1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
40 Symbol::override_version(const char* version)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
112 template<bool big_endian>
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
180 case elfcpp::STB_GLOBAL:
184 case elfcpp::STB_WEAK:
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
202 bits |= dynamic_flag;
204 bits |= regular_flag;
208 case elfcpp::SHN_UNDEF:
212 case elfcpp::SHN_COMMON:
218 if (type == elfcpp::STT_COMMON)
220 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
230 // Resolve a symbol. This is called the second and subsequent times
231 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232 // section index for SYM, possibly adjusted for many sections.
233 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234 // than a special code. ORIG_ST_SHNDX is the original section index,
235 // before any munging because of discarded sections, except that all
236 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
237 // the version of SYM.
239 template<int size, bool big_endian>
241 Symbol_table::resolve(Sized_symbol<size>* to,
242 const elfcpp::Sym<size, big_endian>& sym,
243 unsigned int st_shndx, bool is_ordinary,
244 unsigned int orig_st_shndx,
245 Object* object, const char* version)
247 if (parameters->target().has_resolve())
249 Sized_target<size, big_endian>* sized_target;
250 sized_target = parameters->sized_target<size, big_endian>();
251 sized_target->resolve(to, sym, object, version);
255 if (!object->is_dynamic())
257 // Record that we've seen this symbol in a regular object.
260 else if (st_shndx == elfcpp::SHN_UNDEF
261 && (to->visibility() == elfcpp::STV_HIDDEN
262 || to->visibility() == elfcpp::STV_INTERNAL))
264 // A dynamic object cannot reference a hidden or internal symbol
265 // defined in another object.
266 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
267 (to->visibility() == elfcpp::STV_HIDDEN
270 to->demangled_name().c_str(),
271 to->object()->name().c_str(),
272 object->name().c_str());
277 // Record that we've seen this symbol in a dynamic object.
281 // Record if we've seen this symbol in a real ELF object (i.e., the
282 // symbol is referenced from outside the world known to the plugin).
283 if (object->pluginobj() == NULL)
284 to->set_in_real_elf();
286 // If we're processing replacement files, allow new symbols to override
287 // the placeholders from the plugin objects.
288 if (to->source() == Symbol::FROM_OBJECT)
290 Pluginobj* obj = to->object()->pluginobj();
292 && parameters->options().plugins()->in_replacement_phase())
294 this->override(to, sym, st_shndx, is_ordinary, object, version);
299 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
300 object->is_dynamic(),
301 st_shndx, is_ordinary,
304 bool adjust_common_sizes;
305 if (Symbol_table::should_override(to, frombits, object,
306 &adjust_common_sizes))
308 typename Sized_symbol<size>::Size_type tosize = to->symsize();
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
312 if (adjust_common_sizes && tosize > to->symsize())
313 to->set_symsize(tosize);
317 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
318 to->set_symsize(sym.get_st_size());
319 // The ELF ABI says that even for a reference to a symbol we
320 // merge the visibility.
321 to->override_visibility(sym.get_st_visibility());
324 // A new weak undefined reference, merging with an old weak
325 // reference, could be a One Definition Rule (ODR) violation --
326 // especially if the types or sizes of the references differ. We'll
327 // store such pairs and look them up later to make sure they
328 // actually refer to the same lines of code. (Note: not all ODR
329 // violations can be found this way, and not everything this finds
330 // is an ODR violation. But it's helpful to warn about.)
332 if (parameters->options().detect_odr_violations()
333 && sym.get_st_bind() == elfcpp::STB_WEAK
334 && to->binding() == elfcpp::STB_WEAK
335 && orig_st_shndx != elfcpp::SHN_UNDEF
336 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
338 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
339 && to->symsize() != 0
340 && (sym.get_st_type() != to->type()
341 || sym.get_st_size() != to->symsize())
342 // C does not have a concept of ODR, so we only need to do this
343 // on C++ symbols. These have (mangled) names starting with _Z.
344 && to->name()[0] == '_' && to->name()[1] == 'Z')
346 Symbol_location fromloc
347 = { object, orig_st_shndx, sym.get_st_value() };
348 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
350 this->candidate_odr_violations_[to->name()].insert(fromloc);
351 this->candidate_odr_violations_[to->name()].insert(toloc);
355 // Handle the core of symbol resolution. This is called with the
356 // existing symbol, TO, and a bitflag describing the new symbol. This
357 // returns true if we should override the existing symbol with the new
358 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
359 // true if we should set the symbol size to the maximum of the TO and
360 // FROM sizes. It handles error conditions.
363 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
364 Object* object, bool* adjust_common_sizes)
366 *adjust_common_sizes = false;
369 if (to->source() == Symbol::IS_UNDEFINED)
370 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
372 else if (to->source() != Symbol::FROM_OBJECT)
373 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
378 unsigned int shndx = to->shndx(&is_ordinary);
379 tobits = symbol_to_bits(to->binding(),
380 to->object()->is_dynamic(),
386 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
388 // We use a giant switch table for symbol resolution. This code is
389 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
390 // cases; 3) it is easy to change the handling of a particular case.
391 // The alternative would be a series of conditionals, but it is easy
392 // to get the ordering wrong. This could also be done as a table,
393 // but that is no easier to understand than this large switch
396 // These are the values generated by the bit codes.
399 DEF = global_flag | regular_flag | def_flag,
400 WEAK_DEF = weak_flag | regular_flag | def_flag,
401 DYN_DEF = global_flag | dynamic_flag | def_flag,
402 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
403 UNDEF = global_flag | regular_flag | undef_flag,
404 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
405 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
406 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
407 COMMON = global_flag | regular_flag | common_flag,
408 WEAK_COMMON = weak_flag | regular_flag | common_flag,
409 DYN_COMMON = global_flag | dynamic_flag | common_flag,
410 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
413 switch (tobits * 16 + frombits)
416 // Two definitions of the same symbol.
418 // If either symbol is defined by an object included using
419 // --just-symbols, then don't warn. This is for compatibility
420 // with the GNU linker. FIXME: This is a hack.
421 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
422 || object->just_symbols())
425 // FIXME: Do a better job of reporting locations.
426 gold_error(_("%s: multiple definition of %s"),
427 object != NULL ? object->name().c_str() : _("command line"),
428 to->demangled_name().c_str());
429 gold_error(_("%s: previous definition here"),
430 (to->source() == Symbol::FROM_OBJECT
431 ? to->object()->name().c_str()
432 : _("command line")));
435 case WEAK_DEF * 16 + DEF:
436 // We've seen a weak definition, and now we see a strong
437 // definition. In the original SVR4 linker, this was treated as
438 // a multiple definition error. In the Solaris linker and the
439 // GNU linker, a weak definition followed by a regular
440 // definition causes the weak definition to be overridden. We
441 // are currently compatible with the GNU linker. In the future
442 // we should add a target specific option to change this.
446 case DYN_DEF * 16 + DEF:
447 case DYN_WEAK_DEF * 16 + DEF:
448 // We've seen a definition in a dynamic object, and now we see a
449 // definition in a regular object. The definition in the
450 // regular object overrides the definition in the dynamic
454 case UNDEF * 16 + DEF:
455 case WEAK_UNDEF * 16 + DEF:
456 case DYN_UNDEF * 16 + DEF:
457 case DYN_WEAK_UNDEF * 16 + DEF:
458 // We've seen an undefined reference, and now we see a
459 // definition. We use the definition.
462 case COMMON * 16 + DEF:
463 case WEAK_COMMON * 16 + DEF:
464 case DYN_COMMON * 16 + DEF:
465 case DYN_WEAK_COMMON * 16 + DEF:
466 // We've seen a common symbol and now we see a definition. The
467 // definition overrides. FIXME: We should optionally issue, version a
471 case DEF * 16 + WEAK_DEF:
472 case WEAK_DEF * 16 + WEAK_DEF:
473 // We've seen a definition and now we see a weak definition. We
474 // ignore the new weak definition.
477 case DYN_DEF * 16 + WEAK_DEF:
478 case DYN_WEAK_DEF * 16 + WEAK_DEF:
479 // We've seen a dynamic definition and now we see a regular weak
480 // definition. The regular weak definition overrides.
483 case UNDEF * 16 + WEAK_DEF:
484 case WEAK_UNDEF * 16 + WEAK_DEF:
485 case DYN_UNDEF * 16 + WEAK_DEF:
486 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
487 // A weak definition of a currently undefined symbol.
490 case COMMON * 16 + WEAK_DEF:
491 case WEAK_COMMON * 16 + WEAK_DEF:
492 // A weak definition does not override a common definition.
495 case DYN_COMMON * 16 + WEAK_DEF:
496 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
497 // A weak definition does override a definition in a dynamic
498 // object. FIXME: We should optionally issue a warning.
501 case DEF * 16 + DYN_DEF:
502 case WEAK_DEF * 16 + DYN_DEF:
503 case DYN_DEF * 16 + DYN_DEF:
504 case DYN_WEAK_DEF * 16 + DYN_DEF:
505 // Ignore a dynamic definition if we already have a definition.
508 case UNDEF * 16 + DYN_DEF:
509 case WEAK_UNDEF * 16 + DYN_DEF:
510 case DYN_UNDEF * 16 + DYN_DEF:
511 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
512 // Use a dynamic definition if we have a reference.
515 case COMMON * 16 + DYN_DEF:
516 case WEAK_COMMON * 16 + DYN_DEF:
517 case DYN_COMMON * 16 + DYN_DEF:
518 case DYN_WEAK_COMMON * 16 + DYN_DEF:
519 // Ignore a dynamic definition if we already have a common
523 case DEF * 16 + DYN_WEAK_DEF:
524 case WEAK_DEF * 16 + DYN_WEAK_DEF:
525 case DYN_DEF * 16 + DYN_WEAK_DEF:
526 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
527 // Ignore a weak dynamic definition if we already have a
531 case UNDEF * 16 + DYN_WEAK_DEF:
532 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
533 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
534 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
535 // Use a weak dynamic definition if we have a reference.
538 case COMMON * 16 + DYN_WEAK_DEF:
539 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
540 case DYN_COMMON * 16 + DYN_WEAK_DEF:
541 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
542 // Ignore a weak dynamic definition if we already have a common
546 case DEF * 16 + UNDEF:
547 case WEAK_DEF * 16 + UNDEF:
548 case DYN_DEF * 16 + UNDEF:
549 case DYN_WEAK_DEF * 16 + UNDEF:
550 case UNDEF * 16 + UNDEF:
551 // A new undefined reference tells us nothing.
554 case WEAK_UNDEF * 16 + UNDEF:
555 case DYN_UNDEF * 16 + UNDEF:
556 case DYN_WEAK_UNDEF * 16 + UNDEF:
557 // A strong undef overrides a dynamic or weak undef.
560 case COMMON * 16 + UNDEF:
561 case WEAK_COMMON * 16 + UNDEF:
562 case DYN_COMMON * 16 + UNDEF:
563 case DYN_WEAK_COMMON * 16 + UNDEF:
564 // A new undefined reference tells us nothing.
567 case DEF * 16 + WEAK_UNDEF:
568 case WEAK_DEF * 16 + WEAK_UNDEF:
569 case DYN_DEF * 16 + WEAK_UNDEF:
570 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
571 case UNDEF * 16 + WEAK_UNDEF:
572 case WEAK_UNDEF * 16 + WEAK_UNDEF:
573 case DYN_UNDEF * 16 + WEAK_UNDEF:
574 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
575 case COMMON * 16 + WEAK_UNDEF:
576 case WEAK_COMMON * 16 + WEAK_UNDEF:
577 case DYN_COMMON * 16 + WEAK_UNDEF:
578 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
579 // A new weak undefined reference tells us nothing.
582 case DEF * 16 + DYN_UNDEF:
583 case WEAK_DEF * 16 + DYN_UNDEF:
584 case DYN_DEF * 16 + DYN_UNDEF:
585 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
586 case UNDEF * 16 + DYN_UNDEF:
587 case WEAK_UNDEF * 16 + DYN_UNDEF:
588 case DYN_UNDEF * 16 + DYN_UNDEF:
589 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
590 case COMMON * 16 + DYN_UNDEF:
591 case WEAK_COMMON * 16 + DYN_UNDEF:
592 case DYN_COMMON * 16 + DYN_UNDEF:
593 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
594 // A new dynamic undefined reference tells us nothing.
597 case DEF * 16 + DYN_WEAK_UNDEF:
598 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
599 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
600 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
601 case UNDEF * 16 + DYN_WEAK_UNDEF:
602 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
603 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
604 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
605 case COMMON * 16 + DYN_WEAK_UNDEF:
606 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
607 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
608 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
609 // A new weak dynamic undefined reference tells us nothing.
612 case DEF * 16 + COMMON:
613 // A common symbol does not override a definition.
616 case WEAK_DEF * 16 + COMMON:
617 case DYN_DEF * 16 + COMMON:
618 case DYN_WEAK_DEF * 16 + COMMON:
619 // A common symbol does override a weak definition or a dynamic
623 case UNDEF * 16 + COMMON:
624 case WEAK_UNDEF * 16 + COMMON:
625 case DYN_UNDEF * 16 + COMMON:
626 case DYN_WEAK_UNDEF * 16 + COMMON:
627 // A common symbol is a definition for a reference.
630 case COMMON * 16 + COMMON:
631 // Set the size to the maximum.
632 *adjust_common_sizes = true;
635 case WEAK_COMMON * 16 + COMMON:
636 // I'm not sure just what a weak common symbol means, but
637 // presumably it can be overridden by a regular common symbol.
640 case DYN_COMMON * 16 + COMMON:
641 case DYN_WEAK_COMMON * 16 + COMMON:
642 // Use the real common symbol, but adjust the size if necessary.
643 *adjust_common_sizes = true;
646 case DEF * 16 + WEAK_COMMON:
647 case WEAK_DEF * 16 + WEAK_COMMON:
648 case DYN_DEF * 16 + WEAK_COMMON:
649 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
650 // Whatever a weak common symbol is, it won't override a
654 case UNDEF * 16 + WEAK_COMMON:
655 case WEAK_UNDEF * 16 + WEAK_COMMON:
656 case DYN_UNDEF * 16 + WEAK_COMMON:
657 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
658 // A weak common symbol is better than an undefined symbol.
661 case COMMON * 16 + WEAK_COMMON:
662 case WEAK_COMMON * 16 + WEAK_COMMON:
663 case DYN_COMMON * 16 + WEAK_COMMON:
664 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
665 // Ignore a weak common symbol in the presence of a real common
669 case DEF * 16 + DYN_COMMON:
670 case WEAK_DEF * 16 + DYN_COMMON:
671 case DYN_DEF * 16 + DYN_COMMON:
672 case DYN_WEAK_DEF * 16 + DYN_COMMON:
673 // Ignore a dynamic common symbol in the presence of a
677 case UNDEF * 16 + DYN_COMMON:
678 case WEAK_UNDEF * 16 + DYN_COMMON:
679 case DYN_UNDEF * 16 + DYN_COMMON:
680 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
681 // A dynamic common symbol is a definition of sorts.
684 case COMMON * 16 + DYN_COMMON:
685 case WEAK_COMMON * 16 + DYN_COMMON:
686 case DYN_COMMON * 16 + DYN_COMMON:
687 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
688 // Set the size to the maximum.
689 *adjust_common_sizes = true;
692 case DEF * 16 + DYN_WEAK_COMMON:
693 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
694 case DYN_DEF * 16 + DYN_WEAK_COMMON:
695 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
696 // A common symbol is ignored in the face of a definition.
699 case UNDEF * 16 + DYN_WEAK_COMMON:
700 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
701 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
702 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
703 // I guess a weak common symbol is better than a definition.
706 case COMMON * 16 + DYN_WEAK_COMMON:
707 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
708 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
709 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
710 // Set the size to the maximum.
711 *adjust_common_sizes = true;
719 // A special case of should_override which is only called for a strong
720 // defined symbol from a regular object file. This is used when
721 // defining special symbols.
724 Symbol_table::should_override_with_special(const Symbol* to)
726 bool adjust_common_sizes;
727 unsigned int frombits = global_flag | regular_flag | def_flag;
728 bool ret = Symbol_table::should_override(to, frombits, NULL,
729 &adjust_common_sizes);
730 gold_assert(!adjust_common_sizes);
734 // Override symbol base with a special symbol.
737 Symbol::override_base_with_special(const Symbol* from)
739 gold_assert(this->name_ == from->name_ || this->has_alias());
741 this->source_ = from->source_;
742 switch (from->source_)
745 this->u_.from_object = from->u_.from_object;
748 this->u_.in_output_data = from->u_.in_output_data;
750 case IN_OUTPUT_SEGMENT:
751 this->u_.in_output_segment = from->u_.in_output_segment;
761 this->override_version(from->version_);
762 this->type_ = from->type_;
763 this->binding_ = from->binding_;
764 this->override_visibility(from->visibility_);
765 this->nonvis_ = from->nonvis_;
767 // Special symbols are always considered to be regular symbols.
768 this->in_reg_ = true;
770 if (from->needs_dynsym_entry_)
771 this->needs_dynsym_entry_ = true;
772 if (from->needs_dynsym_value_)
773 this->needs_dynsym_value_ = true;
775 // We shouldn't see these flags. If we do, we need to handle them
777 gold_assert(!from->is_target_special_ || this->is_target_special_);
778 gold_assert(!from->is_forwarder_);
779 gold_assert(!from->has_plt_offset_);
780 gold_assert(!from->has_warning_);
781 gold_assert(!from->is_copied_from_dynobj_);
782 gold_assert(!from->is_forced_local_);
785 // Override a symbol with a special symbol.
789 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
791 this->override_base_with_special(from);
792 this->value_ = from->value_;
793 this->symsize_ = from->symsize_;
796 // Override TOSYM with the special symbol FROMSYM. This handles all
801 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
802 const Sized_symbol<size>* fromsym)
804 tosym->override_with_special(fromsym);
805 if (tosym->has_alias())
807 Symbol* sym = this->weak_aliases_[tosym];
808 gold_assert(sym != NULL);
809 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
812 ssym->override_with_special(fromsym);
813 sym = this->weak_aliases_[ssym];
814 gold_assert(sym != NULL);
815 ssym = this->get_sized_symbol<size>(sym);
817 while (ssym != tosym);
819 if (tosym->binding() == elfcpp::STB_LOCAL
820 || ((tosym->visibility() == elfcpp::STV_HIDDEN
821 || tosym->visibility() == elfcpp::STV_INTERNAL)
822 && (tosym->binding() == elfcpp::STB_GLOBAL
823 || tosym->binding() == elfcpp::STB_WEAK)
824 && !parameters->options().relocatable()))
825 this->force_local(tosym);
828 // Instantiate the templates we need. We could use the configure
829 // script to restrict this to only the ones needed for implemented
832 #ifdef HAVE_TARGET_32_LITTLE
835 Symbol_table::resolve<32, false>(
836 Sized_symbol<32>* to,
837 const elfcpp::Sym<32, false>& sym,
838 unsigned int st_shndx,
840 unsigned int orig_st_shndx,
842 const char* version);
845 #ifdef HAVE_TARGET_32_BIG
848 Symbol_table::resolve<32, true>(
849 Sized_symbol<32>* to,
850 const elfcpp::Sym<32, true>& sym,
851 unsigned int st_shndx,
853 unsigned int orig_st_shndx,
855 const char* version);
858 #ifdef HAVE_TARGET_64_LITTLE
861 Symbol_table::resolve<64, false>(
862 Sized_symbol<64>* to,
863 const elfcpp::Sym<64, false>& sym,
864 unsigned int st_shndx,
866 unsigned int orig_st_shndx,
868 const char* version);
871 #ifdef HAVE_TARGET_64_BIG
874 Symbol_table::resolve<64, true>(
875 Sized_symbol<64>* to,
876 const elfcpp::Sym<64, true>& sym,
877 unsigned int st_shndx,
879 unsigned int orig_st_shndx,
881 const char* version);
884 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
887 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
888 const Sized_symbol<32>*);
891 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
894 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
895 const Sized_symbol<64>*);
898 } // End namespace gold.