sections);
1744
1745   gold_assert(input_sections.empty());
1746
1747   if (this->load_address_ == NULL || this->output_section_ == NULL)
1748     *load_address = *dot_value;
1749   else
1750     *load_address = (this->output_section_->load_address()
1751                      + (*dot_value - start_address));
1752 }
1753
1754 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1755 // this section is constrained, and the input sections do not match,
1756 // return the constraint, and set *POSD.
1757
1758 Section_constraint
1759 Output_section_definition::check_constraint(Output_section_definition** posd)
1760 {
1761   switch (this->constraint_)
1762     {
1763     case CONSTRAINT_NONE:
1764       return CONSTRAINT_NONE;
1765
1766     case CONSTRAINT_ONLY_IF_RO:
1767       if (this->output_section_ != NULL
1768           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1769         {
1770           *posd = this;
1771           return CONSTRAINT_ONLY_IF_RO;
1772         }
1773       return CONSTRAINT_NONE;
1774
1775     case CONSTRAINT_ONLY_IF_RW:
1776       if (this->output_section_ != NULL
1777           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1778         {
1779           *posd = this;
1780           return CONSTRAINT_ONLY_IF_RW;
1781         }
1782       return CONSTRAINT_NONE;
1783
1784     case CONSTRAINT_SPECIAL:
1785       if (this->output_section_ != NULL)
1786         gold_error(_("SPECIAL constraints are not implemented"));
1787       return CONSTRAINT_NONE;
1788
1789     default:
1790       gold_unreachable();
1791     }
1792 }
1793
1794 // See if this is the alternate output section for a constrained
1795 // output section.  If it is, transfer the Output_section and return
1796 // true.  Otherwise return false.
1797
1798 bool
1799 Output_section_definition::alternate_constraint(
1800     Output_section_definition* posd,
1801     Section_constraint constraint)
1802 {
1803   if (this->name_ != posd->name_)
1804     return false;
1805
1806   switch (constraint)
1807     {
1808     case CONSTRAINT_ONLY_IF_RO:
1809       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1810         return false;
1811       break;
1812
1813     case CONSTRAINT_ONLY_IF_RW:
1814       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1815         return false;
1816       break;
1817
1818     default:
1819       gold_unreachable();
1820     }
1821
1822   // We have found the alternate constraint.  We just need to move
1823   // over the Output_section.  When constraints are used properly,
1824   // THIS should not have an output_section pointer, as all the input
1825   // sections should have matched the other definition.
1826
1827   if (this->output_section_ != NULL)
1828     gold_error(_("mismatched definition for constrained sections"));
1829
1830   this->output_section_ = posd->output_section_;
1831   posd->output_section_ = NULL;
1832
1833   return true;
1834 }
1835
1836 // Get the list of segments to use for an allocated section when using
1837 // a PHDRS clause.  If this is an allocated section, return the
1838 // Output_section, and set *PHDRS_LIST to the list of PHDRS to which
1839 // it should be attached.  If the PHDRS were not specified, don't
1840 // change *PHDRS_LIST.
1841
1842 Output_section*
1843 Output_section_definition::allocate_to_segment(String_list** phdrs_list)
1844 {
1845   if (this->output_section_ == NULL)
1846     return NULL;
1847   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1848     return NULL;
1849   if (this->phdrs_ != NULL)
1850     *phdrs_list = this->phdrs_;
1851   return this->output_section_;
1852 }
1853
1854 // Look for an output section by name and return the address, the load
1855 // address, the alignment, and the size.  This is used when an
1856 // expression refers to an output section which was not actually
1857 // created.  This returns true if the section was found, false
1858 // otherwise.
1859
1860 bool
1861 Output_section_definition::get_output_section_info(const char* name,
1862                                                    uint64_t* address,
1863                                                    uint64_t* load_address,
1864                                                    uint64_t* addralign,
1865                                                    uint64_t* size) const
1866 {
1867   if (this->name_ != name)
1868     return false;
1869
1870   if (this->output_section_ != NULL)
1871     {
1872       *address = this->output_section_->address();
1873       if (this->output_section_->has_load_address())
1874         *load_address = this->output_section_->load_address();
1875       else
1876         *load_address = *address;
1877       *addralign = this->output_section_->addralign();
1878       *size = this->output_section_->current_data_size();
1879     }
1880   else
1881     {
1882       *address = this->evaluated_address_;
1883       *load_address = this->evaluated_load_address_;
1884       *addralign = this->evaluated_addralign_;
1885       *size = 0;
1886     }
1887
1888   return true;
1889 }
1890
1891 // Print for debugging.
1892
1893 void
1894 Output_section_definition::print(FILE* f) const
1895 {
1896   fprintf(f, "  %s ", this->name_.c_str());
1897
1898   if (this->address_ != NULL)
1899     {
1900       this->address_->print(f);
1901       fprintf(f, " ");
1902     }
1903
1904   fprintf(f, ": ");
1905
1906   if (this->load_address_ != NULL)
1907     {
1908       fprintf(f, "AT(");
1909       this->load_address_->print(f);
1910       fprintf(f, ") ");
1911     }
1912
1913   if (this->align_ != NULL)
1914     {
1915       fprintf(f, "ALIGN(");
1916       this->align_->print(f);
1917       fprintf(f, ") ");
1918     }
1919
1920   if (this->subalign_ != NULL)
1921     {
1922       fprintf(f, "SUBALIGN(");
1923       this->subalign_->print(f);
1924       fprintf(f, ") ");
1925     }
1926
1927   fprintf(f, "{\n");
1928
1929   for (Output_section_elements::const_iterator p = this->elements_.begin();
1930        p != this->elements_.end();
1931        ++p)
1932     (*p)->print(f);
1933
1934   fprintf(f, "  }");
1935
1936   if (this->fill_ != NULL)
1937     {
1938       fprintf(f, " = ");
1939       this->fill_->print(f);
1940     }
1941
1942   if (this->phdrs_ != NULL)
1943     {
1944       for (String_list::const_iterator p = this->phdrs_->begin();
1945            p != this->phdrs_->end();
1946            ++p)
1947         fprintf(f, " :%s", p->c_str());
1948     }
1949
1950   fprintf(f, "\n");
1951 }
1952
1953 // An output section created to hold orphaned input sections.  These
1954 // do not actually appear in linker scripts.  However, for convenience
1955 // when setting the output section addresses, we put a marker to these
1956 // sections in the appropriate place in the list of SECTIONS elements.
1957
1958 class Orphan_output_section : public Sections_element
1959 {
1960  public:
1961   Orphan_output_section(Output_section* os)
1962     : os_(os)
1963   { }
1964
1965   // Return whether to place an orphan section after this one.
1966   bool
1967   place_orphan_here(const Output_section *os, bool* exact) const;
1968
1969   // Set section addresses.
1970   void
1971   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
1972
1973   // Get the list of segments to use for an allocated section when
1974   // using a PHDRS clause.  If this is an allocated section, return
1975   // the Output_section.
1976   Output_section*
1977   allocate_to_segment(String_list**);
1978
1979   // Print for debugging.
1980   void
1981   print(FILE* f) const
1982   {
1983     fprintf(f, "  marker for orphaned output section %s\n",
1984             this->os_->name());
1985   }
1986
1987  private:
1988   Output_section* os_;
1989 };
1990
1991 // Whether to place another orphan section after this one.
1992
1993 bool
1994 Orphan_output_section::place_orphan_here(const Output_section* os,
1995                                          bool* exact) const
1996 {
1997   if (this->os_->type() == os->type()
1998       && this->os_->flags() == os->flags())
1999     {
2000       *exact = true;
2001       return true;
2002     }
2003   return false;
2004 }
2005
2006 // Set section addresses.
2007
2008 void
2009 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2010                                              uint64_t* dot_value,
2011                                              uint64_t* load_address)
2012 {
2013   typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
2014
2015   bool have_load_address = *load_address != *dot_value;
2016
2017   uint64_t address = *dot_value;
2018   address = align_address(address, this->os_->addralign());
2019
2020   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2021     {
2022       this->os_->set_address(address);
2023       if (have_load_address)
2024         this->os_->set_load_address(align_address(*load_address,
2025                                                   this->os_->addralign()));
2026     }
2027
2028   Input_section_list input_sections;
2029   address += this->os_->get_input_sections(address, "", &input_sections);
2030
2031   for (Input_section_list::iterator p = input_sections.begin();
2032        p != input_sections.end();
2033        ++p)
2034     {
2035       uint64_t addralign;
2036       uint64_t size;
2037
2038       // We know what are single-threaded, so it is OK to lock the
2039       // object.
2040       {
2041         const Task* task = reinterpret_cast<const Task*>(-1);
2042         Task_lock_obj<Object> tl(task, p->first);
2043         addralign = p->first->section_addralign(p->second);
2044         size = p->first->section_size(p->second);
2045       }
2046
2047       address = align_address(address, addralign);
2048       this->os_->add_input_section_for_script(p->first, p->second, size,
2049                                               addralign);
2050       address += size;
2051     }
2052
2053   if (!have_load_address)
2054     *load_address = address;
2055   else
2056     *load_address += address - *dot_value;
2057
2058   *dot_value = address;
2059 }
2060
2061 // Get the list of segments to use for an allocated section when using
2062 // a PHDRS clause.  If this is an allocated section, return the
2063 // Output_section.  We don't change the list of segments.
2064
2065 Output_section*
2066 Orphan_output_section::allocate_to_segment(String_list**)
2067 {
2068   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2069     return NULL;
2070   return this->os_;
2071 }
2072
2073 // Class Phdrs_element.  A program header from a PHDRS clause.
2074
2075 class Phdrs_element
2076 {
2077  public:
2078   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2079                 bool includes_filehdr, bool includes_phdrs,
2080                 bool is_flags_valid, unsigned int flags,
2081                 Expression* load_address)
2082     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2083       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2084       flags_(flags), load_address_(load_address), load_address_value_(0),
2085       segment_(NULL)
2086   { }
2087
2088   // Return the name of this segment.
2089   const std::string&
2090   name() const
2091   { return this->name_; }
2092
2093   // Return the type of the segment.
2094   unsigned int
2095   type() const
2096   { return this->type_; }
2097
2098   // Whether to include the file header.
2099   bool
2100   includes_filehdr() const
2101   { return this->includes_filehdr_; }
2102
2103   // Whether to include the program headers.
2104   bool
2105   includes_phdrs() const
2106   { return this->includes_phdrs_; }
2107
2108   // Return whether there is a load address.
2109   bool
2110   has_load_address() const
2111   { return this->load_address_ != NULL; }
2112
2113   // Evaluate the load address expression if there is one.
2114   void
2115   eval_load_address(Symbol_table* symtab, Layout* layout)
2116   {
2117     if (this->load_address_ != NULL)
2118       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2119                                                             true);
2120   }
2121
2122   // Return the load address.
2123   uint64_t
2124   load_address() const
2125   {
2126     gold_assert(this->load_address_ != NULL);
2127     return this->load_address_value_;
2128   }
2129
2130   // Create the segment.
2131   Output_segment*
2132   create_segment(Layout* layout)
2133   {
2134     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2135     return this->segment_;
2136   }
2137
2138   // Return the segment.
2139   Output_segment*
2140   segment()
2141   { return this->segment_; }
2142
2143   // Set the segment flags if appropriate.
2144   void
2145   set_flags_if_valid()
2146   {
2147     if (this->is_flags_valid_)
2148       this->segment_->set_flags(this->flags_);
2149   }
2150
2151   // Print for debugging.
2152   void
2153   print(FILE*) const;
2154
2155  private:
2156   // The name used in the script.
2157   std::string name_;
2158   // The type of the segment (PT_LOAD, etc.).
2159   unsigned int type_;
2160   // Whether this segment includes the file header.
2161   bool includes_filehdr_;
2162   // Whether this segment includes the section headers.
2163   bool includes_phdrs_;
2164   // Whether the flags were explicitly specified.
2165   bool is_flags_valid_;
2166   // The flags for this segment (PF_R, etc.) if specified.
2167   unsigned int flags_;
2168   // The expression for the load address for this segment.  This may
2169   // be NULL.
2170   Expression* load_address_;
2171   // The actual load address from evaluating the expression.
2172   uint64_t load_address_value_;
2173   // The segment itself.
2174   Output_segment* segment_;
2175 };
2176
2177 // Print for debugging.
2178
2179 void
2180 Phdrs_element::print(FILE* f) const
2181 {
2182   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2183   if (this->includes_filehdr_)
2184     fprintf(f, " FILEHDR");
2185   if (this->includes_phdrs_)
2186     fprintf(f, " PHDRS");
2187   if (this->is_flags_valid_)
2188     fprintf(f, " FLAGS(%u)", this->flags_);
2189   if (this->load_address_ != NULL)
2190     {
2191       fprintf(f, " AT(");
2192       this->load_address_->print(f);
2193       fprintf(f, ")");
2194     }
2195   fprintf(f, ";\n");
2196 }
2197
2198 // Class Script_sections.
2199
2200 Script_sections::Script_sections()
2201   : saw_sections_clause_(false),
2202     in_sections_clause_(false),
2203     sections_elements_(NULL),
2204     output_section_(NULL),
2205     phdrs_elements_(NULL)
2206 {
2207 }
2208
2209 // Start a SECTIONS clause.
2210
2211 void
2212 Script_sections::start_sections()
2213 {
2214   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2215   this->saw_sections_clause_ = true;
2216   this->in_sections_clause_ = true;
2217   if (this->sections_elements_ == NULL)
2218     this->sections_elements_ = new Sections_elements;
2219 }
2220
2221 // Finish a SECTIONS clause.
2222
2223 void
2224 Script_sections::finish_sections()
2225 {
2226   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2227   this->in_sections_clause_ = false;
2228 }
2229
2230 // Add a symbol to be defined.
2231
2232 void
2233 Script_sections::add_symbol_assignment(const char* name, size_t length,
2234                                        Expression* val, bool provide,
2235                                        bool hidden)
2236 {
2237   if (this->output_section_ != NULL)
2238     this->output_section_->add_symbol_assignment(name, length, val,
2239                                                  provide, hidden);
2240   else
2241     {
2242       Sections_element* p = new Sections_element_assignment(name, length,
2243                                                             val, provide,
2244                                                             hidden);
2245       this->sections_elements_->push_back(p);
2246     }
2247 }
2248
2249 // Add an assignment to the special dot symbol.
2250
2251 void
2252 Script_sections::add_dot_assignment(Expression* val)
2253 {
2254   if (this->output_section_ != NULL)
2255     this->output_section_->add_dot_assignment(val);
2256   else
2257     {
2258       Sections_element* p = new Sections_element_dot_assignment(val);
2259       this->sections_elements_->push_back(p);
2260     }
2261 }
2262
2263 // Add an assertion.
2264
2265 void
2266 Script_sections::add_assertion(Expression* check, const char* message,
2267                                size_t messagelen)
2268 {
2269   if (this->output_section_ != NULL)
2270     this->output_section_->add_assertion(check, message, messagelen);
2271   else
2272     {
2273       Sections_element* p = new Sections_element_assertion(check, message,
2274                                                            messagelen);
2275       this->sections_elements_->push_back(p);
2276     }
2277 }
2278
2279 // Start processing entries for an output section.
2280
2281 void
2282 Script_sections::start_output_section(
2283     const char* name,
2284     size_t namelen,
2285     const Parser_output_section_header *header)
2286 {
2287   Output_section_definition* posd = new Output_section_definition(name,
2288                                                                   namelen,
2289                                                                   header);
2290   this->sections_elements_->push_back(posd);
2291   gold_assert(this->output_section_ == NULL);
2292   this->output_section_ = posd;
2293 }
2294
2295 // Stop processing entries for an output section.
2296
2297 void
2298 Script_sections::finish_output_section(
2299     const Parser_output_section_trailer* trailer)
2300 {
2301   gold_assert(this->output_section_ != NULL);
2302   this->output_section_->finish(trailer);
2303   this->output_section_ = NULL;
2304 }
2305
2306 // Add a data item to the current output section.
2307
2308 void
2309 Script_sections::add_data(int size, bool is_signed, Expression* val)
2310 {
2311   gold_assert(this->output_section_ != NULL);
2312   this->output_section_->add_data(size, is_signed, val);
2313 }
2314
2315 // Add a fill value setting to the current output section.
2316
2317 void
2318 Script_sections::add_fill(Expression* val)
2319 {
2320   gold_assert(this->output_section_ != NULL);
2321   this->output_section_->add_fill(val);
2322 }
2323
2324 // Add an input section specification to the current output section.
2325
2326 void
2327 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2328 {
2329   gold_assert(this->output_section_ != NULL);
2330   this->output_section_->add_input_section(spec, keep);
2331 }
2332
2333 // Create any required sections.
2334
2335 void
2336 Script_sections::create_sections(Layout* layout)
2337 {
2338   if (!this->saw_sections_clause_)
2339     return;
2340   for (Sections_elements::iterator p = this->sections_elements_->begin();
2341        p != this->sections_elements_->end();
2342        ++p)
2343     (*p)->create_sections(layout);
2344 }
2345
2346 // Add any symbols we are defining to the symbol table.
2347
2348 void
2349 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2350 {
2351   if (!this->saw_sections_clause_)
2352     return;
2353   for (Sections_elements::iterator p = this->sections_elements_->begin();
2354        p != this->sections_elements_->end();
2355        ++p)
2356     (*p)->add_symbols_to_table(symtab);
2357 }
2358
2359 // Finalize symbols and check assertions.
2360
2361 void
2362 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2363 {
2364   if (!this->saw_sections_clause_)
2365     return;
2366   uint64_t dot_value = 0;
2367   for (Sections_elements::iterator p = this->sections_elements_->begin();
2368        p != this->sections_elements_->end();
2369        ++p)
2370     (*p)->finalize_symbols(symtab, layout, &dot_value);
2371 }
2372
2373 // Return the name of the output section to use for an input file name
2374 // and section name.
2375
2376 const char*
2377 Script_sections::output_section_name(const char* file_name,
2378                                      const char* section_name,
2379                                      Output_section*** output_section_slot)
2380 {
2381   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2382        p != this->sections_elements_->end();
2383        ++p)
2384     {
2385       const char* ret = (*p)->output_section_name(file_name, section_name,
2386                                                   output_section_slot);
2387
2388       if (ret != NULL)
2389         {
2390           // The special name /DISCARD/ means that the input section
2391           // should be discarded.
2392           if (strcmp(ret, "/DISCARD/") == 0)
2393             {
2394               *output_section_slot = NULL;
2395               return NULL;
2396             }
2397           return ret;
2398         }
2399     }
2400
2401   // If we couldn't find a mapping for the name, the output section
2402   // gets the name of the input section.
2403
2404   *output_section_slot = NULL;
2405
2406   return section_name;
2407 }
2408
2409 // Place a marker for an orphan output section into the SECTIONS
2410 // clause.
2411
2412 void
2413 Script_sections::place_orphan(Output_section* os)
2414 {
2415   // Look for an output section definition which matches the output
2416   // section.  Put a marker after that section.
2417   Sections_elements::iterator place = this->sections_elements_->end();
2418   for (Sections_elements::iterator p = this->sections_elements_->begin();
2419        p != this->sections_elements_->end();
2420        ++p)
2421     {
2422       bool exact;
2423       if ((*p)->place_orphan_here(os, &exact))
2424         {
2425           place = p;
2426           if (exact)
2427             break;
2428         }
2429     }
2430
2431   // The insert function puts the new element before the iterator.
2432   if (place != this->sections_elements_->end())
2433     ++place;
2434
2435   this->sections_elements_->insert(place, new Orphan_output_section(os));
2436 }
2437
2438 // Set the addresses of all the output sections.  Walk through all the
2439 // elements, tracking the dot symbol.  Apply assignments which set
2440 // absolute symbol values, in case they are used when setting dot.
2441 // Fill in data statement values.  As we find output sections, set the
2442 // address, set the address of all associated input sections, and
2443 // update dot.  Return the segment which should hold the file header
2444 // and segment headers, if any.
2445
2446 Output_segment*
2447 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2448 {
2449   gold_assert(this->saw_sections_clause_);
2450
2451   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2452   // for our representation.
2453   for (Sections_elements::iterator p = this->sections_elements_->begin();
2454        p != this->sections_elements_->end();
2455        ++p)
2456     {
2457       Output_section_definition* posd;
2458       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2459       if (failed_constraint != CONSTRAINT_NONE)
2460         {
2461           Sections_elements::iterator q;
2462           for (q = this->sections_elements_->begin();
2463                q != this->sections_elements_->end();
2464                ++q)
2465             {
2466               if (q != p)
2467                 {
2468                   if ((*q)->alternate_constraint(posd, failed_constraint))
2469                     break;
2470                 }
2471             }
2472
2473           if (q == this->sections_elements_->end())
2474             gold_error(_("no matching section constraint"));
2475         }
2476     }
2477
2478   // For a relocatable link, we implicitly set dot to zero.
2479   uint64_t dot_value = 0;
2480   uint64_t load_address = 0;
2481   for (Sections_elements::iterator p = this->sections_elements_->begin();
2482        p != this->sections_elements_->end();
2483        ++p)
2484     (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2485
2486   if (this->phdrs_elements_ != NULL)
2487     {
2488       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2489            p != this->phdrs_elements_->end();
2490            ++p)
2491         (*p)->eval_load_address(symtab, layout);
2492     }
2493
2494   return this->create_segments(layout);
2495 }
2496
2497 // Sort the sections in order to put them into segments.
2498
2499 class Sort_output_sections
2500 {
2501  public:
2502   bool
2503   operator()(const Output_section* os1, const Output_section* os2) const;
2504 };
2505
2506 bool
2507 Sort_output_sections::operator()(const Output_section* os1,
2508                                  const Output_section* os2) const
2509 {
2510   // Sort first by the load address.
2511   uint64_t lma1 = (os1->has_load_address()
2512                    ? os1->load_address()
2513                    : os1->address());
2514   uint64_t lma2 = (os2->has_load_address()
2515                    ? os2->load_address()
2516                    : os2->address());
2517   if (lma1 != lma2)
2518     return lma1 < lma2;
2519
2520   // Then sort by the virtual address.
2521   if (os1->address() != os2->address())
2522     return os1->address() < os2->address();
2523
2524   // Sort TLS sections to the end.
2525   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2526   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2527   if (tls1 != tls2)
2528     return tls2;
2529
2530   // Sort PROGBITS before NOBITS.
2531   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2532     return true;
2533   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2534     return false;
2535
2536   // Otherwise we don't care.
2537   return false;
2538 }
2539
2540 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2541 // We treat a section with the SHF_TLS flag set as taking up space
2542 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2543 // space for them in the file.
2544
2545 bool
2546 Script_sections::is_bss_section(const Output_section* os)
2547 {
2548   return (os->type() == elfcpp::SHT_NOBITS
2549           && (os->flags() & elfcpp::SHF_TLS) == 0);
2550 }
2551
2552 // Return the size taken by the file header and the program headers.
2553
2554 size_t
2555 Script_sections::total_header_size(Layout* layout) const
2556 {
2557   size_t segment_count = layout->segment_count();
2558   size_t file_header_size;
2559   size_t segment_headers_size;
2560   if (parameters->target().get_size() == 32)
2561     {
2562       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2563       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2564     }
2565   else if (parameters->target().get_size() == 64)
2566     {
2567       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2568       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2569     }
2570   else
2571     gold_unreachable();
2572
2573   return file_header_size + segment_headers_size;
2574 }
2575
2576 // Return the amount we have to subtract from the LMA to accomodate
2577 // headers of the given size.  The complication is that the file
2578 // header have to be at the start of a page, as otherwise it will not
2579 // be at the start of the file.
2580
2581 uint64_t
2582 Script_sections::header_size_adjustment(uint64_t lma,
2583                                         size_t sizeof_headers) const
2584 {
2585   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2586   uint64_t hdr_lma = lma - sizeof_headers;
2587   hdr_lma &= ~(abi_pagesize - 1);
2588   return lma - hdr_lma;
2589 }
2590
2591 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2592 // the segment which should hold the file header and segment headers,
2593 // if any.
2594
2595 Output_segment*
2596 Script_sections::create_segments(Layout* layout)
2597 {
2598   gold_assert(this->saw_sections_clause_);
2599
2600   if (parameters->options().relocatable())
2601     return NULL;
2602
2603   if (this->saw_phdrs_clause())
2604     return create_segments_from_phdrs_clause(layout);
2605
2606   Layout::Section_list sections;
2607   layout->get_allocated_sections(&sections);
2608
2609   // Sort the sections by address.
2610   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2611
2612   this->create_note_and_tls_segments(layout, &sections);
2613
2614   // Walk through the sections adding them to PT_LOAD segments.
2615   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2616   Output_segment* first_seg = NULL;
2617   Output_segment* current_seg = NULL;
2618   bool is_current_seg_readonly = true;
2619   Layout::Section_list::iterator plast = sections.end();
2620   uint64_t last_vma = 0;
2621   uint64_t last_lma = 0;
2622   uint64_t last_size = 0;
2623   for (Layout::Section_list::iterator p = sections.begin();
2624        p != sections.end();
2625        ++p)
2626     {
2627       const uint64_t vma = (*p)->address();
2628       const uint64_t lma = ((*p)->has_load_address()
2629                             ? (*p)->load_address()
2630                             : vma);
2631       const uint64_t size = (*p)->current_data_size();
2632
2633       bool need_new_segment;
2634       if (current_seg == NULL)
2635         need_new_segment = true;
2636       else if (lma - vma != last_lma - last_vma)
2637         {
2638           // This section has a different LMA relationship than the
2639           // last one; we need a new segment.
2640           need_new_segment = true;
2641         }
2642       else if (align_address(last_lma + last_size, abi_pagesize)
2643                < align_address(lma, abi_pagesize))
2644         {
2645           // Putting this section in the segment would require
2646           // skipping a page.
2647           need_new_segment = true;
2648         }
2649       else if (is_bss_section(*plast) && !is_bss_section(*p))
2650         {
2651           // A non-BSS section can not follow a BSS section in the
2652           // same segment.
2653           need_new_segment = true;
2654         }
2655       else if (is_current_seg_readonly
2656                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2657         {
2658           // Don't put a writable section in the same segment as a
2659           // non-writable section.
2660           need_new_segment = true;
2661         }
2662       else
2663         {
2664           // Otherwise, reuse the existing segment.
2665           need_new_segment = false;
2666         }
2667
2668       elfcpp::Elf_Word seg_flags =
2669         Layout::section_flags_to_segment((*p)->flags());
2670
2671       if (need_new_segment)
2672         {
2673           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2674                                                     seg_flags);
2675           current_seg->set_addresses(vma, lma);
2676           if (first_seg == NULL)
2677             first_seg = current_seg;
2678           is_current_seg_readonly = true;
2679         }
2680
2681       current_seg->add_output_section(*p, seg_flags);
2682
2683       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2684         is_current_seg_readonly = false;
2685
2686       plast = p;
2687       last_vma = vma;
2688       last_lma = lma;
2689       last_size = size;
2690     }
2691
2692   // An ELF program should work even if the program headers are not in
2693   // a PT_LOAD segment.  However, it appears that the Linux kernel
2694   // does not set the AT_PHDR auxiliary entry in that case.  It sets
2695   // the load address to p_vaddr - p_offset of the first PT_LOAD
2696   // segment.  It then sets AT_PHDR to the load address plus the
2697   // offset to the program headers, e_phoff in the file header.  This
2698   // fails when the program headers appear in the file before the
2699   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
2700   // segment to hold the file header and the program headers.  This is
2701   // effectively what the GNU linker does, and it is slightly more
2702   // efficient in any case.  We try to use the first PT_LOAD segment
2703   // if we can, otherwise we make a new one.
2704
2705   if (first_seg == NULL)
2706     return NULL;
2707
2708   size_t sizeof_headers = this->total_header_size(layout);
2709
2710   if ((first_seg->paddr() & (abi_pagesize - 1)) >= sizeof_headers)
2711     {
2712       first_seg->set_addresses(first_seg->vaddr() - sizeof_headers,
2713                                first_seg->paddr() - sizeof_headers);
2714       return first_seg;
2715     }
2716
2717   uint64_t vma = first_seg->vaddr();
2718   uint64_t lma = first_seg->paddr();
2719
2720   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2721
2722   // If there is no room to squeeze in the headers, then punt.  The
2723   // resulting executable probably won't run on GNU/Linux, but we
2724   // trust that the user knows what they are doing.
2725   if (lma < subtract || vma < subtract)
2726     return NULL;
2727
2728   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2729                                                          elfcpp::PF_R);
2730   load_seg->set_addresses(vma - subtract, lma - subtract);
2731
2732   return load_seg;
2733 }
2734
2735 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2736 // segment if there are any SHT_TLS sections.
2737
2738 void
2739 Script_sections::create_note_and_tls_segments(
2740     Layout* layout,
2741     const Layout::Section_list* sections)
2742 {
2743   gold_assert(!this->saw_phdrs_clause());
2744
2745   bool saw_tls = false;
2746   for (Layout::Section_list::const_iterator p = sections->begin();
2747        p != sections->end();
2748        ++p)
2749     {
2750       if ((*p)->type() == elfcpp::SHT_NOTE)
2751         {
2752           elfcpp::Elf_Word seg_flags =
2753             Layout::section_flags_to_segment((*p)->flags());
2754           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2755                                                              seg_flags);
2756           oseg->add_output_section(*p, seg_flags);
2757
2758           // Incorporate any subsequent SHT_NOTE sections, in the
2759           // hopes that the script is sensible.
2760           Layout::Section_list::const_iterator pnext = p + 1;
2761           while (pnext != sections->end()
2762                  && (*pnext)->type() == elfcpp::SHT_NOTE)
2763             {
2764               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2765               oseg->add_output_section(*pnext, seg_flags);
2766               p = pnext;
2767               ++pnext;
2768             }
2769         }
2770
2771       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2772         {
2773           if (saw_tls)
2774             gold_error(_("TLS sections are not adjacent"));
2775
2776           elfcpp::Elf_Word seg_flags =
2777             Layout::section_flags_to_segment((*p)->flags());
2778           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2779                                                              seg_flags);
2780           oseg->add_output_section(*p, seg_flags);
2781
2782           Layout::Section_list::const_iterator pnext = p + 1;
2783           while (pnext != sections->end()
2784                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2785             {
2786               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2787               oseg->add_output_section(*pnext, seg_flags);
2788               p = pnext;
2789               ++pnext;
2790             }
2791
2792           saw_tls = true;
2793         }
2794     }
2795 }
2796
2797 // Add a program header.  The PHDRS clause is syntactically distinct
2798 // from the SECTIONS clause, but we implement it with the SECTIONS
2799 // support becauase PHDRS is useless if there is no SECTIONS clause.
2800
2801 void
2802 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2803                           bool includes_filehdr, bool includes_phdrs,
2804                           bool is_flags_valid, unsigned int flags,
2805                           Expression* load_address)
2806 {
2807   if (this->phdrs_elements_ == NULL)
2808     this->phdrs_elements_ = new Phdrs_elements();
2809   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2810                                                      includes_filehdr,
2811                                                      includes_phdrs,
2812                                                      is_flags_valid, flags,
2813                                                      load_address));
2814 }
2815
2816 // Return the number of segments we expect to create based on the
2817 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
2818
2819 size_t
2820 Script_sections::expected_segment_count(const Layout* layout) const
2821 {
2822   if (this->saw_phdrs_clause())
2823     return this->phdrs_elements_->size();
2824
2825   Layout::Section_list sections;
2826   layout->get_allocated_sections(&sections);
2827
2828   // We assume that we will need two PT_LOAD segments.
2829   size_t ret = 2;
2830
2831   bool saw_note = false;
2832   bool saw_tls = false;
2833   for (Layout::Section_list::const_iterator p = sections.begin();
2834        p != sections.end();
2835        ++p)
2836     {
2837       if ((*p)->type() == elfcpp::SHT_NOTE)
2838         {
2839           // Assume that all note sections will fit into a single
2840           // PT_NOTE segment.
2841           if (!saw_note)
2842             {
2843               ++ret;
2844               saw_note = true;
2845             }
2846         }
2847       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2848         {
2849           // There can only be one PT_TLS segment.
2850           if (!saw_tls)
2851             {
2852               ++ret;
2853               saw_tls = true;
2854             }
2855         }
2856     }
2857
2858   return ret;
2859 }
2860
2861 // Create the segments from a PHDRS clause.  Return the segment which
2862 // should hold the file header and program headers, if any.
2863
2864 Output_segment*
2865 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2866 {
2867   this->attach_sections_using_phdrs_clause(layout);
2868   return this->set_phdrs_clause_addresses(layout);
2869 }
2870
2871 // Create the segments from the PHDRS clause, and put the output
2872 // sections in them.
2873
2874 void
2875 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2876 {
2877   typedef std::map<std::string, Output_segment*> Name_to_segment;
2878   Name_to_segment name_to_segment;
2879   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2880        p != this->phdrs_elements_->end();
2881        ++p)
2882     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2883
2884   // Walk through the output sections and attach them to segments.
2885   // Output sections in the script which do not list segments are
2886   // attached to the same set of segments as the immediately preceding
2887   // output section.
2888   String_list* phdr_names = NULL;
2889   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2890        p != this->sections_elements_->end();
2891        ++p)
2892     {
2893       Output_section* os = (*p)->allocate_to_segment(&phdr_names);
2894       if (os == NULL)
2895         continue;
2896
2897       if (phdr_names == NULL)
2898         {
2899           gold_error(_("allocated section not in any segment"));
2900           continue;
2901         }
2902
2903       bool in_load_segment = false;
2904       for (String_list::const_iterator q = phdr_names->begin();
2905            q != phdr_names->end();
2906            ++q)
2907         {
2908           Name_to_segment::const_iterator r = name_to_segment.find(*q);
2909           if (r == name_to_segment.end())
2910             gold_error(_("no segment %s"), q->c_str());
2911           else
2912             {
2913               elfcpp::Elf_Word seg_flags =
2914                 Layout::section_flags_to_segment(os->flags());
2915               r->second->add_output_section(os, seg_flags);
2916
2917               if (r->second->type() == elfcpp::PT_LOAD)
2918                 {
2919                   if (in_load_segment)
2920                     gold_error(_("section in two PT_LOAD segments"));
2921                   in_load_segment = true;
2922                 }
2923             }
2924         }
2925
2926       if (!in_load_segment)
2927         gold_error(_("allocated section not in any PT_LOAD segment"));
2928     }
2929 }
2930
2931 // Set the addresses for segments created from a PHDRS clause.  Return
2932 // the segment which should hold the file header and program headers,
2933 // if any.
2934
2935 Output_segment*
2936 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2937 {
2938   Output_segment* load_seg = NULL;
2939   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2940        p != this->phdrs_elements_->end();
2941        ++p)
2942     {
2943       // Note that we have to set the flags after adding the output
2944       // sections to the segment, as adding an output segment can
2945       // change the flags.
2946       (*p)->set_flags_if_valid();
2947
2948       Output_segment* oseg = (*p)->segment();
2949
2950       if (oseg->type() != elfcpp::PT_LOAD)
2951         {
2952           // The addresses of non-PT_LOAD segments are set from the
2953           // PT_LOAD segments.
2954           if ((*p)->has_load_address())
2955             gold_error(_("may only specify load address for PT_LOAD segment"));
2956           continue;
2957         }
2958
2959       // The output sections should have addresses from the SECTIONS
2960       // clause.  The addresses don't have to be in order, so find the
2961       // one with the lowest load address.  Use that to set the
2962       // address of the segment.
2963
2964       Output_section* osec = oseg->section_with_lowest_load_address();
2965       if (osec == NULL)
2966         {
2967           oseg->set_addresses(0, 0);
2968           continue;
2969         }
2970
2971       uint64_t vma = osec->address();
2972       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2973
2974       // Override the load address of the section with the load
2975       // address specified for the segment.
2976       if ((*p)->has_load_address())
2977         {
2978           if (osec->has_load_address())
2979             gold_warning(_("PHDRS load address overrides "
2980                            "section %s load address"),
2981                          osec->name());
2982
2983           lma = (*p)->load_address();
2984         }
2985
2986       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
2987       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
2988         {
2989           // We could support this if we wanted to.
2990           gold_error(_("using only one of FILEHDR and PHDRS is "
2991                        "not currently supported"));
2992         }
2993       if (headers)
2994         {
2995           size_t sizeof_headers = this->total_header_size(layout);
2996           uint64_t subtract = this->header_size_adjustment(lma,
2997                                                            sizeof_headers);
2998           if (lma >= subtract && vma >= subtract)
2999             {
3000               lma -= subtract;
3001               vma -= subtract;
3002             }
3003           else
3004             {
3005               gold_error(_("sections loaded on first page without room "
3006                            "for file and program headers "
3007                            "are not supported"));
3008             }
3009
3010           if (load_seg != NULL)
3011             gold_error(_("using FILEHDR and PHDRS on more than one "
3012                          "PT_LOAD segment is not currently supported"));
3013           load_seg = oseg;
3014         }
3015
3016       oseg->set_addresses(vma, lma);
3017     }
3018
3019   return load_seg;
3020 }
3021
3022 // Add the file header and segment headers to non-load segments
3023 // specified in the PHDRS clause.
3024
3025 void
3026 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3027                                       Output_data* segment_headers)
3028 {
3029   gold_assert(this->saw_phdrs_clause());
3030   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3031        p != this->phdrs_elements_->end();
3032        ++p)
3033     {
3034       if ((*p)->type() != elfcpp::PT_LOAD)
3035         {
3036           if ((*p)->includes_phdrs())
3037             (*p)->segment()->add_initial_output_data(segment_headers);
3038           if ((*p)->includes_filehdr())
3039             (*p)->segment()->add_initial_output_data(file_header);
3040         }
3041     }
3042 }
3043
3044 // Look for an output section by name and return the address, the load
3045 // address, the alignment, and the size.  This is used when an
3046 // expression refers to an output section which was not actually
3047 // created.  This returns true if the section was found, false
3048 // otherwise.
3049
3050 bool
3051 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3052                                          uint64_t* load_address,
3053                                          uint64_t* addralign,
3054                                          uint64_t* size) const
3055 {
3056   if (!this->saw_sections_clause_)
3057     return false;
3058   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3059        p != this->sections_elements_->end();
3060        ++p)
3061     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3062                                       size))
3063       return true;
3064   return false;
3065 }
3066
3067 // Print the SECTIONS clause to F for debugging.
3068
3069 void
3070 Script_sections::print(FILE* f) const
3071 {
3072   if (!this->saw_sections_clause_)
3073     return;
3074
3075   fprintf(f, "SECTIONS {\n");
3076
3077   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3078        p != this->sections_elements_->end();
3079        ++p)
3080     (*p)->print(f);
3081
3082   fprintf(f, "}\n");
3083
3084   if (this->phdrs_elements_ != NULL)
3085     {
3086       fprintf(f, "PHDRS {\n");
3087       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3088            p != this->phdrs_elements_->end();
3089            ++p)
3090         (*p)->print(f);
3091       fprintf(f, "}\n");
3092     }
3093 }
3094
3095 } // End namespace gold.