Add compunits range adapter to objfile
[external/binutils.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION.  Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42   if (version == NULL)
43     {
44       // This is the case where this symbol is NAME/VERSION, and the
45       // version was not marked as hidden.  That makes it the default
46       // version, so we create NAME/NULL.  Later we see another symbol
47       // NAME/NULL, and that symbol is overriding this one.  In this
48       // case, since NAME/VERSION is the default, we make NAME/NULL
49       // override NAME/VERSION as well.  They are already the same
50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
51       // that it will be output with the correct, empty, version.
52       this->version_ = version;
53     }
54   else
55     {
56       // This is the case where this symbol is NAME/VERSION_ONE, and
57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59       // different, then this can only happen when VERSION_ONE is NULL
60       // and VERSION_TWO is not hidden.
61       gold_assert(this->version_ == version || this->version_ == NULL);
62       this->version_ = version;
63     }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72   // The rule for combining visibility is that we always choose the
73   // most constrained visibility.  In order of increasing constraint,
74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75   // of the numeric values, so the effect is that we always want the
76   // smallest non-zero value.
77   if (visibility != elfcpp::STV_DEFAULT)
78     {
79       if (this->visibility_ == elfcpp::STV_DEFAULT)
80         this->visibility_ = visibility;
81       else if (this->visibility_ > visibility)
82         this->visibility_ = visibility;
83     }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91                       unsigned int st_shndx, bool is_ordinary,
92                       Object* object, const char* version)
93 {
94   gold_assert(this->source_ == FROM_OBJECT);
95   this->u1_.object = object;
96   this->override_version(version);
97   this->u2_.shndx = st_shndx;
98   this->is_ordinary_shndx_ = is_ordinary;
99   // Don't override st_type from plugin placeholder symbols.
100   if (object->pluginobj() == NULL)
101     this->type_ = sym.get_st_type();
102   this->binding_ = sym.get_st_bind();
103   this->override_visibility(sym.get_st_visibility());
104   this->nonvis_ = sym.get_st_nonvis();
105   if (object->is_dynamic())
106     this->in_dyn_ = true;
107   else
108     this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117                              unsigned st_shndx, bool is_ordinary,
118                              Object* object, const char* version)
119 {
120   this->override_base(sym, st_shndx, is_ordinary, object, version);
121   this->value_ = sym.get_st_value();
122   this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION.  This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131                        const elfcpp::Sym<size, big_endian>& fromsym,
132                        unsigned int st_shndx, bool is_ordinary,
133                        Object* object, const char* version)
134 {
135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136   if (tosym->has_alias())
137     {
138       Symbol* sym = this->weak_aliases_[tosym];
139       gold_assert(sym != NULL);
140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141       do
142         {
143           ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144           sym = this->weak_aliases_[ssym];
145           gold_assert(sym != NULL);
146           ssym = this->get_sized_symbol<size>(sym);
147         }
148       while (ssym != tosym);
149     }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176                unsigned int shndx, bool is_ordinary)
177 {
178   unsigned int bits;
179
180   switch (binding)
181     {
182     case elfcpp::STB_GLOBAL:
183     case elfcpp::STB_GNU_UNIQUE:
184       bits = global_flag;
185       break;
186
187     case elfcpp::STB_WEAK:
188       bits = weak_flag;
189       break;
190
191     case elfcpp::STB_LOCAL:
192       // We should only see externally visible symbols in the symbol
193       // table.
194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195       bits = global_flag;
196       break;
197
198     default:
199       // Any target which wants to handle STB_LOOS, etc., needs to
200       // define a resolve method.
201       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
202       bits = global_flag;
203     }
204
205   if (is_dynamic)
206     bits |= dynamic_flag;
207   else
208     bits |= regular_flag;
209
210   switch (shndx)
211     {
212     case elfcpp::SHN_UNDEF:
213       bits |= undef_flag;
214       break;
215
216     case elfcpp::SHN_COMMON:
217       if (!is_ordinary)
218         bits |= common_flag;
219       break;
220
221     default:
222       if (!is_ordinary && Symbol::is_common_shndx(shndx))
223         bits |= common_flag;
224       else
225         bits |= def_flag;
226       break;
227     }
228
229   return bits;
230 }
231
232 // Resolve a symbol.  This is called the second and subsequent times
233 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code.  ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
239 // the version of SYM.
240
241 template<int size, bool big_endian>
242 void
243 Symbol_table::resolve(Sized_symbol<size>* to,
244                       const elfcpp::Sym<size, big_endian>& sym,
245                       unsigned int st_shndx, bool is_ordinary,
246                       unsigned int orig_st_shndx,
247                       Object* object, const char* version,
248                       bool is_default_version)
249 {
250   bool to_is_ordinary;
251   const unsigned int to_shndx = to->shndx(&to_is_ordinary);
252
253   // It's possible for a symbol to be defined in an object file
254   // using .symver to give it a version, and for there to also be
255   // a linker script giving that symbol the same version.  We
256   // don't want to give a multiple-definition error for this
257   // harmless redefinition.
258   if (to->source() == Symbol::FROM_OBJECT
259       && to->object() == object
260       && to->is_defined()
261       && is_ordinary
262       && to_is_ordinary
263       && to_shndx == st_shndx
264       && to->value() == sym.get_st_value())
265     return;
266
267   // Likewise for an absolute symbol defined twice with the same value.
268   if (!is_ordinary
269       && st_shndx == elfcpp::SHN_ABS
270       && !to_is_ordinary
271       && to_shndx == elfcpp::SHN_ABS
272       && to->value() == sym.get_st_value())
273     return;
274
275   if (parameters->target().has_resolve())
276     {
277       Sized_target<size, big_endian>* sized_target;
278       sized_target = parameters->sized_target<size, big_endian>();
279       if (sized_target->resolve(to, sym, object, version))
280         return;
281     }
282
283   if (!object->is_dynamic())
284     {
285       if (sym.get_st_type() == elfcpp::STT_COMMON
286           && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
287         {
288           gold_warning(_("STT_COMMON symbol '%s' in %s "
289                          "is not in a common section"),
290                        to->demangled_name().c_str(),
291                        to->object()->name().c_str());
292           return;
293         }
294       // Record that we've seen this symbol in a regular object.
295       to->set_in_reg();
296     }
297   else if (st_shndx == elfcpp::SHN_UNDEF
298            && (to->visibility() == elfcpp::STV_HIDDEN
299                || to->visibility() == elfcpp::STV_INTERNAL))
300     {
301       // The symbol is hidden, so a reference from a shared object
302       // cannot bind to it.  We tried issuing a warning in this case,
303       // but that produces false positives when the symbol is
304       // actually resolved in a different shared object (PR 15574).
305       return;
306     }
307   else
308     {
309       // Record that we've seen this symbol in a dynamic object.
310       to->set_in_dyn();
311     }
312
313   // Record if we've seen this symbol in a real ELF object (i.e., the
314   // symbol is referenced from outside the world known to the plugin).
315   if (object->pluginobj() == NULL && !object->is_dynamic())
316     to->set_in_real_elf();
317
318   // If we're processing replacement files, allow new symbols to override
319   // the placeholders from the plugin objects.
320   // Treat common symbols specially since it is possible that an ELF
321   // file increased the size of the alignment.
322   if (to->source() == Symbol::FROM_OBJECT)
323     {
324       Pluginobj* obj = to->object()->pluginobj();
325       if (obj != NULL
326           && parameters->options().plugins()->in_replacement_phase())
327         {
328           bool adjust_common = false;
329           typename Sized_symbol<size>::Size_type tosize = 0;
330           typename Sized_symbol<size>::Value_type tovalue = 0;
331           if (to->is_common()
332               && !is_ordinary && Symbol::is_common_shndx(st_shndx))
333             {
334               adjust_common = true;
335               tosize = to->symsize();
336               tovalue = to->value();
337             }
338           this->override(to, sym, st_shndx, is_ordinary, object, version);
339           if (adjust_common)
340             {
341               if (tosize > to->symsize())
342                 to->set_symsize(tosize);
343               if (tovalue > to->value())
344                 to->set_value(tovalue);
345             }
346           return;
347         }
348     }
349
350   // A new weak undefined reference, merging with an old weak
351   // reference, could be a One Definition Rule (ODR) violation --
352   // especially if the types or sizes of the references differ.  We'll
353   // store such pairs and look them up later to make sure they
354   // actually refer to the same lines of code.  We also check
355   // combinations of weak and strong, which might occur if one case is
356   // inline and the other is not.  (Note: not all ODR violations can
357   // be found this way, and not everything this finds is an ODR
358   // violation.  But it's helpful to warn about.)
359   if (parameters->options().detect_odr_violations()
360       && (sym.get_st_bind() == elfcpp::STB_WEAK
361           || to->binding() == elfcpp::STB_WEAK)
362       && orig_st_shndx != elfcpp::SHN_UNDEF
363       && to_is_ordinary
364       && to_shndx != elfcpp::SHN_UNDEF
365       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
366       && to->symsize() != 0
367       && (sym.get_st_type() != to->type()
368           || sym.get_st_size() != to->symsize())
369       // C does not have a concept of ODR, so we only need to do this
370       // on C++ symbols.  These have (mangled) names starting with _Z.
371       && to->name()[0] == '_' && to->name()[1] == 'Z')
372     {
373       Symbol_location fromloc
374           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
375       Symbol_location toloc = { to->object(), to_shndx,
376                                 static_cast<off_t>(to->value()) };
377       this->candidate_odr_violations_[to->name()].insert(fromloc);
378       this->candidate_odr_violations_[to->name()].insert(toloc);
379     }
380
381   // Plugins don't provide a symbol type, so adopt the existing type
382   // if the FROM symbol is from a plugin.
383   elfcpp::STT fromtype = (object->pluginobj() != NULL
384                           ? to->type()
385                           : sym.get_st_type());
386   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
387                                          object->is_dynamic(),
388                                          st_shndx, is_ordinary);
389
390   bool adjust_common_sizes;
391   bool adjust_dyndef;
392   typename Sized_symbol<size>::Size_type tosize = to->symsize();
393   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
394                                     object, &adjust_common_sizes,
395                                     &adjust_dyndef, is_default_version))
396     {
397       elfcpp::STB orig_tobinding = to->binding();
398       typename Sized_symbol<size>::Value_type tovalue = to->value();
399       this->override(to, sym, st_shndx, is_ordinary, object, version);
400       if (adjust_common_sizes)
401         {
402           if (tosize > to->symsize())
403             to->set_symsize(tosize);
404           if (tovalue > to->value())
405             to->set_value(tovalue);
406         }
407       if (adjust_dyndef)
408         {
409           // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
410           // Remember which kind of UNDEF it was for future reference.
411           to->set_undef_binding(orig_tobinding);
412         }
413     }
414   else
415     {
416       if (adjust_common_sizes)
417         {
418           if (sym.get_st_size() > tosize)
419             to->set_symsize(sym.get_st_size());
420           if (sym.get_st_value() > to->value())
421             to->set_value(sym.get_st_value());
422         }
423       if (adjust_dyndef)
424         {
425           // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
426           // Remember which kind of UNDEF it was.
427           to->set_undef_binding(sym.get_st_bind());
428         }
429       // The ELF ABI says that even for a reference to a symbol we
430       // merge the visibility.
431       to->override_visibility(sym.get_st_visibility());
432     }
433
434   // If we have a non-WEAK reference from a regular object to a
435   // dynamic object, mark the dynamic object as needed.
436   if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak())
437     to->object()->set_is_needed();
438
439   if (adjust_common_sizes && parameters->options().warn_common())
440     {
441       if (tosize > sym.get_st_size())
442         Symbol_table::report_resolve_problem(false,
443                                              _("common of '%s' overriding "
444                                                "smaller common"),
445                                              to, OBJECT, object);
446       else if (tosize < sym.get_st_size())
447         Symbol_table::report_resolve_problem(false,
448                                              _("common of '%s' overidden by "
449                                                "larger common"),
450                                              to, OBJECT, object);
451       else
452         Symbol_table::report_resolve_problem(false,
453                                              _("multiple common of '%s'"),
454                                              to, OBJECT, object);
455     }
456 }
457
458 // Handle the core of symbol resolution.  This is called with the
459 // existing symbol, TO, and a bitflag describing the new symbol.  This
460 // returns true if we should override the existing symbol with the new
461 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
462 // true if we should set the symbol size to the maximum of the TO and
463 // FROM sizes.  It handles error conditions.
464
465 bool
466 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
467                               elfcpp::STT fromtype, Defined defined,
468                               Object* object, bool* adjust_common_sizes,
469                               bool* adjust_dyndef, bool is_default_version)
470 {
471   *adjust_common_sizes = false;
472   *adjust_dyndef = false;
473
474   unsigned int tobits;
475   if (to->source() == Symbol::IS_UNDEFINED)
476     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
477   else if (to->source() != Symbol::FROM_OBJECT)
478     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
479   else
480     {
481       bool is_ordinary;
482       unsigned int shndx = to->shndx(&is_ordinary);
483       tobits = symbol_to_bits(to->binding(),
484                               to->object()->is_dynamic(),
485                               shndx,
486                               is_ordinary);
487     }
488
489   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
490       && !to->is_placeholder())
491     Symbol_table::report_resolve_problem(true,
492                                          _("symbol '%s' used as both __thread "
493                                            "and non-__thread"),
494                                          to, defined, object);
495
496   // We use a giant switch table for symbol resolution.  This code is
497   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
498   // cases; 3) it is easy to change the handling of a particular case.
499   // The alternative would be a series of conditionals, but it is easy
500   // to get the ordering wrong.  This could also be done as a table,
501   // but that is no easier to understand than this large switch
502   // statement.
503
504   // These are the values generated by the bit codes.
505   enum
506   {
507     DEF =              global_flag | regular_flag | def_flag,
508     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
509     DYN_DEF =          global_flag | dynamic_flag | def_flag,
510     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
511     UNDEF =            global_flag | regular_flag | undef_flag,
512     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
513     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
514     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
515     COMMON =           global_flag | regular_flag | common_flag,
516     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
517     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
518     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
519   };
520
521   switch (tobits * 16 + frombits)
522     {
523     case DEF * 16 + DEF:
524       // Two definitions of the same symbol.
525
526       // If either symbol is defined by an object included using
527       // --just-symbols, then don't warn.  This is for compatibility
528       // with the GNU linker.  FIXME: This is a hack.
529       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
530           || (object != NULL && object->just_symbols()))
531         return false;
532
533       if (!parameters->options().muldefs())
534         Symbol_table::report_resolve_problem(true,
535                                              _("multiple definition of '%s'"),
536                                              to, defined, object);
537       return false;
538
539     case WEAK_DEF * 16 + DEF:
540       // We've seen a weak definition, and now we see a strong
541       // definition.  In the original SVR4 linker, this was treated as
542       // a multiple definition error.  In the Solaris linker and the
543       // GNU linker, a weak definition followed by a regular
544       // definition causes the weak definition to be overridden.  We
545       // are currently compatible with the GNU linker.  In the future
546       // we should add a target specific option to change this.
547       // FIXME.
548       return true;
549
550     case DYN_DEF * 16 + DEF:
551     case DYN_WEAK_DEF * 16 + DEF:
552       // We've seen a definition in a dynamic object, and now we see a
553       // definition in a regular object.  The definition in the
554       // regular object overrides the definition in the dynamic
555       // object.
556       return true;
557
558     case UNDEF * 16 + DEF:
559     case WEAK_UNDEF * 16 + DEF:
560     case DYN_UNDEF * 16 + DEF:
561     case DYN_WEAK_UNDEF * 16 + DEF:
562       // We've seen an undefined reference, and now we see a
563       // definition.  We use the definition.
564       return true;
565
566     case COMMON * 16 + DEF:
567     case WEAK_COMMON * 16 + DEF:
568     case DYN_COMMON * 16 + DEF:
569     case DYN_WEAK_COMMON * 16 + DEF:
570       // We've seen a common symbol and now we see a definition.  The
571       // definition overrides.
572       if (parameters->options().warn_common())
573         Symbol_table::report_resolve_problem(false,
574                                              _("definition of '%s' overriding "
575                                                "common"),
576                                              to, defined, object);
577       return true;
578
579     case DEF * 16 + WEAK_DEF:
580     case WEAK_DEF * 16 + WEAK_DEF:
581       // We've seen a definition and now we see a weak definition.  We
582       // ignore the new weak definition.
583       return false;
584
585     case DYN_DEF * 16 + WEAK_DEF:
586     case DYN_WEAK_DEF * 16 + WEAK_DEF:
587       // We've seen a dynamic definition and now we see a regular weak
588       // definition.  The regular weak definition overrides.
589       return true;
590
591     case UNDEF * 16 + WEAK_DEF:
592     case WEAK_UNDEF * 16 + WEAK_DEF:
593     case DYN_UNDEF * 16 + WEAK_DEF:
594     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
595       // A weak definition of a currently undefined symbol.
596       return true;
597
598     case COMMON * 16 + WEAK_DEF:
599     case WEAK_COMMON * 16 + WEAK_DEF:
600       // A weak definition does not override a common definition.
601       return false;
602
603     case DYN_COMMON * 16 + WEAK_DEF:
604     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
605       // A weak definition does override a definition in a dynamic
606       // object.
607       if (parameters->options().warn_common())
608         Symbol_table::report_resolve_problem(false,
609                                              _("definition of '%s' overriding "
610                                                "dynamic common definition"),
611                                              to, defined, object);
612       return true;
613
614     case DEF * 16 + DYN_DEF:
615     case WEAK_DEF * 16 + DYN_DEF:
616       // Ignore a dynamic definition if we already have a definition.
617       return false;
618
619     case DYN_DEF * 16 + DYN_DEF:
620     case DYN_WEAK_DEF * 16 + DYN_DEF:
621       // Ignore a dynamic definition if we already have a definition,
622       // unless the existing definition is an unversioned definition
623       // in the same dynamic object, and the new definition is a
624       // default version.
625       if (to->object() == object
626           && to->version() == NULL
627           && is_default_version)
628         return true;
629       // Or, if the existing definition is in an unused --as-needed library,
630       // and the reference is weak, let the new definition override.
631       if (to->in_reg()
632           && to->is_undef_binding_weak()
633           && to->object()->as_needed()
634           && !to->object()->is_needed())
635         return true;
636       return false;
637
638     case UNDEF * 16 + DYN_DEF:
639     case DYN_UNDEF * 16 + DYN_DEF:
640     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
641       // Use a dynamic definition if we have a reference.
642       return true;
643
644     case WEAK_UNDEF * 16 + DYN_DEF:
645       // When overriding a weak undef by a dynamic definition,
646       // we need to remember that the original undef was weak.
647       *adjust_dyndef = true;
648       return true;
649
650     case COMMON * 16 + DYN_DEF:
651     case WEAK_COMMON * 16 + DYN_DEF:
652       // Ignore a dynamic definition if we already have a common
653       // definition.
654       return false;
655
656     case DEF * 16 + DYN_WEAK_DEF:
657     case WEAK_DEF * 16 + DYN_WEAK_DEF:
658       // Ignore a weak dynamic definition if we already have a
659       // definition.
660       return false;
661
662     case UNDEF * 16 + DYN_WEAK_DEF:
663       // When overriding an undef by a dynamic weak definition,
664       // we need to remember that the original undef was not weak.
665       *adjust_dyndef = true;
666       return true;
667
668     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
669     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
670       // Use a weak dynamic definition if we have a reference.
671       return true;
672
673     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
674       // When overriding a weak undef by a dynamic definition,
675       // we need to remember that the original undef was weak.
676       *adjust_dyndef = true;
677       return true;
678
679     case COMMON * 16 + DYN_WEAK_DEF:
680     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
681       // Ignore a weak dynamic definition if we already have a common
682       // definition.
683       return false;
684
685     case DYN_COMMON * 16 + DYN_DEF:
686     case DYN_WEAK_COMMON * 16 + DYN_DEF:
687     case DYN_DEF * 16 + DYN_WEAK_DEF:
688     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
689     case DYN_COMMON * 16 + DYN_WEAK_DEF:
690     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
691       // If the existing definition is in an unused --as-needed library,
692       // and the reference is weak, let a new dynamic definition override.
693       if (to->in_reg()
694           && to->is_undef_binding_weak()
695           && to->object()->as_needed()
696           && !to->object()->is_needed())
697         return true;
698       return false;
699
700     case DEF * 16 + UNDEF:
701     case WEAK_DEF * 16 + UNDEF:
702     case UNDEF * 16 + UNDEF:
703       // A new undefined reference tells us nothing.
704       return false;
705
706     case DYN_DEF * 16 + UNDEF:
707     case DYN_WEAK_DEF * 16 + UNDEF:
708       // For a dynamic def, we need to remember which kind of undef we see.
709       *adjust_dyndef = true;
710       return false;
711
712     case WEAK_UNDEF * 16 + UNDEF:
713     case DYN_UNDEF * 16 + UNDEF:
714     case DYN_WEAK_UNDEF * 16 + UNDEF:
715       // A strong undef overrides a dynamic or weak undef.
716       return true;
717
718     case COMMON * 16 + UNDEF:
719     case WEAK_COMMON * 16 + UNDEF:
720     case DYN_COMMON * 16 + UNDEF:
721     case DYN_WEAK_COMMON * 16 + UNDEF:
722       // A new undefined reference tells us nothing.
723       return false;
724
725     case DEF * 16 + WEAK_UNDEF:
726     case WEAK_DEF * 16 + WEAK_UNDEF:
727     case UNDEF * 16 + WEAK_UNDEF:
728     case WEAK_UNDEF * 16 + WEAK_UNDEF:
729     case DYN_UNDEF * 16 + WEAK_UNDEF:
730     case COMMON * 16 + WEAK_UNDEF:
731     case WEAK_COMMON * 16 + WEAK_UNDEF:
732     case DYN_COMMON * 16 + WEAK_UNDEF:
733     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
734       // A new weak undefined reference tells us nothing unless the
735       // exisiting symbol is a dynamic weak reference.
736       return false;
737
738     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
739       // A new weak reference overrides an existing dynamic weak reference.
740       // This is necessary because a dynamic weak reference remembers
741       // the old binding, which may not be weak.  If we keeps the existing
742       // dynamic weak reference, the weakness may be dropped in the output.
743       return true;
744
745     case DYN_DEF * 16 + WEAK_UNDEF:
746     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
747       // For a dynamic def, we need to remember which kind of undef we see.
748       *adjust_dyndef = true;
749       return false;
750
751     case DEF * 16 + DYN_UNDEF:
752     case WEAK_DEF * 16 + DYN_UNDEF:
753     case DYN_DEF * 16 + DYN_UNDEF:
754     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
755     case UNDEF * 16 + DYN_UNDEF:
756     case WEAK_UNDEF * 16 + DYN_UNDEF:
757     case DYN_UNDEF * 16 + DYN_UNDEF:
758     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
759     case COMMON * 16 + DYN_UNDEF:
760     case WEAK_COMMON * 16 + DYN_UNDEF:
761     case DYN_COMMON * 16 + DYN_UNDEF:
762     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
763       // A new dynamic undefined reference tells us nothing.
764       return false;
765
766     case DEF * 16 + DYN_WEAK_UNDEF:
767     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
768     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
769     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
770     case UNDEF * 16 + DYN_WEAK_UNDEF:
771     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
772     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
773     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
774     case COMMON * 16 + DYN_WEAK_UNDEF:
775     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
776     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
777     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
778       // A new weak dynamic undefined reference tells us nothing.
779       return false;
780
781     case DEF * 16 + COMMON:
782       // A common symbol does not override a definition.
783       if (parameters->options().warn_common())
784         Symbol_table::report_resolve_problem(false,
785                                              _("common '%s' overridden by "
786                                                "previous definition"),
787                                              to, defined, object);
788       return false;
789
790     case WEAK_DEF * 16 + COMMON:
791     case DYN_DEF * 16 + COMMON:
792     case DYN_WEAK_DEF * 16 + COMMON:
793       // A common symbol does override a weak definition or a dynamic
794       // definition.
795       return true;
796
797     case UNDEF * 16 + COMMON:
798     case WEAK_UNDEF * 16 + COMMON:
799     case DYN_UNDEF * 16 + COMMON:
800     case DYN_WEAK_UNDEF * 16 + COMMON:
801       // A common symbol is a definition for a reference.
802       return true;
803
804     case COMMON * 16 + COMMON:
805       // Set the size to the maximum.
806       *adjust_common_sizes = true;
807       return false;
808
809     case WEAK_COMMON * 16 + COMMON:
810       // I'm not sure just what a weak common symbol means, but
811       // presumably it can be overridden by a regular common symbol.
812       return true;
813
814     case DYN_COMMON * 16 + COMMON:
815     case DYN_WEAK_COMMON * 16 + COMMON:
816       // Use the real common symbol, but adjust the size if necessary.
817       *adjust_common_sizes = true;
818       return true;
819
820     case DEF * 16 + WEAK_COMMON:
821     case WEAK_DEF * 16 + WEAK_COMMON:
822     case DYN_DEF * 16 + WEAK_COMMON:
823     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
824       // Whatever a weak common symbol is, it won't override a
825       // definition.
826       return false;
827
828     case UNDEF * 16 + WEAK_COMMON:
829     case WEAK_UNDEF * 16 + WEAK_COMMON:
830     case DYN_UNDEF * 16 + WEAK_COMMON:
831     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
832       // A weak common symbol is better than an undefined symbol.
833       return true;
834
835     case COMMON * 16 + WEAK_COMMON:
836     case WEAK_COMMON * 16 + WEAK_COMMON:
837     case DYN_COMMON * 16 + WEAK_COMMON:
838     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
839       // Ignore a weak common symbol in the presence of a real common
840       // symbol.
841       return false;
842
843     case DEF * 16 + DYN_COMMON:
844     case WEAK_DEF * 16 + DYN_COMMON:
845     case DYN_DEF * 16 + DYN_COMMON:
846     case DYN_WEAK_DEF * 16 + DYN_COMMON:
847       // Ignore a dynamic common symbol in the presence of a
848       // definition.
849       return false;
850
851     case UNDEF * 16 + DYN_COMMON:
852     case WEAK_UNDEF * 16 + DYN_COMMON:
853     case DYN_UNDEF * 16 + DYN_COMMON:
854     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
855       // A dynamic common symbol is a definition of sorts.
856       return true;
857
858     case COMMON * 16 + DYN_COMMON:
859     case WEAK_COMMON * 16 + DYN_COMMON:
860     case DYN_COMMON * 16 + DYN_COMMON:
861     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
862       // Set the size to the maximum.
863       *adjust_common_sizes = true;
864       return false;
865
866     case DEF * 16 + DYN_WEAK_COMMON:
867     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
868     case DYN_DEF * 16 + DYN_WEAK_COMMON:
869     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
870       // A common symbol is ignored in the face of a definition.
871       return false;
872
873     case UNDEF * 16 + DYN_WEAK_COMMON:
874     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
875     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
876     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
877       // I guess a weak common symbol is better than a definition.
878       return true;
879
880     case COMMON * 16 + DYN_WEAK_COMMON:
881     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
882     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
883     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
884       // Set the size to the maximum.
885       *adjust_common_sizes = true;
886       return false;
887
888     default:
889       gold_unreachable();
890     }
891 }
892
893 // Issue an error or warning due to symbol resolution.  IS_ERROR
894 // indicates an error rather than a warning.  MSG is the error
895 // message; it is expected to have a %s for the symbol name.  TO is
896 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
897 // found.
898
899 // FIXME: We should have better location information here.  When the
900 // symbol is defined, we should be able to pull the location from the
901 // debug info if there is any.
902
903 void
904 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
905                                      const Symbol* to, Defined defined,
906                                      Object* object)
907 {
908   std::string demangled(to->demangled_name());
909   size_t len = strlen(msg) + demangled.length() + 10;
910   char* buf = new char[len];
911   snprintf(buf, len, msg, demangled.c_str());
912
913   const char* objname;
914   switch (defined)
915     {
916     case OBJECT:
917       objname = object->name().c_str();
918       break;
919     case COPY:
920       objname = _("COPY reloc");
921       break;
922     case DEFSYM:
923     case UNDEFINED:
924       objname = _("command line");
925       break;
926     case SCRIPT:
927       objname = _("linker script");
928       break;
929     case PREDEFINED:
930     case INCREMENTAL_BASE:
931       objname = _("linker defined");
932       break;
933     default:
934       gold_unreachable();
935     }
936
937   if (is_error)
938     gold_error("%s: %s", objname, buf);
939   else
940     gold_warning("%s: %s", objname, buf);
941
942   delete[] buf;
943
944   if (to->source() == Symbol::FROM_OBJECT)
945     objname = to->object()->name().c_str();
946   else
947     objname = _("command line");
948   gold_info("%s: %s: previous definition here", program_name, objname);
949 }
950
951 // Completely override existing symbol.  Everything bar name_,
952 // version_, and is_forced_local_ flag are copied.  version_ is
953 // cleared if from->version_ is clear.  Returns true if this symbol
954 // should be forced local.
955 bool
956 Symbol::clone(const Symbol* from)
957 {
958   // Don't allow cloning after dynamic linking info is attached to symbols.
959   // We aren't prepared to merge such.
960   gold_assert(!this->has_symtab_index() && !from->has_symtab_index());
961   gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index());
962   gold_assert(this->got_offset_list() == NULL
963               && from->got_offset_list() == NULL);
964   gold_assert(!this->has_plt_offset() && !from->has_plt_offset());
965
966   if (!from->version_)
967     this->version_ = from->version_;
968   this->u1_ = from->u1_;
969   this->u2_ = from->u2_;
970   this->type_ = from->type_;
971   this->binding_ = from->binding_;
972   this->visibility_ = from->visibility_;
973   this->nonvis_ = from->nonvis_;
974   this->source_ = from->source_;
975   this->is_def_ = from->is_def_;
976   this->is_forwarder_ = from->is_forwarder_;
977   this->has_alias_ = from->has_alias_;
978   this->needs_dynsym_entry_ = from->needs_dynsym_entry_;
979   this->in_reg_ = from->in_reg_;
980   this->in_dyn_ = from->in_dyn_;
981   this->needs_dynsym_value_ = from->needs_dynsym_value_;
982   this->has_warning_ = from->has_warning_;
983   this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_;
984   this->is_ordinary_shndx_ = from->is_ordinary_shndx_;
985   this->in_real_elf_ = from->in_real_elf_;
986   this->is_defined_in_discarded_section_
987     = from->is_defined_in_discarded_section_;
988   this->undef_binding_set_ = from->undef_binding_set_;
989   this->undef_binding_weak_ = from->undef_binding_weak_;
990   this->is_predefined_ = from->is_predefined_;
991   this->is_protected_ = from->is_protected_;
992   this->non_zero_localentry_ = from->non_zero_localentry_;
993
994   return !this->is_forced_local_ && from->is_forced_local_;
995 }
996
997 template <int size>
998 bool
999 Sized_symbol<size>::clone(const Sized_symbol<size>* from)
1000 {
1001   this->value_ = from->value_;
1002   this->symsize_ = from->symsize_;
1003   return Symbol::clone(from);
1004 }
1005
1006 // A special case of should_override which is only called for a strong
1007 // defined symbol from a regular object file.  This is used when
1008 // defining special symbols.
1009
1010 bool
1011 Symbol_table::should_override_with_special(const Symbol* to,
1012                                            elfcpp::STT fromtype,
1013                                            Defined defined)
1014 {
1015   bool adjust_common_sizes;
1016   bool adjust_dyn_def;
1017   unsigned int frombits = global_flag | regular_flag | def_flag;
1018   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
1019                                            NULL, &adjust_common_sizes,
1020                                            &adjust_dyn_def, false);
1021   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
1022   return ret;
1023 }
1024
1025 // Override symbol base with a special symbol.
1026
1027 void
1028 Symbol::override_base_with_special(const Symbol* from)
1029 {
1030   bool same_name = this->name_ == from->name_;
1031   gold_assert(same_name || this->has_alias());
1032
1033   // If we are overriding an undef, remember the original binding.
1034   if (this->is_undefined())
1035     this->set_undef_binding(this->binding_);
1036
1037   this->source_ = from->source_;
1038   switch (from->source_)
1039     {
1040     case FROM_OBJECT:
1041     case IN_OUTPUT_DATA:
1042     case IN_OUTPUT_SEGMENT:
1043       this->u1_ = from->u1_;
1044       this->u2_ = from->u2_;
1045       break;
1046     case IS_CONSTANT:
1047     case IS_UNDEFINED:
1048       break;
1049     default:
1050       gold_unreachable();
1051       break;
1052     }
1053
1054   if (same_name)
1055     {
1056       // When overriding a versioned symbol with a special symbol, we
1057       // may be changing the version.  This will happen if we see a
1058       // special symbol such as "_end" defined in a shared object with
1059       // one version (from a version script), but we want to define it
1060       // here with a different version (from a different version
1061       // script).
1062       this->version_ = from->version_;
1063     }
1064   this->type_ = from->type_;
1065   this->binding_ = from->binding_;
1066   this->override_visibility(from->visibility_);
1067   this->nonvis_ = from->nonvis_;
1068
1069   // Special symbols are always considered to be regular symbols.
1070   this->in_reg_ = true;
1071
1072   if (from->needs_dynsym_entry_)
1073     this->needs_dynsym_entry_ = true;
1074   if (from->needs_dynsym_value_)
1075     this->needs_dynsym_value_ = true;
1076
1077   this->is_predefined_ = from->is_predefined_;
1078
1079   // We shouldn't see these flags.  If we do, we need to handle them
1080   // somehow.
1081   gold_assert(!from->is_forwarder_);
1082   gold_assert(!from->has_plt_offset());
1083   gold_assert(!from->has_warning_);
1084   gold_assert(!from->is_copied_from_dynobj_);
1085   gold_assert(!from->is_forced_local_);
1086 }
1087
1088 // Override a symbol with a special symbol.
1089
1090 template<int size>
1091 void
1092 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1093 {
1094   this->override_base_with_special(from);
1095   this->value_ = from->value_;
1096   this->symsize_ = from->symsize_;
1097 }
1098
1099 // Override TOSYM with the special symbol FROMSYM.  This handles all
1100 // aliases of TOSYM.
1101
1102 template<int size>
1103 void
1104 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1105                                     const Sized_symbol<size>* fromsym)
1106 {
1107   tosym->override_with_special(fromsym);
1108   if (tosym->has_alias())
1109     {
1110       Symbol* sym = this->weak_aliases_[tosym];
1111       gold_assert(sym != NULL);
1112       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1113       do
1114         {
1115           ssym->override_with_special(fromsym);
1116           sym = this->weak_aliases_[ssym];
1117           gold_assert(sym != NULL);
1118           ssym = this->get_sized_symbol<size>(sym);
1119         }
1120       while (ssym != tosym);
1121     }
1122   if (tosym->binding() == elfcpp::STB_LOCAL
1123       || ((tosym->visibility() == elfcpp::STV_HIDDEN
1124            || tosym->visibility() == elfcpp::STV_INTERNAL)
1125           && (tosym->binding() == elfcpp::STB_GLOBAL
1126               || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1127               || tosym->binding() == elfcpp::STB_WEAK)
1128           && !parameters->options().relocatable()))
1129     this->force_local(tosym);
1130 }
1131
1132 // Instantiate the templates we need.  We could use the configure
1133 // script to restrict this to only the ones needed for implemented
1134 // targets.
1135
1136 // We have to instantiate both big and little endian versions because
1137 // these are used by other templates that depends on size only.
1138
1139 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1140 template
1141 void
1142 Symbol_table::resolve<32, false>(
1143     Sized_symbol<32>* to,
1144     const elfcpp::Sym<32, false>& sym,
1145     unsigned int st_shndx,
1146     bool is_ordinary,
1147     unsigned int orig_st_shndx,
1148     Object* object,
1149     const char* version,
1150     bool is_default_version);
1151
1152 template
1153 void
1154 Symbol_table::resolve<32, true>(
1155     Sized_symbol<32>* to,
1156     const elfcpp::Sym<32, true>& sym,
1157     unsigned int st_shndx,
1158     bool is_ordinary,
1159     unsigned int orig_st_shndx,
1160     Object* object,
1161     const char* version,
1162     bool is_default_version);
1163 #endif
1164
1165 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1166 template
1167 void
1168 Symbol_table::resolve<64, false>(
1169     Sized_symbol<64>* to,
1170     const elfcpp::Sym<64, false>& sym,
1171     unsigned int st_shndx,
1172     bool is_ordinary,
1173     unsigned int orig_st_shndx,
1174     Object* object,
1175     const char* version,
1176     bool is_default_version);
1177
1178 template
1179 void
1180 Symbol_table::resolve<64, true>(
1181     Sized_symbol<64>* to,
1182     const elfcpp::Sym<64, true>& sym,
1183     unsigned int st_shndx,
1184     bool is_ordinary,
1185     unsigned int orig_st_shndx,
1186     Object* object,
1187     const char* version,
1188     bool is_default_version);
1189 #endif
1190
1191 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1192 template
1193 void
1194 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1195                                         const Sized_symbol<32>*);
1196 #endif
1197
1198 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1199 template
1200 void
1201 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1202                                         const Sized_symbol<64>*);
1203 #endif
1204
1205 template
1206 bool
1207 Sized_symbol<32>::clone(const Sized_symbol<32>*);
1208
1209 template
1210 bool
1211 Sized_symbol<64>::clone(const Sized_symbol<64>*);
1212 } // End namespace gold.