1 // resolve.cc -- symbol resolution for gold
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
40 Symbol::override_version(const char* version)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
108 this->in_reg_ = true;
111 // Override the fields in Sized_symbol.
114 template<bool big_endian>
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
128 template<int size, bool big_endian>
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
148 while (ssym != tosym);
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
171 // This convenience function combines all the flags based on facts
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
187 case elfcpp::STB_WEAK:
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
205 bits |= dynamic_flag;
207 bits |= regular_flag;
211 case elfcpp::SHN_UNDEF:
215 case elfcpp::SHN_COMMON:
221 if (type == elfcpp::STT_COMMON)
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
233 // Resolve a symbol. This is called the second and subsequent times
234 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code. ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
240 // the version of SYM.
242 template<int size, bool big_endian>
244 Symbol_table::resolve(Sized_symbol<size>* to,
245 const elfcpp::Sym<size, big_endian>& sym,
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
248 Object* object, const char* version)
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
260 && to->shndx(&to_is_ordinary) == st_shndx
262 && to->value() == sym.get_st_value())
265 if (parameters->target().has_resolve())
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
273 if (!object->is_dynamic())
275 // Record that we've seen this symbol in a regular object.
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
282 // A dynamic object cannot reference a hidden or internal symbol
283 // defined in another object.
284 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
285 (to->visibility() == elfcpp::STV_HIDDEN
288 to->demangled_name().c_str(),
289 to->object()->name().c_str(),
290 object->name().c_str());
295 // Record that we've seen this symbol in a dynamic object.
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
301 if (object->pluginobj() == NULL && !object->is_dynamic())
302 to->set_in_real_elf();
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
306 if (to->source() == Symbol::FROM_OBJECT)
308 Pluginobj* obj = to->object()->pluginobj();
310 && parameters->options().plugins()->in_replacement_phase())
312 this->override(to, sym, st_shndx, is_ordinary, object, version);
317 // A new weak undefined reference, merging with an old weak
318 // reference, could be a One Definition Rule (ODR) violation --
319 // especially if the types or sizes of the references differ. We'll
320 // store such pairs and look them up later to make sure they
321 // actually refer to the same lines of code. We also check
322 // combinations of weak and strong, which might occur if one case is
323 // inline and the other is not. (Note: not all ODR violations can
324 // be found this way, and not everything this finds is an ODR
325 // violation. But it's helpful to warn about.)
326 if (parameters->options().detect_odr_violations()
327 && (sym.get_st_bind() == elfcpp::STB_WEAK
328 || to->binding() == elfcpp::STB_WEAK)
329 && orig_st_shndx != elfcpp::SHN_UNDEF
330 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
332 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
333 && to->symsize() != 0
334 && (sym.get_st_type() != to->type()
335 || sym.get_st_size() != to->symsize())
336 // C does not have a concept of ODR, so we only need to do this
337 // on C++ symbols. These have (mangled) names starting with _Z.
338 && to->name()[0] == '_' && to->name()[1] == 'Z')
340 Symbol_location fromloc
341 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
342 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
343 static_cast<off_t>(to->value()) };
344 this->candidate_odr_violations_[to->name()].insert(fromloc);
345 this->candidate_odr_violations_[to->name()].insert(toloc);
348 // Plugins don't provide a symbol type, so adopt the existing type
349 // if the FROM symbol is from a plugin.
350 elfcpp::STT fromtype = (object->pluginobj() != NULL
352 : sym.get_st_type());
353 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
354 object->is_dynamic(),
355 st_shndx, is_ordinary,
358 bool adjust_common_sizes;
360 typename Sized_symbol<size>::Size_type tosize = to->symsize();
361 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
362 object, &adjust_common_sizes,
365 elfcpp::STB tobinding = to->binding();
366 typename Sized_symbol<size>::Value_type tovalue = to->value();
367 this->override(to, sym, st_shndx, is_ordinary, object, version);
368 if (adjust_common_sizes)
370 if (tosize > to->symsize())
371 to->set_symsize(tosize);
372 if (tovalue > to->value())
373 to->set_value(tovalue);
377 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
378 // Remember which kind of UNDEF it was for future reference.
379 to->set_undef_binding(tobinding);
384 if (adjust_common_sizes)
386 if (sym.get_st_size() > tosize)
387 to->set_symsize(sym.get_st_size());
388 if (sym.get_st_value() > to->value())
389 to->set_value(sym.get_st_value());
393 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
394 // Remember which kind of UNDEF it was.
395 to->set_undef_binding(sym.get_st_bind());
397 // The ELF ABI says that even for a reference to a symbol we
398 // merge the visibility.
399 to->override_visibility(sym.get_st_visibility());
402 if (adjust_common_sizes && parameters->options().warn_common())
404 if (tosize > sym.get_st_size())
405 Symbol_table::report_resolve_problem(false,
406 _("common of '%s' overriding "
409 else if (tosize < sym.get_st_size())
410 Symbol_table::report_resolve_problem(false,
411 _("common of '%s' overidden by "
415 Symbol_table::report_resolve_problem(false,
416 _("multiple common of '%s'"),
421 // Handle the core of symbol resolution. This is called with the
422 // existing symbol, TO, and a bitflag describing the new symbol. This
423 // returns true if we should override the existing symbol with the new
424 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
425 // true if we should set the symbol size to the maximum of the TO and
426 // FROM sizes. It handles error conditions.
429 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
430 elfcpp::STT fromtype, Defined defined,
431 Object* object, bool* adjust_common_sizes,
434 *adjust_common_sizes = false;
435 *adjust_dyndef = false;
438 if (to->source() == Symbol::IS_UNDEFINED)
439 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
441 else if (to->source() != Symbol::FROM_OBJECT)
442 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
447 unsigned int shndx = to->shndx(&is_ordinary);
448 tobits = symbol_to_bits(to->binding(),
449 to->object()->is_dynamic(),
455 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
456 && !to->is_placeholder())
457 Symbol_table::report_resolve_problem(true,
458 _("symbol '%s' used as both __thread "
460 to, defined, object);
462 // We use a giant switch table for symbol resolution. This code is
463 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
464 // cases; 3) it is easy to change the handling of a particular case.
465 // The alternative would be a series of conditionals, but it is easy
466 // to get the ordering wrong. This could also be done as a table,
467 // but that is no easier to understand than this large switch
470 // These are the values generated by the bit codes.
473 DEF = global_flag | regular_flag | def_flag,
474 WEAK_DEF = weak_flag | regular_flag | def_flag,
475 DYN_DEF = global_flag | dynamic_flag | def_flag,
476 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
477 UNDEF = global_flag | regular_flag | undef_flag,
478 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
479 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
480 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
481 COMMON = global_flag | regular_flag | common_flag,
482 WEAK_COMMON = weak_flag | regular_flag | common_flag,
483 DYN_COMMON = global_flag | dynamic_flag | common_flag,
484 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
487 switch (tobits * 16 + frombits)
490 // Two definitions of the same symbol.
492 // If either symbol is defined by an object included using
493 // --just-symbols, then don't warn. This is for compatibility
494 // with the GNU linker. FIXME: This is a hack.
495 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
496 || (object != NULL && object->just_symbols()))
499 if (!parameters->options().muldefs())
500 Symbol_table::report_resolve_problem(true,
501 _("multiple definition of '%s'"),
502 to, defined, object);
505 case WEAK_DEF * 16 + DEF:
506 // We've seen a weak definition, and now we see a strong
507 // definition. In the original SVR4 linker, this was treated as
508 // a multiple definition error. In the Solaris linker and the
509 // GNU linker, a weak definition followed by a regular
510 // definition causes the weak definition to be overridden. We
511 // are currently compatible with the GNU linker. In the future
512 // we should add a target specific option to change this.
516 case DYN_DEF * 16 + DEF:
517 case DYN_WEAK_DEF * 16 + DEF:
518 // We've seen a definition in a dynamic object, and now we see a
519 // definition in a regular object. The definition in the
520 // regular object overrides the definition in the dynamic
524 case UNDEF * 16 + DEF:
525 case WEAK_UNDEF * 16 + DEF:
526 case DYN_UNDEF * 16 + DEF:
527 case DYN_WEAK_UNDEF * 16 + DEF:
528 // We've seen an undefined reference, and now we see a
529 // definition. We use the definition.
532 case COMMON * 16 + DEF:
533 case WEAK_COMMON * 16 + DEF:
534 case DYN_COMMON * 16 + DEF:
535 case DYN_WEAK_COMMON * 16 + DEF:
536 // We've seen a common symbol and now we see a definition. The
537 // definition overrides.
538 if (parameters->options().warn_common())
539 Symbol_table::report_resolve_problem(false,
540 _("definition of '%s' overriding "
542 to, defined, object);
545 case DEF * 16 + WEAK_DEF:
546 case WEAK_DEF * 16 + WEAK_DEF:
547 // We've seen a definition and now we see a weak definition. We
548 // ignore the new weak definition.
551 case DYN_DEF * 16 + WEAK_DEF:
552 case DYN_WEAK_DEF * 16 + WEAK_DEF:
553 // We've seen a dynamic definition and now we see a regular weak
554 // definition. The regular weak definition overrides.
557 case UNDEF * 16 + WEAK_DEF:
558 case WEAK_UNDEF * 16 + WEAK_DEF:
559 case DYN_UNDEF * 16 + WEAK_DEF:
560 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
561 // A weak definition of a currently undefined symbol.
564 case COMMON * 16 + WEAK_DEF:
565 case WEAK_COMMON * 16 + WEAK_DEF:
566 // A weak definition does not override a common definition.
569 case DYN_COMMON * 16 + WEAK_DEF:
570 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
571 // A weak definition does override a definition in a dynamic
573 if (parameters->options().warn_common())
574 Symbol_table::report_resolve_problem(false,
575 _("definition of '%s' overriding "
576 "dynamic common definition"),
577 to, defined, object);
580 case DEF * 16 + DYN_DEF:
581 case WEAK_DEF * 16 + DYN_DEF:
582 case DYN_DEF * 16 + DYN_DEF:
583 case DYN_WEAK_DEF * 16 + DYN_DEF:
584 // Ignore a dynamic definition if we already have a definition.
587 case UNDEF * 16 + DYN_DEF:
588 case DYN_UNDEF * 16 + DYN_DEF:
589 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
590 // Use a dynamic definition if we have a reference.
593 case WEAK_UNDEF * 16 + DYN_DEF:
594 // When overriding a weak undef by a dynamic definition,
595 // we need to remember that the original undef was weak.
596 *adjust_dyndef = true;
599 case COMMON * 16 + DYN_DEF:
600 case WEAK_COMMON * 16 + DYN_DEF:
601 case DYN_COMMON * 16 + DYN_DEF:
602 case DYN_WEAK_COMMON * 16 + DYN_DEF:
603 // Ignore a dynamic definition if we already have a common
607 case DEF * 16 + DYN_WEAK_DEF:
608 case WEAK_DEF * 16 + DYN_WEAK_DEF:
609 case DYN_DEF * 16 + DYN_WEAK_DEF:
610 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
611 // Ignore a weak dynamic definition if we already have a
615 case UNDEF * 16 + DYN_WEAK_DEF:
616 // When overriding an undef by a dynamic weak definition,
617 // we need to remember that the original undef was not weak.
618 *adjust_dyndef = true;
621 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
622 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
623 // Use a weak dynamic definition if we have a reference.
626 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
627 // When overriding a weak undef by a dynamic definition,
628 // we need to remember that the original undef was weak.
629 *adjust_dyndef = true;
632 case COMMON * 16 + DYN_WEAK_DEF:
633 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
634 case DYN_COMMON * 16 + DYN_WEAK_DEF:
635 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
636 // Ignore a weak dynamic definition if we already have a common
640 case DEF * 16 + UNDEF:
641 case WEAK_DEF * 16 + UNDEF:
642 case UNDEF * 16 + UNDEF:
643 // A new undefined reference tells us nothing.
646 case DYN_DEF * 16 + UNDEF:
647 case DYN_WEAK_DEF * 16 + UNDEF:
648 // For a dynamic def, we need to remember which kind of undef we see.
649 *adjust_dyndef = true;
652 case WEAK_UNDEF * 16 + UNDEF:
653 case DYN_UNDEF * 16 + UNDEF:
654 case DYN_WEAK_UNDEF * 16 + UNDEF:
655 // A strong undef overrides a dynamic or weak undef.
658 case COMMON * 16 + UNDEF:
659 case WEAK_COMMON * 16 + UNDEF:
660 case DYN_COMMON * 16 + UNDEF:
661 case DYN_WEAK_COMMON * 16 + UNDEF:
662 // A new undefined reference tells us nothing.
665 case DEF * 16 + WEAK_UNDEF:
666 case WEAK_DEF * 16 + WEAK_UNDEF:
667 case UNDEF * 16 + WEAK_UNDEF:
668 case WEAK_UNDEF * 16 + WEAK_UNDEF:
669 case DYN_UNDEF * 16 + WEAK_UNDEF:
670 case COMMON * 16 + WEAK_UNDEF:
671 case WEAK_COMMON * 16 + WEAK_UNDEF:
672 case DYN_COMMON * 16 + WEAK_UNDEF:
673 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
674 // A new weak undefined reference tells us nothing unless the
675 // exisiting symbol is a dynamic weak reference.
678 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
679 // A new weak reference overrides an existing dynamic weak reference.
680 // This is necessary because a dynamic weak reference remembers
681 // the old binding, which may not be weak. If we keeps the existing
682 // dynamic weak reference, the weakness may be dropped in the output.
685 case DYN_DEF * 16 + WEAK_UNDEF:
686 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
687 // For a dynamic def, we need to remember which kind of undef we see.
688 *adjust_dyndef = true;
691 case DEF * 16 + DYN_UNDEF:
692 case WEAK_DEF * 16 + DYN_UNDEF:
693 case DYN_DEF * 16 + DYN_UNDEF:
694 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
695 case UNDEF * 16 + DYN_UNDEF:
696 case WEAK_UNDEF * 16 + DYN_UNDEF:
697 case DYN_UNDEF * 16 + DYN_UNDEF:
698 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
699 case COMMON * 16 + DYN_UNDEF:
700 case WEAK_COMMON * 16 + DYN_UNDEF:
701 case DYN_COMMON * 16 + DYN_UNDEF:
702 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
703 // A new dynamic undefined reference tells us nothing.
706 case DEF * 16 + DYN_WEAK_UNDEF:
707 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
708 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
709 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
710 case UNDEF * 16 + DYN_WEAK_UNDEF:
711 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
712 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
713 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
714 case COMMON * 16 + DYN_WEAK_UNDEF:
715 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
716 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
717 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
718 // A new weak dynamic undefined reference tells us nothing.
721 case DEF * 16 + COMMON:
722 // A common symbol does not override a definition.
723 if (parameters->options().warn_common())
724 Symbol_table::report_resolve_problem(false,
725 _("common '%s' overridden by "
726 "previous definition"),
727 to, defined, object);
730 case WEAK_DEF * 16 + COMMON:
731 case DYN_DEF * 16 + COMMON:
732 case DYN_WEAK_DEF * 16 + COMMON:
733 // A common symbol does override a weak definition or a dynamic
737 case UNDEF * 16 + COMMON:
738 case WEAK_UNDEF * 16 + COMMON:
739 case DYN_UNDEF * 16 + COMMON:
740 case DYN_WEAK_UNDEF * 16 + COMMON:
741 // A common symbol is a definition for a reference.
744 case COMMON * 16 + COMMON:
745 // Set the size to the maximum.
746 *adjust_common_sizes = true;
749 case WEAK_COMMON * 16 + COMMON:
750 // I'm not sure just what a weak common symbol means, but
751 // presumably it can be overridden by a regular common symbol.
754 case DYN_COMMON * 16 + COMMON:
755 case DYN_WEAK_COMMON * 16 + COMMON:
756 // Use the real common symbol, but adjust the size if necessary.
757 *adjust_common_sizes = true;
760 case DEF * 16 + WEAK_COMMON:
761 case WEAK_DEF * 16 + WEAK_COMMON:
762 case DYN_DEF * 16 + WEAK_COMMON:
763 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
764 // Whatever a weak common symbol is, it won't override a
768 case UNDEF * 16 + WEAK_COMMON:
769 case WEAK_UNDEF * 16 + WEAK_COMMON:
770 case DYN_UNDEF * 16 + WEAK_COMMON:
771 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
772 // A weak common symbol is better than an undefined symbol.
775 case COMMON * 16 + WEAK_COMMON:
776 case WEAK_COMMON * 16 + WEAK_COMMON:
777 case DYN_COMMON * 16 + WEAK_COMMON:
778 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
779 // Ignore a weak common symbol in the presence of a real common
783 case DEF * 16 + DYN_COMMON:
784 case WEAK_DEF * 16 + DYN_COMMON:
785 case DYN_DEF * 16 + DYN_COMMON:
786 case DYN_WEAK_DEF * 16 + DYN_COMMON:
787 // Ignore a dynamic common symbol in the presence of a
791 case UNDEF * 16 + DYN_COMMON:
792 case WEAK_UNDEF * 16 + DYN_COMMON:
793 case DYN_UNDEF * 16 + DYN_COMMON:
794 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
795 // A dynamic common symbol is a definition of sorts.
798 case COMMON * 16 + DYN_COMMON:
799 case WEAK_COMMON * 16 + DYN_COMMON:
800 case DYN_COMMON * 16 + DYN_COMMON:
801 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
802 // Set the size to the maximum.
803 *adjust_common_sizes = true;
806 case DEF * 16 + DYN_WEAK_COMMON:
807 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
808 case DYN_DEF * 16 + DYN_WEAK_COMMON:
809 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
810 // A common symbol is ignored in the face of a definition.
813 case UNDEF * 16 + DYN_WEAK_COMMON:
814 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
815 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
816 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
817 // I guess a weak common symbol is better than a definition.
820 case COMMON * 16 + DYN_WEAK_COMMON:
821 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
822 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
823 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
824 // Set the size to the maximum.
825 *adjust_common_sizes = true;
833 // Issue an error or warning due to symbol resolution. IS_ERROR
834 // indicates an error rather than a warning. MSG is the error
835 // message; it is expected to have a %s for the symbol name. TO is
836 // the existing symbol. DEFINED/OBJECT is where the new symbol was
839 // FIXME: We should have better location information here. When the
840 // symbol is defined, we should be able to pull the location from the
841 // debug info if there is any.
844 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
845 const Symbol* to, Defined defined,
848 std::string demangled(to->demangled_name());
849 size_t len = strlen(msg) + demangled.length() + 10;
850 char* buf = new char[len];
851 snprintf(buf, len, msg, demangled.c_str());
857 objname = object->name().c_str();
860 objname = _("COPY reloc");
864 objname = _("command line");
867 objname = _("linker script");
870 case INCREMENTAL_BASE:
871 objname = _("linker defined");
878 gold_error("%s: %s", objname, buf);
880 gold_warning("%s: %s", objname, buf);
884 if (to->source() == Symbol::FROM_OBJECT)
885 objname = to->object()->name().c_str();
887 objname = _("command line");
888 gold_info("%s: %s: previous definition here", program_name, objname);
891 // A special case of should_override which is only called for a strong
892 // defined symbol from a regular object file. This is used when
893 // defining special symbols.
896 Symbol_table::should_override_with_special(const Symbol* to,
897 elfcpp::STT fromtype,
900 bool adjust_common_sizes;
902 unsigned int frombits = global_flag | regular_flag | def_flag;
903 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
904 NULL, &adjust_common_sizes,
906 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
910 // Override symbol base with a special symbol.
913 Symbol::override_base_with_special(const Symbol* from)
915 bool same_name = this->name_ == from->name_;
916 gold_assert(same_name || this->has_alias());
918 // If we are overriding an undef, remember the original binding.
919 if (this->is_undefined())
920 this->set_undef_binding(this->binding_);
922 this->source_ = from->source_;
923 switch (from->source_)
926 this->u_.from_object = from->u_.from_object;
929 this->u_.in_output_data = from->u_.in_output_data;
931 case IN_OUTPUT_SEGMENT:
932 this->u_.in_output_segment = from->u_.in_output_segment;
944 // When overriding a versioned symbol with a special symbol, we
945 // may be changing the version. This will happen if we see a
946 // special symbol such as "_end" defined in a shared object with
947 // one version (from a version script), but we want to define it
948 // here with a different version (from a different version
950 this->version_ = from->version_;
952 this->type_ = from->type_;
953 this->binding_ = from->binding_;
954 this->override_visibility(from->visibility_);
955 this->nonvis_ = from->nonvis_;
957 // Special symbols are always considered to be regular symbols.
958 this->in_reg_ = true;
960 if (from->needs_dynsym_entry_)
961 this->needs_dynsym_entry_ = true;
962 if (from->needs_dynsym_value_)
963 this->needs_dynsym_value_ = true;
965 this->is_predefined_ = from->is_predefined_;
967 // We shouldn't see these flags. If we do, we need to handle them
969 gold_assert(!from->is_forwarder_);
970 gold_assert(!from->has_plt_offset());
971 gold_assert(!from->has_warning_);
972 gold_assert(!from->is_copied_from_dynobj_);
973 gold_assert(!from->is_forced_local_);
976 // Override a symbol with a special symbol.
980 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
982 this->override_base_with_special(from);
983 this->value_ = from->value_;
984 this->symsize_ = from->symsize_;
987 // Override TOSYM with the special symbol FROMSYM. This handles all
992 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
993 const Sized_symbol<size>* fromsym)
995 tosym->override_with_special(fromsym);
996 if (tosym->has_alias())
998 Symbol* sym = this->weak_aliases_[tosym];
999 gold_assert(sym != NULL);
1000 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1003 ssym->override_with_special(fromsym);
1004 sym = this->weak_aliases_[ssym];
1005 gold_assert(sym != NULL);
1006 ssym = this->get_sized_symbol<size>(sym);
1008 while (ssym != tosym);
1010 if (tosym->binding() == elfcpp::STB_LOCAL
1011 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1012 || tosym->visibility() == elfcpp::STV_INTERNAL)
1013 && (tosym->binding() == elfcpp::STB_GLOBAL
1014 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1015 || tosym->binding() == elfcpp::STB_WEAK)
1016 && !parameters->options().relocatable()))
1017 this->force_local(tosym);
1020 // Instantiate the templates we need. We could use the configure
1021 // script to restrict this to only the ones needed for implemented
1024 // We have to instantiate both big and little endian versions because
1025 // these are used by other templates that depends on size only.
1027 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030 Symbol_table::resolve<32, false>(
1031 Sized_symbol<32>* to,
1032 const elfcpp::Sym<32, false>& sym,
1033 unsigned int st_shndx,
1035 unsigned int orig_st_shndx,
1037 const char* version);
1041 Symbol_table::resolve<32, true>(
1042 Sized_symbol<32>* to,
1043 const elfcpp::Sym<32, true>& sym,
1044 unsigned int st_shndx,
1046 unsigned int orig_st_shndx,
1048 const char* version);
1051 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1054 Symbol_table::resolve<64, false>(
1055 Sized_symbol<64>* to,
1056 const elfcpp::Sym<64, false>& sym,
1057 unsigned int st_shndx,
1059 unsigned int orig_st_shndx,
1061 const char* version);
1065 Symbol_table::resolve<64, true>(
1066 Sized_symbol<64>* to,
1067 const elfcpp::Sym<64, true>& sym,
1068 unsigned int st_shndx,
1070 unsigned int orig_st_shndx,
1072 const char* version);
1075 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1078 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1079 const Sized_symbol<32>*);
1082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1085 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1086 const Sized_symbol<64>*);
1089 } // End namespace gold.