Fix PowerPC64 ELFv2 icf_safe failures
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* relobj,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         {
962           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963             <Powerpc_relobj<size, big_endian>*>(relobj);
964           if (ppcobj->abiversion() == 1)
965             return false;
966         }
967       // For 32-bit and ELFv2, conservatively assume anything but calls to
968       // function code might be taking the address of the function.
969       return !is_branch_reloc(r_type);
970     }
971
972     inline bool
973     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974                                          Target_powerpc* ,
975                                          Sized_relobj_file<size, big_endian>* relobj,
976                                          unsigned int ,
977                                          Output_section* ,
978                                          const elfcpp::Rela<size, big_endian>& ,
979                                          unsigned int r_type,
980                                          Symbol*)
981     {
982       // As above.
983       if (size == 64)
984         {
985           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986             <Powerpc_relobj<size, big_endian>*>(relobj);
987           if (ppcobj->abiversion() == 1)
988             return false;
989         }
990       return !is_branch_reloc(r_type);
991     }
992
993     static bool
994     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995                               Sized_relobj_file<size, big_endian>* object,
996                               unsigned int r_type, bool report_err);
997
998   private:
999     static void
1000     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001                             unsigned int r_type);
1002
1003     static void
1004     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005                              unsigned int r_type, Symbol*);
1006
1007     static void
1008     generate_tls_call(Symbol_table* symtab, Layout* layout,
1009                       Target_powerpc* target);
1010
1011     void
1012     check_non_pic(Relobj*, unsigned int r_type);
1013
1014     // Whether we have issued an error about a non-PIC compilation.
1015     bool issued_non_pic_error_;
1016   };
1017
1018   Address
1019   symval_for_branch(const Symbol_table* symtab, Address value,
1020                     const Sized_symbol<size>* gsym,
1021                     Powerpc_relobj<size, big_endian>* object,
1022                     unsigned int *dest_shndx);
1023
1024   // The class which implements relocation.
1025   class Relocate : protected Track_tls
1026   {
1027    public:
1028     // Use 'at' branch hints when true, 'y' when false.
1029     // FIXME maybe: set this with an option.
1030     static const bool is_isa_v2 = true;
1031
1032     Relocate()
1033       : Track_tls()
1034     { }
1035
1036     // Do a relocation.  Return false if the caller should not issue
1037     // any warnings about this relocation.
1038     inline bool
1039     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040              Output_section*, size_t relnum,
1041              const elfcpp::Rela<size, big_endian>&,
1042              unsigned int r_type, const Sized_symbol<size>*,
1043              const Symbol_value<size>*,
1044              unsigned char*,
1045              typename elfcpp::Elf_types<size>::Elf_Addr,
1046              section_size_type);
1047   };
1048
1049   class Relocate_comdat_behavior
1050   {
1051    public:
1052     // Decide what the linker should do for relocations that refer to
1053     // discarded comdat sections.
1054     inline Comdat_behavior
1055     get(const char* name)
1056     {
1057       gold::Default_comdat_behavior default_behavior;
1058       Comdat_behavior ret = default_behavior.get(name);
1059       if (ret == CB_WARNING)
1060         {
1061           if (size == 32
1062               && (strcmp(name, ".fixup") == 0
1063                   || strcmp(name, ".got2") == 0))
1064             ret = CB_IGNORE;
1065           if (size == 64
1066               && (strcmp(name, ".opd") == 0
1067                   || strcmp(name, ".toc") == 0
1068                   || strcmp(name, ".toc1") == 0))
1069             ret = CB_IGNORE;
1070         }
1071       return ret;
1072     }
1073   };
1074
1075   // A class which returns the size required for a relocation type,
1076   // used while scanning relocs during a relocatable link.
1077   class Relocatable_size_for_reloc
1078   {
1079    public:
1080     unsigned int
1081     get_size_for_reloc(unsigned int, Relobj*)
1082     {
1083       gold_unreachable();
1084       return 0;
1085     }
1086   };
1087
1088   // Optimize the TLS relocation type based on what we know about the
1089   // symbol.  IS_FINAL is true if the final address of this symbol is
1090   // known at link time.
1091
1092   tls::Tls_optimization
1093   optimize_tls_gd(bool is_final)
1094   {
1095     // If we are generating a shared library, then we can't do anything
1096     // in the linker.
1097     if (parameters->options().shared())
1098       return tls::TLSOPT_NONE;
1099
1100     if (!is_final)
1101       return tls::TLSOPT_TO_IE;
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   tls::Tls_optimization
1106   optimize_tls_ld()
1107   {
1108     if (parameters->options().shared())
1109       return tls::TLSOPT_NONE;
1110
1111     return tls::TLSOPT_TO_LE;
1112   }
1113
1114   tls::Tls_optimization
1115   optimize_tls_ie(bool is_final)
1116   {
1117     if (!is_final || parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     return tls::TLSOPT_TO_LE;
1121   }
1122
1123   // Create glink.
1124   void
1125   make_glink_section(Layout*);
1126
1127   // Create the PLT section.
1128   void
1129   make_plt_section(Symbol_table*, Layout*);
1130
1131   void
1132   make_iplt_section(Symbol_table*, Layout*);
1133
1134   void
1135   make_brlt_section(Layout*);
1136
1137   // Create a PLT entry for a global symbol.
1138   void
1139   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141   // Create a PLT entry for a local IFUNC symbol.
1142   void
1143   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144                              Sized_relobj_file<size, big_endian>*,
1145                              unsigned int);
1146
1147
1148   // Create a GOT entry for local dynamic __tls_get_addr.
1149   unsigned int
1150   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151                    Sized_relobj_file<size, big_endian>* object);
1152
1153   unsigned int
1154   tlsld_got_offset() const
1155   {
1156     return this->tlsld_got_offset_;
1157   }
1158
1159   // Get the dynamic reloc section, creating it if necessary.
1160   Reloc_section*
1161   rela_dyn_section(Layout*);
1162
1163   // Similarly, but for ifunc symbols get the one for ifunc.
1164   Reloc_section*
1165   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167   // Copy a relocation against a global symbol.
1168   void
1169   copy_reloc(Symbol_table* symtab, Layout* layout,
1170              Sized_relobj_file<size, big_endian>* object,
1171              unsigned int shndx, Output_section* output_section,
1172              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173   {
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   reloc, this->rela_dyn_section(layout));
1178   }
1179
1180   // Look over all the input sections, deciding where to place stubs.
1181   void
1182   group_sections(Layout*, const Task*);
1183
1184   // Sort output sections by address.
1185   struct Sort_sections
1186   {
1187     bool
1188     operator()(const Output_section* sec1, const Output_section* sec2)
1189     { return sec1->address() < sec2->address(); }
1190   };
1191
1192   class Branch_info
1193   {
1194    public:
1195     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196                 unsigned int data_shndx,
1197                 Address r_offset,
1198                 unsigned int r_type,
1199                 unsigned int r_sym,
1200                 Address addend)
1201       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203     { }
1204
1205     ~Branch_info()
1206     { }
1207
1208     // If this branch needs a plt call stub, or a long branch stub, make one.
1209     void
1210     make_stub(Stub_table<size, big_endian>*,
1211               Stub_table<size, big_endian>*,
1212               Symbol_table*) const;
1213
1214    private:
1215     // The branch location..
1216     Powerpc_relobj<size, big_endian>* object_;
1217     unsigned int shndx_;
1218     Address offset_;
1219     // ..and the branch type and destination.
1220     unsigned int r_type_;
1221     unsigned int r_sym_;
1222     Address addend_;
1223   };
1224
1225   // Information about this specific target which we pass to the
1226   // general Target structure.
1227   static Target::Target_info powerpc_info;
1228
1229   // The types of GOT entries needed for this platform.
1230   // These values are exposed to the ABI in an incremental link.
1231   // Do not renumber existing values without changing the version
1232   // number of the .gnu_incremental_inputs section.
1233   enum Got_type
1234   {
1235     GOT_TYPE_STANDARD,
1236     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1237     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1238     GOT_TYPE_TPREL      // entry for @got@tprel
1239   };
1240
1241   // The GOT section.
1242   Output_data_got_powerpc<size, big_endian>* got_;
1243   // The PLT section.  This is a container for a table of addresses,
1244   // and their relocations.  Each address in the PLT has a dynamic
1245   // relocation (R_*_JMP_SLOT) and each address will have a
1246   // corresponding entry in .glink for lazy resolution of the PLT.
1247   // ppc32 initialises the PLT to point at the .glink entry, while
1248   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1249   // linker adds a stub that loads the PLT entry into ctr then
1250   // branches to ctr.  There may be more than one stub for each PLT
1251   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1252   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253   Output_data_plt_powerpc<size, big_endian>* plt_;
1254   // The IPLT section.  Like plt_, this is a container for a table of
1255   // addresses and their relocations, specifically for STT_GNU_IFUNC
1256   // functions that resolve locally (STT_GNU_IFUNC functions that
1257   // don't resolve locally go in PLT).  Unlike plt_, these have no
1258   // entry in .glink for lazy resolution, and the relocation section
1259   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1260   // the relocation section may contain relocations against
1261   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1262   // relocation section will appear at the end of other dynamic
1263   // relocations, so that ld.so applies these relocations after other
1264   // dynamic relocations.  In a static executable, the relocation
1265   // section is emitted and marked with __rela_iplt_start and
1266   // __rela_iplt_end symbols.
1267   Output_data_plt_powerpc<size, big_endian>* iplt_;
1268   // Section holding long branch destinations.
1269   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270   // The .glink section.
1271   Output_data_glink<size, big_endian>* glink_;
1272   // The dynamic reloc section.
1273   Reloc_section* rela_dyn_;
1274   // Relocs saved to avoid a COPY reloc.
1275   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277   unsigned int tlsld_got_offset_;
1278
1279   Stub_tables stub_tables_;
1280   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281   Branch_lookup_table branch_lookup_table_;
1282
1283   typedef std::vector<Branch_info> Branches;
1284   Branches branch_info_;
1285
1286   bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292   32,                   // size
1293   true,                 // is_big_endian
1294   elfcpp::EM_PPC,       // machine_code
1295   false,                // has_make_symbol
1296   false,                // has_resolve
1297   false,                // has_code_fill
1298   true,                 // is_default_stack_executable
1299   false,                // can_icf_inline_merge_sections
1300   '\0',                 // wrap_char
1301   "/usr/lib/ld.so.1",   // dynamic_linker
1302   0x10000000,           // default_text_segment_address
1303   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1304   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1305   false,                // isolate_execinstr
1306   0,                    // rosegment_gap
1307   elfcpp::SHN_UNDEF,    // small_common_shndx
1308   elfcpp::SHN_UNDEF,    // large_common_shndx
1309   0,                    // small_common_section_flags
1310   0,                    // large_common_section_flags
1311   NULL,                 // attributes_section
1312   NULL,                 // attributes_vendor
1313   "_start"              // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319   32,                   // size
1320   false,                // is_big_endian
1321   elfcpp::EM_PPC,       // machine_code
1322   false,                // has_make_symbol
1323   false,                // has_resolve
1324   false,                // has_code_fill
1325   true,                 // is_default_stack_executable
1326   false,                // can_icf_inline_merge_sections
1327   '\0',                 // wrap_char
1328   "/usr/lib/ld.so.1",   // dynamic_linker
1329   0x10000000,           // default_text_segment_address
1330   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1331   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1332   false,                // isolate_execinstr
1333   0,                    // rosegment_gap
1334   elfcpp::SHN_UNDEF,    // small_common_shndx
1335   elfcpp::SHN_UNDEF,    // large_common_shndx
1336   0,                    // small_common_section_flags
1337   0,                    // large_common_section_flags
1338   NULL,                 // attributes_section
1339   NULL,                 // attributes_vendor
1340   "_start"              // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346   64,                   // size
1347   true,                 // is_big_endian
1348   elfcpp::EM_PPC64,     // machine_code
1349   false,                // has_make_symbol
1350   false,                // has_resolve
1351   false,                // has_code_fill
1352   true,                 // is_default_stack_executable
1353   false,                // can_icf_inline_merge_sections
1354   '\0',                 // wrap_char
1355   "/usr/lib/ld.so.1",   // dynamic_linker
1356   0x10000000,           // default_text_segment_address
1357   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1358   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1359   false,                // isolate_execinstr
1360   0,                    // rosegment_gap
1361   elfcpp::SHN_UNDEF,    // small_common_shndx
1362   elfcpp::SHN_UNDEF,    // large_common_shndx
1363   0,                    // small_common_section_flags
1364   0,                    // large_common_section_flags
1365   NULL,                 // attributes_section
1366   NULL,                 // attributes_vendor
1367   "_start"              // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373   64,                   // size
1374   false,                // is_big_endian
1375   elfcpp::EM_PPC64,     // machine_code
1376   false,                // has_make_symbol
1377   false,                // has_resolve
1378   false,                // has_code_fill
1379   true,                 // is_default_stack_executable
1380   false,                // can_icf_inline_merge_sections
1381   '\0',                 // wrap_char
1382   "/usr/lib/ld.so.1",   // dynamic_linker
1383   0x10000000,           // default_text_segment_address
1384   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1385   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1386   false,                // isolate_execinstr
1387   0,                    // rosegment_gap
1388   elfcpp::SHN_UNDEF,    // small_common_shndx
1389   elfcpp::SHN_UNDEF,    // large_common_shndx
1390   0,                    // small_common_section_flags
1391   0,                    // large_common_section_flags
1392   NULL,                 // attributes_section
1393   NULL,                 // attributes_vendor
1394   "_start"              // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400   return (r_type == elfcpp::R_POWERPC_REL24
1401           || r_type == elfcpp::R_PPC_PLTREL24
1402           || r_type == elfcpp::R_PPC_LOCAL24PC
1403           || r_type == elfcpp::R_POWERPC_REL14
1404           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406           || r_type == elfcpp::R_POWERPC_ADDR24
1407           || r_type == elfcpp::R_POWERPC_ADDR14
1408           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0.  If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418   if ((insn & (0x3f << 26)) != 31 << 26)
1419     return 0;
1420
1421   unsigned int rtra;
1422   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423     rtra = insn & ((1 << 26) - (1 << 16));
1424   else if (((insn >> 16) & 0x1f) == reg)
1425     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426   else
1427     return 0;
1428
1429   if ((insn & (0x3ff << 1)) == 266 << 1)
1430     // add -> addi
1431     insn = 14 << 26;
1432   else if ((insn & (0x1f << 1)) == 23 << 1
1433            && ((insn & (0x1f << 6)) < 14 << 6
1434                || ((insn & (0x1f << 6)) >= 16 << 6
1435                    && (insn & (0x1f << 6)) < 24 << 6)))
1436     // load and store indexed -> dform
1437     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442     // lwax -> lwa
1443     insn = (58 << 26) | 2;
1444   else
1445     return 0;
1446   insn |= rtra;
1447   return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455   enum Overflow_check
1456   {
1457     CHECK_NONE,
1458     CHECK_SIGNED,
1459     CHECK_UNSIGNED,
1460     CHECK_BITFIELD,
1461     CHECK_LOW_INSN,
1462     CHECK_HIGH_INSN
1463   };
1464
1465   enum Status
1466   {
1467     STATUS_OK,
1468     STATUS_OVERFLOW
1469   };
1470
1471 private:
1472   typedef Powerpc_relocate_functions<size, big_endian> This;
1473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475   template<int valsize>
1476   static inline bool
1477   has_overflow_signed(Address value)
1478   {
1479     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value + limit > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_unsigned(Address value)
1489   {
1490     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493     return value > (limit << 1) - 1;
1494   }
1495
1496   template<int valsize>
1497   static inline bool
1498   has_overflow_bitfield(Address value)
1499   {
1500     return (has_overflow_unsigned<valsize>(value)
1501             && has_overflow_signed<valsize>(value));
1502   }
1503
1504   template<int valsize>
1505   static inline Status
1506   overflowed(Address value, Overflow_check overflow)
1507   {
1508     if (overflow == CHECK_SIGNED)
1509       {
1510         if (has_overflow_signed<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     else if (overflow == CHECK_UNSIGNED)
1514       {
1515         if (has_overflow_unsigned<valsize>(value))
1516           return STATUS_OVERFLOW;
1517       }
1518     else if (overflow == CHECK_BITFIELD)
1519       {
1520         if (has_overflow_bitfield<valsize>(value))
1521           return STATUS_OVERFLOW;
1522       }
1523     return STATUS_OK;
1524   }
1525
1526   // Do a simple RELA relocation
1527   template<int valsize>
1528   static inline Status
1529   rela(unsigned char* view, Address value, Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534     return overflowed<valsize>(value, overflow);
1535   }
1536
1537   template<int valsize>
1538   static inline Status
1539   rela(unsigned char* view,
1540        unsigned int right_shift,
1541        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542        Address value,
1543        Overflow_check overflow)
1544   {
1545     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546     Valtype* wv = reinterpret_cast<Valtype*>(view);
1547     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548     Valtype reloc = value >> right_shift;
1549     val &= ~dst_mask;
1550     reloc &= dst_mask;
1551     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552     return overflowed<valsize>(value >> right_shift, overflow);
1553   }
1554
1555   // Do a simple RELA relocation, unaligned.
1556   template<int valsize>
1557   static inline Status
1558   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559   {
1560     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561     return overflowed<valsize>(value, overflow);
1562   }
1563
1564   template<int valsize>
1565   static inline Status
1566   rela_ua(unsigned char* view,
1567           unsigned int right_shift,
1568           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569           Address value,
1570           Overflow_check overflow)
1571   {
1572     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573       Valtype;
1574     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575     Valtype reloc = value >> right_shift;
1576     val &= ~dst_mask;
1577     reloc &= dst_mask;
1578     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579     return overflowed<valsize>(value >> right_shift, overflow);
1580   }
1581
1582 public:
1583   // R_PPC64_ADDR64: (Symbol + Addend)
1584   static inline void
1585   addr64(unsigned char* view, Address value)
1586   { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589   static inline void
1590   addr64_u(unsigned char* view, Address value)
1591   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593   // R_POWERPC_ADDR32: (Symbol + Addend)
1594   static inline Status
1595   addr32(unsigned char* view, Address value, Overflow_check overflow)
1596   { return This::template rela<32>(view, value, overflow); }
1597
1598   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599   static inline Status
1600   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601   { return This::template rela_ua<32>(view, value, overflow); }
1602
1603   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604   static inline Status
1605   addr24(unsigned char* view, Address value, Overflow_check overflow)
1606   {
1607     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608     if (overflow != CHECK_NONE && (value & 3) != 0)
1609       stat = STATUS_OVERFLOW;
1610     return stat;
1611   }
1612
1613   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614   static inline Status
1615   addr16(unsigned char* view, Address value, Overflow_check overflow)
1616   { return This::template rela<16>(view, value, overflow); }
1617
1618   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619   static inline Status
1620   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621   { return This::template rela_ua<16>(view, value, overflow); }
1622
1623   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624   static inline Status
1625   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626   {
1627     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628     if (overflow != CHECK_NONE && (value & 3) != 0)
1629       stat = STATUS_OVERFLOW;
1630     return stat;
1631   }
1632
1633   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634   static inline void
1635   addr16_hi(unsigned char* view, Address value)
1636   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639   static inline void
1640   addr16_ha(unsigned char* view, Address value)
1641   { This::addr16_hi(view, value + 0x8000); }
1642
1643   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644   static inline void
1645   addr16_hi2(unsigned char* view, Address value)
1646   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649   static inline void
1650   addr16_ha2(unsigned char* view, Address value)
1651   { This::addr16_hi2(view, value + 0x8000); }
1652
1653   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654   static inline void
1655   addr16_hi3(unsigned char* view, Address value)
1656   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659   static inline void
1660   addr16_ha3(unsigned char* view, Address value)
1661   { This::addr16_hi3(view, value + 0x8000); }
1662
1663   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664   static inline Status
1665   addr14(unsigned char* view, Address value, Overflow_check overflow)
1666   {
1667     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668     if (overflow != CHECK_NONE && (value & 3) != 0)
1669       stat = STATUS_OVERFLOW;
1670     return stat;
1671   }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680   this->e_flags_ |= ver;
1681   if (this->abiversion() != 0)
1682     {
1683       Target_powerpc<size, big_endian>* target =
1684         static_cast<Target_powerpc<size, big_endian>*>(
1685            parameters->sized_target<size, big_endian>());
1686       if (target->abiversion() == 0)
1687         target->set_abiversion(this->abiversion());
1688       else if (target->abiversion() != this->abiversion())
1689         gold_error(_("%s: ABI version %d is not compatible "
1690                      "with ABI version %d output"),
1691                    this->name().c_str(),
1692                    this->abiversion(), target->abiversion());
1693
1694     }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703     Read_symbols_data* sd)
1704 {
1705   const unsigned char* const pshdrs = sd->section_headers->data();
1706   const unsigned char* namesu = sd->section_names->data();
1707   const char* names = reinterpret_cast<const char*>(namesu);
1708   section_size_type names_size = sd->section_names_size;
1709   const unsigned char* s;
1710
1711   s = this->template find_shdr<size, big_endian>(pshdrs,
1712                                                  size == 32 ? ".got2" : ".opd",
1713                                                  names, names_size, NULL);
1714   if (s != NULL)
1715     {
1716       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717       this->special_ = ndx;
1718       if (size == 64)
1719         {
1720           if (this->abiversion() == 0)
1721             this->set_abiversion(1);
1722           else if (this->abiversion() > 1)
1723             gold_error(_("%s: .opd invalid in abiv%d"),
1724                        this->name().c_str(), this->abiversion());
1725         }
1726     }
1727   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735     size_t reloc_count,
1736     const unsigned char* prelocs,
1737     const unsigned char* plocal_syms)
1738 {
1739   if (size == 64)
1740     {
1741       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742         Reltype;
1743       const int reloc_size
1744         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746       Address expected_off = 0;
1747       bool regular = true;
1748       unsigned int opd_ent_size = 0;
1749
1750       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751         {
1752           Reltype reloc(prelocs);
1753           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754             = reloc.get_r_info();
1755           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756           if (r_type == elfcpp::R_PPC64_ADDR64)
1757             {
1758               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759               typename elfcpp::Elf_types<size>::Elf_Addr value;
1760               bool is_ordinary;
1761               unsigned int shndx;
1762               if (r_sym < this->local_symbol_count())
1763                 {
1764                   typename elfcpp::Sym<size, big_endian>
1765                     lsym(plocal_syms + r_sym * sym_size);
1766                   shndx = lsym.get_st_shndx();
1767                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768                   value = lsym.get_st_value();
1769                 }
1770               else
1771                 shndx = this->symbol_section_and_value(r_sym, &value,
1772                                                        &is_ordinary);
1773               this->set_opd_ent(reloc.get_r_offset(), shndx,
1774                                 value + reloc.get_r_addend());
1775               if (i == 2)
1776                 {
1777                   expected_off = reloc.get_r_offset();
1778                   opd_ent_size = expected_off;
1779                 }
1780               else if (expected_off != reloc.get_r_offset())
1781                 regular = false;
1782               expected_off += opd_ent_size;
1783             }
1784           else if (r_type == elfcpp::R_PPC64_TOC)
1785             {
1786               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787                 regular = false;
1788             }
1789           else
1790             {
1791               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792                            this->name().c_str(), r_type);
1793               regular = false;
1794             }
1795         }
1796       if (reloc_count <= 2)
1797         opd_ent_size = this->section_size(this->opd_shndx());
1798       if (opd_ent_size != 24 && opd_ent_size != 16)
1799         regular = false;
1800       if (!regular)
1801         {
1802           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803                        this->name().c_str());
1804           opd_ent_size = 0;
1805         }
1806     }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814   if (size == 64)
1815     {
1816       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817            p != rd->relocs.end();
1818            ++p)
1819         {
1820           if (p->data_shndx == this->opd_shndx())
1821             {
1822               uint64_t opd_size = this->section_size(this->opd_shndx());
1823               gold_assert(opd_size == static_cast<size_t>(opd_size));
1824               if (opd_size != 0)
1825                 {
1826                   this->init_opd(opd_size);
1827                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828                                         rd->local_symbols->data());
1829                 }
1830               break;
1831             }
1832         }
1833     }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842   Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1843   if (size == 64)
1844     {
1845       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846       const unsigned char* const pshdrs = sd->section_headers->data();
1847       const unsigned int loccount = this->do_local_symbol_count();
1848       if (loccount != 0)
1849         {
1850           this->st_other_.resize(loccount);
1851           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852           off_t locsize = loccount * sym_size;
1853           const unsigned int symtab_shndx = this->symtab_shndx();
1854           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857                                                       locsize, true, false);
1858           psyms += sym_size;
1859           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860             {
1861               elfcpp::Sym<size, big_endian> sym(psyms);
1862               unsigned char st_other = sym.get_st_other();
1863               this->st_other_[i] = st_other;
1864               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865                 {
1866                   if (this->abiversion() == 0)
1867                     this->set_abiversion(2);
1868                   else if (this->abiversion() < 2)
1869                     gold_error(_("%s: local symbol %d has invalid st_other"
1870                                  " for ABI version 1"),
1871                                this->name().c_str(), i);
1872                 }
1873             }
1874         }
1875     }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882   this->e_flags_ |= ver;
1883   if (this->abiversion() != 0)
1884     {
1885       Target_powerpc<size, big_endian>* target =
1886         static_cast<Target_powerpc<size, big_endian>*>(
1887           parameters->sized_target<size, big_endian>());
1888       if (target->abiversion() == 0)
1889         target->set_abiversion(this->abiversion());
1890       else if (target->abiversion() != this->abiversion())
1891         gold_error(_("%s: ABI version %d is not compatible "
1892                      "with ABI version %d output"),
1893                    this->name().c_str(),
1894                    this->abiversion(), target->abiversion());
1895
1896     }
1897 }
1898
1899 // Call Sized_dynobj::do_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1907   if (size == 64)
1908     {
1909       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910       const unsigned char* const pshdrs = sd->section_headers->data();
1911       const unsigned char* namesu = sd->section_names->data();
1912       const char* names = reinterpret_cast<const char*>(namesu);
1913       const unsigned char* s = NULL;
1914       const unsigned char* opd;
1915       section_size_type opd_size;
1916
1917       // Find and read .opd section.
1918       while (1)
1919         {
1920           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921                                                          sd->section_names_size,
1922                                                          s);
1923           if (s == NULL)
1924             return;
1925
1926           typename elfcpp::Shdr<size, big_endian> shdr(s);
1927           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929             {
1930               if (this->abiversion() == 0)
1931                 this->set_abiversion(1);
1932               else if (this->abiversion() > 1)
1933                 gold_error(_("%s: .opd invalid in abiv%d"),
1934                            this->name().c_str(), this->abiversion());
1935
1936               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937               this->opd_address_ = shdr.get_sh_addr();
1938               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940                                    true, false);
1941               break;
1942             }
1943         }
1944
1945       // Build set of executable sections.
1946       // Using a set is probably overkill.  There is likely to be only
1947       // a few executable sections, typically .init, .text and .fini,
1948       // and they are generally grouped together.
1949       typedef std::set<Sec_info> Exec_sections;
1950       Exec_sections exec_sections;
1951       s = pshdrs;
1952       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953         {
1954           typename elfcpp::Shdr<size, big_endian> shdr(s);
1955           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956               && ((shdr.get_sh_flags()
1957                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959               && shdr.get_sh_size() != 0)
1960             {
1961               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962                                             shdr.get_sh_size(), i));
1963             }
1964         }
1965       if (exec_sections.empty())
1966         return;
1967
1968       // Look over the OPD entries.  This is complicated by the fact
1969       // that some binaries will use two-word entries while others
1970       // will use the standard three-word entries.  In most cases
1971       // the third word (the environment pointer for languages like
1972       // Pascal) is unused and will be zero.  If the third word is
1973       // used it should not be pointing into executable sections,
1974       // I think.
1975       this->init_opd(opd_size);
1976       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977         {
1978           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981           if (val == 0)
1982             // Chances are that this is the third word of an OPD entry.
1983             continue;
1984           typename Exec_sections::const_iterator e
1985             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986           if (e != exec_sections.begin())
1987             {
1988               --e;
1989               if (e->start <= val && val < e->start + e->len)
1990                 {
1991                   // We have an address in an executable section.
1992                   // VAL ought to be the function entry, set it up.
1993                   this->set_opd_ent(p - opd, e->shndx, val);
1994                   // Skip second word of OPD entry, the TOC pointer.
1995                   p += 8;
1996                 }
1997             }
1998           // If we didn't match any executable sections, we likely
1999           // have a non-zero third word in the OPD entry.
2000         }
2001     }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009     Symbol_table* symtab,
2010     Layout* layout)
2011 {
2012   if (size == 32)
2013     {
2014       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015       // undefined when scanning relocs (and thus requires
2016       // non-relative dynamic relocs).  The proper value will be
2017       // updated later.
2018       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019       if (gotsym != NULL && gotsym->is_undefined())
2020         {
2021           Target_powerpc<size, big_endian>* target =
2022             static_cast<Target_powerpc<size, big_endian>*>(
2023                 parameters->sized_target<size, big_endian>());
2024           Output_data_got_powerpc<size, big_endian>* got
2025             = target->got_section(symtab, layout);
2026           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027                                         Symbol_table::PREDEFINED,
2028                                         got, 0, 0,
2029                                         elfcpp::STT_OBJECT,
2030                                         elfcpp::STB_LOCAL,
2031                                         elfcpp::STV_HIDDEN, 0,
2032                                         false, false);
2033         }
2034
2035       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037       if (sdasym != NULL && sdasym->is_undefined())
2038         {
2039           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040           Output_section* os
2041             = layout->add_output_section_data(".sdata", 0,
2042                                               elfcpp::SHF_ALLOC
2043                                               | elfcpp::SHF_WRITE,
2044                                               sdata, ORDER_SMALL_DATA, false);
2045           symtab->define_in_output_data("_SDA_BASE_", NULL,
2046                                         Symbol_table::PREDEFINED,
2047                                         os, 32768, 0, elfcpp::STT_OBJECT,
2048                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049                                         0, false, false);
2050         }
2051     }
2052   else
2053     {
2054       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056       if (gotsym != NULL && gotsym->is_undefined())
2057         {
2058           Target_powerpc<size, big_endian>* target =
2059             static_cast<Target_powerpc<size, big_endian>*>(
2060                 parameters->sized_target<size, big_endian>());
2061           Output_data_got_powerpc<size, big_endian>* got
2062             = target->got_section(symtab, layout);
2063           symtab->define_in_output_data(".TOC.", NULL,
2064                                         Symbol_table::PREDEFINED,
2065                                         got, 0x8000, 0,
2066                                         elfcpp::STT_OBJECT,
2067                                         elfcpp::STB_LOCAL,
2068                                         elfcpp::STV_HIDDEN, 0,
2069                                         false, false);
2070         }
2071     }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079     const std::string& name,
2080     Input_file* input_file,
2081     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083   int et = ehdr.get_e_type();
2084   // ET_EXEC files are valid input for --just-symbols/-R,
2085   // and we treat them as relocatable objects.
2086   if (et == elfcpp::ET_REL
2087       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088     {
2089       Powerpc_relobj<size, big_endian>* obj =
2090         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091       obj->setup();
2092       return obj;
2093     }
2094   else if (et == elfcpp::ET_DYN)
2095     {
2096       Powerpc_dynobj<size, big_endian>* obj =
2097         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098       obj->setup();
2099       return obj;
2100     }
2101   else
2102     {
2103       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104       return NULL;
2105     }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116     : Output_data_got<size, big_endian>(),
2117       symtab_(symtab), layout_(layout),
2118       header_ent_cnt_(size == 32 ? 3 : 1),
2119       header_index_(size == 32 ? 0x2000 : 0)
2120   { }
2121
2122   // Override all the Output_data_got methods we use so as to first call
2123   // reserve_ent().
2124   bool
2125   add_global(Symbol* gsym, unsigned int got_type)
2126   {
2127     this->reserve_ent();
2128     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129   }
2130
2131   bool
2132   add_global_plt(Symbol* gsym, unsigned int got_type)
2133   {
2134     this->reserve_ent();
2135     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136   }
2137
2138   bool
2139   add_global_tls(Symbol* gsym, unsigned int got_type)
2140   { return this->add_global_plt(gsym, got_type); }
2141
2142   void
2143   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145   {
2146     this->reserve_ent();
2147     Output_data_got<size, big_endian>::
2148       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149   }
2150
2151   void
2152   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153                            Output_data_reloc_generic* rel_dyn,
2154                            unsigned int r_type_1, unsigned int r_type_2)
2155   {
2156     this->reserve_ent(2);
2157     Output_data_got<size, big_endian>::
2158       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159   }
2160
2161   bool
2162   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163   {
2164     this->reserve_ent();
2165     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166                                                         got_type);
2167   }
2168
2169   bool
2170   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171   {
2172     this->reserve_ent();
2173     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174                                                             got_type);
2175   }
2176
2177   bool
2178   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179   { return this->add_local_plt(object, sym_index, got_type); }
2180
2181   void
2182   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183                      unsigned int got_type,
2184                      Output_data_reloc_generic* rel_dyn,
2185                      unsigned int r_type)
2186   {
2187     this->reserve_ent(2);
2188     Output_data_got<size, big_endian>::
2189       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190   }
2191
2192   unsigned int
2193   add_constant(Valtype constant)
2194   {
2195     this->reserve_ent();
2196     return Output_data_got<size, big_endian>::add_constant(constant);
2197   }
2198
2199   unsigned int
2200   add_constant_pair(Valtype c1, Valtype c2)
2201   {
2202     this->reserve_ent(2);
2203     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204   }
2205
2206   // Offset of _GLOBAL_OFFSET_TABLE_.
2207   unsigned int
2208   g_o_t() const
2209   {
2210     return this->got_offset(this->header_index_);
2211   }
2212
2213   // Offset of base used to access the GOT/TOC.
2214   // The got/toc pointer reg will be set to this value.
2215   Valtype
2216   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217   {
2218     if (size == 32)
2219       return this->g_o_t();
2220     else
2221       return (this->output_section()->address()
2222               + object->toc_base_offset()
2223               - this->address());
2224   }
2225
2226   // Ensure our GOT has a header.
2227   void
2228   set_final_data_size()
2229   {
2230     if (this->header_ent_cnt_ != 0)
2231       this->make_header();
2232     Output_data_got<size, big_endian>::set_final_data_size();
2233   }
2234
2235   // First word of GOT header needs some values that are not
2236   // handled by Output_data_got so poke them in here.
2237   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238   void
2239   do_write(Output_file* of)
2240   {
2241     Valtype val = 0;
2242     if (size == 32 && this->layout_->dynamic_data() != NULL)
2243       val = this->layout_->dynamic_section()->address();
2244     if (size == 64)
2245       val = this->output_section()->address() + 0x8000;
2246     this->replace_constant(this->header_index_, val);
2247     Output_data_got<size, big_endian>::do_write(of);
2248   }
2249
2250 private:
2251   void
2252   reserve_ent(unsigned int cnt = 1)
2253   {
2254     if (this->header_ent_cnt_ == 0)
2255       return;
2256     if (this->num_entries() + cnt > this->header_index_)
2257       this->make_header();
2258   }
2259
2260   void
2261   make_header()
2262   {
2263     this->header_ent_cnt_ = 0;
2264     this->header_index_ = this->num_entries();
2265     if (size == 32)
2266       {
2267         Output_data_got<size, big_endian>::add_constant(0);
2268         Output_data_got<size, big_endian>::add_constant(0);
2269         Output_data_got<size, big_endian>::add_constant(0);
2270
2271         // Define _GLOBAL_OFFSET_TABLE_ at the header
2272         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273         if (gotsym != NULL)
2274           {
2275             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276             sym->set_value(this->g_o_t());
2277           }
2278         else
2279           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280                                                Symbol_table::PREDEFINED,
2281                                                this, this->g_o_t(), 0,
2282                                                elfcpp::STT_OBJECT,
2283                                                elfcpp::STB_LOCAL,
2284                                                elfcpp::STV_HIDDEN, 0,
2285                                                false, false);
2286       }
2287     else
2288       Output_data_got<size, big_endian>::add_constant(0);
2289   }
2290
2291   // Stashed pointers.
2292   Symbol_table* symtab_;
2293   Layout* layout_;
2294
2295   // GOT header size.
2296   unsigned int header_ent_cnt_;
2297   // GOT header index.
2298   unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306                                               Layout* layout)
2307 {
2308   if (this->got_ == NULL)
2309     {
2310       gold_assert(symtab != NULL && layout != NULL);
2311
2312       this->got_
2313         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317                                       this->got_, ORDER_DATA, false);
2318     }
2319
2320   return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329   if (this->rela_dyn_ == NULL)
2330     {
2331       gold_assert(layout != NULL);
2332       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2335                                       ORDER_DYNAMIC_RELOCS, false);
2336     }
2337   return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345                                                    Layout* layout,
2346                                                    bool for_ifunc)
2347 {
2348   if (!for_ifunc)
2349     return this->rela_dyn_section(layout);
2350
2351   if (this->iplt_ == NULL)
2352     this->make_iplt_section(symtab, layout);
2353   return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358  public:
2359   // Determine the stub group size.  The group size is the absolute
2360   // value of the parameter --stub-group-size.  If --stub-group-size
2361   // is passed a negative value, we restrict stubs to be always before
2362   // the stubbed branches.
2363   Stub_control(int32_t size)
2364     : state_(NO_GROUP), stub_group_size_(abs(size)),
2365       stub14_group_size_(abs(size)),
2366       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368   {
2369     if (stub_group_size_ == 1)
2370       {
2371         // Default values.
2372         if (stubs_always_before_branch_)
2373           {
2374             stub_group_size_ = 0x1e00000;
2375             stub14_group_size_ = 0x7800;
2376           }
2377         else
2378           {
2379             stub_group_size_ = 0x1c00000;
2380             stub14_group_size_ = 0x7000;
2381           }
2382         suppress_size_errors_ = true;
2383       }
2384   }
2385
2386   // Return true iff input section can be handled by current stub
2387   // group.
2388   bool
2389   can_add_to_stub_group(Output_section* o,
2390                         const Output_section::Input_section* i,
2391                         bool has14);
2392
2393   const Output_section::Input_section*
2394   owner()
2395   { return owner_; }
2396
2397   Output_section*
2398   output_section()
2399   { return output_section_; }
2400
2401  private:
2402   typedef enum
2403   {
2404     NO_GROUP,
2405     FINDING_STUB_SECTION,
2406     HAS_STUB_SECTION
2407   } State;
2408
2409   State state_;
2410   uint32_t stub_group_size_;
2411   uint32_t stub14_group_size_;
2412   bool stubs_always_before_branch_;
2413   bool suppress_size_errors_;
2414   uint64_t group_end_addr_;
2415   const Output_section::Input_section* owner_;
2416   Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424                                     const Output_section::Input_section* i,
2425                                     bool has14)
2426 {
2427   uint32_t group_size
2428     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430   uint64_t this_size;
2431   uint64_t start_addr = o->address();
2432
2433   if (whole_sec)
2434     // .init and .fini sections are pasted together to form a single
2435     // function.  We can't be adding stubs in the middle of the function.
2436     this_size = o->data_size();
2437   else
2438     {
2439       start_addr += i->relobj()->output_section_offset(i->shndx());
2440       this_size = i->data_size();
2441     }
2442   uint64_t end_addr = start_addr + this_size;
2443   bool toobig = this_size > group_size;
2444
2445   if (toobig && !this->suppress_size_errors_)
2446     gold_warning(_("%s:%s exceeds group size"),
2447                  i->relobj()->name().c_str(),
2448                  i->relobj()->section_name(i->shndx()).c_str());
2449
2450   if (this->state_ != HAS_STUB_SECTION
2451       && (!whole_sec || this->output_section_ != o)
2452       && (this->state_ == NO_GROUP
2453           || this->group_end_addr_ - end_addr < group_size))
2454     {
2455       this->owner_ = i;
2456       this->output_section_ = o;
2457     }
2458
2459   if (this->state_ == NO_GROUP)
2460     {
2461       this->state_ = FINDING_STUB_SECTION;
2462       this->group_end_addr_ = end_addr;
2463     }
2464   else if (this->group_end_addr_ - start_addr < group_size)
2465     ;
2466   // Adding this section would make the group larger than GROUP_SIZE.
2467   else if (this->state_ == FINDING_STUB_SECTION
2468            && !this->stubs_always_before_branch_
2469            && !toobig)
2470     {
2471       // But wait, there's more!  Input sections up to GROUP_SIZE
2472       // bytes before the stub table can be handled by it too.
2473       this->state_ = HAS_STUB_SECTION;
2474       this->group_end_addr_ = end_addr;
2475     }
2476   else
2477     {
2478       this->state_ = NO_GROUP;
2479       return false;
2480     }
2481   return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489                                                  const Task*)
2490 {
2491   Stub_control stub_control(parameters->options().stub_group_size());
2492
2493   // Group input sections and insert stub table
2494   Stub_table<size, big_endian>* stub_table = NULL;
2495   Layout::Section_list section_list;
2496   layout->get_executable_sections(&section_list);
2497   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499        o != section_list.rend();
2500        ++o)
2501     {
2502       typedef Output_section::Input_section_list Input_section_list;
2503       for (Input_section_list::const_reverse_iterator i
2504              = (*o)->input_sections().rbegin();
2505            i != (*o)->input_sections().rend();
2506            ++i)
2507         {
2508           if (i->is_input_section())
2509             {
2510               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514                 {
2515                   stub_table->init(stub_control.owner(),
2516                                    stub_control.output_section());
2517                   stub_table = NULL;
2518                 }
2519               if (stub_table == NULL)
2520                 stub_table = this->new_stub_table();
2521               ppcobj->set_stub_table(i->shndx(), stub_table);
2522             }
2523         }
2524     }
2525   if (stub_table != NULL)
2526     {
2527       const Output_section::Input_section* i = stub_control.owner();
2528       if (!i->is_input_section())
2529         {
2530           // Corner case.  A new stub group was made for the first
2531           // section (last one looked at here) for some reason, but
2532           // the first section is already being used as the owner for
2533           // a stub table for following sections.  Force it into that
2534           // stub group.
2535           gold_assert(this->stub_tables_.size() >= 2);
2536           this->stub_tables_.pop_back();
2537           delete stub_table;
2538           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541         }
2542       else
2543         stub_table->init(i, stub_control.output_section());
2544     }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552     Stub_table<size, big_endian>* stub_table,
2553     Stub_table<size, big_endian>* ifunc_stub_table,
2554     Symbol_table* symtab) const
2555 {
2556   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557   if (sym != NULL && sym->is_forwarder())
2558     sym = symtab->resolve_forwards(sym);
2559   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560   Target_powerpc<size, big_endian>* target =
2561     static_cast<Target_powerpc<size, big_endian>*>(
2562       parameters->sized_target<size, big_endian>());
2563   if (gsym != NULL
2564       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565       : this->object_->local_has_plt_offset(this->r_sym_))
2566     {
2567       if (size == 64
2568           && gsym != NULL
2569           && target->abiversion() >= 2
2570           && !parameters->options().output_is_position_independent()
2571           && !is_branch_reloc(this->r_type_))
2572         target->glink_section()->add_global_entry(gsym);
2573       else
2574         {
2575           if (stub_table == NULL)
2576             stub_table = this->object_->stub_table(this->shndx_);
2577           if (stub_table == NULL)
2578             {
2579               // This is a ref from a data section to an ifunc symbol.
2580               stub_table = ifunc_stub_table;
2581             }
2582           gold_assert(stub_table != NULL);
2583           if (gsym != NULL)
2584             stub_table->add_plt_call_entry(this->object_, gsym,
2585                                            this->r_type_, this->addend_);
2586           else
2587             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588                                            this->r_type_, this->addend_);
2589         }
2590     }
2591   else
2592     {
2593       unsigned long max_branch_offset;
2594       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597         max_branch_offset = 1 << 15;
2598       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601         max_branch_offset = 1 << 25;
2602       else
2603         return;
2604       Address from = this->object_->get_output_section_offset(this->shndx_);
2605       gold_assert(from != invalid_address);
2606       from += (this->object_->output_section(this->shndx_)->address()
2607                + this->offset_);
2608       Address to;
2609       if (gsym != NULL)
2610         {
2611           switch (gsym->source())
2612             {
2613             case Symbol::FROM_OBJECT:
2614               {
2615                 Object* symobj = gsym->object();
2616                 if (symobj->is_dynamic()
2617                     || symobj->pluginobj() != NULL)
2618                   return;
2619                 bool is_ordinary;
2620                 unsigned int shndx = gsym->shndx(&is_ordinary);
2621                 if (shndx == elfcpp::SHN_UNDEF)
2622                   return;
2623               }
2624               break;
2625
2626             case Symbol::IS_UNDEFINED:
2627               return;
2628
2629             default:
2630               break;
2631             }
2632           Symbol_table::Compute_final_value_status status;
2633           to = symtab->compute_final_value<size>(gsym, &status);
2634           if (status != Symbol_table::CFVS_OK)
2635             return;
2636           if (size == 64)
2637             to += this->object_->ppc64_local_entry_offset(gsym);
2638         }
2639       else
2640         {
2641           const Symbol_value<size>* psymval
2642             = this->object_->local_symbol(this->r_sym_);
2643           Symbol_value<size> symval;
2644           typedef Sized_relobj_file<size, big_endian> ObjType;
2645           typename ObjType::Compute_final_local_value_status status
2646             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647                                                        &symval, symtab);
2648           if (status != ObjType::CFLV_OK
2649               || !symval.has_output_value())
2650             return;
2651           to = symval.value(this->object_, 0);
2652           if (size == 64)
2653             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654         }
2655       to += this->addend_;
2656       if (stub_table == NULL)
2657         stub_table = this->object_->stub_table(this->shndx_);
2658       if (size == 64 && target->abiversion() < 2)
2659         {
2660           unsigned int dest_shndx;
2661           to = target->symval_for_branch(symtab, to, gsym,
2662                                          this->object_, &dest_shndx);
2663         }
2664       Address delta = to - from;
2665       if (delta + max_branch_offset >= 2 * max_branch_offset)
2666         {
2667           if (stub_table == NULL)
2668             {
2669               gold_warning(_("%s:%s: branch in non-executable section,"
2670                              " no long branch stub for you"),
2671                            this->object_->name().c_str(),
2672                            this->object_->section_name(this->shndx_).c_str());
2673               return;
2674             }
2675           stub_table->add_long_branch_entry(this->object_, to);
2676         }
2677     }
2678 }
2679
2680 // Relaxation hook.  This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685                                            const Input_objects*,
2686                                            Symbol_table* symtab,
2687                                            Layout* layout,
2688                                            const Task* task)
2689 {
2690   unsigned int prev_brlt_size = 0;
2691   if (pass == 1)
2692     {
2693       bool thread_safe
2694         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695       if (size == 64
2696           && this->abiversion() < 2
2697           && !thread_safe
2698           && !parameters->options().user_set_plt_thread_safe())
2699         {
2700           static const char* const thread_starter[] =
2701             {
2702               "pthread_create",
2703               /* libstdc++ */
2704               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705               /* librt */
2706               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707               "mq_notify", "create_timer",
2708               /* libanl */
2709               "getaddrinfo_a",
2710               /* libgomp */
2711               "GOMP_parallel_start",
2712               "GOMP_parallel_loop_static_start",
2713               "GOMP_parallel_loop_dynamic_start",
2714               "GOMP_parallel_loop_guided_start",
2715               "GOMP_parallel_loop_runtime_start",
2716               "GOMP_parallel_sections_start",
2717             };
2718
2719           if (parameters->options().shared())
2720             thread_safe = true;
2721           else
2722             {
2723               for (unsigned int i = 0;
2724                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2725                    i++)
2726                 {
2727                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2728                   thread_safe = (sym != NULL
2729                                  && sym->in_reg()
2730                                  && sym->in_real_elf());
2731                   if (thread_safe)
2732                     break;
2733                 }
2734             }
2735         }
2736       this->plt_thread_safe_ = thread_safe;
2737       this->group_sections(layout, task);
2738     }
2739
2740   // We need address of stub tables valid for make_stub.
2741   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2742        p != this->stub_tables_.end();
2743        ++p)
2744     {
2745       const Powerpc_relobj<size, big_endian>* object
2746         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2747       Address off = object->get_output_section_offset((*p)->shndx());
2748       gold_assert(off != invalid_address);
2749       Output_section* os = (*p)->output_section();
2750       (*p)->set_address_and_size(os, off);
2751     }
2752
2753   if (pass != 1)
2754     {
2755       // Clear plt call stubs, long branch stubs and branch lookup table.
2756       prev_brlt_size = this->branch_lookup_table_.size();
2757       this->branch_lookup_table_.clear();
2758       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2759            p != this->stub_tables_.end();
2760            ++p)
2761         {
2762           (*p)->clear_stubs();
2763         }
2764     }
2765
2766   // Build all the stubs.
2767   Stub_table<size, big_endian>* ifunc_stub_table
2768     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2769   Stub_table<size, big_endian>* one_stub_table
2770     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2771   for (typename Branches::const_iterator b = this->branch_info_.begin();
2772        b != this->branch_info_.end();
2773        b++)
2774     {
2775       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2776     }
2777
2778   // Did anything change size?
2779   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2780   bool again = num_huge_branches != prev_brlt_size;
2781   if (size == 64 && num_huge_branches != 0)
2782     this->make_brlt_section(layout);
2783   if (size == 64 && again)
2784     this->brlt_section_->set_current_size(num_huge_branches);
2785
2786   typedef Unordered_set<Output_section*> Output_sections;
2787   Output_sections os_need_update;
2788   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2789        p != this->stub_tables_.end();
2790        ++p)
2791     {
2792       if ((*p)->size_update())
2793         {
2794           again = true;
2795           (*p)->add_eh_frame(layout);
2796           os_need_update.insert((*p)->output_section());
2797         }
2798     }
2799
2800   // Set output section offsets for all input sections in an output
2801   // section that just changed size.  Anything past the stubs will
2802   // need updating.
2803   for (typename Output_sections::iterator p = os_need_update.begin();
2804        p != os_need_update.end();
2805        p++)
2806     {
2807       Output_section* os = *p;
2808       Address off = 0;
2809       typedef Output_section::Input_section_list Input_section_list;
2810       for (Input_section_list::const_iterator i = os->input_sections().begin();
2811            i != os->input_sections().end();
2812            ++i)
2813         {
2814           off = align_address(off, i->addralign());
2815           if (i->is_input_section() || i->is_relaxed_input_section())
2816             i->relobj()->set_section_offset(i->shndx(), off);
2817           if (i->is_relaxed_input_section())
2818             {
2819               Stub_table<size, big_endian>* stub_table
2820                 = static_cast<Stub_table<size, big_endian>*>(
2821                     i->relaxed_input_section());
2822               off += stub_table->set_address_and_size(os, off);
2823             }
2824           else
2825             off += i->data_size();
2826         }
2827       // If .branch_lt is part of this output section, then we have
2828       // just done the offset adjustment.
2829       os->clear_section_offsets_need_adjustment();
2830     }
2831
2832   if (size == 64
2833       && !again
2834       && num_huge_branches != 0
2835       && parameters->options().output_is_position_independent())
2836     {
2837       // Fill in the BRLT relocs.
2838       this->brlt_section_->reset_brlt_sizes();
2839       for (typename Branch_lookup_table::const_iterator p
2840              = this->branch_lookup_table_.begin();
2841            p != this->branch_lookup_table_.end();
2842            ++p)
2843         {
2844           this->brlt_section_->add_reloc(p->first, p->second);
2845         }
2846       this->brlt_section_->finalize_brlt_sizes();
2847     }
2848   return again;
2849 }
2850
2851 template<int size, bool big_endian>
2852 void
2853 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2854                                                       unsigned char* oview,
2855                                                       uint64_t* paddress,
2856                                                       off_t* plen) const
2857 {
2858   uint64_t address = plt->address();
2859   off_t len = plt->data_size();
2860
2861   if (plt == this->glink_)
2862     {
2863       // See Output_data_glink::do_write() for glink contents.
2864       if (len == 0)
2865         {
2866           gold_assert(parameters->doing_static_link());
2867           // Static linking may need stubs, to support ifunc and long
2868           // branches.  We need to create an output section for
2869           // .eh_frame early in the link process, to have a place to
2870           // attach stub .eh_frame info.  We also need to have
2871           // registered a CIE that matches the stub CIE.  Both of
2872           // these requirements are satisfied by creating an FDE and
2873           // CIE for .glink, even though static linking will leave
2874           // .glink zero length.
2875           // ??? Hopefully generating an FDE with a zero address range
2876           // won't confuse anything that consumes .eh_frame info.
2877         }
2878       else if (size == 64)
2879         {
2880           // There is one word before __glink_PLTresolve
2881           address += 8;
2882           len -= 8;
2883         }
2884       else if (parameters->options().output_is_position_independent())
2885         {
2886           // There are two FDEs for a position independent glink.
2887           // The first covers the branch table, the second
2888           // __glink_PLTresolve at the end of glink.
2889           off_t resolve_size = this->glink_->pltresolve_size;
2890           if (oview[9] == elfcpp::DW_CFA_nop)
2891             len -= resolve_size;
2892           else
2893             {
2894               address += len - resolve_size;
2895               len = resolve_size;
2896             }
2897         }
2898     }
2899   else
2900     {
2901       // Must be a stub table.
2902       const Stub_table<size, big_endian>* stub_table
2903         = static_cast<const Stub_table<size, big_endian>*>(plt);
2904       uint64_t stub_address = stub_table->stub_address();
2905       len -= stub_address - address;
2906       address = stub_address;
2907     }
2908
2909   *paddress = address;
2910   *plen = len;
2911 }
2912
2913 // A class to handle the PLT data.
2914
2915 template<int size, bool big_endian>
2916 class Output_data_plt_powerpc : public Output_section_data_build
2917 {
2918  public:
2919   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2920                             size, big_endian> Reloc_section;
2921
2922   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2923                           Reloc_section* plt_rel,
2924                           const char* name)
2925     : Output_section_data_build(size == 32 ? 4 : 8),
2926       rel_(plt_rel),
2927       targ_(targ),
2928       name_(name)
2929   { }
2930
2931   // Add an entry to the PLT.
2932   void
2933   add_entry(Symbol*);
2934
2935   void
2936   add_ifunc_entry(Symbol*);
2937
2938   void
2939   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2940
2941   // Return the .rela.plt section data.
2942   Reloc_section*
2943   rel_plt() const
2944   {
2945     return this->rel_;
2946   }
2947
2948   // Return the number of PLT entries.
2949   unsigned int
2950   entry_count() const
2951   {
2952     if (this->current_data_size() == 0)
2953       return 0;
2954     return ((this->current_data_size() - this->first_plt_entry_offset())
2955             / this->plt_entry_size());
2956   }
2957
2958  protected:
2959   void
2960   do_adjust_output_section(Output_section* os)
2961   {
2962     os->set_entsize(0);
2963   }
2964
2965   // Write to a map file.
2966   void
2967   do_print_to_mapfile(Mapfile* mapfile) const
2968   { mapfile->print_output_data(this, this->name_); }
2969
2970  private:
2971   // Return the offset of the first non-reserved PLT entry.
2972   unsigned int
2973   first_plt_entry_offset() const
2974   {
2975     // IPLT has no reserved entry.
2976     if (this->name_[3] == 'I')
2977       return 0;
2978     return this->targ_->first_plt_entry_offset();
2979   }
2980
2981   // Return the size of each PLT entry.
2982   unsigned int
2983   plt_entry_size() const
2984   {
2985     return this->targ_->plt_entry_size();
2986   }
2987
2988   // Write out the PLT data.
2989   void
2990   do_write(Output_file*);
2991
2992   // The reloc section.
2993   Reloc_section* rel_;
2994   // Allows access to .glink for do_write.
2995   Target_powerpc<size, big_endian>* targ_;
2996   // What to report in map file.
2997   const char *name_;
2998 };
2999
3000 // Add an entry to the PLT.
3001
3002 template<int size, bool big_endian>
3003 void
3004 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3005 {
3006   if (!gsym->has_plt_offset())
3007     {
3008       section_size_type off = this->current_data_size();
3009       if (off == 0)
3010         off += this->first_plt_entry_offset();
3011       gsym->set_plt_offset(off);
3012       gsym->set_needs_dynsym_entry();
3013       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3014       this->rel_->add_global(gsym, dynrel, this, off, 0);
3015       off += this->plt_entry_size();
3016       this->set_current_data_size(off);
3017     }
3018 }
3019
3020 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3021
3022 template<int size, bool big_endian>
3023 void
3024 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3025 {
3026   if (!gsym->has_plt_offset())
3027     {
3028       section_size_type off = this->current_data_size();
3029       gsym->set_plt_offset(off);
3030       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3031       if (size == 64 && this->targ_->abiversion() < 2)
3032         dynrel = elfcpp::R_PPC64_JMP_IREL;
3033       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3034       off += this->plt_entry_size();
3035       this->set_current_data_size(off);
3036     }
3037 }
3038
3039 // Add an entry for a local ifunc symbol to the IPLT.
3040
3041 template<int size, bool big_endian>
3042 void
3043 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3044     Sized_relobj_file<size, big_endian>* relobj,
3045     unsigned int local_sym_index)
3046 {
3047   if (!relobj->local_has_plt_offset(local_sym_index))
3048     {
3049       section_size_type off = this->current_data_size();
3050       relobj->set_local_plt_offset(local_sym_index, off);
3051       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3052       if (size == 64 && this->targ_->abiversion() < 2)
3053         dynrel = elfcpp::R_PPC64_JMP_IREL;
3054       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3055                                               this, off, 0);
3056       off += this->plt_entry_size();
3057       this->set_current_data_size(off);
3058     }
3059 }
3060
3061 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3062 static const uint32_t add_2_2_11        = 0x7c425a14;
3063 static const uint32_t add_3_3_2         = 0x7c631214;
3064 static const uint32_t add_3_3_13        = 0x7c636a14;
3065 static const uint32_t add_11_0_11       = 0x7d605a14;
3066 static const uint32_t add_11_2_11       = 0x7d625a14;
3067 static const uint32_t add_11_11_2       = 0x7d6b1214;
3068 static const uint32_t addi_0_12         = 0x380c0000;
3069 static const uint32_t addi_2_2          = 0x38420000;
3070 static const uint32_t addi_3_3          = 0x38630000;
3071 static const uint32_t addi_11_11        = 0x396b0000;
3072 static const uint32_t addi_12_12        = 0x398c0000;
3073 static const uint32_t addis_0_2         = 0x3c020000;
3074 static const uint32_t addis_0_13        = 0x3c0d0000;
3075 static const uint32_t addis_3_2         = 0x3c620000;
3076 static const uint32_t addis_3_13        = 0x3c6d0000;
3077 static const uint32_t addis_11_2        = 0x3d620000;
3078 static const uint32_t addis_11_11       = 0x3d6b0000;
3079 static const uint32_t addis_11_30       = 0x3d7e0000;
3080 static const uint32_t addis_12_12       = 0x3d8c0000;
3081 static const uint32_t b                 = 0x48000000;
3082 static const uint32_t bcl_20_31         = 0x429f0005;
3083 static const uint32_t bctr              = 0x4e800420;
3084 static const uint32_t blr               = 0x4e800020;
3085 static const uint32_t bnectr_p4         = 0x4ce20420;
3086 static const uint32_t cmpldi_2_0        = 0x28220000;
3087 static const uint32_t cror_15_15_15     = 0x4def7b82;
3088 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3089 static const uint32_t ld_0_1            = 0xe8010000;
3090 static const uint32_t ld_0_12           = 0xe80c0000;
3091 static const uint32_t ld_2_1            = 0xe8410000;
3092 static const uint32_t ld_2_2            = 0xe8420000;
3093 static const uint32_t ld_2_11           = 0xe84b0000;
3094 static const uint32_t ld_11_2           = 0xe9620000;
3095 static const uint32_t ld_11_11          = 0xe96b0000;
3096 static const uint32_t ld_12_2           = 0xe9820000;
3097 static const uint32_t ld_12_11          = 0xe98b0000;
3098 static const uint32_t ld_12_12          = 0xe98c0000;
3099 static const uint32_t lfd_0_1           = 0xc8010000;
3100 static const uint32_t li_0_0            = 0x38000000;
3101 static const uint32_t li_12_0           = 0x39800000;
3102 static const uint32_t lis_0_0           = 0x3c000000;
3103 static const uint32_t lis_11            = 0x3d600000;
3104 static const uint32_t lis_12            = 0x3d800000;
3105 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3106 static const uint32_t lwz_0_12          = 0x800c0000;
3107 static const uint32_t lwz_11_11         = 0x816b0000;
3108 static const uint32_t lwz_11_30         = 0x817e0000;
3109 static const uint32_t lwz_12_12         = 0x818c0000;
3110 static const uint32_t lwzu_0_12         = 0x840c0000;
3111 static const uint32_t mflr_0            = 0x7c0802a6;
3112 static const uint32_t mflr_11           = 0x7d6802a6;
3113 static const uint32_t mflr_12           = 0x7d8802a6;
3114 static const uint32_t mtctr_0           = 0x7c0903a6;
3115 static const uint32_t mtctr_11          = 0x7d6903a6;
3116 static const uint32_t mtctr_12          = 0x7d8903a6;
3117 static const uint32_t mtlr_0            = 0x7c0803a6;
3118 static const uint32_t mtlr_12           = 0x7d8803a6;
3119 static const uint32_t nop               = 0x60000000;
3120 static const uint32_t ori_0_0_0         = 0x60000000;
3121 static const uint32_t srdi_0_0_2        = 0x7800f082;
3122 static const uint32_t std_0_1           = 0xf8010000;
3123 static const uint32_t std_0_12          = 0xf80c0000;
3124 static const uint32_t std_2_1           = 0xf8410000;
3125 static const uint32_t stfd_0_1          = 0xd8010000;
3126 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3127 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3128 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3129 static const uint32_t xor_2_12_12       = 0x7d826278;
3130 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3131
3132 // Write out the PLT.
3133
3134 template<int size, bool big_endian>
3135 void
3136 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3137 {
3138   if (size == 32 && this->name_[3] != 'I')
3139     {
3140       const section_size_type offset = this->offset();
3141       const section_size_type oview_size
3142         = convert_to_section_size_type(this->data_size());
3143       unsigned char* const oview = of->get_output_view(offset, oview_size);
3144       unsigned char* pov = oview;
3145       unsigned char* endpov = oview + oview_size;
3146
3147       // The address of the .glink branch table
3148       const Output_data_glink<size, big_endian>* glink
3149         = this->targ_->glink_section();
3150       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3151
3152       while (pov < endpov)
3153         {
3154           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3155           pov += 4;
3156           branch_tab += 4;
3157         }
3158
3159       of->write_output_view(offset, oview_size, oview);
3160     }
3161 }
3162
3163 // Create the PLT section.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3168                                                    Layout* layout)
3169 {
3170   if (this->plt_ == NULL)
3171     {
3172       if (this->got_ == NULL)
3173         this->got_section(symtab, layout);
3174
3175       if (this->glink_ == NULL)
3176         make_glink_section(layout);
3177
3178       // Ensure that .rela.dyn always appears before .rela.plt  This is
3179       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3180       // needs to include .rela.plt in its range.
3181       this->rela_dyn_section(layout);
3182
3183       Reloc_section* plt_rel = new Reloc_section(false);
3184       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3185                                       elfcpp::SHF_ALLOC, plt_rel,
3186                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3187       this->plt_
3188         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3189                                                         "** PLT");
3190       layout->add_output_section_data(".plt",
3191                                       (size == 32
3192                                        ? elfcpp::SHT_PROGBITS
3193                                        : elfcpp::SHT_NOBITS),
3194                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3195                                       this->plt_,
3196                                       (size == 32
3197                                        ? ORDER_SMALL_DATA
3198                                        : ORDER_SMALL_BSS),
3199                                       false);
3200     }
3201 }
3202
3203 // Create the IPLT section.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3208                                                     Layout* layout)
3209 {
3210   if (this->iplt_ == NULL)
3211     {
3212       this->make_plt_section(symtab, layout);
3213
3214       Reloc_section* iplt_rel = new Reloc_section(false);
3215       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3216       this->iplt_
3217         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3218                                                         "** IPLT");
3219       this->plt_->output_section()->add_output_section_data(this->iplt_);
3220     }
3221 }
3222
3223 // A section for huge long branch addresses, similar to plt section.
3224
3225 template<int size, bool big_endian>
3226 class Output_data_brlt_powerpc : public Output_section_data_build
3227 {
3228  public:
3229   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3230   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3231                             size, big_endian> Reloc_section;
3232
3233   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3234                            Reloc_section* brlt_rel)
3235     : Output_section_data_build(size == 32 ? 4 : 8),
3236       rel_(brlt_rel),
3237       targ_(targ)
3238   { }
3239
3240   void
3241   reset_brlt_sizes()
3242   {
3243     this->reset_data_size();
3244     this->rel_->reset_data_size();
3245   }
3246
3247   void
3248   finalize_brlt_sizes()
3249   {
3250     this->finalize_data_size();
3251     this->rel_->finalize_data_size();
3252   }
3253
3254   // Add a reloc for an entry in the BRLT.
3255   void
3256   add_reloc(Address to, unsigned int off)
3257   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3258
3259   // Update section and reloc section size.
3260   void
3261   set_current_size(unsigned int num_branches)
3262   {
3263     this->reset_address_and_file_offset();
3264     this->set_current_data_size(num_branches * 16);
3265     this->finalize_data_size();
3266     Output_section* os = this->output_section();
3267     os->set_section_offsets_need_adjustment();
3268     if (this->rel_ != NULL)
3269       {
3270         unsigned int reloc_size
3271           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3272         this->rel_->reset_address_and_file_offset();
3273         this->rel_->set_current_data_size(num_branches * reloc_size);
3274         this->rel_->finalize_data_size();
3275         Output_section* os = this->rel_->output_section();
3276         os->set_section_offsets_need_adjustment();
3277       }
3278   }
3279
3280  protected:
3281   void
3282   do_adjust_output_section(Output_section* os)
3283   {
3284     os->set_entsize(0);
3285   }
3286
3287   // Write to a map file.
3288   void
3289   do_print_to_mapfile(Mapfile* mapfile) const
3290   { mapfile->print_output_data(this, "** BRLT"); }
3291
3292  private:
3293   // Write out the BRLT data.
3294   void
3295   do_write(Output_file*);
3296
3297   // The reloc section.
3298   Reloc_section* rel_;
3299   Target_powerpc<size, big_endian>* targ_;
3300 };
3301
3302 // Make the branch lookup table section.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3307 {
3308   if (size == 64 && this->brlt_section_ == NULL)
3309     {
3310       Reloc_section* brlt_rel = NULL;
3311       bool is_pic = parameters->options().output_is_position_independent();
3312       if (is_pic)
3313         {
3314           // When PIC we can't fill in .branch_lt (like .plt it can be
3315           // a bss style section) but must initialise at runtime via
3316           // dynamic relocats.
3317           this->rela_dyn_section(layout);
3318           brlt_rel = new Reloc_section(false);
3319           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3320         }
3321       this->brlt_section_
3322         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3323       if (this->plt_ && is_pic)
3324         this->plt_->output_section()
3325           ->add_output_section_data(this->brlt_section_);
3326       else
3327         layout->add_output_section_data(".branch_lt",
3328                                         (is_pic ? elfcpp::SHT_NOBITS
3329                                          : elfcpp::SHT_PROGBITS),
3330                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3331                                         this->brlt_section_,
3332                                         (is_pic ? ORDER_SMALL_BSS
3333                                          : ORDER_SMALL_DATA),
3334                                         false);
3335     }
3336 }
3337
3338 // Write out .branch_lt when non-PIC.
3339
3340 template<int size, bool big_endian>
3341 void
3342 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3343 {
3344   if (size == 64 && !parameters->options().output_is_position_independent())
3345     {
3346       const section_size_type offset = this->offset();
3347       const section_size_type oview_size
3348         = convert_to_section_size_type(this->data_size());
3349       unsigned char* const oview = of->get_output_view(offset, oview_size);
3350
3351       this->targ_->write_branch_lookup_table(oview);
3352       of->write_output_view(offset, oview_size, oview);
3353     }
3354 }
3355
3356 static inline uint32_t
3357 l(uint32_t a)
3358 {
3359   return a & 0xffff;
3360 }
3361
3362 static inline uint32_t
3363 hi(uint32_t a)
3364 {
3365   return l(a >> 16);
3366 }
3367
3368 static inline uint32_t
3369 ha(uint32_t a)
3370 {
3371   return hi(a + 0x8000);
3372 }
3373
3374 template<int size>
3375 struct Eh_cie
3376 {
3377   static const unsigned char eh_frame_cie[12];
3378 };
3379
3380 template<int size>
3381 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3382 {
3383   1,                                    // CIE version.
3384   'z', 'R', 0,                          // Augmentation string.
3385   4,                                    // Code alignment.
3386   0x80 - size / 8 ,                     // Data alignment.
3387   65,                                   // RA reg.
3388   1,                                    // Augmentation size.
3389   (elfcpp::DW_EH_PE_pcrel
3390    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3391   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3392 };
3393
3394 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3395 static const unsigned char glink_eh_frame_fde_64v1[] =
3396 {
3397   0, 0, 0, 0,                           // Replaced with offset to .glink.
3398   0, 0, 0, 0,                           // Replaced with size of .glink.
3399   0,                                    // Augmentation size.
3400   elfcpp::DW_CFA_advance_loc + 1,
3401   elfcpp::DW_CFA_register, 65, 12,
3402   elfcpp::DW_CFA_advance_loc + 4,
3403   elfcpp::DW_CFA_restore_extended, 65
3404 };
3405
3406 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3407 static const unsigned char glink_eh_frame_fde_64v2[] =
3408 {
3409   0, 0, 0, 0,                           // Replaced with offset to .glink.
3410   0, 0, 0, 0,                           // Replaced with size of .glink.
3411   0,                                    // Augmentation size.
3412   elfcpp::DW_CFA_advance_loc + 1,
3413   elfcpp::DW_CFA_register, 65, 0,
3414   elfcpp::DW_CFA_advance_loc + 4,
3415   elfcpp::DW_CFA_restore_extended, 65
3416 };
3417
3418 // Describe __glink_PLTresolve use of LR, 32-bit version.
3419 static const unsigned char glink_eh_frame_fde_32[] =
3420 {
3421   0, 0, 0, 0,                           // Replaced with offset to .glink.
3422   0, 0, 0, 0,                           // Replaced with size of .glink.
3423   0,                                    // Augmentation size.
3424   elfcpp::DW_CFA_advance_loc + 2,
3425   elfcpp::DW_CFA_register, 65, 0,
3426   elfcpp::DW_CFA_advance_loc + 4,
3427   elfcpp::DW_CFA_restore_extended, 65
3428 };
3429
3430 static const unsigned char default_fde[] =
3431 {
3432   0, 0, 0, 0,                           // Replaced with offset to stubs.
3433   0, 0, 0, 0,                           // Replaced with size of stubs.
3434   0,                                    // Augmentation size.
3435   elfcpp::DW_CFA_nop,                   // Pad.
3436   elfcpp::DW_CFA_nop,
3437   elfcpp::DW_CFA_nop
3438 };
3439
3440 template<bool big_endian>
3441 static inline void
3442 write_insn(unsigned char* p, uint32_t v)
3443 {
3444   elfcpp::Swap<32, big_endian>::writeval(p, v);
3445 }
3446
3447 // Stub_table holds information about plt and long branch stubs.
3448 // Stubs are built in an area following some input section determined
3449 // by group_sections().  This input section is converted to a relaxed
3450 // input section allowing it to be resized to accommodate the stubs
3451
3452 template<int size, bool big_endian>
3453 class Stub_table : public Output_relaxed_input_section
3454 {
3455  public:
3456   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3457   static const Address invalid_address = static_cast<Address>(0) - 1;
3458
3459   Stub_table(Target_powerpc<size, big_endian>* targ)
3460     : Output_relaxed_input_section(NULL, 0, 0),
3461       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3462       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3463       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3464   { }
3465
3466   // Delayed Output_relaxed_input_section init.
3467   void
3468   init(const Output_section::Input_section*, Output_section*);
3469
3470   // Add a plt call stub.
3471   void
3472   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3473                      const Symbol*,
3474                      unsigned int,
3475                      Address);
3476
3477   void
3478   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3479                      unsigned int,
3480                      unsigned int,
3481                      Address);
3482
3483   // Find a given plt call stub.
3484   Address
3485   find_plt_call_entry(const Symbol*) const;
3486
3487   Address
3488   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3489                       unsigned int) const;
3490
3491   Address
3492   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3493                       const Symbol*,
3494                       unsigned int,
3495                       Address) const;
3496
3497   Address
3498   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3499                       unsigned int,
3500                       unsigned int,
3501                       Address) const;
3502
3503   // Add a long branch stub.
3504   void
3505   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3506
3507   Address
3508   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3509                          Address) const;
3510
3511   void
3512   clear_stubs()
3513   {
3514     this->plt_call_stubs_.clear();
3515     this->plt_size_ = 0;
3516     this->long_branch_stubs_.clear();
3517     this->branch_size_ = 0;
3518   }
3519
3520   Address
3521   set_address_and_size(const Output_section* os, Address off)
3522   {
3523     Address start_off = off;
3524     off += this->orig_data_size_;
3525     Address my_size = this->plt_size_ + this->branch_size_;
3526     if (my_size != 0)
3527       off = align_address(off, this->stub_align());
3528     // Include original section size and alignment padding in size
3529     my_size += off - start_off;
3530     this->reset_address_and_file_offset();
3531     this->set_current_data_size(my_size);
3532     this->set_address_and_file_offset(os->address() + start_off,
3533                                       os->offset() + start_off);
3534     return my_size;
3535   }
3536
3537   Address
3538   stub_address() const
3539   {
3540     return align_address(this->address() + this->orig_data_size_,
3541                          this->stub_align());
3542   }
3543
3544   Address
3545   stub_offset() const
3546   {
3547     return align_address(this->offset() + this->orig_data_size_,
3548                          this->stub_align());
3549   }
3550
3551   section_size_type
3552   plt_size() const
3553   { return this->plt_size_; }
3554
3555   bool
3556   size_update()
3557   {
3558     Output_section* os = this->output_section();
3559     if (os->addralign() < this->stub_align())
3560       {
3561         os->set_addralign(this->stub_align());
3562         // FIXME: get rid of the insane checkpointing.
3563         // We can't increase alignment of the input section to which
3564         // stubs are attached;  The input section may be .init which
3565         // is pasted together with other .init sections to form a
3566         // function.  Aligning might insert zero padding resulting in
3567         // sigill.  However we do need to increase alignment of the
3568         // output section so that the align_address() on offset in
3569         // set_address_and_size() adds the same padding as the
3570         // align_address() on address in stub_address().
3571         // What's more, we need this alignment for the layout done in
3572         // relaxation_loop_body() so that the output section starts at
3573         // a suitably aligned address.
3574         os->checkpoint_set_addralign(this->stub_align());
3575       }
3576     if (this->last_plt_size_ != this->plt_size_
3577         || this->last_branch_size_ != this->branch_size_)
3578       {
3579         this->last_plt_size_ = this->plt_size_;
3580         this->last_branch_size_ = this->branch_size_;
3581         return true;
3582       }
3583     return false;
3584   }
3585
3586   // Add .eh_frame info for this stub section.  Unlike other linker
3587   // generated .eh_frame this is added late in the link, because we
3588   // only want the .eh_frame info if this particular stub section is
3589   // non-empty.
3590   void
3591   add_eh_frame(Layout* layout)
3592   {
3593     if (!this->eh_frame_added_)
3594       {
3595         if (!parameters->options().ld_generated_unwind_info())
3596           return;
3597
3598         // Since we add stub .eh_frame info late, it must be placed
3599         // after all other linker generated .eh_frame info so that
3600         // merge mapping need not be updated for input sections.
3601         // There is no provision to use a different CIE to that used
3602         // by .glink.
3603         if (!this->targ_->has_glink())
3604           return;
3605
3606         layout->add_eh_frame_for_plt(this,
3607                                      Eh_cie<size>::eh_frame_cie,
3608                                      sizeof (Eh_cie<size>::eh_frame_cie),
3609                                      default_fde,
3610                                      sizeof (default_fde));
3611         this->eh_frame_added_ = true;
3612       }
3613   }
3614
3615   Target_powerpc<size, big_endian>*
3616   targ() const
3617   { return targ_; }
3618
3619  private:
3620   class Plt_stub_ent;
3621   class Plt_stub_ent_hash;
3622   typedef Unordered_map<Plt_stub_ent, unsigned int,
3623                         Plt_stub_ent_hash> Plt_stub_entries;
3624
3625   // Alignment of stub section.
3626   unsigned int
3627   stub_align() const
3628   {
3629     if (size == 32)
3630       return 16;
3631     unsigned int min_align = 32;
3632     unsigned int user_align = 1 << parameters->options().plt_align();
3633     return std::max(user_align, min_align);
3634   }
3635
3636   // Return the plt offset for the given call stub.
3637   Address
3638   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3639   {
3640     const Symbol* gsym = p->first.sym_;
3641     if (gsym != NULL)
3642       {
3643         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3644                     && gsym->can_use_relative_reloc(false));
3645         return gsym->plt_offset();
3646       }
3647     else
3648       {
3649         *is_iplt = true;
3650         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3651         unsigned int local_sym_index = p->first.locsym_;
3652         return relobj->local_plt_offset(local_sym_index);
3653       }
3654   }
3655
3656   // Size of a given plt call stub.
3657   unsigned int
3658   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3659   {
3660     if (size == 32)
3661       return 16;
3662
3663     bool is_iplt;
3664     Address plt_addr = this->plt_off(p, &is_iplt);
3665     if (is_iplt)
3666       plt_addr += this->targ_->iplt_section()->address();
3667     else
3668       plt_addr += this->targ_->plt_section()->address();
3669     Address got_addr = this->targ_->got_section()->output_section()->address();
3670     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3671       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3672     got_addr += ppcobj->toc_base_offset();
3673     Address off = plt_addr - got_addr;
3674     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3675     if (this->targ_->abiversion() < 2)
3676       {
3677         bool static_chain = parameters->options().plt_static_chain();
3678         bool thread_safe = this->targ_->plt_thread_safe();
3679         bytes += (4
3680                   + 4 * static_chain
3681                   + 8 * thread_safe
3682                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3683       }
3684     unsigned int align = 1 << parameters->options().plt_align();
3685     if (align > 1)
3686       bytes = (bytes + align - 1) & -align;
3687     return bytes;
3688   }
3689
3690   // Return long branch stub size.
3691   unsigned int
3692   branch_stub_size(Address to)
3693   {
3694     Address loc
3695       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3696     if (to - loc + (1 << 25) < 2 << 25)
3697       return 4;
3698     if (size == 64 || !parameters->options().output_is_position_independent())
3699       return 16;
3700     return 32;
3701   }
3702
3703   // Write out stubs.
3704   void
3705   do_write(Output_file*);
3706
3707   // Plt call stub keys.
3708   class Plt_stub_ent
3709   {
3710   public:
3711     Plt_stub_ent(const Symbol* sym)
3712       : sym_(sym), object_(0), addend_(0), locsym_(0)
3713     { }
3714
3715     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3716                  unsigned int locsym_index)
3717       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3718     { }
3719
3720     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3721                  const Symbol* sym,
3722                  unsigned int r_type,
3723                  Address addend)
3724       : sym_(sym), object_(0), addend_(0), locsym_(0)
3725     {
3726       if (size != 32)
3727         this->addend_ = addend;
3728       else if (parameters->options().output_is_position_independent()
3729                && r_type == elfcpp::R_PPC_PLTREL24)
3730         {
3731           this->addend_ = addend;
3732           if (this->addend_ >= 32768)
3733             this->object_ = object;
3734         }
3735     }
3736
3737     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3738                  unsigned int locsym_index,
3739                  unsigned int r_type,
3740                  Address addend)
3741       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3742     {
3743       if (size != 32)
3744         this->addend_ = addend;
3745       else if (parameters->options().output_is_position_independent()
3746                && r_type == elfcpp::R_PPC_PLTREL24)
3747         this->addend_ = addend;
3748     }
3749
3750     bool operator==(const Plt_stub_ent& that) const
3751     {
3752       return (this->sym_ == that.sym_
3753               && this->object_ == that.object_
3754               && this->addend_ == that.addend_
3755               && this->locsym_ == that.locsym_);
3756     }
3757
3758     const Symbol* sym_;
3759     const Sized_relobj_file<size, big_endian>* object_;
3760     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3761     unsigned int locsym_;
3762   };
3763
3764   class Plt_stub_ent_hash
3765   {
3766   public:
3767     size_t operator()(const Plt_stub_ent& ent) const
3768     {
3769       return (reinterpret_cast<uintptr_t>(ent.sym_)
3770               ^ reinterpret_cast<uintptr_t>(ent.object_)
3771               ^ ent.addend_
3772               ^ ent.locsym_);
3773     }
3774   };
3775
3776   // Long branch stub keys.
3777   class Branch_stub_ent
3778   {
3779   public:
3780     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3781       : dest_(to), toc_base_off_(0)
3782     {
3783       if (size == 64)
3784         toc_base_off_ = obj->toc_base_offset();
3785     }
3786
3787     bool operator==(const Branch_stub_ent& that) const
3788     {
3789       return (this->dest_ == that.dest_
3790               && (size == 32
3791                   || this->toc_base_off_ == that.toc_base_off_));
3792     }
3793
3794     Address dest_;
3795     unsigned int toc_base_off_;
3796   };
3797
3798   class Branch_stub_ent_hash
3799   {
3800   public:
3801     size_t operator()(const Branch_stub_ent& ent) const
3802     { return ent.dest_ ^ ent.toc_base_off_; }
3803   };
3804
3805   // In a sane world this would be a global.
3806   Target_powerpc<size, big_endian>* targ_;
3807   // Map sym/object/addend to stub offset.
3808   Plt_stub_entries plt_call_stubs_;
3809   // Map destination address to stub offset.
3810   typedef Unordered_map<Branch_stub_ent, unsigned int,
3811                         Branch_stub_ent_hash> Branch_stub_entries;
3812   Branch_stub_entries long_branch_stubs_;
3813   // size of input section
3814   section_size_type orig_data_size_;
3815   // size of stubs
3816   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3817   // Whether .eh_frame info has been created for this stub section.
3818   bool eh_frame_added_;
3819 };
3820
3821 // Make a new stub table, and record.
3822
3823 template<int size, bool big_endian>
3824 Stub_table<size, big_endian>*
3825 Target_powerpc<size, big_endian>::new_stub_table()
3826 {
3827   Stub_table<size, big_endian>* stub_table
3828     = new Stub_table<size, big_endian>(this);
3829   this->stub_tables_.push_back(stub_table);
3830   return stub_table;
3831 }
3832
3833 // Delayed stub table initialisation, because we create the stub table
3834 // before we know to which section it will be attached.
3835
3836 template<int size, bool big_endian>
3837 void
3838 Stub_table<size, big_endian>::init(
3839     const Output_section::Input_section* owner,
3840     Output_section* output_section)
3841 {
3842   this->set_relobj(owner->relobj());
3843   this->set_shndx(owner->shndx());
3844   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3845   this->set_output_section(output_section);
3846   this->orig_data_size_ = owner->current_data_size();
3847
3848   std::vector<Output_relaxed_input_section*> new_relaxed;
3849   new_relaxed.push_back(this);
3850   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3851 }
3852
3853 // Add a plt call stub, if we do not already have one for this
3854 // sym/object/addend combo.
3855
3856 template<int size, bool big_endian>
3857 void
3858 Stub_table<size, big_endian>::add_plt_call_entry(
3859     const Sized_relobj_file<size, big_endian>* object,
3860     const Symbol* gsym,
3861     unsigned int r_type,
3862     Address addend)
3863 {
3864   Plt_stub_ent ent(object, gsym, r_type, addend);
3865   unsigned int off = this->plt_size_;
3866   std::pair<typename Plt_stub_entries::iterator, bool> p
3867     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3868   if (p.second)
3869     this->plt_size_ = off + this->plt_call_size(p.first);
3870 }
3871
3872 template<int size, bool big_endian>
3873 void
3874 Stub_table<size, big_endian>::add_plt_call_entry(
3875     const Sized_relobj_file<size, big_endian>* object,
3876     unsigned int locsym_index,
3877     unsigned int r_type,
3878     Address addend)
3879 {
3880   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3881   unsigned int off = this->plt_size_;
3882   std::pair<typename Plt_stub_entries::iterator, bool> p
3883     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3884   if (p.second)
3885     this->plt_size_ = off + this->plt_call_size(p.first);
3886 }
3887
3888 // Find a plt call stub.
3889
3890 template<int size, bool big_endian>
3891 typename Stub_table<size, big_endian>::Address
3892 Stub_table<size, big_endian>::find_plt_call_entry(
3893     const Sized_relobj_file<size, big_endian>* object,
3894     const Symbol* gsym,
3895     unsigned int r_type,
3896     Address addend) const
3897 {
3898   Plt_stub_ent ent(object, gsym, r_type, addend);
3899   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3900   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3901 }
3902
3903 template<int size, bool big_endian>
3904 typename Stub_table<size, big_endian>::Address
3905 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3906 {
3907   Plt_stub_ent ent(gsym);
3908   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3909   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3910 }
3911
3912 template<int size, bool big_endian>
3913 typename Stub_table<size, big_endian>::Address
3914 Stub_table<size, big_endian>::find_plt_call_entry(
3915     const Sized_relobj_file<size, big_endian>* object,
3916     unsigned int locsym_index,
3917     unsigned int r_type,
3918     Address addend) const
3919 {
3920   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3921   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3922   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3923 }
3924
3925 template<int size, bool big_endian>
3926 typename Stub_table<size, big_endian>::Address
3927 Stub_table<size, big_endian>::find_plt_call_entry(
3928     const Sized_relobj_file<size, big_endian>* object,
3929     unsigned int locsym_index) const
3930 {
3931   Plt_stub_ent ent(object, locsym_index);
3932   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3933   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3934 }
3935
3936 // Add a long branch stub if we don't already have one to given
3937 // destination.
3938
3939 template<int size, bool big_endian>
3940 void
3941 Stub_table<size, big_endian>::add_long_branch_entry(
3942     const Powerpc_relobj<size, big_endian>* object,
3943     Address to)
3944 {
3945   Branch_stub_ent ent(object, to);
3946   Address off = this->branch_size_;
3947   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3948     {
3949       unsigned int stub_size = this->branch_stub_size(to);
3950       this->branch_size_ = off + stub_size;
3951       if (size == 64 && stub_size != 4)
3952         this->targ_->add_branch_lookup_table(to);
3953     }
3954 }
3955
3956 // Find long branch stub.
3957
3958 template<int size, bool big_endian>
3959 typename Stub_table<size, big_endian>::Address
3960 Stub_table<size, big_endian>::find_long_branch_entry(
3961     const Powerpc_relobj<size, big_endian>* object,
3962     Address to) const
3963 {
3964   Branch_stub_ent ent(object, to);
3965   typename Branch_stub_entries::const_iterator p
3966     = this->long_branch_stubs_.find(ent);
3967   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3968 }
3969
3970 // A class to handle .glink.
3971
3972 template<int size, bool big_endian>
3973 class Output_data_glink : public Output_section_data
3974 {
3975  public:
3976   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3977   static const Address invalid_address = static_cast<Address>(0) - 1;
3978   static const int pltresolve_size = 16*4;
3979
3980   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3981     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3982       end_branch_table_(), ge_size_(0)
3983   { }
3984
3985   void
3986   add_eh_frame(Layout* layout);
3987
3988   void
3989   add_global_entry(const Symbol*);
3990
3991   Address
3992   find_global_entry(const Symbol*) const;
3993
3994   Address
3995   global_entry_address() const
3996   {
3997     gold_assert(this->is_data_size_valid());
3998     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3999     return this->address() + global_entry_off;
4000   }
4001
4002  protected:
4003   // Write to a map file.
4004   void
4005   do_print_to_mapfile(Mapfile* mapfile) const
4006   { mapfile->print_output_data(this, _("** glink")); }
4007
4008  private:
4009   void
4010   set_final_data_size();
4011
4012   // Write out .glink
4013   void
4014   do_write(Output_file*);
4015
4016   // Allows access to .got and .plt for do_write.
4017   Target_powerpc<size, big_endian>* targ_;
4018
4019   // Map sym to stub offset.
4020   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4021   Global_entry_stub_entries global_entry_stubs_;
4022
4023   unsigned int end_branch_table_, ge_size_;
4024 };
4025
4026 template<int size, bool big_endian>
4027 void
4028 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4029 {
4030   if (!parameters->options().ld_generated_unwind_info())
4031     return;
4032
4033   if (size == 64)
4034     {
4035       if (this->targ_->abiversion() < 2)
4036         layout->add_eh_frame_for_plt(this,
4037                                      Eh_cie<64>::eh_frame_cie,
4038                                      sizeof (Eh_cie<64>::eh_frame_cie),
4039                                      glink_eh_frame_fde_64v1,
4040                                      sizeof (glink_eh_frame_fde_64v1));
4041       else
4042         layout->add_eh_frame_for_plt(this,
4043                                      Eh_cie<64>::eh_frame_cie,
4044                                      sizeof (Eh_cie<64>::eh_frame_cie),
4045                                      glink_eh_frame_fde_64v2,
4046                                      sizeof (glink_eh_frame_fde_64v2));
4047     }
4048   else
4049     {
4050       // 32-bit .glink can use the default since the CIE return
4051       // address reg, LR, is valid.
4052       layout->add_eh_frame_for_plt(this,
4053                                    Eh_cie<32>::eh_frame_cie,
4054                                    sizeof (Eh_cie<32>::eh_frame_cie),
4055                                    default_fde,
4056                                    sizeof (default_fde));
4057       // Except where LR is used in a PIC __glink_PLTresolve.
4058       if (parameters->options().output_is_position_independent())
4059         layout->add_eh_frame_for_plt(this,
4060                                      Eh_cie<32>::eh_frame_cie,
4061                                      sizeof (Eh_cie<32>::eh_frame_cie),
4062                                      glink_eh_frame_fde_32,
4063                                      sizeof (glink_eh_frame_fde_32));
4064     }
4065 }
4066
4067 template<int size, bool big_endian>
4068 void
4069 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4070 {
4071   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4072     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4073   if (p.second)
4074     this->ge_size_ += 16;
4075 }
4076
4077 template<int size, bool big_endian>
4078 typename Output_data_glink<size, big_endian>::Address
4079 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4080 {
4081   typename Global_entry_stub_entries::const_iterator p
4082     = this->global_entry_stubs_.find(gsym);
4083   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4084 }
4085
4086 template<int size, bool big_endian>
4087 void
4088 Output_data_glink<size, big_endian>::set_final_data_size()
4089 {
4090   unsigned int count = this->targ_->plt_entry_count();
4091   section_size_type total = 0;
4092
4093   if (count != 0)
4094     {
4095       if (size == 32)
4096         {
4097           // space for branch table
4098           total += 4 * (count - 1);
4099
4100           total += -total & 15;
4101           total += this->pltresolve_size;
4102         }
4103       else
4104         {
4105           total += this->pltresolve_size;
4106
4107           // space for branch table
4108           total += 4 * count;
4109           if (this->targ_->abiversion() < 2)
4110             {
4111               total += 4 * count;
4112               if (count > 0x8000)
4113                 total += 4 * (count - 0x8000);
4114             }
4115         }
4116     }
4117   this->end_branch_table_ = total;
4118   total = (total + 15) & -16;
4119   total += this->ge_size_;
4120
4121   this->set_data_size(total);
4122 }
4123
4124 // Write out plt and long branch stub code.
4125
4126 template<int size, bool big_endian>
4127 void
4128 Stub_table<size, big_endian>::do_write(Output_file* of)
4129 {
4130   if (this->plt_call_stubs_.empty()
4131       && this->long_branch_stubs_.empty())
4132     return;
4133
4134   const section_size_type start_off = this->offset();
4135   const section_size_type off = this->stub_offset();
4136   const section_size_type oview_size =
4137     convert_to_section_size_type(this->data_size() - (off - start_off));
4138   unsigned char* const oview = of->get_output_view(off, oview_size);
4139   unsigned char* p;
4140
4141   if (size == 64)
4142     {
4143       const Output_data_got_powerpc<size, big_endian>* got
4144         = this->targ_->got_section();
4145       Address got_os_addr = got->output_section()->address();
4146
4147       if (!this->plt_call_stubs_.empty())
4148         {
4149           // The base address of the .plt section.
4150           Address plt_base = this->targ_->plt_section()->address();
4151           Address iplt_base = invalid_address;
4152
4153           // Write out plt call stubs.
4154           typename Plt_stub_entries::const_iterator cs;
4155           for (cs = this->plt_call_stubs_.begin();
4156                cs != this->plt_call_stubs_.end();
4157                ++cs)
4158             {
4159               bool is_iplt;
4160               Address pltoff = this->plt_off(cs, &is_iplt);
4161               Address plt_addr = pltoff;
4162               if (is_iplt)
4163                 {
4164                   if (iplt_base == invalid_address)
4165                     iplt_base = this->targ_->iplt_section()->address();
4166                   plt_addr += iplt_base;
4167                 }
4168               else
4169                 plt_addr += plt_base;
4170               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4171                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4172               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4173               Address off = plt_addr - got_addr;
4174
4175               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4176                 gold_error(_("%s: linkage table error against `%s'"),
4177                            cs->first.object_->name().c_str(),
4178                            cs->first.sym_->demangled_name().c_str());
4179
4180               bool plt_load_toc = this->targ_->abiversion() < 2;
4181               bool static_chain
4182                 = plt_load_toc && parameters->options().plt_static_chain();
4183               bool thread_safe
4184                 = plt_load_toc && this->targ_->plt_thread_safe();
4185               bool use_fake_dep = false;
4186               Address cmp_branch_off = 0;
4187               if (thread_safe)
4188                 {
4189                   unsigned int pltindex
4190                     = ((pltoff - this->targ_->first_plt_entry_offset())
4191                        / this->targ_->plt_entry_size());
4192                   Address glinkoff
4193                     = (this->targ_->glink_section()->pltresolve_size
4194                        + pltindex * 8);
4195                   if (pltindex > 32768)
4196                     glinkoff += (pltindex - 32768) * 4;
4197                   Address to
4198                     = this->targ_->glink_section()->address() + glinkoff;
4199                   Address from
4200                     = (this->stub_address() + cs->second + 24
4201                        + 4 * (ha(off) != 0)
4202                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4203                        + 4 * static_chain);
4204                   cmp_branch_off = to - from;
4205                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4206                 }
4207
4208               p = oview + cs->second;
4209               if (ha(off) != 0)
4210                 {
4211                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4212                   p += 4;
4213                   write_insn<big_endian>(p, addis_11_2 + ha(off));
4214                   p += 4;
4215                   write_insn<big_endian>(p, ld_12_11 + l(off));
4216                   p += 4;
4217                   if (plt_load_toc
4218                       && ha(off + 8 + 8 * static_chain) != ha(off))
4219                     {
4220                       write_insn<big_endian>(p, addi_11_11 + l(off));
4221                       p += 4;
4222                       off = 0;
4223                     }
4224                   write_insn<big_endian>(p, mtctr_12);
4225                   p += 4;
4226                   if (plt_load_toc)
4227                     {
4228                       if (use_fake_dep)
4229                         {
4230                           write_insn<big_endian>(p, xor_2_12_12);
4231                           p += 4;
4232                           write_insn<big_endian>(p, add_11_11_2);
4233                           p += 4;
4234                         }
4235                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4236                       p += 4;
4237                       if (static_chain)
4238                         {
4239                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4240                           p += 4;
4241                         }
4242                     }
4243                 }
4244               else
4245                 {
4246                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4247                   p += 4;
4248                   write_insn<big_endian>(p, ld_12_2 + l(off));
4249                   p += 4;
4250                   if (plt_load_toc
4251                       && ha(off + 8 + 8 * static_chain) != ha(off))
4252                     {
4253                       write_insn<big_endian>(p, addi_2_2 + l(off));
4254                       p += 4;
4255                       off = 0;
4256                     }
4257                   write_insn<big_endian>(p, mtctr_12);
4258                   p += 4;
4259                   if (plt_load_toc)
4260                     {
4261                       if (use_fake_dep)
4262                         {
4263                           write_insn<big_endian>(p, xor_11_12_12);
4264                           p += 4;
4265                           write_insn<big_endian>(p, add_2_2_11);
4266                           p += 4;
4267                         }
4268                       if (static_chain)
4269                         {
4270                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4271                           p += 4;
4272                         }
4273                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4274                       p += 4;
4275                     }
4276                 }
4277               if (thread_safe && !use_fake_dep)
4278                 {
4279                   write_insn<big_endian>(p, cmpldi_2_0);
4280                   p += 4;
4281                   write_insn<big_endian>(p, bnectr_p4);
4282                   p += 4;
4283                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4284                 }
4285               else
4286                 write_insn<big_endian>(p, bctr);
4287             }
4288         }
4289
4290       // Write out long branch stubs.
4291       typename Branch_stub_entries::const_iterator bs;
4292       for (bs = this->long_branch_stubs_.begin();
4293            bs != this->long_branch_stubs_.end();
4294            ++bs)
4295         {
4296           p = oview + this->plt_size_ + bs->second;
4297           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4298           Address delta = bs->first.dest_ - loc;
4299           if (delta + (1 << 25) < 2 << 25)
4300             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4301           else
4302             {
4303               Address brlt_addr
4304                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4305               gold_assert(brlt_addr != invalid_address);
4306               brlt_addr += this->targ_->brlt_section()->address();
4307               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4308               Address brltoff = brlt_addr - got_addr;
4309               if (ha(brltoff) == 0)
4310                 {
4311                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4312                 }
4313               else
4314                 {
4315                   write_insn<big_endian>(p, addis_11_2 + ha(brltoff)),  p += 4;
4316                   write_insn<big_endian>(p, ld_12_11 + l(brltoff)),     p += 4;
4317                 }
4318               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4319               write_insn<big_endian>(p, bctr);
4320             }
4321         }
4322     }
4323   else
4324     {
4325       if (!this->plt_call_stubs_.empty())
4326         {
4327           // The base address of the .plt section.
4328           Address plt_base = this->targ_->plt_section()->address();
4329           Address iplt_base = invalid_address;
4330           // The address of _GLOBAL_OFFSET_TABLE_.
4331           Address g_o_t = invalid_address;
4332
4333           // Write out plt call stubs.
4334           typename Plt_stub_entries::const_iterator cs;
4335           for (cs = this->plt_call_stubs_.begin();
4336                cs != this->plt_call_stubs_.end();
4337                ++cs)
4338             {
4339               bool is_iplt;
4340               Address plt_addr = this->plt_off(cs, &is_iplt);
4341               if (is_iplt)
4342                 {
4343                   if (iplt_base == invalid_address)
4344                     iplt_base = this->targ_->iplt_section()->address();
4345                   plt_addr += iplt_base;
4346                 }
4347               else
4348                 plt_addr += plt_base;
4349
4350               p = oview + cs->second;
4351               if (parameters->options().output_is_position_independent())
4352                 {
4353                   Address got_addr;
4354                   const Powerpc_relobj<size, big_endian>* ppcobj
4355                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4356                        (cs->first.object_));
4357                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4358                     {
4359                       unsigned int got2 = ppcobj->got2_shndx();
4360                       got_addr = ppcobj->get_output_section_offset(got2);
4361                       gold_assert(got_addr != invalid_address);
4362                       got_addr += (ppcobj->output_section(got2)->address()
4363                                    + cs->first.addend_);
4364                     }
4365                   else
4366                     {
4367                       if (g_o_t == invalid_address)
4368                         {
4369                           const Output_data_got_powerpc<size, big_endian>* got
4370                             = this->targ_->got_section();
4371                           g_o_t = got->address() + got->g_o_t();
4372                         }
4373                       got_addr = g_o_t;
4374                     }
4375
4376                   Address off = plt_addr - got_addr;
4377                   if (ha(off) == 0)
4378                     {
4379                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4380                       write_insn<big_endian>(p +  4, mtctr_11);
4381                       write_insn<big_endian>(p +  8, bctr);
4382                     }
4383                   else
4384                     {
4385                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4386                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4387                       write_insn<big_endian>(p +  8, mtctr_11);
4388                       write_insn<big_endian>(p + 12, bctr);
4389                     }
4390                 }
4391               else
4392                 {
4393                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4394                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4395                   write_insn<big_endian>(p +  8, mtctr_11);
4396                   write_insn<big_endian>(p + 12, bctr);
4397                 }
4398             }
4399         }
4400
4401       // Write out long branch stubs.
4402       typename Branch_stub_entries::const_iterator bs;
4403       for (bs = this->long_branch_stubs_.begin();
4404            bs != this->long_branch_stubs_.end();
4405            ++bs)
4406         {
4407           p = oview + this->plt_size_ + bs->second;
4408           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4409           Address delta = bs->first.dest_ - loc;
4410           if (delta + (1 << 25) < 2 << 25)
4411             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4412           else if (!parameters->options().output_is_position_independent())
4413             {
4414               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4415               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4416               write_insn<big_endian>(p +  8, mtctr_12);
4417               write_insn<big_endian>(p + 12, bctr);
4418             }
4419           else
4420             {
4421               delta -= 8;
4422               write_insn<big_endian>(p +  0, mflr_0);
4423               write_insn<big_endian>(p +  4, bcl_20_31);
4424               write_insn<big_endian>(p +  8, mflr_12);
4425               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4426               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4427               write_insn<big_endian>(p + 20, mtlr_0);
4428               write_insn<big_endian>(p + 24, mtctr_12);
4429               write_insn<big_endian>(p + 28, bctr);
4430             }
4431         }
4432     }
4433 }
4434
4435 // Write out .glink.
4436
4437 template<int size, bool big_endian>
4438 void
4439 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4440 {
4441   const section_size_type off = this->offset();
4442   const section_size_type oview_size =
4443     convert_to_section_size_type(this->data_size());
4444   unsigned char* const oview = of->get_output_view(off, oview_size);
4445   unsigned char* p;
4446
4447   // The base address of the .plt section.
4448   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4449   Address plt_base = this->targ_->plt_section()->address();
4450
4451   if (size == 64)
4452     {
4453       if (this->end_branch_table_ != 0)
4454         {
4455           // Write pltresolve stub.
4456           p = oview;
4457           Address after_bcl = this->address() + 16;
4458           Address pltoff = plt_base - after_bcl;
4459
4460           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4461
4462           if (this->targ_->abiversion() < 2)
4463             {
4464               write_insn<big_endian>(p, mflr_12),               p += 4;
4465               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4466               write_insn<big_endian>(p, mflr_11),               p += 4;
4467               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4468               write_insn<big_endian>(p, mtlr_12),               p += 4;
4469               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4470               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4471               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4472               write_insn<big_endian>(p, mtctr_12),              p += 4;
4473               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4474             }
4475           else
4476             {
4477               write_insn<big_endian>(p, mflr_0),                p += 4;
4478               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4479               write_insn<big_endian>(p, mflr_11),               p += 4;
4480               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4481               write_insn<big_endian>(p, mtlr_0),                p += 4;
4482               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4483               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4484               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4485               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4486               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4487               write_insn<big_endian>(p, mtctr_12),              p += 4;
4488               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4489             }
4490           write_insn<big_endian>(p, bctr),                      p += 4;
4491           while (p < oview + this->pltresolve_size)
4492             write_insn<big_endian>(p, nop), p += 4;
4493
4494           // Write lazy link call stubs.
4495           uint32_t indx = 0;
4496           while (p < oview + this->end_branch_table_)
4497             {
4498               if (this->targ_->abiversion() < 2)
4499                 {
4500                   if (indx < 0x8000)
4501                     {
4502                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4503                     }
4504                   else
4505                     {
4506                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4507                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4508                     }
4509                 }
4510               uint32_t branch_off = 8 - (p - oview);
4511               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4512               indx++;
4513             }
4514         }
4515
4516       Address plt_base = this->targ_->plt_section()->address();
4517       Address iplt_base = invalid_address;
4518       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4519       Address global_entry_base = this->address() + global_entry_off;
4520       typename Global_entry_stub_entries::const_iterator ge;
4521       for (ge = this->global_entry_stubs_.begin();
4522            ge != this->global_entry_stubs_.end();
4523            ++ge)
4524         {
4525           p = oview + global_entry_off + ge->second;
4526           Address plt_addr = ge->first->plt_offset();
4527           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4528               && ge->first->can_use_relative_reloc(false))
4529             {
4530               if (iplt_base == invalid_address)
4531                 iplt_base = this->targ_->iplt_section()->address();
4532               plt_addr += iplt_base;
4533             }
4534           else
4535             plt_addr += plt_base;
4536           Address my_addr = global_entry_base + ge->second;
4537           Address off = plt_addr - my_addr;
4538
4539           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4540             gold_error(_("%s: linkage table error against `%s'"),
4541                        ge->first->object()->name().c_str(),
4542                        ge->first->demangled_name().c_str());
4543
4544           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4545           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4546           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4547           write_insn<big_endian>(p, bctr);
4548         }
4549     }
4550   else
4551     {
4552       const Output_data_got_powerpc<size, big_endian>* got
4553         = this->targ_->got_section();
4554       // The address of _GLOBAL_OFFSET_TABLE_.
4555       Address g_o_t = got->address() + got->g_o_t();
4556
4557       // Write out pltresolve branch table.
4558       p = oview;
4559       unsigned int the_end = oview_size - this->pltresolve_size;
4560       unsigned char* end_p = oview + the_end;
4561       while (p < end_p - 8 * 4)
4562         write_insn<big_endian>(p, b + end_p - p), p += 4;
4563       while (p < end_p)
4564         write_insn<big_endian>(p, nop), p += 4;
4565
4566       // Write out pltresolve call stub.
4567       if (parameters->options().output_is_position_independent())
4568         {
4569           Address res0_off = 0;
4570           Address after_bcl_off = the_end + 12;
4571           Address bcl_res0 = after_bcl_off - res0_off;
4572
4573           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4574           write_insn<big_endian>(p +  4, mflr_0);
4575           write_insn<big_endian>(p +  8, bcl_20_31);
4576           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4577           write_insn<big_endian>(p + 16, mflr_12);
4578           write_insn<big_endian>(p + 20, mtlr_0);
4579           write_insn<big_endian>(p + 24, sub_11_11_12);
4580
4581           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4582
4583           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4584           if (ha(got_bcl) == ha(got_bcl + 4))
4585             {
4586               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4587               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4588             }
4589           else
4590             {
4591               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4592               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4593             }
4594           write_insn<big_endian>(p + 40, mtctr_0);
4595           write_insn<big_endian>(p + 44, add_0_11_11);
4596           write_insn<big_endian>(p + 48, add_11_0_11);
4597           write_insn<big_endian>(p + 52, bctr);
4598           write_insn<big_endian>(p + 56, nop);
4599           write_insn<big_endian>(p + 60, nop);
4600         }
4601       else
4602         {
4603           Address res0 = this->address();
4604
4605           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4606           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4607           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4608             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4609           else
4610             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4611           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4612           write_insn<big_endian>(p + 16, mtctr_0);
4613           write_insn<big_endian>(p + 20, add_0_11_11);
4614           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4615             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4616           else
4617             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4618           write_insn<big_endian>(p + 28, add_11_0_11);
4619           write_insn<big_endian>(p + 32, bctr);
4620           write_insn<big_endian>(p + 36, nop);
4621           write_insn<big_endian>(p + 40, nop);
4622           write_insn<big_endian>(p + 44, nop);
4623           write_insn<big_endian>(p + 48, nop);
4624           write_insn<big_endian>(p + 52, nop);
4625           write_insn<big_endian>(p + 56, nop);
4626           write_insn<big_endian>(p + 60, nop);
4627         }
4628       p += 64;
4629     }
4630
4631   of->write_output_view(off, oview_size, oview);
4632 }
4633
4634
4635 // A class to handle linker generated save/restore functions.
4636
4637 template<int size, bool big_endian>
4638 class Output_data_save_res : public Output_section_data_build
4639 {
4640  public:
4641   Output_data_save_res(Symbol_table* symtab);
4642
4643  protected:
4644   // Write to a map file.
4645   void
4646   do_print_to_mapfile(Mapfile* mapfile) const
4647   { mapfile->print_output_data(this, _("** save/restore")); }
4648
4649   void
4650   do_write(Output_file*);
4651
4652  private:
4653   // The maximum size of save/restore contents.
4654   static const unsigned int savres_max = 218*4;
4655
4656   void
4657   savres_define(Symbol_table* symtab,
4658                 const char *name,
4659                 unsigned int lo, unsigned int hi,
4660                 unsigned char* write_ent(unsigned char*, int),
4661                 unsigned char* write_tail(unsigned char*, int));
4662
4663   unsigned char *contents_;
4664 };
4665
4666 template<bool big_endian>
4667 static unsigned char*
4668 savegpr0(unsigned char* p, int r)
4669 {
4670   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4671   write_insn<big_endian>(p, insn);
4672   return p + 4;
4673 }
4674
4675 template<bool big_endian>
4676 static unsigned char*
4677 savegpr0_tail(unsigned char* p, int r)
4678 {
4679   p = savegpr0<big_endian>(p, r);
4680   uint32_t insn = std_0_1 + 16;
4681   write_insn<big_endian>(p, insn);
4682   p = p + 4;
4683   write_insn<big_endian>(p, blr);
4684   return p + 4;
4685 }
4686
4687 template<bool big_endian>
4688 static unsigned char*
4689 restgpr0(unsigned char* p, int r)
4690 {
4691   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4692   write_insn<big_endian>(p, insn);
4693   return p + 4;
4694 }
4695
4696 template<bool big_endian>
4697 static unsigned char*
4698 restgpr0_tail(unsigned char* p, int r)
4699 {
4700   uint32_t insn = ld_0_1 + 16;
4701   write_insn<big_endian>(p, insn);
4702   p = p + 4;
4703   p = restgpr0<big_endian>(p, r);
4704   write_insn<big_endian>(p, mtlr_0);
4705   p = p + 4;
4706   if (r == 29)
4707     {
4708       p = restgpr0<big_endian>(p, 30);
4709       p = restgpr0<big_endian>(p, 31);
4710     }
4711   write_insn<big_endian>(p, blr);
4712   return p + 4;
4713 }
4714
4715 template<bool big_endian>
4716 static unsigned char*
4717 savegpr1(unsigned char* p, int r)
4718 {
4719   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4720   write_insn<big_endian>(p, insn);
4721   return p + 4;
4722 }
4723
4724 template<bool big_endian>
4725 static unsigned char*
4726 savegpr1_tail(unsigned char* p, int r)
4727 {
4728   p = savegpr1<big_endian>(p, r);
4729   write_insn<big_endian>(p, blr);
4730   return p + 4;
4731 }
4732
4733 template<bool big_endian>
4734 static unsigned char*
4735 restgpr1(unsigned char* p, int r)
4736 {
4737   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4738   write_insn<big_endian>(p, insn);
4739   return p + 4;
4740 }
4741
4742 template<bool big_endian>
4743 static unsigned char*
4744 restgpr1_tail(unsigned char* p, int r)
4745 {
4746   p = restgpr1<big_endian>(p, r);
4747   write_insn<big_endian>(p, blr);
4748   return p + 4;
4749 }
4750
4751 template<bool big_endian>
4752 static unsigned char*
4753 savefpr(unsigned char* p, int r)
4754 {
4755   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4756   write_insn<big_endian>(p, insn);
4757   return p + 4;
4758 }
4759
4760 template<bool big_endian>
4761 static unsigned char*
4762 savefpr0_tail(unsigned char* p, int r)
4763 {
4764   p = savefpr<big_endian>(p, r);
4765   write_insn<big_endian>(p, std_0_1 + 16);
4766   p = p + 4;
4767   write_insn<big_endian>(p, blr);
4768   return p + 4;
4769 }
4770
4771 template<bool big_endian>
4772 static unsigned char*
4773 restfpr(unsigned char* p, int r)
4774 {
4775   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4776   write_insn<big_endian>(p, insn);
4777   return p + 4;
4778 }
4779
4780 template<bool big_endian>
4781 static unsigned char*
4782 restfpr0_tail(unsigned char* p, int r)
4783 {
4784   write_insn<big_endian>(p, ld_0_1 + 16);
4785   p = p + 4;
4786   p = restfpr<big_endian>(p, r);
4787   write_insn<big_endian>(p, mtlr_0);
4788   p = p + 4;
4789   if (r == 29)
4790     {
4791       p = restfpr<big_endian>(p, 30);
4792       p = restfpr<big_endian>(p, 31);
4793     }
4794   write_insn<big_endian>(p, blr);
4795   return p + 4;
4796 }
4797
4798 template<bool big_endian>
4799 static unsigned char*
4800 savefpr1_tail(unsigned char* p, int r)
4801 {
4802   p = savefpr<big_endian>(p, r);
4803   write_insn<big_endian>(p, blr);
4804   return p + 4;
4805 }
4806
4807 template<bool big_endian>
4808 static unsigned char*
4809 restfpr1_tail(unsigned char* p, int r)
4810 {
4811   p = restfpr<big_endian>(p, r);
4812   write_insn<big_endian>(p, blr);
4813   return p + 4;
4814 }
4815
4816 template<bool big_endian>
4817 static unsigned char*
4818 savevr(unsigned char* p, int r)
4819 {
4820   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4821   write_insn<big_endian>(p, insn);
4822   p = p + 4;
4823   insn = stvx_0_12_0 + (r << 21);
4824   write_insn<big_endian>(p, insn);
4825   return p + 4;
4826 }
4827
4828 template<bool big_endian>
4829 static unsigned char*
4830 savevr_tail(unsigned char* p, int r)
4831 {
4832   p = savevr<big_endian>(p, r);
4833   write_insn<big_endian>(p, blr);
4834   return p + 4;
4835 }
4836
4837 template<bool big_endian>
4838 static unsigned char*
4839 restvr(unsigned char* p, int r)
4840 {
4841   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4842   write_insn<big_endian>(p, insn);
4843   p = p + 4;
4844   insn = lvx_0_12_0 + (r << 21);
4845   write_insn<big_endian>(p, insn);
4846   return p + 4;
4847 }
4848
4849 template<bool big_endian>
4850 static unsigned char*
4851 restvr_tail(unsigned char* p, int r)
4852 {
4853   p = restvr<big_endian>(p, r);
4854   write_insn<big_endian>(p, blr);
4855   return p + 4;
4856 }
4857
4858
4859 template<int size, bool big_endian>
4860 Output_data_save_res<size, big_endian>::Output_data_save_res(
4861     Symbol_table* symtab)
4862   : Output_section_data_build(4),
4863     contents_(NULL)
4864 {
4865   this->savres_define(symtab,
4866                       "_savegpr0_", 14, 31,
4867                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4868   this->savres_define(symtab,
4869                       "_restgpr0_", 14, 29,
4870                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4871   this->savres_define(symtab,
4872                       "_restgpr0_", 30, 31,
4873                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4874   this->savres_define(symtab,
4875                       "_savegpr1_", 14, 31,
4876                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4877   this->savres_define(symtab,
4878                       "_restgpr1_", 14, 31,
4879                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4880   this->savres_define(symtab,
4881                       "_savefpr_", 14, 31,
4882                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4883   this->savres_define(symtab,
4884                       "_restfpr_", 14, 29,
4885                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4886   this->savres_define(symtab,
4887                       "_restfpr_", 30, 31,
4888                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4889   this->savres_define(symtab,
4890                       "._savef", 14, 31,
4891                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4892   this->savres_define(symtab,
4893                       "._restf", 14, 31,
4894                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4895   this->savres_define(symtab,
4896                       "_savevr_", 20, 31,
4897                       savevr<big_endian>, savevr_tail<big_endian>);
4898   this->savres_define(symtab,
4899                       "_restvr_", 20, 31,
4900                       restvr<big_endian>, restvr_tail<big_endian>);
4901 }
4902
4903 template<int size, bool big_endian>
4904 void
4905 Output_data_save_res<size, big_endian>::savres_define(
4906     Symbol_table* symtab,
4907     const char *name,
4908     unsigned int lo, unsigned int hi,
4909     unsigned char* write_ent(unsigned char*, int),
4910     unsigned char* write_tail(unsigned char*, int))
4911 {
4912   size_t len = strlen(name);
4913   bool writing = false;
4914   char sym[16];
4915
4916   memcpy(sym, name, len);
4917   sym[len + 2] = 0;
4918
4919   for (unsigned int i = lo; i <= hi; i++)
4920     {
4921       sym[len + 0] = i / 10 + '0';
4922       sym[len + 1] = i % 10 + '0';
4923       Symbol* gsym = symtab->lookup(sym);
4924       bool refd = gsym != NULL && gsym->is_undefined();
4925       writing = writing || refd;
4926       if (writing)
4927         {
4928           if (this->contents_ == NULL)
4929             this->contents_ = new unsigned char[this->savres_max];
4930
4931           section_size_type value = this->current_data_size();
4932           unsigned char* p = this->contents_ + value;
4933           if (i != hi)
4934             p = write_ent(p, i);
4935           else
4936             p = write_tail(p, i);
4937           section_size_type cur_size = p - this->contents_;
4938           this->set_current_data_size(cur_size);
4939           if (refd)
4940             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4941                                           this, value, cur_size - value,
4942                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4943                                           elfcpp::STV_HIDDEN, 0, false, false);
4944         }
4945     }
4946 }
4947
4948 // Write out save/restore.
4949
4950 template<int size, bool big_endian>
4951 void
4952 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4953 {
4954   const section_size_type off = this->offset();
4955   const section_size_type oview_size =
4956     convert_to_section_size_type(this->data_size());
4957   unsigned char* const oview = of->get_output_view(off, oview_size);
4958   memcpy(oview, this->contents_, oview_size);
4959   of->write_output_view(off, oview_size, oview);
4960 }
4961
4962
4963 // Create the glink section.
4964
4965 template<int size, bool big_endian>
4966 void
4967 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4968 {
4969   if (this->glink_ == NULL)
4970     {
4971       this->glink_ = new Output_data_glink<size, big_endian>(this);
4972       this->glink_->add_eh_frame(layout);
4973       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4974                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4975                                       this->glink_, ORDER_TEXT, false);
4976     }
4977 }
4978
4979 // Create a PLT entry for a global symbol.
4980
4981 template<int size, bool big_endian>
4982 void
4983 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4984                                                  Layout* layout,
4985                                                  Symbol* gsym)
4986 {
4987   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4988       && gsym->can_use_relative_reloc(false))
4989     {
4990       if (this->iplt_ == NULL)
4991         this->make_iplt_section(symtab, layout);
4992       this->iplt_->add_ifunc_entry(gsym);
4993     }
4994   else
4995     {
4996       if (this->plt_ == NULL)
4997         this->make_plt_section(symtab, layout);
4998       this->plt_->add_entry(gsym);
4999     }
5000 }
5001
5002 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5003
5004 template<int size, bool big_endian>
5005 void
5006 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5007     Symbol_table* symtab,
5008     Layout* layout,
5009     Sized_relobj_file<size, big_endian>* relobj,
5010     unsigned int r_sym)
5011 {
5012   if (this->iplt_ == NULL)
5013     this->make_iplt_section(symtab, layout);
5014   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5015 }
5016
5017 // Return the number of entries in the PLT.
5018
5019 template<int size, bool big_endian>
5020 unsigned int
5021 Target_powerpc<size, big_endian>::plt_entry_count() const
5022 {
5023   if (this->plt_ == NULL)
5024     return 0;
5025   return this->plt_->entry_count();
5026 }
5027
5028 // Create a GOT entry for local dynamic __tls_get_addr calls.
5029
5030 template<int size, bool big_endian>
5031 unsigned int
5032 Target_powerpc<size, big_endian>::tlsld_got_offset(
5033     Symbol_table* symtab,
5034     Layout* layout,
5035     Sized_relobj_file<size, big_endian>* object)
5036 {
5037   if (this->tlsld_got_offset_ == -1U)
5038     {
5039       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5040       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5041       Output_data_got_powerpc<size, big_endian>* got
5042         = this->got_section(symtab, layout);
5043       unsigned int got_offset = got->add_constant_pair(0, 0);
5044       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5045                           got_offset, 0);
5046       this->tlsld_got_offset_ = got_offset;
5047     }
5048   return this->tlsld_got_offset_;
5049 }
5050
5051 // Get the Reference_flags for a particular relocation.
5052
5053 template<int size, bool big_endian>
5054 int
5055 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5056     unsigned int r_type,
5057     const Target_powerpc* target)
5058 {
5059   int ref = 0;
5060
5061   switch (r_type)
5062     {
5063     case elfcpp::R_POWERPC_NONE:
5064     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5065     case elfcpp::R_POWERPC_GNU_VTENTRY:
5066     case elfcpp::R_PPC64_TOC:
5067       // No symbol reference.
5068       break;
5069
5070     case elfcpp::R_PPC64_ADDR64:
5071     case elfcpp::R_PPC64_UADDR64:
5072     case elfcpp::R_POWERPC_ADDR32:
5073     case elfcpp::R_POWERPC_UADDR32:
5074     case elfcpp::R_POWERPC_ADDR16:
5075     case elfcpp::R_POWERPC_UADDR16:
5076     case elfcpp::R_POWERPC_ADDR16_LO:
5077     case elfcpp::R_POWERPC_ADDR16_HI:
5078     case elfcpp::R_POWERPC_ADDR16_HA:
5079       ref = Symbol::ABSOLUTE_REF;
5080       break;
5081
5082     case elfcpp::R_POWERPC_ADDR24:
5083     case elfcpp::R_POWERPC_ADDR14:
5084     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5085     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5086       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5087       break;
5088
5089     case elfcpp::R_PPC64_REL64:
5090     case elfcpp::R_POWERPC_REL32:
5091     case elfcpp::R_PPC_LOCAL24PC:
5092     case elfcpp::R_POWERPC_REL16:
5093     case elfcpp::R_POWERPC_REL16_LO:
5094     case elfcpp::R_POWERPC_REL16_HI:
5095     case elfcpp::R_POWERPC_REL16_HA:
5096       ref = Symbol::RELATIVE_REF;
5097       break;
5098
5099     case elfcpp::R_POWERPC_REL24:
5100     case elfcpp::R_PPC_PLTREL24:
5101     case elfcpp::R_POWERPC_REL14:
5102     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5103     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5104       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5105       break;
5106
5107     case elfcpp::R_POWERPC_GOT16:
5108     case elfcpp::R_POWERPC_GOT16_LO:
5109     case elfcpp::R_POWERPC_GOT16_HI:
5110     case elfcpp::R_POWERPC_GOT16_HA:
5111     case elfcpp::R_PPC64_GOT16_DS:
5112     case elfcpp::R_PPC64_GOT16_LO_DS:
5113     case elfcpp::R_PPC64_TOC16:
5114     case elfcpp::R_PPC64_TOC16_LO:
5115     case elfcpp::R_PPC64_TOC16_HI:
5116     case elfcpp::R_PPC64_TOC16_HA:
5117     case elfcpp::R_PPC64_TOC16_DS:
5118     case elfcpp::R_PPC64_TOC16_LO_DS:
5119       // Absolute in GOT.
5120       ref = Symbol::ABSOLUTE_REF;
5121       break;
5122
5123     case elfcpp::R_POWERPC_GOT_TPREL16:
5124     case elfcpp::R_POWERPC_TLS:
5125       ref = Symbol::TLS_REF;
5126       break;
5127
5128     case elfcpp::R_POWERPC_COPY:
5129     case elfcpp::R_POWERPC_GLOB_DAT:
5130     case elfcpp::R_POWERPC_JMP_SLOT:
5131     case elfcpp::R_POWERPC_RELATIVE:
5132     case elfcpp::R_POWERPC_DTPMOD:
5133     default:
5134       // Not expected.  We will give an error later.
5135       break;
5136     }
5137
5138   if (size == 64 && target->abiversion() < 2)
5139     ref |= Symbol::FUNC_DESC_ABI;
5140   return ref;
5141 }
5142
5143 // Report an unsupported relocation against a local symbol.
5144
5145 template<int size, bool big_endian>
5146 void
5147 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5148     Sized_relobj_file<size, big_endian>* object,
5149     unsigned int r_type)
5150 {
5151   gold_error(_("%s: unsupported reloc %u against local symbol"),
5152              object->name().c_str(), r_type);
5153 }
5154
5155 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5156 // dynamic linker does not support it, issue an error.
5157
5158 template<int size, bool big_endian>
5159 void
5160 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5161                                                       unsigned int r_type)
5162 {
5163   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5164
5165   // These are the relocation types supported by glibc for both 32-bit
5166   // and 64-bit powerpc.
5167   switch (r_type)
5168     {
5169     case elfcpp::R_POWERPC_NONE:
5170     case elfcpp::R_POWERPC_RELATIVE:
5171     case elfcpp::R_POWERPC_GLOB_DAT:
5172     case elfcpp::R_POWERPC_DTPMOD:
5173     case elfcpp::R_POWERPC_DTPREL:
5174     case elfcpp::R_POWERPC_TPREL:
5175     case elfcpp::R_POWERPC_JMP_SLOT:
5176     case elfcpp::R_POWERPC_COPY:
5177     case elfcpp::R_POWERPC_IRELATIVE:
5178     case elfcpp::R_POWERPC_ADDR32:
5179     case elfcpp::R_POWERPC_UADDR32:
5180     case elfcpp::R_POWERPC_ADDR24:
5181     case elfcpp::R_POWERPC_ADDR16:
5182     case elfcpp::R_POWERPC_UADDR16:
5183     case elfcpp::R_POWERPC_ADDR16_LO:
5184     case elfcpp::R_POWERPC_ADDR16_HI:
5185     case elfcpp::R_POWERPC_ADDR16_HA:
5186     case elfcpp::R_POWERPC_ADDR14:
5187     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5188     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5189     case elfcpp::R_POWERPC_REL32:
5190     case elfcpp::R_POWERPC_REL24:
5191     case elfcpp::R_POWERPC_TPREL16:
5192     case elfcpp::R_POWERPC_TPREL16_LO:
5193     case elfcpp::R_POWERPC_TPREL16_HI:
5194     case elfcpp::R_POWERPC_TPREL16_HA:
5195       return;
5196
5197     default:
5198       break;
5199     }
5200
5201   if (size == 64)
5202     {
5203       switch (r_type)
5204         {
5205           // These are the relocation types supported only on 64-bit.
5206         case elfcpp::R_PPC64_ADDR64:
5207         case elfcpp::R_PPC64_UADDR64:
5208         case elfcpp::R_PPC64_JMP_IREL:
5209         case elfcpp::R_PPC64_ADDR16_DS:
5210         case elfcpp::R_PPC64_ADDR16_LO_DS:
5211         case elfcpp::R_PPC64_ADDR16_HIGH:
5212         case elfcpp::R_PPC64_ADDR16_HIGHA:
5213         case elfcpp::R_PPC64_ADDR16_HIGHER:
5214         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5215         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5216         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5217         case elfcpp::R_PPC64_REL64:
5218         case elfcpp::R_POWERPC_ADDR30:
5219         case elfcpp::R_PPC64_TPREL16_DS:
5220         case elfcpp::R_PPC64_TPREL16_LO_DS:
5221         case elfcpp::R_PPC64_TPREL16_HIGH:
5222         case elfcpp::R_PPC64_TPREL16_HIGHA:
5223         case elfcpp::R_PPC64_TPREL16_HIGHER:
5224         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5225         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5226         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5227           return;
5228
5229         default:
5230           break;
5231         }
5232     }
5233   else
5234     {
5235       switch (r_type)
5236         {
5237           // These are the relocation types supported only on 32-bit.
5238           // ??? glibc ld.so doesn't need to support these.
5239         case elfcpp::R_POWERPC_DTPREL16:
5240         case elfcpp::R_POWERPC_DTPREL16_LO:
5241         case elfcpp::R_POWERPC_DTPREL16_HI:
5242         case elfcpp::R_POWERPC_DTPREL16_HA:
5243           return;
5244
5245         default:
5246           break;
5247         }
5248     }
5249
5250   // This prevents us from issuing more than one error per reloc
5251   // section.  But we can still wind up issuing more than one
5252   // error per object file.
5253   if (this->issued_non_pic_error_)
5254     return;
5255   gold_assert(parameters->options().output_is_position_independent());
5256   object->error(_("requires unsupported dynamic reloc; "
5257                   "recompile with -fPIC"));
5258   this->issued_non_pic_error_ = true;
5259   return;
5260 }
5261
5262 // Return whether we need to make a PLT entry for a relocation of the
5263 // given type against a STT_GNU_IFUNC symbol.
5264
5265 template<int size, bool big_endian>
5266 bool
5267 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5268      Target_powerpc<size, big_endian>* target,
5269      Sized_relobj_file<size, big_endian>* object,
5270      unsigned int r_type,
5271      bool report_err)
5272 {
5273   // In non-pic code any reference will resolve to the plt call stub
5274   // for the ifunc symbol.
5275   if ((size == 32 || target->abiversion() >= 2)
5276       && !parameters->options().output_is_position_independent())
5277     return true;
5278
5279   switch (r_type)
5280     {
5281     // Word size refs from data sections are OK, but don't need a PLT entry.
5282     case elfcpp::R_POWERPC_ADDR32:
5283     case elfcpp::R_POWERPC_UADDR32:
5284       if (size == 32)
5285         return false;
5286       break;
5287
5288     case elfcpp::R_PPC64_ADDR64:
5289     case elfcpp::R_PPC64_UADDR64:
5290       if (size == 64)
5291         return false;
5292       break;
5293
5294     // GOT refs are good, but also don't need a PLT entry.
5295     case elfcpp::R_POWERPC_GOT16:
5296     case elfcpp::R_POWERPC_GOT16_LO:
5297     case elfcpp::R_POWERPC_GOT16_HI:
5298     case elfcpp::R_POWERPC_GOT16_HA:
5299     case elfcpp::R_PPC64_GOT16_DS:
5300     case elfcpp::R_PPC64_GOT16_LO_DS:
5301       return false;
5302
5303     // Function calls are good, and these do need a PLT entry.
5304     case elfcpp::R_POWERPC_ADDR24:
5305     case elfcpp::R_POWERPC_ADDR14:
5306     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5307     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5308     case elfcpp::R_POWERPC_REL24:
5309     case elfcpp::R_PPC_PLTREL24:
5310     case elfcpp::R_POWERPC_REL14:
5311     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5312     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5313       return true;
5314
5315     default:
5316       break;
5317     }
5318
5319   // Anything else is a problem.
5320   // If we are building a static executable, the libc startup function
5321   // responsible for applying indirect function relocations is going
5322   // to complain about the reloc type.
5323   // If we are building a dynamic executable, we will have a text
5324   // relocation.  The dynamic loader will set the text segment
5325   // writable and non-executable to apply text relocations.  So we'll
5326   // segfault when trying to run the indirection function to resolve
5327   // the reloc.
5328   if (report_err)
5329     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5330                object->name().c_str(), r_type);
5331   return false;
5332 }
5333
5334 // Scan a relocation for a local symbol.
5335
5336 template<int size, bool big_endian>
5337 inline void
5338 Target_powerpc<size, big_endian>::Scan::local(
5339     Symbol_table* symtab,
5340     Layout* layout,
5341     Target_powerpc<size, big_endian>* target,
5342     Sized_relobj_file<size, big_endian>* object,
5343     unsigned int data_shndx,
5344     Output_section* output_section,
5345     const elfcpp::Rela<size, big_endian>& reloc,
5346     unsigned int r_type,
5347     const elfcpp::Sym<size, big_endian>& lsym,
5348     bool is_discarded)
5349 {
5350   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5351
5352   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5353       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5354     {
5355       this->expect_tls_get_addr_call();
5356       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5357       if (tls_type != tls::TLSOPT_NONE)
5358         this->skip_next_tls_get_addr_call();
5359     }
5360   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5361            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5362     {
5363       this->expect_tls_get_addr_call();
5364       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5365       if (tls_type != tls::TLSOPT_NONE)
5366         this->skip_next_tls_get_addr_call();
5367     }
5368
5369   Powerpc_relobj<size, big_endian>* ppc_object
5370     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5371
5372   if (is_discarded)
5373     {
5374       if (size == 64
5375           && data_shndx == ppc_object->opd_shndx()
5376           && r_type == elfcpp::R_PPC64_ADDR64)
5377         ppc_object->set_opd_discard(reloc.get_r_offset());
5378       return;
5379     }
5380
5381   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5382   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5383   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5384     {
5385       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5386       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5387                           r_type, r_sym, reloc.get_r_addend());
5388       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5389     }
5390
5391   switch (r_type)
5392     {
5393     case elfcpp::R_POWERPC_NONE:
5394     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5395     case elfcpp::R_POWERPC_GNU_VTENTRY:
5396     case elfcpp::R_PPC64_TOCSAVE:
5397     case elfcpp::R_POWERPC_TLS:
5398       break;
5399
5400     case elfcpp::R_PPC64_TOC:
5401       {
5402         Output_data_got_powerpc<size, big_endian>* got
5403           = target->got_section(symtab, layout);
5404         if (parameters->options().output_is_position_independent())
5405           {
5406             Address off = reloc.get_r_offset();
5407             if (size == 64
5408                 && target->abiversion() < 2
5409                 && data_shndx == ppc_object->opd_shndx()
5410                 && ppc_object->get_opd_discard(off - 8))
5411               break;
5412
5413             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5414             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5415             rela_dyn->add_output_section_relative(got->output_section(),
5416                                                   elfcpp::R_POWERPC_RELATIVE,
5417                                                   output_section,
5418                                                   object, data_shndx, off,
5419                                                   symobj->toc_base_offset());
5420           }
5421       }
5422       break;
5423
5424     case elfcpp::R_PPC64_ADDR64:
5425     case elfcpp::R_PPC64_UADDR64:
5426     case elfcpp::R_POWERPC_ADDR32:
5427     case elfcpp::R_POWERPC_UADDR32:
5428     case elfcpp::R_POWERPC_ADDR24:
5429     case elfcpp::R_POWERPC_ADDR16:
5430     case elfcpp::R_POWERPC_ADDR16_LO:
5431     case elfcpp::R_POWERPC_ADDR16_HI:
5432     case elfcpp::R_POWERPC_ADDR16_HA:
5433     case elfcpp::R_POWERPC_UADDR16:
5434     case elfcpp::R_PPC64_ADDR16_HIGH:
5435     case elfcpp::R_PPC64_ADDR16_HIGHA:
5436     case elfcpp::R_PPC64_ADDR16_HIGHER:
5437     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5438     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5439     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5440     case elfcpp::R_PPC64_ADDR16_DS:
5441     case elfcpp::R_PPC64_ADDR16_LO_DS:
5442     case elfcpp::R_POWERPC_ADDR14:
5443     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5444     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5445       // If building a shared library (or a position-independent
5446       // executable), we need to create a dynamic relocation for
5447       // this location.
5448       if (parameters->options().output_is_position_independent()
5449           || (size == 64 && is_ifunc && target->abiversion() < 2))
5450         {
5451           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5452                                                              is_ifunc);
5453           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5454               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5455             {
5456               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5457               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5458                                      : elfcpp::R_POWERPC_RELATIVE);
5459               rela_dyn->add_local_relative(object, r_sym, dynrel,
5460                                            output_section, data_shndx,
5461                                            reloc.get_r_offset(),
5462                                            reloc.get_r_addend(), false);
5463             }
5464           else
5465             {
5466               check_non_pic(object, r_type);
5467               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5468               rela_dyn->add_local(object, r_sym, r_type, output_section,
5469                                   data_shndx, reloc.get_r_offset(),
5470                                   reloc.get_r_addend());
5471             }
5472         }
5473       break;
5474
5475     case elfcpp::R_POWERPC_REL24:
5476     case elfcpp::R_PPC_PLTREL24:
5477     case elfcpp::R_PPC_LOCAL24PC:
5478     case elfcpp::R_POWERPC_REL14:
5479     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5480     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5481       if (!is_ifunc)
5482         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5483                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5484                             reloc.get_r_addend());
5485       break;
5486
5487     case elfcpp::R_PPC64_REL64:
5488     case elfcpp::R_POWERPC_REL32:
5489     case elfcpp::R_POWERPC_REL16:
5490     case elfcpp::R_POWERPC_REL16_LO:
5491     case elfcpp::R_POWERPC_REL16_HI:
5492     case elfcpp::R_POWERPC_REL16_HA:
5493     case elfcpp::R_POWERPC_SECTOFF:
5494     case elfcpp::R_POWERPC_SECTOFF_LO:
5495     case elfcpp::R_POWERPC_SECTOFF_HI:
5496     case elfcpp::R_POWERPC_SECTOFF_HA:
5497     case elfcpp::R_PPC64_SECTOFF_DS:
5498     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5499     case elfcpp::R_POWERPC_TPREL16:
5500     case elfcpp::R_POWERPC_TPREL16_LO:
5501     case elfcpp::R_POWERPC_TPREL16_HI:
5502     case elfcpp::R_POWERPC_TPREL16_HA:
5503     case elfcpp::R_PPC64_TPREL16_DS:
5504     case elfcpp::R_PPC64_TPREL16_LO_DS:
5505     case elfcpp::R_PPC64_TPREL16_HIGH:
5506     case elfcpp::R_PPC64_TPREL16_HIGHA:
5507     case elfcpp::R_PPC64_TPREL16_HIGHER:
5508     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5509     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5510     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5511     case elfcpp::R_POWERPC_DTPREL16:
5512     case elfcpp::R_POWERPC_DTPREL16_LO:
5513     case elfcpp::R_POWERPC_DTPREL16_HI:
5514     case elfcpp::R_POWERPC_DTPREL16_HA:
5515     case elfcpp::R_PPC64_DTPREL16_DS:
5516     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5517     case elfcpp::R_PPC64_DTPREL16_HIGH:
5518     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5519     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5520     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5521     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5522     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5523     case elfcpp::R_PPC64_TLSGD:
5524     case elfcpp::R_PPC64_TLSLD:
5525     case elfcpp::R_PPC64_ADDR64_LOCAL:
5526       break;
5527
5528     case elfcpp::R_POWERPC_GOT16:
5529     case elfcpp::R_POWERPC_GOT16_LO:
5530     case elfcpp::R_POWERPC_GOT16_HI:
5531     case elfcpp::R_POWERPC_GOT16_HA:
5532     case elfcpp::R_PPC64_GOT16_DS:
5533     case elfcpp::R_PPC64_GOT16_LO_DS:
5534       {
5535         // The symbol requires a GOT entry.
5536         Output_data_got_powerpc<size, big_endian>* got
5537           = target->got_section(symtab, layout);
5538         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5539
5540         if (!parameters->options().output_is_position_independent())
5541           {
5542             if ((size == 32 && is_ifunc)
5543                 || (size == 64 && target->abiversion() >= 2))
5544               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5545             else
5546               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5547           }
5548         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5549           {
5550             // If we are generating a shared object or a pie, this
5551             // symbol's GOT entry will be set by a dynamic relocation.
5552             unsigned int off;
5553             off = got->add_constant(0);
5554             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5555
5556             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5557                                                                is_ifunc);
5558             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5559                                    : elfcpp::R_POWERPC_RELATIVE);
5560             rela_dyn->add_local_relative(object, r_sym, dynrel,
5561                                          got, off, 0, false);
5562           }
5563       }
5564       break;
5565
5566     case elfcpp::R_PPC64_TOC16:
5567     case elfcpp::R_PPC64_TOC16_LO:
5568     case elfcpp::R_PPC64_TOC16_HI:
5569     case elfcpp::R_PPC64_TOC16_HA:
5570     case elfcpp::R_PPC64_TOC16_DS:
5571     case elfcpp::R_PPC64_TOC16_LO_DS:
5572       // We need a GOT section.
5573       target->got_section(symtab, layout);
5574       break;
5575
5576     case elfcpp::R_POWERPC_GOT_TLSGD16:
5577     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5578     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5579     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5580       {
5581         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5582         if (tls_type == tls::TLSOPT_NONE)
5583           {
5584             Output_data_got_powerpc<size, big_endian>* got
5585               = target->got_section(symtab, layout);
5586             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5587             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5588             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5589                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5590           }
5591         else if (tls_type == tls::TLSOPT_TO_LE)
5592           {
5593             // no GOT relocs needed for Local Exec.
5594           }
5595         else
5596           gold_unreachable();
5597       }
5598       break;
5599
5600     case elfcpp::R_POWERPC_GOT_TLSLD16:
5601     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5602     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5603     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5604       {
5605         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5606         if (tls_type == tls::TLSOPT_NONE)
5607           target->tlsld_got_offset(symtab, layout, object);
5608         else if (tls_type == tls::TLSOPT_TO_LE)
5609           {
5610             // no GOT relocs needed for Local Exec.
5611             if (parameters->options().emit_relocs())
5612               {
5613                 Output_section* os = layout->tls_segment()->first_section();
5614                 gold_assert(os != NULL);
5615                 os->set_needs_symtab_index();
5616               }
5617           }
5618         else
5619           gold_unreachable();
5620       }
5621       break;
5622
5623     case elfcpp::R_POWERPC_GOT_DTPREL16:
5624     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5625     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5626     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5627       {
5628         Output_data_got_powerpc<size, big_endian>* got
5629           = target->got_section(symtab, layout);
5630         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5631         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5632       }
5633       break;
5634
5635     case elfcpp::R_POWERPC_GOT_TPREL16:
5636     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5637     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5638     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5639       {
5640         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5641         if (tls_type == tls::TLSOPT_NONE)
5642           {
5643             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5644             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5645               {
5646                 Output_data_got_powerpc<size, big_endian>* got
5647                   = target->got_section(symtab, layout);
5648                 unsigned int off = got->add_constant(0);
5649                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5650
5651                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5652                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5653                                                       elfcpp::R_POWERPC_TPREL,
5654                                                       got, off, 0);
5655               }
5656           }
5657         else if (tls_type == tls::TLSOPT_TO_LE)
5658           {
5659             // no GOT relocs needed for Local Exec.
5660           }
5661         else
5662           gold_unreachable();
5663       }
5664       break;
5665
5666     default:
5667       unsupported_reloc_local(object, r_type);
5668       break;
5669     }
5670
5671   switch (r_type)
5672     {
5673     case elfcpp::R_POWERPC_GOT_TLSLD16:
5674     case elfcpp::R_POWERPC_GOT_TLSGD16:
5675     case elfcpp::R_POWERPC_GOT_TPREL16:
5676     case elfcpp::R_POWERPC_GOT_DTPREL16:
5677     case elfcpp::R_POWERPC_GOT16:
5678     case elfcpp::R_PPC64_GOT16_DS:
5679     case elfcpp::R_PPC64_TOC16:
5680     case elfcpp::R_PPC64_TOC16_DS:
5681       ppc_object->set_has_small_toc_reloc();
5682     default:
5683       break;
5684     }
5685 }
5686
5687 // Report an unsupported relocation against a global symbol.
5688
5689 template<int size, bool big_endian>
5690 void
5691 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5692     Sized_relobj_file<size, big_endian>* object,
5693     unsigned int r_type,
5694     Symbol* gsym)
5695 {
5696   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5697              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5698 }
5699
5700 // Scan a relocation for a global symbol.
5701
5702 template<int size, bool big_endian>
5703 inline void
5704 Target_powerpc<size, big_endian>::Scan::global(
5705     Symbol_table* symtab,
5706     Layout* layout,
5707     Target_powerpc<size, big_endian>* target,
5708     Sized_relobj_file<size, big_endian>* object,
5709     unsigned int data_shndx,
5710     Output_section* output_section,
5711     const elfcpp::Rela<size, big_endian>& reloc,
5712     unsigned int r_type,
5713     Symbol* gsym)
5714 {
5715   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5716     return;
5717
5718   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5719       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5720     {
5721       this->expect_tls_get_addr_call();
5722       const bool final = gsym->final_value_is_known();
5723       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5724       if (tls_type != tls::TLSOPT_NONE)
5725         this->skip_next_tls_get_addr_call();
5726     }
5727   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5728            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5729     {
5730       this->expect_tls_get_addr_call();
5731       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5732       if (tls_type != tls::TLSOPT_NONE)
5733         this->skip_next_tls_get_addr_call();
5734     }
5735
5736   Powerpc_relobj<size, big_endian>* ppc_object
5737     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5738
5739   // A STT_GNU_IFUNC symbol may require a PLT entry.
5740   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5741   bool pushed_ifunc = false;
5742   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5743     {
5744       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5745                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5746                           reloc.get_r_addend());
5747       target->make_plt_entry(symtab, layout, gsym);
5748       pushed_ifunc = true;
5749     }
5750
5751   switch (r_type)
5752     {
5753     case elfcpp::R_POWERPC_NONE:
5754     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5755     case elfcpp::R_POWERPC_GNU_VTENTRY:
5756     case elfcpp::R_PPC_LOCAL24PC:
5757     case elfcpp::R_POWERPC_TLS:
5758       break;
5759
5760     case elfcpp::R_PPC64_TOC:
5761       {
5762         Output_data_got_powerpc<size, big_endian>* got
5763           = target->got_section(symtab, layout);
5764         if (parameters->options().output_is_position_independent())
5765           {
5766             Address off = reloc.get_r_offset();
5767             if (size == 64
5768                 && data_shndx == ppc_object->opd_shndx()
5769                 && ppc_object->get_opd_discard(off - 8))
5770               break;
5771
5772             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5773             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5774             if (data_shndx != ppc_object->opd_shndx())
5775               symobj = static_cast
5776                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5777             rela_dyn->add_output_section_relative(got->output_section(),
5778                                                   elfcpp::R_POWERPC_RELATIVE,
5779                                                   output_section,
5780                                                   object, data_shndx, off,
5781                                                   symobj->toc_base_offset());
5782           }
5783       }
5784       break;
5785
5786     case elfcpp::R_PPC64_ADDR64:
5787       if (size == 64
5788           && target->abiversion() < 2
5789           && data_shndx == ppc_object->opd_shndx()
5790           && (gsym->is_defined_in_discarded_section()
5791               || gsym->object() != object))
5792         {
5793           ppc_object->set_opd_discard(reloc.get_r_offset());
5794           break;
5795         }
5796       // Fall thru
5797     case elfcpp::R_PPC64_UADDR64:
5798     case elfcpp::R_POWERPC_ADDR32:
5799     case elfcpp::R_POWERPC_UADDR32:
5800     case elfcpp::R_POWERPC_ADDR24:
5801     case elfcpp::R_POWERPC_ADDR16:
5802     case elfcpp::R_POWERPC_ADDR16_LO:
5803     case elfcpp::R_POWERPC_ADDR16_HI:
5804     case elfcpp::R_POWERPC_ADDR16_HA:
5805     case elfcpp::R_POWERPC_UADDR16:
5806     case elfcpp::R_PPC64_ADDR16_HIGH:
5807     case elfcpp::R_PPC64_ADDR16_HIGHA:
5808     case elfcpp::R_PPC64_ADDR16_HIGHER:
5809     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5810     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5811     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5812     case elfcpp::R_PPC64_ADDR16_DS:
5813     case elfcpp::R_PPC64_ADDR16_LO_DS:
5814     case elfcpp::R_POWERPC_ADDR14:
5815     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5816     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5817       {
5818         // Make a PLT entry if necessary.
5819         if (gsym->needs_plt_entry())
5820           {
5821             // Since this is not a PC-relative relocation, we may be
5822             // taking the address of a function. In that case we need to
5823             // set the entry in the dynamic symbol table to the address of
5824             // the PLT call stub.
5825             bool need_ifunc_plt = false;
5826             if ((size == 32 || target->abiversion() >= 2)
5827                 && gsym->is_from_dynobj()
5828                 && !parameters->options().output_is_position_independent())
5829               {
5830                 gsym->set_needs_dynsym_value();
5831                 need_ifunc_plt = true;
5832               }
5833             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5834               {
5835                 target->push_branch(ppc_object, data_shndx,
5836                                     reloc.get_r_offset(), r_type,
5837                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5838                                     reloc.get_r_addend());
5839                 target->make_plt_entry(symtab, layout, gsym);
5840               }
5841           }
5842         // Make a dynamic relocation if necessary.
5843         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5844             || (size == 64 && is_ifunc && target->abiversion() < 2))
5845           {
5846             if (!parameters->options().output_is_position_independent()
5847                 && gsym->may_need_copy_reloc())
5848               {
5849                 target->copy_reloc(symtab, layout, object,
5850                                    data_shndx, output_section, gsym, reloc);
5851               }
5852             else if ((((size == 32
5853                         && r_type == elfcpp::R_POWERPC_ADDR32)
5854                        || (size == 64
5855                            && r_type == elfcpp::R_PPC64_ADDR64
5856                            && target->abiversion() >= 2))
5857                       && gsym->can_use_relative_reloc(false)
5858                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5859                            && parameters->options().shared()))
5860                      || (size == 64
5861                          && r_type == elfcpp::R_PPC64_ADDR64
5862                          && target->abiversion() < 2
5863                          && (gsym->can_use_relative_reloc(false)
5864                              || data_shndx == ppc_object->opd_shndx())))
5865               {
5866                 Reloc_section* rela_dyn
5867                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5868                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5869                                        : elfcpp::R_POWERPC_RELATIVE);
5870                 rela_dyn->add_symbolless_global_addend(
5871                     gsym, dynrel, output_section, object, data_shndx,
5872                     reloc.get_r_offset(), reloc.get_r_addend());
5873               }
5874             else
5875               {
5876                 Reloc_section* rela_dyn
5877                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5878                 check_non_pic(object, r_type);
5879                 rela_dyn->add_global(gsym, r_type, output_section,
5880                                      object, data_shndx,
5881                                      reloc.get_r_offset(),
5882                                      reloc.get_r_addend());
5883               }
5884           }
5885       }
5886       break;
5887
5888     case elfcpp::R_PPC_PLTREL24:
5889     case elfcpp::R_POWERPC_REL24:
5890       if (!is_ifunc)
5891         {
5892           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5893                               r_type,
5894                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5895                               reloc.get_r_addend());
5896           if (gsym->needs_plt_entry()
5897               || (!gsym->final_value_is_known()
5898                   && (gsym->is_undefined()
5899                       || gsym->is_from_dynobj()
5900                       || gsym->is_preemptible())))
5901             target->make_plt_entry(symtab, layout, gsym);
5902         }
5903       // Fall thru
5904
5905     case elfcpp::R_PPC64_REL64:
5906     case elfcpp::R_POWERPC_REL32:
5907       // Make a dynamic relocation if necessary.
5908       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5909         {
5910           if (!parameters->options().output_is_position_independent()
5911               && gsym->may_need_copy_reloc())
5912             {
5913               target->copy_reloc(symtab, layout, object,
5914                                  data_shndx, output_section, gsym,
5915                                  reloc);
5916             }
5917           else
5918             {
5919               Reloc_section* rela_dyn
5920                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5921               check_non_pic(object, r_type);
5922               rela_dyn->add_global(gsym, r_type, output_section, object,
5923                                    data_shndx, reloc.get_r_offset(),
5924                                    reloc.get_r_addend());
5925             }
5926         }
5927       break;
5928
5929     case elfcpp::R_POWERPC_REL14:
5930     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5931     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5932       if (!is_ifunc)
5933         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5934                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5935                             reloc.get_r_addend());
5936       break;
5937
5938     case elfcpp::R_POWERPC_REL16:
5939     case elfcpp::R_POWERPC_REL16_LO:
5940     case elfcpp::R_POWERPC_REL16_HI:
5941     case elfcpp::R_POWERPC_REL16_HA:
5942     case elfcpp::R_POWERPC_SECTOFF:
5943     case elfcpp::R_POWERPC_SECTOFF_LO:
5944     case elfcpp::R_POWERPC_SECTOFF_HI:
5945     case elfcpp::R_POWERPC_SECTOFF_HA:
5946     case elfcpp::R_PPC64_SECTOFF_DS:
5947     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5948     case elfcpp::R_POWERPC_TPREL16:
5949     case elfcpp::R_POWERPC_TPREL16_LO:
5950     case elfcpp::R_POWERPC_TPREL16_HI:
5951     case elfcpp::R_POWERPC_TPREL16_HA:
5952     case elfcpp::R_PPC64_TPREL16_DS:
5953     case elfcpp::R_PPC64_TPREL16_LO_DS:
5954     case elfcpp::R_PPC64_TPREL16_HIGH:
5955     case elfcpp::R_PPC64_TPREL16_HIGHA:
5956     case elfcpp::R_PPC64_TPREL16_HIGHER:
5957     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5958     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5959     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5960     case elfcpp::R_POWERPC_DTPREL16:
5961     case elfcpp::R_POWERPC_DTPREL16_LO:
5962     case elfcpp::R_POWERPC_DTPREL16_HI:
5963     case elfcpp::R_POWERPC_DTPREL16_HA:
5964     case elfcpp::R_PPC64_DTPREL16_DS:
5965     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5966     case elfcpp::R_PPC64_DTPREL16_HIGH:
5967     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5968     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5969     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5970     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5971     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5972     case elfcpp::R_PPC64_TLSGD:
5973     case elfcpp::R_PPC64_TLSLD:
5974     case elfcpp::R_PPC64_ADDR64_LOCAL:
5975       break;
5976
5977     case elfcpp::R_POWERPC_GOT16:
5978     case elfcpp::R_POWERPC_GOT16_LO:
5979     case elfcpp::R_POWERPC_GOT16_HI:
5980     case elfcpp::R_POWERPC_GOT16_HA:
5981     case elfcpp::R_PPC64_GOT16_DS:
5982     case elfcpp::R_PPC64_GOT16_LO_DS:
5983       {
5984         // The symbol requires a GOT entry.
5985         Output_data_got_powerpc<size, big_endian>* got;
5986
5987         got = target->got_section(symtab, layout);
5988         if (gsym->final_value_is_known())
5989           {
5990             if ((size == 32 && is_ifunc)
5991                 || (size == 64 && target->abiversion() >= 2))
5992               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5993             else
5994               got->add_global(gsym, GOT_TYPE_STANDARD);
5995           }
5996         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5997           {
5998             // If we are generating a shared object or a pie, this
5999             // symbol's GOT entry will be set by a dynamic relocation.
6000             unsigned int off = got->add_constant(0);
6001             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6002
6003             Reloc_section* rela_dyn
6004               = target->rela_dyn_section(symtab, layout, is_ifunc);
6005
6006             if (gsym->can_use_relative_reloc(false)
6007                 && !((size == 32
6008                       || target->abiversion() >= 2)
6009                      && gsym->visibility() == elfcpp::STV_PROTECTED
6010                      && parameters->options().shared()))
6011               {
6012                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6013                                        : elfcpp::R_POWERPC_RELATIVE);
6014                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6015               }
6016             else
6017               {
6018                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6019                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6020               }
6021           }
6022       }
6023       break;
6024
6025     case elfcpp::R_PPC64_TOC16:
6026     case elfcpp::R_PPC64_TOC16_LO:
6027     case elfcpp::R_PPC64_TOC16_HI:
6028     case elfcpp::R_PPC64_TOC16_HA:
6029     case elfcpp::R_PPC64_TOC16_DS:
6030     case elfcpp::R_PPC64_TOC16_LO_DS:
6031       // We need a GOT section.
6032       target->got_section(symtab, layout);
6033       break;
6034
6035     case elfcpp::R_POWERPC_GOT_TLSGD16:
6036     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6037     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6038     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6039       {
6040         const bool final = gsym->final_value_is_known();
6041         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6042         if (tls_type == tls::TLSOPT_NONE)
6043           {
6044             Output_data_got_powerpc<size, big_endian>* got
6045               = target->got_section(symtab, layout);
6046             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6047             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6048                                           elfcpp::R_POWERPC_DTPMOD,
6049                                           elfcpp::R_POWERPC_DTPREL);
6050           }
6051         else if (tls_type == tls::TLSOPT_TO_IE)
6052           {
6053             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6054               {
6055                 Output_data_got_powerpc<size, big_endian>* got
6056                   = target->got_section(symtab, layout);
6057                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6058                 if (gsym->is_undefined()
6059                     || gsym->is_from_dynobj())
6060                   {
6061                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6062                                              elfcpp::R_POWERPC_TPREL);
6063                   }
6064                 else
6065                   {
6066                     unsigned int off = got->add_constant(0);
6067                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6068                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6069                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6070                                                            got, off, 0);
6071                   }
6072               }
6073           }
6074         else if (tls_type == tls::TLSOPT_TO_LE)
6075           {
6076             // no GOT relocs needed for Local Exec.
6077           }
6078         else
6079           gold_unreachable();
6080       }
6081       break;
6082
6083     case elfcpp::R_POWERPC_GOT_TLSLD16:
6084     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6085     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6086     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6087       {
6088         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6089         if (tls_type == tls::TLSOPT_NONE)
6090           target->tlsld_got_offset(symtab, layout, object);
6091         else if (tls_type == tls::TLSOPT_TO_LE)
6092           {
6093             // no GOT relocs needed for Local Exec.
6094             if (parameters->options().emit_relocs())
6095               {
6096                 Output_section* os = layout->tls_segment()->first_section();
6097                 gold_assert(os != NULL);
6098                 os->set_needs_symtab_index();
6099               }
6100           }
6101         else
6102           gold_unreachable();
6103       }
6104       break;
6105
6106     case elfcpp::R_POWERPC_GOT_DTPREL16:
6107     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6108     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6109     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6110       {
6111         Output_data_got_powerpc<size, big_endian>* got
6112           = target->got_section(symtab, layout);
6113         if (!gsym->final_value_is_known()
6114             && (gsym->is_from_dynobj()
6115                 || gsym->is_undefined()
6116                 || gsym->is_preemptible()))
6117           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6118                                    target->rela_dyn_section(layout),
6119                                    elfcpp::R_POWERPC_DTPREL);
6120         else
6121           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6122       }
6123       break;
6124
6125     case elfcpp::R_POWERPC_GOT_TPREL16:
6126     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6127     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6128     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6129       {
6130         const bool final = gsym->final_value_is_known();
6131         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6132         if (tls_type == tls::TLSOPT_NONE)
6133           {
6134             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6135               {
6136                 Output_data_got_powerpc<size, big_endian>* got
6137                   = target->got_section(symtab, layout);
6138                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6139                 if (gsym->is_undefined()
6140                     || gsym->is_from_dynobj())
6141                   {
6142                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6143                                              elfcpp::R_POWERPC_TPREL);
6144                   }
6145                 else
6146                   {
6147                     unsigned int off = got->add_constant(0);
6148                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6149                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6150                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6151                                                            got, off, 0);
6152                   }
6153               }
6154           }
6155         else if (tls_type == tls::TLSOPT_TO_LE)
6156           {
6157             // no GOT relocs needed for Local Exec.
6158           }
6159         else
6160           gold_unreachable();
6161       }
6162       break;
6163
6164     default:
6165       unsupported_reloc_global(object, r_type, gsym);
6166       break;
6167     }
6168
6169   switch (r_type)
6170     {
6171     case elfcpp::R_POWERPC_GOT_TLSLD16:
6172     case elfcpp::R_POWERPC_GOT_TLSGD16:
6173     case elfcpp::R_POWERPC_GOT_TPREL16:
6174     case elfcpp::R_POWERPC_GOT_DTPREL16:
6175     case elfcpp::R_POWERPC_GOT16:
6176     case elfcpp::R_PPC64_GOT16_DS:
6177     case elfcpp::R_PPC64_TOC16:
6178     case elfcpp::R_PPC64_TOC16_DS:
6179       ppc_object->set_has_small_toc_reloc();
6180     default:
6181       break;
6182     }
6183 }
6184
6185 // Process relocations for gc.
6186
6187 template<int size, bool big_endian>
6188 void
6189 Target_powerpc<size, big_endian>::gc_process_relocs(
6190     Symbol_table* symtab,
6191     Layout* layout,
6192     Sized_relobj_file<size, big_endian>* object,
6193     unsigned int data_shndx,
6194     unsigned int,
6195     const unsigned char* prelocs,
6196     size_t reloc_count,
6197     Output_section* output_section,
6198     bool needs_special_offset_handling,
6199     size_t local_symbol_count,
6200     const unsigned char* plocal_symbols)
6201 {
6202   typedef Target_powerpc<size, big_endian> Powerpc;
6203   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6204   Powerpc_relobj<size, big_endian>* ppc_object
6205     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6206   if (size == 64)
6207     ppc_object->set_opd_valid();
6208   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6209     {
6210       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6211       for (p = ppc_object->access_from_map()->begin();
6212            p != ppc_object->access_from_map()->end();
6213            ++p)
6214         {
6215           Address dst_off = p->first;
6216           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6217           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6218           for (s = p->second.begin(); s != p->second.end(); ++s)
6219             {
6220               Object* src_obj = s->first;
6221               unsigned int src_indx = s->second;
6222               symtab->gc()->add_reference(src_obj, src_indx,
6223                                           ppc_object, dst_indx);
6224             }
6225           p->second.clear();
6226         }
6227       ppc_object->access_from_map()->clear();
6228       ppc_object->process_gc_mark(symtab);
6229       // Don't look at .opd relocs as .opd will reference everything.
6230       return;
6231     }
6232
6233   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6234                           typename Target_powerpc::Relocatable_size_for_reloc>(
6235     symtab,
6236     layout,
6237     this,
6238     object,
6239     data_shndx,
6240     prelocs,
6241     reloc_count,
6242     output_section,
6243     needs_special_offset_handling,
6244     local_symbol_count,
6245     plocal_symbols);
6246 }
6247
6248 // Handle target specific gc actions when adding a gc reference from
6249 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6250 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6251 // section of a function descriptor.
6252
6253 template<int size, bool big_endian>
6254 void
6255 Target_powerpc<size, big_endian>::do_gc_add_reference(
6256     Symbol_table* symtab,
6257     Object* src_obj,
6258     unsigned int src_shndx,
6259     Object* dst_obj,
6260     unsigned int dst_shndx,
6261     Address dst_off) const
6262 {
6263   if (size != 64 || dst_obj->is_dynamic())
6264     return;
6265
6266   Powerpc_relobj<size, big_endian>* ppc_object
6267     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6268   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6269     {
6270       if (ppc_object->opd_valid())
6271         {
6272           dst_shndx = ppc_object->get_opd_ent(dst_off);
6273           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6274         }
6275       else
6276         {
6277           // If we haven't run scan_opd_relocs, we must delay
6278           // processing this function descriptor reference.
6279           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6280         }
6281     }
6282 }
6283
6284 // Add any special sections for this symbol to the gc work list.
6285 // For powerpc64, this adds the code section of a function
6286 // descriptor.
6287
6288 template<int size, bool big_endian>
6289 void
6290 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6291     Symbol_table* symtab,
6292     Symbol* sym) const
6293 {
6294   if (size == 64)
6295     {
6296       Powerpc_relobj<size, big_endian>* ppc_object
6297         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6298       bool is_ordinary;
6299       unsigned int shndx = sym->shndx(&is_ordinary);
6300       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6301         {
6302           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6303           Address dst_off = gsym->value();
6304           if (ppc_object->opd_valid())
6305             {
6306               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6307               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6308             }
6309           else
6310             ppc_object->add_gc_mark(dst_off);
6311         }
6312     }
6313 }
6314
6315 // For a symbol location in .opd, set LOC to the location of the
6316 // function entry.
6317
6318 template<int size, bool big_endian>
6319 void
6320 Target_powerpc<size, big_endian>::do_function_location(
6321     Symbol_location* loc) const
6322 {
6323   if (size == 64 && loc->shndx != 0)
6324     {
6325       if (loc->object->is_dynamic())
6326         {
6327           Powerpc_dynobj<size, big_endian>* ppc_object
6328             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6329           if (loc->shndx == ppc_object->opd_shndx())
6330             {
6331               Address dest_off;
6332               Address off = loc->offset - ppc_object->opd_address();
6333               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6334               loc->offset = dest_off;
6335             }
6336         }
6337       else
6338         {
6339           const Powerpc_relobj<size, big_endian>* ppc_object
6340             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6341           if (loc->shndx == ppc_object->opd_shndx())
6342             {
6343               Address dest_off;
6344               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6345               loc->offset = dest_off;
6346             }
6347         }
6348     }
6349 }
6350
6351 // Scan relocations for a section.
6352
6353 template<int size, bool big_endian>
6354 void
6355 Target_powerpc<size, big_endian>::scan_relocs(
6356     Symbol_table* symtab,
6357     Layout* layout,
6358     Sized_relobj_file<size, big_endian>* object,
6359     unsigned int data_shndx,
6360     unsigned int sh_type,
6361     const unsigned char* prelocs,
6362     size_t reloc_count,
6363     Output_section* output_section,
6364     bool needs_special_offset_handling,
6365     size_t local_symbol_count,
6366     const unsigned char* plocal_symbols)
6367 {
6368   typedef Target_powerpc<size, big_endian> Powerpc;
6369   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6370
6371   if (sh_type == elfcpp::SHT_REL)
6372     {
6373       gold_error(_("%s: unsupported REL reloc section"),
6374                  object->name().c_str());
6375       return;
6376     }
6377
6378   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6379     symtab,
6380     layout,
6381     this,
6382     object,
6383     data_shndx,
6384     prelocs,
6385     reloc_count,
6386     output_section,
6387     needs_special_offset_handling,
6388     local_symbol_count,
6389     plocal_symbols);
6390 }
6391
6392 // Functor class for processing the global symbol table.
6393 // Removes symbols defined on discarded opd entries.
6394
6395 template<bool big_endian>
6396 class Global_symbol_visitor_opd
6397 {
6398  public:
6399   Global_symbol_visitor_opd()
6400   { }
6401
6402   void
6403   operator()(Sized_symbol<64>* sym)
6404   {
6405     if (sym->has_symtab_index()
6406         || sym->source() != Symbol::FROM_OBJECT
6407         || !sym->in_real_elf())
6408       return;
6409
6410     if (sym->object()->is_dynamic())
6411       return;
6412
6413     Powerpc_relobj<64, big_endian>* symobj
6414       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6415     if (symobj->opd_shndx() == 0)
6416       return;
6417
6418     bool is_ordinary;
6419     unsigned int shndx = sym->shndx(&is_ordinary);
6420     if (shndx == symobj->opd_shndx()
6421         && symobj->get_opd_discard(sym->value()))
6422       sym->set_symtab_index(-1U);
6423   }
6424 };
6425
6426 template<int size, bool big_endian>
6427 void
6428 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6429     Layout* layout,
6430     Symbol_table* symtab)
6431 {
6432   if (size == 64)
6433     {
6434       Output_data_save_res<64, big_endian>* savres
6435         = new Output_data_save_res<64, big_endian>(symtab);
6436       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6437                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6438                                       savres, ORDER_TEXT, false);
6439     }
6440 }
6441
6442 // Sort linker created .got section first (for the header), then input
6443 // sections belonging to files using small model code.
6444
6445 template<bool big_endian>
6446 class Sort_toc_sections
6447 {
6448  public:
6449   bool
6450   operator()(const Output_section::Input_section& is1,
6451              const Output_section::Input_section& is2) const
6452   {
6453     if (!is1.is_input_section() && is2.is_input_section())
6454       return true;
6455     bool small1
6456       = (is1.is_input_section()
6457          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6458              ->has_small_toc_reloc()));
6459     bool small2
6460       = (is2.is_input_section()
6461          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6462              ->has_small_toc_reloc()));
6463     return small1 && !small2;
6464   }
6465 };
6466
6467 // Finalize the sections.
6468
6469 template<int size, bool big_endian>
6470 void
6471 Target_powerpc<size, big_endian>::do_finalize_sections(
6472     Layout* layout,
6473     const Input_objects*,
6474     Symbol_table* symtab)
6475 {
6476   if (parameters->doing_static_link())
6477     {
6478       // At least some versions of glibc elf-init.o have a strong
6479       // reference to __rela_iplt marker syms.  A weak ref would be
6480       // better..
6481       if (this->iplt_ != NULL)
6482         {
6483           Reloc_section* rel = this->iplt_->rel_plt();
6484           symtab->define_in_output_data("__rela_iplt_start", NULL,
6485                                         Symbol_table::PREDEFINED, rel, 0, 0,
6486                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6487                                         elfcpp::STV_HIDDEN, 0, false, true);
6488           symtab->define_in_output_data("__rela_iplt_end", NULL,
6489                                         Symbol_table::PREDEFINED, rel, 0, 0,
6490                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6491                                         elfcpp::STV_HIDDEN, 0, true, true);
6492         }
6493       else
6494         {
6495           symtab->define_as_constant("__rela_iplt_start", NULL,
6496                                      Symbol_table::PREDEFINED, 0, 0,
6497                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6498                                      elfcpp::STV_HIDDEN, 0, true, false);
6499           symtab->define_as_constant("__rela_iplt_end", NULL,
6500                                      Symbol_table::PREDEFINED, 0, 0,
6501                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6502                                      elfcpp::STV_HIDDEN, 0, true, false);
6503         }
6504     }
6505
6506   if (size == 64)
6507     {
6508       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6509       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6510
6511       if (!parameters->options().relocatable())
6512         {
6513           this->define_save_restore_funcs(layout, symtab);
6514
6515           // Annoyingly, we need to make these sections now whether or
6516           // not we need them.  If we delay until do_relax then we
6517           // need to mess with the relaxation machinery checkpointing.
6518           this->got_section(symtab, layout);
6519           this->make_brlt_section(layout);
6520
6521           if (parameters->options().toc_sort())
6522             {
6523               Output_section* os = this->got_->output_section();
6524               if (os != NULL && os->input_sections().size() > 1)
6525                 std::stable_sort(os->input_sections().begin(),
6526                                  os->input_sections().end(),
6527                                  Sort_toc_sections<big_endian>());
6528             }
6529         }
6530     }
6531
6532   // Fill in some more dynamic tags.
6533   Output_data_dynamic* odyn = layout->dynamic_data();
6534   if (odyn != NULL)
6535     {
6536       const Reloc_section* rel_plt = (this->plt_ == NULL
6537                                       ? NULL
6538                                       : this->plt_->rel_plt());
6539       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6540                                       this->rela_dyn_, true, size == 32);
6541
6542       if (size == 32)
6543         {
6544           if (this->got_ != NULL)
6545             {
6546               this->got_->finalize_data_size();
6547               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6548                                             this->got_, this->got_->g_o_t());
6549             }
6550         }
6551       else
6552         {
6553           if (this->glink_ != NULL)
6554             {
6555               this->glink_->finalize_data_size();
6556               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6557                                             this->glink_,
6558                                             (this->glink_->pltresolve_size
6559                                              - 32));
6560             }
6561         }
6562     }
6563
6564   // Emit any relocs we saved in an attempt to avoid generating COPY
6565   // relocs.
6566   if (this->copy_relocs_.any_saved_relocs())
6567     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6568 }
6569
6570 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6571 // reloc.
6572
6573 static bool
6574 ok_lo_toc_insn(uint32_t insn)
6575 {
6576   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6577           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6578           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6579           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6580           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6581           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6582           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6583           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6584           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6585           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6586           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6587           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6588           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6589           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6590           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6591               && (insn & 3) != 1)
6592           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6593               && ((insn & 3) == 0 || (insn & 3) == 3))
6594           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6595 }
6596
6597 // Return the value to use for a branch relocation.
6598
6599 template<int size, bool big_endian>
6600 typename Target_powerpc<size, big_endian>::Address
6601 Target_powerpc<size, big_endian>::symval_for_branch(
6602     const Symbol_table* symtab,
6603     Address value,
6604     const Sized_symbol<size>* gsym,
6605     Powerpc_relobj<size, big_endian>* object,
6606     unsigned int *dest_shndx)
6607 {
6608   if (size == 32 || this->abiversion() >= 2)
6609     gold_unreachable();
6610   *dest_shndx = 0;
6611
6612   // If the symbol is defined in an opd section, ie. is a function
6613   // descriptor, use the function descriptor code entry address
6614   Powerpc_relobj<size, big_endian>* symobj = object;
6615   if (gsym != NULL
6616       && gsym->source() != Symbol::FROM_OBJECT)
6617     return value;
6618   if (gsym != NULL)
6619     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6620   unsigned int shndx = symobj->opd_shndx();
6621   if (shndx == 0)
6622     return value;
6623   Address opd_addr = symobj->get_output_section_offset(shndx);
6624   if (opd_addr == invalid_address)
6625     return value;
6626   opd_addr += symobj->output_section_address(shndx);
6627   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6628     {
6629       Address sec_off;
6630       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6631       if (symtab->is_section_folded(symobj, *dest_shndx))
6632         {
6633           Section_id folded
6634             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6635           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6636           *dest_shndx = folded.second;
6637         }
6638       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6639       gold_assert(sec_addr != invalid_address);
6640       sec_addr += symobj->output_section(*dest_shndx)->address();
6641       value = sec_addr + sec_off;
6642     }
6643   return value;
6644 }
6645
6646 // Perform a relocation.
6647
6648 template<int size, bool big_endian>
6649 inline bool
6650 Target_powerpc<size, big_endian>::Relocate::relocate(
6651     const Relocate_info<size, big_endian>* relinfo,
6652     Target_powerpc* target,
6653     Output_section* os,
6654     size_t relnum,
6655     const elfcpp::Rela<size, big_endian>& rela,
6656     unsigned int r_type,
6657     const Sized_symbol<size>* gsym,
6658     const Symbol_value<size>* psymval,
6659     unsigned char* view,
6660     Address address,
6661     section_size_type view_size)
6662 {
6663   if (view == NULL)
6664     return true;
6665
6666   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6667     {
6668     case Track_tls::NOT_EXPECTED:
6669       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6670                              _("__tls_get_addr call lacks marker reloc"));
6671       break;
6672     case Track_tls::EXPECTED:
6673       // We have already complained.
6674       break;
6675     case Track_tls::SKIP:
6676       return true;
6677     case Track_tls::NORMAL:
6678       break;
6679     }
6680
6681   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6682   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6683   Powerpc_relobj<size, big_endian>* const object
6684     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6685   Address value = 0;
6686   bool has_plt_value = false;
6687   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6688   if ((gsym != NULL
6689        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6690        : object->local_has_plt_offset(r_sym))
6691       && (!psymval->is_ifunc_symbol()
6692           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6693     {
6694       if (size == 64
6695           && gsym != NULL
6696           && target->abiversion() >= 2
6697           && !parameters->options().output_is_position_independent()
6698           && !is_branch_reloc(r_type))
6699         {
6700           unsigned int off = target->glink_section()->find_global_entry(gsym);
6701           gold_assert(off != (unsigned int)-1);
6702           value = target->glink_section()->global_entry_address() + off;
6703         }
6704       else
6705         {
6706           Stub_table<size, big_endian>* stub_table
6707             = object->stub_table(relinfo->data_shndx);
6708           if (stub_table == NULL)
6709             {
6710               // This is a ref from a data section to an ifunc symbol.
6711               if (target->stub_tables().size() != 0)
6712                 stub_table = target->stub_tables()[0];
6713             }
6714           gold_assert(stub_table != NULL);
6715           Address off;
6716           if (gsym != NULL)
6717             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6718                                                   rela.get_r_addend());
6719           else
6720             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6721                                                   rela.get_r_addend());
6722           gold_assert(off != invalid_address);
6723           value = stub_table->stub_address() + off;
6724         }
6725       has_plt_value = true;
6726     }
6727
6728   if (r_type == elfcpp::R_POWERPC_GOT16
6729       || r_type == elfcpp::R_POWERPC_GOT16_LO
6730       || r_type == elfcpp::R_POWERPC_GOT16_HI
6731       || r_type == elfcpp::R_POWERPC_GOT16_HA
6732       || r_type == elfcpp::R_PPC64_GOT16_DS
6733       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6734     {
6735       if (gsym != NULL)
6736         {
6737           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6738           value = gsym->got_offset(GOT_TYPE_STANDARD);
6739         }
6740       else
6741         {
6742           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6743           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6744           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6745         }
6746       value -= target->got_section()->got_base_offset(object);
6747     }
6748   else if (r_type == elfcpp::R_PPC64_TOC)
6749     {
6750       value = (target->got_section()->output_section()->address()
6751                + object->toc_base_offset());
6752     }
6753   else if (gsym != NULL
6754            && (r_type == elfcpp::R_POWERPC_REL24
6755                || r_type == elfcpp::R_PPC_PLTREL24)
6756            && has_plt_value)
6757     {
6758       if (size == 64)
6759         {
6760           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6761           Valtype* wv = reinterpret_cast<Valtype*>(view);
6762           bool can_plt_call = false;
6763           if (rela.get_r_offset() + 8 <= view_size)
6764             {
6765               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6766               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6767               if ((insn & 1) != 0
6768                   && (insn2 == nop
6769                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6770                 {
6771                   elfcpp::Swap<32, big_endian>::
6772                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6773                   can_plt_call = true;
6774                 }
6775             }
6776           if (!can_plt_call)
6777             {
6778               // If we don't have a branch and link followed by a nop,
6779               // we can't go via the plt because there is no place to
6780               // put a toc restoring instruction.
6781               // Unless we know we won't be returning.
6782               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6783                 can_plt_call = true;
6784             }
6785           if (!can_plt_call)
6786             {
6787               // g++ as of 20130507 emits self-calls without a
6788               // following nop.  This is arguably wrong since we have
6789               // conflicting information.  On the one hand a global
6790               // symbol and on the other a local call sequence, but
6791               // don't error for this special case.
6792               // It isn't possible to cheaply verify we have exactly
6793               // such a call.  Allow all calls to the same section.
6794               bool ok = false;
6795               Address code = value;
6796               if (gsym->source() == Symbol::FROM_OBJECT
6797                   && gsym->object() == object)
6798                 {
6799                   unsigned int dest_shndx = 0;
6800                   if (target->abiversion() < 2)
6801                     {
6802                       Address addend = rela.get_r_addend();
6803                       Address opdent = psymval->value(object, addend);
6804                       code = target->symval_for_branch(relinfo->symtab,
6805                                                        opdent, gsym, object,
6806                                                        &dest_shndx);
6807                     }
6808                   bool is_ordinary;
6809                   if (dest_shndx == 0)
6810                     dest_shndx = gsym->shndx(&is_ordinary);
6811                   ok = dest_shndx == relinfo->data_shndx;
6812                 }
6813               if (!ok)
6814                 {
6815                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6816                                          _("call lacks nop, can't restore toc; "
6817                                            "recompile with -fPIC"));
6818                   value = code;
6819                 }
6820             }
6821         }
6822     }
6823   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6824            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6825            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6826            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6827     {
6828       // First instruction of a global dynamic sequence, arg setup insn.
6829       const bool final = gsym == NULL || gsym->final_value_is_known();
6830       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6831       enum Got_type got_type = GOT_TYPE_STANDARD;
6832       if (tls_type == tls::TLSOPT_NONE)
6833         got_type = GOT_TYPE_TLSGD;
6834       else if (tls_type == tls::TLSOPT_TO_IE)
6835         got_type = GOT_TYPE_TPREL;
6836       if (got_type != GOT_TYPE_STANDARD)
6837         {
6838           if (gsym != NULL)
6839             {
6840               gold_assert(gsym->has_got_offset(got_type));
6841               value = gsym->got_offset(got_type);
6842             }
6843           else
6844             {
6845               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6846               gold_assert(object->local_has_got_offset(r_sym, got_type));
6847               value = object->local_got_offset(r_sym, got_type);
6848             }
6849           value -= target->got_section()->got_base_offset(object);
6850         }
6851       if (tls_type == tls::TLSOPT_TO_IE)
6852         {
6853           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6854               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6855             {
6856               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6857               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6858               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6859               if (size == 32)
6860                 insn |= 32 << 26; // lwz
6861               else
6862                 insn |= 58 << 26; // ld
6863               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6864             }
6865           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6866                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6867         }
6868       else if (tls_type == tls::TLSOPT_TO_LE)
6869         {
6870           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6871               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6872             {
6873               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874               Insn insn = addis_3_13;
6875               if (size == 32)
6876                 insn = addis_3_2;
6877               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6878               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6879               value = psymval->value(object, rela.get_r_addend());
6880             }
6881           else
6882             {
6883               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6884               Insn insn = nop;
6885               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6886               r_type = elfcpp::R_POWERPC_NONE;
6887             }
6888         }
6889     }
6890   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6891            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6892            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6893            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6894     {
6895       // First instruction of a local dynamic sequence, arg setup insn.
6896       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6897       if (tls_type == tls::TLSOPT_NONE)
6898         {
6899           value = target->tlsld_got_offset();
6900           value -= target->got_section()->got_base_offset(object);
6901         }
6902       else
6903         {
6904           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6905           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6906               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6907             {
6908               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6909               Insn insn = addis_3_13;
6910               if (size == 32)
6911                 insn = addis_3_2;
6912               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6913               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6914               value = dtp_offset;
6915             }
6916           else
6917             {
6918               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6919               Insn insn = nop;
6920               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6921               r_type = elfcpp::R_POWERPC_NONE;
6922             }
6923         }
6924     }
6925   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6926            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6927            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6928            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6929     {
6930       // Accesses relative to a local dynamic sequence address,
6931       // no optimisation here.
6932       if (gsym != NULL)
6933         {
6934           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6935           value = gsym->got_offset(GOT_TYPE_DTPREL);
6936         }
6937       else
6938         {
6939           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6940           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6941           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6942         }
6943       value -= target->got_section()->got_base_offset(object);
6944     }
6945   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6946            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6947            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6948            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6949     {
6950       // First instruction of initial exec sequence.
6951       const bool final = gsym == NULL || gsym->final_value_is_known();
6952       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6953       if (tls_type == tls::TLSOPT_NONE)
6954         {
6955           if (gsym != NULL)
6956             {
6957               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6958               value = gsym->got_offset(GOT_TYPE_TPREL);
6959             }
6960           else
6961             {
6962               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6963               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6964               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6965             }
6966           value -= target->got_section()->got_base_offset(object);
6967         }
6968       else
6969         {
6970           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6971           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6972               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6973             {
6974               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6975               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6976               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6977               if (size == 32)
6978                 insn |= addis_0_2;
6979               else
6980                 insn |= addis_0_13;
6981               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6982               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6983               value = psymval->value(object, rela.get_r_addend());
6984             }
6985           else
6986             {
6987               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6988               Insn insn = nop;
6989               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6990               r_type = elfcpp::R_POWERPC_NONE;
6991             }
6992         }
6993     }
6994   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6995            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6996     {
6997       // Second instruction of a global dynamic sequence,
6998       // the __tls_get_addr call
6999       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7000       const bool final = gsym == NULL || gsym->final_value_is_known();
7001       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7002       if (tls_type != tls::TLSOPT_NONE)
7003         {
7004           if (tls_type == tls::TLSOPT_TO_IE)
7005             {
7006               Insn* iview = reinterpret_cast<Insn*>(view);
7007               Insn insn = add_3_3_13;
7008               if (size == 32)
7009                 insn = add_3_3_2;
7010               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7011               r_type = elfcpp::R_POWERPC_NONE;
7012             }
7013           else
7014             {
7015               Insn* iview = reinterpret_cast<Insn*>(view);
7016               Insn insn = addi_3_3;
7017               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7018               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7019               view += 2 * big_endian;
7020               value = psymval->value(object, rela.get_r_addend());
7021             }
7022           this->skip_next_tls_get_addr_call();
7023         }
7024     }
7025   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7026            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7027     {
7028       // Second instruction of a local dynamic sequence,
7029       // the __tls_get_addr call
7030       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7031       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7032       if (tls_type == tls::TLSOPT_TO_LE)
7033         {
7034           Insn* iview = reinterpret_cast<Insn*>(view);
7035           Insn insn = addi_3_3;
7036           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7037           this->skip_next_tls_get_addr_call();
7038           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7039           view += 2 * big_endian;
7040           value = dtp_offset;
7041         }
7042     }
7043   else if (r_type == elfcpp::R_POWERPC_TLS)
7044     {
7045       // Second instruction of an initial exec sequence
7046       const bool final = gsym == NULL || gsym->final_value_is_known();
7047       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7048       if (tls_type == tls::TLSOPT_TO_LE)
7049         {
7050           Insn* iview = reinterpret_cast<Insn*>(view);
7051           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7052           unsigned int reg = size == 32 ? 2 : 13;
7053           insn = at_tls_transform(insn, reg);
7054           gold_assert(insn != 0);
7055           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7056           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7057           view += 2 * big_endian;
7058           value = psymval->value(object, rela.get_r_addend());
7059         }
7060     }
7061   else if (!has_plt_value)
7062     {
7063       Address addend = 0;
7064       unsigned int dest_shndx;
7065       if (r_type != elfcpp::R_PPC_PLTREL24)
7066         addend = rela.get_r_addend();
7067       value = psymval->value(object, addend);
7068       if (size == 64 && is_branch_reloc(r_type))
7069         {
7070           if (target->abiversion() >= 2)
7071             {
7072               if (gsym != NULL)
7073                 value += object->ppc64_local_entry_offset(gsym);
7074               else
7075                 value += object->ppc64_local_entry_offset(r_sym);
7076             }
7077           else
7078             value = target->symval_for_branch(relinfo->symtab, value,
7079                                               gsym, object, &dest_shndx);
7080         }
7081       unsigned int max_branch_offset = 0;
7082       if (r_type == elfcpp::R_POWERPC_REL24
7083           || r_type == elfcpp::R_PPC_PLTREL24
7084           || r_type == elfcpp::R_PPC_LOCAL24PC)
7085         max_branch_offset = 1 << 25;
7086       else if (r_type == elfcpp::R_POWERPC_REL14
7087                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7088                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7089         max_branch_offset = 1 << 15;
7090       if (max_branch_offset != 0
7091           && value - address + max_branch_offset >= 2 * max_branch_offset)
7092         {
7093           Stub_table<size, big_endian>* stub_table
7094             = object->stub_table(relinfo->data_shndx);
7095           if (stub_table != NULL)
7096             {
7097               Address off = stub_table->find_long_branch_entry(object, value);
7098               if (off != invalid_address)
7099                 value = (stub_table->stub_address() + stub_table->plt_size()
7100                          + off);
7101             }
7102         }
7103     }
7104
7105   switch (r_type)
7106     {
7107     case elfcpp::R_PPC64_REL64:
7108     case elfcpp::R_POWERPC_REL32:
7109     case elfcpp::R_POWERPC_REL24:
7110     case elfcpp::R_PPC_PLTREL24:
7111     case elfcpp::R_PPC_LOCAL24PC:
7112     case elfcpp::R_POWERPC_REL16:
7113     case elfcpp::R_POWERPC_REL16_LO:
7114     case elfcpp::R_POWERPC_REL16_HI:
7115     case elfcpp::R_POWERPC_REL16_HA:
7116     case elfcpp::R_POWERPC_REL14:
7117     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7118     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7119       value -= address;
7120       break;
7121
7122     case elfcpp::R_PPC64_TOC16:
7123     case elfcpp::R_PPC64_TOC16_LO:
7124     case elfcpp::R_PPC64_TOC16_HI:
7125     case elfcpp::R_PPC64_TOC16_HA:
7126     case elfcpp::R_PPC64_TOC16_DS:
7127     case elfcpp::R_PPC64_TOC16_LO_DS:
7128       // Subtract the TOC base address.
7129       value -= (target->got_section()->output_section()->address()
7130                 + object->toc_base_offset());
7131       break;
7132
7133     case elfcpp::R_POWERPC_SECTOFF:
7134     case elfcpp::R_POWERPC_SECTOFF_LO:
7135     case elfcpp::R_POWERPC_SECTOFF_HI:
7136     case elfcpp::R_POWERPC_SECTOFF_HA:
7137     case elfcpp::R_PPC64_SECTOFF_DS:
7138     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7139       if (os != NULL)
7140         value -= os->address();
7141       break;
7142
7143     case elfcpp::R_PPC64_TPREL16_DS:
7144     case elfcpp::R_PPC64_TPREL16_LO_DS:
7145     case elfcpp::R_PPC64_TPREL16_HIGH:
7146     case elfcpp::R_PPC64_TPREL16_HIGHA:
7147       if (size != 64)
7148         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7149         break;
7150     case elfcpp::R_POWERPC_TPREL16:
7151     case elfcpp::R_POWERPC_TPREL16_LO:
7152     case elfcpp::R_POWERPC_TPREL16_HI:
7153     case elfcpp::R_POWERPC_TPREL16_HA:
7154     case elfcpp::R_POWERPC_TPREL:
7155     case elfcpp::R_PPC64_TPREL16_HIGHER:
7156     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7157     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7158     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7159       // tls symbol values are relative to tls_segment()->vaddr()
7160       value -= tp_offset;
7161       break;
7162
7163     case elfcpp::R_PPC64_DTPREL16_DS:
7164     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7165     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7166     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7167     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7168     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7169       if (size != 64)
7170         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7171         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7172         break;
7173     case elfcpp::R_POWERPC_DTPREL16:
7174     case elfcpp::R_POWERPC_DTPREL16_LO:
7175     case elfcpp::R_POWERPC_DTPREL16_HI:
7176     case elfcpp::R_POWERPC_DTPREL16_HA:
7177     case elfcpp::R_POWERPC_DTPREL:
7178     case elfcpp::R_PPC64_DTPREL16_HIGH:
7179     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7180       // tls symbol values are relative to tls_segment()->vaddr()
7181       value -= dtp_offset;
7182       break;
7183
7184     case elfcpp::R_PPC64_ADDR64_LOCAL:
7185       if (gsym != NULL)
7186         value += object->ppc64_local_entry_offset(gsym);
7187       else
7188         value += object->ppc64_local_entry_offset(r_sym);
7189       break;
7190
7191     default:
7192       break;
7193     }
7194
7195   Insn branch_bit = 0;
7196   switch (r_type)
7197     {
7198     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7199     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7200       branch_bit = 1 << 21;
7201     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7202     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7203       {
7204         Insn* iview = reinterpret_cast<Insn*>(view);
7205         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7206         insn &= ~(1 << 21);
7207         insn |= branch_bit;
7208         if (this->is_isa_v2)
7209           {
7210             // Set 'a' bit.  This is 0b00010 in BO field for branch
7211             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7212             // for branch on CTR insns (BO == 1a00t or 1a01t).
7213             if ((insn & (0x14 << 21)) == (0x04 << 21))
7214               insn |= 0x02 << 21;
7215             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7216               insn |= 0x08 << 21;
7217             else
7218               break;
7219           }
7220         else
7221           {
7222             // Invert 'y' bit if not the default.
7223             if (static_cast<Signed_address>(value) < 0)
7224               insn ^= 1 << 21;
7225           }
7226         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7227       }
7228       break;
7229
7230     default:
7231       break;
7232     }
7233
7234   if (size == 64)
7235     {
7236       // Multi-instruction sequences that access the TOC can be
7237       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7238       // to             nop;           addi rb,r2,x;
7239       switch (r_type)
7240         {
7241         default:
7242           break;
7243
7244         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7245         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7246         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7247         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7248         case elfcpp::R_POWERPC_GOT16_HA:
7249         case elfcpp::R_PPC64_TOC16_HA:
7250           if (parameters->options().toc_optimize())
7251             {
7252               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7253               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7254               if ((insn & ((0x3f << 26) | 0x1f << 16))
7255                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7256                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7257                                        _("toc optimization is not supported "
7258                                          "for %#08x instruction"), insn);
7259               else if (value + 0x8000 < 0x10000)
7260                 {
7261                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7262                   return true;
7263                 }
7264             }
7265           break;
7266
7267         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7268         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7269         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7270         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7271         case elfcpp::R_POWERPC_GOT16_LO:
7272         case elfcpp::R_PPC64_GOT16_LO_DS:
7273         case elfcpp::R_PPC64_TOC16_LO:
7274         case elfcpp::R_PPC64_TOC16_LO_DS:
7275           if (parameters->options().toc_optimize())
7276             {
7277               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7278               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7279               if (!ok_lo_toc_insn(insn))
7280                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7281                                        _("toc optimization is not supported "
7282                                          "for %#08x instruction"), insn);
7283               else if (value + 0x8000 < 0x10000)
7284                 {
7285                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7286                     {
7287                       // Transform addic to addi when we change reg.
7288                       insn &= ~((0x3f << 26) | (0x1f << 16));
7289                       insn |= (14u << 26) | (2 << 16);
7290                     }
7291                   else
7292                     {
7293                       insn &= ~(0x1f << 16);
7294                       insn |= 2 << 16;
7295                     }
7296                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7297                 }
7298             }
7299           break;
7300         }
7301     }
7302
7303   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7304   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7305   switch (r_type)
7306     {
7307     case elfcpp::R_POWERPC_ADDR32:
7308     case elfcpp::R_POWERPC_UADDR32:
7309       if (size == 64)
7310         overflow = Reloc::CHECK_BITFIELD;
7311       break;
7312
7313     case elfcpp::R_POWERPC_REL32:
7314       if (size == 64)
7315         overflow = Reloc::CHECK_SIGNED;
7316       break;
7317
7318     case elfcpp::R_POWERPC_UADDR16:
7319       overflow = Reloc::CHECK_BITFIELD;
7320       break;
7321
7322     case elfcpp::R_POWERPC_ADDR16:
7323       // We really should have three separate relocations,
7324       // one for 16-bit data, one for insns with 16-bit signed fields,
7325       // and one for insns with 16-bit unsigned fields.
7326       overflow = Reloc::CHECK_BITFIELD;
7327       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7328         overflow = Reloc::CHECK_LOW_INSN;
7329       break;
7330
7331     case elfcpp::R_POWERPC_ADDR16_HI:
7332     case elfcpp::R_POWERPC_ADDR16_HA:
7333     case elfcpp::R_POWERPC_GOT16_HI:
7334     case elfcpp::R_POWERPC_GOT16_HA:
7335     case elfcpp::R_POWERPC_PLT16_HI:
7336     case elfcpp::R_POWERPC_PLT16_HA:
7337     case elfcpp::R_POWERPC_SECTOFF_HI:
7338     case elfcpp::R_POWERPC_SECTOFF_HA:
7339     case elfcpp::R_PPC64_TOC16_HI:
7340     case elfcpp::R_PPC64_TOC16_HA:
7341     case elfcpp::R_PPC64_PLTGOT16_HI:
7342     case elfcpp::R_PPC64_PLTGOT16_HA:
7343     case elfcpp::R_POWERPC_TPREL16_HI:
7344     case elfcpp::R_POWERPC_TPREL16_HA:
7345     case elfcpp::R_POWERPC_DTPREL16_HI:
7346     case elfcpp::R_POWERPC_DTPREL16_HA:
7347     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7348     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7349     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7350     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7351     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7352     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7353     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7354     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7355     case elfcpp::R_POWERPC_REL16_HI:
7356     case elfcpp::R_POWERPC_REL16_HA:
7357       if (size != 32)
7358         overflow = Reloc::CHECK_HIGH_INSN;
7359       break;
7360
7361     case elfcpp::R_POWERPC_REL16:
7362     case elfcpp::R_PPC64_TOC16:
7363     case elfcpp::R_POWERPC_GOT16:
7364     case elfcpp::R_POWERPC_SECTOFF:
7365     case elfcpp::R_POWERPC_TPREL16:
7366     case elfcpp::R_POWERPC_DTPREL16:
7367     case elfcpp::R_POWERPC_GOT_TLSGD16:
7368     case elfcpp::R_POWERPC_GOT_TLSLD16:
7369     case elfcpp::R_POWERPC_GOT_TPREL16:
7370     case elfcpp::R_POWERPC_GOT_DTPREL16:
7371       overflow = Reloc::CHECK_LOW_INSN;
7372       break;
7373
7374     case elfcpp::R_POWERPC_ADDR24:
7375     case elfcpp::R_POWERPC_ADDR14:
7376     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7377     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7378     case elfcpp::R_PPC64_ADDR16_DS:
7379     case elfcpp::R_POWERPC_REL24:
7380     case elfcpp::R_PPC_PLTREL24:
7381     case elfcpp::R_PPC_LOCAL24PC:
7382     case elfcpp::R_PPC64_TPREL16_DS:
7383     case elfcpp::R_PPC64_DTPREL16_DS:
7384     case elfcpp::R_PPC64_TOC16_DS:
7385     case elfcpp::R_PPC64_GOT16_DS:
7386     case elfcpp::R_PPC64_SECTOFF_DS:
7387     case elfcpp::R_POWERPC_REL14:
7388     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7389     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7390       overflow = Reloc::CHECK_SIGNED;
7391       break;
7392     }
7393
7394   if (overflow == Reloc::CHECK_LOW_INSN
7395       || overflow == Reloc::CHECK_HIGH_INSN)
7396     {
7397       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7398       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7399
7400       overflow = Reloc::CHECK_SIGNED;
7401       if (overflow == Reloc::CHECK_LOW_INSN
7402           ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7403              || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7404              || (insn & (0x3f << 26)) == 26u << 26 /* xori */
7405              || (insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7406           : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7407              || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7408              || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7409         overflow = Reloc::CHECK_UNSIGNED;
7410     }
7411
7412   typename Powerpc_relocate_functions<size, big_endian>::Status status
7413     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7414   switch (r_type)
7415     {
7416     case elfcpp::R_POWERPC_NONE:
7417     case elfcpp::R_POWERPC_TLS:
7418     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7419     case elfcpp::R_POWERPC_GNU_VTENTRY:
7420       break;
7421
7422     case elfcpp::R_PPC64_ADDR64:
7423     case elfcpp::R_PPC64_REL64:
7424     case elfcpp::R_PPC64_TOC:
7425     case elfcpp::R_PPC64_ADDR64_LOCAL:
7426       Reloc::addr64(view, value);
7427       break;
7428
7429     case elfcpp::R_POWERPC_TPREL:
7430     case elfcpp::R_POWERPC_DTPREL:
7431       if (size == 64)
7432         Reloc::addr64(view, value);
7433       else
7434         status = Reloc::addr32(view, value, overflow);
7435       break;
7436
7437     case elfcpp::R_PPC64_UADDR64:
7438       Reloc::addr64_u(view, value);
7439       break;
7440
7441     case elfcpp::R_POWERPC_ADDR32:
7442       status = Reloc::addr32(view, value, overflow);
7443       break;
7444
7445     case elfcpp::R_POWERPC_REL32:
7446     case elfcpp::R_POWERPC_UADDR32:
7447       status = Reloc::addr32_u(view, value, overflow);
7448       break;
7449
7450     case elfcpp::R_POWERPC_ADDR24:
7451     case elfcpp::R_POWERPC_REL24:
7452     case elfcpp::R_PPC_PLTREL24:
7453     case elfcpp::R_PPC_LOCAL24PC:
7454       status = Reloc::addr24(view, value, overflow);
7455       break;
7456
7457     case elfcpp::R_POWERPC_GOT_DTPREL16:
7458     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7459       if (size == 64)
7460         {
7461           status = Reloc::addr16_ds(view, value, overflow);
7462           break;
7463         }
7464     case elfcpp::R_POWERPC_ADDR16:
7465     case elfcpp::R_POWERPC_REL16:
7466     case elfcpp::R_PPC64_TOC16:
7467     case elfcpp::R_POWERPC_GOT16:
7468     case elfcpp::R_POWERPC_SECTOFF:
7469     case elfcpp::R_POWERPC_TPREL16:
7470     case elfcpp::R_POWERPC_DTPREL16:
7471     case elfcpp::R_POWERPC_GOT_TLSGD16:
7472     case elfcpp::R_POWERPC_GOT_TLSLD16:
7473     case elfcpp::R_POWERPC_GOT_TPREL16:
7474     case elfcpp::R_POWERPC_ADDR16_LO:
7475     case elfcpp::R_POWERPC_REL16_LO:
7476     case elfcpp::R_PPC64_TOC16_LO:
7477     case elfcpp::R_POWERPC_GOT16_LO:
7478     case elfcpp::R_POWERPC_SECTOFF_LO:
7479     case elfcpp::R_POWERPC_TPREL16_LO:
7480     case elfcpp::R_POWERPC_DTPREL16_LO:
7481     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7482     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7483     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7484       status = Reloc::addr16(view, value, overflow);
7485       break;
7486
7487     case elfcpp::R_POWERPC_UADDR16:
7488       status = Reloc::addr16_u(view, value, overflow);
7489       break;
7490
7491     case elfcpp::R_PPC64_ADDR16_HIGH:
7492     case elfcpp::R_PPC64_TPREL16_HIGH:
7493     case elfcpp::R_PPC64_DTPREL16_HIGH:
7494       if (size == 32)
7495         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7496         goto unsupp;
7497     case elfcpp::R_POWERPC_ADDR16_HI:
7498     case elfcpp::R_POWERPC_REL16_HI:
7499     case elfcpp::R_PPC64_TOC16_HI:
7500     case elfcpp::R_POWERPC_GOT16_HI:
7501     case elfcpp::R_POWERPC_SECTOFF_HI:
7502     case elfcpp::R_POWERPC_TPREL16_HI:
7503     case elfcpp::R_POWERPC_DTPREL16_HI:
7504     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7505     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7506     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7507     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7508       Reloc::addr16_hi(view, value);
7509       break;
7510
7511     case elfcpp::R_PPC64_ADDR16_HIGHA:
7512     case elfcpp::R_PPC64_TPREL16_HIGHA:
7513     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7514       if (size == 32)
7515         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7516         goto unsupp;
7517     case elfcpp::R_POWERPC_ADDR16_HA:
7518     case elfcpp::R_POWERPC_REL16_HA:
7519     case elfcpp::R_PPC64_TOC16_HA:
7520     case elfcpp::R_POWERPC_GOT16_HA:
7521     case elfcpp::R_POWERPC_SECTOFF_HA:
7522     case elfcpp::R_POWERPC_TPREL16_HA:
7523     case elfcpp::R_POWERPC_DTPREL16_HA:
7524     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7525     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7526     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7527     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7528       Reloc::addr16_ha(view, value);
7529       break;
7530
7531     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7532       if (size == 32)
7533         // R_PPC_EMB_NADDR16_LO
7534         goto unsupp;
7535     case elfcpp::R_PPC64_ADDR16_HIGHER:
7536     case elfcpp::R_PPC64_TPREL16_HIGHER:
7537       Reloc::addr16_hi2(view, value);
7538       break;
7539
7540     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7541       if (size == 32)
7542         // R_PPC_EMB_NADDR16_HI
7543         goto unsupp;
7544     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7545     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7546       Reloc::addr16_ha2(view, value);
7547       break;
7548
7549     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7550       if (size == 32)
7551         // R_PPC_EMB_NADDR16_HA
7552         goto unsupp;
7553     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7554     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7555       Reloc::addr16_hi3(view, value);
7556       break;
7557
7558     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7559       if (size == 32)
7560         // R_PPC_EMB_SDAI16
7561         goto unsupp;
7562     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7563     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7564       Reloc::addr16_ha3(view, value);
7565       break;
7566
7567     case elfcpp::R_PPC64_DTPREL16_DS:
7568     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7569       if (size == 32)
7570         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7571         goto unsupp;
7572     case elfcpp::R_PPC64_TPREL16_DS:
7573     case elfcpp::R_PPC64_TPREL16_LO_DS:
7574       if (size == 32)
7575         // R_PPC_TLSGD, R_PPC_TLSLD
7576         break;
7577     case elfcpp::R_PPC64_ADDR16_DS:
7578     case elfcpp::R_PPC64_ADDR16_LO_DS:
7579     case elfcpp::R_PPC64_TOC16_DS:
7580     case elfcpp::R_PPC64_TOC16_LO_DS:
7581     case elfcpp::R_PPC64_GOT16_DS:
7582     case elfcpp::R_PPC64_GOT16_LO_DS:
7583     case elfcpp::R_PPC64_SECTOFF_DS:
7584     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7585       status = Reloc::addr16_ds(view, value, overflow);
7586       break;
7587
7588     case elfcpp::R_POWERPC_ADDR14:
7589     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7590     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7591     case elfcpp::R_POWERPC_REL14:
7592     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7593     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7594       status = Reloc::addr14(view, value, overflow);
7595       break;
7596
7597     case elfcpp::R_POWERPC_COPY:
7598     case elfcpp::R_POWERPC_GLOB_DAT:
7599     case elfcpp::R_POWERPC_JMP_SLOT:
7600     case elfcpp::R_POWERPC_RELATIVE:
7601     case elfcpp::R_POWERPC_DTPMOD:
7602     case elfcpp::R_PPC64_JMP_IREL:
7603     case elfcpp::R_POWERPC_IRELATIVE:
7604       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7605                              _("unexpected reloc %u in object file"),
7606                              r_type);
7607       break;
7608
7609     case elfcpp::R_PPC_EMB_SDA21:
7610       if (size == 32)
7611         goto unsupp;
7612       else
7613         {
7614           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7615         }
7616       break;
7617
7618     case elfcpp::R_PPC_EMB_SDA2I16:
7619     case elfcpp::R_PPC_EMB_SDA2REL:
7620       if (size == 32)
7621         goto unsupp;
7622       // R_PPC64_TLSGD, R_PPC64_TLSLD
7623       break;
7624
7625     case elfcpp::R_POWERPC_PLT32:
7626     case elfcpp::R_POWERPC_PLTREL32:
7627     case elfcpp::R_POWERPC_PLT16_LO:
7628     case elfcpp::R_POWERPC_PLT16_HI:
7629     case elfcpp::R_POWERPC_PLT16_HA:
7630     case elfcpp::R_PPC_SDAREL16:
7631     case elfcpp::R_POWERPC_ADDR30:
7632     case elfcpp::R_PPC64_PLT64:
7633     case elfcpp::R_PPC64_PLTREL64:
7634     case elfcpp::R_PPC64_PLTGOT16:
7635     case elfcpp::R_PPC64_PLTGOT16_LO:
7636     case elfcpp::R_PPC64_PLTGOT16_HI:
7637     case elfcpp::R_PPC64_PLTGOT16_HA:
7638     case elfcpp::R_PPC64_PLT16_LO_DS:
7639     case elfcpp::R_PPC64_PLTGOT16_DS:
7640     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7641     case elfcpp::R_PPC_EMB_RELSDA:
7642     case elfcpp::R_PPC_TOC16:
7643     default:
7644     unsupp:
7645       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7646                              _("unsupported reloc %u"),
7647                              r_type);
7648       break;
7649     }
7650   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7651     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7652                            _("relocation overflow"));
7653
7654   return true;
7655 }
7656
7657 // Relocate section data.
7658
7659 template<int size, bool big_endian>
7660 void
7661 Target_powerpc<size, big_endian>::relocate_section(
7662     const Relocate_info<size, big_endian>* relinfo,
7663     unsigned int sh_type,
7664     const unsigned char* prelocs,
7665     size_t reloc_count,
7666     Output_section* output_section,
7667     bool needs_special_offset_handling,
7668     unsigned char* view,
7669     Address address,
7670     section_size_type view_size,
7671     const Reloc_symbol_changes* reloc_symbol_changes)
7672 {
7673   typedef Target_powerpc<size, big_endian> Powerpc;
7674   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7675   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7676     Powerpc_comdat_behavior;
7677
7678   gold_assert(sh_type == elfcpp::SHT_RELA);
7679
7680   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7681                          Powerpc_relocate, Powerpc_comdat_behavior>(
7682     relinfo,
7683     this,
7684     prelocs,
7685     reloc_count,
7686     output_section,
7687     needs_special_offset_handling,
7688     view,
7689     address,
7690     view_size,
7691     reloc_symbol_changes);
7692 }
7693
7694 class Powerpc_scan_relocatable_reloc
7695 {
7696 public:
7697   // Return the strategy to use for a local symbol which is not a
7698   // section symbol, given the relocation type.
7699   inline Relocatable_relocs::Reloc_strategy
7700   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7701   {
7702     if (r_type == 0 && r_sym == 0)
7703       return Relocatable_relocs::RELOC_DISCARD;
7704     return Relocatable_relocs::RELOC_COPY;
7705   }
7706
7707   // Return the strategy to use for a local symbol which is a section
7708   // symbol, given the relocation type.
7709   inline Relocatable_relocs::Reloc_strategy
7710   local_section_strategy(unsigned int, Relobj*)
7711   {
7712     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7713   }
7714
7715   // Return the strategy to use for a global symbol, given the
7716   // relocation type, the object, and the symbol index.
7717   inline Relocatable_relocs::Reloc_strategy
7718   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7719   {
7720     if (r_type == elfcpp::R_PPC_PLTREL24)
7721       return Relocatable_relocs::RELOC_SPECIAL;
7722     return Relocatable_relocs::RELOC_COPY;
7723   }
7724 };
7725
7726 // Scan the relocs during a relocatable link.
7727
7728 template<int size, bool big_endian>
7729 void
7730 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7731     Symbol_table* symtab,
7732     Layout* layout,
7733     Sized_relobj_file<size, big_endian>* object,
7734     unsigned int data_shndx,
7735     unsigned int sh_type,
7736     const unsigned char* prelocs,
7737     size_t reloc_count,
7738     Output_section* output_section,
7739     bool needs_special_offset_handling,
7740     size_t local_symbol_count,
7741     const unsigned char* plocal_symbols,
7742     Relocatable_relocs* rr)
7743 {
7744   gold_assert(sh_type == elfcpp::SHT_RELA);
7745
7746   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7747                                 Powerpc_scan_relocatable_reloc>(
7748     symtab,
7749     layout,
7750     object,
7751     data_shndx,
7752     prelocs,
7753     reloc_count,
7754     output_section,
7755     needs_special_offset_handling,
7756     local_symbol_count,
7757     plocal_symbols,
7758     rr);
7759 }
7760
7761 // Emit relocations for a section.
7762 // This is a modified version of the function by the same name in
7763 // target-reloc.h.  Using relocate_special_relocatable for
7764 // R_PPC_PLTREL24 would require duplication of the entire body of the
7765 // loop, so we may as well duplicate the whole thing.
7766
7767 template<int size, bool big_endian>
7768 void
7769 Target_powerpc<size, big_endian>::relocate_relocs(
7770     const Relocate_info<size, big_endian>* relinfo,
7771     unsigned int sh_type,
7772     const unsigned char* prelocs,
7773     size_t reloc_count,
7774     Output_section* output_section,
7775     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7776     const Relocatable_relocs* rr,
7777     unsigned char*,
7778     Address view_address,
7779     section_size_type,
7780     unsigned char* reloc_view,
7781     section_size_type reloc_view_size)
7782 {
7783   gold_assert(sh_type == elfcpp::SHT_RELA);
7784
7785   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7786     Reltype;
7787   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7788     Reltype_write;
7789   const int reloc_size
7790     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7791
7792   Powerpc_relobj<size, big_endian>* const object
7793     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7794   const unsigned int local_count = object->local_symbol_count();
7795   unsigned int got2_shndx = object->got2_shndx();
7796   Address got2_addend = 0;
7797   if (got2_shndx != 0)
7798     {
7799       got2_addend = object->get_output_section_offset(got2_shndx);
7800       gold_assert(got2_addend != invalid_address);
7801     }
7802
7803   unsigned char* pwrite = reloc_view;
7804   bool zap_next = false;
7805   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7806     {
7807       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7808       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7809         continue;
7810
7811       Reltype reloc(prelocs);
7812       Reltype_write reloc_write(pwrite);
7813
7814       Address offset = reloc.get_r_offset();
7815       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7816       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7817       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7818       const unsigned int orig_r_sym = r_sym;
7819       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7820         = reloc.get_r_addend();
7821       const Symbol* gsym = NULL;
7822
7823       if (zap_next)
7824         {
7825           // We could arrange to discard these and other relocs for
7826           // tls optimised sequences in the strategy methods, but for
7827           // now do as BFD ld does.
7828           r_type = elfcpp::R_POWERPC_NONE;
7829           zap_next = false;
7830         }
7831
7832       // Get the new symbol index.
7833       if (r_sym < local_count)
7834         {
7835           switch (strategy)
7836             {
7837             case Relocatable_relocs::RELOC_COPY:
7838             case Relocatable_relocs::RELOC_SPECIAL:
7839               if (r_sym != 0)
7840                 {
7841                   r_sym = object->symtab_index(r_sym);
7842                   gold_assert(r_sym != -1U);
7843                 }
7844               break;
7845
7846             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7847               {
7848                 // We are adjusting a section symbol.  We need to find
7849                 // the symbol table index of the section symbol for
7850                 // the output section corresponding to input section
7851                 // in which this symbol is defined.
7852                 gold_assert(r_sym < local_count);
7853                 bool is_ordinary;
7854                 unsigned int shndx =
7855                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7856                 gold_assert(is_ordinary);
7857                 Output_section* os = object->output_section(shndx);
7858                 gold_assert(os != NULL);
7859                 gold_assert(os->needs_symtab_index());
7860                 r_sym = os->symtab_index();
7861               }
7862               break;
7863
7864             default:
7865               gold_unreachable();
7866             }
7867         }
7868       else
7869         {
7870           gsym = object->global_symbol(r_sym);
7871           gold_assert(gsym != NULL);
7872           if (gsym->is_forwarder())
7873             gsym = relinfo->symtab->resolve_forwards(gsym);
7874
7875           gold_assert(gsym->has_symtab_index());
7876           r_sym = gsym->symtab_index();
7877         }
7878
7879       // Get the new offset--the location in the output section where
7880       // this relocation should be applied.
7881       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7882         offset += offset_in_output_section;
7883       else
7884         {
7885           section_offset_type sot_offset =
7886             convert_types<section_offset_type, Address>(offset);
7887           section_offset_type new_sot_offset =
7888             output_section->output_offset(object, relinfo->data_shndx,
7889                                           sot_offset);
7890           gold_assert(new_sot_offset != -1);
7891           offset = new_sot_offset;
7892         }
7893
7894       // In an object file, r_offset is an offset within the section.
7895       // In an executable or dynamic object, generated by
7896       // --emit-relocs, r_offset is an absolute address.
7897       if (!parameters->options().relocatable())
7898         {
7899           offset += view_address;
7900           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7901             offset -= offset_in_output_section;
7902         }
7903
7904       // Handle the reloc addend based on the strategy.
7905       if (strategy == Relocatable_relocs::RELOC_COPY)
7906         ;
7907       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7908         {
7909           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7910           addend = psymval->value(object, addend);
7911         }
7912       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7913         {
7914           if (addend >= 32768)
7915             addend += got2_addend;
7916         }
7917       else
7918         gold_unreachable();
7919
7920       if (!parameters->options().relocatable())
7921         {
7922           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7923               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7924               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7925               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7926             {
7927               // First instruction of a global dynamic sequence,
7928               // arg setup insn.
7929               const bool final = gsym == NULL || gsym->final_value_is_known();
7930               switch (this->optimize_tls_gd(final))
7931                 {
7932                 case tls::TLSOPT_TO_IE:
7933                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7934                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7935                   break;
7936                 case tls::TLSOPT_TO_LE:
7937                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7938                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7939                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7940                   else
7941                     {
7942                       r_type = elfcpp::R_POWERPC_NONE;
7943                       offset -= 2 * big_endian;
7944                     }
7945                   break;
7946                 default:
7947                   break;
7948                 }
7949             }
7950           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7951                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7952                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7953                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7954             {
7955               // First instruction of a local dynamic sequence,
7956               // arg setup insn.
7957               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7958                 {
7959                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7960                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7961                     {
7962                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7963                       const Output_section* os = relinfo->layout->tls_segment()
7964                         ->first_section();
7965                       gold_assert(os != NULL);
7966                       gold_assert(os->needs_symtab_index());
7967                       r_sym = os->symtab_index();
7968                       addend = dtp_offset;
7969                     }
7970                   else
7971                     {
7972                       r_type = elfcpp::R_POWERPC_NONE;
7973                       offset -= 2 * big_endian;
7974                     }
7975                 }
7976             }
7977           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7978                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7979                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7980                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7981             {
7982               // First instruction of initial exec sequence.
7983               const bool final = gsym == NULL || gsym->final_value_is_known();
7984               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7985                 {
7986                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7987                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7988                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7989                   else
7990                     {
7991                       r_type = elfcpp::R_POWERPC_NONE;
7992                       offset -= 2 * big_endian;
7993                     }
7994                 }
7995             }
7996           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7997                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7998             {
7999               // Second instruction of a global dynamic sequence,
8000               // the __tls_get_addr call
8001               const bool final = gsym == NULL || gsym->final_value_is_known();
8002               switch (this->optimize_tls_gd(final))
8003                 {
8004                 case tls::TLSOPT_TO_IE:
8005                   r_type = elfcpp::R_POWERPC_NONE;
8006                   zap_next = true;
8007                   break;
8008                 case tls::TLSOPT_TO_LE:
8009                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8010                   offset += 2 * big_endian;
8011                   zap_next = true;
8012                   break;
8013                 default:
8014                   break;
8015                 }
8016             }
8017           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8018                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8019             {
8020               // Second instruction of a local dynamic sequence,
8021               // the __tls_get_addr call
8022               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8023                 {
8024                   const Output_section* os = relinfo->layout->tls_segment()
8025                     ->first_section();
8026                   gold_assert(os != NULL);
8027                   gold_assert(os->needs_symtab_index());
8028                   r_sym = os->symtab_index();
8029                   addend = dtp_offset;
8030                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8031                   offset += 2 * big_endian;
8032                   zap_next = true;
8033                 }
8034             }
8035           else if (r_type == elfcpp::R_POWERPC_TLS)
8036             {
8037               // Second instruction of an initial exec sequence
8038               const bool final = gsym == NULL || gsym->final_value_is_known();
8039               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8040                 {
8041                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8042                   offset += 2 * big_endian;
8043                 }
8044             }
8045         }
8046
8047       reloc_write.put_r_offset(offset);
8048       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8049       reloc_write.put_r_addend(addend);
8050
8051       pwrite += reloc_size;
8052     }
8053
8054   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8055               == reloc_view_size);
8056 }
8057
8058 // Return the value to use for a dynamic symbol which requires special
8059 // treatment.  This is how we support equality comparisons of function
8060 // pointers across shared library boundaries, as described in the
8061 // processor specific ABI supplement.
8062
8063 template<int size, bool big_endian>
8064 uint64_t
8065 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8066 {
8067   if (size == 32)
8068     {
8069       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8070       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8071            p != this->stub_tables_.end();
8072            ++p)
8073         {
8074           Address off = (*p)->find_plt_call_entry(gsym);
8075           if (off != invalid_address)
8076             return (*p)->stub_address() + off;
8077         }
8078     }
8079   else if (this->abiversion() >= 2)
8080     {
8081       unsigned int off = this->glink_section()->find_global_entry(gsym);
8082       if (off != (unsigned int)-1)
8083         return this->glink_section()->global_entry_address() + off;
8084     }
8085   gold_unreachable();
8086 }
8087
8088 // Return the PLT address to use for a local symbol.
8089 template<int size, bool big_endian>
8090 uint64_t
8091 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8092     const Relobj* object,
8093     unsigned int symndx) const
8094 {
8095   if (size == 32)
8096     {
8097       const Sized_relobj<size, big_endian>* relobj
8098         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8099       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8100            p != this->stub_tables_.end();
8101            ++p)
8102         {
8103           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8104                                                   symndx);
8105           if (off != invalid_address)
8106             return (*p)->stub_address() + off;
8107         }
8108     }
8109   gold_unreachable();
8110 }
8111
8112 // Return the PLT address to use for a global symbol.
8113 template<int size, bool big_endian>
8114 uint64_t
8115 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8116     const Symbol* gsym) const
8117 {
8118   if (size == 32)
8119     {
8120       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8121            p != this->stub_tables_.end();
8122            ++p)
8123         {
8124           Address off = (*p)->find_plt_call_entry(gsym);
8125           if (off != invalid_address)
8126             return (*p)->stub_address() + off;
8127         }
8128     }
8129   else if (this->abiversion() >= 2)
8130     {
8131       unsigned int off = this->glink_section()->find_global_entry(gsym);
8132       if (off != (unsigned int)-1)
8133         return this->glink_section()->global_entry_address() + off;
8134     }
8135   gold_unreachable();
8136 }
8137
8138 // Return the offset to use for the GOT_INDX'th got entry which is
8139 // for a local tls symbol specified by OBJECT, SYMNDX.
8140 template<int size, bool big_endian>
8141 int64_t
8142 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8143     const Relobj* object,
8144     unsigned int symndx,
8145     unsigned int got_indx) const
8146 {
8147   const Powerpc_relobj<size, big_endian>* ppc_object
8148     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8149   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8150     {
8151       for (Got_type got_type = GOT_TYPE_TLSGD;
8152            got_type <= GOT_TYPE_TPREL;
8153            got_type = Got_type(got_type + 1))
8154         if (ppc_object->local_has_got_offset(symndx, got_type))
8155           {
8156             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8157             if (got_type == GOT_TYPE_TLSGD)
8158               off += size / 8;
8159             if (off == got_indx * (size / 8))
8160               {
8161                 if (got_type == GOT_TYPE_TPREL)
8162                   return -tp_offset;
8163                 else
8164                   return -dtp_offset;
8165               }
8166           }
8167     }
8168   gold_unreachable();
8169 }
8170
8171 // Return the offset to use for the GOT_INDX'th got entry which is
8172 // for global tls symbol GSYM.
8173 template<int size, bool big_endian>
8174 int64_t
8175 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8176     Symbol* gsym,
8177     unsigned int got_indx) const
8178 {
8179   if (gsym->type() == elfcpp::STT_TLS)
8180     {
8181       for (Got_type got_type = GOT_TYPE_TLSGD;
8182            got_type <= GOT_TYPE_TPREL;
8183            got_type = Got_type(got_type + 1))
8184         if (gsym->has_got_offset(got_type))
8185           {
8186             unsigned int off = gsym->got_offset(got_type);
8187             if (got_type == GOT_TYPE_TLSGD)
8188               off += size / 8;
8189             if (off == got_indx * (size / 8))
8190               {
8191                 if (got_type == GOT_TYPE_TPREL)
8192                   return -tp_offset;
8193                 else
8194                   return -dtp_offset;
8195               }
8196           }
8197     }
8198   gold_unreachable();
8199 }
8200
8201 // The selector for powerpc object files.
8202
8203 template<int size, bool big_endian>
8204 class Target_selector_powerpc : public Target_selector
8205 {
8206 public:
8207   Target_selector_powerpc()
8208     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8209                       size, big_endian,
8210                       (size == 64
8211                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8212                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8213                       (size == 64
8214                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8215                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8216   { }
8217
8218   virtual Target*
8219   do_instantiate_target()
8220   { return new Target_powerpc<size, big_endian>(); }
8221 };
8222
8223 Target_selector_powerpc<32, true> target_selector_ppc32;
8224 Target_selector_powerpc<32, false> target_selector_ppc32le;
8225 Target_selector_powerpc<64, true> target_selector_ppc64;
8226 Target_selector_powerpc<64, false> target_selector_ppc64le;
8227
8228 // Instantiate these constants for -O0
8229 template<int size, bool big_endian>
8230 const int Output_data_glink<size, big_endian>::pltresolve_size;
8231 template<int size, bool big_endian>
8232 const typename Output_data_glink<size, big_endian>::Address
8233   Output_data_glink<size, big_endian>::invalid_address;
8234 template<int size, bool big_endian>
8235 const typename Stub_table<size, big_endian>::Address
8236   Stub_table<size, big_endian>::invalid_address;
8237 template<int size, bool big_endian>
8238 const typename Target_powerpc<size, big_endian>::Address
8239   Target_powerpc<size, big_endian>::invalid_address;
8240
8241 } // End anonymous namespace.