Fix typos in gold.
[external/binutils.git] / gold / reloc.cc
1 // reloc.cc -- relocate input files for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26
27 #include "workqueue.h"
28 #include "layout.h"
29 #include "symtab.h"
30 #include "output.h"
31 #include "merge.h"
32 #include "object.h"
33 #include "target-reloc.h"
34 #include "reloc.h"
35 #include "icf.h"
36 #include "compressed_output.h"
37 #include "incremental.h"
38
39 namespace gold
40 {
41
42 // Read_relocs methods.
43
44 // These tasks just read the relocation information from the file.
45 // After reading it, the start another task to process the
46 // information.  These tasks requires access to the file.
47
48 Task_token*
49 Read_relocs::is_runnable()
50 {
51   return this->object_->is_locked() ? this->object_->token() : NULL;
52 }
53
54 // Lock the file.
55
56 void
57 Read_relocs::locks(Task_locker* tl)
58 {
59   tl->add(this, this->object_->token());
60 }
61
62 // Read the relocations and then start a Scan_relocs_task.
63
64 void
65 Read_relocs::run(Workqueue* workqueue)
66 {
67   Read_relocs_data* rd = new Read_relocs_data;
68   this->object_->read_relocs(rd);
69   this->object_->set_relocs_data(rd);
70   this->object_->release();
71
72   // If garbage collection or identical comdat folding is desired, we  
73   // process the relocs first before scanning them.  Scanning of relocs is
74   // done only after garbage or identical sections is identified.
75   if (parameters->options().gc_sections()
76       || parameters->options().icf_enabled())
77     {
78       workqueue->queue_next(new Gc_process_relocs(this->symtab_,
79                                                   this->layout_, 
80                                                   this->object_, rd,
81                                                   this->this_blocker_,
82                                                   this->next_blocker_));
83     }
84   else
85     {
86       workqueue->queue_next(new Scan_relocs(this->symtab_, this->layout_,
87                                             this->object_, rd,
88                                             this->this_blocker_,
89                                             this->next_blocker_));
90     }
91 }
92
93 // Return a debugging name for the task.
94
95 std::string
96 Read_relocs::get_name() const
97 {
98   return "Read_relocs " + this->object_->name();
99 }
100
101 // Gc_process_relocs methods.
102
103 Gc_process_relocs::~Gc_process_relocs()
104 {
105   if (this->this_blocker_ != NULL)
106     delete this->this_blocker_;
107 }
108
109 // These tasks process the relocations read by Read_relocs and
110 // determine which sections are referenced and which are garbage.
111 // This task is done only when --gc-sections is used.  This is blocked
112 // by THIS_BLOCKER_.  It unblocks NEXT_BLOCKER_.
113
114 Task_token*
115 Gc_process_relocs::is_runnable()
116 {
117   if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
118     return this->this_blocker_;
119   if (this->object_->is_locked())
120     return this->object_->token();
121   return NULL;
122 }
123
124 void
125 Gc_process_relocs::locks(Task_locker* tl)
126 {
127   tl->add(this, this->object_->token());
128   tl->add(this, this->next_blocker_);
129 }
130
131 void
132 Gc_process_relocs::run(Workqueue*)
133 {
134   this->object_->gc_process_relocs(this->symtab_, this->layout_, this->rd_);
135   this->object_->release();
136 }
137
138 // Return a debugging name for the task.
139
140 std::string
141 Gc_process_relocs::get_name() const
142 {
143   return "Gc_process_relocs " + this->object_->name();
144 }
145
146 // Scan_relocs methods.
147
148 Scan_relocs::~Scan_relocs()
149 {
150   if (this->this_blocker_ != NULL)
151     delete this->this_blocker_;
152 }
153
154 // These tasks scan the relocations read by Read_relocs and mark up
155 // the symbol table to indicate which relocations are required.  We
156 // use a lock on the symbol table to keep them from interfering with
157 // each other.
158
159 Task_token*
160 Scan_relocs::is_runnable()
161 {
162   if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
163     return this->this_blocker_;
164   if (this->object_->is_locked())
165     return this->object_->token();
166   return NULL;
167 }
168
169 // Return the locks we hold: one on the file, one on the symbol table
170 // and one blocker.
171
172 void
173 Scan_relocs::locks(Task_locker* tl)
174 {
175   tl->add(this, this->object_->token());
176   tl->add(this, this->next_blocker_);
177 }
178
179 // Scan the relocs.
180
181 void
182 Scan_relocs::run(Workqueue*)
183 {
184   this->object_->scan_relocs(this->symtab_, this->layout_, this->rd_);
185   delete this->rd_;
186   this->rd_ = NULL;
187   this->object_->release();
188 }
189
190 // Return a debugging name for the task.
191
192 std::string
193 Scan_relocs::get_name() const
194 {
195   return "Scan_relocs " + this->object_->name();
196 }
197
198 // Relocate_task methods.
199
200 // We may have to wait for the output sections to be written.
201
202 Task_token*
203 Relocate_task::is_runnable()
204 {
205   if (this->object_->relocs_must_follow_section_writes()
206       && this->output_sections_blocker_->is_blocked())
207     return this->output_sections_blocker_;
208
209   if (this->object_->is_locked())
210     return this->object_->token();
211
212   return NULL;
213 }
214
215 // We want to lock the file while we run.  We want to unblock
216 // INPUT_SECTIONS_BLOCKER and FINAL_BLOCKER when we are done.
217 // INPUT_SECTIONS_BLOCKER may be NULL.
218
219 void
220 Relocate_task::locks(Task_locker* tl)
221 {
222   if (this->input_sections_blocker_ != NULL)
223     tl->add(this, this->input_sections_blocker_);
224   tl->add(this, this->final_blocker_);
225   tl->add(this, this->object_->token());
226 }
227
228 // Run the task.
229
230 void
231 Relocate_task::run(Workqueue*)
232 {
233   this->object_->relocate(this->symtab_, this->layout_, this->of_);
234
235   // This is normally the last thing we will do with an object, so
236   // uncache all views.
237   this->object_->clear_view_cache_marks();
238
239   this->object_->release();
240 }
241
242 // Return a debugging name for the task.
243
244 std::string
245 Relocate_task::get_name() const
246 {
247   return "Relocate_task " + this->object_->name();
248 }
249
250 // Read the relocs and local symbols from the object file and store
251 // the information in RD.
252
253 template<int size, bool big_endian>
254 void
255 Sized_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
256 {
257   rd->relocs.clear();
258
259   unsigned int shnum = this->shnum();
260   if (shnum == 0)
261     return;
262
263   rd->relocs.reserve(shnum / 2);
264
265   const Output_sections& out_sections(this->output_sections());
266   const std::vector<Address>& out_offsets(this->section_offsets_);
267
268   const unsigned char* pshdrs = this->get_view(this->elf_file_.shoff(),
269                                                shnum * This::shdr_size,
270                                                true, true);
271   // Skip the first, dummy, section.
272   const unsigned char* ps = pshdrs + This::shdr_size;
273   for (unsigned int i = 1; i < shnum; ++i, ps += This::shdr_size)
274     {
275       typename This::Shdr shdr(ps);
276
277       unsigned int sh_type = shdr.get_sh_type();
278       if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
279         continue;
280
281       unsigned int shndx = this->adjust_shndx(shdr.get_sh_info());
282       if (shndx >= shnum)
283         {
284           this->error(_("relocation section %u has bad info %u"),
285                       i, shndx);
286           continue;
287         }
288
289       Output_section* os = out_sections[shndx];
290       if (os == NULL)
291         continue;
292
293       // We are scanning relocations in order to fill out the GOT and
294       // PLT sections.  Relocations for sections which are not
295       // allocated (typically debugging sections) should not add new
296       // GOT and PLT entries.  So we skip them unless this is a
297       // relocatable link or we need to emit relocations.  FIXME: What
298       // should we do if a linker script maps a section with SHF_ALLOC
299       // clear to a section with SHF_ALLOC set?
300       typename This::Shdr secshdr(pshdrs + shndx * This::shdr_size);
301       bool is_section_allocated = ((secshdr.get_sh_flags() & elfcpp::SHF_ALLOC)
302                                    != 0);
303       if (!is_section_allocated
304           && !parameters->options().relocatable()
305           && !parameters->options().emit_relocs()
306           && !parameters->incremental())
307         continue;
308
309       if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx_)
310         {
311           this->error(_("relocation section %u uses unexpected "
312                         "symbol table %u"),
313                       i, this->adjust_shndx(shdr.get_sh_link()));
314           continue;
315         }
316
317       off_t sh_size = shdr.get_sh_size();
318
319       unsigned int reloc_size;
320       if (sh_type == elfcpp::SHT_REL)
321         reloc_size = elfcpp::Elf_sizes<size>::rel_size;
322       else
323         reloc_size = elfcpp::Elf_sizes<size>::rela_size;
324       if (reloc_size != shdr.get_sh_entsize())
325         {
326           this->error(_("unexpected entsize for reloc section %u: %lu != %u"),
327                       i, static_cast<unsigned long>(shdr.get_sh_entsize()),
328                       reloc_size);
329           continue;
330         }
331
332       size_t reloc_count = sh_size / reloc_size;
333       if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
334         {
335           this->error(_("reloc section %u size %lu uneven"),
336                       i, static_cast<unsigned long>(sh_size));
337           continue;
338         }
339
340       rd->relocs.push_back(Section_relocs());
341       Section_relocs& sr(rd->relocs.back());
342       sr.reloc_shndx = i;
343       sr.data_shndx = shndx;
344       sr.contents = this->get_lasting_view(shdr.get_sh_offset(), sh_size,
345                                            true, true);
346       sr.sh_type = sh_type;
347       sr.reloc_count = reloc_count;
348       sr.output_section = os;
349       sr.needs_special_offset_handling = out_offsets[shndx] == invalid_address;
350       sr.is_data_section_allocated = is_section_allocated;
351     }
352
353   // Read the local symbols.
354   gold_assert(this->symtab_shndx_ != -1U);
355   if (this->symtab_shndx_ == 0 || this->local_symbol_count_ == 0)
356     rd->local_symbols = NULL;
357   else
358     {
359       typename This::Shdr symtabshdr(pshdrs
360                                      + this->symtab_shndx_ * This::shdr_size);
361       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
362       const int sym_size = This::sym_size;
363       const unsigned int loccount = this->local_symbol_count_;
364       gold_assert(loccount == symtabshdr.get_sh_info());
365       off_t locsize = loccount * sym_size;
366       rd->local_symbols = this->get_lasting_view(symtabshdr.get_sh_offset(),
367                                                  locsize, true, true);
368     }
369 }
370
371 // Process the relocs to generate mappings from source sections to referenced
372 // sections.  This is used during garbage collection to determine garbage
373 // sections.
374
375 template<int size, bool big_endian>
376 void
377 Sized_relobj<size, big_endian>::do_gc_process_relocs(Symbol_table* symtab,
378                                                      Layout* layout,
379                                                      Read_relocs_data* rd)
380 {  
381   Sized_target<size, big_endian>* target =
382     parameters->sized_target<size, big_endian>();
383
384   const unsigned char* local_symbols;
385   if (rd->local_symbols == NULL)
386     local_symbols = NULL;
387   else
388     local_symbols = rd->local_symbols->data();
389
390   for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
391        p != rd->relocs.end();
392        ++p)
393     {
394       if (!parameters->options().relocatable())
395           {
396             // As noted above, when not generating an object file, we
397             // only scan allocated sections.  We may see a non-allocated
398             // section here if we are emitting relocs.
399             if (p->is_data_section_allocated)
400               target->gc_process_relocs(symtab, layout, this, 
401                                         p->data_shndx, p->sh_type, 
402                                         p->contents->data(), p->reloc_count, 
403                                         p->output_section,
404                                         p->needs_special_offset_handling,
405                                         this->local_symbol_count_, 
406                                         local_symbols);
407         }
408     }
409 }
410
411
412 // Scan the relocs and adjust the symbol table.  This looks for
413 // relocations which require GOT/PLT/COPY relocations.
414
415 template<int size, bool big_endian>
416 void
417 Sized_relobj<size, big_endian>::do_scan_relocs(Symbol_table* symtab,
418                                                Layout* layout,
419                                                Read_relocs_data* rd)
420 {
421   Sized_target<size, big_endian>* target =
422     parameters->sized_target<size, big_endian>();
423
424   const unsigned char* local_symbols;
425   if (rd->local_symbols == NULL)
426     local_symbols = NULL;
427   else
428     local_symbols = rd->local_symbols->data();
429
430   // For incremental links, allocate the counters for incremental relocations.
431   if (layout->incremental_inputs() != NULL)
432     this->allocate_incremental_reloc_counts();
433
434   for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
435        p != rd->relocs.end();
436        ++p)
437     {
438       // When garbage collection is on, unreferenced sections are not included
439       // in the link that would have been included normally. This is known only
440       // after Read_relocs hence this check has to be done again.
441       if (parameters->options().gc_sections()
442           || parameters->options().icf_enabled())
443         {
444           if (p->output_section == NULL)
445             continue;
446         }
447       if (!parameters->options().relocatable())
448         {
449           // As noted above, when not generating an object file, we
450           // only scan allocated sections.  We may see a non-allocated
451           // section here if we are emitting relocs.
452           if (p->is_data_section_allocated)
453             target->scan_relocs(symtab, layout, this, p->data_shndx,
454                                 p->sh_type, p->contents->data(),
455                                 p->reloc_count, p->output_section,
456                                 p->needs_special_offset_handling,
457                                 this->local_symbol_count_,
458                                 local_symbols);
459           if (parameters->options().emit_relocs())
460             this->emit_relocs_scan(symtab, layout, local_symbols, p);
461           if (layout->incremental_inputs() != NULL)
462             this->incremental_relocs_scan(p);
463         }
464       else
465         {
466           Relocatable_relocs* rr = this->relocatable_relocs(p->reloc_shndx);
467           gold_assert(rr != NULL);
468           rr->set_reloc_count(p->reloc_count);
469           target->scan_relocatable_relocs(symtab, layout, this,
470                                           p->data_shndx, p->sh_type,
471                                           p->contents->data(),
472                                           p->reloc_count,
473                                           p->output_section,
474                                           p->needs_special_offset_handling,
475                                           this->local_symbol_count_,
476                                           local_symbols,
477                                           rr);
478         }
479
480       delete p->contents;
481       p->contents = NULL;
482     }
483
484   // For incremental links, finalize the allocation of relocations.
485   if (layout->incremental_inputs() != NULL)
486     this->finalize_incremental_relocs(layout);
487
488   if (rd->local_symbols != NULL)
489     {
490       delete rd->local_symbols;
491       rd->local_symbols = NULL;
492     }
493 }
494
495 // This is a strategy class we use when scanning for --emit-relocs.
496
497 template<int sh_type>
498 class Emit_relocs_strategy
499 {
500  public:
501   // A local non-section symbol.
502   inline Relocatable_relocs::Reloc_strategy
503   local_non_section_strategy(unsigned int, Relobj*, unsigned int)
504   { return Relocatable_relocs::RELOC_COPY; }
505
506   // A local section symbol.
507   inline Relocatable_relocs::Reloc_strategy
508   local_section_strategy(unsigned int, Relobj*)
509   {
510     if (sh_type == elfcpp::SHT_RELA)
511       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
512     else
513       {
514         // The addend is stored in the section contents.  Since this
515         // is not a relocatable link, we are going to apply the
516         // relocation contents to the section as usual.  This means
517         // that we have no way to record the original addend.  If the
518         // original addend is not zero, there is basically no way for
519         // the user to handle this correctly.  Caveat emptor.
520         return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
521       }
522   }
523
524   // A global symbol.
525   inline Relocatable_relocs::Reloc_strategy
526   global_strategy(unsigned int, Relobj*, unsigned int)
527   { return Relocatable_relocs::RELOC_COPY; }
528 };
529
530 // Scan the input relocations for --emit-relocs.
531
532 template<int size, bool big_endian>
533 void
534 Sized_relobj<size, big_endian>::emit_relocs_scan(
535     Symbol_table* symtab,
536     Layout* layout,
537     const unsigned char* plocal_syms,
538     const Read_relocs_data::Relocs_list::iterator& p)
539 {
540   Relocatable_relocs* rr = this->relocatable_relocs(p->reloc_shndx);
541   gold_assert(rr != NULL);
542   rr->set_reloc_count(p->reloc_count);
543
544   if (p->sh_type == elfcpp::SHT_REL)
545     this->emit_relocs_scan_reltype<elfcpp::SHT_REL>(symtab, layout,
546                                                     plocal_syms, p, rr);
547   else
548     {
549       gold_assert(p->sh_type == elfcpp::SHT_RELA);
550       this->emit_relocs_scan_reltype<elfcpp::SHT_RELA>(symtab, layout,
551                                                        plocal_syms, p, rr);
552     }
553 }
554
555 // Scan the input relocation for --emit-relocs, templatized on the
556 // type of the relocation section.
557
558 template<int size, bool big_endian>
559 template<int sh_type>
560 void
561 Sized_relobj<size, big_endian>::emit_relocs_scan_reltype(
562     Symbol_table* symtab,
563     Layout* layout,
564     const unsigned char* plocal_syms,
565     const Read_relocs_data::Relocs_list::iterator& p,
566     Relocatable_relocs* rr)
567 {
568   scan_relocatable_relocs<size, big_endian, sh_type,
569                           Emit_relocs_strategy<sh_type> >(
570     symtab,
571     layout,
572     this,
573     p->data_shndx,
574     p->contents->data(),
575     p->reloc_count,
576     p->output_section,
577     p->needs_special_offset_handling,
578     this->local_symbol_count_,
579     plocal_syms,
580     rr);
581 }
582
583 // Scan the input relocations for --incremental.
584
585 template<int size, bool big_endian>
586 void
587 Sized_relobj<size, big_endian>::incremental_relocs_scan(
588     const Read_relocs_data::Relocs_list::iterator& p)
589 {
590   if (p->sh_type == elfcpp::SHT_REL)
591     this->incremental_relocs_scan_reltype<elfcpp::SHT_REL>(p);
592   else
593     {
594       gold_assert(p->sh_type == elfcpp::SHT_RELA);
595       this->incremental_relocs_scan_reltype<elfcpp::SHT_RELA>(p);
596     }
597 }
598
599 // Scan the input relocation for --emit-relocs, templatized on the
600 // type of the relocation section.
601
602 template<int size, bool big_endian>
603 template<int sh_type>
604 void
605 Sized_relobj<size, big_endian>::incremental_relocs_scan_reltype(
606     const Read_relocs_data::Relocs_list::iterator& p)
607 {
608   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
609   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
610   const unsigned char* prelocs = p->contents->data();
611   size_t reloc_count = p->reloc_count;
612
613   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
614     {
615       Reltype reloc(prelocs);
616
617       if (p->needs_special_offset_handling
618           && !p->output_section->is_input_address_mapped(this, p->data_shndx,
619                                                          reloc.get_r_offset()))
620         continue;
621
622       typename elfcpp::Elf_types<size>::Elf_WXword r_info =
623           reloc.get_r_info();
624       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
625
626       if (r_sym >= this->local_symbol_count_)
627         this->count_incremental_reloc(r_sym - this->local_symbol_count_);
628     }
629 }
630
631 // Relocate the input sections and write out the local symbols.
632
633 template<int size, bool big_endian>
634 void
635 Sized_relobj<size, big_endian>::do_relocate(const Symbol_table* symtab,
636                                             const Layout* layout,
637                                             Output_file* of)
638 {
639   unsigned int shnum = this->shnum();
640
641   // Read the section headers.
642   const unsigned char* pshdrs = this->get_view(this->elf_file_.shoff(),
643                                                shnum * This::shdr_size,
644                                                true, true);
645
646   Views views;
647   views.resize(shnum);
648
649   // Make two passes over the sections.  The first one copies the
650   // section data to the output file.  The second one applies
651   // relocations.
652
653   this->write_sections(pshdrs, of, &views);
654
655   // To speed up relocations, we set up hash tables for fast lookup of
656   // input offsets to output addresses.
657   this->initialize_input_to_output_maps();
658
659   // Apply relocations.
660
661   this->relocate_sections(symtab, layout, pshdrs, of, &views);
662
663   // After we've done the relocations, we release the hash tables,
664   // since we no longer need them.
665   this->free_input_to_output_maps();
666
667   // Write out the accumulated views.
668   for (unsigned int i = 1; i < shnum; ++i)
669     {
670       if (views[i].view != NULL)
671         {
672           if (!views[i].is_postprocessing_view)
673             {
674               if (views[i].is_input_output_view)
675                 of->write_input_output_view(views[i].offset,
676                                             views[i].view_size,
677                                             views[i].view);
678               else
679                 of->write_output_view(views[i].offset, views[i].view_size,
680                                       views[i].view);
681             }
682         }
683     }
684
685   // Write out the local symbols.
686   this->write_local_symbols(of, layout->sympool(), layout->dynpool(),
687                             layout->symtab_xindex(), layout->dynsym_xindex());
688
689   // We should no longer need the local symbol values.
690   this->clear_local_symbols();
691 }
692
693 // Sort a Read_multiple vector by file offset.
694 struct Read_multiple_compare
695 {
696   inline bool
697   operator()(const File_read::Read_multiple_entry& rme1,
698              const File_read::Read_multiple_entry& rme2) const
699   { return rme1.file_offset < rme2.file_offset; }
700 };
701
702 // Write section data to the output file.  PSHDRS points to the
703 // section headers.  Record the views in *PVIEWS for use when
704 // relocating.
705
706 template<int size, bool big_endian>
707 void
708 Sized_relobj<size, big_endian>::write_sections(const unsigned char* pshdrs,
709                                                Output_file* of,
710                                                Views* pviews)
711 {
712   unsigned int shnum = this->shnum();
713   const Output_sections& out_sections(this->output_sections());
714   const std::vector<Address>& out_offsets(this->section_offsets_);
715
716   File_read::Read_multiple rm;
717   bool is_sorted = true;
718
719   const unsigned char* p = pshdrs + This::shdr_size;
720   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
721     {
722       View_size* pvs = &(*pviews)[i];
723
724       pvs->view = NULL;
725
726       const Output_section* os = out_sections[i];
727       if (os == NULL)
728         continue;
729       Address output_offset = out_offsets[i];
730
731       typename This::Shdr shdr(p);
732
733       if (shdr.get_sh_type() == elfcpp::SHT_NOBITS)
734         continue;
735
736       if ((parameters->options().relocatable()
737            || parameters->options().emit_relocs())
738           && (shdr.get_sh_type() == elfcpp::SHT_REL
739               || shdr.get_sh_type() == elfcpp::SHT_RELA)
740           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741         {
742           // This is a reloc section in a relocatable link or when
743           // emitting relocs.  We don't need to read the input file.
744           // The size and file offset are stored in the
745           // Relocatable_relocs structure.
746           Relocatable_relocs* rr = this->relocatable_relocs(i);
747           gold_assert(rr != NULL);
748           Output_data* posd = rr->output_data();
749           gold_assert(posd != NULL);
750
751           pvs->offset = posd->offset();
752           pvs->view_size = posd->data_size();
753           pvs->view = of->get_output_view(pvs->offset, pvs->view_size);
754           pvs->address = posd->address();
755           pvs->is_input_output_view = false;
756           pvs->is_postprocessing_view = false;
757
758           continue;
759         }
760
761       // In the normal case, this input section is simply mapped to
762       // the output section at offset OUTPUT_OFFSET.
763
764       // However, if OUTPUT_OFFSET == INVALID_ADDRESS, then input data is
765       // handled specially--e.g., a .eh_frame section.  The relocation
766       // routines need to check for each reloc where it should be
767       // applied.  For this case, we need an input/output view for the
768       // entire contents of the section in the output file.  We don't
769       // want to copy the contents of the input section to the output
770       // section; the output section contents were already written,
771       // and we waited for them in Relocate_task::is_runnable because
772       // relocs_must_follow_section_writes is set for the object.
773
774       // Regardless of which of the above cases is true, we have to
775       // check requires_postprocessing of the output section.  If that
776       // is false, then we work with views of the output file
777       // directly.  If it is true, then we work with a separate
778       // buffer, and the output section is responsible for writing the
779       // final data to the output file.
780
781       off_t output_section_offset;
782       Address output_section_size;
783       if (!os->requires_postprocessing())
784         {
785           output_section_offset = os->offset();
786           output_section_size = convert_types<Address, off_t>(os->data_size());
787         }
788       else
789         {
790           output_section_offset = 0;
791           output_section_size =
792               convert_types<Address, off_t>(os->postprocessing_buffer_size());
793         }
794
795       off_t view_start;
796       section_size_type view_size;
797       bool must_decompress = false;
798       if (output_offset != invalid_address)
799         {
800           view_start = output_section_offset + output_offset;
801           view_size = convert_to_section_size_type(shdr.get_sh_size());
802           section_size_type uncompressed_size;
803           if (this->section_is_compressed(i, &uncompressed_size))
804             {
805               view_size = uncompressed_size;
806               must_decompress = true;
807             }
808         }
809       else
810         {
811           view_start = output_section_offset;
812           view_size = convert_to_section_size_type(output_section_size);
813         }
814
815       if (view_size == 0)
816         continue;
817
818       gold_assert(output_offset == invalid_address
819                   || output_offset + view_size <= output_section_size);
820
821       unsigned char* view;
822       if (os->requires_postprocessing())
823         {
824           unsigned char* buffer = os->postprocessing_buffer();
825           view = buffer + view_start;
826           if (output_offset != invalid_address && !must_decompress)
827             {
828               off_t sh_offset = shdr.get_sh_offset();
829               if (!rm.empty() && rm.back().file_offset > sh_offset)
830                 is_sorted = false;
831               rm.push_back(File_read::Read_multiple_entry(sh_offset,
832                                                           view_size, view));
833             }
834         }
835       else
836         {
837           if (output_offset == invalid_address)
838             view = of->get_input_output_view(view_start, view_size);
839           else
840             {
841               view = of->get_output_view(view_start, view_size);
842               if (!must_decompress)
843                 {
844                   off_t sh_offset = shdr.get_sh_offset();
845                   if (!rm.empty() && rm.back().file_offset > sh_offset)
846                     is_sorted = false;
847                   rm.push_back(File_read::Read_multiple_entry(sh_offset,
848                                                               view_size, view));
849                 }
850             }
851         }
852
853       if (must_decompress)
854         {
855           // Read and decompress the section.
856           section_size_type len;
857           const unsigned char* p = this->section_contents(i, &len, false);
858           if (!decompress_input_section(p, len, view, view_size))
859             this->error(_("could not decompress section %s"),
860                         this->section_name(i).c_str());
861         }
862
863       pvs->view = view;
864       pvs->address = os->address();
865       if (output_offset != invalid_address)
866         pvs->address += output_offset;
867       pvs->offset = view_start;
868       pvs->view_size = view_size;
869       pvs->is_input_output_view = output_offset == invalid_address;
870       pvs->is_postprocessing_view = os->requires_postprocessing();
871     }
872
873   // Actually read the data.
874   if (!rm.empty())
875     {
876       if (!is_sorted)
877         std::sort(rm.begin(), rm.end(), Read_multiple_compare());
878       this->read_multiple(rm);
879     }
880 }
881
882 // Relocate section data.  VIEWS points to the section data as views
883 // in the output file.
884
885 template<int size, bool big_endian>
886 void
887 Sized_relobj<size, big_endian>::do_relocate_sections(
888     const Symbol_table* symtab,
889     const Layout* layout,
890     const unsigned char* pshdrs,
891     Output_file* of,
892     Views* pviews)
893 {
894   unsigned int shnum = this->shnum();
895   Sized_target<size, big_endian>* target =
896     parameters->sized_target<size, big_endian>();
897
898   const Output_sections& out_sections(this->output_sections());
899   const std::vector<Address>& out_offsets(this->section_offsets_);
900
901   Relocate_info<size, big_endian> relinfo;
902   relinfo.symtab = symtab;
903   relinfo.layout = layout;
904   relinfo.object = this;
905
906   const unsigned char* p = pshdrs + This::shdr_size;
907   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
908     {
909       typename This::Shdr shdr(p);
910
911       unsigned int sh_type = shdr.get_sh_type();
912       if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
913         continue;
914
915       off_t sh_size = shdr.get_sh_size();
916       if (sh_size == 0)
917         continue;
918
919       unsigned int index = this->adjust_shndx(shdr.get_sh_info());
920       if (index >= this->shnum())
921         {
922           this->error(_("relocation section %u has bad info %u"),
923                       i, index);
924           continue;
925         }
926
927       Output_section* os = out_sections[index];
928       if (os == NULL)
929         {
930           // This relocation section is against a section which we
931           // discarded.
932           continue;
933         }
934       Address output_offset = out_offsets[index];
935
936       gold_assert((*pviews)[index].view != NULL);
937       if (parameters->options().relocatable())
938         gold_assert((*pviews)[i].view != NULL);
939
940       if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx_)
941         {
942           gold_error(_("relocation section %u uses unexpected "
943                        "symbol table %u"),
944                      i, this->adjust_shndx(shdr.get_sh_link()));
945           continue;
946         }
947
948       const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
949                                                     sh_size, true, false);
950
951       unsigned int reloc_size;
952       if (sh_type == elfcpp::SHT_REL)
953         reloc_size = elfcpp::Elf_sizes<size>::rel_size;
954       else
955         reloc_size = elfcpp::Elf_sizes<size>::rela_size;
956
957       if (reloc_size != shdr.get_sh_entsize())
958         {
959           gold_error(_("unexpected entsize for reloc section %u: %lu != %u"),
960                      i, static_cast<unsigned long>(shdr.get_sh_entsize()),
961                      reloc_size);
962           continue;
963         }
964
965       size_t reloc_count = sh_size / reloc_size;
966       if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
967         {
968           gold_error(_("reloc section %u size %lu uneven"),
969                      i, static_cast<unsigned long>(sh_size));
970           continue;
971         }
972
973       gold_assert(output_offset != invalid_address
974                   || this->relocs_must_follow_section_writes());
975
976       relinfo.reloc_shndx = i;
977       relinfo.reloc_shdr = p;
978       relinfo.data_shndx = index;
979       relinfo.data_shdr = pshdrs + index * This::shdr_size;
980       unsigned char* view = (*pviews)[index].view;
981       Address address = (*pviews)[index].address;
982       section_size_type view_size = (*pviews)[index].view_size;
983
984       Reloc_symbol_changes* reloc_map = NULL;
985       if (this->uses_split_stack() && output_offset != invalid_address)
986         {
987           typename This::Shdr data_shdr(pshdrs + index * This::shdr_size);
988           if ((data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
989             this->split_stack_adjust(symtab, pshdrs, sh_type, index,
990                                      prelocs, reloc_count, view, view_size,
991                                      &reloc_map);
992         }
993
994       if (!parameters->options().relocatable())
995         {
996           target->relocate_section(&relinfo, sh_type, prelocs, reloc_count, os,
997                                    output_offset == invalid_address,
998                                    view, address, view_size, reloc_map);
999           if (parameters->options().emit_relocs())
1000             this->emit_relocs(&relinfo, i, sh_type, prelocs, reloc_count,
1001                               os, output_offset, view, address, view_size,
1002                               (*pviews)[i].view, (*pviews)[i].view_size);
1003           if (parameters->incremental())
1004             this->incremental_relocs_write(&relinfo, sh_type, prelocs,
1005                                            reloc_count, os, output_offset, of);
1006         }
1007       else
1008         {
1009           Relocatable_relocs* rr = this->relocatable_relocs(i);
1010           target->relocate_for_relocatable(&relinfo, sh_type, prelocs,
1011                                            reloc_count, os, output_offset, rr,
1012                                            view, address, view_size,
1013                                            (*pviews)[i].view,
1014                                            (*pviews)[i].view_size);
1015         }
1016     }
1017 }
1018
1019 // Emit the relocs for --emit-relocs.
1020
1021 template<int size, bool big_endian>
1022 void
1023 Sized_relobj<size, big_endian>::emit_relocs(
1024     const Relocate_info<size, big_endian>* relinfo,
1025     unsigned int i,
1026     unsigned int sh_type,
1027     const unsigned char* prelocs,
1028     size_t reloc_count,
1029     Output_section* output_section,
1030     typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
1031     unsigned char* view,
1032     typename elfcpp::Elf_types<size>::Elf_Addr address,
1033     section_size_type view_size,
1034     unsigned char* reloc_view,
1035     section_size_type reloc_view_size)
1036 {
1037   if (sh_type == elfcpp::SHT_REL)
1038     this->emit_relocs_reltype<elfcpp::SHT_REL>(relinfo, i, prelocs,
1039                                                reloc_count, output_section,
1040                                                offset_in_output_section,
1041                                                view, address, view_size,
1042                                                reloc_view, reloc_view_size);
1043   else
1044     {
1045       gold_assert(sh_type == elfcpp::SHT_RELA);
1046       this->emit_relocs_reltype<elfcpp::SHT_RELA>(relinfo, i, prelocs,
1047                                                   reloc_count, output_section,
1048                                                   offset_in_output_section,
1049                                                   view, address, view_size,
1050                                                   reloc_view, reloc_view_size);
1051     }
1052 }
1053
1054 // Emit the relocs for --emit-relocs, templatized on the type of the
1055 // relocation section.
1056
1057 template<int size, bool big_endian>
1058 template<int sh_type>
1059 void
1060 Sized_relobj<size, big_endian>::emit_relocs_reltype(
1061     const Relocate_info<size, big_endian>* relinfo,
1062     unsigned int i,
1063     const unsigned char* prelocs,
1064     size_t reloc_count,
1065     Output_section* output_section,
1066     typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
1067     unsigned char* view,
1068     typename elfcpp::Elf_types<size>::Elf_Addr address,
1069     section_size_type view_size,
1070     unsigned char* reloc_view,
1071     section_size_type reloc_view_size)
1072 {
1073   const Relocatable_relocs* rr = this->relocatable_relocs(i);
1074   relocate_for_relocatable<size, big_endian, sh_type>(
1075     relinfo,
1076     prelocs,
1077     reloc_count,
1078     output_section,
1079     offset_in_output_section,
1080     rr,
1081     view,
1082     address,
1083     view_size,
1084     reloc_view,
1085     reloc_view_size);
1086 }
1087
1088 // Write the incremental relocs.
1089
1090 template<int size, bool big_endian>
1091 void
1092 Sized_relobj<size, big_endian>::incremental_relocs_write(
1093     const Relocate_info<size, big_endian>* relinfo,
1094     unsigned int sh_type,
1095     const unsigned char* prelocs,
1096     size_t reloc_count,
1097     Output_section* output_section,
1098     Address output_offset,
1099     Output_file* of)
1100 {
1101   if (sh_type == elfcpp::SHT_REL)
1102     this->incremental_relocs_write_reltype<elfcpp::SHT_REL>(
1103         relinfo,
1104         prelocs,
1105         reloc_count,
1106         output_section,
1107         output_offset,
1108         of);
1109   else
1110     {
1111       gold_assert(sh_type == elfcpp::SHT_RELA);
1112       this->incremental_relocs_write_reltype<elfcpp::SHT_RELA>(
1113           relinfo,
1114           prelocs,
1115           reloc_count,
1116           output_section,
1117           output_offset,
1118           of);
1119     }
1120 }
1121
1122 // Write the incremental relocs, templatized on the type of the
1123 // relocation section.
1124
1125 template<int size, bool big_endian>
1126 template<int sh_type>
1127 void
1128 Sized_relobj<size, big_endian>::incremental_relocs_write_reltype(
1129     const Relocate_info<size, big_endian>* relinfo,
1130     const unsigned char* prelocs,
1131     size_t reloc_count,
1132     Output_section* output_section,
1133     Address output_offset,
1134     Output_file* of)
1135 {
1136   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reloc;
1137   const unsigned int reloc_size =
1138       Reloc_types<sh_type, size, big_endian>::reloc_size;
1139   const unsigned int sizeof_addr = size / 8;
1140   const unsigned int incr_reloc_size = 8 + 2 * sizeof_addr;
1141
1142   unsigned int out_shndx = output_section->out_shndx();
1143
1144   // Get a view for the .gnu_incremental_relocs section.
1145
1146   Incremental_inputs* inputs = relinfo->layout->incremental_inputs();
1147   gold_assert(inputs != NULL);
1148   const off_t relocs_off = inputs->relocs_section()->offset();
1149   const off_t relocs_size = inputs->relocs_section()->data_size();
1150   unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
1151
1152   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1153     {
1154       Reloc reloc(prelocs);
1155
1156       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
1157       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1158       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1159
1160       if (r_sym < this->local_symbol_count_)
1161         continue;
1162
1163       // Get the new offset--the location in the output section where
1164       // this relocation should be applied.
1165
1166       Address offset = reloc.get_r_offset();
1167       if (output_offset != invalid_address)
1168         offset += output_offset;
1169       else
1170         {
1171           section_offset_type sot_offset =
1172               convert_types<section_offset_type, Address>(offset);
1173           section_offset_type new_sot_offset =
1174               output_section->output_offset(relinfo->object,
1175                                             relinfo->data_shndx,
1176                                             sot_offset);
1177           gold_assert(new_sot_offset != -1);
1178           offset += new_sot_offset;
1179         }
1180
1181       // Get the addend.
1182       typename elfcpp::Elf_types<size>::Elf_Swxword addend;
1183       if (sh_type == elfcpp::SHT_RELA)
1184         addend =
1185             Reloc_types<sh_type, size, big_endian>::get_reloc_addend(&reloc);
1186       else
1187         {
1188           // FIXME: Get the addend for SHT_REL.
1189           addend = 0;
1190         }
1191
1192       // Get the index of the output relocation.
1193
1194       unsigned int reloc_index =
1195           this->next_incremental_reloc_index(r_sym - this->local_symbol_count_);
1196
1197       // Write the relocation.
1198
1199       unsigned char* pov = view + reloc_index * incr_reloc_size;
1200       elfcpp::Swap<32, big_endian>::writeval(pov, r_type);
1201       elfcpp::Swap<32, big_endian>::writeval(pov + 4, out_shndx);
1202       elfcpp::Swap<size, big_endian>::writeval(pov + 8, offset);
1203       elfcpp::Swap<size, big_endian>::writeval(pov + 8 + sizeof_addr, addend);
1204       of->write_output_view(pov - view, incr_reloc_size, view);
1205     }
1206 }
1207
1208 // Create merge hash tables for the local symbols.  These are used to
1209 // speed up relocations.
1210
1211 template<int size, bool big_endian>
1212 void
1213 Sized_relobj<size, big_endian>::initialize_input_to_output_maps()
1214 {
1215   const unsigned int loccount = this->local_symbol_count_;
1216   for (unsigned int i = 1; i < loccount; ++i)
1217     {
1218       Symbol_value<size>& lv(this->local_values_[i]);
1219       lv.initialize_input_to_output_map(this);
1220     }
1221 }
1222
1223 // Free merge hash tables for the local symbols.
1224
1225 template<int size, bool big_endian>
1226 void
1227 Sized_relobj<size, big_endian>::free_input_to_output_maps()
1228 {
1229   const unsigned int loccount = this->local_symbol_count_;
1230   for (unsigned int i = 1; i < loccount; ++i)
1231     {
1232       Symbol_value<size>& lv(this->local_values_[i]);
1233       lv.free_input_to_output_map();
1234     }
1235 }
1236
1237 // If an object was compiled with -fsplit-stack, this is called to
1238 // check whether any relocations refer to functions defined in objects
1239 // which were not compiled with -fsplit-stack.  If they were, then we
1240 // need to apply some target-specific adjustments to request
1241 // additional stack space.
1242
1243 template<int size, bool big_endian>
1244 void
1245 Sized_relobj<size, big_endian>::split_stack_adjust(
1246     const Symbol_table* symtab,
1247     const unsigned char* pshdrs,
1248     unsigned int sh_type,
1249     unsigned int shndx,
1250     const unsigned char* prelocs,
1251     size_t reloc_count,
1252     unsigned char* view,
1253     section_size_type view_size,
1254     Reloc_symbol_changes** reloc_map)
1255 {
1256   if (sh_type == elfcpp::SHT_REL)
1257     this->split_stack_adjust_reltype<elfcpp::SHT_REL>(symtab, pshdrs, shndx,
1258                                                       prelocs, reloc_count,
1259                                                       view, view_size,
1260                                                       reloc_map);
1261   else
1262     {
1263       gold_assert(sh_type == elfcpp::SHT_RELA);
1264       this->split_stack_adjust_reltype<elfcpp::SHT_RELA>(symtab, pshdrs, shndx,
1265                                                          prelocs, reloc_count,
1266                                                          view, view_size,
1267                                                          reloc_map);
1268     }
1269 }
1270
1271 // Adjust for -fsplit-stack, templatized on the type of the relocation
1272 // section.
1273
1274 template<int size, bool big_endian>
1275 template<int sh_type>
1276 void
1277 Sized_relobj<size, big_endian>::split_stack_adjust_reltype(
1278     const Symbol_table* symtab,
1279     const unsigned char* pshdrs,
1280     unsigned int shndx,
1281     const unsigned char* prelocs,
1282     size_t reloc_count,
1283     unsigned char* view,
1284     section_size_type view_size,
1285     Reloc_symbol_changes** reloc_map)
1286 {
1287   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
1288   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
1289
1290   size_t local_count = this->local_symbol_count();
1291
1292   std::vector<section_offset_type> non_split_refs;
1293
1294   const unsigned char* pr = prelocs;
1295   for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
1296     {
1297       Reltype reloc(pr);
1298
1299       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
1300       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1301       if (r_sym < local_count)
1302         continue;
1303
1304       const Symbol* gsym = this->global_symbol(r_sym);
1305       gold_assert(gsym != NULL);
1306       if (gsym->is_forwarder())
1307         gsym = symtab->resolve_forwards(gsym);
1308
1309       // See if this relocation refers to a function defined in an
1310       // object compiled without -fsplit-stack.  Note that we don't
1311       // care about the type of relocation--this means that in some
1312       // cases we will ask for a large stack unnecessarily, but this
1313       // is not fatal.  FIXME: Some targets have symbols which are
1314       // functions but are not type STT_FUNC, e.g., STT_ARM_TFUNC.
1315       if (!gsym->is_undefined()
1316           && gsym->source() == Symbol::FROM_OBJECT
1317           && !gsym->object()->uses_split_stack())
1318         {
1319           unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1320           if (parameters->target().is_call_to_non_split(gsym, r_type))
1321             {
1322               section_offset_type offset =
1323                 convert_to_section_size_type(reloc.get_r_offset());
1324               non_split_refs.push_back(offset);
1325             }
1326         }
1327     }
1328
1329   if (non_split_refs.empty())
1330     return;
1331
1332   // At this point, every entry in NON_SPLIT_REFS indicates a
1333   // relocation which refers to a function in an object compiled
1334   // without -fsplit-stack.  We now have to convert that list into a
1335   // set of offsets to functions.  First, we find all the functions.
1336
1337   Function_offsets function_offsets;
1338   this->find_functions(pshdrs, shndx, &function_offsets);
1339   if (function_offsets.empty())
1340     return;
1341
1342   // Now get a list of the function with references to non split-stack
1343   // code.
1344
1345   Function_offsets calls_non_split;
1346   for (std::vector<section_offset_type>::const_iterator p
1347          = non_split_refs.begin();
1348        p != non_split_refs.end();
1349        ++p)
1350     {
1351       Function_offsets::const_iterator low = function_offsets.lower_bound(*p);
1352       if (low == function_offsets.end())
1353         --low;
1354       else if (low->first == *p)
1355         ;
1356       else if (low == function_offsets.begin())
1357         continue;
1358       else
1359         --low;
1360
1361       calls_non_split.insert(*low);
1362     }
1363   if (calls_non_split.empty())
1364     return;
1365
1366   // Now we have a set of functions to adjust.  The adjustments are
1367   // target specific.  Besides changing the output section view
1368   // however, it likes, the target may request a relocation change
1369   // from one global symbol name to another.
1370
1371   for (Function_offsets::const_iterator p = calls_non_split.begin();
1372        p != calls_non_split.end();
1373        ++p)
1374     {
1375       std::string from;
1376       std::string to;
1377       parameters->target().calls_non_split(this, shndx, p->first, p->second,
1378                                            view, view_size, &from, &to);
1379       if (!from.empty())
1380         {
1381           gold_assert(!to.empty());
1382           Symbol* tosym = NULL;
1383
1384           // Find relocations in the relevant function which are for
1385           // FROM.
1386           pr = prelocs;
1387           for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
1388             {
1389               Reltype reloc(pr);
1390
1391               typename elfcpp::Elf_types<size>::Elf_WXword r_info =
1392                 reloc.get_r_info();
1393               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1394               if (r_sym < local_count)
1395                 continue;
1396
1397               section_offset_type offset =
1398                 convert_to_section_size_type(reloc.get_r_offset());
1399               if (offset < p->first
1400                   || (offset
1401                       >= (p->first
1402                           + static_cast<section_offset_type>(p->second))))
1403                 continue;
1404
1405               const Symbol* gsym = this->global_symbol(r_sym);
1406               if (from == gsym->name())
1407                 {
1408                   if (tosym == NULL)
1409                     {
1410                       tosym = symtab->lookup(to.c_str());
1411                       if (tosym == NULL)
1412                         {
1413                           this->error(_("could not convert call "
1414                                         "to '%s' to '%s'"),
1415                                       from.c_str(), to.c_str());
1416                           break;
1417                         }
1418                     }
1419
1420                   if (*reloc_map == NULL)
1421                     *reloc_map = new Reloc_symbol_changes(reloc_count);
1422                   (*reloc_map)->set(i, tosym);
1423                 }
1424             }
1425         }
1426     }
1427 }
1428
1429 // Find all the function in this object defined in section SHNDX.
1430 // Store their offsets in the section in FUNCTION_OFFSETS.
1431
1432 template<int size, bool big_endian>
1433 void
1434 Sized_relobj<size, big_endian>::find_functions(
1435     const unsigned char* pshdrs,
1436     unsigned int shndx,
1437     Sized_relobj<size, big_endian>::Function_offsets* function_offsets)
1438 {
1439   // We need to read the symbols to find the functions.  If we wanted
1440   // to, we could cache reading the symbols across all sections in the
1441   // object.
1442   const unsigned int symtab_shndx = this->symtab_shndx_;
1443   typename This::Shdr symtabshdr(pshdrs + symtab_shndx * This::shdr_size);
1444   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1445
1446   typename elfcpp::Elf_types<size>::Elf_WXword sh_size =
1447     symtabshdr.get_sh_size();
1448   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1449                                               sh_size, true, true);
1450
1451   const int sym_size = This::sym_size;
1452   const unsigned int symcount = sh_size / sym_size;
1453   for (unsigned int i = 0; i < symcount; ++i, psyms += sym_size)
1454     {
1455       typename elfcpp::Sym<size, big_endian> isym(psyms);
1456
1457       // FIXME: Some targets can have functions which do not have type
1458       // STT_FUNC, e.g., STT_ARM_TFUNC.
1459       if (isym.get_st_type() != elfcpp::STT_FUNC
1460           || isym.get_st_size() == 0)
1461         continue;
1462
1463       bool is_ordinary;
1464       unsigned int sym_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1465                                                       &is_ordinary);
1466       if (!is_ordinary || sym_shndx != shndx)
1467         continue;
1468
1469       section_offset_type value =
1470         convert_to_section_size_type(isym.get_st_value());
1471       section_size_type fnsize =
1472         convert_to_section_size_type(isym.get_st_size());
1473
1474       (*function_offsets)[value] = fnsize;
1475     }
1476 }
1477
1478 // Class Merged_symbol_value.
1479
1480 template<int size>
1481 void
1482 Merged_symbol_value<size>::initialize_input_to_output_map(
1483     const Relobj* object,
1484     unsigned int input_shndx)
1485 {
1486   Object_merge_map* map = object->merge_map();
1487   map->initialize_input_to_output_map<size>(input_shndx,
1488                                             this->output_start_address_,
1489                                             &this->output_addresses_);
1490 }
1491
1492 // Get the output value corresponding to an input offset if we
1493 // couldn't find it in the hash table.
1494
1495 template<int size>
1496 typename elfcpp::Elf_types<size>::Elf_Addr
1497 Merged_symbol_value<size>::value_from_output_section(
1498     const Relobj* object,
1499     unsigned int input_shndx,
1500     typename elfcpp::Elf_types<size>::Elf_Addr input_offset) const
1501 {
1502   section_offset_type output_offset;
1503   bool found = object->merge_map()->get_output_offset(NULL, input_shndx,
1504                                                       input_offset,
1505                                                       &output_offset);
1506
1507   // If this assertion fails, it means that some relocation was
1508   // against a portion of an input merge section which we didn't map
1509   // to the output file and we didn't explicitly discard.  We should
1510   // always map all portions of input merge sections.
1511   gold_assert(found);
1512
1513   if (output_offset == -1)
1514     return 0;
1515   else
1516     return this->output_start_address_ + output_offset;
1517 }
1518
1519 // Track_relocs methods.
1520
1521 // Initialize the class to track the relocs.  This gets the object,
1522 // the reloc section index, and the type of the relocs.  This returns
1523 // false if something goes wrong.
1524
1525 template<int size, bool big_endian>
1526 bool
1527 Track_relocs<size, big_endian>::initialize(
1528     Object* object,
1529     unsigned int reloc_shndx,
1530     unsigned int reloc_type)
1531 {
1532   // If RELOC_SHNDX is -1U, it means there is more than one reloc
1533   // section for the .eh_frame section.  We can't handle that case.
1534   if (reloc_shndx == -1U)
1535     return false;
1536
1537   // If RELOC_SHNDX is 0, there is no reloc section.
1538   if (reloc_shndx == 0)
1539     return true;
1540
1541   // Get the contents of the reloc section.
1542   this->prelocs_ = object->section_contents(reloc_shndx, &this->len_, false);
1543
1544   if (reloc_type == elfcpp::SHT_REL)
1545     this->reloc_size_ = elfcpp::Elf_sizes<size>::rel_size;
1546   else if (reloc_type == elfcpp::SHT_RELA)
1547     this->reloc_size_ = elfcpp::Elf_sizes<size>::rela_size;
1548   else
1549     gold_unreachable();
1550
1551   if (this->len_ % this->reloc_size_ != 0)
1552     {
1553       object->error(_("reloc section size %zu is not a multiple of "
1554                       "reloc size %d\n"),
1555                     static_cast<size_t>(this->len_),
1556                     this->reloc_size_);
1557       return false;
1558     }
1559
1560   return true;
1561 }
1562
1563 // Return the offset of the next reloc, or -1 if there isn't one.
1564
1565 template<int size, bool big_endian>
1566 off_t
1567 Track_relocs<size, big_endian>::next_offset() const
1568 {
1569   if (this->pos_ >= this->len_)
1570     return -1;
1571
1572   // Rel and Rela start out the same, so we can always use Rel to find
1573   // the r_offset value.
1574   elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1575   return rel.get_r_offset();
1576 }
1577
1578 // Return the index of the symbol referenced by the next reloc, or -1U
1579 // if there aren't any more relocs.
1580
1581 template<int size, bool big_endian>
1582 unsigned int
1583 Track_relocs<size, big_endian>::next_symndx() const
1584 {
1585   if (this->pos_ >= this->len_)
1586     return -1U;
1587
1588   // Rel and Rela start out the same, so we can use Rel to find the
1589   // symbol index.
1590   elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1591   return elfcpp::elf_r_sym<size>(rel.get_r_info());
1592 }
1593
1594 // Return the addend of the next reloc, or 0 if there isn't one.
1595
1596 template<int size, bool big_endian>
1597 uint64_t
1598 Track_relocs<size, big_endian>::next_addend() const
1599 {
1600   if (this->pos_ >= this->len_)
1601     return 0;
1602   if (this->reloc_size_ == elfcpp::Elf_sizes<size>::rel_size)
1603     return 0;
1604   elfcpp::Rela<size, big_endian> rela(this->prelocs_ + this->pos_);
1605   return rela.get_r_addend();
1606 }
1607
1608 // Advance to the next reloc whose r_offset is greater than or equal
1609 // to OFFSET.  Return the number of relocs we skip.
1610
1611 template<int size, bool big_endian>
1612 int
1613 Track_relocs<size, big_endian>::advance(off_t offset)
1614 {
1615   int ret = 0;
1616   while (this->pos_ < this->len_)
1617     {
1618       // Rel and Rela start out the same, so we can always use Rel to
1619       // find the r_offset value.
1620       elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1621       if (static_cast<off_t>(rel.get_r_offset()) >= offset)
1622         break;
1623       ++ret;
1624       this->pos_ += this->reloc_size_;
1625     }
1626   return ret;
1627 }
1628
1629 // Instantiate the templates we need.
1630
1631 #ifdef HAVE_TARGET_32_LITTLE
1632 template
1633 void
1634 Sized_relobj<32, false>::do_read_relocs(Read_relocs_data* rd);
1635 #endif
1636
1637 #ifdef HAVE_TARGET_32_BIG
1638 template
1639 void
1640 Sized_relobj<32, true>::do_read_relocs(Read_relocs_data* rd);
1641 #endif
1642
1643 #ifdef HAVE_TARGET_64_LITTLE
1644 template
1645 void
1646 Sized_relobj<64, false>::do_read_relocs(Read_relocs_data* rd);
1647 #endif
1648
1649 #ifdef HAVE_TARGET_64_BIG
1650 template
1651 void
1652 Sized_relobj<64, true>::do_read_relocs(Read_relocs_data* rd);
1653 #endif
1654
1655 #ifdef HAVE_TARGET_32_LITTLE
1656 template
1657 void
1658 Sized_relobj<32, false>::do_gc_process_relocs(Symbol_table* symtab,
1659                                               Layout* layout,
1660                                               Read_relocs_data* rd);
1661 #endif
1662
1663 #ifdef HAVE_TARGET_32_BIG
1664 template
1665 void
1666 Sized_relobj<32, true>::do_gc_process_relocs(Symbol_table* symtab,
1667                                              Layout* layout,
1668                                              Read_relocs_data* rd);
1669 #endif
1670
1671 #ifdef HAVE_TARGET_64_LITTLE
1672 template
1673 void
1674 Sized_relobj<64, false>::do_gc_process_relocs(Symbol_table* symtab,
1675                                               Layout* layout,
1676                                               Read_relocs_data* rd);
1677 #endif
1678
1679 #ifdef HAVE_TARGET_64_BIG
1680 template
1681 void
1682 Sized_relobj<64, true>::do_gc_process_relocs(Symbol_table* symtab,
1683                                              Layout* layout,
1684                                              Read_relocs_data* rd);
1685 #endif
1686
1687 #ifdef HAVE_TARGET_32_LITTLE
1688 template
1689 void
1690 Sized_relobj<32, false>::do_scan_relocs(Symbol_table* symtab,
1691                                         Layout* layout,
1692                                         Read_relocs_data* rd);
1693 #endif
1694
1695 #ifdef HAVE_TARGET_32_BIG
1696 template
1697 void
1698 Sized_relobj<32, true>::do_scan_relocs(Symbol_table* symtab,
1699                                        Layout* layout,
1700                                        Read_relocs_data* rd);
1701 #endif
1702
1703 #ifdef HAVE_TARGET_64_LITTLE
1704 template
1705 void
1706 Sized_relobj<64, false>::do_scan_relocs(Symbol_table* symtab,
1707                                         Layout* layout,
1708                                         Read_relocs_data* rd);
1709 #endif
1710
1711 #ifdef HAVE_TARGET_64_BIG
1712 template
1713 void
1714 Sized_relobj<64, true>::do_scan_relocs(Symbol_table* symtab,
1715                                        Layout* layout,
1716                                        Read_relocs_data* rd);
1717 #endif
1718
1719 #ifdef HAVE_TARGET_32_LITTLE
1720 template
1721 void
1722 Sized_relobj<32, false>::do_relocate(const Symbol_table* symtab,
1723                                      const Layout* layout,
1724                                      Output_file* of);
1725 #endif
1726
1727 #ifdef HAVE_TARGET_32_BIG
1728 template
1729 void
1730 Sized_relobj<32, true>::do_relocate(const Symbol_table* symtab,
1731                                     const Layout* layout,
1732                                     Output_file* of);
1733 #endif
1734
1735 #ifdef HAVE_TARGET_64_LITTLE
1736 template
1737 void
1738 Sized_relobj<64, false>::do_relocate(const Symbol_table* symtab,
1739                                      const Layout* layout,
1740                                      Output_file* of);
1741 #endif
1742
1743 #ifdef HAVE_TARGET_64_BIG
1744 template
1745 void
1746 Sized_relobj<64, true>::do_relocate(const Symbol_table* symtab,
1747                                     const Layout* layout,
1748                                     Output_file* of);
1749 #endif
1750
1751 #ifdef HAVE_TARGET_32_LITTLE
1752 template
1753 void
1754 Sized_relobj<32, false>::do_relocate_sections(
1755     const Symbol_table* symtab,
1756     const Layout* layout,
1757     const unsigned char* pshdrs,
1758     Output_file* of,
1759     Views* pviews);
1760 #endif
1761
1762 #ifdef HAVE_TARGET_32_BIG
1763 template
1764 void
1765 Sized_relobj<32, true>::do_relocate_sections(
1766     const Symbol_table* symtab,
1767     const Layout* layout,
1768     const unsigned char* pshdrs,
1769     Output_file* of,
1770     Views* pviews);
1771 #endif
1772
1773 #ifdef HAVE_TARGET_64_LITTLE
1774 template
1775 void
1776 Sized_relobj<64, false>::do_relocate_sections(
1777     const Symbol_table* symtab,
1778     const Layout* layout,
1779     const unsigned char* pshdrs,
1780     Output_file* of,
1781     Views* pviews);
1782 #endif
1783
1784 #ifdef HAVE_TARGET_64_BIG
1785 template
1786 void
1787 Sized_relobj<64, true>::do_relocate_sections(
1788     const Symbol_table* symtab,
1789     const Layout* layout,
1790     const unsigned char* pshdrs,
1791     Output_file* of,
1792     Views* pviews);
1793 #endif
1794
1795 #ifdef HAVE_TARGET_32_LITTLE
1796 template
1797 void
1798 Sized_relobj<32, false>::initialize_input_to_output_maps();
1799
1800 template
1801 void
1802 Sized_relobj<32, false>::free_input_to_output_maps();
1803 #endif
1804
1805 #ifdef HAVE_TARGET_32_BIG
1806 template
1807 void
1808 Sized_relobj<32, true>::initialize_input_to_output_maps();
1809
1810 template
1811 void
1812 Sized_relobj<32, true>::free_input_to_output_maps();
1813 #endif
1814
1815 #ifdef HAVE_TARGET_64_LITTLE
1816 template
1817 void
1818 Sized_relobj<64, false>::initialize_input_to_output_maps();
1819
1820 template
1821 void
1822 Sized_relobj<64, false>::free_input_to_output_maps();
1823 #endif
1824
1825 #ifdef HAVE_TARGET_64_BIG
1826 template
1827 void
1828 Sized_relobj<64, true>::initialize_input_to_output_maps();
1829
1830 template
1831 void
1832 Sized_relobj<64, true>::free_input_to_output_maps();
1833 #endif
1834
1835 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1836 template
1837 class Merged_symbol_value<32>;
1838 #endif
1839
1840 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1841 template
1842 class Merged_symbol_value<64>;
1843 #endif
1844
1845 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1846 template
1847 class Symbol_value<32>;
1848 #endif
1849
1850 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1851 template
1852 class Symbol_value<64>;
1853 #endif
1854
1855 #ifdef HAVE_TARGET_32_LITTLE
1856 template
1857 class Track_relocs<32, false>;
1858 #endif
1859
1860 #ifdef HAVE_TARGET_32_BIG
1861 template
1862 class Track_relocs<32, true>;
1863 #endif
1864
1865 #ifdef HAVE_TARGET_64_LITTLE
1866 template
1867 class Track_relocs<64, false>;
1868 #endif
1869
1870 #ifdef HAVE_TARGET_64_BIG
1871 template
1872 class Track_relocs<64, true>;
1873 #endif
1874
1875 } // End namespace gold.