powerpc gold, work around pr17670
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* relobj,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         {
962           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963             <Powerpc_relobj<size, big_endian>*>(relobj);
964           if (ppcobj->abiversion() == 1)
965             return false;
966         }
967       // For 32-bit and ELFv2, conservatively assume anything but calls to
968       // function code might be taking the address of the function.
969       return !is_branch_reloc(r_type);
970     }
971
972     inline bool
973     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974                                          Target_powerpc* ,
975                                          Sized_relobj_file<size, big_endian>* relobj,
976                                          unsigned int ,
977                                          Output_section* ,
978                                          const elfcpp::Rela<size, big_endian>& ,
979                                          unsigned int r_type,
980                                          Symbol*)
981     {
982       // As above.
983       if (size == 64)
984         {
985           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986             <Powerpc_relobj<size, big_endian>*>(relobj);
987           if (ppcobj->abiversion() == 1)
988             return false;
989         }
990       return !is_branch_reloc(r_type);
991     }
992
993     static bool
994     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995                               Sized_relobj_file<size, big_endian>* object,
996                               unsigned int r_type, bool report_err);
997
998   private:
999     static void
1000     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001                             unsigned int r_type);
1002
1003     static void
1004     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005                              unsigned int r_type, Symbol*);
1006
1007     static void
1008     generate_tls_call(Symbol_table* symtab, Layout* layout,
1009                       Target_powerpc* target);
1010
1011     void
1012     check_non_pic(Relobj*, unsigned int r_type);
1013
1014     // Whether we have issued an error about a non-PIC compilation.
1015     bool issued_non_pic_error_;
1016   };
1017
1018   bool
1019   symval_for_branch(const Symbol_table* symtab,
1020                     const Sized_symbol<size>* gsym,
1021                     Powerpc_relobj<size, big_endian>* object,
1022                     Address *value, unsigned int *dest_shndx);
1023
1024   // The class which implements relocation.
1025   class Relocate : protected Track_tls
1026   {
1027    public:
1028     // Use 'at' branch hints when true, 'y' when false.
1029     // FIXME maybe: set this with an option.
1030     static const bool is_isa_v2 = true;
1031
1032     Relocate()
1033       : Track_tls()
1034     { }
1035
1036     // Do a relocation.  Return false if the caller should not issue
1037     // any warnings about this relocation.
1038     inline bool
1039     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040              Output_section*, size_t relnum,
1041              const elfcpp::Rela<size, big_endian>&,
1042              unsigned int r_type, const Sized_symbol<size>*,
1043              const Symbol_value<size>*,
1044              unsigned char*,
1045              typename elfcpp::Elf_types<size>::Elf_Addr,
1046              section_size_type);
1047   };
1048
1049   class Relocate_comdat_behavior
1050   {
1051    public:
1052     // Decide what the linker should do for relocations that refer to
1053     // discarded comdat sections.
1054     inline Comdat_behavior
1055     get(const char* name)
1056     {
1057       gold::Default_comdat_behavior default_behavior;
1058       Comdat_behavior ret = default_behavior.get(name);
1059       if (ret == CB_WARNING)
1060         {
1061           if (size == 32
1062               && (strcmp(name, ".fixup") == 0
1063                   || strcmp(name, ".got2") == 0))
1064             ret = CB_IGNORE;
1065           if (size == 64
1066               && (strcmp(name, ".opd") == 0
1067                   || strcmp(name, ".toc") == 0
1068                   || strcmp(name, ".toc1") == 0))
1069             ret = CB_IGNORE;
1070         }
1071       return ret;
1072     }
1073   };
1074
1075   // A class which returns the size required for a relocation type,
1076   // used while scanning relocs during a relocatable link.
1077   class Relocatable_size_for_reloc
1078   {
1079    public:
1080     unsigned int
1081     get_size_for_reloc(unsigned int, Relobj*)
1082     {
1083       gold_unreachable();
1084       return 0;
1085     }
1086   };
1087
1088   // Optimize the TLS relocation type based on what we know about the
1089   // symbol.  IS_FINAL is true if the final address of this symbol is
1090   // known at link time.
1091
1092   tls::Tls_optimization
1093   optimize_tls_gd(bool is_final)
1094   {
1095     // If we are generating a shared library, then we can't do anything
1096     // in the linker.
1097     if (parameters->options().shared())
1098       return tls::TLSOPT_NONE;
1099
1100     if (!is_final)
1101       return tls::TLSOPT_TO_IE;
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   tls::Tls_optimization
1106   optimize_tls_ld()
1107   {
1108     if (parameters->options().shared())
1109       return tls::TLSOPT_NONE;
1110
1111     return tls::TLSOPT_TO_LE;
1112   }
1113
1114   tls::Tls_optimization
1115   optimize_tls_ie(bool is_final)
1116   {
1117     if (!is_final || parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     return tls::TLSOPT_TO_LE;
1121   }
1122
1123   // Create glink.
1124   void
1125   make_glink_section(Layout*);
1126
1127   // Create the PLT section.
1128   void
1129   make_plt_section(Symbol_table*, Layout*);
1130
1131   void
1132   make_iplt_section(Symbol_table*, Layout*);
1133
1134   void
1135   make_brlt_section(Layout*);
1136
1137   // Create a PLT entry for a global symbol.
1138   void
1139   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141   // Create a PLT entry for a local IFUNC symbol.
1142   void
1143   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144                              Sized_relobj_file<size, big_endian>*,
1145                              unsigned int);
1146
1147
1148   // Create a GOT entry for local dynamic __tls_get_addr.
1149   unsigned int
1150   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151                    Sized_relobj_file<size, big_endian>* object);
1152
1153   unsigned int
1154   tlsld_got_offset() const
1155   {
1156     return this->tlsld_got_offset_;
1157   }
1158
1159   // Get the dynamic reloc section, creating it if necessary.
1160   Reloc_section*
1161   rela_dyn_section(Layout*);
1162
1163   // Similarly, but for ifunc symbols get the one for ifunc.
1164   Reloc_section*
1165   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167   // Copy a relocation against a global symbol.
1168   void
1169   copy_reloc(Symbol_table* symtab, Layout* layout,
1170              Sized_relobj_file<size, big_endian>* object,
1171              unsigned int shndx, Output_section* output_section,
1172              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173   {
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   reloc, this->rela_dyn_section(layout));
1178   }
1179
1180   // Look over all the input sections, deciding where to place stubs.
1181   void
1182   group_sections(Layout*, const Task*);
1183
1184   // Sort output sections by address.
1185   struct Sort_sections
1186   {
1187     bool
1188     operator()(const Output_section* sec1, const Output_section* sec2)
1189     { return sec1->address() < sec2->address(); }
1190   };
1191
1192   class Branch_info
1193   {
1194    public:
1195     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196                 unsigned int data_shndx,
1197                 Address r_offset,
1198                 unsigned int r_type,
1199                 unsigned int r_sym,
1200                 Address addend)
1201       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203     { }
1204
1205     ~Branch_info()
1206     { }
1207
1208     // If this branch needs a plt call stub, or a long branch stub, make one.
1209     void
1210     make_stub(Stub_table<size, big_endian>*,
1211               Stub_table<size, big_endian>*,
1212               Symbol_table*) const;
1213
1214    private:
1215     // The branch location..
1216     Powerpc_relobj<size, big_endian>* object_;
1217     unsigned int shndx_;
1218     Address offset_;
1219     // ..and the branch type and destination.
1220     unsigned int r_type_;
1221     unsigned int r_sym_;
1222     Address addend_;
1223   };
1224
1225   // Information about this specific target which we pass to the
1226   // general Target structure.
1227   static Target::Target_info powerpc_info;
1228
1229   // The types of GOT entries needed for this platform.
1230   // These values are exposed to the ABI in an incremental link.
1231   // Do not renumber existing values without changing the version
1232   // number of the .gnu_incremental_inputs section.
1233   enum Got_type
1234   {
1235     GOT_TYPE_STANDARD,
1236     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1237     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1238     GOT_TYPE_TPREL      // entry for @got@tprel
1239   };
1240
1241   // The GOT section.
1242   Output_data_got_powerpc<size, big_endian>* got_;
1243   // The PLT section.  This is a container for a table of addresses,
1244   // and their relocations.  Each address in the PLT has a dynamic
1245   // relocation (R_*_JMP_SLOT) and each address will have a
1246   // corresponding entry in .glink for lazy resolution of the PLT.
1247   // ppc32 initialises the PLT to point at the .glink entry, while
1248   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1249   // linker adds a stub that loads the PLT entry into ctr then
1250   // branches to ctr.  There may be more than one stub for each PLT
1251   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1252   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253   Output_data_plt_powerpc<size, big_endian>* plt_;
1254   // The IPLT section.  Like plt_, this is a container for a table of
1255   // addresses and their relocations, specifically for STT_GNU_IFUNC
1256   // functions that resolve locally (STT_GNU_IFUNC functions that
1257   // don't resolve locally go in PLT).  Unlike plt_, these have no
1258   // entry in .glink for lazy resolution, and the relocation section
1259   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1260   // the relocation section may contain relocations against
1261   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1262   // relocation section will appear at the end of other dynamic
1263   // relocations, so that ld.so applies these relocations after other
1264   // dynamic relocations.  In a static executable, the relocation
1265   // section is emitted and marked with __rela_iplt_start and
1266   // __rela_iplt_end symbols.
1267   Output_data_plt_powerpc<size, big_endian>* iplt_;
1268   // Section holding long branch destinations.
1269   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270   // The .glink section.
1271   Output_data_glink<size, big_endian>* glink_;
1272   // The dynamic reloc section.
1273   Reloc_section* rela_dyn_;
1274   // Relocs saved to avoid a COPY reloc.
1275   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277   unsigned int tlsld_got_offset_;
1278
1279   Stub_tables stub_tables_;
1280   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281   Branch_lookup_table branch_lookup_table_;
1282
1283   typedef std::vector<Branch_info> Branches;
1284   Branches branch_info_;
1285
1286   bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292   32,                   // size
1293   true,                 // is_big_endian
1294   elfcpp::EM_PPC,       // machine_code
1295   false,                // has_make_symbol
1296   false,                // has_resolve
1297   false,                // has_code_fill
1298   true,                 // is_default_stack_executable
1299   false,                // can_icf_inline_merge_sections
1300   '\0',                 // wrap_char
1301   "/usr/lib/ld.so.1",   // dynamic_linker
1302   0x10000000,           // default_text_segment_address
1303   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1304   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1305   false,                // isolate_execinstr
1306   0,                    // rosegment_gap
1307   elfcpp::SHN_UNDEF,    // small_common_shndx
1308   elfcpp::SHN_UNDEF,    // large_common_shndx
1309   0,                    // small_common_section_flags
1310   0,                    // large_common_section_flags
1311   NULL,                 // attributes_section
1312   NULL,                 // attributes_vendor
1313   "_start"              // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319   32,                   // size
1320   false,                // is_big_endian
1321   elfcpp::EM_PPC,       // machine_code
1322   false,                // has_make_symbol
1323   false,                // has_resolve
1324   false,                // has_code_fill
1325   true,                 // is_default_stack_executable
1326   false,                // can_icf_inline_merge_sections
1327   '\0',                 // wrap_char
1328   "/usr/lib/ld.so.1",   // dynamic_linker
1329   0x10000000,           // default_text_segment_address
1330   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1331   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1332   false,                // isolate_execinstr
1333   0,                    // rosegment_gap
1334   elfcpp::SHN_UNDEF,    // small_common_shndx
1335   elfcpp::SHN_UNDEF,    // large_common_shndx
1336   0,                    // small_common_section_flags
1337   0,                    // large_common_section_flags
1338   NULL,                 // attributes_section
1339   NULL,                 // attributes_vendor
1340   "_start"              // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346   64,                   // size
1347   true,                 // is_big_endian
1348   elfcpp::EM_PPC64,     // machine_code
1349   false,                // has_make_symbol
1350   false,                // has_resolve
1351   false,                // has_code_fill
1352   true,                 // is_default_stack_executable
1353   false,                // can_icf_inline_merge_sections
1354   '\0',                 // wrap_char
1355   "/usr/lib/ld.so.1",   // dynamic_linker
1356   0x10000000,           // default_text_segment_address
1357   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1358   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1359   false,                // isolate_execinstr
1360   0,                    // rosegment_gap
1361   elfcpp::SHN_UNDEF,    // small_common_shndx
1362   elfcpp::SHN_UNDEF,    // large_common_shndx
1363   0,                    // small_common_section_flags
1364   0,                    // large_common_section_flags
1365   NULL,                 // attributes_section
1366   NULL,                 // attributes_vendor
1367   "_start"              // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373   64,                   // size
1374   false,                // is_big_endian
1375   elfcpp::EM_PPC64,     // machine_code
1376   false,                // has_make_symbol
1377   false,                // has_resolve
1378   false,                // has_code_fill
1379   true,                 // is_default_stack_executable
1380   false,                // can_icf_inline_merge_sections
1381   '\0',                 // wrap_char
1382   "/usr/lib/ld.so.1",   // dynamic_linker
1383   0x10000000,           // default_text_segment_address
1384   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1385   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1386   false,                // isolate_execinstr
1387   0,                    // rosegment_gap
1388   elfcpp::SHN_UNDEF,    // small_common_shndx
1389   elfcpp::SHN_UNDEF,    // large_common_shndx
1390   0,                    // small_common_section_flags
1391   0,                    // large_common_section_flags
1392   NULL,                 // attributes_section
1393   NULL,                 // attributes_vendor
1394   "_start"              // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400   return (r_type == elfcpp::R_POWERPC_REL24
1401           || r_type == elfcpp::R_PPC_PLTREL24
1402           || r_type == elfcpp::R_PPC_LOCAL24PC
1403           || r_type == elfcpp::R_POWERPC_REL14
1404           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406           || r_type == elfcpp::R_POWERPC_ADDR24
1407           || r_type == elfcpp::R_POWERPC_ADDR14
1408           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0.  If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418   if ((insn & (0x3f << 26)) != 31 << 26)
1419     return 0;
1420
1421   unsigned int rtra;
1422   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423     rtra = insn & ((1 << 26) - (1 << 16));
1424   else if (((insn >> 16) & 0x1f) == reg)
1425     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426   else
1427     return 0;
1428
1429   if ((insn & (0x3ff << 1)) == 266 << 1)
1430     // add -> addi
1431     insn = 14 << 26;
1432   else if ((insn & (0x1f << 1)) == 23 << 1
1433            && ((insn & (0x1f << 6)) < 14 << 6
1434                || ((insn & (0x1f << 6)) >= 16 << 6
1435                    && (insn & (0x1f << 6)) < 24 << 6)))
1436     // load and store indexed -> dform
1437     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442     // lwax -> lwa
1443     insn = (58 << 26) | 2;
1444   else
1445     return 0;
1446   insn |= rtra;
1447   return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455   enum Overflow_check
1456   {
1457     CHECK_NONE,
1458     CHECK_SIGNED,
1459     CHECK_UNSIGNED,
1460     CHECK_BITFIELD,
1461     CHECK_LOW_INSN,
1462     CHECK_HIGH_INSN
1463   };
1464
1465   enum Status
1466   {
1467     STATUS_OK,
1468     STATUS_OVERFLOW
1469   };
1470
1471 private:
1472   typedef Powerpc_relocate_functions<size, big_endian> This;
1473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475   template<int valsize>
1476   static inline bool
1477   has_overflow_signed(Address value)
1478   {
1479     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value + limit > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_unsigned(Address value)
1489   {
1490     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493     return value > (limit << 1) - 1;
1494   }
1495
1496   template<int valsize>
1497   static inline bool
1498   has_overflow_bitfield(Address value)
1499   {
1500     return (has_overflow_unsigned<valsize>(value)
1501             && has_overflow_signed<valsize>(value));
1502   }
1503
1504   template<int valsize>
1505   static inline Status
1506   overflowed(Address value, Overflow_check overflow)
1507   {
1508     if (overflow == CHECK_SIGNED)
1509       {
1510         if (has_overflow_signed<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     else if (overflow == CHECK_UNSIGNED)
1514       {
1515         if (has_overflow_unsigned<valsize>(value))
1516           return STATUS_OVERFLOW;
1517       }
1518     else if (overflow == CHECK_BITFIELD)
1519       {
1520         if (has_overflow_bitfield<valsize>(value))
1521           return STATUS_OVERFLOW;
1522       }
1523     return STATUS_OK;
1524   }
1525
1526   // Do a simple RELA relocation
1527   template<int fieldsize, int valsize>
1528   static inline Status
1529   rela(unsigned char* view, Address value, Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1534     return overflowed<valsize>(value, overflow);
1535   }
1536
1537   template<int fieldsize, int valsize>
1538   static inline Status
1539   rela(unsigned char* view,
1540        unsigned int right_shift,
1541        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1542        Address value,
1543        Overflow_check overflow)
1544   {
1545     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1546     Valtype* wv = reinterpret_cast<Valtype*>(view);
1547     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1548     Valtype reloc = value >> right_shift;
1549     val &= ~dst_mask;
1550     reloc &= dst_mask;
1551     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1552     return overflowed<valsize>(value >> right_shift, overflow);
1553   }
1554
1555   // Do a simple RELA relocation, unaligned.
1556   template<int fieldsize, int valsize>
1557   static inline Status
1558   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559   {
1560     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1561     return overflowed<valsize>(value, overflow);
1562   }
1563
1564   template<int fieldsize, int valsize>
1565   static inline Status
1566   rela_ua(unsigned char* view,
1567           unsigned int right_shift,
1568           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1569           Address value,
1570           Overflow_check overflow)
1571   {
1572     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1573       Valtype;
1574     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1575     Valtype reloc = value >> right_shift;
1576     val &= ~dst_mask;
1577     reloc &= dst_mask;
1578     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1579     return overflowed<valsize>(value >> right_shift, overflow);
1580   }
1581
1582 public:
1583   // R_PPC64_ADDR64: (Symbol + Addend)
1584   static inline void
1585   addr64(unsigned char* view, Address value)
1586   { This::template rela<64,64>(view, value, CHECK_NONE); }
1587
1588   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589   static inline void
1590   addr64_u(unsigned char* view, Address value)
1591   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1592
1593   // R_POWERPC_ADDR32: (Symbol + Addend)
1594   static inline Status
1595   addr32(unsigned char* view, Address value, Overflow_check overflow)
1596   { return This::template rela<32,32>(view, value, overflow); }
1597
1598   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599   static inline Status
1600   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601   { return This::template rela_ua<32,32>(view, value, overflow); }
1602
1603   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604   static inline Status
1605   addr24(unsigned char* view, Address value, Overflow_check overflow)
1606   {
1607     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1608                                              value, overflow);
1609     if (overflow != CHECK_NONE && (value & 3) != 0)
1610       stat = STATUS_OVERFLOW;
1611     return stat;
1612   }
1613
1614   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1615   static inline Status
1616   addr16(unsigned char* view, Address value, Overflow_check overflow)
1617   { return This::template rela<16,16>(view, value, overflow); }
1618
1619   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1620   static inline Status
1621   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1622   { return This::template rela_ua<16,16>(view, value, overflow); }
1623
1624   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1625   static inline Status
1626   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1627   {
1628     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1629     if (overflow != CHECK_NONE && (value & 3) != 0)
1630       stat = STATUS_OVERFLOW;
1631     return stat;
1632   }
1633
1634   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1635   static inline void
1636   addr16_hi(unsigned char* view, Address value)
1637   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1638
1639   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1640   static inline void
1641   addr16_ha(unsigned char* view, Address value)
1642   { This::addr16_hi(view, value + 0x8000); }
1643
1644   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1645   static inline void
1646   addr16_hi2(unsigned char* view, Address value)
1647   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1648
1649   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1650   static inline void
1651   addr16_ha2(unsigned char* view, Address value)
1652   { This::addr16_hi2(view, value + 0x8000); }
1653
1654   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1655   static inline void
1656   addr16_hi3(unsigned char* view, Address value)
1657   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1658
1659   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1660   static inline void
1661   addr16_ha3(unsigned char* view, Address value)
1662   { This::addr16_hi3(view, value + 0x8000); }
1663
1664   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1665   static inline Status
1666   addr14(unsigned char* view, Address value, Overflow_check overflow)
1667   {
1668     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1669     if (overflow != CHECK_NONE && (value & 3) != 0)
1670       stat = STATUS_OVERFLOW;
1671     return stat;
1672   }
1673 };
1674
1675 // Set ABI version for input and output.
1676
1677 template<int size, bool big_endian>
1678 void
1679 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1680 {
1681   this->e_flags_ |= ver;
1682   if (this->abiversion() != 0)
1683     {
1684       Target_powerpc<size, big_endian>* target =
1685         static_cast<Target_powerpc<size, big_endian>*>(
1686            parameters->sized_target<size, big_endian>());
1687       if (target->abiversion() == 0)
1688         target->set_abiversion(this->abiversion());
1689       else if (target->abiversion() != this->abiversion())
1690         gold_error(_("%s: ABI version %d is not compatible "
1691                      "with ABI version %d output"),
1692                    this->name().c_str(),
1693                    this->abiversion(), target->abiversion());
1694
1695     }
1696 }
1697
1698 // Stash away the index of .got2 or .opd in a relocatable object, if
1699 // such a section exists.
1700
1701 template<int size, bool big_endian>
1702 bool
1703 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1704     Read_symbols_data* sd)
1705 {
1706   const unsigned char* const pshdrs = sd->section_headers->data();
1707   const unsigned char* namesu = sd->section_names->data();
1708   const char* names = reinterpret_cast<const char*>(namesu);
1709   section_size_type names_size = sd->section_names_size;
1710   const unsigned char* s;
1711
1712   s = this->template find_shdr<size, big_endian>(pshdrs,
1713                                                  size == 32 ? ".got2" : ".opd",
1714                                                  names, names_size, NULL);
1715   if (s != NULL)
1716     {
1717       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1718       this->special_ = ndx;
1719       if (size == 64)
1720         {
1721           if (this->abiversion() == 0)
1722             this->set_abiversion(1);
1723           else if (this->abiversion() > 1)
1724             gold_error(_("%s: .opd invalid in abiv%d"),
1725                        this->name().c_str(), this->abiversion());
1726         }
1727     }
1728   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1729 }
1730
1731 // Examine .rela.opd to build info about function entry points.
1732
1733 template<int size, bool big_endian>
1734 void
1735 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1736     size_t reloc_count,
1737     const unsigned char* prelocs,
1738     const unsigned char* plocal_syms)
1739 {
1740   if (size == 64)
1741     {
1742       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1743         Reltype;
1744       const int reloc_size
1745         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1746       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1747       Address expected_off = 0;
1748       bool regular = true;
1749       unsigned int opd_ent_size = 0;
1750
1751       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1752         {
1753           Reltype reloc(prelocs);
1754           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1755             = reloc.get_r_info();
1756           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1757           if (r_type == elfcpp::R_PPC64_ADDR64)
1758             {
1759               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1760               typename elfcpp::Elf_types<size>::Elf_Addr value;
1761               bool is_ordinary;
1762               unsigned int shndx;
1763               if (r_sym < this->local_symbol_count())
1764                 {
1765                   typename elfcpp::Sym<size, big_endian>
1766                     lsym(plocal_syms + r_sym * sym_size);
1767                   shndx = lsym.get_st_shndx();
1768                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1769                   value = lsym.get_st_value();
1770                 }
1771               else
1772                 shndx = this->symbol_section_and_value(r_sym, &value,
1773                                                        &is_ordinary);
1774               this->set_opd_ent(reloc.get_r_offset(), shndx,
1775                                 value + reloc.get_r_addend());
1776               if (i == 2)
1777                 {
1778                   expected_off = reloc.get_r_offset();
1779                   opd_ent_size = expected_off;
1780                 }
1781               else if (expected_off != reloc.get_r_offset())
1782                 regular = false;
1783               expected_off += opd_ent_size;
1784             }
1785           else if (r_type == elfcpp::R_PPC64_TOC)
1786             {
1787               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1788                 regular = false;
1789             }
1790           else
1791             {
1792               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1793                            this->name().c_str(), r_type);
1794               regular = false;
1795             }
1796         }
1797       if (reloc_count <= 2)
1798         opd_ent_size = this->section_size(this->opd_shndx());
1799       if (opd_ent_size != 24 && opd_ent_size != 16)
1800         regular = false;
1801       if (!regular)
1802         {
1803           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1804                        this->name().c_str());
1805           opd_ent_size = 0;
1806         }
1807     }
1808 }
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1813 {
1814   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1815   if (size == 64)
1816     {
1817       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1818            p != rd->relocs.end();
1819            ++p)
1820         {
1821           if (p->data_shndx == this->opd_shndx())
1822             {
1823               uint64_t opd_size = this->section_size(this->opd_shndx());
1824               gold_assert(opd_size == static_cast<size_t>(opd_size));
1825               if (opd_size != 0)
1826                 {
1827                   this->init_opd(opd_size);
1828                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1829                                         rd->local_symbols->data());
1830                 }
1831               break;
1832             }
1833         }
1834     }
1835 }
1836
1837 // Read the symbols then set up st_other vector.
1838
1839 template<int size, bool big_endian>
1840 void
1841 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1842 {
1843   this->base_read_symbols(sd);
1844   if (size == 64)
1845     {
1846       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1847       const unsigned char* const pshdrs = sd->section_headers->data();
1848       const unsigned int loccount = this->do_local_symbol_count();
1849       if (loccount != 0)
1850         {
1851           this->st_other_.resize(loccount);
1852           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1853           off_t locsize = loccount * sym_size;
1854           const unsigned int symtab_shndx = this->symtab_shndx();
1855           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1856           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1857           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1858                                                       locsize, true, false);
1859           psyms += sym_size;
1860           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1861             {
1862               elfcpp::Sym<size, big_endian> sym(psyms);
1863               unsigned char st_other = sym.get_st_other();
1864               this->st_other_[i] = st_other;
1865               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1866                 {
1867                   if (this->abiversion() == 0)
1868                     this->set_abiversion(2);
1869                   else if (this->abiversion() < 2)
1870                     gold_error(_("%s: local symbol %d has invalid st_other"
1871                                  " for ABI version 1"),
1872                                this->name().c_str(), i);
1873                 }
1874             }
1875         }
1876     }
1877 }
1878
1879 template<int size, bool big_endian>
1880 void
1881 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1882 {
1883   this->e_flags_ |= ver;
1884   if (this->abiversion() != 0)
1885     {
1886       Target_powerpc<size, big_endian>* target =
1887         static_cast<Target_powerpc<size, big_endian>*>(
1888           parameters->sized_target<size, big_endian>());
1889       if (target->abiversion() == 0)
1890         target->set_abiversion(this->abiversion());
1891       else if (target->abiversion() != this->abiversion())
1892         gold_error(_("%s: ABI version %d is not compatible "
1893                      "with ABI version %d output"),
1894                    this->name().c_str(),
1895                    this->abiversion(), target->abiversion());
1896
1897     }
1898 }
1899
1900 // Call Sized_dynobj::base_read_symbols to read the symbols then
1901 // read .opd from a dynamic object, filling in opd_ent_ vector,
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1906 {
1907   this->base_read_symbols(sd);
1908   if (size == 64)
1909     {
1910       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1911       const unsigned char* const pshdrs = sd->section_headers->data();
1912       const unsigned char* namesu = sd->section_names->data();
1913       const char* names = reinterpret_cast<const char*>(namesu);
1914       const unsigned char* s = NULL;
1915       const unsigned char* opd;
1916       section_size_type opd_size;
1917
1918       // Find and read .opd section.
1919       while (1)
1920         {
1921           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1922                                                          sd->section_names_size,
1923                                                          s);
1924           if (s == NULL)
1925             return;
1926
1927           typename elfcpp::Shdr<size, big_endian> shdr(s);
1928           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1929               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1930             {
1931               if (this->abiversion() == 0)
1932                 this->set_abiversion(1);
1933               else if (this->abiversion() > 1)
1934                 gold_error(_("%s: .opd invalid in abiv%d"),
1935                            this->name().c_str(), this->abiversion());
1936
1937               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1938               this->opd_address_ = shdr.get_sh_addr();
1939               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1940               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1941                                    true, false);
1942               break;
1943             }
1944         }
1945
1946       // Build set of executable sections.
1947       // Using a set is probably overkill.  There is likely to be only
1948       // a few executable sections, typically .init, .text and .fini,
1949       // and they are generally grouped together.
1950       typedef std::set<Sec_info> Exec_sections;
1951       Exec_sections exec_sections;
1952       s = pshdrs;
1953       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1954         {
1955           typename elfcpp::Shdr<size, big_endian> shdr(s);
1956           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1957               && ((shdr.get_sh_flags()
1958                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1960               && shdr.get_sh_size() != 0)
1961             {
1962               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1963                                             shdr.get_sh_size(), i));
1964             }
1965         }
1966       if (exec_sections.empty())
1967         return;
1968
1969       // Look over the OPD entries.  This is complicated by the fact
1970       // that some binaries will use two-word entries while others
1971       // will use the standard three-word entries.  In most cases
1972       // the third word (the environment pointer for languages like
1973       // Pascal) is unused and will be zero.  If the third word is
1974       // used it should not be pointing into executable sections,
1975       // I think.
1976       this->init_opd(opd_size);
1977       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1978         {
1979           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1980           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1981           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1982           if (val == 0)
1983             // Chances are that this is the third word of an OPD entry.
1984             continue;
1985           typename Exec_sections::const_iterator e
1986             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1987           if (e != exec_sections.begin())
1988             {
1989               --e;
1990               if (e->start <= val && val < e->start + e->len)
1991                 {
1992                   // We have an address in an executable section.
1993                   // VAL ought to be the function entry, set it up.
1994                   this->set_opd_ent(p - opd, e->shndx, val);
1995                   // Skip second word of OPD entry, the TOC pointer.
1996                   p += 8;
1997                 }
1998             }
1999           // If we didn't match any executable sections, we likely
2000           // have a non-zero third word in the OPD entry.
2001         }
2002     }
2003 }
2004
2005 // Set up some symbols.
2006
2007 template<int size, bool big_endian>
2008 void
2009 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2010     Symbol_table* symtab,
2011     Layout* layout)
2012 {
2013   if (size == 32)
2014     {
2015       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2016       // undefined when scanning relocs (and thus requires
2017       // non-relative dynamic relocs).  The proper value will be
2018       // updated later.
2019       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2020       if (gotsym != NULL && gotsym->is_undefined())
2021         {
2022           Target_powerpc<size, big_endian>* target =
2023             static_cast<Target_powerpc<size, big_endian>*>(
2024                 parameters->sized_target<size, big_endian>());
2025           Output_data_got_powerpc<size, big_endian>* got
2026             = target->got_section(symtab, layout);
2027           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2028                                         Symbol_table::PREDEFINED,
2029                                         got, 0, 0,
2030                                         elfcpp::STT_OBJECT,
2031                                         elfcpp::STB_LOCAL,
2032                                         elfcpp::STV_HIDDEN, 0,
2033                                         false, false);
2034         }
2035
2036       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2037       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2038       if (sdasym != NULL && sdasym->is_undefined())
2039         {
2040           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2041           Output_section* os
2042             = layout->add_output_section_data(".sdata", 0,
2043                                               elfcpp::SHF_ALLOC
2044                                               | elfcpp::SHF_WRITE,
2045                                               sdata, ORDER_SMALL_DATA, false);
2046           symtab->define_in_output_data("_SDA_BASE_", NULL,
2047                                         Symbol_table::PREDEFINED,
2048                                         os, 32768, 0, elfcpp::STT_OBJECT,
2049                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2050                                         0, false, false);
2051         }
2052     }
2053   else
2054     {
2055       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2056       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2057       if (gotsym != NULL && gotsym->is_undefined())
2058         {
2059           Target_powerpc<size, big_endian>* target =
2060             static_cast<Target_powerpc<size, big_endian>*>(
2061                 parameters->sized_target<size, big_endian>());
2062           Output_data_got_powerpc<size, big_endian>* got
2063             = target->got_section(symtab, layout);
2064           symtab->define_in_output_data(".TOC.", NULL,
2065                                         Symbol_table::PREDEFINED,
2066                                         got, 0x8000, 0,
2067                                         elfcpp::STT_OBJECT,
2068                                         elfcpp::STB_LOCAL,
2069                                         elfcpp::STV_HIDDEN, 0,
2070                                         false, false);
2071         }
2072     }
2073 }
2074
2075 // Set up PowerPC target specific relobj.
2076
2077 template<int size, bool big_endian>
2078 Object*
2079 Target_powerpc<size, big_endian>::do_make_elf_object(
2080     const std::string& name,
2081     Input_file* input_file,
2082     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2083 {
2084   int et = ehdr.get_e_type();
2085   // ET_EXEC files are valid input for --just-symbols/-R,
2086   // and we treat them as relocatable objects.
2087   if (et == elfcpp::ET_REL
2088       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2089     {
2090       Powerpc_relobj<size, big_endian>* obj =
2091         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2092       obj->setup();
2093       return obj;
2094     }
2095   else if (et == elfcpp::ET_DYN)
2096     {
2097       Powerpc_dynobj<size, big_endian>* obj =
2098         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2099       obj->setup();
2100       return obj;
2101     }
2102   else
2103     {
2104       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2105       return NULL;
2106     }
2107 }
2108
2109 template<int size, bool big_endian>
2110 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2111 {
2112 public:
2113   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2114   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2115
2116   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2117     : Output_data_got<size, big_endian>(),
2118       symtab_(symtab), layout_(layout),
2119       header_ent_cnt_(size == 32 ? 3 : 1),
2120       header_index_(size == 32 ? 0x2000 : 0)
2121   { }
2122
2123   // Override all the Output_data_got methods we use so as to first call
2124   // reserve_ent().
2125   bool
2126   add_global(Symbol* gsym, unsigned int got_type)
2127   {
2128     this->reserve_ent();
2129     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2130   }
2131
2132   bool
2133   add_global_plt(Symbol* gsym, unsigned int got_type)
2134   {
2135     this->reserve_ent();
2136     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2137   }
2138
2139   bool
2140   add_global_tls(Symbol* gsym, unsigned int got_type)
2141   { return this->add_global_plt(gsym, got_type); }
2142
2143   void
2144   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2145                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2146   {
2147     this->reserve_ent();
2148     Output_data_got<size, big_endian>::
2149       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2150   }
2151
2152   void
2153   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2154                            Output_data_reloc_generic* rel_dyn,
2155                            unsigned int r_type_1, unsigned int r_type_2)
2156   {
2157     this->reserve_ent(2);
2158     Output_data_got<size, big_endian>::
2159       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2160   }
2161
2162   bool
2163   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2164   {
2165     this->reserve_ent();
2166     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2167                                                         got_type);
2168   }
2169
2170   bool
2171   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2172   {
2173     this->reserve_ent();
2174     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2175                                                             got_type);
2176   }
2177
2178   bool
2179   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2180   { return this->add_local_plt(object, sym_index, got_type); }
2181
2182   void
2183   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2184                      unsigned int got_type,
2185                      Output_data_reloc_generic* rel_dyn,
2186                      unsigned int r_type)
2187   {
2188     this->reserve_ent(2);
2189     Output_data_got<size, big_endian>::
2190       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2191   }
2192
2193   unsigned int
2194   add_constant(Valtype constant)
2195   {
2196     this->reserve_ent();
2197     return Output_data_got<size, big_endian>::add_constant(constant);
2198   }
2199
2200   unsigned int
2201   add_constant_pair(Valtype c1, Valtype c2)
2202   {
2203     this->reserve_ent(2);
2204     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2205   }
2206
2207   // Offset of _GLOBAL_OFFSET_TABLE_.
2208   unsigned int
2209   g_o_t() const
2210   {
2211     return this->got_offset(this->header_index_);
2212   }
2213
2214   // Offset of base used to access the GOT/TOC.
2215   // The got/toc pointer reg will be set to this value.
2216   Valtype
2217   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2218   {
2219     if (size == 32)
2220       return this->g_o_t();
2221     else
2222       return (this->output_section()->address()
2223               + object->toc_base_offset()
2224               - this->address());
2225   }
2226
2227   // Ensure our GOT has a header.
2228   void
2229   set_final_data_size()
2230   {
2231     if (this->header_ent_cnt_ != 0)
2232       this->make_header();
2233     Output_data_got<size, big_endian>::set_final_data_size();
2234   }
2235
2236   // First word of GOT header needs some values that are not
2237   // handled by Output_data_got so poke them in here.
2238   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2239   void
2240   do_write(Output_file* of)
2241   {
2242     Valtype val = 0;
2243     if (size == 32 && this->layout_->dynamic_data() != NULL)
2244       val = this->layout_->dynamic_section()->address();
2245     if (size == 64)
2246       val = this->output_section()->address() + 0x8000;
2247     this->replace_constant(this->header_index_, val);
2248     Output_data_got<size, big_endian>::do_write(of);
2249   }
2250
2251 private:
2252   void
2253   reserve_ent(unsigned int cnt = 1)
2254   {
2255     if (this->header_ent_cnt_ == 0)
2256       return;
2257     if (this->num_entries() + cnt > this->header_index_)
2258       this->make_header();
2259   }
2260
2261   void
2262   make_header()
2263   {
2264     this->header_ent_cnt_ = 0;
2265     this->header_index_ = this->num_entries();
2266     if (size == 32)
2267       {
2268         Output_data_got<size, big_endian>::add_constant(0);
2269         Output_data_got<size, big_endian>::add_constant(0);
2270         Output_data_got<size, big_endian>::add_constant(0);
2271
2272         // Define _GLOBAL_OFFSET_TABLE_ at the header
2273         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2274         if (gotsym != NULL)
2275           {
2276             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2277             sym->set_value(this->g_o_t());
2278           }
2279         else
2280           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2281                                                Symbol_table::PREDEFINED,
2282                                                this, this->g_o_t(), 0,
2283                                                elfcpp::STT_OBJECT,
2284                                                elfcpp::STB_LOCAL,
2285                                                elfcpp::STV_HIDDEN, 0,
2286                                                false, false);
2287       }
2288     else
2289       Output_data_got<size, big_endian>::add_constant(0);
2290   }
2291
2292   // Stashed pointers.
2293   Symbol_table* symtab_;
2294   Layout* layout_;
2295
2296   // GOT header size.
2297   unsigned int header_ent_cnt_;
2298   // GOT header index.
2299   unsigned int header_index_;
2300 };
2301
2302 // Get the GOT section, creating it if necessary.
2303
2304 template<int size, bool big_endian>
2305 Output_data_got_powerpc<size, big_endian>*
2306 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2307                                               Layout* layout)
2308 {
2309   if (this->got_ == NULL)
2310     {
2311       gold_assert(symtab != NULL && layout != NULL);
2312
2313       this->got_
2314         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2315
2316       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2317                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2318                                       this->got_, ORDER_DATA, false);
2319     }
2320
2321   return this->got_;
2322 }
2323
2324 // Get the dynamic reloc section, creating it if necessary.
2325
2326 template<int size, bool big_endian>
2327 typename Target_powerpc<size, big_endian>::Reloc_section*
2328 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2329 {
2330   if (this->rela_dyn_ == NULL)
2331     {
2332       gold_assert(layout != NULL);
2333       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2334       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2335                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2336                                       ORDER_DYNAMIC_RELOCS, false);
2337     }
2338   return this->rela_dyn_;
2339 }
2340
2341 // Similarly, but for ifunc symbols get the one for ifunc.
2342
2343 template<int size, bool big_endian>
2344 typename Target_powerpc<size, big_endian>::Reloc_section*
2345 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2346                                                    Layout* layout,
2347                                                    bool for_ifunc)
2348 {
2349   if (!for_ifunc)
2350     return this->rela_dyn_section(layout);
2351
2352   if (this->iplt_ == NULL)
2353     this->make_iplt_section(symtab, layout);
2354   return this->iplt_->rel_plt();
2355 }
2356
2357 class Stub_control
2358 {
2359  public:
2360   // Determine the stub group size.  The group size is the absolute
2361   // value of the parameter --stub-group-size.  If --stub-group-size
2362   // is passed a negative value, we restrict stubs to be always before
2363   // the stubbed branches.
2364   Stub_control(int32_t size)
2365     : state_(NO_GROUP), stub_group_size_(abs(size)),
2366       stub14_group_size_(abs(size) >> 10),
2367       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2368       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2369   {
2370     if (stub_group_size_ == 1)
2371       {
2372         // Default values.
2373         if (stubs_always_before_branch_)
2374           {
2375             stub_group_size_ = 0x1e00000;
2376             stub14_group_size_ = 0x7800;
2377           }
2378         else
2379           {
2380             stub_group_size_ = 0x1c00000;
2381             stub14_group_size_ = 0x7000;
2382           }
2383         suppress_size_errors_ = true;
2384       }
2385   }
2386
2387   // Return true iff input section can be handled by current stub
2388   // group.
2389   bool
2390   can_add_to_stub_group(Output_section* o,
2391                         const Output_section::Input_section* i,
2392                         bool has14);
2393
2394   const Output_section::Input_section*
2395   owner()
2396   { return owner_; }
2397
2398   Output_section*
2399   output_section()
2400   { return output_section_; }
2401
2402   void
2403   set_output_and_owner(Output_section* o,
2404                        const Output_section::Input_section* i)
2405   {
2406     this->output_section_ = o;
2407     this->owner_ = i;
2408   }
2409
2410  private:
2411   typedef enum
2412   {
2413     NO_GROUP,
2414     FINDING_STUB_SECTION,
2415     HAS_STUB_SECTION
2416   } State;
2417
2418   State state_;
2419   uint32_t stub_group_size_;
2420   uint32_t stub14_group_size_;
2421   bool stubs_always_before_branch_;
2422   bool suppress_size_errors_;
2423   uint64_t group_end_addr_;
2424   const Output_section::Input_section* owner_;
2425   Output_section* output_section_;
2426 };
2427
2428 // Return true iff input section can be handled by current stub
2429 // group.
2430
2431 bool
2432 Stub_control::can_add_to_stub_group(Output_section* o,
2433                                     const Output_section::Input_section* i,
2434                                     bool has14)
2435 {
2436   uint32_t group_size
2437     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2438   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2439   uint64_t this_size;
2440   uint64_t start_addr = o->address();
2441
2442   if (whole_sec)
2443     // .init and .fini sections are pasted together to form a single
2444     // function.  We can't be adding stubs in the middle of the function.
2445     this_size = o->data_size();
2446   else
2447     {
2448       start_addr += i->relobj()->output_section_offset(i->shndx());
2449       this_size = i->data_size();
2450     }
2451   uint64_t end_addr = start_addr + this_size;
2452   bool toobig = this_size > group_size;
2453
2454   if (toobig && !this->suppress_size_errors_)
2455     gold_warning(_("%s:%s exceeds group size"),
2456                  i->relobj()->name().c_str(),
2457                  i->relobj()->section_name(i->shndx()).c_str());
2458
2459   if (this->state_ != HAS_STUB_SECTION
2460       && (!whole_sec || this->output_section_ != o)
2461       && (this->state_ == NO_GROUP
2462           || this->group_end_addr_ - end_addr < group_size))
2463     {
2464       this->owner_ = i;
2465       this->output_section_ = o;
2466     }
2467
2468   if (this->state_ == NO_GROUP)
2469     {
2470       this->state_ = FINDING_STUB_SECTION;
2471       this->group_end_addr_ = end_addr;
2472     }
2473   else if (this->group_end_addr_ - start_addr < group_size)
2474     ;
2475   // Adding this section would make the group larger than GROUP_SIZE.
2476   else if (this->state_ == FINDING_STUB_SECTION
2477            && !this->stubs_always_before_branch_
2478            && !toobig)
2479     {
2480       // But wait, there's more!  Input sections up to GROUP_SIZE
2481       // bytes before the stub table can be handled by it too.
2482       this->state_ = HAS_STUB_SECTION;
2483       this->group_end_addr_ = end_addr;
2484     }
2485   else
2486     {
2487       this->state_ = NO_GROUP;
2488       return false;
2489     }
2490   return true;
2491 }
2492
2493 // Look over all the input sections, deciding where to place stubs.
2494
2495 template<int size, bool big_endian>
2496 void
2497 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2498                                                  const Task*)
2499 {
2500   Stub_control stub_control(parameters->options().stub_group_size());
2501
2502   // Group input sections and insert stub table
2503   Stub_table<size, big_endian>* stub_table = NULL;
2504   Layout::Section_list section_list;
2505   layout->get_executable_sections(&section_list);
2506   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2507   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2508        o != section_list.rend();
2509        ++o)
2510     {
2511       typedef Output_section::Input_section_list Input_section_list;
2512       for (Input_section_list::const_reverse_iterator i
2513              = (*o)->input_sections().rbegin();
2514            i != (*o)->input_sections().rend();
2515            ++i)
2516         {
2517           if (i->is_input_section())
2518             {
2519               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2520                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2521               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2522               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2523                 {
2524                   stub_table->init(stub_control.owner(),
2525                                    stub_control.output_section());
2526                   stub_control.set_output_and_owner(*o, &*i);
2527                   stub_table = NULL;
2528                 }
2529               if (stub_table == NULL)
2530                 stub_table = this->new_stub_table();
2531               ppcobj->set_stub_table(i->shndx(), stub_table);
2532             }
2533         }
2534     }
2535   if (stub_table != NULL)
2536     {
2537       const Output_section::Input_section* i = stub_control.owner();
2538       if (!i->is_input_section())
2539         {
2540           // Corner case.  A new stub group was made for the first
2541           // section (last one looked at here) for some reason, but
2542           // the first section is already being used as the owner for
2543           // a stub table for following sections.  Force it into that
2544           // stub group.
2545           gold_assert(this->stub_tables_.size() >= 2);
2546           this->stub_tables_.pop_back();
2547           delete stub_table;
2548           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2549             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2550           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2551         }
2552       else
2553         stub_table->init(i, stub_control.output_section());
2554     }
2555 }
2556
2557 // If this branch needs a plt call stub, or a long branch stub, make one.
2558
2559 template<int size, bool big_endian>
2560 void
2561 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2562     Stub_table<size, big_endian>* stub_table,
2563     Stub_table<size, big_endian>* ifunc_stub_table,
2564     Symbol_table* symtab) const
2565 {
2566   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2567   if (sym != NULL && sym->is_forwarder())
2568     sym = symtab->resolve_forwards(sym);
2569   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2570   Target_powerpc<size, big_endian>* target =
2571     static_cast<Target_powerpc<size, big_endian>*>(
2572       parameters->sized_target<size, big_endian>());
2573   if (gsym != NULL
2574       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2575       : this->object_->local_has_plt_offset(this->r_sym_))
2576     {
2577       if (size == 64
2578           && gsym != NULL
2579           && target->abiversion() >= 2
2580           && !parameters->options().output_is_position_independent()
2581           && !is_branch_reloc(this->r_type_))
2582         target->glink_section()->add_global_entry(gsym);
2583       else
2584         {
2585           if (stub_table == NULL)
2586             stub_table = this->object_->stub_table(this->shndx_);
2587           if (stub_table == NULL)
2588             {
2589               // This is a ref from a data section to an ifunc symbol.
2590               stub_table = ifunc_stub_table;
2591             }
2592           gold_assert(stub_table != NULL);
2593           if (gsym != NULL)
2594             stub_table->add_plt_call_entry(this->object_, gsym,
2595                                            this->r_type_, this->addend_);
2596           else
2597             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2598                                            this->r_type_, this->addend_);
2599         }
2600     }
2601   else
2602     {
2603       unsigned long max_branch_offset;
2604       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2605           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2606           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2607         max_branch_offset = 1 << 15;
2608       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2609                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2610                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2611         max_branch_offset = 1 << 25;
2612       else
2613         return;
2614       Address from = this->object_->get_output_section_offset(this->shndx_);
2615       gold_assert(from != invalid_address);
2616       from += (this->object_->output_section(this->shndx_)->address()
2617                + this->offset_);
2618       Address to;
2619       if (gsym != NULL)
2620         {
2621           switch (gsym->source())
2622             {
2623             case Symbol::FROM_OBJECT:
2624               {
2625                 Object* symobj = gsym->object();
2626                 if (symobj->is_dynamic()
2627                     || symobj->pluginobj() != NULL)
2628                   return;
2629                 bool is_ordinary;
2630                 unsigned int shndx = gsym->shndx(&is_ordinary);
2631                 if (shndx == elfcpp::SHN_UNDEF)
2632                   return;
2633               }
2634               break;
2635
2636             case Symbol::IS_UNDEFINED:
2637               return;
2638
2639             default:
2640               break;
2641             }
2642           Symbol_table::Compute_final_value_status status;
2643           to = symtab->compute_final_value<size>(gsym, &status);
2644           if (status != Symbol_table::CFVS_OK)
2645             return;
2646           if (size == 64)
2647             to += this->object_->ppc64_local_entry_offset(gsym);
2648         }
2649       else
2650         {
2651           const Symbol_value<size>* psymval
2652             = this->object_->local_symbol(this->r_sym_);
2653           Symbol_value<size> symval;
2654           typedef Sized_relobj_file<size, big_endian> ObjType;
2655           typename ObjType::Compute_final_local_value_status status
2656             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2657                                                        &symval, symtab);
2658           if (status != ObjType::CFLV_OK
2659               || !symval.has_output_value())
2660             return;
2661           to = symval.value(this->object_, 0);
2662           if (size == 64)
2663             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2664         }
2665       to += this->addend_;
2666       if (stub_table == NULL)
2667         stub_table = this->object_->stub_table(this->shndx_);
2668       if (size == 64 && target->abiversion() < 2)
2669         {
2670           unsigned int dest_shndx;
2671           if (!target->symval_for_branch(symtab, gsym, this->object_,
2672                                          &to, &dest_shndx))
2673             return;
2674         }
2675       Address delta = to - from;
2676       if (delta + max_branch_offset >= 2 * max_branch_offset)
2677         {
2678           if (stub_table == NULL)
2679             {
2680               gold_warning(_("%s:%s: branch in non-executable section,"
2681                              " no long branch stub for you"),
2682                            this->object_->name().c_str(),
2683                            this->object_->section_name(this->shndx_).c_str());
2684               return;
2685             }
2686           stub_table->add_long_branch_entry(this->object_, to);
2687         }
2688     }
2689 }
2690
2691 // Relaxation hook.  This is where we do stub generation.
2692
2693 template<int size, bool big_endian>
2694 bool
2695 Target_powerpc<size, big_endian>::do_relax(int pass,
2696                                            const Input_objects*,
2697                                            Symbol_table* symtab,
2698                                            Layout* layout,
2699                                            const Task* task)
2700 {
2701   unsigned int prev_brlt_size = 0;
2702   if (pass == 1)
2703     {
2704       bool thread_safe
2705         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2706       if (size == 64
2707           && this->abiversion() < 2
2708           && !thread_safe
2709           && !parameters->options().user_set_plt_thread_safe())
2710         {
2711           static const char* const thread_starter[] =
2712             {
2713               "pthread_create",
2714               /* libstdc++ */
2715               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2716               /* librt */
2717               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2718               "mq_notify", "create_timer",
2719               /* libanl */
2720               "getaddrinfo_a",
2721               /* libgomp */
2722               "GOMP_parallel",
2723               "GOMP_parallel_start",
2724               "GOMP_parallel_loop_static",
2725               "GOMP_parallel_loop_static_start",
2726               "GOMP_parallel_loop_dynamic",
2727               "GOMP_parallel_loop_dynamic_start",
2728               "GOMP_parallel_loop_guided",
2729               "GOMP_parallel_loop_guided_start",
2730               "GOMP_parallel_loop_runtime",
2731               "GOMP_parallel_loop_runtime_start",
2732               "GOMP_parallel_sections",
2733               "GOMP_parallel_sections_start",
2734               /* libgo */
2735               "__go_go",
2736             };
2737
2738           if (parameters->options().shared())
2739             thread_safe = true;
2740           else
2741             {
2742               for (unsigned int i = 0;
2743                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2744                    i++)
2745                 {
2746                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2747                   thread_safe = (sym != NULL
2748                                  && sym->in_reg()
2749                                  && sym->in_real_elf());
2750                   if (thread_safe)
2751                     break;
2752                 }
2753             }
2754         }
2755       this->plt_thread_safe_ = thread_safe;
2756       this->group_sections(layout, task);
2757     }
2758
2759   // We need address of stub tables valid for make_stub.
2760   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2761        p != this->stub_tables_.end();
2762        ++p)
2763     {
2764       const Powerpc_relobj<size, big_endian>* object
2765         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2766       Address off = object->get_output_section_offset((*p)->shndx());
2767       gold_assert(off != invalid_address);
2768       Output_section* os = (*p)->output_section();
2769       (*p)->set_address_and_size(os, off);
2770     }
2771
2772   if (pass != 1)
2773     {
2774       // Clear plt call stubs, long branch stubs and branch lookup table.
2775       prev_brlt_size = this->branch_lookup_table_.size();
2776       this->branch_lookup_table_.clear();
2777       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2778            p != this->stub_tables_.end();
2779            ++p)
2780         {
2781           (*p)->clear_stubs();
2782         }
2783     }
2784
2785   // Build all the stubs.
2786   Stub_table<size, big_endian>* ifunc_stub_table
2787     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2788   Stub_table<size, big_endian>* one_stub_table
2789     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2790   for (typename Branches::const_iterator b = this->branch_info_.begin();
2791        b != this->branch_info_.end();
2792        b++)
2793     {
2794       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2795     }
2796
2797   // Did anything change size?
2798   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2799   bool again = num_huge_branches != prev_brlt_size;
2800   if (size == 64 && num_huge_branches != 0)
2801     this->make_brlt_section(layout);
2802   if (size == 64 && again)
2803     this->brlt_section_->set_current_size(num_huge_branches);
2804
2805   typedef Unordered_set<Output_section*> Output_sections;
2806   Output_sections os_need_update;
2807   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2808        p != this->stub_tables_.end();
2809        ++p)
2810     {
2811       if ((*p)->size_update())
2812         {
2813           again = true;
2814           (*p)->add_eh_frame(layout);
2815           os_need_update.insert((*p)->output_section());
2816         }
2817     }
2818
2819   // Set output section offsets for all input sections in an output
2820   // section that just changed size.  Anything past the stubs will
2821   // need updating.
2822   for (typename Output_sections::iterator p = os_need_update.begin();
2823        p != os_need_update.end();
2824        p++)
2825     {
2826       Output_section* os = *p;
2827       Address off = 0;
2828       typedef Output_section::Input_section_list Input_section_list;
2829       for (Input_section_list::const_iterator i = os->input_sections().begin();
2830            i != os->input_sections().end();
2831            ++i)
2832         {
2833           off = align_address(off, i->addralign());
2834           if (i->is_input_section() || i->is_relaxed_input_section())
2835             i->relobj()->set_section_offset(i->shndx(), off);
2836           if (i->is_relaxed_input_section())
2837             {
2838               Stub_table<size, big_endian>* stub_table
2839                 = static_cast<Stub_table<size, big_endian>*>(
2840                     i->relaxed_input_section());
2841               off += stub_table->set_address_and_size(os, off);
2842             }
2843           else
2844             off += i->data_size();
2845         }
2846       // If .branch_lt is part of this output section, then we have
2847       // just done the offset adjustment.
2848       os->clear_section_offsets_need_adjustment();
2849     }
2850
2851   if (size == 64
2852       && !again
2853       && num_huge_branches != 0
2854       && parameters->options().output_is_position_independent())
2855     {
2856       // Fill in the BRLT relocs.
2857       this->brlt_section_->reset_brlt_sizes();
2858       for (typename Branch_lookup_table::const_iterator p
2859              = this->branch_lookup_table_.begin();
2860            p != this->branch_lookup_table_.end();
2861            ++p)
2862         {
2863           this->brlt_section_->add_reloc(p->first, p->second);
2864         }
2865       this->brlt_section_->finalize_brlt_sizes();
2866     }
2867   return again;
2868 }
2869
2870 template<int size, bool big_endian>
2871 void
2872 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2873                                                       unsigned char* oview,
2874                                                       uint64_t* paddress,
2875                                                       off_t* plen) const
2876 {
2877   uint64_t address = plt->address();
2878   off_t len = plt->data_size();
2879
2880   if (plt == this->glink_)
2881     {
2882       // See Output_data_glink::do_write() for glink contents.
2883       if (len == 0)
2884         {
2885           gold_assert(parameters->doing_static_link());
2886           // Static linking may need stubs, to support ifunc and long
2887           // branches.  We need to create an output section for
2888           // .eh_frame early in the link process, to have a place to
2889           // attach stub .eh_frame info.  We also need to have
2890           // registered a CIE that matches the stub CIE.  Both of
2891           // these requirements are satisfied by creating an FDE and
2892           // CIE for .glink, even though static linking will leave
2893           // .glink zero length.
2894           // ??? Hopefully generating an FDE with a zero address range
2895           // won't confuse anything that consumes .eh_frame info.
2896         }
2897       else if (size == 64)
2898         {
2899           // There is one word before __glink_PLTresolve
2900           address += 8;
2901           len -= 8;
2902         }
2903       else if (parameters->options().output_is_position_independent())
2904         {
2905           // There are two FDEs for a position independent glink.
2906           // The first covers the branch table, the second
2907           // __glink_PLTresolve at the end of glink.
2908           off_t resolve_size = this->glink_->pltresolve_size;
2909           if (oview[9] == elfcpp::DW_CFA_nop)
2910             len -= resolve_size;
2911           else
2912             {
2913               address += len - resolve_size;
2914               len = resolve_size;
2915             }
2916         }
2917     }
2918   else
2919     {
2920       // Must be a stub table.
2921       const Stub_table<size, big_endian>* stub_table
2922         = static_cast<const Stub_table<size, big_endian>*>(plt);
2923       uint64_t stub_address = stub_table->stub_address();
2924       len -= stub_address - address;
2925       address = stub_address;
2926     }
2927
2928   *paddress = address;
2929   *plen = len;
2930 }
2931
2932 // A class to handle the PLT data.
2933
2934 template<int size, bool big_endian>
2935 class Output_data_plt_powerpc : public Output_section_data_build
2936 {
2937  public:
2938   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2939                             size, big_endian> Reloc_section;
2940
2941   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2942                           Reloc_section* plt_rel,
2943                           const char* name)
2944     : Output_section_data_build(size == 32 ? 4 : 8),
2945       rel_(plt_rel),
2946       targ_(targ),
2947       name_(name)
2948   { }
2949
2950   // Add an entry to the PLT.
2951   void
2952   add_entry(Symbol*);
2953
2954   void
2955   add_ifunc_entry(Symbol*);
2956
2957   void
2958   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2959
2960   // Return the .rela.plt section data.
2961   Reloc_section*
2962   rel_plt() const
2963   {
2964     return this->rel_;
2965   }
2966
2967   // Return the number of PLT entries.
2968   unsigned int
2969   entry_count() const
2970   {
2971     if (this->current_data_size() == 0)
2972       return 0;
2973     return ((this->current_data_size() - this->first_plt_entry_offset())
2974             / this->plt_entry_size());
2975   }
2976
2977  protected:
2978   void
2979   do_adjust_output_section(Output_section* os)
2980   {
2981     os->set_entsize(0);
2982   }
2983
2984   // Write to a map file.
2985   void
2986   do_print_to_mapfile(Mapfile* mapfile) const
2987   { mapfile->print_output_data(this, this->name_); }
2988
2989  private:
2990   // Return the offset of the first non-reserved PLT entry.
2991   unsigned int
2992   first_plt_entry_offset() const
2993   {
2994     // IPLT has no reserved entry.
2995     if (this->name_[3] == 'I')
2996       return 0;
2997     return this->targ_->first_plt_entry_offset();
2998   }
2999
3000   // Return the size of each PLT entry.
3001   unsigned int
3002   plt_entry_size() const
3003   {
3004     return this->targ_->plt_entry_size();
3005   }
3006
3007   // Write out the PLT data.
3008   void
3009   do_write(Output_file*);
3010
3011   // The reloc section.
3012   Reloc_section* rel_;
3013   // Allows access to .glink for do_write.
3014   Target_powerpc<size, big_endian>* targ_;
3015   // What to report in map file.
3016   const char *name_;
3017 };
3018
3019 // Add an entry to the PLT.
3020
3021 template<int size, bool big_endian>
3022 void
3023 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3024 {
3025   if (!gsym->has_plt_offset())
3026     {
3027       section_size_type off = this->current_data_size();
3028       if (off == 0)
3029         off += this->first_plt_entry_offset();
3030       gsym->set_plt_offset(off);
3031       gsym->set_needs_dynsym_entry();
3032       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3033       this->rel_->add_global(gsym, dynrel, this, off, 0);
3034       off += this->plt_entry_size();
3035       this->set_current_data_size(off);
3036     }
3037 }
3038
3039 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3040
3041 template<int size, bool big_endian>
3042 void
3043 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3044 {
3045   if (!gsym->has_plt_offset())
3046     {
3047       section_size_type off = this->current_data_size();
3048       gsym->set_plt_offset(off);
3049       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3050       if (size == 64 && this->targ_->abiversion() < 2)
3051         dynrel = elfcpp::R_PPC64_JMP_IREL;
3052       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3053       off += this->plt_entry_size();
3054       this->set_current_data_size(off);
3055     }
3056 }
3057
3058 // Add an entry for a local ifunc symbol to the IPLT.
3059
3060 template<int size, bool big_endian>
3061 void
3062 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3063     Sized_relobj_file<size, big_endian>* relobj,
3064     unsigned int local_sym_index)
3065 {
3066   if (!relobj->local_has_plt_offset(local_sym_index))
3067     {
3068       section_size_type off = this->current_data_size();
3069       relobj->set_local_plt_offset(local_sym_index, off);
3070       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3071       if (size == 64 && this->targ_->abiversion() < 2)
3072         dynrel = elfcpp::R_PPC64_JMP_IREL;
3073       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3074                                               this, off, 0);
3075       off += this->plt_entry_size();
3076       this->set_current_data_size(off);
3077     }
3078 }
3079
3080 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3081 static const uint32_t add_2_2_11        = 0x7c425a14;
3082 static const uint32_t add_3_3_2         = 0x7c631214;
3083 static const uint32_t add_3_3_13        = 0x7c636a14;
3084 static const uint32_t add_11_0_11       = 0x7d605a14;
3085 static const uint32_t add_11_2_11       = 0x7d625a14;
3086 static const uint32_t add_11_11_2       = 0x7d6b1214;
3087 static const uint32_t addi_0_12         = 0x380c0000;
3088 static const uint32_t addi_2_2          = 0x38420000;
3089 static const uint32_t addi_3_3          = 0x38630000;
3090 static const uint32_t addi_11_11        = 0x396b0000;
3091 static const uint32_t addi_12_12        = 0x398c0000;
3092 static const uint32_t addis_0_2         = 0x3c020000;
3093 static const uint32_t addis_0_13        = 0x3c0d0000;
3094 static const uint32_t addis_3_2         = 0x3c620000;
3095 static const uint32_t addis_3_13        = 0x3c6d0000;
3096 static const uint32_t addis_11_2        = 0x3d620000;
3097 static const uint32_t addis_11_11       = 0x3d6b0000;
3098 static const uint32_t addis_11_30       = 0x3d7e0000;
3099 static const uint32_t addis_12_2        = 0x3d820000;
3100 static const uint32_t addis_12_12       = 0x3d8c0000;
3101 static const uint32_t b                 = 0x48000000;
3102 static const uint32_t bcl_20_31         = 0x429f0005;
3103 static const uint32_t bctr              = 0x4e800420;
3104 static const uint32_t blr               = 0x4e800020;
3105 static const uint32_t bnectr_p4         = 0x4ce20420;
3106 static const uint32_t cmpldi_2_0        = 0x28220000;
3107 static const uint32_t cror_15_15_15     = 0x4def7b82;
3108 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3109 static const uint32_t ld_0_1            = 0xe8010000;
3110 static const uint32_t ld_0_12           = 0xe80c0000;
3111 static const uint32_t ld_2_1            = 0xe8410000;
3112 static const uint32_t ld_2_2            = 0xe8420000;
3113 static const uint32_t ld_2_11           = 0xe84b0000;
3114 static const uint32_t ld_11_2           = 0xe9620000;
3115 static const uint32_t ld_11_11          = 0xe96b0000;
3116 static const uint32_t ld_12_2           = 0xe9820000;
3117 static const uint32_t ld_12_11          = 0xe98b0000;
3118 static const uint32_t ld_12_12          = 0xe98c0000;
3119 static const uint32_t lfd_0_1           = 0xc8010000;
3120 static const uint32_t li_0_0            = 0x38000000;
3121 static const uint32_t li_12_0           = 0x39800000;
3122 static const uint32_t lis_0_0           = 0x3c000000;
3123 static const uint32_t lis_11            = 0x3d600000;
3124 static const uint32_t lis_12            = 0x3d800000;
3125 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3126 static const uint32_t lwz_0_12          = 0x800c0000;
3127 static const uint32_t lwz_11_11         = 0x816b0000;
3128 static const uint32_t lwz_11_30         = 0x817e0000;
3129 static const uint32_t lwz_12_12         = 0x818c0000;
3130 static const uint32_t lwzu_0_12         = 0x840c0000;
3131 static const uint32_t mflr_0            = 0x7c0802a6;
3132 static const uint32_t mflr_11           = 0x7d6802a6;
3133 static const uint32_t mflr_12           = 0x7d8802a6;
3134 static const uint32_t mtctr_0           = 0x7c0903a6;
3135 static const uint32_t mtctr_11          = 0x7d6903a6;
3136 static const uint32_t mtctr_12          = 0x7d8903a6;
3137 static const uint32_t mtlr_0            = 0x7c0803a6;
3138 static const uint32_t mtlr_12           = 0x7d8803a6;
3139 static const uint32_t nop               = 0x60000000;
3140 static const uint32_t ori_0_0_0         = 0x60000000;
3141 static const uint32_t srdi_0_0_2        = 0x7800f082;
3142 static const uint32_t std_0_1           = 0xf8010000;
3143 static const uint32_t std_0_12          = 0xf80c0000;
3144 static const uint32_t std_2_1           = 0xf8410000;
3145 static const uint32_t stfd_0_1          = 0xd8010000;
3146 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3147 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3148 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3149 static const uint32_t xor_2_12_12       = 0x7d826278;
3150 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3151
3152 // Write out the PLT.
3153
3154 template<int size, bool big_endian>
3155 void
3156 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3157 {
3158   if (size == 32 && this->name_[3] != 'I')
3159     {
3160       const section_size_type offset = this->offset();
3161       const section_size_type oview_size
3162         = convert_to_section_size_type(this->data_size());
3163       unsigned char* const oview = of->get_output_view(offset, oview_size);
3164       unsigned char* pov = oview;
3165       unsigned char* endpov = oview + oview_size;
3166
3167       // The address of the .glink branch table
3168       const Output_data_glink<size, big_endian>* glink
3169         = this->targ_->glink_section();
3170       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3171
3172       while (pov < endpov)
3173         {
3174           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3175           pov += 4;
3176           branch_tab += 4;
3177         }
3178
3179       of->write_output_view(offset, oview_size, oview);
3180     }
3181 }
3182
3183 // Create the PLT section.
3184
3185 template<int size, bool big_endian>
3186 void
3187 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3188                                                    Layout* layout)
3189 {
3190   if (this->plt_ == NULL)
3191     {
3192       if (this->got_ == NULL)
3193         this->got_section(symtab, layout);
3194
3195       if (this->glink_ == NULL)
3196         make_glink_section(layout);
3197
3198       // Ensure that .rela.dyn always appears before .rela.plt  This is
3199       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3200       // needs to include .rela.plt in its range.
3201       this->rela_dyn_section(layout);
3202
3203       Reloc_section* plt_rel = new Reloc_section(false);
3204       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3205                                       elfcpp::SHF_ALLOC, plt_rel,
3206                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3207       this->plt_
3208         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3209                                                         "** PLT");
3210       layout->add_output_section_data(".plt",
3211                                       (size == 32
3212                                        ? elfcpp::SHT_PROGBITS
3213                                        : elfcpp::SHT_NOBITS),
3214                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3215                                       this->plt_,
3216                                       (size == 32
3217                                        ? ORDER_SMALL_DATA
3218                                        : ORDER_SMALL_BSS),
3219                                       false);
3220     }
3221 }
3222
3223 // Create the IPLT section.
3224
3225 template<int size, bool big_endian>
3226 void
3227 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3228                                                     Layout* layout)
3229 {
3230   if (this->iplt_ == NULL)
3231     {
3232       this->make_plt_section(symtab, layout);
3233
3234       Reloc_section* iplt_rel = new Reloc_section(false);
3235       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3236       this->iplt_
3237         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3238                                                         "** IPLT");
3239       this->plt_->output_section()->add_output_section_data(this->iplt_);
3240     }
3241 }
3242
3243 // A section for huge long branch addresses, similar to plt section.
3244
3245 template<int size, bool big_endian>
3246 class Output_data_brlt_powerpc : public Output_section_data_build
3247 {
3248  public:
3249   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3250   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3251                             size, big_endian> Reloc_section;
3252
3253   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3254                            Reloc_section* brlt_rel)
3255     : Output_section_data_build(size == 32 ? 4 : 8),
3256       rel_(brlt_rel),
3257       targ_(targ)
3258   { }
3259
3260   void
3261   reset_brlt_sizes()
3262   {
3263     this->reset_data_size();
3264     this->rel_->reset_data_size();
3265   }
3266
3267   void
3268   finalize_brlt_sizes()
3269   {
3270     this->finalize_data_size();
3271     this->rel_->finalize_data_size();
3272   }
3273
3274   // Add a reloc for an entry in the BRLT.
3275   void
3276   add_reloc(Address to, unsigned int off)
3277   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3278
3279   // Update section and reloc section size.
3280   void
3281   set_current_size(unsigned int num_branches)
3282   {
3283     this->reset_address_and_file_offset();
3284     this->set_current_data_size(num_branches * 16);
3285     this->finalize_data_size();
3286     Output_section* os = this->output_section();
3287     os->set_section_offsets_need_adjustment();
3288     if (this->rel_ != NULL)
3289       {
3290         unsigned int reloc_size
3291           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3292         this->rel_->reset_address_and_file_offset();
3293         this->rel_->set_current_data_size(num_branches * reloc_size);
3294         this->rel_->finalize_data_size();
3295         Output_section* os = this->rel_->output_section();
3296         os->set_section_offsets_need_adjustment();
3297       }
3298   }
3299
3300  protected:
3301   void
3302   do_adjust_output_section(Output_section* os)
3303   {
3304     os->set_entsize(0);
3305   }
3306
3307   // Write to a map file.
3308   void
3309   do_print_to_mapfile(Mapfile* mapfile) const
3310   { mapfile->print_output_data(this, "** BRLT"); }
3311
3312  private:
3313   // Write out the BRLT data.
3314   void
3315   do_write(Output_file*);
3316
3317   // The reloc section.
3318   Reloc_section* rel_;
3319   Target_powerpc<size, big_endian>* targ_;
3320 };
3321
3322 // Make the branch lookup table section.
3323
3324 template<int size, bool big_endian>
3325 void
3326 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3327 {
3328   if (size == 64 && this->brlt_section_ == NULL)
3329     {
3330       Reloc_section* brlt_rel = NULL;
3331       bool is_pic = parameters->options().output_is_position_independent();
3332       if (is_pic)
3333         {
3334           // When PIC we can't fill in .branch_lt (like .plt it can be
3335           // a bss style section) but must initialise at runtime via
3336           // dynamic relocats.
3337           this->rela_dyn_section(layout);
3338           brlt_rel = new Reloc_section(false);
3339           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3340         }
3341       this->brlt_section_
3342         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3343       if (this->plt_ && is_pic)
3344         this->plt_->output_section()
3345           ->add_output_section_data(this->brlt_section_);
3346       else
3347         layout->add_output_section_data(".branch_lt",
3348                                         (is_pic ? elfcpp::SHT_NOBITS
3349                                          : elfcpp::SHT_PROGBITS),
3350                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3351                                         this->brlt_section_,
3352                                         (is_pic ? ORDER_SMALL_BSS
3353                                          : ORDER_SMALL_DATA),
3354                                         false);
3355     }
3356 }
3357
3358 // Write out .branch_lt when non-PIC.
3359
3360 template<int size, bool big_endian>
3361 void
3362 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3363 {
3364   if (size == 64 && !parameters->options().output_is_position_independent())
3365     {
3366       const section_size_type offset = this->offset();
3367       const section_size_type oview_size
3368         = convert_to_section_size_type(this->data_size());
3369       unsigned char* const oview = of->get_output_view(offset, oview_size);
3370
3371       this->targ_->write_branch_lookup_table(oview);
3372       of->write_output_view(offset, oview_size, oview);
3373     }
3374 }
3375
3376 static inline uint32_t
3377 l(uint32_t a)
3378 {
3379   return a & 0xffff;
3380 }
3381
3382 static inline uint32_t
3383 hi(uint32_t a)
3384 {
3385   return l(a >> 16);
3386 }
3387
3388 static inline uint32_t
3389 ha(uint32_t a)
3390 {
3391   return hi(a + 0x8000);
3392 }
3393
3394 template<int size>
3395 struct Eh_cie
3396 {
3397   static const unsigned char eh_frame_cie[12];
3398 };
3399
3400 template<int size>
3401 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3402 {
3403   1,                                    // CIE version.
3404   'z', 'R', 0,                          // Augmentation string.
3405   4,                                    // Code alignment.
3406   0x80 - size / 8 ,                     // Data alignment.
3407   65,                                   // RA reg.
3408   1,                                    // Augmentation size.
3409   (elfcpp::DW_EH_PE_pcrel
3410    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3411   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3412 };
3413
3414 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3415 static const unsigned char glink_eh_frame_fde_64v1[] =
3416 {
3417   0, 0, 0, 0,                           // Replaced with offset to .glink.
3418   0, 0, 0, 0,                           // Replaced with size of .glink.
3419   0,                                    // Augmentation size.
3420   elfcpp::DW_CFA_advance_loc + 1,
3421   elfcpp::DW_CFA_register, 65, 12,
3422   elfcpp::DW_CFA_advance_loc + 4,
3423   elfcpp::DW_CFA_restore_extended, 65
3424 };
3425
3426 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3427 static const unsigned char glink_eh_frame_fde_64v2[] =
3428 {
3429   0, 0, 0, 0,                           // Replaced with offset to .glink.
3430   0, 0, 0, 0,                           // Replaced with size of .glink.
3431   0,                                    // Augmentation size.
3432   elfcpp::DW_CFA_advance_loc + 1,
3433   elfcpp::DW_CFA_register, 65, 0,
3434   elfcpp::DW_CFA_advance_loc + 4,
3435   elfcpp::DW_CFA_restore_extended, 65
3436 };
3437
3438 // Describe __glink_PLTresolve use of LR, 32-bit version.
3439 static const unsigned char glink_eh_frame_fde_32[] =
3440 {
3441   0, 0, 0, 0,                           // Replaced with offset to .glink.
3442   0, 0, 0, 0,                           // Replaced with size of .glink.
3443   0,                                    // Augmentation size.
3444   elfcpp::DW_CFA_advance_loc + 2,
3445   elfcpp::DW_CFA_register, 65, 0,
3446   elfcpp::DW_CFA_advance_loc + 4,
3447   elfcpp::DW_CFA_restore_extended, 65
3448 };
3449
3450 static const unsigned char default_fde[] =
3451 {
3452   0, 0, 0, 0,                           // Replaced with offset to stubs.
3453   0, 0, 0, 0,                           // Replaced with size of stubs.
3454   0,                                    // Augmentation size.
3455   elfcpp::DW_CFA_nop,                   // Pad.
3456   elfcpp::DW_CFA_nop,
3457   elfcpp::DW_CFA_nop
3458 };
3459
3460 template<bool big_endian>
3461 static inline void
3462 write_insn(unsigned char* p, uint32_t v)
3463 {
3464   elfcpp::Swap<32, big_endian>::writeval(p, v);
3465 }
3466
3467 // Stub_table holds information about plt and long branch stubs.
3468 // Stubs are built in an area following some input section determined
3469 // by group_sections().  This input section is converted to a relaxed
3470 // input section allowing it to be resized to accommodate the stubs
3471
3472 template<int size, bool big_endian>
3473 class Stub_table : public Output_relaxed_input_section
3474 {
3475  public:
3476   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3477   static const Address invalid_address = static_cast<Address>(0) - 1;
3478
3479   Stub_table(Target_powerpc<size, big_endian>* targ)
3480     : Output_relaxed_input_section(NULL, 0, 0),
3481       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3482       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3483       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3484   { }
3485
3486   // Delayed Output_relaxed_input_section init.
3487   void
3488   init(const Output_section::Input_section*, Output_section*);
3489
3490   // Add a plt call stub.
3491   void
3492   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3493                      const Symbol*,
3494                      unsigned int,
3495                      Address);
3496
3497   void
3498   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3499                      unsigned int,
3500                      unsigned int,
3501                      Address);
3502
3503   // Find a given plt call stub.
3504   Address
3505   find_plt_call_entry(const Symbol*) const;
3506
3507   Address
3508   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3509                       unsigned int) const;
3510
3511   Address
3512   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3513                       const Symbol*,
3514                       unsigned int,
3515                       Address) const;
3516
3517   Address
3518   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3519                       unsigned int,
3520                       unsigned int,
3521                       Address) const;
3522
3523   // Add a long branch stub.
3524   void
3525   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3526
3527   Address
3528   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3529                          Address) const;
3530
3531   void
3532   clear_stubs()
3533   {
3534     this->plt_call_stubs_.clear();
3535     this->plt_size_ = 0;
3536     this->long_branch_stubs_.clear();
3537     this->branch_size_ = 0;
3538   }
3539
3540   Address
3541   set_address_and_size(const Output_section* os, Address off)
3542   {
3543     Address start_off = off;
3544     off += this->orig_data_size_;
3545     Address my_size = this->plt_size_ + this->branch_size_;
3546     if (my_size != 0)
3547       off = align_address(off, this->stub_align());
3548     // Include original section size and alignment padding in size
3549     my_size += off - start_off;
3550     this->reset_address_and_file_offset();
3551     this->set_current_data_size(my_size);
3552     this->set_address_and_file_offset(os->address() + start_off,
3553                                       os->offset() + start_off);
3554     return my_size;
3555   }
3556
3557   Address
3558   stub_address() const
3559   {
3560     return align_address(this->address() + this->orig_data_size_,
3561                          this->stub_align());
3562   }
3563
3564   Address
3565   stub_offset() const
3566   {
3567     return align_address(this->offset() + this->orig_data_size_,
3568                          this->stub_align());
3569   }
3570
3571   section_size_type
3572   plt_size() const
3573   { return this->plt_size_; }
3574
3575   bool
3576   size_update()
3577   {
3578     Output_section* os = this->output_section();
3579     if (os->addralign() < this->stub_align())
3580       {
3581         os->set_addralign(this->stub_align());
3582         // FIXME: get rid of the insane checkpointing.
3583         // We can't increase alignment of the input section to which
3584         // stubs are attached;  The input section may be .init which
3585         // is pasted together with other .init sections to form a
3586         // function.  Aligning might insert zero padding resulting in
3587         // sigill.  However we do need to increase alignment of the
3588         // output section so that the align_address() on offset in
3589         // set_address_and_size() adds the same padding as the
3590         // align_address() on address in stub_address().
3591         // What's more, we need this alignment for the layout done in
3592         // relaxation_loop_body() so that the output section starts at
3593         // a suitably aligned address.
3594         os->checkpoint_set_addralign(this->stub_align());
3595       }
3596     if (this->last_plt_size_ != this->plt_size_
3597         || this->last_branch_size_ != this->branch_size_)
3598       {
3599         this->last_plt_size_ = this->plt_size_;
3600         this->last_branch_size_ = this->branch_size_;
3601         return true;
3602       }
3603     return false;
3604   }
3605
3606   // Add .eh_frame info for this stub section.  Unlike other linker
3607   // generated .eh_frame this is added late in the link, because we
3608   // only want the .eh_frame info if this particular stub section is
3609   // non-empty.
3610   void
3611   add_eh_frame(Layout* layout)
3612   {
3613     if (!this->eh_frame_added_)
3614       {
3615         if (!parameters->options().ld_generated_unwind_info())
3616           return;
3617
3618         // Since we add stub .eh_frame info late, it must be placed
3619         // after all other linker generated .eh_frame info so that
3620         // merge mapping need not be updated for input sections.
3621         // There is no provision to use a different CIE to that used
3622         // by .glink.
3623         if (!this->targ_->has_glink())
3624           return;
3625
3626         layout->add_eh_frame_for_plt(this,
3627                                      Eh_cie<size>::eh_frame_cie,
3628                                      sizeof (Eh_cie<size>::eh_frame_cie),
3629                                      default_fde,
3630                                      sizeof (default_fde));
3631         this->eh_frame_added_ = true;
3632       }
3633   }
3634
3635   Target_powerpc<size, big_endian>*
3636   targ() const
3637   { return targ_; }
3638
3639  private:
3640   class Plt_stub_ent;
3641   class Plt_stub_ent_hash;
3642   typedef Unordered_map<Plt_stub_ent, unsigned int,
3643                         Plt_stub_ent_hash> Plt_stub_entries;
3644
3645   // Alignment of stub section.
3646   unsigned int
3647   stub_align() const
3648   {
3649     if (size == 32)
3650       return 16;
3651     unsigned int min_align = 32;
3652     unsigned int user_align = 1 << parameters->options().plt_align();
3653     return std::max(user_align, min_align);
3654   }
3655
3656   // Return the plt offset for the given call stub.
3657   Address
3658   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3659   {
3660     const Symbol* gsym = p->first.sym_;
3661     if (gsym != NULL)
3662       {
3663         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3664                     && gsym->can_use_relative_reloc(false));
3665         return gsym->plt_offset();
3666       }
3667     else
3668       {
3669         *is_iplt = true;
3670         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3671         unsigned int local_sym_index = p->first.locsym_;
3672         return relobj->local_plt_offset(local_sym_index);
3673       }
3674   }
3675
3676   // Size of a given plt call stub.
3677   unsigned int
3678   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3679   {
3680     if (size == 32)
3681       return 16;
3682
3683     bool is_iplt;
3684     Address plt_addr = this->plt_off(p, &is_iplt);
3685     if (is_iplt)
3686       plt_addr += this->targ_->iplt_section()->address();
3687     else
3688       plt_addr += this->targ_->plt_section()->address();
3689     Address got_addr = this->targ_->got_section()->output_section()->address();
3690     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3691       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3692     got_addr += ppcobj->toc_base_offset();
3693     Address off = plt_addr - got_addr;
3694     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3695     if (this->targ_->abiversion() < 2)
3696       {
3697         bool static_chain = parameters->options().plt_static_chain();
3698         bool thread_safe = this->targ_->plt_thread_safe();
3699         bytes += (4
3700                   + 4 * static_chain
3701                   + 8 * thread_safe
3702                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3703       }
3704     unsigned int align = 1 << parameters->options().plt_align();
3705     if (align > 1)
3706       bytes = (bytes + align - 1) & -align;
3707     return bytes;
3708   }
3709
3710   // Return long branch stub size.
3711   unsigned int
3712   branch_stub_size(Address to)
3713   {
3714     Address loc
3715       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3716     if (to - loc + (1 << 25) < 2 << 25)
3717       return 4;
3718     if (size == 64 || !parameters->options().output_is_position_independent())
3719       return 16;
3720     return 32;
3721   }
3722
3723   // Write out stubs.
3724   void
3725   do_write(Output_file*);
3726
3727   // Plt call stub keys.
3728   class Plt_stub_ent
3729   {
3730   public:
3731     Plt_stub_ent(const Symbol* sym)
3732       : sym_(sym), object_(0), addend_(0), locsym_(0)
3733     { }
3734
3735     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3736                  unsigned int locsym_index)
3737       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3738     { }
3739
3740     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3741                  const Symbol* sym,
3742                  unsigned int r_type,
3743                  Address addend)
3744       : sym_(sym), object_(0), addend_(0), locsym_(0)
3745     {
3746       if (size != 32)
3747         this->addend_ = addend;
3748       else if (parameters->options().output_is_position_independent()
3749                && r_type == elfcpp::R_PPC_PLTREL24)
3750         {
3751           this->addend_ = addend;
3752           if (this->addend_ >= 32768)
3753             this->object_ = object;
3754         }
3755     }
3756
3757     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3758                  unsigned int locsym_index,
3759                  unsigned int r_type,
3760                  Address addend)
3761       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3762     {
3763       if (size != 32)
3764         this->addend_ = addend;
3765       else if (parameters->options().output_is_position_independent()
3766                && r_type == elfcpp::R_PPC_PLTREL24)
3767         this->addend_ = addend;
3768     }
3769
3770     bool operator==(const Plt_stub_ent& that) const
3771     {
3772       return (this->sym_ == that.sym_
3773               && this->object_ == that.object_
3774               && this->addend_ == that.addend_
3775               && this->locsym_ == that.locsym_);
3776     }
3777
3778     const Symbol* sym_;
3779     const Sized_relobj_file<size, big_endian>* object_;
3780     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3781     unsigned int locsym_;
3782   };
3783
3784   class Plt_stub_ent_hash
3785   {
3786   public:
3787     size_t operator()(const Plt_stub_ent& ent) const
3788     {
3789       return (reinterpret_cast<uintptr_t>(ent.sym_)
3790               ^ reinterpret_cast<uintptr_t>(ent.object_)
3791               ^ ent.addend_
3792               ^ ent.locsym_);
3793     }
3794   };
3795
3796   // Long branch stub keys.
3797   class Branch_stub_ent
3798   {
3799   public:
3800     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3801       : dest_(to), toc_base_off_(0)
3802     {
3803       if (size == 64)
3804         toc_base_off_ = obj->toc_base_offset();
3805     }
3806
3807     bool operator==(const Branch_stub_ent& that) const
3808     {
3809       return (this->dest_ == that.dest_
3810               && (size == 32
3811                   || this->toc_base_off_ == that.toc_base_off_));
3812     }
3813
3814     Address dest_;
3815     unsigned int toc_base_off_;
3816   };
3817
3818   class Branch_stub_ent_hash
3819   {
3820   public:
3821     size_t operator()(const Branch_stub_ent& ent) const
3822     { return ent.dest_ ^ ent.toc_base_off_; }
3823   };
3824
3825   // In a sane world this would be a global.
3826   Target_powerpc<size, big_endian>* targ_;
3827   // Map sym/object/addend to stub offset.
3828   Plt_stub_entries plt_call_stubs_;
3829   // Map destination address to stub offset.
3830   typedef Unordered_map<Branch_stub_ent, unsigned int,
3831                         Branch_stub_ent_hash> Branch_stub_entries;
3832   Branch_stub_entries long_branch_stubs_;
3833   // size of input section
3834   section_size_type orig_data_size_;
3835   // size of stubs
3836   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3837   // Whether .eh_frame info has been created for this stub section.
3838   bool eh_frame_added_;
3839 };
3840
3841 // Make a new stub table, and record.
3842
3843 template<int size, bool big_endian>
3844 Stub_table<size, big_endian>*
3845 Target_powerpc<size, big_endian>::new_stub_table()
3846 {
3847   Stub_table<size, big_endian>* stub_table
3848     = new Stub_table<size, big_endian>(this);
3849   this->stub_tables_.push_back(stub_table);
3850   return stub_table;
3851 }
3852
3853 // Delayed stub table initialisation, because we create the stub table
3854 // before we know to which section it will be attached.
3855
3856 template<int size, bool big_endian>
3857 void
3858 Stub_table<size, big_endian>::init(
3859     const Output_section::Input_section* owner,
3860     Output_section* output_section)
3861 {
3862   this->set_relobj(owner->relobj());
3863   this->set_shndx(owner->shndx());
3864   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3865   this->set_output_section(output_section);
3866   this->orig_data_size_ = owner->current_data_size();
3867
3868   std::vector<Output_relaxed_input_section*> new_relaxed;
3869   new_relaxed.push_back(this);
3870   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3871 }
3872
3873 // Add a plt call stub, if we do not already have one for this
3874 // sym/object/addend combo.
3875
3876 template<int size, bool big_endian>
3877 void
3878 Stub_table<size, big_endian>::add_plt_call_entry(
3879     const Sized_relobj_file<size, big_endian>* object,
3880     const Symbol* gsym,
3881     unsigned int r_type,
3882     Address addend)
3883 {
3884   Plt_stub_ent ent(object, gsym, r_type, addend);
3885   unsigned int off = this->plt_size_;
3886   std::pair<typename Plt_stub_entries::iterator, bool> p
3887     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3888   if (p.second)
3889     this->plt_size_ = off + this->plt_call_size(p.first);
3890 }
3891
3892 template<int size, bool big_endian>
3893 void
3894 Stub_table<size, big_endian>::add_plt_call_entry(
3895     const Sized_relobj_file<size, big_endian>* object,
3896     unsigned int locsym_index,
3897     unsigned int r_type,
3898     Address addend)
3899 {
3900   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3901   unsigned int off = this->plt_size_;
3902   std::pair<typename Plt_stub_entries::iterator, bool> p
3903     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3904   if (p.second)
3905     this->plt_size_ = off + this->plt_call_size(p.first);
3906 }
3907
3908 // Find a plt call stub.
3909
3910 template<int size, bool big_endian>
3911 typename Stub_table<size, big_endian>::Address
3912 Stub_table<size, big_endian>::find_plt_call_entry(
3913     const Sized_relobj_file<size, big_endian>* object,
3914     const Symbol* gsym,
3915     unsigned int r_type,
3916     Address addend) const
3917 {
3918   Plt_stub_ent ent(object, gsym, r_type, addend);
3919   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3920   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3921 }
3922
3923 template<int size, bool big_endian>
3924 typename Stub_table<size, big_endian>::Address
3925 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3926 {
3927   Plt_stub_ent ent(gsym);
3928   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3929   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3930 }
3931
3932 template<int size, bool big_endian>
3933 typename Stub_table<size, big_endian>::Address
3934 Stub_table<size, big_endian>::find_plt_call_entry(
3935     const Sized_relobj_file<size, big_endian>* object,
3936     unsigned int locsym_index,
3937     unsigned int r_type,
3938     Address addend) const
3939 {
3940   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3941   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3942   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3943 }
3944
3945 template<int size, bool big_endian>
3946 typename Stub_table<size, big_endian>::Address
3947 Stub_table<size, big_endian>::find_plt_call_entry(
3948     const Sized_relobj_file<size, big_endian>* object,
3949     unsigned int locsym_index) const
3950 {
3951   Plt_stub_ent ent(object, locsym_index);
3952   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3953   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3954 }
3955
3956 // Add a long branch stub if we don't already have one to given
3957 // destination.
3958
3959 template<int size, bool big_endian>
3960 void
3961 Stub_table<size, big_endian>::add_long_branch_entry(
3962     const Powerpc_relobj<size, big_endian>* object,
3963     Address to)
3964 {
3965   Branch_stub_ent ent(object, to);
3966   Address off = this->branch_size_;
3967   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3968     {
3969       unsigned int stub_size = this->branch_stub_size(to);
3970       this->branch_size_ = off + stub_size;
3971       if (size == 64 && stub_size != 4)
3972         this->targ_->add_branch_lookup_table(to);
3973     }
3974 }
3975
3976 // Find long branch stub.
3977
3978 template<int size, bool big_endian>
3979 typename Stub_table<size, big_endian>::Address
3980 Stub_table<size, big_endian>::find_long_branch_entry(
3981     const Powerpc_relobj<size, big_endian>* object,
3982     Address to) const
3983 {
3984   Branch_stub_ent ent(object, to);
3985   typename Branch_stub_entries::const_iterator p
3986     = this->long_branch_stubs_.find(ent);
3987   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3988 }
3989
3990 // A class to handle .glink.
3991
3992 template<int size, bool big_endian>
3993 class Output_data_glink : public Output_section_data
3994 {
3995  public:
3996   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3997   static const Address invalid_address = static_cast<Address>(0) - 1;
3998   static const int pltresolve_size = 16*4;
3999
4000   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4001     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4002       end_branch_table_(), ge_size_(0)
4003   { }
4004
4005   void
4006   add_eh_frame(Layout* layout);
4007
4008   void
4009   add_global_entry(const Symbol*);
4010
4011   Address
4012   find_global_entry(const Symbol*) const;
4013
4014   Address
4015   global_entry_address() const
4016   {
4017     gold_assert(this->is_data_size_valid());
4018     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4019     return this->address() + global_entry_off;
4020   }
4021
4022  protected:
4023   // Write to a map file.
4024   void
4025   do_print_to_mapfile(Mapfile* mapfile) const
4026   { mapfile->print_output_data(this, _("** glink")); }
4027
4028  private:
4029   void
4030   set_final_data_size();
4031
4032   // Write out .glink
4033   void
4034   do_write(Output_file*);
4035
4036   // Allows access to .got and .plt for do_write.
4037   Target_powerpc<size, big_endian>* targ_;
4038
4039   // Map sym to stub offset.
4040   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4041   Global_entry_stub_entries global_entry_stubs_;
4042
4043   unsigned int end_branch_table_, ge_size_;
4044 };
4045
4046 template<int size, bool big_endian>
4047 void
4048 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4049 {
4050   if (!parameters->options().ld_generated_unwind_info())
4051     return;
4052
4053   if (size == 64)
4054     {
4055       if (this->targ_->abiversion() < 2)
4056         layout->add_eh_frame_for_plt(this,
4057                                      Eh_cie<64>::eh_frame_cie,
4058                                      sizeof (Eh_cie<64>::eh_frame_cie),
4059                                      glink_eh_frame_fde_64v1,
4060                                      sizeof (glink_eh_frame_fde_64v1));
4061       else
4062         layout->add_eh_frame_for_plt(this,
4063                                      Eh_cie<64>::eh_frame_cie,
4064                                      sizeof (Eh_cie<64>::eh_frame_cie),
4065                                      glink_eh_frame_fde_64v2,
4066                                      sizeof (glink_eh_frame_fde_64v2));
4067     }
4068   else
4069     {
4070       // 32-bit .glink can use the default since the CIE return
4071       // address reg, LR, is valid.
4072       layout->add_eh_frame_for_plt(this,
4073                                    Eh_cie<32>::eh_frame_cie,
4074                                    sizeof (Eh_cie<32>::eh_frame_cie),
4075                                    default_fde,
4076                                    sizeof (default_fde));
4077       // Except where LR is used in a PIC __glink_PLTresolve.
4078       if (parameters->options().output_is_position_independent())
4079         layout->add_eh_frame_for_plt(this,
4080                                      Eh_cie<32>::eh_frame_cie,
4081                                      sizeof (Eh_cie<32>::eh_frame_cie),
4082                                      glink_eh_frame_fde_32,
4083                                      sizeof (glink_eh_frame_fde_32));
4084     }
4085 }
4086
4087 template<int size, bool big_endian>
4088 void
4089 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4090 {
4091   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4092     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4093   if (p.second)
4094     this->ge_size_ += 16;
4095 }
4096
4097 template<int size, bool big_endian>
4098 typename Output_data_glink<size, big_endian>::Address
4099 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4100 {
4101   typename Global_entry_stub_entries::const_iterator p
4102     = this->global_entry_stubs_.find(gsym);
4103   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4104 }
4105
4106 template<int size, bool big_endian>
4107 void
4108 Output_data_glink<size, big_endian>::set_final_data_size()
4109 {
4110   unsigned int count = this->targ_->plt_entry_count();
4111   section_size_type total = 0;
4112
4113   if (count != 0)
4114     {
4115       if (size == 32)
4116         {
4117           // space for branch table
4118           total += 4 * (count - 1);
4119
4120           total += -total & 15;
4121           total += this->pltresolve_size;
4122         }
4123       else
4124         {
4125           total += this->pltresolve_size;
4126
4127           // space for branch table
4128           total += 4 * count;
4129           if (this->targ_->abiversion() < 2)
4130             {
4131               total += 4 * count;
4132               if (count > 0x8000)
4133                 total += 4 * (count - 0x8000);
4134             }
4135         }
4136     }
4137   this->end_branch_table_ = total;
4138   total = (total + 15) & -16;
4139   total += this->ge_size_;
4140
4141   this->set_data_size(total);
4142 }
4143
4144 // Write out plt and long branch stub code.
4145
4146 template<int size, bool big_endian>
4147 void
4148 Stub_table<size, big_endian>::do_write(Output_file* of)
4149 {
4150   if (this->plt_call_stubs_.empty()
4151       && this->long_branch_stubs_.empty())
4152     return;
4153
4154   const section_size_type start_off = this->offset();
4155   const section_size_type off = this->stub_offset();
4156   const section_size_type oview_size =
4157     convert_to_section_size_type(this->data_size() - (off - start_off));
4158   unsigned char* const oview = of->get_output_view(off, oview_size);
4159   unsigned char* p;
4160
4161   if (size == 64)
4162     {
4163       const Output_data_got_powerpc<size, big_endian>* got
4164         = this->targ_->got_section();
4165       Address got_os_addr = got->output_section()->address();
4166
4167       if (!this->plt_call_stubs_.empty())
4168         {
4169           // The base address of the .plt section.
4170           Address plt_base = this->targ_->plt_section()->address();
4171           Address iplt_base = invalid_address;
4172
4173           // Write out plt call stubs.
4174           typename Plt_stub_entries::const_iterator cs;
4175           for (cs = this->plt_call_stubs_.begin();
4176                cs != this->plt_call_stubs_.end();
4177                ++cs)
4178             {
4179               bool is_iplt;
4180               Address pltoff = this->plt_off(cs, &is_iplt);
4181               Address plt_addr = pltoff;
4182               if (is_iplt)
4183                 {
4184                   if (iplt_base == invalid_address)
4185                     iplt_base = this->targ_->iplt_section()->address();
4186                   plt_addr += iplt_base;
4187                 }
4188               else
4189                 plt_addr += plt_base;
4190               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4191                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4192               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4193               Address off = plt_addr - got_addr;
4194
4195               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4196                 gold_error(_("%s: linkage table error against `%s'"),
4197                            cs->first.object_->name().c_str(),
4198                            cs->first.sym_->demangled_name().c_str());
4199
4200               bool plt_load_toc = this->targ_->abiversion() < 2;
4201               bool static_chain
4202                 = plt_load_toc && parameters->options().plt_static_chain();
4203               bool thread_safe
4204                 = plt_load_toc && this->targ_->plt_thread_safe();
4205               bool use_fake_dep = false;
4206               Address cmp_branch_off = 0;
4207               if (thread_safe)
4208                 {
4209                   unsigned int pltindex
4210                     = ((pltoff - this->targ_->first_plt_entry_offset())
4211                        / this->targ_->plt_entry_size());
4212                   Address glinkoff
4213                     = (this->targ_->glink_section()->pltresolve_size
4214                        + pltindex * 8);
4215                   if (pltindex > 32768)
4216                     glinkoff += (pltindex - 32768) * 4;
4217                   Address to
4218                     = this->targ_->glink_section()->address() + glinkoff;
4219                   Address from
4220                     = (this->stub_address() + cs->second + 24
4221                        + 4 * (ha(off) != 0)
4222                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4223                        + 4 * static_chain);
4224                   cmp_branch_off = to - from;
4225                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4226                 }
4227
4228               p = oview + cs->second;
4229               if (ha(off) != 0)
4230                 {
4231                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4232                   p += 4;
4233                   if (plt_load_toc)
4234                     {
4235                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4236                       p += 4;
4237                       write_insn<big_endian>(p, ld_12_11 + l(off));
4238                       p += 4;
4239                     }
4240                   else
4241                     {
4242                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4243                       p += 4;
4244                       write_insn<big_endian>(p, ld_12_12 + l(off));
4245                       p += 4;
4246                     }
4247                   if (plt_load_toc
4248                       && ha(off + 8 + 8 * static_chain) != ha(off))
4249                     {
4250                       write_insn<big_endian>(p, addi_11_11 + l(off));
4251                       p += 4;
4252                       off = 0;
4253                     }
4254                   write_insn<big_endian>(p, mtctr_12);
4255                   p += 4;
4256                   if (plt_load_toc)
4257                     {
4258                       if (use_fake_dep)
4259                         {
4260                           write_insn<big_endian>(p, xor_2_12_12);
4261                           p += 4;
4262                           write_insn<big_endian>(p, add_11_11_2);
4263                           p += 4;
4264                         }
4265                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4266                       p += 4;
4267                       if (static_chain)
4268                         {
4269                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4270                           p += 4;
4271                         }
4272                     }
4273                 }
4274               else
4275                 {
4276                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4277                   p += 4;
4278                   write_insn<big_endian>(p, ld_12_2 + l(off));
4279                   p += 4;
4280                   if (plt_load_toc
4281                       && ha(off + 8 + 8 * static_chain) != ha(off))
4282                     {
4283                       write_insn<big_endian>(p, addi_2_2 + l(off));
4284                       p += 4;
4285                       off = 0;
4286                     }
4287                   write_insn<big_endian>(p, mtctr_12);
4288                   p += 4;
4289                   if (plt_load_toc)
4290                     {
4291                       if (use_fake_dep)
4292                         {
4293                           write_insn<big_endian>(p, xor_11_12_12);
4294                           p += 4;
4295                           write_insn<big_endian>(p, add_2_2_11);
4296                           p += 4;
4297                         }
4298                       if (static_chain)
4299                         {
4300                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4301                           p += 4;
4302                         }
4303                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4304                       p += 4;
4305                     }
4306                 }
4307               if (thread_safe && !use_fake_dep)
4308                 {
4309                   write_insn<big_endian>(p, cmpldi_2_0);
4310                   p += 4;
4311                   write_insn<big_endian>(p, bnectr_p4);
4312                   p += 4;
4313                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4314                 }
4315               else
4316                 write_insn<big_endian>(p, bctr);
4317             }
4318         }
4319
4320       // Write out long branch stubs.
4321       typename Branch_stub_entries::const_iterator bs;
4322       for (bs = this->long_branch_stubs_.begin();
4323            bs != this->long_branch_stubs_.end();
4324            ++bs)
4325         {
4326           p = oview + this->plt_size_ + bs->second;
4327           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4328           Address delta = bs->first.dest_ - loc;
4329           if (delta + (1 << 25) < 2 << 25)
4330             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4331           else
4332             {
4333               Address brlt_addr
4334                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4335               gold_assert(brlt_addr != invalid_address);
4336               brlt_addr += this->targ_->brlt_section()->address();
4337               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4338               Address brltoff = brlt_addr - got_addr;
4339               if (ha(brltoff) == 0)
4340                 {
4341                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4342                 }
4343               else
4344                 {
4345                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4346                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4347                 }
4348               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4349               write_insn<big_endian>(p, bctr);
4350             }
4351         }
4352     }
4353   else
4354     {
4355       if (!this->plt_call_stubs_.empty())
4356         {
4357           // The base address of the .plt section.
4358           Address plt_base = this->targ_->plt_section()->address();
4359           Address iplt_base = invalid_address;
4360           // The address of _GLOBAL_OFFSET_TABLE_.
4361           Address g_o_t = invalid_address;
4362
4363           // Write out plt call stubs.
4364           typename Plt_stub_entries::const_iterator cs;
4365           for (cs = this->plt_call_stubs_.begin();
4366                cs != this->plt_call_stubs_.end();
4367                ++cs)
4368             {
4369               bool is_iplt;
4370               Address plt_addr = this->plt_off(cs, &is_iplt);
4371               if (is_iplt)
4372                 {
4373                   if (iplt_base == invalid_address)
4374                     iplt_base = this->targ_->iplt_section()->address();
4375                   plt_addr += iplt_base;
4376                 }
4377               else
4378                 plt_addr += plt_base;
4379
4380               p = oview + cs->second;
4381               if (parameters->options().output_is_position_independent())
4382                 {
4383                   Address got_addr;
4384                   const Powerpc_relobj<size, big_endian>* ppcobj
4385                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4386                        (cs->first.object_));
4387                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4388                     {
4389                       unsigned int got2 = ppcobj->got2_shndx();
4390                       got_addr = ppcobj->get_output_section_offset(got2);
4391                       gold_assert(got_addr != invalid_address);
4392                       got_addr += (ppcobj->output_section(got2)->address()
4393                                    + cs->first.addend_);
4394                     }
4395                   else
4396                     {
4397                       if (g_o_t == invalid_address)
4398                         {
4399                           const Output_data_got_powerpc<size, big_endian>* got
4400                             = this->targ_->got_section();
4401                           g_o_t = got->address() + got->g_o_t();
4402                         }
4403                       got_addr = g_o_t;
4404                     }
4405
4406                   Address off = plt_addr - got_addr;
4407                   if (ha(off) == 0)
4408                     {
4409                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4410                       write_insn<big_endian>(p +  4, mtctr_11);
4411                       write_insn<big_endian>(p +  8, bctr);
4412                     }
4413                   else
4414                     {
4415                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4416                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4417                       write_insn<big_endian>(p +  8, mtctr_11);
4418                       write_insn<big_endian>(p + 12, bctr);
4419                     }
4420                 }
4421               else
4422                 {
4423                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4424                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4425                   write_insn<big_endian>(p +  8, mtctr_11);
4426                   write_insn<big_endian>(p + 12, bctr);
4427                 }
4428             }
4429         }
4430
4431       // Write out long branch stubs.
4432       typename Branch_stub_entries::const_iterator bs;
4433       for (bs = this->long_branch_stubs_.begin();
4434            bs != this->long_branch_stubs_.end();
4435            ++bs)
4436         {
4437           p = oview + this->plt_size_ + bs->second;
4438           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4439           Address delta = bs->first.dest_ - loc;
4440           if (delta + (1 << 25) < 2 << 25)
4441             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4442           else if (!parameters->options().output_is_position_independent())
4443             {
4444               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4445               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4446               write_insn<big_endian>(p +  8, mtctr_12);
4447               write_insn<big_endian>(p + 12, bctr);
4448             }
4449           else
4450             {
4451               delta -= 8;
4452               write_insn<big_endian>(p +  0, mflr_0);
4453               write_insn<big_endian>(p +  4, bcl_20_31);
4454               write_insn<big_endian>(p +  8, mflr_12);
4455               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4456               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4457               write_insn<big_endian>(p + 20, mtlr_0);
4458               write_insn<big_endian>(p + 24, mtctr_12);
4459               write_insn<big_endian>(p + 28, bctr);
4460             }
4461         }
4462     }
4463 }
4464
4465 // Write out .glink.
4466
4467 template<int size, bool big_endian>
4468 void
4469 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4470 {
4471   const section_size_type off = this->offset();
4472   const section_size_type oview_size =
4473     convert_to_section_size_type(this->data_size());
4474   unsigned char* const oview = of->get_output_view(off, oview_size);
4475   unsigned char* p;
4476
4477   // The base address of the .plt section.
4478   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4479   Address plt_base = this->targ_->plt_section()->address();
4480
4481   if (size == 64)
4482     {
4483       if (this->end_branch_table_ != 0)
4484         {
4485           // Write pltresolve stub.
4486           p = oview;
4487           Address after_bcl = this->address() + 16;
4488           Address pltoff = plt_base - after_bcl;
4489
4490           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4491
4492           if (this->targ_->abiversion() < 2)
4493             {
4494               write_insn<big_endian>(p, mflr_12),               p += 4;
4495               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4496               write_insn<big_endian>(p, mflr_11),               p += 4;
4497               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4498               write_insn<big_endian>(p, mtlr_12),               p += 4;
4499               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4500               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4501               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4502               write_insn<big_endian>(p, mtctr_12),              p += 4;
4503               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4504             }
4505           else
4506             {
4507               write_insn<big_endian>(p, mflr_0),                p += 4;
4508               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4509               write_insn<big_endian>(p, mflr_11),               p += 4;
4510               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4511               write_insn<big_endian>(p, mtlr_0),                p += 4;
4512               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4513               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4514               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4515               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4516               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4517               write_insn<big_endian>(p, mtctr_12),              p += 4;
4518               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4519             }
4520           write_insn<big_endian>(p, bctr),                      p += 4;
4521           while (p < oview + this->pltresolve_size)
4522             write_insn<big_endian>(p, nop), p += 4;
4523
4524           // Write lazy link call stubs.
4525           uint32_t indx = 0;
4526           while (p < oview + this->end_branch_table_)
4527             {
4528               if (this->targ_->abiversion() < 2)
4529                 {
4530                   if (indx < 0x8000)
4531                     {
4532                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4533                     }
4534                   else
4535                     {
4536                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4537                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4538                     }
4539                 }
4540               uint32_t branch_off = 8 - (p - oview);
4541               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4542               indx++;
4543             }
4544         }
4545
4546       Address plt_base = this->targ_->plt_section()->address();
4547       Address iplt_base = invalid_address;
4548       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4549       Address global_entry_base = this->address() + global_entry_off;
4550       typename Global_entry_stub_entries::const_iterator ge;
4551       for (ge = this->global_entry_stubs_.begin();
4552            ge != this->global_entry_stubs_.end();
4553            ++ge)
4554         {
4555           p = oview + global_entry_off + ge->second;
4556           Address plt_addr = ge->first->plt_offset();
4557           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4558               && ge->first->can_use_relative_reloc(false))
4559             {
4560               if (iplt_base == invalid_address)
4561                 iplt_base = this->targ_->iplt_section()->address();
4562               plt_addr += iplt_base;
4563             }
4564           else
4565             plt_addr += plt_base;
4566           Address my_addr = global_entry_base + ge->second;
4567           Address off = plt_addr - my_addr;
4568
4569           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4570             gold_error(_("%s: linkage table error against `%s'"),
4571                        ge->first->object()->name().c_str(),
4572                        ge->first->demangled_name().c_str());
4573
4574           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4575           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4576           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4577           write_insn<big_endian>(p, bctr);
4578         }
4579     }
4580   else
4581     {
4582       const Output_data_got_powerpc<size, big_endian>* got
4583         = this->targ_->got_section();
4584       // The address of _GLOBAL_OFFSET_TABLE_.
4585       Address g_o_t = got->address() + got->g_o_t();
4586
4587       // Write out pltresolve branch table.
4588       p = oview;
4589       unsigned int the_end = oview_size - this->pltresolve_size;
4590       unsigned char* end_p = oview + the_end;
4591       while (p < end_p - 8 * 4)
4592         write_insn<big_endian>(p, b + end_p - p), p += 4;
4593       while (p < end_p)
4594         write_insn<big_endian>(p, nop), p += 4;
4595
4596       // Write out pltresolve call stub.
4597       if (parameters->options().output_is_position_independent())
4598         {
4599           Address res0_off = 0;
4600           Address after_bcl_off = the_end + 12;
4601           Address bcl_res0 = after_bcl_off - res0_off;
4602
4603           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4604           write_insn<big_endian>(p +  4, mflr_0);
4605           write_insn<big_endian>(p +  8, bcl_20_31);
4606           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4607           write_insn<big_endian>(p + 16, mflr_12);
4608           write_insn<big_endian>(p + 20, mtlr_0);
4609           write_insn<big_endian>(p + 24, sub_11_11_12);
4610
4611           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4612
4613           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4614           if (ha(got_bcl) == ha(got_bcl + 4))
4615             {
4616               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4617               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4618             }
4619           else
4620             {
4621               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4622               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4623             }
4624           write_insn<big_endian>(p + 40, mtctr_0);
4625           write_insn<big_endian>(p + 44, add_0_11_11);
4626           write_insn<big_endian>(p + 48, add_11_0_11);
4627           write_insn<big_endian>(p + 52, bctr);
4628           write_insn<big_endian>(p + 56, nop);
4629           write_insn<big_endian>(p + 60, nop);
4630         }
4631       else
4632         {
4633           Address res0 = this->address();
4634
4635           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4636           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4637           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4638             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4639           else
4640             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4641           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4642           write_insn<big_endian>(p + 16, mtctr_0);
4643           write_insn<big_endian>(p + 20, add_0_11_11);
4644           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4645             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4646           else
4647             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4648           write_insn<big_endian>(p + 28, add_11_0_11);
4649           write_insn<big_endian>(p + 32, bctr);
4650           write_insn<big_endian>(p + 36, nop);
4651           write_insn<big_endian>(p + 40, nop);
4652           write_insn<big_endian>(p + 44, nop);
4653           write_insn<big_endian>(p + 48, nop);
4654           write_insn<big_endian>(p + 52, nop);
4655           write_insn<big_endian>(p + 56, nop);
4656           write_insn<big_endian>(p + 60, nop);
4657         }
4658       p += 64;
4659     }
4660
4661   of->write_output_view(off, oview_size, oview);
4662 }
4663
4664
4665 // A class to handle linker generated save/restore functions.
4666
4667 template<int size, bool big_endian>
4668 class Output_data_save_res : public Output_section_data_build
4669 {
4670  public:
4671   Output_data_save_res(Symbol_table* symtab);
4672
4673  protected:
4674   // Write to a map file.
4675   void
4676   do_print_to_mapfile(Mapfile* mapfile) const
4677   { mapfile->print_output_data(this, _("** save/restore")); }
4678
4679   void
4680   do_write(Output_file*);
4681
4682  private:
4683   // The maximum size of save/restore contents.
4684   static const unsigned int savres_max = 218*4;
4685
4686   void
4687   savres_define(Symbol_table* symtab,
4688                 const char *name,
4689                 unsigned int lo, unsigned int hi,
4690                 unsigned char* write_ent(unsigned char*, int),
4691                 unsigned char* write_tail(unsigned char*, int));
4692
4693   unsigned char *contents_;
4694 };
4695
4696 template<bool big_endian>
4697 static unsigned char*
4698 savegpr0(unsigned char* p, int r)
4699 {
4700   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4701   write_insn<big_endian>(p, insn);
4702   return p + 4;
4703 }
4704
4705 template<bool big_endian>
4706 static unsigned char*
4707 savegpr0_tail(unsigned char* p, int r)
4708 {
4709   p = savegpr0<big_endian>(p, r);
4710   uint32_t insn = std_0_1 + 16;
4711   write_insn<big_endian>(p, insn);
4712   p = p + 4;
4713   write_insn<big_endian>(p, blr);
4714   return p + 4;
4715 }
4716
4717 template<bool big_endian>
4718 static unsigned char*
4719 restgpr0(unsigned char* p, int r)
4720 {
4721   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4722   write_insn<big_endian>(p, insn);
4723   return p + 4;
4724 }
4725
4726 template<bool big_endian>
4727 static unsigned char*
4728 restgpr0_tail(unsigned char* p, int r)
4729 {
4730   uint32_t insn = ld_0_1 + 16;
4731   write_insn<big_endian>(p, insn);
4732   p = p + 4;
4733   p = restgpr0<big_endian>(p, r);
4734   write_insn<big_endian>(p, mtlr_0);
4735   p = p + 4;
4736   if (r == 29)
4737     {
4738       p = restgpr0<big_endian>(p, 30);
4739       p = restgpr0<big_endian>(p, 31);
4740     }
4741   write_insn<big_endian>(p, blr);
4742   return p + 4;
4743 }
4744
4745 template<bool big_endian>
4746 static unsigned char*
4747 savegpr1(unsigned char* p, int r)
4748 {
4749   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4750   write_insn<big_endian>(p, insn);
4751   return p + 4;
4752 }
4753
4754 template<bool big_endian>
4755 static unsigned char*
4756 savegpr1_tail(unsigned char* p, int r)
4757 {
4758   p = savegpr1<big_endian>(p, r);
4759   write_insn<big_endian>(p, blr);
4760   return p + 4;
4761 }
4762
4763 template<bool big_endian>
4764 static unsigned char*
4765 restgpr1(unsigned char* p, int r)
4766 {
4767   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4768   write_insn<big_endian>(p, insn);
4769   return p + 4;
4770 }
4771
4772 template<bool big_endian>
4773 static unsigned char*
4774 restgpr1_tail(unsigned char* p, int r)
4775 {
4776   p = restgpr1<big_endian>(p, r);
4777   write_insn<big_endian>(p, blr);
4778   return p + 4;
4779 }
4780
4781 template<bool big_endian>
4782 static unsigned char*
4783 savefpr(unsigned char* p, int r)
4784 {
4785   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4786   write_insn<big_endian>(p, insn);
4787   return p + 4;
4788 }
4789
4790 template<bool big_endian>
4791 static unsigned char*
4792 savefpr0_tail(unsigned char* p, int r)
4793 {
4794   p = savefpr<big_endian>(p, r);
4795   write_insn<big_endian>(p, std_0_1 + 16);
4796   p = p + 4;
4797   write_insn<big_endian>(p, blr);
4798   return p + 4;
4799 }
4800
4801 template<bool big_endian>
4802 static unsigned char*
4803 restfpr(unsigned char* p, int r)
4804 {
4805   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4806   write_insn<big_endian>(p, insn);
4807   return p + 4;
4808 }
4809
4810 template<bool big_endian>
4811 static unsigned char*
4812 restfpr0_tail(unsigned char* p, int r)
4813 {
4814   write_insn<big_endian>(p, ld_0_1 + 16);
4815   p = p + 4;
4816   p = restfpr<big_endian>(p, r);
4817   write_insn<big_endian>(p, mtlr_0);
4818   p = p + 4;
4819   if (r == 29)
4820     {
4821       p = restfpr<big_endian>(p, 30);
4822       p = restfpr<big_endian>(p, 31);
4823     }
4824   write_insn<big_endian>(p, blr);
4825   return p + 4;
4826 }
4827
4828 template<bool big_endian>
4829 static unsigned char*
4830 savefpr1_tail(unsigned char* p, int r)
4831 {
4832   p = savefpr<big_endian>(p, r);
4833   write_insn<big_endian>(p, blr);
4834   return p + 4;
4835 }
4836
4837 template<bool big_endian>
4838 static unsigned char*
4839 restfpr1_tail(unsigned char* p, int r)
4840 {
4841   p = restfpr<big_endian>(p, r);
4842   write_insn<big_endian>(p, blr);
4843   return p + 4;
4844 }
4845
4846 template<bool big_endian>
4847 static unsigned char*
4848 savevr(unsigned char* p, int r)
4849 {
4850   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4851   write_insn<big_endian>(p, insn);
4852   p = p + 4;
4853   insn = stvx_0_12_0 + (r << 21);
4854   write_insn<big_endian>(p, insn);
4855   return p + 4;
4856 }
4857
4858 template<bool big_endian>
4859 static unsigned char*
4860 savevr_tail(unsigned char* p, int r)
4861 {
4862   p = savevr<big_endian>(p, r);
4863   write_insn<big_endian>(p, blr);
4864   return p + 4;
4865 }
4866
4867 template<bool big_endian>
4868 static unsigned char*
4869 restvr(unsigned char* p, int r)
4870 {
4871   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4872   write_insn<big_endian>(p, insn);
4873   p = p + 4;
4874   insn = lvx_0_12_0 + (r << 21);
4875   write_insn<big_endian>(p, insn);
4876   return p + 4;
4877 }
4878
4879 template<bool big_endian>
4880 static unsigned char*
4881 restvr_tail(unsigned char* p, int r)
4882 {
4883   p = restvr<big_endian>(p, r);
4884   write_insn<big_endian>(p, blr);
4885   return p + 4;
4886 }
4887
4888
4889 template<int size, bool big_endian>
4890 Output_data_save_res<size, big_endian>::Output_data_save_res(
4891     Symbol_table* symtab)
4892   : Output_section_data_build(4),
4893     contents_(NULL)
4894 {
4895   this->savres_define(symtab,
4896                       "_savegpr0_", 14, 31,
4897                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4898   this->savres_define(symtab,
4899                       "_restgpr0_", 14, 29,
4900                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4901   this->savres_define(symtab,
4902                       "_restgpr0_", 30, 31,
4903                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4904   this->savres_define(symtab,
4905                       "_savegpr1_", 14, 31,
4906                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4907   this->savres_define(symtab,
4908                       "_restgpr1_", 14, 31,
4909                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4910   this->savres_define(symtab,
4911                       "_savefpr_", 14, 31,
4912                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4913   this->savres_define(symtab,
4914                       "_restfpr_", 14, 29,
4915                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4916   this->savres_define(symtab,
4917                       "_restfpr_", 30, 31,
4918                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4919   this->savres_define(symtab,
4920                       "._savef", 14, 31,
4921                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4922   this->savres_define(symtab,
4923                       "._restf", 14, 31,
4924                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4925   this->savres_define(symtab,
4926                       "_savevr_", 20, 31,
4927                       savevr<big_endian>, savevr_tail<big_endian>);
4928   this->savres_define(symtab,
4929                       "_restvr_", 20, 31,
4930                       restvr<big_endian>, restvr_tail<big_endian>);
4931 }
4932
4933 template<int size, bool big_endian>
4934 void
4935 Output_data_save_res<size, big_endian>::savres_define(
4936     Symbol_table* symtab,
4937     const char *name,
4938     unsigned int lo, unsigned int hi,
4939     unsigned char* write_ent(unsigned char*, int),
4940     unsigned char* write_tail(unsigned char*, int))
4941 {
4942   size_t len = strlen(name);
4943   bool writing = false;
4944   char sym[16];
4945
4946   memcpy(sym, name, len);
4947   sym[len + 2] = 0;
4948
4949   for (unsigned int i = lo; i <= hi; i++)
4950     {
4951       sym[len + 0] = i / 10 + '0';
4952       sym[len + 1] = i % 10 + '0';
4953       Symbol* gsym = symtab->lookup(sym);
4954       bool refd = gsym != NULL && gsym->is_undefined();
4955       writing = writing || refd;
4956       if (writing)
4957         {
4958           if (this->contents_ == NULL)
4959             this->contents_ = new unsigned char[this->savres_max];
4960
4961           section_size_type value = this->current_data_size();
4962           unsigned char* p = this->contents_ + value;
4963           if (i != hi)
4964             p = write_ent(p, i);
4965           else
4966             p = write_tail(p, i);
4967           section_size_type cur_size = p - this->contents_;
4968           this->set_current_data_size(cur_size);
4969           if (refd)
4970             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4971                                           this, value, cur_size - value,
4972                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4973                                           elfcpp::STV_HIDDEN, 0, false, false);
4974         }
4975     }
4976 }
4977
4978 // Write out save/restore.
4979
4980 template<int size, bool big_endian>
4981 void
4982 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4983 {
4984   const section_size_type off = this->offset();
4985   const section_size_type oview_size =
4986     convert_to_section_size_type(this->data_size());
4987   unsigned char* const oview = of->get_output_view(off, oview_size);
4988   memcpy(oview, this->contents_, oview_size);
4989   of->write_output_view(off, oview_size, oview);
4990 }
4991
4992
4993 // Create the glink section.
4994
4995 template<int size, bool big_endian>
4996 void
4997 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4998 {
4999   if (this->glink_ == NULL)
5000     {
5001       this->glink_ = new Output_data_glink<size, big_endian>(this);
5002       this->glink_->add_eh_frame(layout);
5003       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5004                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5005                                       this->glink_, ORDER_TEXT, false);
5006     }
5007 }
5008
5009 // Create a PLT entry for a global symbol.
5010
5011 template<int size, bool big_endian>
5012 void
5013 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5014                                                  Layout* layout,
5015                                                  Symbol* gsym)
5016 {
5017   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5018       && gsym->can_use_relative_reloc(false))
5019     {
5020       if (this->iplt_ == NULL)
5021         this->make_iplt_section(symtab, layout);
5022       this->iplt_->add_ifunc_entry(gsym);
5023     }
5024   else
5025     {
5026       if (this->plt_ == NULL)
5027         this->make_plt_section(symtab, layout);
5028       this->plt_->add_entry(gsym);
5029     }
5030 }
5031
5032 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5033
5034 template<int size, bool big_endian>
5035 void
5036 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5037     Symbol_table* symtab,
5038     Layout* layout,
5039     Sized_relobj_file<size, big_endian>* relobj,
5040     unsigned int r_sym)
5041 {
5042   if (this->iplt_ == NULL)
5043     this->make_iplt_section(symtab, layout);
5044   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5045 }
5046
5047 // Return the number of entries in the PLT.
5048
5049 template<int size, bool big_endian>
5050 unsigned int
5051 Target_powerpc<size, big_endian>::plt_entry_count() const
5052 {
5053   if (this->plt_ == NULL)
5054     return 0;
5055   return this->plt_->entry_count();
5056 }
5057
5058 // Create a GOT entry for local dynamic __tls_get_addr calls.
5059
5060 template<int size, bool big_endian>
5061 unsigned int
5062 Target_powerpc<size, big_endian>::tlsld_got_offset(
5063     Symbol_table* symtab,
5064     Layout* layout,
5065     Sized_relobj_file<size, big_endian>* object)
5066 {
5067   if (this->tlsld_got_offset_ == -1U)
5068     {
5069       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5070       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5071       Output_data_got_powerpc<size, big_endian>* got
5072         = this->got_section(symtab, layout);
5073       unsigned int got_offset = got->add_constant_pair(0, 0);
5074       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5075                           got_offset, 0);
5076       this->tlsld_got_offset_ = got_offset;
5077     }
5078   return this->tlsld_got_offset_;
5079 }
5080
5081 // Get the Reference_flags for a particular relocation.
5082
5083 template<int size, bool big_endian>
5084 int
5085 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5086     unsigned int r_type,
5087     const Target_powerpc* target)
5088 {
5089   int ref = 0;
5090
5091   switch (r_type)
5092     {
5093     case elfcpp::R_POWERPC_NONE:
5094     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5095     case elfcpp::R_POWERPC_GNU_VTENTRY:
5096     case elfcpp::R_PPC64_TOC:
5097       // No symbol reference.
5098       break;
5099
5100     case elfcpp::R_PPC64_ADDR64:
5101     case elfcpp::R_PPC64_UADDR64:
5102     case elfcpp::R_POWERPC_ADDR32:
5103     case elfcpp::R_POWERPC_UADDR32:
5104     case elfcpp::R_POWERPC_ADDR16:
5105     case elfcpp::R_POWERPC_UADDR16:
5106     case elfcpp::R_POWERPC_ADDR16_LO:
5107     case elfcpp::R_POWERPC_ADDR16_HI:
5108     case elfcpp::R_POWERPC_ADDR16_HA:
5109       ref = Symbol::ABSOLUTE_REF;
5110       break;
5111
5112     case elfcpp::R_POWERPC_ADDR24:
5113     case elfcpp::R_POWERPC_ADDR14:
5114     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5115     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5116       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5117       break;
5118
5119     case elfcpp::R_PPC64_REL64:
5120     case elfcpp::R_POWERPC_REL32:
5121     case elfcpp::R_PPC_LOCAL24PC:
5122     case elfcpp::R_POWERPC_REL16:
5123     case elfcpp::R_POWERPC_REL16_LO:
5124     case elfcpp::R_POWERPC_REL16_HI:
5125     case elfcpp::R_POWERPC_REL16_HA:
5126       ref = Symbol::RELATIVE_REF;
5127       break;
5128
5129     case elfcpp::R_POWERPC_REL24:
5130     case elfcpp::R_PPC_PLTREL24:
5131     case elfcpp::R_POWERPC_REL14:
5132     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5133     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5134       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5135       break;
5136
5137     case elfcpp::R_POWERPC_GOT16:
5138     case elfcpp::R_POWERPC_GOT16_LO:
5139     case elfcpp::R_POWERPC_GOT16_HI:
5140     case elfcpp::R_POWERPC_GOT16_HA:
5141     case elfcpp::R_PPC64_GOT16_DS:
5142     case elfcpp::R_PPC64_GOT16_LO_DS:
5143     case elfcpp::R_PPC64_TOC16:
5144     case elfcpp::R_PPC64_TOC16_LO:
5145     case elfcpp::R_PPC64_TOC16_HI:
5146     case elfcpp::R_PPC64_TOC16_HA:
5147     case elfcpp::R_PPC64_TOC16_DS:
5148     case elfcpp::R_PPC64_TOC16_LO_DS:
5149       // Absolute in GOT.
5150       ref = Symbol::ABSOLUTE_REF;
5151       break;
5152
5153     case elfcpp::R_POWERPC_GOT_TPREL16:
5154     case elfcpp::R_POWERPC_TLS:
5155       ref = Symbol::TLS_REF;
5156       break;
5157
5158     case elfcpp::R_POWERPC_COPY:
5159     case elfcpp::R_POWERPC_GLOB_DAT:
5160     case elfcpp::R_POWERPC_JMP_SLOT:
5161     case elfcpp::R_POWERPC_RELATIVE:
5162     case elfcpp::R_POWERPC_DTPMOD:
5163     default:
5164       // Not expected.  We will give an error later.
5165       break;
5166     }
5167
5168   if (size == 64 && target->abiversion() < 2)
5169     ref |= Symbol::FUNC_DESC_ABI;
5170   return ref;
5171 }
5172
5173 // Report an unsupported relocation against a local symbol.
5174
5175 template<int size, bool big_endian>
5176 void
5177 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5178     Sized_relobj_file<size, big_endian>* object,
5179     unsigned int r_type)
5180 {
5181   gold_error(_("%s: unsupported reloc %u against local symbol"),
5182              object->name().c_str(), r_type);
5183 }
5184
5185 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5186 // dynamic linker does not support it, issue an error.
5187
5188 template<int size, bool big_endian>
5189 void
5190 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5191                                                       unsigned int r_type)
5192 {
5193   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5194
5195   // These are the relocation types supported by glibc for both 32-bit
5196   // and 64-bit powerpc.
5197   switch (r_type)
5198     {
5199     case elfcpp::R_POWERPC_NONE:
5200     case elfcpp::R_POWERPC_RELATIVE:
5201     case elfcpp::R_POWERPC_GLOB_DAT:
5202     case elfcpp::R_POWERPC_DTPMOD:
5203     case elfcpp::R_POWERPC_DTPREL:
5204     case elfcpp::R_POWERPC_TPREL:
5205     case elfcpp::R_POWERPC_JMP_SLOT:
5206     case elfcpp::R_POWERPC_COPY:
5207     case elfcpp::R_POWERPC_IRELATIVE:
5208     case elfcpp::R_POWERPC_ADDR32:
5209     case elfcpp::R_POWERPC_UADDR32:
5210     case elfcpp::R_POWERPC_ADDR24:
5211     case elfcpp::R_POWERPC_ADDR16:
5212     case elfcpp::R_POWERPC_UADDR16:
5213     case elfcpp::R_POWERPC_ADDR16_LO:
5214     case elfcpp::R_POWERPC_ADDR16_HI:
5215     case elfcpp::R_POWERPC_ADDR16_HA:
5216     case elfcpp::R_POWERPC_ADDR14:
5217     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5218     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5219     case elfcpp::R_POWERPC_REL32:
5220     case elfcpp::R_POWERPC_REL24:
5221     case elfcpp::R_POWERPC_TPREL16:
5222     case elfcpp::R_POWERPC_TPREL16_LO:
5223     case elfcpp::R_POWERPC_TPREL16_HI:
5224     case elfcpp::R_POWERPC_TPREL16_HA:
5225       return;
5226
5227     default:
5228       break;
5229     }
5230
5231   if (size == 64)
5232     {
5233       switch (r_type)
5234         {
5235           // These are the relocation types supported only on 64-bit.
5236         case elfcpp::R_PPC64_ADDR64:
5237         case elfcpp::R_PPC64_UADDR64:
5238         case elfcpp::R_PPC64_JMP_IREL:
5239         case elfcpp::R_PPC64_ADDR16_DS:
5240         case elfcpp::R_PPC64_ADDR16_LO_DS:
5241         case elfcpp::R_PPC64_ADDR16_HIGH:
5242         case elfcpp::R_PPC64_ADDR16_HIGHA:
5243         case elfcpp::R_PPC64_ADDR16_HIGHER:
5244         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5245         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5246         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5247         case elfcpp::R_PPC64_REL64:
5248         case elfcpp::R_POWERPC_ADDR30:
5249         case elfcpp::R_PPC64_TPREL16_DS:
5250         case elfcpp::R_PPC64_TPREL16_LO_DS:
5251         case elfcpp::R_PPC64_TPREL16_HIGH:
5252         case elfcpp::R_PPC64_TPREL16_HIGHA:
5253         case elfcpp::R_PPC64_TPREL16_HIGHER:
5254         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5255         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5256         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5257           return;
5258
5259         default:
5260           break;
5261         }
5262     }
5263   else
5264     {
5265       switch (r_type)
5266         {
5267           // These are the relocation types supported only on 32-bit.
5268           // ??? glibc ld.so doesn't need to support these.
5269         case elfcpp::R_POWERPC_DTPREL16:
5270         case elfcpp::R_POWERPC_DTPREL16_LO:
5271         case elfcpp::R_POWERPC_DTPREL16_HI:
5272         case elfcpp::R_POWERPC_DTPREL16_HA:
5273           return;
5274
5275         default:
5276           break;
5277         }
5278     }
5279
5280   // This prevents us from issuing more than one error per reloc
5281   // section.  But we can still wind up issuing more than one
5282   // error per object file.
5283   if (this->issued_non_pic_error_)
5284     return;
5285   gold_assert(parameters->options().output_is_position_independent());
5286   object->error(_("requires unsupported dynamic reloc; "
5287                   "recompile with -fPIC"));
5288   this->issued_non_pic_error_ = true;
5289   return;
5290 }
5291
5292 // Return whether we need to make a PLT entry for a relocation of the
5293 // given type against a STT_GNU_IFUNC symbol.
5294
5295 template<int size, bool big_endian>
5296 bool
5297 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5298      Target_powerpc<size, big_endian>* target,
5299      Sized_relobj_file<size, big_endian>* object,
5300      unsigned int r_type,
5301      bool report_err)
5302 {
5303   // In non-pic code any reference will resolve to the plt call stub
5304   // for the ifunc symbol.
5305   if ((size == 32 || target->abiversion() >= 2)
5306       && !parameters->options().output_is_position_independent())
5307     return true;
5308
5309   switch (r_type)
5310     {
5311     // Word size refs from data sections are OK, but don't need a PLT entry.
5312     case elfcpp::R_POWERPC_ADDR32:
5313     case elfcpp::R_POWERPC_UADDR32:
5314       if (size == 32)
5315         return false;
5316       break;
5317
5318     case elfcpp::R_PPC64_ADDR64:
5319     case elfcpp::R_PPC64_UADDR64:
5320       if (size == 64)
5321         return false;
5322       break;
5323
5324     // GOT refs are good, but also don't need a PLT entry.
5325     case elfcpp::R_POWERPC_GOT16:
5326     case elfcpp::R_POWERPC_GOT16_LO:
5327     case elfcpp::R_POWERPC_GOT16_HI:
5328     case elfcpp::R_POWERPC_GOT16_HA:
5329     case elfcpp::R_PPC64_GOT16_DS:
5330     case elfcpp::R_PPC64_GOT16_LO_DS:
5331       return false;
5332
5333     // Function calls are good, and these do need a PLT entry.
5334     case elfcpp::R_POWERPC_ADDR24:
5335     case elfcpp::R_POWERPC_ADDR14:
5336     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5337     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5338     case elfcpp::R_POWERPC_REL24:
5339     case elfcpp::R_PPC_PLTREL24:
5340     case elfcpp::R_POWERPC_REL14:
5341     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5342     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5343       return true;
5344
5345     default:
5346       break;
5347     }
5348
5349   // Anything else is a problem.
5350   // If we are building a static executable, the libc startup function
5351   // responsible for applying indirect function relocations is going
5352   // to complain about the reloc type.
5353   // If we are building a dynamic executable, we will have a text
5354   // relocation.  The dynamic loader will set the text segment
5355   // writable and non-executable to apply text relocations.  So we'll
5356   // segfault when trying to run the indirection function to resolve
5357   // the reloc.
5358   if (report_err)
5359     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5360                object->name().c_str(), r_type);
5361   return false;
5362 }
5363
5364 // Scan a relocation for a local symbol.
5365
5366 template<int size, bool big_endian>
5367 inline void
5368 Target_powerpc<size, big_endian>::Scan::local(
5369     Symbol_table* symtab,
5370     Layout* layout,
5371     Target_powerpc<size, big_endian>* target,
5372     Sized_relobj_file<size, big_endian>* object,
5373     unsigned int data_shndx,
5374     Output_section* output_section,
5375     const elfcpp::Rela<size, big_endian>& reloc,
5376     unsigned int r_type,
5377     const elfcpp::Sym<size, big_endian>& lsym,
5378     bool is_discarded)
5379 {
5380   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5381
5382   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5383       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5384     {
5385       this->expect_tls_get_addr_call();
5386       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5387       if (tls_type != tls::TLSOPT_NONE)
5388         this->skip_next_tls_get_addr_call();
5389     }
5390   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5391            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5392     {
5393       this->expect_tls_get_addr_call();
5394       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5395       if (tls_type != tls::TLSOPT_NONE)
5396         this->skip_next_tls_get_addr_call();
5397     }
5398
5399   Powerpc_relobj<size, big_endian>* ppc_object
5400     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5401
5402   if (is_discarded)
5403     {
5404       if (size == 64
5405           && data_shndx == ppc_object->opd_shndx()
5406           && r_type == elfcpp::R_PPC64_ADDR64)
5407         ppc_object->set_opd_discard(reloc.get_r_offset());
5408       return;
5409     }
5410
5411   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5412   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5413   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5414     {
5415       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5416       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5417                           r_type, r_sym, reloc.get_r_addend());
5418       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5419     }
5420
5421   switch (r_type)
5422     {
5423     case elfcpp::R_POWERPC_NONE:
5424     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5425     case elfcpp::R_POWERPC_GNU_VTENTRY:
5426     case elfcpp::R_PPC64_TOCSAVE:
5427     case elfcpp::R_POWERPC_TLS:
5428       break;
5429
5430     case elfcpp::R_PPC64_TOC:
5431       {
5432         Output_data_got_powerpc<size, big_endian>* got
5433           = target->got_section(symtab, layout);
5434         if (parameters->options().output_is_position_independent())
5435           {
5436             Address off = reloc.get_r_offset();
5437             if (size == 64
5438                 && target->abiversion() < 2
5439                 && data_shndx == ppc_object->opd_shndx()
5440                 && ppc_object->get_opd_discard(off - 8))
5441               break;
5442
5443             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5444             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5445             rela_dyn->add_output_section_relative(got->output_section(),
5446                                                   elfcpp::R_POWERPC_RELATIVE,
5447                                                   output_section,
5448                                                   object, data_shndx, off,
5449                                                   symobj->toc_base_offset());
5450           }
5451       }
5452       break;
5453
5454     case elfcpp::R_PPC64_ADDR64:
5455     case elfcpp::R_PPC64_UADDR64:
5456     case elfcpp::R_POWERPC_ADDR32:
5457     case elfcpp::R_POWERPC_UADDR32:
5458     case elfcpp::R_POWERPC_ADDR24:
5459     case elfcpp::R_POWERPC_ADDR16:
5460     case elfcpp::R_POWERPC_ADDR16_LO:
5461     case elfcpp::R_POWERPC_ADDR16_HI:
5462     case elfcpp::R_POWERPC_ADDR16_HA:
5463     case elfcpp::R_POWERPC_UADDR16:
5464     case elfcpp::R_PPC64_ADDR16_HIGH:
5465     case elfcpp::R_PPC64_ADDR16_HIGHA:
5466     case elfcpp::R_PPC64_ADDR16_HIGHER:
5467     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5468     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5469     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5470     case elfcpp::R_PPC64_ADDR16_DS:
5471     case elfcpp::R_PPC64_ADDR16_LO_DS:
5472     case elfcpp::R_POWERPC_ADDR14:
5473     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5474     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5475       // If building a shared library (or a position-independent
5476       // executable), we need to create a dynamic relocation for
5477       // this location.
5478       if (parameters->options().output_is_position_independent()
5479           || (size == 64 && is_ifunc && target->abiversion() < 2))
5480         {
5481           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5482                                                              is_ifunc);
5483           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5484           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5485               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5486             {
5487               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5488                                      : elfcpp::R_POWERPC_RELATIVE);
5489               rela_dyn->add_local_relative(object, r_sym, dynrel,
5490                                            output_section, data_shndx,
5491                                            reloc.get_r_offset(),
5492                                            reloc.get_r_addend(), false);
5493             }
5494           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5495             {
5496               check_non_pic(object, r_type);
5497               rela_dyn->add_local(object, r_sym, r_type, output_section,
5498                                   data_shndx, reloc.get_r_offset(),
5499                                   reloc.get_r_addend());
5500             }
5501           else
5502             {
5503               gold_assert(lsym.get_st_value() == 0);
5504               unsigned int shndx = lsym.get_st_shndx();
5505               bool is_ordinary;
5506               shndx = object->adjust_sym_shndx(r_sym, shndx,
5507                                                &is_ordinary);
5508               if (!is_ordinary)
5509                 object->error(_("section symbol %u has bad shndx %u"),
5510                               r_sym, shndx);
5511               else
5512                 rela_dyn->add_local_section(object, shndx, r_type,
5513                                             output_section, data_shndx,
5514                                             reloc.get_r_offset());
5515             }
5516         }
5517       break;
5518
5519     case elfcpp::R_POWERPC_REL24:
5520     case elfcpp::R_PPC_PLTREL24:
5521     case elfcpp::R_PPC_LOCAL24PC:
5522     case elfcpp::R_POWERPC_REL14:
5523     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5524     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5525       if (!is_ifunc)
5526         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5527                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5528                             reloc.get_r_addend());
5529       break;
5530
5531     case elfcpp::R_PPC64_REL64:
5532     case elfcpp::R_POWERPC_REL32:
5533     case elfcpp::R_POWERPC_REL16:
5534     case elfcpp::R_POWERPC_REL16_LO:
5535     case elfcpp::R_POWERPC_REL16_HI:
5536     case elfcpp::R_POWERPC_REL16_HA:
5537     case elfcpp::R_POWERPC_SECTOFF:
5538     case elfcpp::R_POWERPC_SECTOFF_LO:
5539     case elfcpp::R_POWERPC_SECTOFF_HI:
5540     case elfcpp::R_POWERPC_SECTOFF_HA:
5541     case elfcpp::R_PPC64_SECTOFF_DS:
5542     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5543     case elfcpp::R_POWERPC_TPREL16:
5544     case elfcpp::R_POWERPC_TPREL16_LO:
5545     case elfcpp::R_POWERPC_TPREL16_HI:
5546     case elfcpp::R_POWERPC_TPREL16_HA:
5547     case elfcpp::R_PPC64_TPREL16_DS:
5548     case elfcpp::R_PPC64_TPREL16_LO_DS:
5549     case elfcpp::R_PPC64_TPREL16_HIGH:
5550     case elfcpp::R_PPC64_TPREL16_HIGHA:
5551     case elfcpp::R_PPC64_TPREL16_HIGHER:
5552     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5553     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5554     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5555     case elfcpp::R_POWERPC_DTPREL16:
5556     case elfcpp::R_POWERPC_DTPREL16_LO:
5557     case elfcpp::R_POWERPC_DTPREL16_HI:
5558     case elfcpp::R_POWERPC_DTPREL16_HA:
5559     case elfcpp::R_PPC64_DTPREL16_DS:
5560     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5561     case elfcpp::R_PPC64_DTPREL16_HIGH:
5562     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5563     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5564     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5565     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5566     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5567     case elfcpp::R_PPC64_TLSGD:
5568     case elfcpp::R_PPC64_TLSLD:
5569     case elfcpp::R_PPC64_ADDR64_LOCAL:
5570       break;
5571
5572     case elfcpp::R_POWERPC_GOT16:
5573     case elfcpp::R_POWERPC_GOT16_LO:
5574     case elfcpp::R_POWERPC_GOT16_HI:
5575     case elfcpp::R_POWERPC_GOT16_HA:
5576     case elfcpp::R_PPC64_GOT16_DS:
5577     case elfcpp::R_PPC64_GOT16_LO_DS:
5578       {
5579         // The symbol requires a GOT entry.
5580         Output_data_got_powerpc<size, big_endian>* got
5581           = target->got_section(symtab, layout);
5582         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5583
5584         if (!parameters->options().output_is_position_independent())
5585           {
5586             if ((size == 32 && is_ifunc)
5587                 || (size == 64 && target->abiversion() >= 2))
5588               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5589             else
5590               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5591           }
5592         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5593           {
5594             // If we are generating a shared object or a pie, this
5595             // symbol's GOT entry will be set by a dynamic relocation.
5596             unsigned int off;
5597             off = got->add_constant(0);
5598             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5599
5600             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5601                                                                is_ifunc);
5602             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5603                                    : elfcpp::R_POWERPC_RELATIVE);
5604             rela_dyn->add_local_relative(object, r_sym, dynrel,
5605                                          got, off, 0, false);
5606           }
5607       }
5608       break;
5609
5610     case elfcpp::R_PPC64_TOC16:
5611     case elfcpp::R_PPC64_TOC16_LO:
5612     case elfcpp::R_PPC64_TOC16_HI:
5613     case elfcpp::R_PPC64_TOC16_HA:
5614     case elfcpp::R_PPC64_TOC16_DS:
5615     case elfcpp::R_PPC64_TOC16_LO_DS:
5616       // We need a GOT section.
5617       target->got_section(symtab, layout);
5618       break;
5619
5620     case elfcpp::R_POWERPC_GOT_TLSGD16:
5621     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5622     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5623     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5624       {
5625         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5626         if (tls_type == tls::TLSOPT_NONE)
5627           {
5628             Output_data_got_powerpc<size, big_endian>* got
5629               = target->got_section(symtab, layout);
5630             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5631             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5632             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5633                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5634           }
5635         else if (tls_type == tls::TLSOPT_TO_LE)
5636           {
5637             // no GOT relocs needed for Local Exec.
5638           }
5639         else
5640           gold_unreachable();
5641       }
5642       break;
5643
5644     case elfcpp::R_POWERPC_GOT_TLSLD16:
5645     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5646     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5647     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5648       {
5649         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5650         if (tls_type == tls::TLSOPT_NONE)
5651           target->tlsld_got_offset(symtab, layout, object);
5652         else if (tls_type == tls::TLSOPT_TO_LE)
5653           {
5654             // no GOT relocs needed for Local Exec.
5655             if (parameters->options().emit_relocs())
5656               {
5657                 Output_section* os = layout->tls_segment()->first_section();
5658                 gold_assert(os != NULL);
5659                 os->set_needs_symtab_index();
5660               }
5661           }
5662         else
5663           gold_unreachable();
5664       }
5665       break;
5666
5667     case elfcpp::R_POWERPC_GOT_DTPREL16:
5668     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5669     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5670     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5671       {
5672         Output_data_got_powerpc<size, big_endian>* got
5673           = target->got_section(symtab, layout);
5674         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5675         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5676       }
5677       break;
5678
5679     case elfcpp::R_POWERPC_GOT_TPREL16:
5680     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5681     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5682     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5683       {
5684         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5685         if (tls_type == tls::TLSOPT_NONE)
5686           {
5687             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5688             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5689               {
5690                 Output_data_got_powerpc<size, big_endian>* got
5691                   = target->got_section(symtab, layout);
5692                 unsigned int off = got->add_constant(0);
5693                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5694
5695                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5696                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5697                                                       elfcpp::R_POWERPC_TPREL,
5698                                                       got, off, 0);
5699               }
5700           }
5701         else if (tls_type == tls::TLSOPT_TO_LE)
5702           {
5703             // no GOT relocs needed for Local Exec.
5704           }
5705         else
5706           gold_unreachable();
5707       }
5708       break;
5709
5710     default:
5711       unsupported_reloc_local(object, r_type);
5712       break;
5713     }
5714
5715   switch (r_type)
5716     {
5717     case elfcpp::R_POWERPC_GOT_TLSLD16:
5718     case elfcpp::R_POWERPC_GOT_TLSGD16:
5719     case elfcpp::R_POWERPC_GOT_TPREL16:
5720     case elfcpp::R_POWERPC_GOT_DTPREL16:
5721     case elfcpp::R_POWERPC_GOT16:
5722     case elfcpp::R_PPC64_GOT16_DS:
5723     case elfcpp::R_PPC64_TOC16:
5724     case elfcpp::R_PPC64_TOC16_DS:
5725       ppc_object->set_has_small_toc_reloc();
5726     default:
5727       break;
5728     }
5729 }
5730
5731 // Report an unsupported relocation against a global symbol.
5732
5733 template<int size, bool big_endian>
5734 void
5735 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5736     Sized_relobj_file<size, big_endian>* object,
5737     unsigned int r_type,
5738     Symbol* gsym)
5739 {
5740   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5741              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5742 }
5743
5744 // Scan a relocation for a global symbol.
5745
5746 template<int size, bool big_endian>
5747 inline void
5748 Target_powerpc<size, big_endian>::Scan::global(
5749     Symbol_table* symtab,
5750     Layout* layout,
5751     Target_powerpc<size, big_endian>* target,
5752     Sized_relobj_file<size, big_endian>* object,
5753     unsigned int data_shndx,
5754     Output_section* output_section,
5755     const elfcpp::Rela<size, big_endian>& reloc,
5756     unsigned int r_type,
5757     Symbol* gsym)
5758 {
5759   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5760     return;
5761
5762   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5763       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5764     {
5765       this->expect_tls_get_addr_call();
5766       const bool final = gsym->final_value_is_known();
5767       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5768       if (tls_type != tls::TLSOPT_NONE)
5769         this->skip_next_tls_get_addr_call();
5770     }
5771   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5772            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5773     {
5774       this->expect_tls_get_addr_call();
5775       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5776       if (tls_type != tls::TLSOPT_NONE)
5777         this->skip_next_tls_get_addr_call();
5778     }
5779
5780   Powerpc_relobj<size, big_endian>* ppc_object
5781     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5782
5783   // A STT_GNU_IFUNC symbol may require a PLT entry.
5784   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5785   bool pushed_ifunc = false;
5786   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5787     {
5788       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5789                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5790                           reloc.get_r_addend());
5791       target->make_plt_entry(symtab, layout, gsym);
5792       pushed_ifunc = true;
5793     }
5794
5795   switch (r_type)
5796     {
5797     case elfcpp::R_POWERPC_NONE:
5798     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5799     case elfcpp::R_POWERPC_GNU_VTENTRY:
5800     case elfcpp::R_PPC_LOCAL24PC:
5801     case elfcpp::R_POWERPC_TLS:
5802       break;
5803
5804     case elfcpp::R_PPC64_TOC:
5805       {
5806         Output_data_got_powerpc<size, big_endian>* got
5807           = target->got_section(symtab, layout);
5808         if (parameters->options().output_is_position_independent())
5809           {
5810             Address off = reloc.get_r_offset();
5811             if (size == 64
5812                 && data_shndx == ppc_object->opd_shndx()
5813                 && ppc_object->get_opd_discard(off - 8))
5814               break;
5815
5816             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5817             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5818             if (data_shndx != ppc_object->opd_shndx())
5819               symobj = static_cast
5820                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5821             rela_dyn->add_output_section_relative(got->output_section(),
5822                                                   elfcpp::R_POWERPC_RELATIVE,
5823                                                   output_section,
5824                                                   object, data_shndx, off,
5825                                                   symobj->toc_base_offset());
5826           }
5827       }
5828       break;
5829
5830     case elfcpp::R_PPC64_ADDR64:
5831       if (size == 64
5832           && target->abiversion() < 2
5833           && data_shndx == ppc_object->opd_shndx()
5834           && (gsym->is_defined_in_discarded_section()
5835               || gsym->object() != object))
5836         {
5837           ppc_object->set_opd_discard(reloc.get_r_offset());
5838           break;
5839         }
5840       // Fall thru
5841     case elfcpp::R_PPC64_UADDR64:
5842     case elfcpp::R_POWERPC_ADDR32:
5843     case elfcpp::R_POWERPC_UADDR32:
5844     case elfcpp::R_POWERPC_ADDR24:
5845     case elfcpp::R_POWERPC_ADDR16:
5846     case elfcpp::R_POWERPC_ADDR16_LO:
5847     case elfcpp::R_POWERPC_ADDR16_HI:
5848     case elfcpp::R_POWERPC_ADDR16_HA:
5849     case elfcpp::R_POWERPC_UADDR16:
5850     case elfcpp::R_PPC64_ADDR16_HIGH:
5851     case elfcpp::R_PPC64_ADDR16_HIGHA:
5852     case elfcpp::R_PPC64_ADDR16_HIGHER:
5853     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5854     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5855     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5856     case elfcpp::R_PPC64_ADDR16_DS:
5857     case elfcpp::R_PPC64_ADDR16_LO_DS:
5858     case elfcpp::R_POWERPC_ADDR14:
5859     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5860     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5861       {
5862         // Make a PLT entry if necessary.
5863         if (gsym->needs_plt_entry())
5864           {
5865             // Since this is not a PC-relative relocation, we may be
5866             // taking the address of a function. In that case we need to
5867             // set the entry in the dynamic symbol table to the address of
5868             // the PLT call stub.
5869             bool need_ifunc_plt = false;
5870             if ((size == 32 || target->abiversion() >= 2)
5871                 && gsym->is_from_dynobj()
5872                 && !parameters->options().output_is_position_independent())
5873               {
5874                 gsym->set_needs_dynsym_value();
5875                 need_ifunc_plt = true;
5876               }
5877             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5878               {
5879                 target->push_branch(ppc_object, data_shndx,
5880                                     reloc.get_r_offset(), r_type,
5881                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5882                                     reloc.get_r_addend());
5883                 target->make_plt_entry(symtab, layout, gsym);
5884               }
5885           }
5886         // Make a dynamic relocation if necessary.
5887         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5888             || (size == 64 && is_ifunc && target->abiversion() < 2))
5889           {
5890             if (!parameters->options().output_is_position_independent()
5891                 && gsym->may_need_copy_reloc())
5892               {
5893                 target->copy_reloc(symtab, layout, object,
5894                                    data_shndx, output_section, gsym, reloc);
5895               }
5896             else if ((((size == 32
5897                         && r_type == elfcpp::R_POWERPC_ADDR32)
5898                        || (size == 64
5899                            && r_type == elfcpp::R_PPC64_ADDR64
5900                            && target->abiversion() >= 2))
5901                       && gsym->can_use_relative_reloc(false)
5902                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5903                            && parameters->options().shared()))
5904                      || (size == 64
5905                          && r_type == elfcpp::R_PPC64_ADDR64
5906                          && target->abiversion() < 2
5907                          && (gsym->can_use_relative_reloc(false)
5908                              || data_shndx == ppc_object->opd_shndx())))
5909               {
5910                 Reloc_section* rela_dyn
5911                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5912                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5913                                        : elfcpp::R_POWERPC_RELATIVE);
5914                 rela_dyn->add_symbolless_global_addend(
5915                     gsym, dynrel, output_section, object, data_shndx,
5916                     reloc.get_r_offset(), reloc.get_r_addend());
5917               }
5918             else
5919               {
5920                 Reloc_section* rela_dyn
5921                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5922                 check_non_pic(object, r_type);
5923                 rela_dyn->add_global(gsym, r_type, output_section,
5924                                      object, data_shndx,
5925                                      reloc.get_r_offset(),
5926                                      reloc.get_r_addend());
5927               }
5928           }
5929       }
5930       break;
5931
5932     case elfcpp::R_PPC_PLTREL24:
5933     case elfcpp::R_POWERPC_REL24:
5934       if (!is_ifunc)
5935         {
5936           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5937                               r_type,
5938                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5939                               reloc.get_r_addend());
5940           if (gsym->needs_plt_entry()
5941               || (!gsym->final_value_is_known()
5942                   && (gsym->is_undefined()
5943                       || gsym->is_from_dynobj()
5944                       || gsym->is_preemptible())))
5945             target->make_plt_entry(symtab, layout, gsym);
5946         }
5947       // Fall thru
5948
5949     case elfcpp::R_PPC64_REL64:
5950     case elfcpp::R_POWERPC_REL32:
5951       // Make a dynamic relocation if necessary.
5952       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5953         {
5954           if (!parameters->options().output_is_position_independent()
5955               && gsym->may_need_copy_reloc())
5956             {
5957               target->copy_reloc(symtab, layout, object,
5958                                  data_shndx, output_section, gsym,
5959                                  reloc);
5960             }
5961           else
5962             {
5963               Reloc_section* rela_dyn
5964                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5965               check_non_pic(object, r_type);
5966               rela_dyn->add_global(gsym, r_type, output_section, object,
5967                                    data_shndx, reloc.get_r_offset(),
5968                                    reloc.get_r_addend());
5969             }
5970         }
5971       break;
5972
5973     case elfcpp::R_POWERPC_REL14:
5974     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5975     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5976       if (!is_ifunc)
5977         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5978                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5979                             reloc.get_r_addend());
5980       break;
5981
5982     case elfcpp::R_POWERPC_REL16:
5983     case elfcpp::R_POWERPC_REL16_LO:
5984     case elfcpp::R_POWERPC_REL16_HI:
5985     case elfcpp::R_POWERPC_REL16_HA:
5986     case elfcpp::R_POWERPC_SECTOFF:
5987     case elfcpp::R_POWERPC_SECTOFF_LO:
5988     case elfcpp::R_POWERPC_SECTOFF_HI:
5989     case elfcpp::R_POWERPC_SECTOFF_HA:
5990     case elfcpp::R_PPC64_SECTOFF_DS:
5991     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5992     case elfcpp::R_POWERPC_TPREL16:
5993     case elfcpp::R_POWERPC_TPREL16_LO:
5994     case elfcpp::R_POWERPC_TPREL16_HI:
5995     case elfcpp::R_POWERPC_TPREL16_HA:
5996     case elfcpp::R_PPC64_TPREL16_DS:
5997     case elfcpp::R_PPC64_TPREL16_LO_DS:
5998     case elfcpp::R_PPC64_TPREL16_HIGH:
5999     case elfcpp::R_PPC64_TPREL16_HIGHA:
6000     case elfcpp::R_PPC64_TPREL16_HIGHER:
6001     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6002     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6003     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6004     case elfcpp::R_POWERPC_DTPREL16:
6005     case elfcpp::R_POWERPC_DTPREL16_LO:
6006     case elfcpp::R_POWERPC_DTPREL16_HI:
6007     case elfcpp::R_POWERPC_DTPREL16_HA:
6008     case elfcpp::R_PPC64_DTPREL16_DS:
6009     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6010     case elfcpp::R_PPC64_DTPREL16_HIGH:
6011     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6012     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6013     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6014     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6015     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6016     case elfcpp::R_PPC64_TLSGD:
6017     case elfcpp::R_PPC64_TLSLD:
6018     case elfcpp::R_PPC64_ADDR64_LOCAL:
6019       break;
6020
6021     case elfcpp::R_POWERPC_GOT16:
6022     case elfcpp::R_POWERPC_GOT16_LO:
6023     case elfcpp::R_POWERPC_GOT16_HI:
6024     case elfcpp::R_POWERPC_GOT16_HA:
6025     case elfcpp::R_PPC64_GOT16_DS:
6026     case elfcpp::R_PPC64_GOT16_LO_DS:
6027       {
6028         // The symbol requires a GOT entry.
6029         Output_data_got_powerpc<size, big_endian>* got;
6030
6031         got = target->got_section(symtab, layout);
6032         if (gsym->final_value_is_known())
6033           {
6034             if ((size == 32 && is_ifunc)
6035                 || (size == 64 && target->abiversion() >= 2))
6036               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6037             else
6038               got->add_global(gsym, GOT_TYPE_STANDARD);
6039           }
6040         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6041           {
6042             // If we are generating a shared object or a pie, this
6043             // symbol's GOT entry will be set by a dynamic relocation.
6044             unsigned int off = got->add_constant(0);
6045             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6046
6047             Reloc_section* rela_dyn
6048               = target->rela_dyn_section(symtab, layout, is_ifunc);
6049
6050             if (gsym->can_use_relative_reloc(false)
6051                 && !((size == 32
6052                       || target->abiversion() >= 2)
6053                      && gsym->visibility() == elfcpp::STV_PROTECTED
6054                      && parameters->options().shared()))
6055               {
6056                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6057                                        : elfcpp::R_POWERPC_RELATIVE);
6058                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6059               }
6060             else
6061               {
6062                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6063                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6064               }
6065           }
6066       }
6067       break;
6068
6069     case elfcpp::R_PPC64_TOC16:
6070     case elfcpp::R_PPC64_TOC16_LO:
6071     case elfcpp::R_PPC64_TOC16_HI:
6072     case elfcpp::R_PPC64_TOC16_HA:
6073     case elfcpp::R_PPC64_TOC16_DS:
6074     case elfcpp::R_PPC64_TOC16_LO_DS:
6075       // We need a GOT section.
6076       target->got_section(symtab, layout);
6077       break;
6078
6079     case elfcpp::R_POWERPC_GOT_TLSGD16:
6080     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6081     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6082     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6083       {
6084         const bool final = gsym->final_value_is_known();
6085         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6086         if (tls_type == tls::TLSOPT_NONE)
6087           {
6088             Output_data_got_powerpc<size, big_endian>* got
6089               = target->got_section(symtab, layout);
6090             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6091             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6092                                           elfcpp::R_POWERPC_DTPMOD,
6093                                           elfcpp::R_POWERPC_DTPREL);
6094           }
6095         else if (tls_type == tls::TLSOPT_TO_IE)
6096           {
6097             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6098               {
6099                 Output_data_got_powerpc<size, big_endian>* got
6100                   = target->got_section(symtab, layout);
6101                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6102                 if (gsym->is_undefined()
6103                     || gsym->is_from_dynobj())
6104                   {
6105                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6106                                              elfcpp::R_POWERPC_TPREL);
6107                   }
6108                 else
6109                   {
6110                     unsigned int off = got->add_constant(0);
6111                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6112                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6113                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6114                                                            got, off, 0);
6115                   }
6116               }
6117           }
6118         else if (tls_type == tls::TLSOPT_TO_LE)
6119           {
6120             // no GOT relocs needed for Local Exec.
6121           }
6122         else
6123           gold_unreachable();
6124       }
6125       break;
6126
6127     case elfcpp::R_POWERPC_GOT_TLSLD16:
6128     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6129     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6130     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6131       {
6132         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6133         if (tls_type == tls::TLSOPT_NONE)
6134           target->tlsld_got_offset(symtab, layout, object);
6135         else if (tls_type == tls::TLSOPT_TO_LE)
6136           {
6137             // no GOT relocs needed for Local Exec.
6138             if (parameters->options().emit_relocs())
6139               {
6140                 Output_section* os = layout->tls_segment()->first_section();
6141                 gold_assert(os != NULL);
6142                 os->set_needs_symtab_index();
6143               }
6144           }
6145         else
6146           gold_unreachable();
6147       }
6148       break;
6149
6150     case elfcpp::R_POWERPC_GOT_DTPREL16:
6151     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6152     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6153     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6154       {
6155         Output_data_got_powerpc<size, big_endian>* got
6156           = target->got_section(symtab, layout);
6157         if (!gsym->final_value_is_known()
6158             && (gsym->is_from_dynobj()
6159                 || gsym->is_undefined()
6160                 || gsym->is_preemptible()))
6161           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6162                                    target->rela_dyn_section(layout),
6163                                    elfcpp::R_POWERPC_DTPREL);
6164         else
6165           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6166       }
6167       break;
6168
6169     case elfcpp::R_POWERPC_GOT_TPREL16:
6170     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6171     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6172     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6173       {
6174         const bool final = gsym->final_value_is_known();
6175         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6176         if (tls_type == tls::TLSOPT_NONE)
6177           {
6178             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6179               {
6180                 Output_data_got_powerpc<size, big_endian>* got
6181                   = target->got_section(symtab, layout);
6182                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6183                 if (gsym->is_undefined()
6184                     || gsym->is_from_dynobj())
6185                   {
6186                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6187                                              elfcpp::R_POWERPC_TPREL);
6188                   }
6189                 else
6190                   {
6191                     unsigned int off = got->add_constant(0);
6192                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6193                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6194                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6195                                                            got, off, 0);
6196                   }
6197               }
6198           }
6199         else if (tls_type == tls::TLSOPT_TO_LE)
6200           {
6201             // no GOT relocs needed for Local Exec.
6202           }
6203         else
6204           gold_unreachable();
6205       }
6206       break;
6207
6208     default:
6209       unsupported_reloc_global(object, r_type, gsym);
6210       break;
6211     }
6212
6213   switch (r_type)
6214     {
6215     case elfcpp::R_POWERPC_GOT_TLSLD16:
6216     case elfcpp::R_POWERPC_GOT_TLSGD16:
6217     case elfcpp::R_POWERPC_GOT_TPREL16:
6218     case elfcpp::R_POWERPC_GOT_DTPREL16:
6219     case elfcpp::R_POWERPC_GOT16:
6220     case elfcpp::R_PPC64_GOT16_DS:
6221     case elfcpp::R_PPC64_TOC16:
6222     case elfcpp::R_PPC64_TOC16_DS:
6223       ppc_object->set_has_small_toc_reloc();
6224     default:
6225       break;
6226     }
6227 }
6228
6229 // Process relocations for gc.
6230
6231 template<int size, bool big_endian>
6232 void
6233 Target_powerpc<size, big_endian>::gc_process_relocs(
6234     Symbol_table* symtab,
6235     Layout* layout,
6236     Sized_relobj_file<size, big_endian>* object,
6237     unsigned int data_shndx,
6238     unsigned int,
6239     const unsigned char* prelocs,
6240     size_t reloc_count,
6241     Output_section* output_section,
6242     bool needs_special_offset_handling,
6243     size_t local_symbol_count,
6244     const unsigned char* plocal_symbols)
6245 {
6246   typedef Target_powerpc<size, big_endian> Powerpc;
6247   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6248   Powerpc_relobj<size, big_endian>* ppc_object
6249     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6250   if (size == 64)
6251     ppc_object->set_opd_valid();
6252   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6253     {
6254       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6255       for (p = ppc_object->access_from_map()->begin();
6256            p != ppc_object->access_from_map()->end();
6257            ++p)
6258         {
6259           Address dst_off = p->first;
6260           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6261           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6262           for (s = p->second.begin(); s != p->second.end(); ++s)
6263             {
6264               Object* src_obj = s->first;
6265               unsigned int src_indx = s->second;
6266               symtab->gc()->add_reference(src_obj, src_indx,
6267                                           ppc_object, dst_indx);
6268             }
6269           p->second.clear();
6270         }
6271       ppc_object->access_from_map()->clear();
6272       ppc_object->process_gc_mark(symtab);
6273       // Don't look at .opd relocs as .opd will reference everything.
6274       return;
6275     }
6276
6277   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6278                           typename Target_powerpc::Relocatable_size_for_reloc>(
6279     symtab,
6280     layout,
6281     this,
6282     object,
6283     data_shndx,
6284     prelocs,
6285     reloc_count,
6286     output_section,
6287     needs_special_offset_handling,
6288     local_symbol_count,
6289     plocal_symbols);
6290 }
6291
6292 // Handle target specific gc actions when adding a gc reference from
6293 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6294 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6295 // section of a function descriptor.
6296
6297 template<int size, bool big_endian>
6298 void
6299 Target_powerpc<size, big_endian>::do_gc_add_reference(
6300     Symbol_table* symtab,
6301     Object* src_obj,
6302     unsigned int src_shndx,
6303     Object* dst_obj,
6304     unsigned int dst_shndx,
6305     Address dst_off) const
6306 {
6307   if (size != 64 || dst_obj->is_dynamic())
6308     return;
6309
6310   Powerpc_relobj<size, big_endian>* ppc_object
6311     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6312   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6313     {
6314       if (ppc_object->opd_valid())
6315         {
6316           dst_shndx = ppc_object->get_opd_ent(dst_off);
6317           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6318         }
6319       else
6320         {
6321           // If we haven't run scan_opd_relocs, we must delay
6322           // processing this function descriptor reference.
6323           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6324         }
6325     }
6326 }
6327
6328 // Add any special sections for this symbol to the gc work list.
6329 // For powerpc64, this adds the code section of a function
6330 // descriptor.
6331
6332 template<int size, bool big_endian>
6333 void
6334 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6335     Symbol_table* symtab,
6336     Symbol* sym) const
6337 {
6338   if (size == 64)
6339     {
6340       Powerpc_relobj<size, big_endian>* ppc_object
6341         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6342       bool is_ordinary;
6343       unsigned int shndx = sym->shndx(&is_ordinary);
6344       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6345         {
6346           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6347           Address dst_off = gsym->value();
6348           if (ppc_object->opd_valid())
6349             {
6350               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6351               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6352             }
6353           else
6354             ppc_object->add_gc_mark(dst_off);
6355         }
6356     }
6357 }
6358
6359 // For a symbol location in .opd, set LOC to the location of the
6360 // function entry.
6361
6362 template<int size, bool big_endian>
6363 void
6364 Target_powerpc<size, big_endian>::do_function_location(
6365     Symbol_location* loc) const
6366 {
6367   if (size == 64 && loc->shndx != 0)
6368     {
6369       if (loc->object->is_dynamic())
6370         {
6371           Powerpc_dynobj<size, big_endian>* ppc_object
6372             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6373           if (loc->shndx == ppc_object->opd_shndx())
6374             {
6375               Address dest_off;
6376               Address off = loc->offset - ppc_object->opd_address();
6377               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6378               loc->offset = dest_off;
6379             }
6380         }
6381       else
6382         {
6383           const Powerpc_relobj<size, big_endian>* ppc_object
6384             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6385           if (loc->shndx == ppc_object->opd_shndx())
6386             {
6387               Address dest_off;
6388               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6389               loc->offset = dest_off;
6390             }
6391         }
6392     }
6393 }
6394
6395 // Scan relocations for a section.
6396
6397 template<int size, bool big_endian>
6398 void
6399 Target_powerpc<size, big_endian>::scan_relocs(
6400     Symbol_table* symtab,
6401     Layout* layout,
6402     Sized_relobj_file<size, big_endian>* object,
6403     unsigned int data_shndx,
6404     unsigned int sh_type,
6405     const unsigned char* prelocs,
6406     size_t reloc_count,
6407     Output_section* output_section,
6408     bool needs_special_offset_handling,
6409     size_t local_symbol_count,
6410     const unsigned char* plocal_symbols)
6411 {
6412   typedef Target_powerpc<size, big_endian> Powerpc;
6413   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6414
6415   if (sh_type == elfcpp::SHT_REL)
6416     {
6417       gold_error(_("%s: unsupported REL reloc section"),
6418                  object->name().c_str());
6419       return;
6420     }
6421
6422   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6423     symtab,
6424     layout,
6425     this,
6426     object,
6427     data_shndx,
6428     prelocs,
6429     reloc_count,
6430     output_section,
6431     needs_special_offset_handling,
6432     local_symbol_count,
6433     plocal_symbols);
6434 }
6435
6436 // Functor class for processing the global symbol table.
6437 // Removes symbols defined on discarded opd entries.
6438
6439 template<bool big_endian>
6440 class Global_symbol_visitor_opd
6441 {
6442  public:
6443   Global_symbol_visitor_opd()
6444   { }
6445
6446   void
6447   operator()(Sized_symbol<64>* sym)
6448   {
6449     if (sym->has_symtab_index()
6450         || sym->source() != Symbol::FROM_OBJECT
6451         || !sym->in_real_elf())
6452       return;
6453
6454     if (sym->object()->is_dynamic())
6455       return;
6456
6457     Powerpc_relobj<64, big_endian>* symobj
6458       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6459     if (symobj->opd_shndx() == 0)
6460       return;
6461
6462     bool is_ordinary;
6463     unsigned int shndx = sym->shndx(&is_ordinary);
6464     if (shndx == symobj->opd_shndx()
6465         && symobj->get_opd_discard(sym->value()))
6466       {
6467         sym->set_undefined();
6468         sym->set_is_defined_in_discarded_section();
6469         sym->set_symtab_index(-1U);
6470       }
6471   }
6472 };
6473
6474 template<int size, bool big_endian>
6475 void
6476 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6477     Layout* layout,
6478     Symbol_table* symtab)
6479 {
6480   if (size == 64)
6481     {
6482       Output_data_save_res<64, big_endian>* savres
6483         = new Output_data_save_res<64, big_endian>(symtab);
6484       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6485                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6486                                       savres, ORDER_TEXT, false);
6487     }
6488 }
6489
6490 // Sort linker created .got section first (for the header), then input
6491 // sections belonging to files using small model code.
6492
6493 template<bool big_endian>
6494 class Sort_toc_sections
6495 {
6496  public:
6497   bool
6498   operator()(const Output_section::Input_section& is1,
6499              const Output_section::Input_section& is2) const
6500   {
6501     if (!is1.is_input_section() && is2.is_input_section())
6502       return true;
6503     bool small1
6504       = (is1.is_input_section()
6505          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6506              ->has_small_toc_reloc()));
6507     bool small2
6508       = (is2.is_input_section()
6509          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6510              ->has_small_toc_reloc()));
6511     return small1 && !small2;
6512   }
6513 };
6514
6515 // Finalize the sections.
6516
6517 template<int size, bool big_endian>
6518 void
6519 Target_powerpc<size, big_endian>::do_finalize_sections(
6520     Layout* layout,
6521     const Input_objects*,
6522     Symbol_table* symtab)
6523 {
6524   if (parameters->doing_static_link())
6525     {
6526       // At least some versions of glibc elf-init.o have a strong
6527       // reference to __rela_iplt marker syms.  A weak ref would be
6528       // better..
6529       if (this->iplt_ != NULL)
6530         {
6531           Reloc_section* rel = this->iplt_->rel_plt();
6532           symtab->define_in_output_data("__rela_iplt_start", NULL,
6533                                         Symbol_table::PREDEFINED, rel, 0, 0,
6534                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6535                                         elfcpp::STV_HIDDEN, 0, false, true);
6536           symtab->define_in_output_data("__rela_iplt_end", NULL,
6537                                         Symbol_table::PREDEFINED, rel, 0, 0,
6538                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6539                                         elfcpp::STV_HIDDEN, 0, true, true);
6540         }
6541       else
6542         {
6543           symtab->define_as_constant("__rela_iplt_start", NULL,
6544                                      Symbol_table::PREDEFINED, 0, 0,
6545                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6546                                      elfcpp::STV_HIDDEN, 0, true, false);
6547           symtab->define_as_constant("__rela_iplt_end", NULL,
6548                                      Symbol_table::PREDEFINED, 0, 0,
6549                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6550                                      elfcpp::STV_HIDDEN, 0, true, false);
6551         }
6552     }
6553
6554   if (size == 64)
6555     {
6556       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6557       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6558
6559       if (!parameters->options().relocatable())
6560         {
6561           this->define_save_restore_funcs(layout, symtab);
6562
6563           // Annoyingly, we need to make these sections now whether or
6564           // not we need them.  If we delay until do_relax then we
6565           // need to mess with the relaxation machinery checkpointing.
6566           this->got_section(symtab, layout);
6567           this->make_brlt_section(layout);
6568
6569           if (parameters->options().toc_sort())
6570             {
6571               Output_section* os = this->got_->output_section();
6572               if (os != NULL && os->input_sections().size() > 1)
6573                 std::stable_sort(os->input_sections().begin(),
6574                                  os->input_sections().end(),
6575                                  Sort_toc_sections<big_endian>());
6576             }
6577         }
6578     }
6579
6580   // Fill in some more dynamic tags.
6581   Output_data_dynamic* odyn = layout->dynamic_data();
6582   if (odyn != NULL)
6583     {
6584       const Reloc_section* rel_plt = (this->plt_ == NULL
6585                                       ? NULL
6586                                       : this->plt_->rel_plt());
6587       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6588                                       this->rela_dyn_, true, size == 32);
6589
6590       if (size == 32)
6591         {
6592           if (this->got_ != NULL)
6593             {
6594               this->got_->finalize_data_size();
6595               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6596                                             this->got_, this->got_->g_o_t());
6597             }
6598         }
6599       else
6600         {
6601           if (this->glink_ != NULL)
6602             {
6603               this->glink_->finalize_data_size();
6604               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6605                                             this->glink_,
6606                                             (this->glink_->pltresolve_size
6607                                              - 32));
6608             }
6609         }
6610     }
6611
6612   // Emit any relocs we saved in an attempt to avoid generating COPY
6613   // relocs.
6614   if (this->copy_relocs_.any_saved_relocs())
6615     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6616 }
6617
6618 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6619 // reloc.
6620
6621 static bool
6622 ok_lo_toc_insn(uint32_t insn)
6623 {
6624   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6625           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6626           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6627           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6628           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6629           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6630           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6631           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6632           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6633           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6634           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6635           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6636           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6637           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6638           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6639               && (insn & 3) != 1)
6640           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6641               && ((insn & 3) == 0 || (insn & 3) == 3))
6642           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6643 }
6644
6645 // Return the value to use for a branch relocation.
6646
6647 template<int size, bool big_endian>
6648 bool
6649 Target_powerpc<size, big_endian>::symval_for_branch(
6650     const Symbol_table* symtab,
6651     const Sized_symbol<size>* gsym,
6652     Powerpc_relobj<size, big_endian>* object,
6653     Address *value,
6654     unsigned int *dest_shndx)
6655 {
6656   if (size == 32 || this->abiversion() >= 2)
6657     gold_unreachable();
6658   *dest_shndx = 0;
6659
6660   // If the symbol is defined in an opd section, ie. is a function
6661   // descriptor, use the function descriptor code entry address
6662   Powerpc_relobj<size, big_endian>* symobj = object;
6663   if (gsym != NULL
6664       && gsym->source() != Symbol::FROM_OBJECT)
6665     return true;
6666   if (gsym != NULL)
6667     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6668   unsigned int shndx = symobj->opd_shndx();
6669   if (shndx == 0)
6670     return true;
6671   Address opd_addr = symobj->get_output_section_offset(shndx);
6672   if (opd_addr == invalid_address)
6673     return true;
6674   opd_addr += symobj->output_section_address(shndx);
6675   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6676     {
6677       Address sec_off;
6678       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6679       if (symtab->is_section_folded(symobj, *dest_shndx))
6680         {
6681           Section_id folded
6682             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6683           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6684           *dest_shndx = folded.second;
6685         }
6686       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6687       if (sec_addr == invalid_address)
6688         return false;
6689
6690       sec_addr += symobj->output_section(*dest_shndx)->address();
6691       *value = sec_addr + sec_off;
6692     }
6693   return true;
6694 }
6695
6696 // Perform a relocation.
6697
6698 template<int size, bool big_endian>
6699 inline bool
6700 Target_powerpc<size, big_endian>::Relocate::relocate(
6701     const Relocate_info<size, big_endian>* relinfo,
6702     Target_powerpc* target,
6703     Output_section* os,
6704     size_t relnum,
6705     const elfcpp::Rela<size, big_endian>& rela,
6706     unsigned int r_type,
6707     const Sized_symbol<size>* gsym,
6708     const Symbol_value<size>* psymval,
6709     unsigned char* view,
6710     Address address,
6711     section_size_type view_size)
6712 {
6713   if (view == NULL)
6714     return true;
6715
6716   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6717     {
6718     case Track_tls::NOT_EXPECTED:
6719       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6720                              _("__tls_get_addr call lacks marker reloc"));
6721       break;
6722     case Track_tls::EXPECTED:
6723       // We have already complained.
6724       break;
6725     case Track_tls::SKIP:
6726       return true;
6727     case Track_tls::NORMAL:
6728       break;
6729     }
6730
6731   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6732   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6733   Powerpc_relobj<size, big_endian>* const object
6734     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6735   Address value = 0;
6736   bool has_stub_value = false;
6737   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6738   if ((gsym != NULL
6739        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6740        : object->local_has_plt_offset(r_sym))
6741       && (!psymval->is_ifunc_symbol()
6742           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6743     {
6744       if (size == 64
6745           && gsym != NULL
6746           && target->abiversion() >= 2
6747           && !parameters->options().output_is_position_independent()
6748           && !is_branch_reloc(r_type))
6749         {
6750           unsigned int off = target->glink_section()->find_global_entry(gsym);
6751           gold_assert(off != (unsigned int)-1);
6752           value = target->glink_section()->global_entry_address() + off;
6753         }
6754       else
6755         {
6756           Stub_table<size, big_endian>* stub_table
6757             = object->stub_table(relinfo->data_shndx);
6758           if (stub_table == NULL)
6759             {
6760               // This is a ref from a data section to an ifunc symbol.
6761               if (target->stub_tables().size() != 0)
6762                 stub_table = target->stub_tables()[0];
6763             }
6764           gold_assert(stub_table != NULL);
6765           Address off;
6766           if (gsym != NULL)
6767             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6768                                                   rela.get_r_addend());
6769           else
6770             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6771                                                   rela.get_r_addend());
6772           gold_assert(off != invalid_address);
6773           value = stub_table->stub_address() + off;
6774         }
6775       has_stub_value = true;
6776     }
6777
6778   if (r_type == elfcpp::R_POWERPC_GOT16
6779       || r_type == elfcpp::R_POWERPC_GOT16_LO
6780       || r_type == elfcpp::R_POWERPC_GOT16_HI
6781       || r_type == elfcpp::R_POWERPC_GOT16_HA
6782       || r_type == elfcpp::R_PPC64_GOT16_DS
6783       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6784     {
6785       if (gsym != NULL)
6786         {
6787           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6788           value = gsym->got_offset(GOT_TYPE_STANDARD);
6789         }
6790       else
6791         {
6792           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6793           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6794           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6795         }
6796       value -= target->got_section()->got_base_offset(object);
6797     }
6798   else if (r_type == elfcpp::R_PPC64_TOC)
6799     {
6800       value = (target->got_section()->output_section()->address()
6801                + object->toc_base_offset());
6802     }
6803   else if (gsym != NULL
6804            && (r_type == elfcpp::R_POWERPC_REL24
6805                || r_type == elfcpp::R_PPC_PLTREL24)
6806            && has_stub_value)
6807     {
6808       if (size == 64)
6809         {
6810           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6811           Valtype* wv = reinterpret_cast<Valtype*>(view);
6812           bool can_plt_call = false;
6813           if (rela.get_r_offset() + 8 <= view_size)
6814             {
6815               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6816               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6817               if ((insn & 1) != 0
6818                   && (insn2 == nop
6819                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6820                 {
6821                   elfcpp::Swap<32, big_endian>::
6822                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6823                   can_plt_call = true;
6824                 }
6825             }
6826           if (!can_plt_call)
6827             {
6828               // If we don't have a branch and link followed by a nop,
6829               // we can't go via the plt because there is no place to
6830               // put a toc restoring instruction.
6831               // Unless we know we won't be returning.
6832               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6833                 can_plt_call = true;
6834             }
6835           if (!can_plt_call)
6836             {
6837               // g++ as of 20130507 emits self-calls without a
6838               // following nop.  This is arguably wrong since we have
6839               // conflicting information.  On the one hand a global
6840               // symbol and on the other a local call sequence, but
6841               // don't error for this special case.
6842               // It isn't possible to cheaply verify we have exactly
6843               // such a call.  Allow all calls to the same section.
6844               bool ok = false;
6845               Address code = value;
6846               if (gsym->source() == Symbol::FROM_OBJECT
6847                   && gsym->object() == object)
6848                 {
6849                   unsigned int dest_shndx = 0;
6850                   if (target->abiversion() < 2)
6851                     {
6852                       Address addend = rela.get_r_addend();
6853                       code = psymval->value(object, addend);
6854                       target->symval_for_branch(relinfo->symtab, gsym, object,
6855                                                 &code, &dest_shndx);
6856                     }
6857                   bool is_ordinary;
6858                   if (dest_shndx == 0)
6859                     dest_shndx = gsym->shndx(&is_ordinary);
6860                   ok = dest_shndx == relinfo->data_shndx;
6861                 }
6862               if (!ok)
6863                 {
6864                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6865                                          _("call lacks nop, can't restore toc; "
6866                                            "recompile with -fPIC"));
6867                   value = code;
6868                 }
6869             }
6870         }
6871     }
6872   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6873            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6874            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6875            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6876     {
6877       // First instruction of a global dynamic sequence, arg setup insn.
6878       const bool final = gsym == NULL || gsym->final_value_is_known();
6879       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6880       enum Got_type got_type = GOT_TYPE_STANDARD;
6881       if (tls_type == tls::TLSOPT_NONE)
6882         got_type = GOT_TYPE_TLSGD;
6883       else if (tls_type == tls::TLSOPT_TO_IE)
6884         got_type = GOT_TYPE_TPREL;
6885       if (got_type != GOT_TYPE_STANDARD)
6886         {
6887           if (gsym != NULL)
6888             {
6889               gold_assert(gsym->has_got_offset(got_type));
6890               value = gsym->got_offset(got_type);
6891             }
6892           else
6893             {
6894               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6895               gold_assert(object->local_has_got_offset(r_sym, got_type));
6896               value = object->local_got_offset(r_sym, got_type);
6897             }
6898           value -= target->got_section()->got_base_offset(object);
6899         }
6900       if (tls_type == tls::TLSOPT_TO_IE)
6901         {
6902           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6903               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6904             {
6905               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6906               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6907               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6908               if (size == 32)
6909                 insn |= 32 << 26; // lwz
6910               else
6911                 insn |= 58 << 26; // ld
6912               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6913             }
6914           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6915                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6916         }
6917       else if (tls_type == tls::TLSOPT_TO_LE)
6918         {
6919           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6920               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6921             {
6922               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6923               Insn insn = addis_3_13;
6924               if (size == 32)
6925                 insn = addis_3_2;
6926               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6927               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6928               value = psymval->value(object, rela.get_r_addend());
6929             }
6930           else
6931             {
6932               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6933               Insn insn = nop;
6934               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6935               r_type = elfcpp::R_POWERPC_NONE;
6936             }
6937         }
6938     }
6939   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6940            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6941            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6942            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6943     {
6944       // First instruction of a local dynamic sequence, arg setup insn.
6945       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6946       if (tls_type == tls::TLSOPT_NONE)
6947         {
6948           value = target->tlsld_got_offset();
6949           value -= target->got_section()->got_base_offset(object);
6950         }
6951       else
6952         {
6953           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6954           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6955               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6956             {
6957               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6958               Insn insn = addis_3_13;
6959               if (size == 32)
6960                 insn = addis_3_2;
6961               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6962               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6963               value = dtp_offset;
6964             }
6965           else
6966             {
6967               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6968               Insn insn = nop;
6969               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6970               r_type = elfcpp::R_POWERPC_NONE;
6971             }
6972         }
6973     }
6974   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6975            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6976            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6977            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6978     {
6979       // Accesses relative to a local dynamic sequence address,
6980       // no optimisation here.
6981       if (gsym != NULL)
6982         {
6983           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6984           value = gsym->got_offset(GOT_TYPE_DTPREL);
6985         }
6986       else
6987         {
6988           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6989           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6990           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6991         }
6992       value -= target->got_section()->got_base_offset(object);
6993     }
6994   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6995            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6996            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6997            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6998     {
6999       // First instruction of initial exec sequence.
7000       const bool final = gsym == NULL || gsym->final_value_is_known();
7001       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7002       if (tls_type == tls::TLSOPT_NONE)
7003         {
7004           if (gsym != NULL)
7005             {
7006               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7007               value = gsym->got_offset(GOT_TYPE_TPREL);
7008             }
7009           else
7010             {
7011               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7012               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7013               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7014             }
7015           value -= target->got_section()->got_base_offset(object);
7016         }
7017       else
7018         {
7019           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7020           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7021               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7022             {
7023               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7024               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7025               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7026               if (size == 32)
7027                 insn |= addis_0_2;
7028               else
7029                 insn |= addis_0_13;
7030               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7031               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7032               value = psymval->value(object, rela.get_r_addend());
7033             }
7034           else
7035             {
7036               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7037               Insn insn = nop;
7038               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7039               r_type = elfcpp::R_POWERPC_NONE;
7040             }
7041         }
7042     }
7043   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7044            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7045     {
7046       // Second instruction of a global dynamic sequence,
7047       // the __tls_get_addr call
7048       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7049       const bool final = gsym == NULL || gsym->final_value_is_known();
7050       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7051       if (tls_type != tls::TLSOPT_NONE)
7052         {
7053           if (tls_type == tls::TLSOPT_TO_IE)
7054             {
7055               Insn* iview = reinterpret_cast<Insn*>(view);
7056               Insn insn = add_3_3_13;
7057               if (size == 32)
7058                 insn = add_3_3_2;
7059               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7060               r_type = elfcpp::R_POWERPC_NONE;
7061             }
7062           else
7063             {
7064               Insn* iview = reinterpret_cast<Insn*>(view);
7065               Insn insn = addi_3_3;
7066               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7067               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7068               view += 2 * big_endian;
7069               value = psymval->value(object, rela.get_r_addend());
7070             }
7071           this->skip_next_tls_get_addr_call();
7072         }
7073     }
7074   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7075            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7076     {
7077       // Second instruction of a local dynamic sequence,
7078       // the __tls_get_addr call
7079       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7080       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7081       if (tls_type == tls::TLSOPT_TO_LE)
7082         {
7083           Insn* iview = reinterpret_cast<Insn*>(view);
7084           Insn insn = addi_3_3;
7085           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7086           this->skip_next_tls_get_addr_call();
7087           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7088           view += 2 * big_endian;
7089           value = dtp_offset;
7090         }
7091     }
7092   else if (r_type == elfcpp::R_POWERPC_TLS)
7093     {
7094       // Second instruction of an initial exec sequence
7095       const bool final = gsym == NULL || gsym->final_value_is_known();
7096       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7097       if (tls_type == tls::TLSOPT_TO_LE)
7098         {
7099           Insn* iview = reinterpret_cast<Insn*>(view);
7100           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7101           unsigned int reg = size == 32 ? 2 : 13;
7102           insn = at_tls_transform(insn, reg);
7103           gold_assert(insn != 0);
7104           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7105           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7106           view += 2 * big_endian;
7107           value = psymval->value(object, rela.get_r_addend());
7108         }
7109     }
7110   else if (!has_stub_value)
7111     {
7112       Address addend = 0;
7113       if (r_type != elfcpp::R_PPC_PLTREL24)
7114         addend = rela.get_r_addend();
7115       value = psymval->value(object, addend);
7116       if (size == 64 && is_branch_reloc(r_type))
7117         {
7118           if (target->abiversion() >= 2)
7119             {
7120               if (gsym != NULL)
7121                 value += object->ppc64_local_entry_offset(gsym);
7122               else
7123                 value += object->ppc64_local_entry_offset(r_sym);
7124             }
7125           else
7126             {
7127               unsigned int dest_shndx;
7128               target->symval_for_branch(relinfo->symtab, gsym, object,
7129                                         &value, &dest_shndx);
7130             }
7131         }
7132       unsigned int max_branch_offset = 0;
7133       if (r_type == elfcpp::R_POWERPC_REL24
7134           || r_type == elfcpp::R_PPC_PLTREL24
7135           || r_type == elfcpp::R_PPC_LOCAL24PC)
7136         max_branch_offset = 1 << 25;
7137       else if (r_type == elfcpp::R_POWERPC_REL14
7138                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7139                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7140         max_branch_offset = 1 << 15;
7141       if (max_branch_offset != 0
7142           && value - address + max_branch_offset >= 2 * max_branch_offset)
7143         {
7144           Stub_table<size, big_endian>* stub_table
7145             = object->stub_table(relinfo->data_shndx);
7146           if (stub_table != NULL)
7147             {
7148               Address off = stub_table->find_long_branch_entry(object, value);
7149               if (off != invalid_address)
7150                 {
7151                   value = (stub_table->stub_address() + stub_table->plt_size()
7152                            + off);
7153                   has_stub_value = true;
7154                 }
7155             }
7156         }
7157     }
7158
7159   switch (r_type)
7160     {
7161     case elfcpp::R_PPC64_REL64:
7162     case elfcpp::R_POWERPC_REL32:
7163     case elfcpp::R_POWERPC_REL24:
7164     case elfcpp::R_PPC_PLTREL24:
7165     case elfcpp::R_PPC_LOCAL24PC:
7166     case elfcpp::R_POWERPC_REL16:
7167     case elfcpp::R_POWERPC_REL16_LO:
7168     case elfcpp::R_POWERPC_REL16_HI:
7169     case elfcpp::R_POWERPC_REL16_HA:
7170     case elfcpp::R_POWERPC_REL14:
7171     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7172     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7173       value -= address;
7174       break;
7175
7176     case elfcpp::R_PPC64_TOC16:
7177     case elfcpp::R_PPC64_TOC16_LO:
7178     case elfcpp::R_PPC64_TOC16_HI:
7179     case elfcpp::R_PPC64_TOC16_HA:
7180     case elfcpp::R_PPC64_TOC16_DS:
7181     case elfcpp::R_PPC64_TOC16_LO_DS:
7182       // Subtract the TOC base address.
7183       value -= (target->got_section()->output_section()->address()
7184                 + object->toc_base_offset());
7185       break;
7186
7187     case elfcpp::R_POWERPC_SECTOFF:
7188     case elfcpp::R_POWERPC_SECTOFF_LO:
7189     case elfcpp::R_POWERPC_SECTOFF_HI:
7190     case elfcpp::R_POWERPC_SECTOFF_HA:
7191     case elfcpp::R_PPC64_SECTOFF_DS:
7192     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7193       if (os != NULL)
7194         value -= os->address();
7195       break;
7196
7197     case elfcpp::R_PPC64_TPREL16_DS:
7198     case elfcpp::R_PPC64_TPREL16_LO_DS:
7199     case elfcpp::R_PPC64_TPREL16_HIGH:
7200     case elfcpp::R_PPC64_TPREL16_HIGHA:
7201       if (size != 64)
7202         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7203         break;
7204     case elfcpp::R_POWERPC_TPREL16:
7205     case elfcpp::R_POWERPC_TPREL16_LO:
7206     case elfcpp::R_POWERPC_TPREL16_HI:
7207     case elfcpp::R_POWERPC_TPREL16_HA:
7208     case elfcpp::R_POWERPC_TPREL:
7209     case elfcpp::R_PPC64_TPREL16_HIGHER:
7210     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7211     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7212     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7213       // tls symbol values are relative to tls_segment()->vaddr()
7214       value -= tp_offset;
7215       break;
7216
7217     case elfcpp::R_PPC64_DTPREL16_DS:
7218     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7219     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7220     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7221     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7222     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7223       if (size != 64)
7224         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7225         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7226         break;
7227     case elfcpp::R_POWERPC_DTPREL16:
7228     case elfcpp::R_POWERPC_DTPREL16_LO:
7229     case elfcpp::R_POWERPC_DTPREL16_HI:
7230     case elfcpp::R_POWERPC_DTPREL16_HA:
7231     case elfcpp::R_POWERPC_DTPREL:
7232     case elfcpp::R_PPC64_DTPREL16_HIGH:
7233     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7234       // tls symbol values are relative to tls_segment()->vaddr()
7235       value -= dtp_offset;
7236       break;
7237
7238     case elfcpp::R_PPC64_ADDR64_LOCAL:
7239       if (gsym != NULL)
7240         value += object->ppc64_local_entry_offset(gsym);
7241       else
7242         value += object->ppc64_local_entry_offset(r_sym);
7243       break;
7244
7245     default:
7246       break;
7247     }
7248
7249   Insn branch_bit = 0;
7250   switch (r_type)
7251     {
7252     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7253     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7254       branch_bit = 1 << 21;
7255     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7256     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7257       {
7258         Insn* iview = reinterpret_cast<Insn*>(view);
7259         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7260         insn &= ~(1 << 21);
7261         insn |= branch_bit;
7262         if (this->is_isa_v2)
7263           {
7264             // Set 'a' bit.  This is 0b00010 in BO field for branch
7265             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7266             // for branch on CTR insns (BO == 1a00t or 1a01t).
7267             if ((insn & (0x14 << 21)) == (0x04 << 21))
7268               insn |= 0x02 << 21;
7269             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7270               insn |= 0x08 << 21;
7271             else
7272               break;
7273           }
7274         else
7275           {
7276             // Invert 'y' bit if not the default.
7277             if (static_cast<Signed_address>(value) < 0)
7278               insn ^= 1 << 21;
7279           }
7280         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7281       }
7282       break;
7283
7284     default:
7285       break;
7286     }
7287
7288   if (size == 64)
7289     {
7290       // Multi-instruction sequences that access the TOC can be
7291       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7292       // to             nop;           addi rb,r2,x;
7293       switch (r_type)
7294         {
7295         default:
7296           break;
7297
7298         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7299         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7300         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7301         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7302         case elfcpp::R_POWERPC_GOT16_HA:
7303         case elfcpp::R_PPC64_TOC16_HA:
7304           if (parameters->options().toc_optimize())
7305             {
7306               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7307               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7308               if ((insn & ((0x3f << 26) | 0x1f << 16))
7309                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7310                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7311                                        _("toc optimization is not supported "
7312                                          "for %#08x instruction"), insn);
7313               else if (value + 0x8000 < 0x10000)
7314                 {
7315                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7316                   return true;
7317                 }
7318             }
7319           break;
7320
7321         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7322         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7323         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7324         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7325         case elfcpp::R_POWERPC_GOT16_LO:
7326         case elfcpp::R_PPC64_GOT16_LO_DS:
7327         case elfcpp::R_PPC64_TOC16_LO:
7328         case elfcpp::R_PPC64_TOC16_LO_DS:
7329           if (parameters->options().toc_optimize())
7330             {
7331               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7332               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7333               if (!ok_lo_toc_insn(insn))
7334                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7335                                        _("toc optimization is not supported "
7336                                          "for %#08x instruction"), insn);
7337               else if (value + 0x8000 < 0x10000)
7338                 {
7339                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7340                     {
7341                       // Transform addic to addi when we change reg.
7342                       insn &= ~((0x3f << 26) | (0x1f << 16));
7343                       insn |= (14u << 26) | (2 << 16);
7344                     }
7345                   else
7346                     {
7347                       insn &= ~(0x1f << 16);
7348                       insn |= 2 << 16;
7349                     }
7350                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7351                 }
7352             }
7353           break;
7354         }
7355     }
7356
7357   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7358   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7359   switch (r_type)
7360     {
7361     case elfcpp::R_POWERPC_ADDR32:
7362     case elfcpp::R_POWERPC_UADDR32:
7363       if (size == 64)
7364         overflow = Reloc::CHECK_BITFIELD;
7365       break;
7366
7367     case elfcpp::R_POWERPC_REL32:
7368       if (size == 64)
7369         overflow = Reloc::CHECK_SIGNED;
7370       break;
7371
7372     case elfcpp::R_POWERPC_UADDR16:
7373       overflow = Reloc::CHECK_BITFIELD;
7374       break;
7375
7376     case elfcpp::R_POWERPC_ADDR16:
7377       // We really should have three separate relocations,
7378       // one for 16-bit data, one for insns with 16-bit signed fields,
7379       // and one for insns with 16-bit unsigned fields.
7380       overflow = Reloc::CHECK_BITFIELD;
7381       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7382         overflow = Reloc::CHECK_LOW_INSN;
7383       break;
7384
7385     case elfcpp::R_POWERPC_ADDR16_HI:
7386     case elfcpp::R_POWERPC_ADDR16_HA:
7387     case elfcpp::R_POWERPC_GOT16_HI:
7388     case elfcpp::R_POWERPC_GOT16_HA:
7389     case elfcpp::R_POWERPC_PLT16_HI:
7390     case elfcpp::R_POWERPC_PLT16_HA:
7391     case elfcpp::R_POWERPC_SECTOFF_HI:
7392     case elfcpp::R_POWERPC_SECTOFF_HA:
7393     case elfcpp::R_PPC64_TOC16_HI:
7394     case elfcpp::R_PPC64_TOC16_HA:
7395     case elfcpp::R_PPC64_PLTGOT16_HI:
7396     case elfcpp::R_PPC64_PLTGOT16_HA:
7397     case elfcpp::R_POWERPC_TPREL16_HI:
7398     case elfcpp::R_POWERPC_TPREL16_HA:
7399     case elfcpp::R_POWERPC_DTPREL16_HI:
7400     case elfcpp::R_POWERPC_DTPREL16_HA:
7401     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7402     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7403     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7404     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7405     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7406     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7407     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7408     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7409     case elfcpp::R_POWERPC_REL16_HI:
7410     case elfcpp::R_POWERPC_REL16_HA:
7411       if (size != 32)
7412         overflow = Reloc::CHECK_HIGH_INSN;
7413       break;
7414
7415     case elfcpp::R_POWERPC_REL16:
7416     case elfcpp::R_PPC64_TOC16:
7417     case elfcpp::R_POWERPC_GOT16:
7418     case elfcpp::R_POWERPC_SECTOFF:
7419     case elfcpp::R_POWERPC_TPREL16:
7420     case elfcpp::R_POWERPC_DTPREL16:
7421     case elfcpp::R_POWERPC_GOT_TLSGD16:
7422     case elfcpp::R_POWERPC_GOT_TLSLD16:
7423     case elfcpp::R_POWERPC_GOT_TPREL16:
7424     case elfcpp::R_POWERPC_GOT_DTPREL16:
7425       overflow = Reloc::CHECK_LOW_INSN;
7426       break;
7427
7428     case elfcpp::R_POWERPC_ADDR24:
7429     case elfcpp::R_POWERPC_ADDR14:
7430     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7431     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7432     case elfcpp::R_PPC64_ADDR16_DS:
7433     case elfcpp::R_POWERPC_REL24:
7434     case elfcpp::R_PPC_PLTREL24:
7435     case elfcpp::R_PPC_LOCAL24PC:
7436     case elfcpp::R_PPC64_TPREL16_DS:
7437     case elfcpp::R_PPC64_DTPREL16_DS:
7438     case elfcpp::R_PPC64_TOC16_DS:
7439     case elfcpp::R_PPC64_GOT16_DS:
7440     case elfcpp::R_PPC64_SECTOFF_DS:
7441     case elfcpp::R_POWERPC_REL14:
7442     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7443     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7444       overflow = Reloc::CHECK_SIGNED;
7445       break;
7446     }
7447
7448   if (overflow == Reloc::CHECK_LOW_INSN
7449       || overflow == Reloc::CHECK_HIGH_INSN)
7450     {
7451       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7452       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7453
7454       overflow = Reloc::CHECK_SIGNED;
7455       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7456         overflow = Reloc::CHECK_BITFIELD;
7457       else if (overflow == Reloc::CHECK_LOW_INSN
7458                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7459                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7460                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7461                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7462                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7463                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7464         overflow = Reloc::CHECK_UNSIGNED;
7465     }
7466
7467   typename Powerpc_relocate_functions<size, big_endian>::Status status
7468     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7469   switch (r_type)
7470     {
7471     case elfcpp::R_POWERPC_NONE:
7472     case elfcpp::R_POWERPC_TLS:
7473     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7474     case elfcpp::R_POWERPC_GNU_VTENTRY:
7475       break;
7476
7477     case elfcpp::R_PPC64_ADDR64:
7478     case elfcpp::R_PPC64_REL64:
7479     case elfcpp::R_PPC64_TOC:
7480     case elfcpp::R_PPC64_ADDR64_LOCAL:
7481       Reloc::addr64(view, value);
7482       break;
7483
7484     case elfcpp::R_POWERPC_TPREL:
7485     case elfcpp::R_POWERPC_DTPREL:
7486       if (size == 64)
7487         Reloc::addr64(view, value);
7488       else
7489         status = Reloc::addr32(view, value, overflow);
7490       break;
7491
7492     case elfcpp::R_PPC64_UADDR64:
7493       Reloc::addr64_u(view, value);
7494       break;
7495
7496     case elfcpp::R_POWERPC_ADDR32:
7497       status = Reloc::addr32(view, value, overflow);
7498       break;
7499
7500     case elfcpp::R_POWERPC_REL32:
7501     case elfcpp::R_POWERPC_UADDR32:
7502       status = Reloc::addr32_u(view, value, overflow);
7503       break;
7504
7505     case elfcpp::R_POWERPC_ADDR24:
7506     case elfcpp::R_POWERPC_REL24:
7507     case elfcpp::R_PPC_PLTREL24:
7508     case elfcpp::R_PPC_LOCAL24PC:
7509       status = Reloc::addr24(view, value, overflow);
7510       break;
7511
7512     case elfcpp::R_POWERPC_GOT_DTPREL16:
7513     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7514       if (size == 64)
7515         {
7516           status = Reloc::addr16_ds(view, value, overflow);
7517           break;
7518         }
7519     case elfcpp::R_POWERPC_ADDR16:
7520     case elfcpp::R_POWERPC_REL16:
7521     case elfcpp::R_PPC64_TOC16:
7522     case elfcpp::R_POWERPC_GOT16:
7523     case elfcpp::R_POWERPC_SECTOFF:
7524     case elfcpp::R_POWERPC_TPREL16:
7525     case elfcpp::R_POWERPC_DTPREL16:
7526     case elfcpp::R_POWERPC_GOT_TLSGD16:
7527     case elfcpp::R_POWERPC_GOT_TLSLD16:
7528     case elfcpp::R_POWERPC_GOT_TPREL16:
7529     case elfcpp::R_POWERPC_ADDR16_LO:
7530     case elfcpp::R_POWERPC_REL16_LO:
7531     case elfcpp::R_PPC64_TOC16_LO:
7532     case elfcpp::R_POWERPC_GOT16_LO:
7533     case elfcpp::R_POWERPC_SECTOFF_LO:
7534     case elfcpp::R_POWERPC_TPREL16_LO:
7535     case elfcpp::R_POWERPC_DTPREL16_LO:
7536     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7537     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7538     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7539       status = Reloc::addr16(view, value, overflow);
7540       break;
7541
7542     case elfcpp::R_POWERPC_UADDR16:
7543       status = Reloc::addr16_u(view, value, overflow);
7544       break;
7545
7546     case elfcpp::R_PPC64_ADDR16_HIGH:
7547     case elfcpp::R_PPC64_TPREL16_HIGH:
7548     case elfcpp::R_PPC64_DTPREL16_HIGH:
7549       if (size == 32)
7550         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7551         goto unsupp;
7552     case elfcpp::R_POWERPC_ADDR16_HI:
7553     case elfcpp::R_POWERPC_REL16_HI:
7554     case elfcpp::R_PPC64_TOC16_HI:
7555     case elfcpp::R_POWERPC_GOT16_HI:
7556     case elfcpp::R_POWERPC_SECTOFF_HI:
7557     case elfcpp::R_POWERPC_TPREL16_HI:
7558     case elfcpp::R_POWERPC_DTPREL16_HI:
7559     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7560     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7561     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7562     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7563       Reloc::addr16_hi(view, value);
7564       break;
7565
7566     case elfcpp::R_PPC64_ADDR16_HIGHA:
7567     case elfcpp::R_PPC64_TPREL16_HIGHA:
7568     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7569       if (size == 32)
7570         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7571         goto unsupp;
7572     case elfcpp::R_POWERPC_ADDR16_HA:
7573     case elfcpp::R_POWERPC_REL16_HA:
7574     case elfcpp::R_PPC64_TOC16_HA:
7575     case elfcpp::R_POWERPC_GOT16_HA:
7576     case elfcpp::R_POWERPC_SECTOFF_HA:
7577     case elfcpp::R_POWERPC_TPREL16_HA:
7578     case elfcpp::R_POWERPC_DTPREL16_HA:
7579     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7580     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7581     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7582     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7583       Reloc::addr16_ha(view, value);
7584       break;
7585
7586     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7587       if (size == 32)
7588         // R_PPC_EMB_NADDR16_LO
7589         goto unsupp;
7590     case elfcpp::R_PPC64_ADDR16_HIGHER:
7591     case elfcpp::R_PPC64_TPREL16_HIGHER:
7592       Reloc::addr16_hi2(view, value);
7593       break;
7594
7595     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7596       if (size == 32)
7597         // R_PPC_EMB_NADDR16_HI
7598         goto unsupp;
7599     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7600     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7601       Reloc::addr16_ha2(view, value);
7602       break;
7603
7604     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7605       if (size == 32)
7606         // R_PPC_EMB_NADDR16_HA
7607         goto unsupp;
7608     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7609     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7610       Reloc::addr16_hi3(view, value);
7611       break;
7612
7613     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7614       if (size == 32)
7615         // R_PPC_EMB_SDAI16
7616         goto unsupp;
7617     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7618     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7619       Reloc::addr16_ha3(view, value);
7620       break;
7621
7622     case elfcpp::R_PPC64_DTPREL16_DS:
7623     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7624       if (size == 32)
7625         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7626         goto unsupp;
7627     case elfcpp::R_PPC64_TPREL16_DS:
7628     case elfcpp::R_PPC64_TPREL16_LO_DS:
7629       if (size == 32)
7630         // R_PPC_TLSGD, R_PPC_TLSLD
7631         break;
7632     case elfcpp::R_PPC64_ADDR16_DS:
7633     case elfcpp::R_PPC64_ADDR16_LO_DS:
7634     case elfcpp::R_PPC64_TOC16_DS:
7635     case elfcpp::R_PPC64_TOC16_LO_DS:
7636     case elfcpp::R_PPC64_GOT16_DS:
7637     case elfcpp::R_PPC64_GOT16_LO_DS:
7638     case elfcpp::R_PPC64_SECTOFF_DS:
7639     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7640       status = Reloc::addr16_ds(view, value, overflow);
7641       break;
7642
7643     case elfcpp::R_POWERPC_ADDR14:
7644     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7645     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7646     case elfcpp::R_POWERPC_REL14:
7647     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7648     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7649       status = Reloc::addr14(view, value, overflow);
7650       break;
7651
7652     case elfcpp::R_POWERPC_COPY:
7653     case elfcpp::R_POWERPC_GLOB_DAT:
7654     case elfcpp::R_POWERPC_JMP_SLOT:
7655     case elfcpp::R_POWERPC_RELATIVE:
7656     case elfcpp::R_POWERPC_DTPMOD:
7657     case elfcpp::R_PPC64_JMP_IREL:
7658     case elfcpp::R_POWERPC_IRELATIVE:
7659       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7660                              _("unexpected reloc %u in object file"),
7661                              r_type);
7662       break;
7663
7664     case elfcpp::R_PPC_EMB_SDA21:
7665       if (size == 32)
7666         goto unsupp;
7667       else
7668         {
7669           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7670         }
7671       break;
7672
7673     case elfcpp::R_PPC_EMB_SDA2I16:
7674     case elfcpp::R_PPC_EMB_SDA2REL:
7675       if (size == 32)
7676         goto unsupp;
7677       // R_PPC64_TLSGD, R_PPC64_TLSLD
7678       break;
7679
7680     case elfcpp::R_POWERPC_PLT32:
7681     case elfcpp::R_POWERPC_PLTREL32:
7682     case elfcpp::R_POWERPC_PLT16_LO:
7683     case elfcpp::R_POWERPC_PLT16_HI:
7684     case elfcpp::R_POWERPC_PLT16_HA:
7685     case elfcpp::R_PPC_SDAREL16:
7686     case elfcpp::R_POWERPC_ADDR30:
7687     case elfcpp::R_PPC64_PLT64:
7688     case elfcpp::R_PPC64_PLTREL64:
7689     case elfcpp::R_PPC64_PLTGOT16:
7690     case elfcpp::R_PPC64_PLTGOT16_LO:
7691     case elfcpp::R_PPC64_PLTGOT16_HI:
7692     case elfcpp::R_PPC64_PLTGOT16_HA:
7693     case elfcpp::R_PPC64_PLT16_LO_DS:
7694     case elfcpp::R_PPC64_PLTGOT16_DS:
7695     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7696     case elfcpp::R_PPC_EMB_RELSDA:
7697     case elfcpp::R_PPC_TOC16:
7698     default:
7699     unsupp:
7700       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7701                              _("unsupported reloc %u"),
7702                              r_type);
7703       break;
7704     }
7705   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7706       && (has_stub_value
7707           || !(gsym != NULL
7708                && gsym->is_weak_undefined()
7709                && is_branch_reloc(r_type))))
7710     {
7711       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7712                              _("relocation overflow"));
7713       if (has_stub_value)
7714         gold_info(_("try relinking with a smaller --stub-group-size"));
7715     }
7716
7717   return true;
7718 }
7719
7720 // Relocate section data.
7721
7722 template<int size, bool big_endian>
7723 void
7724 Target_powerpc<size, big_endian>::relocate_section(
7725     const Relocate_info<size, big_endian>* relinfo,
7726     unsigned int sh_type,
7727     const unsigned char* prelocs,
7728     size_t reloc_count,
7729     Output_section* output_section,
7730     bool needs_special_offset_handling,
7731     unsigned char* view,
7732     Address address,
7733     section_size_type view_size,
7734     const Reloc_symbol_changes* reloc_symbol_changes)
7735 {
7736   typedef Target_powerpc<size, big_endian> Powerpc;
7737   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7738   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7739     Powerpc_comdat_behavior;
7740
7741   gold_assert(sh_type == elfcpp::SHT_RELA);
7742
7743   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7744                          Powerpc_relocate, Powerpc_comdat_behavior>(
7745     relinfo,
7746     this,
7747     prelocs,
7748     reloc_count,
7749     output_section,
7750     needs_special_offset_handling,
7751     view,
7752     address,
7753     view_size,
7754     reloc_symbol_changes);
7755 }
7756
7757 class Powerpc_scan_relocatable_reloc
7758 {
7759 public:
7760   // Return the strategy to use for a local symbol which is not a
7761   // section symbol, given the relocation type.
7762   inline Relocatable_relocs::Reloc_strategy
7763   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7764   {
7765     if (r_type == 0 && r_sym == 0)
7766       return Relocatable_relocs::RELOC_DISCARD;
7767     return Relocatable_relocs::RELOC_COPY;
7768   }
7769
7770   // Return the strategy to use for a local symbol which is a section
7771   // symbol, given the relocation type.
7772   inline Relocatable_relocs::Reloc_strategy
7773   local_section_strategy(unsigned int, Relobj*)
7774   {
7775     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7776   }
7777
7778   // Return the strategy to use for a global symbol, given the
7779   // relocation type, the object, and the symbol index.
7780   inline Relocatable_relocs::Reloc_strategy
7781   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7782   {
7783     if (r_type == elfcpp::R_PPC_PLTREL24)
7784       return Relocatable_relocs::RELOC_SPECIAL;
7785     return Relocatable_relocs::RELOC_COPY;
7786   }
7787 };
7788
7789 // Scan the relocs during a relocatable link.
7790
7791 template<int size, bool big_endian>
7792 void
7793 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7794     Symbol_table* symtab,
7795     Layout* layout,
7796     Sized_relobj_file<size, big_endian>* object,
7797     unsigned int data_shndx,
7798     unsigned int sh_type,
7799     const unsigned char* prelocs,
7800     size_t reloc_count,
7801     Output_section* output_section,
7802     bool needs_special_offset_handling,
7803     size_t local_symbol_count,
7804     const unsigned char* plocal_symbols,
7805     Relocatable_relocs* rr)
7806 {
7807   gold_assert(sh_type == elfcpp::SHT_RELA);
7808
7809   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7810                                 Powerpc_scan_relocatable_reloc>(
7811     symtab,
7812     layout,
7813     object,
7814     data_shndx,
7815     prelocs,
7816     reloc_count,
7817     output_section,
7818     needs_special_offset_handling,
7819     local_symbol_count,
7820     plocal_symbols,
7821     rr);
7822 }
7823
7824 // Emit relocations for a section.
7825 // This is a modified version of the function by the same name in
7826 // target-reloc.h.  Using relocate_special_relocatable for
7827 // R_PPC_PLTREL24 would require duplication of the entire body of the
7828 // loop, so we may as well duplicate the whole thing.
7829
7830 template<int size, bool big_endian>
7831 void
7832 Target_powerpc<size, big_endian>::relocate_relocs(
7833     const Relocate_info<size, big_endian>* relinfo,
7834     unsigned int sh_type,
7835     const unsigned char* prelocs,
7836     size_t reloc_count,
7837     Output_section* output_section,
7838     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7839     const Relocatable_relocs* rr,
7840     unsigned char*,
7841     Address view_address,
7842     section_size_type,
7843     unsigned char* reloc_view,
7844     section_size_type reloc_view_size)
7845 {
7846   gold_assert(sh_type == elfcpp::SHT_RELA);
7847
7848   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7849     Reltype;
7850   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7851     Reltype_write;
7852   const int reloc_size
7853     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7854
7855   Powerpc_relobj<size, big_endian>* const object
7856     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7857   const unsigned int local_count = object->local_symbol_count();
7858   unsigned int got2_shndx = object->got2_shndx();
7859   Address got2_addend = 0;
7860   if (got2_shndx != 0)
7861     {
7862       got2_addend = object->get_output_section_offset(got2_shndx);
7863       gold_assert(got2_addend != invalid_address);
7864     }
7865
7866   unsigned char* pwrite = reloc_view;
7867   bool zap_next = false;
7868   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7869     {
7870       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7871       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7872         continue;
7873
7874       Reltype reloc(prelocs);
7875       Reltype_write reloc_write(pwrite);
7876
7877       Address offset = reloc.get_r_offset();
7878       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7879       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7880       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7881       const unsigned int orig_r_sym = r_sym;
7882       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7883         = reloc.get_r_addend();
7884       const Symbol* gsym = NULL;
7885
7886       if (zap_next)
7887         {
7888           // We could arrange to discard these and other relocs for
7889           // tls optimised sequences in the strategy methods, but for
7890           // now do as BFD ld does.
7891           r_type = elfcpp::R_POWERPC_NONE;
7892           zap_next = false;
7893         }
7894
7895       // Get the new symbol index.
7896       if (r_sym < local_count)
7897         {
7898           switch (strategy)
7899             {
7900             case Relocatable_relocs::RELOC_COPY:
7901             case Relocatable_relocs::RELOC_SPECIAL:
7902               if (r_sym != 0)
7903                 {
7904                   r_sym = object->symtab_index(r_sym);
7905                   gold_assert(r_sym != -1U);
7906                 }
7907               break;
7908
7909             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7910               {
7911                 // We are adjusting a section symbol.  We need to find
7912                 // the symbol table index of the section symbol for
7913                 // the output section corresponding to input section
7914                 // in which this symbol is defined.
7915                 gold_assert(r_sym < local_count);
7916                 bool is_ordinary;
7917                 unsigned int shndx =
7918                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7919                 gold_assert(is_ordinary);
7920                 Output_section* os = object->output_section(shndx);
7921                 gold_assert(os != NULL);
7922                 gold_assert(os->needs_symtab_index());
7923                 r_sym = os->symtab_index();
7924               }
7925               break;
7926
7927             default:
7928               gold_unreachable();
7929             }
7930         }
7931       else
7932         {
7933           gsym = object->global_symbol(r_sym);
7934           gold_assert(gsym != NULL);
7935           if (gsym->is_forwarder())
7936             gsym = relinfo->symtab->resolve_forwards(gsym);
7937
7938           gold_assert(gsym->has_symtab_index());
7939           r_sym = gsym->symtab_index();
7940         }
7941
7942       // Get the new offset--the location in the output section where
7943       // this relocation should be applied.
7944       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7945         offset += offset_in_output_section;
7946       else
7947         {
7948           section_offset_type sot_offset =
7949             convert_types<section_offset_type, Address>(offset);
7950           section_offset_type new_sot_offset =
7951             output_section->output_offset(object, relinfo->data_shndx,
7952                                           sot_offset);
7953           gold_assert(new_sot_offset != -1);
7954           offset = new_sot_offset;
7955         }
7956
7957       // In an object file, r_offset is an offset within the section.
7958       // In an executable or dynamic object, generated by
7959       // --emit-relocs, r_offset is an absolute address.
7960       if (!parameters->options().relocatable())
7961         {
7962           offset += view_address;
7963           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7964             offset -= offset_in_output_section;
7965         }
7966
7967       // Handle the reloc addend based on the strategy.
7968       if (strategy == Relocatable_relocs::RELOC_COPY)
7969         ;
7970       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7971         {
7972           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7973           addend = psymval->value(object, addend);
7974         }
7975       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7976         {
7977           if (addend >= 32768)
7978             addend += got2_addend;
7979         }
7980       else
7981         gold_unreachable();
7982
7983       if (!parameters->options().relocatable())
7984         {
7985           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7986               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7987               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7988               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7989             {
7990               // First instruction of a global dynamic sequence,
7991               // arg setup insn.
7992               const bool final = gsym == NULL || gsym->final_value_is_known();
7993               switch (this->optimize_tls_gd(final))
7994                 {
7995                 case tls::TLSOPT_TO_IE:
7996                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7997                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7998                   break;
7999                 case tls::TLSOPT_TO_LE:
8000                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8001                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8002                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8003                   else
8004                     {
8005                       r_type = elfcpp::R_POWERPC_NONE;
8006                       offset -= 2 * big_endian;
8007                     }
8008                   break;
8009                 default:
8010                   break;
8011                 }
8012             }
8013           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8014                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8015                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8016                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8017             {
8018               // First instruction of a local dynamic sequence,
8019               // arg setup insn.
8020               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8021                 {
8022                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8023                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8024                     {
8025                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8026                       const Output_section* os = relinfo->layout->tls_segment()
8027                         ->first_section();
8028                       gold_assert(os != NULL);
8029                       gold_assert(os->needs_symtab_index());
8030                       r_sym = os->symtab_index();
8031                       addend = dtp_offset;
8032                     }
8033                   else
8034                     {
8035                       r_type = elfcpp::R_POWERPC_NONE;
8036                       offset -= 2 * big_endian;
8037                     }
8038                 }
8039             }
8040           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8041                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8042                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8043                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8044             {
8045               // First instruction of initial exec sequence.
8046               const bool final = gsym == NULL || gsym->final_value_is_known();
8047               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8048                 {
8049                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8050                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8051                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8052                   else
8053                     {
8054                       r_type = elfcpp::R_POWERPC_NONE;
8055                       offset -= 2 * big_endian;
8056                     }
8057                 }
8058             }
8059           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8060                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8061             {
8062               // Second instruction of a global dynamic sequence,
8063               // the __tls_get_addr call
8064               const bool final = gsym == NULL || gsym->final_value_is_known();
8065               switch (this->optimize_tls_gd(final))
8066                 {
8067                 case tls::TLSOPT_TO_IE:
8068                   r_type = elfcpp::R_POWERPC_NONE;
8069                   zap_next = true;
8070                   break;
8071                 case tls::TLSOPT_TO_LE:
8072                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8073                   offset += 2 * big_endian;
8074                   zap_next = true;
8075                   break;
8076                 default:
8077                   break;
8078                 }
8079             }
8080           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8081                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8082             {
8083               // Second instruction of a local dynamic sequence,
8084               // the __tls_get_addr call
8085               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8086                 {
8087                   const Output_section* os = relinfo->layout->tls_segment()
8088                     ->first_section();
8089                   gold_assert(os != NULL);
8090                   gold_assert(os->needs_symtab_index());
8091                   r_sym = os->symtab_index();
8092                   addend = dtp_offset;
8093                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8094                   offset += 2 * big_endian;
8095                   zap_next = true;
8096                 }
8097             }
8098           else if (r_type == elfcpp::R_POWERPC_TLS)
8099             {
8100               // Second instruction of an initial exec sequence
8101               const bool final = gsym == NULL || gsym->final_value_is_known();
8102               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8103                 {
8104                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8105                   offset += 2 * big_endian;
8106                 }
8107             }
8108         }
8109
8110       reloc_write.put_r_offset(offset);
8111       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8112       reloc_write.put_r_addend(addend);
8113
8114       pwrite += reloc_size;
8115     }
8116
8117   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8118               == reloc_view_size);
8119 }
8120
8121 // Return the value to use for a dynamic symbol which requires special
8122 // treatment.  This is how we support equality comparisons of function
8123 // pointers across shared library boundaries, as described in the
8124 // processor specific ABI supplement.
8125
8126 template<int size, bool big_endian>
8127 uint64_t
8128 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8129 {
8130   if (size == 32)
8131     {
8132       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8133       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8134            p != this->stub_tables_.end();
8135            ++p)
8136         {
8137           Address off = (*p)->find_plt_call_entry(gsym);
8138           if (off != invalid_address)
8139             return (*p)->stub_address() + off;
8140         }
8141     }
8142   else if (this->abiversion() >= 2)
8143     {
8144       unsigned int off = this->glink_section()->find_global_entry(gsym);
8145       if (off != (unsigned int)-1)
8146         return this->glink_section()->global_entry_address() + off;
8147     }
8148   gold_unreachable();
8149 }
8150
8151 // Return the PLT address to use for a local symbol.
8152 template<int size, bool big_endian>
8153 uint64_t
8154 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8155     const Relobj* object,
8156     unsigned int symndx) const
8157 {
8158   if (size == 32)
8159     {
8160       const Sized_relobj<size, big_endian>* relobj
8161         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8162       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8163            p != this->stub_tables_.end();
8164            ++p)
8165         {
8166           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8167                                                   symndx);
8168           if (off != invalid_address)
8169             return (*p)->stub_address() + off;
8170         }
8171     }
8172   gold_unreachable();
8173 }
8174
8175 // Return the PLT address to use for a global symbol.
8176 template<int size, bool big_endian>
8177 uint64_t
8178 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8179     const Symbol* gsym) const
8180 {
8181   if (size == 32)
8182     {
8183       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8184            p != this->stub_tables_.end();
8185            ++p)
8186         {
8187           Address off = (*p)->find_plt_call_entry(gsym);
8188           if (off != invalid_address)
8189             return (*p)->stub_address() + off;
8190         }
8191     }
8192   else if (this->abiversion() >= 2)
8193     {
8194       unsigned int off = this->glink_section()->find_global_entry(gsym);
8195       if (off != (unsigned int)-1)
8196         return this->glink_section()->global_entry_address() + off;
8197     }
8198   gold_unreachable();
8199 }
8200
8201 // Return the offset to use for the GOT_INDX'th got entry which is
8202 // for a local tls symbol specified by OBJECT, SYMNDX.
8203 template<int size, bool big_endian>
8204 int64_t
8205 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8206     const Relobj* object,
8207     unsigned int symndx,
8208     unsigned int got_indx) const
8209 {
8210   const Powerpc_relobj<size, big_endian>* ppc_object
8211     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8212   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8213     {
8214       for (Got_type got_type = GOT_TYPE_TLSGD;
8215            got_type <= GOT_TYPE_TPREL;
8216            got_type = Got_type(got_type + 1))
8217         if (ppc_object->local_has_got_offset(symndx, got_type))
8218           {
8219             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8220             if (got_type == GOT_TYPE_TLSGD)
8221               off += size / 8;
8222             if (off == got_indx * (size / 8))
8223               {
8224                 if (got_type == GOT_TYPE_TPREL)
8225                   return -tp_offset;
8226                 else
8227                   return -dtp_offset;
8228               }
8229           }
8230     }
8231   gold_unreachable();
8232 }
8233
8234 // Return the offset to use for the GOT_INDX'th got entry which is
8235 // for global tls symbol GSYM.
8236 template<int size, bool big_endian>
8237 int64_t
8238 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8239     Symbol* gsym,
8240     unsigned int got_indx) const
8241 {
8242   if (gsym->type() == elfcpp::STT_TLS)
8243     {
8244       for (Got_type got_type = GOT_TYPE_TLSGD;
8245            got_type <= GOT_TYPE_TPREL;
8246            got_type = Got_type(got_type + 1))
8247         if (gsym->has_got_offset(got_type))
8248           {
8249             unsigned int off = gsym->got_offset(got_type);
8250             if (got_type == GOT_TYPE_TLSGD)
8251               off += size / 8;
8252             if (off == got_indx * (size / 8))
8253               {
8254                 if (got_type == GOT_TYPE_TPREL)
8255                   return -tp_offset;
8256                 else
8257                   return -dtp_offset;
8258               }
8259           }
8260     }
8261   gold_unreachable();
8262 }
8263
8264 // The selector for powerpc object files.
8265
8266 template<int size, bool big_endian>
8267 class Target_selector_powerpc : public Target_selector
8268 {
8269 public:
8270   Target_selector_powerpc()
8271     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8272                       size, big_endian,
8273                       (size == 64
8274                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8275                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8276                       (size == 64
8277                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8278                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8279   { }
8280
8281   virtual Target*
8282   do_instantiate_target()
8283   { return new Target_powerpc<size, big_endian>(); }
8284 };
8285
8286 Target_selector_powerpc<32, true> target_selector_ppc32;
8287 Target_selector_powerpc<32, false> target_selector_ppc32le;
8288 Target_selector_powerpc<64, true> target_selector_ppc64;
8289 Target_selector_powerpc<64, false> target_selector_ppc64le;
8290
8291 // Instantiate these constants for -O0
8292 template<int size, bool big_endian>
8293 const int Output_data_glink<size, big_endian>::pltresolve_size;
8294 template<int size, bool big_endian>
8295 const typename Output_data_glink<size, big_endian>::Address
8296   Output_data_glink<size, big_endian>::invalid_address;
8297 template<int size, bool big_endian>
8298 const typename Stub_table<size, big_endian>::Address
8299   Stub_table<size, big_endian>::invalid_address;
8300 template<int size, bool big_endian>
8301 const typename Target_powerpc<size, big_endian>::Address
8302   Target_powerpc<size, big_endian>::invalid_address;
8303
8304 } // End anonymous namespace.