[GOLD] Edit PowerPC64 ELFv2 function entry code
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      unsigned char* view, section_size_type view_size,
635                      std::string* from, std::string* to) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, big_endian>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    Address view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, big_endian>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Emit relocations for a section.
666   void
667   relocate_relocs(const Relocate_info<size, big_endian>*,
668                   unsigned int sh_type,
669                   const unsigned char* prelocs,
670                   size_t reloc_count,
671                   Output_section* output_section,
672                   typename elfcpp::Elf_types<size>::Elf_Off
673                     offset_in_output_section,
674                   unsigned char*,
675                   Address view_address,
676                   section_size_type,
677                   unsigned char* reloc_view,
678                   section_size_type reloc_view_size);
679
680   // Return whether SYM is defined by the ABI.
681   bool
682   do_is_defined_by_abi(const Symbol* sym) const
683   {
684     return strcmp(sym->name(), "__tls_get_addr") == 0;
685   }
686
687   // Return the size of the GOT section.
688   section_size_type
689   got_size() const
690   {
691     gold_assert(this->got_ != NULL);
692     return this->got_->data_size();
693   }
694
695   // Get the PLT section.
696   const Output_data_plt_powerpc<size, big_endian>*
697   plt_section() const
698   {
699     gold_assert(this->plt_ != NULL);
700     return this->plt_;
701   }
702
703   // Get the IPLT section.
704   const Output_data_plt_powerpc<size, big_endian>*
705   iplt_section() const
706   {
707     gold_assert(this->iplt_ != NULL);
708     return this->iplt_;
709   }
710
711   // Get the .glink section.
712   const Output_data_glink<size, big_endian>*
713   glink_section() const
714   {
715     gold_assert(this->glink_ != NULL);
716     return this->glink_;
717   }
718
719   Output_data_glink<size, big_endian>*
720   glink_section()
721   {
722     gold_assert(this->glink_ != NULL);
723     return this->glink_;
724   }
725
726   bool has_glink() const
727   { return this->glink_ != NULL; }
728
729   // Get the GOT section.
730   const Output_data_got_powerpc<size, big_endian>*
731   got_section() const
732   {
733     gold_assert(this->got_ != NULL);
734     return this->got_;
735   }
736
737   // Get the GOT section, creating it if necessary.
738   Output_data_got_powerpc<size, big_endian>*
739   got_section(Symbol_table*, Layout*);
740
741   Object*
742   do_make_elf_object(const std::string&, Input_file*, off_t,
743                      const elfcpp::Ehdr<size, big_endian>&);
744
745   // Return the number of entries in the GOT.
746   unsigned int
747   got_entry_count() const
748   {
749     if (this->got_ == NULL)
750       return 0;
751     return this->got_size() / (size / 8);
752   }
753
754   // Return the number of entries in the PLT.
755   unsigned int
756   plt_entry_count() const;
757
758   // Return the offset of the first non-reserved PLT entry.
759   unsigned int
760   first_plt_entry_offset() const
761   {
762     if (size == 32)
763       return 0;
764     if (this->abiversion() >= 2)
765       return 16;
766     return 24;
767   }
768
769   // Return the size of each PLT entry.
770   unsigned int
771   plt_entry_size() const
772   {
773     if (size == 32)
774       return 4;
775     if (this->abiversion() >= 2)
776       return 8;
777     return 24;
778   }
779
780   Output_data_save_res<size, big_endian>*
781   savres_section() const
782   {
783     return this->savres_section_;
784   }
785
786   // Add any special sections for this symbol to the gc work list.
787   // For powerpc64, this adds the code section of a function
788   // descriptor.
789   void
790   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
791
792   // Handle target specific gc actions when adding a gc reference from
793   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
794   // and DST_OFF.  For powerpc64, this adds a referenc to the code
795   // section of a function descriptor.
796   void
797   do_gc_add_reference(Symbol_table* symtab,
798                       Relobj* src_obj,
799                       unsigned int src_shndx,
800                       Relobj* dst_obj,
801                       unsigned int dst_shndx,
802                       Address dst_off) const;
803
804   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
805   const Stub_tables&
806   stub_tables() const
807   { return this->stub_tables_; }
808
809   const Output_data_brlt_powerpc<size, big_endian>*
810   brlt_section() const
811   { return this->brlt_section_; }
812
813   void
814   add_branch_lookup_table(Address to)
815   {
816     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
817     this->branch_lookup_table_.insert(std::make_pair(to, off));
818   }
819
820   Address
821   find_branch_lookup_table(Address to)
822   {
823     typename Branch_lookup_table::const_iterator p
824       = this->branch_lookup_table_.find(to);
825     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
826   }
827
828   void
829   write_branch_lookup_table(unsigned char *oview)
830   {
831     for (typename Branch_lookup_table::const_iterator p
832            = this->branch_lookup_table_.begin();
833          p != this->branch_lookup_table_.end();
834          ++p)
835       {
836         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
837       }
838   }
839
840   bool
841   plt_thread_safe() const
842   { return this->plt_thread_safe_; }
843
844   int
845   abiversion () const
846   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
847
848   void
849   set_abiversion (int ver)
850   {
851     elfcpp::Elf_Word flags = this->processor_specific_flags();
852     flags &= ~elfcpp::EF_PPC64_ABI;
853     flags |= ver & elfcpp::EF_PPC64_ABI;
854     this->set_processor_specific_flags(flags);
855   }
856
857   // Offset to to save stack slot
858   int
859   stk_toc () const
860   { return this->abiversion() < 2 ? 40 : 24; }
861
862  private:
863
864   class Track_tls
865   {
866   public:
867     enum Tls_get_addr
868     {
869       NOT_EXPECTED = 0,
870       EXPECTED = 1,
871       SKIP = 2,
872       NORMAL = 3
873     };
874
875     Track_tls()
876       : tls_get_addr_(NOT_EXPECTED),
877         relinfo_(NULL), relnum_(0), r_offset_(0)
878     { }
879
880     ~Track_tls()
881     {
882       if (this->tls_get_addr_ != NOT_EXPECTED)
883         this->missing();
884     }
885
886     void
887     missing(void)
888     {
889       if (this->relinfo_ != NULL)
890         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
891                                _("missing expected __tls_get_addr call"));
892     }
893
894     void
895     expect_tls_get_addr_call(
896         const Relocate_info<size, big_endian>* relinfo,
897         size_t relnum,
898         Address r_offset)
899     {
900       this->tls_get_addr_ = EXPECTED;
901       this->relinfo_ = relinfo;
902       this->relnum_ = relnum;
903       this->r_offset_ = r_offset;
904     }
905
906     void
907     expect_tls_get_addr_call()
908     { this->tls_get_addr_ = EXPECTED; }
909
910     void
911     skip_next_tls_get_addr_call()
912     {this->tls_get_addr_ = SKIP; }
913
914     Tls_get_addr
915     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
916     {
917       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
918                            || r_type == elfcpp::R_PPC_PLTREL24)
919                           && gsym != NULL
920                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
921       Tls_get_addr last_tls = this->tls_get_addr_;
922       this->tls_get_addr_ = NOT_EXPECTED;
923       if (is_tls_call && last_tls != EXPECTED)
924         return last_tls;
925       else if (!is_tls_call && last_tls != NOT_EXPECTED)
926         {
927           this->missing();
928           return EXPECTED;
929         }
930       return NORMAL;
931     }
932
933   private:
934     // What we're up to regarding calls to __tls_get_addr.
935     // On powerpc, the branch and link insn making a call to
936     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
937     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
938     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
939     // The marker relocation always comes first, and has the same
940     // symbol as the reloc on the insn setting up the __tls_get_addr
941     // argument.  This ties the arg setup insn with the call insn,
942     // allowing ld to safely optimize away the call.  We check that
943     // every call to __tls_get_addr has a marker relocation, and that
944     // every marker relocation is on a call to __tls_get_addr.
945     Tls_get_addr tls_get_addr_;
946     // Info about the last reloc for error message.
947     const Relocate_info<size, big_endian>* relinfo_;
948     size_t relnum_;
949     Address r_offset_;
950   };
951
952   // The class which scans relocations.
953   class Scan : protected Track_tls
954   {
955   public:
956     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
957
958     Scan()
959       : Track_tls(), issued_non_pic_error_(false)
960     { }
961
962     static inline int
963     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
964
965     inline void
966     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
967           Sized_relobj_file<size, big_endian>* object,
968           unsigned int data_shndx,
969           Output_section* output_section,
970           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
971           const elfcpp::Sym<size, big_endian>& lsym,
972           bool is_discarded);
973
974     inline void
975     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
976            Sized_relobj_file<size, big_endian>* object,
977            unsigned int data_shndx,
978            Output_section* output_section,
979            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
980            Symbol* gsym);
981
982     inline bool
983     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
984                                         Target_powerpc* ,
985                                         Sized_relobj_file<size, big_endian>* relobj,
986                                         unsigned int ,
987                                         Output_section* ,
988                                         const elfcpp::Rela<size, big_endian>& ,
989                                         unsigned int r_type,
990                                         const elfcpp::Sym<size, big_endian>&)
991     {
992       // PowerPC64 .opd is not folded, so any identical function text
993       // may be folded and we'll still keep function addresses distinct.
994       // That means no reloc is of concern here.
995       if (size == 64)
996         {
997           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
998             <Powerpc_relobj<size, big_endian>*>(relobj);
999           if (ppcobj->abiversion() == 1)
1000             return false;
1001         }
1002       // For 32-bit and ELFv2, conservatively assume anything but calls to
1003       // function code might be taking the address of the function.
1004       return !is_branch_reloc(r_type);
1005     }
1006
1007     inline bool
1008     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1009                                          Target_powerpc* ,
1010                                          Sized_relobj_file<size, big_endian>* relobj,
1011                                          unsigned int ,
1012                                          Output_section* ,
1013                                          const elfcpp::Rela<size, big_endian>& ,
1014                                          unsigned int r_type,
1015                                          Symbol*)
1016     {
1017       // As above.
1018       if (size == 64)
1019         {
1020           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1021             <Powerpc_relobj<size, big_endian>*>(relobj);
1022           if (ppcobj->abiversion() == 1)
1023             return false;
1024         }
1025       return !is_branch_reloc(r_type);
1026     }
1027
1028     static bool
1029     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1030                               Sized_relobj_file<size, big_endian>* object,
1031                               unsigned int r_type, bool report_err);
1032
1033   private:
1034     static void
1035     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1036                             unsigned int r_type);
1037
1038     static void
1039     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1040                              unsigned int r_type, Symbol*);
1041
1042     static void
1043     generate_tls_call(Symbol_table* symtab, Layout* layout,
1044                       Target_powerpc* target);
1045
1046     void
1047     check_non_pic(Relobj*, unsigned int r_type);
1048
1049     // Whether we have issued an error about a non-PIC compilation.
1050     bool issued_non_pic_error_;
1051   };
1052
1053   bool
1054   symval_for_branch(const Symbol_table* symtab,
1055                     const Sized_symbol<size>* gsym,
1056                     Powerpc_relobj<size, big_endian>* object,
1057                     Address *value, unsigned int *dest_shndx);
1058
1059   // The class which implements relocation.
1060   class Relocate : protected Track_tls
1061   {
1062    public:
1063     // Use 'at' branch hints when true, 'y' when false.
1064     // FIXME maybe: set this with an option.
1065     static const bool is_isa_v2 = true;
1066
1067     Relocate()
1068       : Track_tls()
1069     { }
1070
1071     // Do a relocation.  Return false if the caller should not issue
1072     // any warnings about this relocation.
1073     inline bool
1074     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1075              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1076              const Sized_symbol<size>*, const Symbol_value<size>*,
1077              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1078              section_size_type);
1079   };
1080
1081   class Relocate_comdat_behavior
1082   {
1083    public:
1084     // Decide what the linker should do for relocations that refer to
1085     // discarded comdat sections.
1086     inline Comdat_behavior
1087     get(const char* name)
1088     {
1089       gold::Default_comdat_behavior default_behavior;
1090       Comdat_behavior ret = default_behavior.get(name);
1091       if (ret == CB_WARNING)
1092         {
1093           if (size == 32
1094               && (strcmp(name, ".fixup") == 0
1095                   || strcmp(name, ".got2") == 0))
1096             ret = CB_IGNORE;
1097           if (size == 64
1098               && (strcmp(name, ".opd") == 0
1099                   || strcmp(name, ".toc") == 0
1100                   || strcmp(name, ".toc1") == 0))
1101             ret = CB_IGNORE;
1102         }
1103       return ret;
1104     }
1105   };
1106
1107   // A class which returns the size required for a relocation type,
1108   // used while scanning relocs during a relocatable link.
1109   class Relocatable_size_for_reloc
1110   {
1111    public:
1112     unsigned int
1113     get_size_for_reloc(unsigned int, Relobj*)
1114     {
1115       gold_unreachable();
1116       return 0;
1117     }
1118   };
1119
1120   // Optimize the TLS relocation type based on what we know about the
1121   // symbol.  IS_FINAL is true if the final address of this symbol is
1122   // known at link time.
1123
1124   tls::Tls_optimization
1125   optimize_tls_gd(bool is_final)
1126   {
1127     // If we are generating a shared library, then we can't do anything
1128     // in the linker.
1129     if (parameters->options().shared())
1130       return tls::TLSOPT_NONE;
1131
1132     if (!is_final)
1133       return tls::TLSOPT_TO_IE;
1134     return tls::TLSOPT_TO_LE;
1135   }
1136
1137   tls::Tls_optimization
1138   optimize_tls_ld()
1139   {
1140     if (parameters->options().shared())
1141       return tls::TLSOPT_NONE;
1142
1143     return tls::TLSOPT_TO_LE;
1144   }
1145
1146   tls::Tls_optimization
1147   optimize_tls_ie(bool is_final)
1148   {
1149     if (!is_final || parameters->options().shared())
1150       return tls::TLSOPT_NONE;
1151
1152     return tls::TLSOPT_TO_LE;
1153   }
1154
1155   // Create glink.
1156   void
1157   make_glink_section(Layout*);
1158
1159   // Create the PLT section.
1160   void
1161   make_plt_section(Symbol_table*, Layout*);
1162
1163   void
1164   make_iplt_section(Symbol_table*, Layout*);
1165
1166   void
1167   make_brlt_section(Layout*);
1168
1169   // Create a PLT entry for a global symbol.
1170   void
1171   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1172
1173   // Create a PLT entry for a local IFUNC symbol.
1174   void
1175   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1176                              Sized_relobj_file<size, big_endian>*,
1177                              unsigned int);
1178
1179
1180   // Create a GOT entry for local dynamic __tls_get_addr.
1181   unsigned int
1182   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1183                    Sized_relobj_file<size, big_endian>* object);
1184
1185   unsigned int
1186   tlsld_got_offset() const
1187   {
1188     return this->tlsld_got_offset_;
1189   }
1190
1191   // Get the dynamic reloc section, creating it if necessary.
1192   Reloc_section*
1193   rela_dyn_section(Layout*);
1194
1195   // Similarly, but for ifunc symbols get the one for ifunc.
1196   Reloc_section*
1197   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1198
1199   // Copy a relocation against a global symbol.
1200   void
1201   copy_reloc(Symbol_table* symtab, Layout* layout,
1202              Sized_relobj_file<size, big_endian>* object,
1203              unsigned int shndx, Output_section* output_section,
1204              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1205   {
1206     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1207     this->copy_relocs_.copy_reloc(symtab, layout,
1208                                   symtab->get_sized_symbol<size>(sym),
1209                                   object, shndx, output_section,
1210                                   r_type, reloc.get_r_offset(),
1211                                   reloc.get_r_addend(),
1212                                   this->rela_dyn_section(layout));
1213   }
1214
1215   // Look over all the input sections, deciding where to place stubs.
1216   void
1217   group_sections(Layout*, const Task*, bool);
1218
1219   // Sort output sections by address.
1220   struct Sort_sections
1221   {
1222     bool
1223     operator()(const Output_section* sec1, const Output_section* sec2)
1224     { return sec1->address() < sec2->address(); }
1225   };
1226
1227   class Branch_info
1228   {
1229    public:
1230     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1231                 unsigned int data_shndx,
1232                 Address r_offset,
1233                 unsigned int r_type,
1234                 unsigned int r_sym,
1235                 Address addend)
1236       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1237         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1238     { }
1239
1240     ~Branch_info()
1241     { }
1242
1243     // If this branch needs a plt call stub, or a long branch stub, make one.
1244     bool
1245     make_stub(Stub_table<size, big_endian>*,
1246               Stub_table<size, big_endian>*,
1247               Symbol_table*) const;
1248
1249    private:
1250     // The branch location..
1251     Powerpc_relobj<size, big_endian>* object_;
1252     unsigned int shndx_;
1253     Address offset_;
1254     // ..and the branch type and destination.
1255     unsigned int r_type_;
1256     unsigned int r_sym_;
1257     Address addend_;
1258   };
1259
1260   // Information about this specific target which we pass to the
1261   // general Target structure.
1262   static Target::Target_info powerpc_info;
1263
1264   // The types of GOT entries needed for this platform.
1265   // These values are exposed to the ABI in an incremental link.
1266   // Do not renumber existing values without changing the version
1267   // number of the .gnu_incremental_inputs section.
1268   enum Got_type
1269   {
1270     GOT_TYPE_STANDARD,
1271     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1272     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1273     GOT_TYPE_TPREL      // entry for @got@tprel
1274   };
1275
1276   // The GOT section.
1277   Output_data_got_powerpc<size, big_endian>* got_;
1278   // The PLT section.  This is a container for a table of addresses,
1279   // and their relocations.  Each address in the PLT has a dynamic
1280   // relocation (R_*_JMP_SLOT) and each address will have a
1281   // corresponding entry in .glink for lazy resolution of the PLT.
1282   // ppc32 initialises the PLT to point at the .glink entry, while
1283   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1284   // linker adds a stub that loads the PLT entry into ctr then
1285   // branches to ctr.  There may be more than one stub for each PLT
1286   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1287   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1288   Output_data_plt_powerpc<size, big_endian>* plt_;
1289   // The IPLT section.  Like plt_, this is a container for a table of
1290   // addresses and their relocations, specifically for STT_GNU_IFUNC
1291   // functions that resolve locally (STT_GNU_IFUNC functions that
1292   // don't resolve locally go in PLT).  Unlike plt_, these have no
1293   // entry in .glink for lazy resolution, and the relocation section
1294   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1295   // the relocation section may contain relocations against
1296   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1297   // relocation section will appear at the end of other dynamic
1298   // relocations, so that ld.so applies these relocations after other
1299   // dynamic relocations.  In a static executable, the relocation
1300   // section is emitted and marked with __rela_iplt_start and
1301   // __rela_iplt_end symbols.
1302   Output_data_plt_powerpc<size, big_endian>* iplt_;
1303   // Section holding long branch destinations.
1304   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1305   // The .glink section.
1306   Output_data_glink<size, big_endian>* glink_;
1307   // The dynamic reloc section.
1308   Reloc_section* rela_dyn_;
1309   // Relocs saved to avoid a COPY reloc.
1310   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1311   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1312   unsigned int tlsld_got_offset_;
1313
1314   Stub_tables stub_tables_;
1315   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1316   Branch_lookup_table branch_lookup_table_;
1317
1318   typedef std::vector<Branch_info> Branches;
1319   Branches branch_info_;
1320
1321   bool plt_thread_safe_;
1322
1323   bool relax_failed_;
1324   int relax_fail_count_;
1325   int32_t stub_group_size_;
1326
1327   Output_data_save_res<size, big_endian> *savres_section_;
1328 };
1329
1330 template<>
1331 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1332 {
1333   32,                   // size
1334   true,                 // is_big_endian
1335   elfcpp::EM_PPC,       // machine_code
1336   false,                // has_make_symbol
1337   false,                // has_resolve
1338   false,                // has_code_fill
1339   true,                 // is_default_stack_executable
1340   false,                // can_icf_inline_merge_sections
1341   '\0',                 // wrap_char
1342   "/usr/lib/ld.so.1",   // dynamic_linker
1343   0x10000000,           // default_text_segment_address
1344   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1345   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1346   false,                // isolate_execinstr
1347   0,                    // rosegment_gap
1348   elfcpp::SHN_UNDEF,    // small_common_shndx
1349   elfcpp::SHN_UNDEF,    // large_common_shndx
1350   0,                    // small_common_section_flags
1351   0,                    // large_common_section_flags
1352   NULL,                 // attributes_section
1353   NULL,                 // attributes_vendor
1354   "_start",             // entry_symbol_name
1355   32,                   // hash_entry_size
1356 };
1357
1358 template<>
1359 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1360 {
1361   32,                   // size
1362   false,                // is_big_endian
1363   elfcpp::EM_PPC,       // machine_code
1364   false,                // has_make_symbol
1365   false,                // has_resolve
1366   false,                // has_code_fill
1367   true,                 // is_default_stack_executable
1368   false,                // can_icf_inline_merge_sections
1369   '\0',                 // wrap_char
1370   "/usr/lib/ld.so.1",   // dynamic_linker
1371   0x10000000,           // default_text_segment_address
1372   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1373   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1374   false,                // isolate_execinstr
1375   0,                    // rosegment_gap
1376   elfcpp::SHN_UNDEF,    // small_common_shndx
1377   elfcpp::SHN_UNDEF,    // large_common_shndx
1378   0,                    // small_common_section_flags
1379   0,                    // large_common_section_flags
1380   NULL,                 // attributes_section
1381   NULL,                 // attributes_vendor
1382   "_start",             // entry_symbol_name
1383   32,                   // hash_entry_size
1384 };
1385
1386 template<>
1387 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1388 {
1389   64,                   // size
1390   true,                 // is_big_endian
1391   elfcpp::EM_PPC64,     // machine_code
1392   false,                // has_make_symbol
1393   false,                // has_resolve
1394   false,                // has_code_fill
1395   true,                 // is_default_stack_executable
1396   false,                // can_icf_inline_merge_sections
1397   '\0',                 // wrap_char
1398   "/usr/lib/ld.so.1",   // dynamic_linker
1399   0x10000000,           // default_text_segment_address
1400   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1401   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1402   false,                // isolate_execinstr
1403   0,                    // rosegment_gap
1404   elfcpp::SHN_UNDEF,    // small_common_shndx
1405   elfcpp::SHN_UNDEF,    // large_common_shndx
1406   0,                    // small_common_section_flags
1407   0,                    // large_common_section_flags
1408   NULL,                 // attributes_section
1409   NULL,                 // attributes_vendor
1410   "_start",             // entry_symbol_name
1411   32,                   // hash_entry_size
1412 };
1413
1414 template<>
1415 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1416 {
1417   64,                   // size
1418   false,                // is_big_endian
1419   elfcpp::EM_PPC64,     // machine_code
1420   false,                // has_make_symbol
1421   false,                // has_resolve
1422   false,                // has_code_fill
1423   true,                 // is_default_stack_executable
1424   false,                // can_icf_inline_merge_sections
1425   '\0',                 // wrap_char
1426   "/usr/lib/ld.so.1",   // dynamic_linker
1427   0x10000000,           // default_text_segment_address
1428   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1429   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1430   false,                // isolate_execinstr
1431   0,                    // rosegment_gap
1432   elfcpp::SHN_UNDEF,    // small_common_shndx
1433   elfcpp::SHN_UNDEF,    // large_common_shndx
1434   0,                    // small_common_section_flags
1435   0,                    // large_common_section_flags
1436   NULL,                 // attributes_section
1437   NULL,                 // attributes_vendor
1438   "_start",             // entry_symbol_name
1439   32,                   // hash_entry_size
1440 };
1441
1442 inline bool
1443 is_branch_reloc(unsigned int r_type)
1444 {
1445   return (r_type == elfcpp::R_POWERPC_REL24
1446           || r_type == elfcpp::R_PPC_PLTREL24
1447           || r_type == elfcpp::R_PPC_LOCAL24PC
1448           || r_type == elfcpp::R_POWERPC_REL14
1449           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1450           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1451           || r_type == elfcpp::R_POWERPC_ADDR24
1452           || r_type == elfcpp::R_POWERPC_ADDR14
1453           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1454           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1455 }
1456
1457 // If INSN is an opcode that may be used with an @tls operand, return
1458 // the transformed insn for TLS optimisation, otherwise return 0.  If
1459 // REG is non-zero only match an insn with RB or RA equal to REG.
1460 uint32_t
1461 at_tls_transform(uint32_t insn, unsigned int reg)
1462 {
1463   if ((insn & (0x3f << 26)) != 31 << 26)
1464     return 0;
1465
1466   unsigned int rtra;
1467   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1468     rtra = insn & ((1 << 26) - (1 << 16));
1469   else if (((insn >> 16) & 0x1f) == reg)
1470     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1471   else
1472     return 0;
1473
1474   if ((insn & (0x3ff << 1)) == 266 << 1)
1475     // add -> addi
1476     insn = 14 << 26;
1477   else if ((insn & (0x1f << 1)) == 23 << 1
1478            && ((insn & (0x1f << 6)) < 14 << 6
1479                || ((insn & (0x1f << 6)) >= 16 << 6
1480                    && (insn & (0x1f << 6)) < 24 << 6)))
1481     // load and store indexed -> dform
1482     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1483   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1484     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1485     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1486   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1487     // lwax -> lwa
1488     insn = (58 << 26) | 2;
1489   else
1490     return 0;
1491   insn |= rtra;
1492   return insn;
1493 }
1494
1495
1496 template<int size, bool big_endian>
1497 class Powerpc_relocate_functions
1498 {
1499 public:
1500   enum Overflow_check
1501   {
1502     CHECK_NONE,
1503     CHECK_SIGNED,
1504     CHECK_UNSIGNED,
1505     CHECK_BITFIELD,
1506     CHECK_LOW_INSN,
1507     CHECK_HIGH_INSN
1508   };
1509
1510   enum Status
1511   {
1512     STATUS_OK,
1513     STATUS_OVERFLOW
1514   };
1515
1516 private:
1517   typedef Powerpc_relocate_functions<size, big_endian> This;
1518   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1519   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1520
1521   template<int valsize>
1522   static inline bool
1523   has_overflow_signed(Address value)
1524   {
1525     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1526     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1527     limit <<= ((valsize - 1) >> 1);
1528     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1529     return value + limit > (limit << 1) - 1;
1530   }
1531
1532   template<int valsize>
1533   static inline bool
1534   has_overflow_unsigned(Address value)
1535   {
1536     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1537     limit <<= ((valsize - 1) >> 1);
1538     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1539     return value > (limit << 1) - 1;
1540   }
1541
1542   template<int valsize>
1543   static inline bool
1544   has_overflow_bitfield(Address value)
1545   {
1546     return (has_overflow_unsigned<valsize>(value)
1547             && has_overflow_signed<valsize>(value));
1548   }
1549
1550   template<int valsize>
1551   static inline Status
1552   overflowed(Address value, Overflow_check overflow)
1553   {
1554     if (overflow == CHECK_SIGNED)
1555       {
1556         if (has_overflow_signed<valsize>(value))
1557           return STATUS_OVERFLOW;
1558       }
1559     else if (overflow == CHECK_UNSIGNED)
1560       {
1561         if (has_overflow_unsigned<valsize>(value))
1562           return STATUS_OVERFLOW;
1563       }
1564     else if (overflow == CHECK_BITFIELD)
1565       {
1566         if (has_overflow_bitfield<valsize>(value))
1567           return STATUS_OVERFLOW;
1568       }
1569     return STATUS_OK;
1570   }
1571
1572   // Do a simple RELA relocation
1573   template<int fieldsize, int valsize>
1574   static inline Status
1575   rela(unsigned char* view, Address value, Overflow_check overflow)
1576   {
1577     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1578     Valtype* wv = reinterpret_cast<Valtype*>(view);
1579     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1580     return overflowed<valsize>(value, overflow);
1581   }
1582
1583   template<int fieldsize, int valsize>
1584   static inline Status
1585   rela(unsigned char* view,
1586        unsigned int right_shift,
1587        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1588        Address value,
1589        Overflow_check overflow)
1590   {
1591     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1592     Valtype* wv = reinterpret_cast<Valtype*>(view);
1593     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1594     Valtype reloc = value >> right_shift;
1595     val &= ~dst_mask;
1596     reloc &= dst_mask;
1597     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1598     return overflowed<valsize>(value >> right_shift, overflow);
1599   }
1600
1601   // Do a simple RELA relocation, unaligned.
1602   template<int fieldsize, int valsize>
1603   static inline Status
1604   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1605   {
1606     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1607     return overflowed<valsize>(value, overflow);
1608   }
1609
1610   template<int fieldsize, int valsize>
1611   static inline Status
1612   rela_ua(unsigned char* view,
1613           unsigned int right_shift,
1614           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1615           Address value,
1616           Overflow_check overflow)
1617   {
1618     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1619       Valtype;
1620     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1621     Valtype reloc = value >> right_shift;
1622     val &= ~dst_mask;
1623     reloc &= dst_mask;
1624     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1625     return overflowed<valsize>(value >> right_shift, overflow);
1626   }
1627
1628 public:
1629   // R_PPC64_ADDR64: (Symbol + Addend)
1630   static inline void
1631   addr64(unsigned char* view, Address value)
1632   { This::template rela<64,64>(view, value, CHECK_NONE); }
1633
1634   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1635   static inline void
1636   addr64_u(unsigned char* view, Address value)
1637   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1638
1639   // R_POWERPC_ADDR32: (Symbol + Addend)
1640   static inline Status
1641   addr32(unsigned char* view, Address value, Overflow_check overflow)
1642   { return This::template rela<32,32>(view, value, overflow); }
1643
1644   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1645   static inline Status
1646   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1647   { return This::template rela_ua<32,32>(view, value, overflow); }
1648
1649   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1650   static inline Status
1651   addr24(unsigned char* view, Address value, Overflow_check overflow)
1652   {
1653     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1654                                              value, overflow);
1655     if (overflow != CHECK_NONE && (value & 3) != 0)
1656       stat = STATUS_OVERFLOW;
1657     return stat;
1658   }
1659
1660   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1661   static inline Status
1662   addr16(unsigned char* view, Address value, Overflow_check overflow)
1663   { return This::template rela<16,16>(view, value, overflow); }
1664
1665   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1666   static inline Status
1667   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1668   { return This::template rela_ua<16,16>(view, value, overflow); }
1669
1670   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1671   static inline Status
1672   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1673   {
1674     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1675     if ((value & 3) != 0)
1676       stat = STATUS_OVERFLOW;
1677     return stat;
1678   }
1679
1680   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1681   static inline Status
1682   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1683   {
1684     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1685     if ((value & 15) != 0)
1686       stat = STATUS_OVERFLOW;
1687     return stat;
1688   }
1689
1690   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1691   static inline void
1692   addr16_hi(unsigned char* view, Address value)
1693   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1694
1695   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1696   static inline void
1697   addr16_ha(unsigned char* view, Address value)
1698   { This::addr16_hi(view, value + 0x8000); }
1699
1700   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1701   static inline void
1702   addr16_hi2(unsigned char* view, Address value)
1703   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1704
1705   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1706   static inline void
1707   addr16_ha2(unsigned char* view, Address value)
1708   { This::addr16_hi2(view, value + 0x8000); }
1709
1710   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1711   static inline void
1712   addr16_hi3(unsigned char* view, Address value)
1713   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1714
1715   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1716   static inline void
1717   addr16_ha3(unsigned char* view, Address value)
1718   { This::addr16_hi3(view, value + 0x8000); }
1719
1720   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1721   static inline Status
1722   addr14(unsigned char* view, Address value, Overflow_check overflow)
1723   {
1724     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1725     if (overflow != CHECK_NONE && (value & 3) != 0)
1726       stat = STATUS_OVERFLOW;
1727     return stat;
1728   }
1729
1730   // R_POWERPC_REL16DX_HA
1731   static inline Status
1732   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1733   {
1734     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1735     Valtype* wv = reinterpret_cast<Valtype*>(view);
1736     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1737     value += 0x8000;
1738     value = static_cast<SignedAddress>(value) >> 16;
1739     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1740     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1741     return overflowed<16>(value, overflow);
1742   }
1743 };
1744
1745 // Set ABI version for input and output.
1746
1747 template<int size, bool big_endian>
1748 void
1749 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1750 {
1751   this->e_flags_ |= ver;
1752   if (this->abiversion() != 0)
1753     {
1754       Target_powerpc<size, big_endian>* target =
1755         static_cast<Target_powerpc<size, big_endian>*>(
1756            parameters->sized_target<size, big_endian>());
1757       if (target->abiversion() == 0)
1758         target->set_abiversion(this->abiversion());
1759       else if (target->abiversion() != this->abiversion())
1760         gold_error(_("%s: ABI version %d is not compatible "
1761                      "with ABI version %d output"),
1762                    this->name().c_str(),
1763                    this->abiversion(), target->abiversion());
1764
1765     }
1766 }
1767
1768 // Stash away the index of .got2 or .opd in a relocatable object, if
1769 // such a section exists.
1770
1771 template<int size, bool big_endian>
1772 bool
1773 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1774     Read_symbols_data* sd)
1775 {
1776   const unsigned char* const pshdrs = sd->section_headers->data();
1777   const unsigned char* namesu = sd->section_names->data();
1778   const char* names = reinterpret_cast<const char*>(namesu);
1779   section_size_type names_size = sd->section_names_size;
1780   const unsigned char* s;
1781
1782   s = this->template find_shdr<size, big_endian>(pshdrs,
1783                                                  size == 32 ? ".got2" : ".opd",
1784                                                  names, names_size, NULL);
1785   if (s != NULL)
1786     {
1787       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1788       this->special_ = ndx;
1789       if (size == 64)
1790         {
1791           if (this->abiversion() == 0)
1792             this->set_abiversion(1);
1793           else if (this->abiversion() > 1)
1794             gold_error(_("%s: .opd invalid in abiv%d"),
1795                        this->name().c_str(), this->abiversion());
1796         }
1797     }
1798   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1799 }
1800
1801 // Examine .rela.opd to build info about function entry points.
1802
1803 template<int size, bool big_endian>
1804 void
1805 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1806     size_t reloc_count,
1807     const unsigned char* prelocs,
1808     const unsigned char* plocal_syms)
1809 {
1810   if (size == 64)
1811     {
1812       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1813         Reltype;
1814       const int reloc_size
1815         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1816       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1817       Address expected_off = 0;
1818       bool regular = true;
1819       unsigned int opd_ent_size = 0;
1820
1821       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1822         {
1823           Reltype reloc(prelocs);
1824           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1825             = reloc.get_r_info();
1826           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1827           if (r_type == elfcpp::R_PPC64_ADDR64)
1828             {
1829               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1830               typename elfcpp::Elf_types<size>::Elf_Addr value;
1831               bool is_ordinary;
1832               unsigned int shndx;
1833               if (r_sym < this->local_symbol_count())
1834                 {
1835                   typename elfcpp::Sym<size, big_endian>
1836                     lsym(plocal_syms + r_sym * sym_size);
1837                   shndx = lsym.get_st_shndx();
1838                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1839                   value = lsym.get_st_value();
1840                 }
1841               else
1842                 shndx = this->symbol_section_and_value(r_sym, &value,
1843                                                        &is_ordinary);
1844               this->set_opd_ent(reloc.get_r_offset(), shndx,
1845                                 value + reloc.get_r_addend());
1846               if (i == 2)
1847                 {
1848                   expected_off = reloc.get_r_offset();
1849                   opd_ent_size = expected_off;
1850                 }
1851               else if (expected_off != reloc.get_r_offset())
1852                 regular = false;
1853               expected_off += opd_ent_size;
1854             }
1855           else if (r_type == elfcpp::R_PPC64_TOC)
1856             {
1857               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1858                 regular = false;
1859             }
1860           else
1861             {
1862               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1863                            this->name().c_str(), r_type);
1864               regular = false;
1865             }
1866         }
1867       if (reloc_count <= 2)
1868         opd_ent_size = this->section_size(this->opd_shndx());
1869       if (opd_ent_size != 24 && opd_ent_size != 16)
1870         regular = false;
1871       if (!regular)
1872         {
1873           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1874                        this->name().c_str());
1875           opd_ent_size = 0;
1876         }
1877     }
1878 }
1879
1880 template<int size, bool big_endian>
1881 void
1882 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1883 {
1884   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1885   if (size == 64)
1886     {
1887       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1888            p != rd->relocs.end();
1889            ++p)
1890         {
1891           if (p->data_shndx == this->opd_shndx())
1892             {
1893               uint64_t opd_size = this->section_size(this->opd_shndx());
1894               gold_assert(opd_size == static_cast<size_t>(opd_size));
1895               if (opd_size != 0)
1896                 {
1897                   this->init_opd(opd_size);
1898                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1899                                         rd->local_symbols->data());
1900                 }
1901               break;
1902             }
1903         }
1904     }
1905 }
1906
1907 // Read the symbols then set up st_other vector.
1908
1909 template<int size, bool big_endian>
1910 void
1911 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1912 {
1913   this->base_read_symbols(sd);
1914   if (size == 64)
1915     {
1916       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1917       const unsigned char* const pshdrs = sd->section_headers->data();
1918       const unsigned int loccount = this->do_local_symbol_count();
1919       if (loccount != 0)
1920         {
1921           this->st_other_.resize(loccount);
1922           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1923           off_t locsize = loccount * sym_size;
1924           const unsigned int symtab_shndx = this->symtab_shndx();
1925           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1926           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1927           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1928                                                       locsize, true, false);
1929           psyms += sym_size;
1930           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1931             {
1932               elfcpp::Sym<size, big_endian> sym(psyms);
1933               unsigned char st_other = sym.get_st_other();
1934               this->st_other_[i] = st_other;
1935               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1936                 {
1937                   if (this->abiversion() == 0)
1938                     this->set_abiversion(2);
1939                   else if (this->abiversion() < 2)
1940                     gold_error(_("%s: local symbol %d has invalid st_other"
1941                                  " for ABI version 1"),
1942                                this->name().c_str(), i);
1943                 }
1944             }
1945         }
1946     }
1947 }
1948
1949 template<int size, bool big_endian>
1950 void
1951 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1952 {
1953   this->e_flags_ |= ver;
1954   if (this->abiversion() != 0)
1955     {
1956       Target_powerpc<size, big_endian>* target =
1957         static_cast<Target_powerpc<size, big_endian>*>(
1958           parameters->sized_target<size, big_endian>());
1959       if (target->abiversion() == 0)
1960         target->set_abiversion(this->abiversion());
1961       else if (target->abiversion() != this->abiversion())
1962         gold_error(_("%s: ABI version %d is not compatible "
1963                      "with ABI version %d output"),
1964                    this->name().c_str(),
1965                    this->abiversion(), target->abiversion());
1966
1967     }
1968 }
1969
1970 // Call Sized_dynobj::base_read_symbols to read the symbols then
1971 // read .opd from a dynamic object, filling in opd_ent_ vector,
1972
1973 template<int size, bool big_endian>
1974 void
1975 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1976 {
1977   this->base_read_symbols(sd);
1978   if (size == 64)
1979     {
1980       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1981       const unsigned char* const pshdrs = sd->section_headers->data();
1982       const unsigned char* namesu = sd->section_names->data();
1983       const char* names = reinterpret_cast<const char*>(namesu);
1984       const unsigned char* s = NULL;
1985       const unsigned char* opd;
1986       section_size_type opd_size;
1987
1988       // Find and read .opd section.
1989       while (1)
1990         {
1991           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1992                                                          sd->section_names_size,
1993                                                          s);
1994           if (s == NULL)
1995             return;
1996
1997           typename elfcpp::Shdr<size, big_endian> shdr(s);
1998           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1999               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2000             {
2001               if (this->abiversion() == 0)
2002                 this->set_abiversion(1);
2003               else if (this->abiversion() > 1)
2004                 gold_error(_("%s: .opd invalid in abiv%d"),
2005                            this->name().c_str(), this->abiversion());
2006
2007               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2008               this->opd_address_ = shdr.get_sh_addr();
2009               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2010               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2011                                    true, false);
2012               break;
2013             }
2014         }
2015
2016       // Build set of executable sections.
2017       // Using a set is probably overkill.  There is likely to be only
2018       // a few executable sections, typically .init, .text and .fini,
2019       // and they are generally grouped together.
2020       typedef std::set<Sec_info> Exec_sections;
2021       Exec_sections exec_sections;
2022       s = pshdrs;
2023       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2024         {
2025           typename elfcpp::Shdr<size, big_endian> shdr(s);
2026           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2027               && ((shdr.get_sh_flags()
2028                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2029                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2030               && shdr.get_sh_size() != 0)
2031             {
2032               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2033                                             shdr.get_sh_size(), i));
2034             }
2035         }
2036       if (exec_sections.empty())
2037         return;
2038
2039       // Look over the OPD entries.  This is complicated by the fact
2040       // that some binaries will use two-word entries while others
2041       // will use the standard three-word entries.  In most cases
2042       // the third word (the environment pointer for languages like
2043       // Pascal) is unused and will be zero.  If the third word is
2044       // used it should not be pointing into executable sections,
2045       // I think.
2046       this->init_opd(opd_size);
2047       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2048         {
2049           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2050           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2051           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2052           if (val == 0)
2053             // Chances are that this is the third word of an OPD entry.
2054             continue;
2055           typename Exec_sections::const_iterator e
2056             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2057           if (e != exec_sections.begin())
2058             {
2059               --e;
2060               if (e->start <= val && val < e->start + e->len)
2061                 {
2062                   // We have an address in an executable section.
2063                   // VAL ought to be the function entry, set it up.
2064                   this->set_opd_ent(p - opd, e->shndx, val);
2065                   // Skip second word of OPD entry, the TOC pointer.
2066                   p += 8;
2067                 }
2068             }
2069           // If we didn't match any executable sections, we likely
2070           // have a non-zero third word in the OPD entry.
2071         }
2072     }
2073 }
2074
2075 // Set up some symbols.
2076
2077 template<int size, bool big_endian>
2078 void
2079 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2080     Symbol_table* symtab,
2081     Layout* layout)
2082 {
2083   if (size == 32)
2084     {
2085       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2086       // undefined when scanning relocs (and thus requires
2087       // non-relative dynamic relocs).  The proper value will be
2088       // updated later.
2089       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2090       if (gotsym != NULL && gotsym->is_undefined())
2091         {
2092           Target_powerpc<size, big_endian>* target =
2093             static_cast<Target_powerpc<size, big_endian>*>(
2094                 parameters->sized_target<size, big_endian>());
2095           Output_data_got_powerpc<size, big_endian>* got
2096             = target->got_section(symtab, layout);
2097           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2098                                         Symbol_table::PREDEFINED,
2099                                         got, 0, 0,
2100                                         elfcpp::STT_OBJECT,
2101                                         elfcpp::STB_LOCAL,
2102                                         elfcpp::STV_HIDDEN, 0,
2103                                         false, false);
2104         }
2105
2106       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2107       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2108       if (sdasym != NULL && sdasym->is_undefined())
2109         {
2110           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2111           Output_section* os
2112             = layout->add_output_section_data(".sdata", 0,
2113                                               elfcpp::SHF_ALLOC
2114                                               | elfcpp::SHF_WRITE,
2115                                               sdata, ORDER_SMALL_DATA, false);
2116           symtab->define_in_output_data("_SDA_BASE_", NULL,
2117                                         Symbol_table::PREDEFINED,
2118                                         os, 32768, 0, elfcpp::STT_OBJECT,
2119                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2120                                         0, false, false);
2121         }
2122     }
2123   else
2124     {
2125       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2126       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2127       if (gotsym != NULL && gotsym->is_undefined())
2128         {
2129           Target_powerpc<size, big_endian>* target =
2130             static_cast<Target_powerpc<size, big_endian>*>(
2131                 parameters->sized_target<size, big_endian>());
2132           Output_data_got_powerpc<size, big_endian>* got
2133             = target->got_section(symtab, layout);
2134           symtab->define_in_output_data(".TOC.", NULL,
2135                                         Symbol_table::PREDEFINED,
2136                                         got, 0x8000, 0,
2137                                         elfcpp::STT_OBJECT,
2138                                         elfcpp::STB_LOCAL,
2139                                         elfcpp::STV_HIDDEN, 0,
2140                                         false, false);
2141         }
2142     }
2143 }
2144
2145 // Set up PowerPC target specific relobj.
2146
2147 template<int size, bool big_endian>
2148 Object*
2149 Target_powerpc<size, big_endian>::do_make_elf_object(
2150     const std::string& name,
2151     Input_file* input_file,
2152     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2153 {
2154   int et = ehdr.get_e_type();
2155   // ET_EXEC files are valid input for --just-symbols/-R,
2156   // and we treat them as relocatable objects.
2157   if (et == elfcpp::ET_REL
2158       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2159     {
2160       Powerpc_relobj<size, big_endian>* obj =
2161         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2162       obj->setup();
2163       return obj;
2164     }
2165   else if (et == elfcpp::ET_DYN)
2166     {
2167       Powerpc_dynobj<size, big_endian>* obj =
2168         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2169       obj->setup();
2170       return obj;
2171     }
2172   else
2173     {
2174       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2175       return NULL;
2176     }
2177 }
2178
2179 template<int size, bool big_endian>
2180 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2181 {
2182 public:
2183   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2184   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2185
2186   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2187     : Output_data_got<size, big_endian>(),
2188       symtab_(symtab), layout_(layout),
2189       header_ent_cnt_(size == 32 ? 3 : 1),
2190       header_index_(size == 32 ? 0x2000 : 0)
2191   {
2192     if (size == 64)
2193       this->set_addralign(256);
2194   }
2195
2196   // Override all the Output_data_got methods we use so as to first call
2197   // reserve_ent().
2198   bool
2199   add_global(Symbol* gsym, unsigned int got_type)
2200   {
2201     this->reserve_ent();
2202     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2203   }
2204
2205   bool
2206   add_global_plt(Symbol* gsym, unsigned int got_type)
2207   {
2208     this->reserve_ent();
2209     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2210   }
2211
2212   bool
2213   add_global_tls(Symbol* gsym, unsigned int got_type)
2214   { return this->add_global_plt(gsym, got_type); }
2215
2216   void
2217   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2218                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2219   {
2220     this->reserve_ent();
2221     Output_data_got<size, big_endian>::
2222       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2223   }
2224
2225   void
2226   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2227                            Output_data_reloc_generic* rel_dyn,
2228                            unsigned int r_type_1, unsigned int r_type_2)
2229   {
2230     this->reserve_ent(2);
2231     Output_data_got<size, big_endian>::
2232       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2233   }
2234
2235   bool
2236   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2237   {
2238     this->reserve_ent();
2239     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2240                                                         got_type);
2241   }
2242
2243   bool
2244   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2245   {
2246     this->reserve_ent();
2247     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2248                                                             got_type);
2249   }
2250
2251   bool
2252   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2253   { return this->add_local_plt(object, sym_index, got_type); }
2254
2255   void
2256   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2257                      unsigned int got_type,
2258                      Output_data_reloc_generic* rel_dyn,
2259                      unsigned int r_type)
2260   {
2261     this->reserve_ent(2);
2262     Output_data_got<size, big_endian>::
2263       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2264   }
2265
2266   unsigned int
2267   add_constant(Valtype constant)
2268   {
2269     this->reserve_ent();
2270     return Output_data_got<size, big_endian>::add_constant(constant);
2271   }
2272
2273   unsigned int
2274   add_constant_pair(Valtype c1, Valtype c2)
2275   {
2276     this->reserve_ent(2);
2277     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2278   }
2279
2280   // Offset of _GLOBAL_OFFSET_TABLE_.
2281   unsigned int
2282   g_o_t() const
2283   {
2284     return this->got_offset(this->header_index_);
2285   }
2286
2287   // Offset of base used to access the GOT/TOC.
2288   // The got/toc pointer reg will be set to this value.
2289   Valtype
2290   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2291   {
2292     if (size == 32)
2293       return this->g_o_t();
2294     else
2295       return (this->output_section()->address()
2296               + object->toc_base_offset()
2297               - this->address());
2298   }
2299
2300   // Ensure our GOT has a header.
2301   void
2302   set_final_data_size()
2303   {
2304     if (this->header_ent_cnt_ != 0)
2305       this->make_header();
2306     Output_data_got<size, big_endian>::set_final_data_size();
2307   }
2308
2309   // First word of GOT header needs some values that are not
2310   // handled by Output_data_got so poke them in here.
2311   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2312   void
2313   do_write(Output_file* of)
2314   {
2315     Valtype val = 0;
2316     if (size == 32 && this->layout_->dynamic_data() != NULL)
2317       val = this->layout_->dynamic_section()->address();
2318     if (size == 64)
2319       val = this->output_section()->address() + 0x8000;
2320     this->replace_constant(this->header_index_, val);
2321     Output_data_got<size, big_endian>::do_write(of);
2322   }
2323
2324 private:
2325   void
2326   reserve_ent(unsigned int cnt = 1)
2327   {
2328     if (this->header_ent_cnt_ == 0)
2329       return;
2330     if (this->num_entries() + cnt > this->header_index_)
2331       this->make_header();
2332   }
2333
2334   void
2335   make_header()
2336   {
2337     this->header_ent_cnt_ = 0;
2338     this->header_index_ = this->num_entries();
2339     if (size == 32)
2340       {
2341         Output_data_got<size, big_endian>::add_constant(0);
2342         Output_data_got<size, big_endian>::add_constant(0);
2343         Output_data_got<size, big_endian>::add_constant(0);
2344
2345         // Define _GLOBAL_OFFSET_TABLE_ at the header
2346         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2347         if (gotsym != NULL)
2348           {
2349             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2350             sym->set_value(this->g_o_t());
2351           }
2352         else
2353           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2354                                                Symbol_table::PREDEFINED,
2355                                                this, this->g_o_t(), 0,
2356                                                elfcpp::STT_OBJECT,
2357                                                elfcpp::STB_LOCAL,
2358                                                elfcpp::STV_HIDDEN, 0,
2359                                                false, false);
2360       }
2361     else
2362       Output_data_got<size, big_endian>::add_constant(0);
2363   }
2364
2365   // Stashed pointers.
2366   Symbol_table* symtab_;
2367   Layout* layout_;
2368
2369   // GOT header size.
2370   unsigned int header_ent_cnt_;
2371   // GOT header index.
2372   unsigned int header_index_;
2373 };
2374
2375 // Get the GOT section, creating it if necessary.
2376
2377 template<int size, bool big_endian>
2378 Output_data_got_powerpc<size, big_endian>*
2379 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2380                                               Layout* layout)
2381 {
2382   if (this->got_ == NULL)
2383     {
2384       gold_assert(symtab != NULL && layout != NULL);
2385
2386       this->got_
2387         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2388
2389       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2390                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2391                                       this->got_, ORDER_DATA, false);
2392     }
2393
2394   return this->got_;
2395 }
2396
2397 // Get the dynamic reloc section, creating it if necessary.
2398
2399 template<int size, bool big_endian>
2400 typename Target_powerpc<size, big_endian>::Reloc_section*
2401 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2402 {
2403   if (this->rela_dyn_ == NULL)
2404     {
2405       gold_assert(layout != NULL);
2406       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2407       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2408                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2409                                       ORDER_DYNAMIC_RELOCS, false);
2410     }
2411   return this->rela_dyn_;
2412 }
2413
2414 // Similarly, but for ifunc symbols get the one for ifunc.
2415
2416 template<int size, bool big_endian>
2417 typename Target_powerpc<size, big_endian>::Reloc_section*
2418 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2419                                                    Layout* layout,
2420                                                    bool for_ifunc)
2421 {
2422   if (!for_ifunc)
2423     return this->rela_dyn_section(layout);
2424
2425   if (this->iplt_ == NULL)
2426     this->make_iplt_section(symtab, layout);
2427   return this->iplt_->rel_plt();
2428 }
2429
2430 class Stub_control
2431 {
2432  public:
2433   // Determine the stub group size.  The group size is the absolute
2434   // value of the parameter --stub-group-size.  If --stub-group-size
2435   // is passed a negative value, we restrict stubs to be always before
2436   // the stubbed branches.
2437   Stub_control(int32_t size, bool no_size_errors)
2438     : state_(NO_GROUP), stub_group_size_(abs(size)),
2439       stub14_group_size_(abs(size) >> 10),
2440       stubs_always_before_branch_(size < 0),
2441       suppress_size_errors_(no_size_errors),
2442       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2443   {
2444   }
2445
2446   // Return true iff input section can be handled by current stub
2447   // group.
2448   bool
2449   can_add_to_stub_group(Output_section* o,
2450                         const Output_section::Input_section* i,
2451                         bool has14);
2452
2453   const Output_section::Input_section*
2454   owner()
2455   { return owner_; }
2456
2457   Output_section*
2458   output_section()
2459   { return output_section_; }
2460
2461   void
2462   set_output_and_owner(Output_section* o,
2463                        const Output_section::Input_section* i)
2464   {
2465     this->output_section_ = o;
2466     this->owner_ = i;
2467   }
2468
2469  private:
2470   typedef enum
2471   {
2472     NO_GROUP,
2473     FINDING_STUB_SECTION,
2474     HAS_STUB_SECTION
2475   } State;
2476
2477   State state_;
2478   uint32_t stub_group_size_;
2479   uint32_t stub14_group_size_;
2480   bool stubs_always_before_branch_;
2481   bool suppress_size_errors_;
2482   uint64_t group_end_addr_;
2483   const Output_section::Input_section* owner_;
2484   Output_section* output_section_;
2485 };
2486
2487 // Return true iff input section can be handled by current stub
2488 // group.
2489
2490 bool
2491 Stub_control::can_add_to_stub_group(Output_section* o,
2492                                     const Output_section::Input_section* i,
2493                                     bool has14)
2494 {
2495   uint32_t group_size
2496     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2497   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2498   uint64_t this_size;
2499   uint64_t start_addr = o->address();
2500
2501   if (whole_sec)
2502     // .init and .fini sections are pasted together to form a single
2503     // function.  We can't be adding stubs in the middle of the function.
2504     this_size = o->data_size();
2505   else
2506     {
2507       start_addr += i->relobj()->output_section_offset(i->shndx());
2508       this_size = i->data_size();
2509     }
2510   uint64_t end_addr = start_addr + this_size;
2511   bool toobig = this_size > group_size;
2512
2513   if (toobig && !this->suppress_size_errors_)
2514     gold_warning(_("%s:%s exceeds group size"),
2515                  i->relobj()->name().c_str(),
2516                  i->relobj()->section_name(i->shndx()).c_str());
2517
2518   if (this->state_ != HAS_STUB_SECTION
2519       && (!whole_sec || this->output_section_ != o)
2520       && (this->state_ == NO_GROUP
2521           || this->group_end_addr_ - end_addr < group_size))
2522     {
2523       this->owner_ = i;
2524       this->output_section_ = o;
2525     }
2526
2527   if (this->state_ == NO_GROUP)
2528     {
2529       this->state_ = FINDING_STUB_SECTION;
2530       this->group_end_addr_ = end_addr;
2531     }
2532   else if (this->group_end_addr_ - start_addr < group_size)
2533     ;
2534   // Adding this section would make the group larger than GROUP_SIZE.
2535   else if (this->state_ == FINDING_STUB_SECTION
2536            && !this->stubs_always_before_branch_
2537            && !toobig)
2538     {
2539       // But wait, there's more!  Input sections up to GROUP_SIZE
2540       // bytes before the stub table can be handled by it too.
2541       this->state_ = HAS_STUB_SECTION;
2542       this->group_end_addr_ = end_addr;
2543     }
2544   else
2545     {
2546       this->state_ = NO_GROUP;
2547       return false;
2548     }
2549   return true;
2550 }
2551
2552 // Look over all the input sections, deciding where to place stubs.
2553
2554 template<int size, bool big_endian>
2555 void
2556 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2557                                                  const Task*,
2558                                                  bool no_size_errors)
2559 {
2560   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2561
2562   // Group input sections and insert stub table
2563   Stub_table_owner* table_owner = NULL;
2564   std::vector<Stub_table_owner*> tables;
2565   Layout::Section_list section_list;
2566   layout->get_executable_sections(&section_list);
2567   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2568   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2569        o != section_list.rend();
2570        ++o)
2571     {
2572       typedef Output_section::Input_section_list Input_section_list;
2573       for (Input_section_list::const_reverse_iterator i
2574              = (*o)->input_sections().rbegin();
2575            i != (*o)->input_sections().rend();
2576            ++i)
2577         {
2578           if (i->is_input_section()
2579               || i->is_relaxed_input_section())
2580             {
2581               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2582                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2583               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2584               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2585                 {
2586                   table_owner->output_section = stub_control.output_section();
2587                   table_owner->owner = stub_control.owner();
2588                   stub_control.set_output_and_owner(*o, &*i);
2589                   table_owner = NULL;
2590                 }
2591               if (table_owner == NULL)
2592                 {
2593                   table_owner = new Stub_table_owner;
2594                   tables.push_back(table_owner);
2595                 }
2596               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2597             }
2598         }
2599     }
2600   if (table_owner != NULL)
2601     {
2602       const Output_section::Input_section* i = stub_control.owner();
2603
2604       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2605         {
2606           // Corner case.  A new stub group was made for the first
2607           // section (last one looked at here) for some reason, but
2608           // the first section is already being used as the owner for
2609           // a stub table for following sections.  Force it into that
2610           // stub group.
2611           tables.pop_back();
2612           delete table_owner;
2613           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2614             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2615           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2616         }
2617       else
2618         {
2619           table_owner->output_section = stub_control.output_section();
2620           table_owner->owner = i;
2621         }
2622     }
2623   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2624        t != tables.end();
2625        ++t)
2626     {
2627       Stub_table<size, big_endian>* stub_table;
2628
2629       if ((*t)->owner->is_input_section())
2630         stub_table = new Stub_table<size, big_endian>(this,
2631                                                       (*t)->output_section,
2632                                                       (*t)->owner);
2633       else if ((*t)->owner->is_relaxed_input_section())
2634         stub_table = static_cast<Stub_table<size, big_endian>*>(
2635                         (*t)->owner->relaxed_input_section());
2636       else
2637         gold_unreachable();
2638       this->stub_tables_.push_back(stub_table);
2639       delete *t;
2640     }
2641 }
2642
2643 static unsigned long
2644 max_branch_delta (unsigned int r_type)
2645 {
2646   if (r_type == elfcpp::R_POWERPC_REL14
2647       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2648       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2649     return 1L << 15;
2650   if (r_type == elfcpp::R_POWERPC_REL24
2651       || r_type == elfcpp::R_PPC_PLTREL24
2652       || r_type == elfcpp::R_PPC_LOCAL24PC)
2653     return 1L << 25;
2654   return 0;
2655 }
2656
2657 // If this branch needs a plt call stub, or a long branch stub, make one.
2658
2659 template<int size, bool big_endian>
2660 bool
2661 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2662     Stub_table<size, big_endian>* stub_table,
2663     Stub_table<size, big_endian>* ifunc_stub_table,
2664     Symbol_table* symtab) const
2665 {
2666   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2667   if (sym != NULL && sym->is_forwarder())
2668     sym = symtab->resolve_forwards(sym);
2669   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2670   Target_powerpc<size, big_endian>* target =
2671     static_cast<Target_powerpc<size, big_endian>*>(
2672       parameters->sized_target<size, big_endian>());
2673   if (gsym != NULL
2674       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2675       : this->object_->local_has_plt_offset(this->r_sym_))
2676     {
2677       if (size == 64
2678           && gsym != NULL
2679           && target->abiversion() >= 2
2680           && !parameters->options().output_is_position_independent()
2681           && !is_branch_reloc(this->r_type_))
2682         target->glink_section()->add_global_entry(gsym);
2683       else
2684         {
2685           if (stub_table == NULL)
2686             stub_table = this->object_->stub_table(this->shndx_);
2687           if (stub_table == NULL)
2688             {
2689               // This is a ref from a data section to an ifunc symbol.
2690               stub_table = ifunc_stub_table;
2691             }
2692           gold_assert(stub_table != NULL);
2693           Address from = this->object_->get_output_section_offset(this->shndx_);
2694           if (from != invalid_address)
2695             from += (this->object_->output_section(this->shndx_)->address()
2696                      + this->offset_);
2697           if (gsym != NULL)
2698             return stub_table->add_plt_call_entry(from,
2699                                                   this->object_, gsym,
2700                                                   this->r_type_, this->addend_);
2701           else
2702             return stub_table->add_plt_call_entry(from,
2703                                                   this->object_, this->r_sym_,
2704                                                   this->r_type_, this->addend_);
2705         }
2706     }
2707   else
2708     {
2709       Address max_branch_offset = max_branch_delta(this->r_type_);
2710       if (max_branch_offset == 0)
2711         return true;
2712       Address from = this->object_->get_output_section_offset(this->shndx_);
2713       gold_assert(from != invalid_address);
2714       from += (this->object_->output_section(this->shndx_)->address()
2715                + this->offset_);
2716       Address to;
2717       if (gsym != NULL)
2718         {
2719           switch (gsym->source())
2720             {
2721             case Symbol::FROM_OBJECT:
2722               {
2723                 Object* symobj = gsym->object();
2724                 if (symobj->is_dynamic()
2725                     || symobj->pluginobj() != NULL)
2726                   return true;
2727                 bool is_ordinary;
2728                 unsigned int shndx = gsym->shndx(&is_ordinary);
2729                 if (shndx == elfcpp::SHN_UNDEF)
2730                   return true;
2731               }
2732               break;
2733
2734             case Symbol::IS_UNDEFINED:
2735               return true;
2736
2737             default:
2738               break;
2739             }
2740           Symbol_table::Compute_final_value_status status;
2741           to = symtab->compute_final_value<size>(gsym, &status);
2742           if (status != Symbol_table::CFVS_OK)
2743             return true;
2744           if (size == 64)
2745             to += this->object_->ppc64_local_entry_offset(gsym);
2746         }
2747       else
2748         {
2749           const Symbol_value<size>* psymval
2750             = this->object_->local_symbol(this->r_sym_);
2751           Symbol_value<size> symval;
2752           typedef Sized_relobj_file<size, big_endian> ObjType;
2753           typename ObjType::Compute_final_local_value_status status
2754             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2755                                                        &symval, symtab);
2756           if (status != ObjType::CFLV_OK
2757               || !symval.has_output_value())
2758             return true;
2759           to = symval.value(this->object_, 0);
2760           if (size == 64)
2761             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2762         }
2763       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2764         to += this->addend_;
2765       if (stub_table == NULL)
2766         stub_table = this->object_->stub_table(this->shndx_);
2767       if (size == 64 && target->abiversion() < 2)
2768         {
2769           unsigned int dest_shndx;
2770           if (!target->symval_for_branch(symtab, gsym, this->object_,
2771                                          &to, &dest_shndx))
2772             return true;
2773         }
2774       Address delta = to - from;
2775       if (delta + max_branch_offset >= 2 * max_branch_offset)
2776         {
2777           if (stub_table == NULL)
2778             {
2779               gold_warning(_("%s:%s: branch in non-executable section,"
2780                              " no long branch stub for you"),
2781                            this->object_->name().c_str(),
2782                            this->object_->section_name(this->shndx_).c_str());
2783               return true;
2784             }
2785           bool save_res = (size == 64
2786                            && gsym != NULL
2787                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2788                            && gsym->output_data() == target->savres_section());
2789           return stub_table->add_long_branch_entry(this->object_,
2790                                                    this->r_type_,
2791                                                    from, to, save_res);
2792         }
2793     }
2794   return true;
2795 }
2796
2797 // Relaxation hook.  This is where we do stub generation.
2798
2799 template<int size, bool big_endian>
2800 bool
2801 Target_powerpc<size, big_endian>::do_relax(int pass,
2802                                            const Input_objects*,
2803                                            Symbol_table* symtab,
2804                                            Layout* layout,
2805                                            const Task* task)
2806 {
2807   unsigned int prev_brlt_size = 0;
2808   if (pass == 1)
2809     {
2810       bool thread_safe
2811         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2812       if (size == 64
2813           && this->abiversion() < 2
2814           && !thread_safe
2815           && !parameters->options().user_set_plt_thread_safe())
2816         {
2817           static const char* const thread_starter[] =
2818             {
2819               "pthread_create",
2820               /* libstdc++ */
2821               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2822               /* librt */
2823               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2824               "mq_notify", "create_timer",
2825               /* libanl */
2826               "getaddrinfo_a",
2827               /* libgomp */
2828               "GOMP_parallel",
2829               "GOMP_parallel_start",
2830               "GOMP_parallel_loop_static",
2831               "GOMP_parallel_loop_static_start",
2832               "GOMP_parallel_loop_dynamic",
2833               "GOMP_parallel_loop_dynamic_start",
2834               "GOMP_parallel_loop_guided",
2835               "GOMP_parallel_loop_guided_start",
2836               "GOMP_parallel_loop_runtime",
2837               "GOMP_parallel_loop_runtime_start",
2838               "GOMP_parallel_sections",
2839               "GOMP_parallel_sections_start",
2840               /* libgo */
2841               "__go_go",
2842             };
2843
2844           if (parameters->options().shared())
2845             thread_safe = true;
2846           else
2847             {
2848               for (unsigned int i = 0;
2849                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2850                    i++)
2851                 {
2852                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2853                   thread_safe = (sym != NULL
2854                                  && sym->in_reg()
2855                                  && sym->in_real_elf());
2856                   if (thread_safe)
2857                     break;
2858                 }
2859             }
2860         }
2861       this->plt_thread_safe_ = thread_safe;
2862     }
2863
2864   if (pass == 1)
2865     {
2866       this->stub_group_size_ = parameters->options().stub_group_size();
2867       bool no_size_errors = true;
2868       if (this->stub_group_size_ == 1)
2869         this->stub_group_size_ = 0x1c00000;
2870       else if (this->stub_group_size_ == -1)
2871         this->stub_group_size_ = -0x1e00000;
2872       else
2873         no_size_errors = false;
2874       this->group_sections(layout, task, no_size_errors);
2875     }
2876   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2877     {
2878       this->branch_lookup_table_.clear();
2879       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2880            p != this->stub_tables_.end();
2881            ++p)
2882         {
2883           (*p)->clear_stubs(true);
2884         }
2885       this->stub_tables_.clear();
2886       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2887       gold_info(_("%s: stub group size is too large; retrying with %d"),
2888                 program_name, this->stub_group_size_);
2889       this->group_sections(layout, task, true);
2890     }
2891
2892   // We need address of stub tables valid for make_stub.
2893   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2894        p != this->stub_tables_.end();
2895        ++p)
2896     {
2897       const Powerpc_relobj<size, big_endian>* object
2898         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2899       Address off = object->get_output_section_offset((*p)->shndx());
2900       gold_assert(off != invalid_address);
2901       Output_section* os = (*p)->output_section();
2902       (*p)->set_address_and_size(os, off);
2903     }
2904
2905   if (pass != 1)
2906     {
2907       // Clear plt call stubs, long branch stubs and branch lookup table.
2908       prev_brlt_size = this->branch_lookup_table_.size();
2909       this->branch_lookup_table_.clear();
2910       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2911            p != this->stub_tables_.end();
2912            ++p)
2913         {
2914           (*p)->clear_stubs(false);
2915         }
2916     }
2917
2918   // Build all the stubs.
2919   this->relax_failed_ = false;
2920   Stub_table<size, big_endian>* ifunc_stub_table
2921     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2922   Stub_table<size, big_endian>* one_stub_table
2923     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2924   for (typename Branches::const_iterator b = this->branch_info_.begin();
2925        b != this->branch_info_.end();
2926        b++)
2927     {
2928       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2929           && !this->relax_failed_)
2930         {
2931           this->relax_failed_ = true;
2932           this->relax_fail_count_++;
2933           if (this->relax_fail_count_ < 3)
2934             return true;
2935         }
2936     }
2937
2938   // Did anything change size?
2939   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2940   bool again = num_huge_branches != prev_brlt_size;
2941   if (size == 64 && num_huge_branches != 0)
2942     this->make_brlt_section(layout);
2943   if (size == 64 && again)
2944     this->brlt_section_->set_current_size(num_huge_branches);
2945
2946   typedef Unordered_set<Output_section*> Output_sections;
2947   Output_sections os_need_update;
2948   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2949        p != this->stub_tables_.end();
2950        ++p)
2951     {
2952       if ((*p)->size_update())
2953         {
2954           again = true;
2955           (*p)->add_eh_frame(layout);
2956           os_need_update.insert((*p)->output_section());
2957         }
2958     }
2959
2960   // Set output section offsets for all input sections in an output
2961   // section that just changed size.  Anything past the stubs will
2962   // need updating.
2963   for (typename Output_sections::iterator p = os_need_update.begin();
2964        p != os_need_update.end();
2965        p++)
2966     {
2967       Output_section* os = *p;
2968       Address off = 0;
2969       typedef Output_section::Input_section_list Input_section_list;
2970       for (Input_section_list::const_iterator i = os->input_sections().begin();
2971            i != os->input_sections().end();
2972            ++i)
2973         {
2974           off = align_address(off, i->addralign());
2975           if (i->is_input_section() || i->is_relaxed_input_section())
2976             i->relobj()->set_section_offset(i->shndx(), off);
2977           if (i->is_relaxed_input_section())
2978             {
2979               Stub_table<size, big_endian>* stub_table
2980                 = static_cast<Stub_table<size, big_endian>*>(
2981                     i->relaxed_input_section());
2982               off += stub_table->set_address_and_size(os, off);
2983             }
2984           else
2985             off += i->data_size();
2986         }
2987       // If .branch_lt is part of this output section, then we have
2988       // just done the offset adjustment.
2989       os->clear_section_offsets_need_adjustment();
2990     }
2991
2992   if (size == 64
2993       && !again
2994       && num_huge_branches != 0
2995       && parameters->options().output_is_position_independent())
2996     {
2997       // Fill in the BRLT relocs.
2998       this->brlt_section_->reset_brlt_sizes();
2999       for (typename Branch_lookup_table::const_iterator p
3000              = this->branch_lookup_table_.begin();
3001            p != this->branch_lookup_table_.end();
3002            ++p)
3003         {
3004           this->brlt_section_->add_reloc(p->first, p->second);
3005         }
3006       this->brlt_section_->finalize_brlt_sizes();
3007     }
3008   return again;
3009 }
3010
3011 template<int size, bool big_endian>
3012 void
3013 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3014                                                       unsigned char* oview,
3015                                                       uint64_t* paddress,
3016                                                       off_t* plen) const
3017 {
3018   uint64_t address = plt->address();
3019   off_t len = plt->data_size();
3020
3021   if (plt == this->glink_)
3022     {
3023       // See Output_data_glink::do_write() for glink contents.
3024       if (len == 0)
3025         {
3026           gold_assert(parameters->doing_static_link());
3027           // Static linking may need stubs, to support ifunc and long
3028           // branches.  We need to create an output section for
3029           // .eh_frame early in the link process, to have a place to
3030           // attach stub .eh_frame info.  We also need to have
3031           // registered a CIE that matches the stub CIE.  Both of
3032           // these requirements are satisfied by creating an FDE and
3033           // CIE for .glink, even though static linking will leave
3034           // .glink zero length.
3035           // ??? Hopefully generating an FDE with a zero address range
3036           // won't confuse anything that consumes .eh_frame info.
3037         }
3038       else if (size == 64)
3039         {
3040           // There is one word before __glink_PLTresolve
3041           address += 8;
3042           len -= 8;
3043         }
3044       else if (parameters->options().output_is_position_independent())
3045         {
3046           // There are two FDEs for a position independent glink.
3047           // The first covers the branch table, the second
3048           // __glink_PLTresolve at the end of glink.
3049           off_t resolve_size = this->glink_->pltresolve_size;
3050           if (oview[9] == elfcpp::DW_CFA_nop)
3051             len -= resolve_size;
3052           else
3053             {
3054               address += len - resolve_size;
3055               len = resolve_size;
3056             }
3057         }
3058     }
3059   else
3060     {
3061       // Must be a stub table.
3062       const Stub_table<size, big_endian>* stub_table
3063         = static_cast<const Stub_table<size, big_endian>*>(plt);
3064       uint64_t stub_address = stub_table->stub_address();
3065       len -= stub_address - address;
3066       address = stub_address;
3067     }
3068
3069   *paddress = address;
3070   *plen = len;
3071 }
3072
3073 // A class to handle the PLT data.
3074
3075 template<int size, bool big_endian>
3076 class Output_data_plt_powerpc : public Output_section_data_build
3077 {
3078  public:
3079   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3080                             size, big_endian> Reloc_section;
3081
3082   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3083                           Reloc_section* plt_rel,
3084                           const char* name)
3085     : Output_section_data_build(size == 32 ? 4 : 8),
3086       rel_(plt_rel),
3087       targ_(targ),
3088       name_(name)
3089   { }
3090
3091   // Add an entry to the PLT.
3092   void
3093   add_entry(Symbol*);
3094
3095   void
3096   add_ifunc_entry(Symbol*);
3097
3098   void
3099   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3100
3101   // Return the .rela.plt section data.
3102   Reloc_section*
3103   rel_plt() const
3104   {
3105     return this->rel_;
3106   }
3107
3108   // Return the number of PLT entries.
3109   unsigned int
3110   entry_count() const
3111   {
3112     if (this->current_data_size() == 0)
3113       return 0;
3114     return ((this->current_data_size() - this->first_plt_entry_offset())
3115             / this->plt_entry_size());
3116   }
3117
3118  protected:
3119   void
3120   do_adjust_output_section(Output_section* os)
3121   {
3122     os->set_entsize(0);
3123   }
3124
3125   // Write to a map file.
3126   void
3127   do_print_to_mapfile(Mapfile* mapfile) const
3128   { mapfile->print_output_data(this, this->name_); }
3129
3130  private:
3131   // Return the offset of the first non-reserved PLT entry.
3132   unsigned int
3133   first_plt_entry_offset() const
3134   {
3135     // IPLT has no reserved entry.
3136     if (this->name_[3] == 'I')
3137       return 0;
3138     return this->targ_->first_plt_entry_offset();
3139   }
3140
3141   // Return the size of each PLT entry.
3142   unsigned int
3143   plt_entry_size() const
3144   {
3145     return this->targ_->plt_entry_size();
3146   }
3147
3148   // Write out the PLT data.
3149   void
3150   do_write(Output_file*);
3151
3152   // The reloc section.
3153   Reloc_section* rel_;
3154   // Allows access to .glink for do_write.
3155   Target_powerpc<size, big_endian>* targ_;
3156   // What to report in map file.
3157   const char *name_;
3158 };
3159
3160 // Add an entry to the PLT.
3161
3162 template<int size, bool big_endian>
3163 void
3164 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3165 {
3166   if (!gsym->has_plt_offset())
3167     {
3168       section_size_type off = this->current_data_size();
3169       if (off == 0)
3170         off += this->first_plt_entry_offset();
3171       gsym->set_plt_offset(off);
3172       gsym->set_needs_dynsym_entry();
3173       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3174       this->rel_->add_global(gsym, dynrel, this, off, 0);
3175       off += this->plt_entry_size();
3176       this->set_current_data_size(off);
3177     }
3178 }
3179
3180 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3181
3182 template<int size, bool big_endian>
3183 void
3184 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3185 {
3186   if (!gsym->has_plt_offset())
3187     {
3188       section_size_type off = this->current_data_size();
3189       gsym->set_plt_offset(off);
3190       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3191       if (size == 64 && this->targ_->abiversion() < 2)
3192         dynrel = elfcpp::R_PPC64_JMP_IREL;
3193       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3194       off += this->plt_entry_size();
3195       this->set_current_data_size(off);
3196     }
3197 }
3198
3199 // Add an entry for a local ifunc symbol to the IPLT.
3200
3201 template<int size, bool big_endian>
3202 void
3203 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3204     Sized_relobj_file<size, big_endian>* relobj,
3205     unsigned int local_sym_index)
3206 {
3207   if (!relobj->local_has_plt_offset(local_sym_index))
3208     {
3209       section_size_type off = this->current_data_size();
3210       relobj->set_local_plt_offset(local_sym_index, off);
3211       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3212       if (size == 64 && this->targ_->abiversion() < 2)
3213         dynrel = elfcpp::R_PPC64_JMP_IREL;
3214       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3215                                               this, off, 0);
3216       off += this->plt_entry_size();
3217       this->set_current_data_size(off);
3218     }
3219 }
3220
3221 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3222 static const uint32_t add_2_2_11        = 0x7c425a14;
3223 static const uint32_t add_2_2_12        = 0x7c426214;
3224 static const uint32_t add_3_3_2         = 0x7c631214;
3225 static const uint32_t add_3_3_13        = 0x7c636a14;
3226 static const uint32_t add_11_0_11       = 0x7d605a14;
3227 static const uint32_t add_11_2_11       = 0x7d625a14;
3228 static const uint32_t add_11_11_2       = 0x7d6b1214;
3229 static const uint32_t addi_0_12         = 0x380c0000;
3230 static const uint32_t addi_2_2          = 0x38420000;
3231 static const uint32_t addi_3_3          = 0x38630000;
3232 static const uint32_t addi_11_11        = 0x396b0000;
3233 static const uint32_t addi_12_1         = 0x39810000;
3234 static const uint32_t addi_12_12        = 0x398c0000;
3235 static const uint32_t addis_0_2         = 0x3c020000;
3236 static const uint32_t addis_0_13        = 0x3c0d0000;
3237 static const uint32_t addis_2_12        = 0x3c4c0000;
3238 static const uint32_t addis_11_2        = 0x3d620000;
3239 static const uint32_t addis_11_11       = 0x3d6b0000;
3240 static const uint32_t addis_11_30       = 0x3d7e0000;
3241 static const uint32_t addis_12_1        = 0x3d810000;
3242 static const uint32_t addis_12_2        = 0x3d820000;
3243 static const uint32_t addis_12_12       = 0x3d8c0000;
3244 static const uint32_t b                 = 0x48000000;
3245 static const uint32_t bcl_20_31         = 0x429f0005;
3246 static const uint32_t bctr              = 0x4e800420;
3247 static const uint32_t blr               = 0x4e800020;
3248 static const uint32_t bnectr_p4         = 0x4ce20420;
3249 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3250 static const uint32_t cmpldi_2_0        = 0x28220000;
3251 static const uint32_t cror_15_15_15     = 0x4def7b82;
3252 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3253 static const uint32_t ld_0_1            = 0xe8010000;
3254 static const uint32_t ld_0_12           = 0xe80c0000;
3255 static const uint32_t ld_2_1            = 0xe8410000;
3256 static const uint32_t ld_2_2            = 0xe8420000;
3257 static const uint32_t ld_2_11           = 0xe84b0000;
3258 static const uint32_t ld_2_12           = 0xe84c0000;
3259 static const uint32_t ld_11_2           = 0xe9620000;
3260 static const uint32_t ld_11_11          = 0xe96b0000;
3261 static const uint32_t ld_12_2           = 0xe9820000;
3262 static const uint32_t ld_12_11          = 0xe98b0000;
3263 static const uint32_t ld_12_12          = 0xe98c0000;
3264 static const uint32_t lfd_0_1           = 0xc8010000;
3265 static const uint32_t li_0_0            = 0x38000000;
3266 static const uint32_t li_12_0           = 0x39800000;
3267 static const uint32_t lis_0             = 0x3c000000;
3268 static const uint32_t lis_2             = 0x3c400000;
3269 static const uint32_t lis_11            = 0x3d600000;
3270 static const uint32_t lis_12            = 0x3d800000;
3271 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3272 static const uint32_t lwz_0_12          = 0x800c0000;
3273 static const uint32_t lwz_11_11         = 0x816b0000;
3274 static const uint32_t lwz_11_30         = 0x817e0000;
3275 static const uint32_t lwz_12_12         = 0x818c0000;
3276 static const uint32_t lwzu_0_12         = 0x840c0000;
3277 static const uint32_t mflr_0            = 0x7c0802a6;
3278 static const uint32_t mflr_11           = 0x7d6802a6;
3279 static const uint32_t mflr_12           = 0x7d8802a6;
3280 static const uint32_t mtctr_0           = 0x7c0903a6;
3281 static const uint32_t mtctr_11          = 0x7d6903a6;
3282 static const uint32_t mtctr_12          = 0x7d8903a6;
3283 static const uint32_t mtlr_0            = 0x7c0803a6;
3284 static const uint32_t mtlr_12           = 0x7d8803a6;
3285 static const uint32_t nop               = 0x60000000;
3286 static const uint32_t ori_0_0_0         = 0x60000000;
3287 static const uint32_t srdi_0_0_2        = 0x7800f082;
3288 static const uint32_t std_0_1           = 0xf8010000;
3289 static const uint32_t std_0_12          = 0xf80c0000;
3290 static const uint32_t std_2_1           = 0xf8410000;
3291 static const uint32_t stfd_0_1          = 0xd8010000;
3292 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3293 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3294 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3295 static const uint32_t xor_2_12_12       = 0x7d826278;
3296 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3297
3298 // Write out the PLT.
3299
3300 template<int size, bool big_endian>
3301 void
3302 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3303 {
3304   if (size == 32 && this->name_[3] != 'I')
3305     {
3306       const section_size_type offset = this->offset();
3307       const section_size_type oview_size
3308         = convert_to_section_size_type(this->data_size());
3309       unsigned char* const oview = of->get_output_view(offset, oview_size);
3310       unsigned char* pov = oview;
3311       unsigned char* endpov = oview + oview_size;
3312
3313       // The address of the .glink branch table
3314       const Output_data_glink<size, big_endian>* glink
3315         = this->targ_->glink_section();
3316       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3317
3318       while (pov < endpov)
3319         {
3320           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3321           pov += 4;
3322           branch_tab += 4;
3323         }
3324
3325       of->write_output_view(offset, oview_size, oview);
3326     }
3327 }
3328
3329 // Create the PLT section.
3330
3331 template<int size, bool big_endian>
3332 void
3333 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3334                                                    Layout* layout)
3335 {
3336   if (this->plt_ == NULL)
3337     {
3338       if (this->got_ == NULL)
3339         this->got_section(symtab, layout);
3340
3341       if (this->glink_ == NULL)
3342         make_glink_section(layout);
3343
3344       // Ensure that .rela.dyn always appears before .rela.plt  This is
3345       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3346       // needs to include .rela.plt in its range.
3347       this->rela_dyn_section(layout);
3348
3349       Reloc_section* plt_rel = new Reloc_section(false);
3350       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3351                                       elfcpp::SHF_ALLOC, plt_rel,
3352                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3353       this->plt_
3354         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3355                                                         "** PLT");
3356       layout->add_output_section_data(".plt",
3357                                       (size == 32
3358                                        ? elfcpp::SHT_PROGBITS
3359                                        : elfcpp::SHT_NOBITS),
3360                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3361                                       this->plt_,
3362                                       (size == 32
3363                                        ? ORDER_SMALL_DATA
3364                                        : ORDER_SMALL_BSS),
3365                                       false);
3366     }
3367 }
3368
3369 // Create the IPLT section.
3370
3371 template<int size, bool big_endian>
3372 void
3373 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3374                                                     Layout* layout)
3375 {
3376   if (this->iplt_ == NULL)
3377     {
3378       this->make_plt_section(symtab, layout);
3379
3380       Reloc_section* iplt_rel = new Reloc_section(false);
3381       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3382       this->iplt_
3383         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3384                                                         "** IPLT");
3385       this->plt_->output_section()->add_output_section_data(this->iplt_);
3386     }
3387 }
3388
3389 // A section for huge long branch addresses, similar to plt section.
3390
3391 template<int size, bool big_endian>
3392 class Output_data_brlt_powerpc : public Output_section_data_build
3393 {
3394  public:
3395   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3396   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3397                             size, big_endian> Reloc_section;
3398
3399   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3400                            Reloc_section* brlt_rel)
3401     : Output_section_data_build(size == 32 ? 4 : 8),
3402       rel_(brlt_rel),
3403       targ_(targ)
3404   { }
3405
3406   void
3407   reset_brlt_sizes()
3408   {
3409     this->reset_data_size();
3410     this->rel_->reset_data_size();
3411   }
3412
3413   void
3414   finalize_brlt_sizes()
3415   {
3416     this->finalize_data_size();
3417     this->rel_->finalize_data_size();
3418   }
3419
3420   // Add a reloc for an entry in the BRLT.
3421   void
3422   add_reloc(Address to, unsigned int off)
3423   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3424
3425   // Update section and reloc section size.
3426   void
3427   set_current_size(unsigned int num_branches)
3428   {
3429     this->reset_address_and_file_offset();
3430     this->set_current_data_size(num_branches * 16);
3431     this->finalize_data_size();
3432     Output_section* os = this->output_section();
3433     os->set_section_offsets_need_adjustment();
3434     if (this->rel_ != NULL)
3435       {
3436         unsigned int reloc_size
3437           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3438         this->rel_->reset_address_and_file_offset();
3439         this->rel_->set_current_data_size(num_branches * reloc_size);
3440         this->rel_->finalize_data_size();
3441         Output_section* os = this->rel_->output_section();
3442         os->set_section_offsets_need_adjustment();
3443       }
3444   }
3445
3446  protected:
3447   void
3448   do_adjust_output_section(Output_section* os)
3449   {
3450     os->set_entsize(0);
3451   }
3452
3453   // Write to a map file.
3454   void
3455   do_print_to_mapfile(Mapfile* mapfile) const
3456   { mapfile->print_output_data(this, "** BRLT"); }
3457
3458  private:
3459   // Write out the BRLT data.
3460   void
3461   do_write(Output_file*);
3462
3463   // The reloc section.
3464   Reloc_section* rel_;
3465   Target_powerpc<size, big_endian>* targ_;
3466 };
3467
3468 // Make the branch lookup table section.
3469
3470 template<int size, bool big_endian>
3471 void
3472 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3473 {
3474   if (size == 64 && this->brlt_section_ == NULL)
3475     {
3476       Reloc_section* brlt_rel = NULL;
3477       bool is_pic = parameters->options().output_is_position_independent();
3478       if (is_pic)
3479         {
3480           // When PIC we can't fill in .branch_lt (like .plt it can be
3481           // a bss style section) but must initialise at runtime via
3482           // dynamic relocats.
3483           this->rela_dyn_section(layout);
3484           brlt_rel = new Reloc_section(false);
3485           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3486         }
3487       this->brlt_section_
3488         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3489       if (this->plt_ && is_pic)
3490         this->plt_->output_section()
3491           ->add_output_section_data(this->brlt_section_);
3492       else
3493         layout->add_output_section_data(".branch_lt",
3494                                         (is_pic ? elfcpp::SHT_NOBITS
3495                                          : elfcpp::SHT_PROGBITS),
3496                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3497                                         this->brlt_section_,
3498                                         (is_pic ? ORDER_SMALL_BSS
3499                                          : ORDER_SMALL_DATA),
3500                                         false);
3501     }
3502 }
3503
3504 // Write out .branch_lt when non-PIC.
3505
3506 template<int size, bool big_endian>
3507 void
3508 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3509 {
3510   if (size == 64 && !parameters->options().output_is_position_independent())
3511     {
3512       const section_size_type offset = this->offset();
3513       const section_size_type oview_size
3514         = convert_to_section_size_type(this->data_size());
3515       unsigned char* const oview = of->get_output_view(offset, oview_size);
3516
3517       this->targ_->write_branch_lookup_table(oview);
3518       of->write_output_view(offset, oview_size, oview);
3519     }
3520 }
3521
3522 static inline uint32_t
3523 l(uint32_t a)
3524 {
3525   return a & 0xffff;
3526 }
3527
3528 static inline uint32_t
3529 hi(uint32_t a)
3530 {
3531   return l(a >> 16);
3532 }
3533
3534 static inline uint32_t
3535 ha(uint32_t a)
3536 {
3537   return hi(a + 0x8000);
3538 }
3539
3540 template<int size>
3541 struct Eh_cie
3542 {
3543   static const unsigned char eh_frame_cie[12];
3544 };
3545
3546 template<int size>
3547 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3548 {
3549   1,                                    // CIE version.
3550   'z', 'R', 0,                          // Augmentation string.
3551   4,                                    // Code alignment.
3552   0x80 - size / 8 ,                     // Data alignment.
3553   65,                                   // RA reg.
3554   1,                                    // Augmentation size.
3555   (elfcpp::DW_EH_PE_pcrel
3556    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3557   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3558 };
3559
3560 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3561 static const unsigned char glink_eh_frame_fde_64v1[] =
3562 {
3563   0, 0, 0, 0,                           // Replaced with offset to .glink.
3564   0, 0, 0, 0,                           // Replaced with size of .glink.
3565   0,                                    // Augmentation size.
3566   elfcpp::DW_CFA_advance_loc + 1,
3567   elfcpp::DW_CFA_register, 65, 12,
3568   elfcpp::DW_CFA_advance_loc + 4,
3569   elfcpp::DW_CFA_restore_extended, 65
3570 };
3571
3572 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3573 static const unsigned char glink_eh_frame_fde_64v2[] =
3574 {
3575   0, 0, 0, 0,                           // Replaced with offset to .glink.
3576   0, 0, 0, 0,                           // Replaced with size of .glink.
3577   0,                                    // Augmentation size.
3578   elfcpp::DW_CFA_advance_loc + 1,
3579   elfcpp::DW_CFA_register, 65, 0,
3580   elfcpp::DW_CFA_advance_loc + 4,
3581   elfcpp::DW_CFA_restore_extended, 65
3582 };
3583
3584 // Describe __glink_PLTresolve use of LR, 32-bit version.
3585 static const unsigned char glink_eh_frame_fde_32[] =
3586 {
3587   0, 0, 0, 0,                           // Replaced with offset to .glink.
3588   0, 0, 0, 0,                           // Replaced with size of .glink.
3589   0,                                    // Augmentation size.
3590   elfcpp::DW_CFA_advance_loc + 2,
3591   elfcpp::DW_CFA_register, 65, 0,
3592   elfcpp::DW_CFA_advance_loc + 4,
3593   elfcpp::DW_CFA_restore_extended, 65
3594 };
3595
3596 static const unsigned char default_fde[] =
3597 {
3598   0, 0, 0, 0,                           // Replaced with offset to stubs.
3599   0, 0, 0, 0,                           // Replaced with size of stubs.
3600   0,                                    // Augmentation size.
3601   elfcpp::DW_CFA_nop,                   // Pad.
3602   elfcpp::DW_CFA_nop,
3603   elfcpp::DW_CFA_nop
3604 };
3605
3606 template<bool big_endian>
3607 static inline void
3608 write_insn(unsigned char* p, uint32_t v)
3609 {
3610   elfcpp::Swap<32, big_endian>::writeval(p, v);
3611 }
3612
3613 // Stub_table holds information about plt and long branch stubs.
3614 // Stubs are built in an area following some input section determined
3615 // by group_sections().  This input section is converted to a relaxed
3616 // input section allowing it to be resized to accommodate the stubs
3617
3618 template<int size, bool big_endian>
3619 class Stub_table : public Output_relaxed_input_section
3620 {
3621  public:
3622   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3623   static const Address invalid_address = static_cast<Address>(0) - 1;
3624
3625   Stub_table(Target_powerpc<size, big_endian>* targ,
3626              Output_section* output_section,
3627              const Output_section::Input_section* owner)
3628     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3629                                    owner->relobj()
3630                                    ->section_addralign(owner->shndx())),
3631       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3632       orig_data_size_(owner->current_data_size()),
3633       plt_size_(0), last_plt_size_(0),
3634       branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3635       need_save_res_(false)
3636   {
3637     this->set_output_section(output_section);
3638
3639     std::vector<Output_relaxed_input_section*> new_relaxed;
3640     new_relaxed.push_back(this);
3641     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3642   }
3643
3644   // Add a plt call stub.
3645   bool
3646   add_plt_call_entry(Address,
3647                      const Sized_relobj_file<size, big_endian>*,
3648                      const Symbol*,
3649                      unsigned int,
3650                      Address);
3651
3652   bool
3653   add_plt_call_entry(Address,
3654                      const Sized_relobj_file<size, big_endian>*,
3655                      unsigned int,
3656                      unsigned int,
3657                      Address);
3658
3659   // Find a given plt call stub.
3660   Address
3661   find_plt_call_entry(const Symbol*) const;
3662
3663   Address
3664   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3665                       unsigned int) const;
3666
3667   Address
3668   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3669                       const Symbol*,
3670                       unsigned int,
3671                       Address) const;
3672
3673   Address
3674   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3675                       unsigned int,
3676                       unsigned int,
3677                       Address) const;
3678
3679   // Add a long branch stub.
3680   bool
3681   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3682                         unsigned int, Address, Address, bool);
3683
3684   Address
3685   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3686                          Address) const;
3687
3688   bool
3689   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3690   {
3691     Address max_branch_offset = max_branch_delta(r_type);
3692     if (max_branch_offset == 0)
3693       return true;
3694     gold_assert(from != invalid_address);
3695     Address loc = off + this->stub_address();
3696     return loc - from + max_branch_offset < 2 * max_branch_offset;
3697   }
3698
3699   void
3700   clear_stubs(bool all)
3701   {
3702     this->plt_call_stubs_.clear();
3703     this->plt_size_ = 0;
3704     this->long_branch_stubs_.clear();
3705     this->branch_size_ = 0;
3706     this->need_save_res_ = false;
3707     if (all)
3708       {
3709         this->last_plt_size_ = 0;
3710         this->last_branch_size_ = 0;
3711       }
3712   }
3713
3714   Address
3715   set_address_and_size(const Output_section* os, Address off)
3716   {
3717     Address start_off = off;
3718     off += this->orig_data_size_;
3719     Address my_size = this->plt_size_ + this->branch_size_;
3720     if (this->need_save_res_)
3721       my_size += this->targ_->savres_section()->data_size();
3722     if (my_size != 0)
3723       off = align_address(off, this->stub_align());
3724     // Include original section size and alignment padding in size
3725     my_size += off - start_off;
3726     this->reset_address_and_file_offset();
3727     this->set_current_data_size(my_size);
3728     this->set_address_and_file_offset(os->address() + start_off,
3729                                       os->offset() + start_off);
3730     return my_size;
3731   }
3732
3733   Address
3734   stub_address() const
3735   {
3736     return align_address(this->address() + this->orig_data_size_,
3737                          this->stub_align());
3738   }
3739
3740   Address
3741   stub_offset() const
3742   {
3743     return align_address(this->offset() + this->orig_data_size_,
3744                          this->stub_align());
3745   }
3746
3747   section_size_type
3748   plt_size() const
3749   { return this->plt_size_; }
3750
3751   bool
3752   size_update()
3753   {
3754     Output_section* os = this->output_section();
3755     if (os->addralign() < this->stub_align())
3756       {
3757         os->set_addralign(this->stub_align());
3758         // FIXME: get rid of the insane checkpointing.
3759         // We can't increase alignment of the input section to which
3760         // stubs are attached;  The input section may be .init which
3761         // is pasted together with other .init sections to form a
3762         // function.  Aligning might insert zero padding resulting in
3763         // sigill.  However we do need to increase alignment of the
3764         // output section so that the align_address() on offset in
3765         // set_address_and_size() adds the same padding as the
3766         // align_address() on address in stub_address().
3767         // What's more, we need this alignment for the layout done in
3768         // relaxation_loop_body() so that the output section starts at
3769         // a suitably aligned address.
3770         os->checkpoint_set_addralign(this->stub_align());
3771       }
3772     if (this->last_plt_size_ != this->plt_size_
3773         || this->last_branch_size_ != this->branch_size_)
3774       {
3775         this->last_plt_size_ = this->plt_size_;
3776         this->last_branch_size_ = this->branch_size_;
3777         return true;
3778       }
3779     return false;
3780   }
3781
3782   // Add .eh_frame info for this stub section.  Unlike other linker
3783   // generated .eh_frame this is added late in the link, because we
3784   // only want the .eh_frame info if this particular stub section is
3785   // non-empty.
3786   void
3787   add_eh_frame(Layout* layout)
3788   {
3789     if (!this->eh_frame_added_)
3790       {
3791         if (!parameters->options().ld_generated_unwind_info())
3792           return;
3793
3794         // Since we add stub .eh_frame info late, it must be placed
3795         // after all other linker generated .eh_frame info so that
3796         // merge mapping need not be updated for input sections.
3797         // There is no provision to use a different CIE to that used
3798         // by .glink.
3799         if (!this->targ_->has_glink())
3800           return;
3801
3802         layout->add_eh_frame_for_plt(this,
3803                                      Eh_cie<size>::eh_frame_cie,
3804                                      sizeof (Eh_cie<size>::eh_frame_cie),
3805                                      default_fde,
3806                                      sizeof (default_fde));
3807         this->eh_frame_added_ = true;
3808       }
3809   }
3810
3811   Target_powerpc<size, big_endian>*
3812   targ() const
3813   { return targ_; }
3814
3815  private:
3816   class Plt_stub_ent;
3817   class Plt_stub_ent_hash;
3818   typedef Unordered_map<Plt_stub_ent, unsigned int,
3819                         Plt_stub_ent_hash> Plt_stub_entries;
3820
3821   // Alignment of stub section.
3822   unsigned int
3823   stub_align() const
3824   {
3825     if (size == 32)
3826       return 16;
3827     unsigned int min_align = 32;
3828     unsigned int user_align = 1 << parameters->options().plt_align();
3829     return std::max(user_align, min_align);
3830   }
3831
3832   // Return the plt offset for the given call stub.
3833   Address
3834   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3835   {
3836     const Symbol* gsym = p->first.sym_;
3837     if (gsym != NULL)
3838       {
3839         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3840                     && gsym->can_use_relative_reloc(false));
3841         return gsym->plt_offset();
3842       }
3843     else
3844       {
3845         *is_iplt = true;
3846         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3847         unsigned int local_sym_index = p->first.locsym_;
3848         return relobj->local_plt_offset(local_sym_index);
3849       }
3850   }
3851
3852   // Size of a given plt call stub.
3853   unsigned int
3854   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3855   {
3856     if (size == 32)
3857       return 16;
3858
3859     bool is_iplt;
3860     Address plt_addr = this->plt_off(p, &is_iplt);
3861     if (is_iplt)
3862       plt_addr += this->targ_->iplt_section()->address();
3863     else
3864       plt_addr += this->targ_->plt_section()->address();
3865     Address got_addr = this->targ_->got_section()->output_section()->address();
3866     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3867       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3868     got_addr += ppcobj->toc_base_offset();
3869     Address off = plt_addr - got_addr;
3870     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3871     if (this->targ_->abiversion() < 2)
3872       {
3873         bool static_chain = parameters->options().plt_static_chain();
3874         bool thread_safe = this->targ_->plt_thread_safe();
3875         bytes += (4
3876                   + 4 * static_chain
3877                   + 8 * thread_safe
3878                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3879       }
3880     unsigned int align = 1 << parameters->options().plt_align();
3881     if (align > 1)
3882       bytes = (bytes + align - 1) & -align;
3883     return bytes;
3884   }
3885
3886   // Return long branch stub size.
3887   unsigned int
3888   branch_stub_size(Address to)
3889   {
3890     Address loc
3891       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3892     if (to - loc + (1 << 25) < 2 << 25)
3893       return 4;
3894     if (size == 64 || !parameters->options().output_is_position_independent())
3895       return 16;
3896     return 32;
3897   }
3898
3899   // Write out stubs.
3900   void
3901   do_write(Output_file*);
3902
3903   // Plt call stub keys.
3904   class Plt_stub_ent
3905   {
3906   public:
3907     Plt_stub_ent(const Symbol* sym)
3908       : sym_(sym), object_(0), addend_(0), locsym_(0)
3909     { }
3910
3911     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3912                  unsigned int locsym_index)
3913       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3914     { }
3915
3916     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3917                  const Symbol* sym,
3918                  unsigned int r_type,
3919                  Address addend)
3920       : sym_(sym), object_(0), addend_(0), locsym_(0)
3921     {
3922       if (size != 32)
3923         this->addend_ = addend;
3924       else if (parameters->options().output_is_position_independent()
3925                && r_type == elfcpp::R_PPC_PLTREL24)
3926         {
3927           this->addend_ = addend;
3928           if (this->addend_ >= 32768)
3929             this->object_ = object;
3930         }
3931     }
3932
3933     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3934                  unsigned int locsym_index,
3935                  unsigned int r_type,
3936                  Address addend)
3937       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3938     {
3939       if (size != 32)
3940         this->addend_ = addend;
3941       else if (parameters->options().output_is_position_independent()
3942                && r_type == elfcpp::R_PPC_PLTREL24)
3943         this->addend_ = addend;
3944     }
3945
3946     bool operator==(const Plt_stub_ent& that) const
3947     {
3948       return (this->sym_ == that.sym_
3949               && this->object_ == that.object_
3950               && this->addend_ == that.addend_
3951               && this->locsym_ == that.locsym_);
3952     }
3953
3954     const Symbol* sym_;
3955     const Sized_relobj_file<size, big_endian>* object_;
3956     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3957     unsigned int locsym_;
3958   };
3959
3960   class Plt_stub_ent_hash
3961   {
3962   public:
3963     size_t operator()(const Plt_stub_ent& ent) const
3964     {
3965       return (reinterpret_cast<uintptr_t>(ent.sym_)
3966               ^ reinterpret_cast<uintptr_t>(ent.object_)
3967               ^ ent.addend_
3968               ^ ent.locsym_);
3969     }
3970   };
3971
3972   // Long branch stub keys.
3973   class Branch_stub_ent
3974   {
3975   public:
3976     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3977                     Address to, bool save_res)
3978       : dest_(to), toc_base_off_(0), save_res_(save_res)
3979     {
3980       if (size == 64)
3981         toc_base_off_ = obj->toc_base_offset();
3982     }
3983
3984     bool operator==(const Branch_stub_ent& that) const
3985     {
3986       return (this->dest_ == that.dest_
3987               && (size == 32
3988                   || this->toc_base_off_ == that.toc_base_off_));
3989     }
3990
3991     Address dest_;
3992     unsigned int toc_base_off_;
3993     bool save_res_;
3994   };
3995
3996   class Branch_stub_ent_hash
3997   {
3998   public:
3999     size_t operator()(const Branch_stub_ent& ent) const
4000     { return ent.dest_ ^ ent.toc_base_off_; }
4001   };
4002
4003   // In a sane world this would be a global.
4004   Target_powerpc<size, big_endian>* targ_;
4005   // Map sym/object/addend to stub offset.
4006   Plt_stub_entries plt_call_stubs_;
4007   // Map destination address to stub offset.
4008   typedef Unordered_map<Branch_stub_ent, unsigned int,
4009                         Branch_stub_ent_hash> Branch_stub_entries;
4010   Branch_stub_entries long_branch_stubs_;
4011   // size of input section
4012   section_size_type orig_data_size_;
4013   // size of stubs
4014   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4015   // Whether .eh_frame info has been created for this stub section.
4016   bool eh_frame_added_;
4017   // Set if this stub group needs a copy of out-of-line register
4018   // save/restore functions.
4019   bool need_save_res_;
4020 };
4021
4022 // Add a plt call stub, if we do not already have one for this
4023 // sym/object/addend combo.
4024
4025 template<int size, bool big_endian>
4026 bool
4027 Stub_table<size, big_endian>::add_plt_call_entry(
4028     Address from,
4029     const Sized_relobj_file<size, big_endian>* object,
4030     const Symbol* gsym,
4031     unsigned int r_type,
4032     Address addend)
4033 {
4034   Plt_stub_ent ent(object, gsym, r_type, addend);
4035   unsigned int off = this->plt_size_;
4036   std::pair<typename Plt_stub_entries::iterator, bool> p
4037     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4038   if (p.second)
4039     this->plt_size_ = off + this->plt_call_size(p.first);
4040   return this->can_reach_stub(from, off, r_type);
4041 }
4042
4043 template<int size, bool big_endian>
4044 bool
4045 Stub_table<size, big_endian>::add_plt_call_entry(
4046     Address from,
4047     const Sized_relobj_file<size, big_endian>* object,
4048     unsigned int locsym_index,
4049     unsigned int r_type,
4050     Address addend)
4051 {
4052   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4053   unsigned int off = this->plt_size_;
4054   std::pair<typename Plt_stub_entries::iterator, bool> p
4055     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4056   if (p.second)
4057     this->plt_size_ = off + this->plt_call_size(p.first);
4058   return this->can_reach_stub(from, off, r_type);
4059 }
4060
4061 // Find a plt call stub.
4062
4063 template<int size, bool big_endian>
4064 typename Stub_table<size, big_endian>::Address
4065 Stub_table<size, big_endian>::find_plt_call_entry(
4066     const Sized_relobj_file<size, big_endian>* object,
4067     const Symbol* gsym,
4068     unsigned int r_type,
4069     Address addend) const
4070 {
4071   Plt_stub_ent ent(object, gsym, r_type, addend);
4072   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4073   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4074 }
4075
4076 template<int size, bool big_endian>
4077 typename Stub_table<size, big_endian>::Address
4078 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4079 {
4080   Plt_stub_ent ent(gsym);
4081   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4082   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4083 }
4084
4085 template<int size, bool big_endian>
4086 typename Stub_table<size, big_endian>::Address
4087 Stub_table<size, big_endian>::find_plt_call_entry(
4088     const Sized_relobj_file<size, big_endian>* object,
4089     unsigned int locsym_index,
4090     unsigned int r_type,
4091     Address addend) const
4092 {
4093   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4094   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4095   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4096 }
4097
4098 template<int size, bool big_endian>
4099 typename Stub_table<size, big_endian>::Address
4100 Stub_table<size, big_endian>::find_plt_call_entry(
4101     const Sized_relobj_file<size, big_endian>* object,
4102     unsigned int locsym_index) const
4103 {
4104   Plt_stub_ent ent(object, locsym_index);
4105   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4106   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4107 }
4108
4109 // Add a long branch stub if we don't already have one to given
4110 // destination.
4111
4112 template<int size, bool big_endian>
4113 bool
4114 Stub_table<size, big_endian>::add_long_branch_entry(
4115     const Powerpc_relobj<size, big_endian>* object,
4116     unsigned int r_type,
4117     Address from,
4118     Address to,
4119     bool save_res)
4120 {
4121   Branch_stub_ent ent(object, to, save_res);
4122   Address off = this->branch_size_;
4123   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4124     {
4125       if (save_res)
4126         this->need_save_res_ = true;
4127       else
4128         {
4129           unsigned int stub_size = this->branch_stub_size(to);
4130           this->branch_size_ = off + stub_size;
4131           if (size == 64 && stub_size != 4)
4132             this->targ_->add_branch_lookup_table(to);
4133         }
4134     }
4135   return this->can_reach_stub(from, off, r_type);
4136 }
4137
4138 // Find long branch stub offset.
4139
4140 template<int size, bool big_endian>
4141 typename Stub_table<size, big_endian>::Address
4142 Stub_table<size, big_endian>::find_long_branch_entry(
4143     const Powerpc_relobj<size, big_endian>* object,
4144     Address to) const
4145 {
4146   Branch_stub_ent ent(object, to, false);
4147   typename Branch_stub_entries::const_iterator p
4148     = this->long_branch_stubs_.find(ent);
4149   if (p == this->long_branch_stubs_.end())
4150     return invalid_address;
4151   if (p->first.save_res_)
4152     return to - this->targ_->savres_section()->address() + this->branch_size_;
4153   return p->second;
4154 }
4155
4156 // A class to handle .glink.
4157
4158 template<int size, bool big_endian>
4159 class Output_data_glink : public Output_section_data
4160 {
4161  public:
4162   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4163   static const Address invalid_address = static_cast<Address>(0) - 1;
4164   static const int pltresolve_size = 16*4;
4165
4166   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4167     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4168       end_branch_table_(), ge_size_(0)
4169   { }
4170
4171   void
4172   add_eh_frame(Layout* layout);
4173
4174   void
4175   add_global_entry(const Symbol*);
4176
4177   Address
4178   find_global_entry(const Symbol*) const;
4179
4180   Address
4181   global_entry_address() const
4182   {
4183     gold_assert(this->is_data_size_valid());
4184     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4185     return this->address() + global_entry_off;
4186   }
4187
4188  protected:
4189   // Write to a map file.
4190   void
4191   do_print_to_mapfile(Mapfile* mapfile) const
4192   { mapfile->print_output_data(this, _("** glink")); }
4193
4194  private:
4195   void
4196   set_final_data_size();
4197
4198   // Write out .glink
4199   void
4200   do_write(Output_file*);
4201
4202   // Allows access to .got and .plt for do_write.
4203   Target_powerpc<size, big_endian>* targ_;
4204
4205   // Map sym to stub offset.
4206   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4207   Global_entry_stub_entries global_entry_stubs_;
4208
4209   unsigned int end_branch_table_, ge_size_;
4210 };
4211
4212 template<int size, bool big_endian>
4213 void
4214 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4215 {
4216   if (!parameters->options().ld_generated_unwind_info())
4217     return;
4218
4219   if (size == 64)
4220     {
4221       if (this->targ_->abiversion() < 2)
4222         layout->add_eh_frame_for_plt(this,
4223                                      Eh_cie<64>::eh_frame_cie,
4224                                      sizeof (Eh_cie<64>::eh_frame_cie),
4225                                      glink_eh_frame_fde_64v1,
4226                                      sizeof (glink_eh_frame_fde_64v1));
4227       else
4228         layout->add_eh_frame_for_plt(this,
4229                                      Eh_cie<64>::eh_frame_cie,
4230                                      sizeof (Eh_cie<64>::eh_frame_cie),
4231                                      glink_eh_frame_fde_64v2,
4232                                      sizeof (glink_eh_frame_fde_64v2));
4233     }
4234   else
4235     {
4236       // 32-bit .glink can use the default since the CIE return
4237       // address reg, LR, is valid.
4238       layout->add_eh_frame_for_plt(this,
4239                                    Eh_cie<32>::eh_frame_cie,
4240                                    sizeof (Eh_cie<32>::eh_frame_cie),
4241                                    default_fde,
4242                                    sizeof (default_fde));
4243       // Except where LR is used in a PIC __glink_PLTresolve.
4244       if (parameters->options().output_is_position_independent())
4245         layout->add_eh_frame_for_plt(this,
4246                                      Eh_cie<32>::eh_frame_cie,
4247                                      sizeof (Eh_cie<32>::eh_frame_cie),
4248                                      glink_eh_frame_fde_32,
4249                                      sizeof (glink_eh_frame_fde_32));
4250     }
4251 }
4252
4253 template<int size, bool big_endian>
4254 void
4255 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4256 {
4257   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4258     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4259   if (p.second)
4260     this->ge_size_ += 16;
4261 }
4262
4263 template<int size, bool big_endian>
4264 typename Output_data_glink<size, big_endian>::Address
4265 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4266 {
4267   typename Global_entry_stub_entries::const_iterator p
4268     = this->global_entry_stubs_.find(gsym);
4269   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4270 }
4271
4272 template<int size, bool big_endian>
4273 void
4274 Output_data_glink<size, big_endian>::set_final_data_size()
4275 {
4276   unsigned int count = this->targ_->plt_entry_count();
4277   section_size_type total = 0;
4278
4279   if (count != 0)
4280     {
4281       if (size == 32)
4282         {
4283           // space for branch table
4284           total += 4 * (count - 1);
4285
4286           total += -total & 15;
4287           total += this->pltresolve_size;
4288         }
4289       else
4290         {
4291           total += this->pltresolve_size;
4292
4293           // space for branch table
4294           total += 4 * count;
4295           if (this->targ_->abiversion() < 2)
4296             {
4297               total += 4 * count;
4298               if (count > 0x8000)
4299                 total += 4 * (count - 0x8000);
4300             }
4301         }
4302     }
4303   this->end_branch_table_ = total;
4304   total = (total + 15) & -16;
4305   total += this->ge_size_;
4306
4307   this->set_data_size(total);
4308 }
4309
4310 // Write out plt and long branch stub code.
4311
4312 template<int size, bool big_endian>
4313 void
4314 Stub_table<size, big_endian>::do_write(Output_file* of)
4315 {
4316   if (this->plt_call_stubs_.empty()
4317       && this->long_branch_stubs_.empty())
4318     return;
4319
4320   const section_size_type start_off = this->offset();
4321   const section_size_type off = this->stub_offset();
4322   const section_size_type oview_size =
4323     convert_to_section_size_type(this->data_size() - (off - start_off));
4324   unsigned char* const oview = of->get_output_view(off, oview_size);
4325   unsigned char* p;
4326
4327   if (size == 64)
4328     {
4329       const Output_data_got_powerpc<size, big_endian>* got
4330         = this->targ_->got_section();
4331       Address got_os_addr = got->output_section()->address();
4332
4333       if (!this->plt_call_stubs_.empty())
4334         {
4335           // The base address of the .plt section.
4336           Address plt_base = this->targ_->plt_section()->address();
4337           Address iplt_base = invalid_address;
4338
4339           // Write out plt call stubs.
4340           typename Plt_stub_entries::const_iterator cs;
4341           for (cs = this->plt_call_stubs_.begin();
4342                cs != this->plt_call_stubs_.end();
4343                ++cs)
4344             {
4345               bool is_iplt;
4346               Address pltoff = this->plt_off(cs, &is_iplt);
4347               Address plt_addr = pltoff;
4348               if (is_iplt)
4349                 {
4350                   if (iplt_base == invalid_address)
4351                     iplt_base = this->targ_->iplt_section()->address();
4352                   plt_addr += iplt_base;
4353                 }
4354               else
4355                 plt_addr += plt_base;
4356               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4357                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4358               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4359               Address off = plt_addr - got_addr;
4360
4361               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4362                 gold_error(_("%s: linkage table error against `%s'"),
4363                            cs->first.object_->name().c_str(),
4364                            cs->first.sym_->demangled_name().c_str());
4365
4366               bool plt_load_toc = this->targ_->abiversion() < 2;
4367               bool static_chain
4368                 = plt_load_toc && parameters->options().plt_static_chain();
4369               bool thread_safe
4370                 = plt_load_toc && this->targ_->plt_thread_safe();
4371               bool use_fake_dep = false;
4372               Address cmp_branch_off = 0;
4373               if (thread_safe)
4374                 {
4375                   unsigned int pltindex
4376                     = ((pltoff - this->targ_->first_plt_entry_offset())
4377                        / this->targ_->plt_entry_size());
4378                   Address glinkoff
4379                     = (this->targ_->glink_section()->pltresolve_size
4380                        + pltindex * 8);
4381                   if (pltindex > 32768)
4382                     glinkoff += (pltindex - 32768) * 4;
4383                   Address to
4384                     = this->targ_->glink_section()->address() + glinkoff;
4385                   Address from
4386                     = (this->stub_address() + cs->second + 24
4387                        + 4 * (ha(off) != 0)
4388                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4389                        + 4 * static_chain);
4390                   cmp_branch_off = to - from;
4391                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4392                 }
4393
4394               p = oview + cs->second;
4395               if (ha(off) != 0)
4396                 {
4397                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4398                   p += 4;
4399                   if (plt_load_toc)
4400                     {
4401                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4402                       p += 4;
4403                       write_insn<big_endian>(p, ld_12_11 + l(off));
4404                       p += 4;
4405                     }
4406                   else
4407                     {
4408                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4409                       p += 4;
4410                       write_insn<big_endian>(p, ld_12_12 + l(off));
4411                       p += 4;
4412                     }
4413                   if (plt_load_toc
4414                       && ha(off + 8 + 8 * static_chain) != ha(off))
4415                     {
4416                       write_insn<big_endian>(p, addi_11_11 + l(off));
4417                       p += 4;
4418                       off = 0;
4419                     }
4420                   write_insn<big_endian>(p, mtctr_12);
4421                   p += 4;
4422                   if (plt_load_toc)
4423                     {
4424                       if (use_fake_dep)
4425                         {
4426                           write_insn<big_endian>(p, xor_2_12_12);
4427                           p += 4;
4428                           write_insn<big_endian>(p, add_11_11_2);
4429                           p += 4;
4430                         }
4431                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4432                       p += 4;
4433                       if (static_chain)
4434                         {
4435                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4436                           p += 4;
4437                         }
4438                     }
4439                 }
4440               else
4441                 {
4442                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4443                   p += 4;
4444                   write_insn<big_endian>(p, ld_12_2 + l(off));
4445                   p += 4;
4446                   if (plt_load_toc
4447                       && ha(off + 8 + 8 * static_chain) != ha(off))
4448                     {
4449                       write_insn<big_endian>(p, addi_2_2 + l(off));
4450                       p += 4;
4451                       off = 0;
4452                     }
4453                   write_insn<big_endian>(p, mtctr_12);
4454                   p += 4;
4455                   if (plt_load_toc)
4456                     {
4457                       if (use_fake_dep)
4458                         {
4459                           write_insn<big_endian>(p, xor_11_12_12);
4460                           p += 4;
4461                           write_insn<big_endian>(p, add_2_2_11);
4462                           p += 4;
4463                         }
4464                       if (static_chain)
4465                         {
4466                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4467                           p += 4;
4468                         }
4469                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4470                       p += 4;
4471                     }
4472                 }
4473               if (thread_safe && !use_fake_dep)
4474                 {
4475                   write_insn<big_endian>(p, cmpldi_2_0);
4476                   p += 4;
4477                   write_insn<big_endian>(p, bnectr_p4);
4478                   p += 4;
4479                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4480                 }
4481               else
4482                 write_insn<big_endian>(p, bctr);
4483             }
4484         }
4485
4486       // Write out long branch stubs.
4487       typename Branch_stub_entries::const_iterator bs;
4488       for (bs = this->long_branch_stubs_.begin();
4489            bs != this->long_branch_stubs_.end();
4490            ++bs)
4491         {
4492           if (bs->first.save_res_)
4493             continue;
4494           p = oview + this->plt_size_ + bs->second;
4495           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4496           Address delta = bs->first.dest_ - loc;
4497           if (delta + (1 << 25) < 2 << 25)
4498             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4499           else
4500             {
4501               Address brlt_addr
4502                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4503               gold_assert(brlt_addr != invalid_address);
4504               brlt_addr += this->targ_->brlt_section()->address();
4505               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4506               Address brltoff = brlt_addr - got_addr;
4507               if (ha(brltoff) == 0)
4508                 {
4509                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4510                 }
4511               else
4512                 {
4513                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4514                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4515                 }
4516               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4517               write_insn<big_endian>(p, bctr);
4518             }
4519         }
4520     }
4521   else
4522     {
4523       if (!this->plt_call_stubs_.empty())
4524         {
4525           // The base address of the .plt section.
4526           Address plt_base = this->targ_->plt_section()->address();
4527           Address iplt_base = invalid_address;
4528           // The address of _GLOBAL_OFFSET_TABLE_.
4529           Address g_o_t = invalid_address;
4530
4531           // Write out plt call stubs.
4532           typename Plt_stub_entries::const_iterator cs;
4533           for (cs = this->plt_call_stubs_.begin();
4534                cs != this->plt_call_stubs_.end();
4535                ++cs)
4536             {
4537               bool is_iplt;
4538               Address plt_addr = this->plt_off(cs, &is_iplt);
4539               if (is_iplt)
4540                 {
4541                   if (iplt_base == invalid_address)
4542                     iplt_base = this->targ_->iplt_section()->address();
4543                   plt_addr += iplt_base;
4544                 }
4545               else
4546                 plt_addr += plt_base;
4547
4548               p = oview + cs->second;
4549               if (parameters->options().output_is_position_independent())
4550                 {
4551                   Address got_addr;
4552                   const Powerpc_relobj<size, big_endian>* ppcobj
4553                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4554                        (cs->first.object_));
4555                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4556                     {
4557                       unsigned int got2 = ppcobj->got2_shndx();
4558                       got_addr = ppcobj->get_output_section_offset(got2);
4559                       gold_assert(got_addr != invalid_address);
4560                       got_addr += (ppcobj->output_section(got2)->address()
4561                                    + cs->first.addend_);
4562                     }
4563                   else
4564                     {
4565                       if (g_o_t == invalid_address)
4566                         {
4567                           const Output_data_got_powerpc<size, big_endian>* got
4568                             = this->targ_->got_section();
4569                           g_o_t = got->address() + got->g_o_t();
4570                         }
4571                       got_addr = g_o_t;
4572                     }
4573
4574                   Address off = plt_addr - got_addr;
4575                   if (ha(off) == 0)
4576                     {
4577                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4578                       write_insn<big_endian>(p +  4, mtctr_11);
4579                       write_insn<big_endian>(p +  8, bctr);
4580                     }
4581                   else
4582                     {
4583                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4584                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4585                       write_insn<big_endian>(p +  8, mtctr_11);
4586                       write_insn<big_endian>(p + 12, bctr);
4587                     }
4588                 }
4589               else
4590                 {
4591                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4592                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4593                   write_insn<big_endian>(p +  8, mtctr_11);
4594                   write_insn<big_endian>(p + 12, bctr);
4595                 }
4596             }
4597         }
4598
4599       // Write out long branch stubs.
4600       typename Branch_stub_entries::const_iterator bs;
4601       for (bs = this->long_branch_stubs_.begin();
4602            bs != this->long_branch_stubs_.end();
4603            ++bs)
4604         {
4605           if (bs->first.save_res_)
4606             continue;
4607           p = oview + this->plt_size_ + bs->second;
4608           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4609           Address delta = bs->first.dest_ - loc;
4610           if (delta + (1 << 25) < 2 << 25)
4611             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4612           else if (!parameters->options().output_is_position_independent())
4613             {
4614               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4615               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4616               write_insn<big_endian>(p +  8, mtctr_12);
4617               write_insn<big_endian>(p + 12, bctr);
4618             }
4619           else
4620             {
4621               delta -= 8;
4622               write_insn<big_endian>(p +  0, mflr_0);
4623               write_insn<big_endian>(p +  4, bcl_20_31);
4624               write_insn<big_endian>(p +  8, mflr_12);
4625               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4626               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4627               write_insn<big_endian>(p + 20, mtlr_0);
4628               write_insn<big_endian>(p + 24, mtctr_12);
4629               write_insn<big_endian>(p + 28, bctr);
4630             }
4631         }
4632     }
4633   if (this->need_save_res_)
4634     {
4635       p = oview + this->plt_size_ + this->branch_size_;
4636       memcpy (p, this->targ_->savres_section()->contents(),
4637               this->targ_->savres_section()->data_size());
4638     }
4639 }
4640
4641 // Write out .glink.
4642
4643 template<int size, bool big_endian>
4644 void
4645 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4646 {
4647   const section_size_type off = this->offset();
4648   const section_size_type oview_size =
4649     convert_to_section_size_type(this->data_size());
4650   unsigned char* const oview = of->get_output_view(off, oview_size);
4651   unsigned char* p;
4652
4653   // The base address of the .plt section.
4654   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4655   Address plt_base = this->targ_->plt_section()->address();
4656
4657   if (size == 64)
4658     {
4659       if (this->end_branch_table_ != 0)
4660         {
4661           // Write pltresolve stub.
4662           p = oview;
4663           Address after_bcl = this->address() + 16;
4664           Address pltoff = plt_base - after_bcl;
4665
4666           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4667
4668           if (this->targ_->abiversion() < 2)
4669             {
4670               write_insn<big_endian>(p, mflr_12),               p += 4;
4671               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4672               write_insn<big_endian>(p, mflr_11),               p += 4;
4673               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4674               write_insn<big_endian>(p, mtlr_12),               p += 4;
4675               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4676               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4677               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4678               write_insn<big_endian>(p, mtctr_12),              p += 4;
4679               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4680             }
4681           else
4682             {
4683               write_insn<big_endian>(p, mflr_0),                p += 4;
4684               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4685               write_insn<big_endian>(p, mflr_11),               p += 4;
4686               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4687               write_insn<big_endian>(p, mtlr_0),                p += 4;
4688               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4689               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4690               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4691               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4692               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4693               write_insn<big_endian>(p, mtctr_12),              p += 4;
4694               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4695             }
4696           write_insn<big_endian>(p, bctr),                      p += 4;
4697           while (p < oview + this->pltresolve_size)
4698             write_insn<big_endian>(p, nop), p += 4;
4699
4700           // Write lazy link call stubs.
4701           uint32_t indx = 0;
4702           while (p < oview + this->end_branch_table_)
4703             {
4704               if (this->targ_->abiversion() < 2)
4705                 {
4706                   if (indx < 0x8000)
4707                     {
4708                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4709                     }
4710                   else
4711                     {
4712                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4713                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4714                     }
4715                 }
4716               uint32_t branch_off = 8 - (p - oview);
4717               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4718               indx++;
4719             }
4720         }
4721
4722       Address plt_base = this->targ_->plt_section()->address();
4723       Address iplt_base = invalid_address;
4724       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4725       Address global_entry_base = this->address() + global_entry_off;
4726       typename Global_entry_stub_entries::const_iterator ge;
4727       for (ge = this->global_entry_stubs_.begin();
4728            ge != this->global_entry_stubs_.end();
4729            ++ge)
4730         {
4731           p = oview + global_entry_off + ge->second;
4732           Address plt_addr = ge->first->plt_offset();
4733           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4734               && ge->first->can_use_relative_reloc(false))
4735             {
4736               if (iplt_base == invalid_address)
4737                 iplt_base = this->targ_->iplt_section()->address();
4738               plt_addr += iplt_base;
4739             }
4740           else
4741             plt_addr += plt_base;
4742           Address my_addr = global_entry_base + ge->second;
4743           Address off = plt_addr - my_addr;
4744
4745           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4746             gold_error(_("%s: linkage table error against `%s'"),
4747                        ge->first->object()->name().c_str(),
4748                        ge->first->demangled_name().c_str());
4749
4750           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4751           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4752           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4753           write_insn<big_endian>(p, bctr);
4754         }
4755     }
4756   else
4757     {
4758       const Output_data_got_powerpc<size, big_endian>* got
4759         = this->targ_->got_section();
4760       // The address of _GLOBAL_OFFSET_TABLE_.
4761       Address g_o_t = got->address() + got->g_o_t();
4762
4763       // Write out pltresolve branch table.
4764       p = oview;
4765       unsigned int the_end = oview_size - this->pltresolve_size;
4766       unsigned char* end_p = oview + the_end;
4767       while (p < end_p - 8 * 4)
4768         write_insn<big_endian>(p, b + end_p - p), p += 4;
4769       while (p < end_p)
4770         write_insn<big_endian>(p, nop), p += 4;
4771
4772       // Write out pltresolve call stub.
4773       if (parameters->options().output_is_position_independent())
4774         {
4775           Address res0_off = 0;
4776           Address after_bcl_off = the_end + 12;
4777           Address bcl_res0 = after_bcl_off - res0_off;
4778
4779           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4780           write_insn<big_endian>(p +  4, mflr_0);
4781           write_insn<big_endian>(p +  8, bcl_20_31);
4782           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4783           write_insn<big_endian>(p + 16, mflr_12);
4784           write_insn<big_endian>(p + 20, mtlr_0);
4785           write_insn<big_endian>(p + 24, sub_11_11_12);
4786
4787           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4788
4789           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4790           if (ha(got_bcl) == ha(got_bcl + 4))
4791             {
4792               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4793               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4794             }
4795           else
4796             {
4797               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4798               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4799             }
4800           write_insn<big_endian>(p + 40, mtctr_0);
4801           write_insn<big_endian>(p + 44, add_0_11_11);
4802           write_insn<big_endian>(p + 48, add_11_0_11);
4803           write_insn<big_endian>(p + 52, bctr);
4804           write_insn<big_endian>(p + 56, nop);
4805           write_insn<big_endian>(p + 60, nop);
4806         }
4807       else
4808         {
4809           Address res0 = this->address();
4810
4811           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4812           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4813           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4814             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4815           else
4816             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4817           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4818           write_insn<big_endian>(p + 16, mtctr_0);
4819           write_insn<big_endian>(p + 20, add_0_11_11);
4820           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4821             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4822           else
4823             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4824           write_insn<big_endian>(p + 28, add_11_0_11);
4825           write_insn<big_endian>(p + 32, bctr);
4826           write_insn<big_endian>(p + 36, nop);
4827           write_insn<big_endian>(p + 40, nop);
4828           write_insn<big_endian>(p + 44, nop);
4829           write_insn<big_endian>(p + 48, nop);
4830           write_insn<big_endian>(p + 52, nop);
4831           write_insn<big_endian>(p + 56, nop);
4832           write_insn<big_endian>(p + 60, nop);
4833         }
4834       p += 64;
4835     }
4836
4837   of->write_output_view(off, oview_size, oview);
4838 }
4839
4840
4841 // A class to handle linker generated save/restore functions.
4842
4843 template<int size, bool big_endian>
4844 class Output_data_save_res : public Output_section_data_build
4845 {
4846  public:
4847   Output_data_save_res(Symbol_table* symtab);
4848
4849   const unsigned char*
4850   contents() const
4851   {
4852     return contents_;
4853   }
4854
4855  protected:
4856   // Write to a map file.
4857   void
4858   do_print_to_mapfile(Mapfile* mapfile) const
4859   { mapfile->print_output_data(this, _("** save/restore")); }
4860
4861   void
4862   do_write(Output_file*);
4863
4864  private:
4865   // The maximum size of save/restore contents.
4866   static const unsigned int savres_max = 218*4;
4867
4868   void
4869   savres_define(Symbol_table* symtab,
4870                 const char *name,
4871                 unsigned int lo, unsigned int hi,
4872                 unsigned char* write_ent(unsigned char*, int),
4873                 unsigned char* write_tail(unsigned char*, int));
4874
4875   unsigned char *contents_;
4876 };
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 savegpr0(unsigned char* p, int r)
4881 {
4882   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4883   write_insn<big_endian>(p, insn);
4884   return p + 4;
4885 }
4886
4887 template<bool big_endian>
4888 static unsigned char*
4889 savegpr0_tail(unsigned char* p, int r)
4890 {
4891   p = savegpr0<big_endian>(p, r);
4892   uint32_t insn = std_0_1 + 16;
4893   write_insn<big_endian>(p, insn);
4894   p = p + 4;
4895   write_insn<big_endian>(p, blr);
4896   return p + 4;
4897 }
4898
4899 template<bool big_endian>
4900 static unsigned char*
4901 restgpr0(unsigned char* p, int r)
4902 {
4903   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4904   write_insn<big_endian>(p, insn);
4905   return p + 4;
4906 }
4907
4908 template<bool big_endian>
4909 static unsigned char*
4910 restgpr0_tail(unsigned char* p, int r)
4911 {
4912   uint32_t insn = ld_0_1 + 16;
4913   write_insn<big_endian>(p, insn);
4914   p = p + 4;
4915   p = restgpr0<big_endian>(p, r);
4916   write_insn<big_endian>(p, mtlr_0);
4917   p = p + 4;
4918   if (r == 29)
4919     {
4920       p = restgpr0<big_endian>(p, 30);
4921       p = restgpr0<big_endian>(p, 31);
4922     }
4923   write_insn<big_endian>(p, blr);
4924   return p + 4;
4925 }
4926
4927 template<bool big_endian>
4928 static unsigned char*
4929 savegpr1(unsigned char* p, int r)
4930 {
4931   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4932   write_insn<big_endian>(p, insn);
4933   return p + 4;
4934 }
4935
4936 template<bool big_endian>
4937 static unsigned char*
4938 savegpr1_tail(unsigned char* p, int r)
4939 {
4940   p = savegpr1<big_endian>(p, r);
4941   write_insn<big_endian>(p, blr);
4942   return p + 4;
4943 }
4944
4945 template<bool big_endian>
4946 static unsigned char*
4947 restgpr1(unsigned char* p, int r)
4948 {
4949   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4950   write_insn<big_endian>(p, insn);
4951   return p + 4;
4952 }
4953
4954 template<bool big_endian>
4955 static unsigned char*
4956 restgpr1_tail(unsigned char* p, int r)
4957 {
4958   p = restgpr1<big_endian>(p, r);
4959   write_insn<big_endian>(p, blr);
4960   return p + 4;
4961 }
4962
4963 template<bool big_endian>
4964 static unsigned char*
4965 savefpr(unsigned char* p, int r)
4966 {
4967   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4968   write_insn<big_endian>(p, insn);
4969   return p + 4;
4970 }
4971
4972 template<bool big_endian>
4973 static unsigned char*
4974 savefpr0_tail(unsigned char* p, int r)
4975 {
4976   p = savefpr<big_endian>(p, r);
4977   write_insn<big_endian>(p, std_0_1 + 16);
4978   p = p + 4;
4979   write_insn<big_endian>(p, blr);
4980   return p + 4;
4981 }
4982
4983 template<bool big_endian>
4984 static unsigned char*
4985 restfpr(unsigned char* p, int r)
4986 {
4987   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4988   write_insn<big_endian>(p, insn);
4989   return p + 4;
4990 }
4991
4992 template<bool big_endian>
4993 static unsigned char*
4994 restfpr0_tail(unsigned char* p, int r)
4995 {
4996   write_insn<big_endian>(p, ld_0_1 + 16);
4997   p = p + 4;
4998   p = restfpr<big_endian>(p, r);
4999   write_insn<big_endian>(p, mtlr_0);
5000   p = p + 4;
5001   if (r == 29)
5002     {
5003       p = restfpr<big_endian>(p, 30);
5004       p = restfpr<big_endian>(p, 31);
5005     }
5006   write_insn<big_endian>(p, blr);
5007   return p + 4;
5008 }
5009
5010 template<bool big_endian>
5011 static unsigned char*
5012 savefpr1_tail(unsigned char* p, int r)
5013 {
5014   p = savefpr<big_endian>(p, r);
5015   write_insn<big_endian>(p, blr);
5016   return p + 4;
5017 }
5018
5019 template<bool big_endian>
5020 static unsigned char*
5021 restfpr1_tail(unsigned char* p, int r)
5022 {
5023   p = restfpr<big_endian>(p, r);
5024   write_insn<big_endian>(p, blr);
5025   return p + 4;
5026 }
5027
5028 template<bool big_endian>
5029 static unsigned char*
5030 savevr(unsigned char* p, int r)
5031 {
5032   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5033   write_insn<big_endian>(p, insn);
5034   p = p + 4;
5035   insn = stvx_0_12_0 + (r << 21);
5036   write_insn<big_endian>(p, insn);
5037   return p + 4;
5038 }
5039
5040 template<bool big_endian>
5041 static unsigned char*
5042 savevr_tail(unsigned char* p, int r)
5043 {
5044   p = savevr<big_endian>(p, r);
5045   write_insn<big_endian>(p, blr);
5046   return p + 4;
5047 }
5048
5049 template<bool big_endian>
5050 static unsigned char*
5051 restvr(unsigned char* p, int r)
5052 {
5053   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5054   write_insn<big_endian>(p, insn);
5055   p = p + 4;
5056   insn = lvx_0_12_0 + (r << 21);
5057   write_insn<big_endian>(p, insn);
5058   return p + 4;
5059 }
5060
5061 template<bool big_endian>
5062 static unsigned char*
5063 restvr_tail(unsigned char* p, int r)
5064 {
5065   p = restvr<big_endian>(p, r);
5066   write_insn<big_endian>(p, blr);
5067   return p + 4;
5068 }
5069
5070
5071 template<int size, bool big_endian>
5072 Output_data_save_res<size, big_endian>::Output_data_save_res(
5073     Symbol_table* symtab)
5074   : Output_section_data_build(4),
5075     contents_(NULL)
5076 {
5077   this->savres_define(symtab,
5078                       "_savegpr0_", 14, 31,
5079                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5080   this->savres_define(symtab,
5081                       "_restgpr0_", 14, 29,
5082                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5083   this->savres_define(symtab,
5084                       "_restgpr0_", 30, 31,
5085                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5086   this->savres_define(symtab,
5087                       "_savegpr1_", 14, 31,
5088                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5089   this->savres_define(symtab,
5090                       "_restgpr1_", 14, 31,
5091                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5092   this->savres_define(symtab,
5093                       "_savefpr_", 14, 31,
5094                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5095   this->savres_define(symtab,
5096                       "_restfpr_", 14, 29,
5097                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5098   this->savres_define(symtab,
5099                       "_restfpr_", 30, 31,
5100                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5101   this->savres_define(symtab,
5102                       "._savef", 14, 31,
5103                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5104   this->savres_define(symtab,
5105                       "._restf", 14, 31,
5106                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5107   this->savres_define(symtab,
5108                       "_savevr_", 20, 31,
5109                       savevr<big_endian>, savevr_tail<big_endian>);
5110   this->savres_define(symtab,
5111                       "_restvr_", 20, 31,
5112                       restvr<big_endian>, restvr_tail<big_endian>);
5113 }
5114
5115 template<int size, bool big_endian>
5116 void
5117 Output_data_save_res<size, big_endian>::savres_define(
5118     Symbol_table* symtab,
5119     const char *name,
5120     unsigned int lo, unsigned int hi,
5121     unsigned char* write_ent(unsigned char*, int),
5122     unsigned char* write_tail(unsigned char*, int))
5123 {
5124   size_t len = strlen(name);
5125   bool writing = false;
5126   char sym[16];
5127
5128   memcpy(sym, name, len);
5129   sym[len + 2] = 0;
5130
5131   for (unsigned int i = lo; i <= hi; i++)
5132     {
5133       sym[len + 0] = i / 10 + '0';
5134       sym[len + 1] = i % 10 + '0';
5135       Symbol* gsym = symtab->lookup(sym);
5136       bool refd = gsym != NULL && gsym->is_undefined();
5137       writing = writing || refd;
5138       if (writing)
5139         {
5140           if (this->contents_ == NULL)
5141             this->contents_ = new unsigned char[this->savres_max];
5142
5143           section_size_type value = this->current_data_size();
5144           unsigned char* p = this->contents_ + value;
5145           if (i != hi)
5146             p = write_ent(p, i);
5147           else
5148             p = write_tail(p, i);
5149           section_size_type cur_size = p - this->contents_;
5150           this->set_current_data_size(cur_size);
5151           if (refd)
5152             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5153                                           this, value, cur_size - value,
5154                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5155                                           elfcpp::STV_HIDDEN, 0, false, false);
5156         }
5157     }
5158 }
5159
5160 // Write out save/restore.
5161
5162 template<int size, bool big_endian>
5163 void
5164 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5165 {
5166   const section_size_type off = this->offset();
5167   const section_size_type oview_size =
5168     convert_to_section_size_type(this->data_size());
5169   unsigned char* const oview = of->get_output_view(off, oview_size);
5170   memcpy(oview, this->contents_, oview_size);
5171   of->write_output_view(off, oview_size, oview);
5172 }
5173
5174
5175 // Create the glink section.
5176
5177 template<int size, bool big_endian>
5178 void
5179 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5180 {
5181   if (this->glink_ == NULL)
5182     {
5183       this->glink_ = new Output_data_glink<size, big_endian>(this);
5184       this->glink_->add_eh_frame(layout);
5185       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5186                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5187                                       this->glink_, ORDER_TEXT, false);
5188     }
5189 }
5190
5191 // Create a PLT entry for a global symbol.
5192
5193 template<int size, bool big_endian>
5194 void
5195 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5196                                                  Layout* layout,
5197                                                  Symbol* gsym)
5198 {
5199   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5200       && gsym->can_use_relative_reloc(false))
5201     {
5202       if (this->iplt_ == NULL)
5203         this->make_iplt_section(symtab, layout);
5204       this->iplt_->add_ifunc_entry(gsym);
5205     }
5206   else
5207     {
5208       if (this->plt_ == NULL)
5209         this->make_plt_section(symtab, layout);
5210       this->plt_->add_entry(gsym);
5211     }
5212 }
5213
5214 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5215
5216 template<int size, bool big_endian>
5217 void
5218 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5219     Symbol_table* symtab,
5220     Layout* layout,
5221     Sized_relobj_file<size, big_endian>* relobj,
5222     unsigned int r_sym)
5223 {
5224   if (this->iplt_ == NULL)
5225     this->make_iplt_section(symtab, layout);
5226   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5227 }
5228
5229 // Return the number of entries in the PLT.
5230
5231 template<int size, bool big_endian>
5232 unsigned int
5233 Target_powerpc<size, big_endian>::plt_entry_count() const
5234 {
5235   if (this->plt_ == NULL)
5236     return 0;
5237   return this->plt_->entry_count();
5238 }
5239
5240 // Create a GOT entry for local dynamic __tls_get_addr calls.
5241
5242 template<int size, bool big_endian>
5243 unsigned int
5244 Target_powerpc<size, big_endian>::tlsld_got_offset(
5245     Symbol_table* symtab,
5246     Layout* layout,
5247     Sized_relobj_file<size, big_endian>* object)
5248 {
5249   if (this->tlsld_got_offset_ == -1U)
5250     {
5251       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5252       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5253       Output_data_got_powerpc<size, big_endian>* got
5254         = this->got_section(symtab, layout);
5255       unsigned int got_offset = got->add_constant_pair(0, 0);
5256       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5257                           got_offset, 0);
5258       this->tlsld_got_offset_ = got_offset;
5259     }
5260   return this->tlsld_got_offset_;
5261 }
5262
5263 // Get the Reference_flags for a particular relocation.
5264
5265 template<int size, bool big_endian>
5266 int
5267 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5268     unsigned int r_type,
5269     const Target_powerpc* target)
5270 {
5271   int ref = 0;
5272
5273   switch (r_type)
5274     {
5275     case elfcpp::R_POWERPC_NONE:
5276     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5277     case elfcpp::R_POWERPC_GNU_VTENTRY:
5278     case elfcpp::R_PPC64_TOC:
5279       // No symbol reference.
5280       break;
5281
5282     case elfcpp::R_PPC64_ADDR64:
5283     case elfcpp::R_PPC64_UADDR64:
5284     case elfcpp::R_POWERPC_ADDR32:
5285     case elfcpp::R_POWERPC_UADDR32:
5286     case elfcpp::R_POWERPC_ADDR16:
5287     case elfcpp::R_POWERPC_UADDR16:
5288     case elfcpp::R_POWERPC_ADDR16_LO:
5289     case elfcpp::R_POWERPC_ADDR16_HI:
5290     case elfcpp::R_POWERPC_ADDR16_HA:
5291       ref = Symbol::ABSOLUTE_REF;
5292       break;
5293
5294     case elfcpp::R_POWERPC_ADDR24:
5295     case elfcpp::R_POWERPC_ADDR14:
5296     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5297     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5298       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5299       break;
5300
5301     case elfcpp::R_PPC64_REL64:
5302     case elfcpp::R_POWERPC_REL32:
5303     case elfcpp::R_PPC_LOCAL24PC:
5304     case elfcpp::R_POWERPC_REL16:
5305     case elfcpp::R_POWERPC_REL16_LO:
5306     case elfcpp::R_POWERPC_REL16_HI:
5307     case elfcpp::R_POWERPC_REL16_HA:
5308       ref = Symbol::RELATIVE_REF;
5309       break;
5310
5311     case elfcpp::R_POWERPC_REL24:
5312     case elfcpp::R_PPC_PLTREL24:
5313     case elfcpp::R_POWERPC_REL14:
5314     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5315     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5316       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5317       break;
5318
5319     case elfcpp::R_POWERPC_GOT16:
5320     case elfcpp::R_POWERPC_GOT16_LO:
5321     case elfcpp::R_POWERPC_GOT16_HI:
5322     case elfcpp::R_POWERPC_GOT16_HA:
5323     case elfcpp::R_PPC64_GOT16_DS:
5324     case elfcpp::R_PPC64_GOT16_LO_DS:
5325     case elfcpp::R_PPC64_TOC16:
5326     case elfcpp::R_PPC64_TOC16_LO:
5327     case elfcpp::R_PPC64_TOC16_HI:
5328     case elfcpp::R_PPC64_TOC16_HA:
5329     case elfcpp::R_PPC64_TOC16_DS:
5330     case elfcpp::R_PPC64_TOC16_LO_DS:
5331       ref = Symbol::RELATIVE_REF;
5332       break;
5333
5334     case elfcpp::R_POWERPC_GOT_TPREL16:
5335     case elfcpp::R_POWERPC_TLS:
5336       ref = Symbol::TLS_REF;
5337       break;
5338
5339     case elfcpp::R_POWERPC_COPY:
5340     case elfcpp::R_POWERPC_GLOB_DAT:
5341     case elfcpp::R_POWERPC_JMP_SLOT:
5342     case elfcpp::R_POWERPC_RELATIVE:
5343     case elfcpp::R_POWERPC_DTPMOD:
5344     default:
5345       // Not expected.  We will give an error later.
5346       break;
5347     }
5348
5349   if (size == 64 && target->abiversion() < 2)
5350     ref |= Symbol::FUNC_DESC_ABI;
5351   return ref;
5352 }
5353
5354 // Report an unsupported relocation against a local symbol.
5355
5356 template<int size, bool big_endian>
5357 void
5358 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5359     Sized_relobj_file<size, big_endian>* object,
5360     unsigned int r_type)
5361 {
5362   gold_error(_("%s: unsupported reloc %u against local symbol"),
5363              object->name().c_str(), r_type);
5364 }
5365
5366 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5367 // dynamic linker does not support it, issue an error.
5368
5369 template<int size, bool big_endian>
5370 void
5371 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5372                                                       unsigned int r_type)
5373 {
5374   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5375
5376   // These are the relocation types supported by glibc for both 32-bit
5377   // and 64-bit powerpc.
5378   switch (r_type)
5379     {
5380     case elfcpp::R_POWERPC_NONE:
5381     case elfcpp::R_POWERPC_RELATIVE:
5382     case elfcpp::R_POWERPC_GLOB_DAT:
5383     case elfcpp::R_POWERPC_DTPMOD:
5384     case elfcpp::R_POWERPC_DTPREL:
5385     case elfcpp::R_POWERPC_TPREL:
5386     case elfcpp::R_POWERPC_JMP_SLOT:
5387     case elfcpp::R_POWERPC_COPY:
5388     case elfcpp::R_POWERPC_IRELATIVE:
5389     case elfcpp::R_POWERPC_ADDR32:
5390     case elfcpp::R_POWERPC_UADDR32:
5391     case elfcpp::R_POWERPC_ADDR24:
5392     case elfcpp::R_POWERPC_ADDR16:
5393     case elfcpp::R_POWERPC_UADDR16:
5394     case elfcpp::R_POWERPC_ADDR16_LO:
5395     case elfcpp::R_POWERPC_ADDR16_HI:
5396     case elfcpp::R_POWERPC_ADDR16_HA:
5397     case elfcpp::R_POWERPC_ADDR14:
5398     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5399     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5400     case elfcpp::R_POWERPC_REL32:
5401     case elfcpp::R_POWERPC_REL24:
5402     case elfcpp::R_POWERPC_TPREL16:
5403     case elfcpp::R_POWERPC_TPREL16_LO:
5404     case elfcpp::R_POWERPC_TPREL16_HI:
5405     case elfcpp::R_POWERPC_TPREL16_HA:
5406       return;
5407
5408     default:
5409       break;
5410     }
5411
5412   if (size == 64)
5413     {
5414       switch (r_type)
5415         {
5416           // These are the relocation types supported only on 64-bit.
5417         case elfcpp::R_PPC64_ADDR64:
5418         case elfcpp::R_PPC64_UADDR64:
5419         case elfcpp::R_PPC64_JMP_IREL:
5420         case elfcpp::R_PPC64_ADDR16_DS:
5421         case elfcpp::R_PPC64_ADDR16_LO_DS:
5422         case elfcpp::R_PPC64_ADDR16_HIGH:
5423         case elfcpp::R_PPC64_ADDR16_HIGHA:
5424         case elfcpp::R_PPC64_ADDR16_HIGHER:
5425         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5426         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5427         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5428         case elfcpp::R_PPC64_REL64:
5429         case elfcpp::R_POWERPC_ADDR30:
5430         case elfcpp::R_PPC64_TPREL16_DS:
5431         case elfcpp::R_PPC64_TPREL16_LO_DS:
5432         case elfcpp::R_PPC64_TPREL16_HIGH:
5433         case elfcpp::R_PPC64_TPREL16_HIGHA:
5434         case elfcpp::R_PPC64_TPREL16_HIGHER:
5435         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5436         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5437         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5438           return;
5439
5440         default:
5441           break;
5442         }
5443     }
5444   else
5445     {
5446       switch (r_type)
5447         {
5448           // These are the relocation types supported only on 32-bit.
5449           // ??? glibc ld.so doesn't need to support these.
5450         case elfcpp::R_POWERPC_DTPREL16:
5451         case elfcpp::R_POWERPC_DTPREL16_LO:
5452         case elfcpp::R_POWERPC_DTPREL16_HI:
5453         case elfcpp::R_POWERPC_DTPREL16_HA:
5454           return;
5455
5456         default:
5457           break;
5458         }
5459     }
5460
5461   // This prevents us from issuing more than one error per reloc
5462   // section.  But we can still wind up issuing more than one
5463   // error per object file.
5464   if (this->issued_non_pic_error_)
5465     return;
5466   gold_assert(parameters->options().output_is_position_independent());
5467   object->error(_("requires unsupported dynamic reloc; "
5468                   "recompile with -fPIC"));
5469   this->issued_non_pic_error_ = true;
5470   return;
5471 }
5472
5473 // Return whether we need to make a PLT entry for a relocation of the
5474 // given type against a STT_GNU_IFUNC symbol.
5475
5476 template<int size, bool big_endian>
5477 bool
5478 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5479      Target_powerpc<size, big_endian>* target,
5480      Sized_relobj_file<size, big_endian>* object,
5481      unsigned int r_type,
5482      bool report_err)
5483 {
5484   // In non-pic code any reference will resolve to the plt call stub
5485   // for the ifunc symbol.
5486   if ((size == 32 || target->abiversion() >= 2)
5487       && !parameters->options().output_is_position_independent())
5488     return true;
5489
5490   switch (r_type)
5491     {
5492     // Word size refs from data sections are OK, but don't need a PLT entry.
5493     case elfcpp::R_POWERPC_ADDR32:
5494     case elfcpp::R_POWERPC_UADDR32:
5495       if (size == 32)
5496         return false;
5497       break;
5498
5499     case elfcpp::R_PPC64_ADDR64:
5500     case elfcpp::R_PPC64_UADDR64:
5501       if (size == 64)
5502         return false;
5503       break;
5504
5505     // GOT refs are good, but also don't need a PLT entry.
5506     case elfcpp::R_POWERPC_GOT16:
5507     case elfcpp::R_POWERPC_GOT16_LO:
5508     case elfcpp::R_POWERPC_GOT16_HI:
5509     case elfcpp::R_POWERPC_GOT16_HA:
5510     case elfcpp::R_PPC64_GOT16_DS:
5511     case elfcpp::R_PPC64_GOT16_LO_DS:
5512       return false;
5513
5514     // Function calls are good, and these do need a PLT entry.
5515     case elfcpp::R_POWERPC_ADDR24:
5516     case elfcpp::R_POWERPC_ADDR14:
5517     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5518     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5519     case elfcpp::R_POWERPC_REL24:
5520     case elfcpp::R_PPC_PLTREL24:
5521     case elfcpp::R_POWERPC_REL14:
5522     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5523     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5524       return true;
5525
5526     default:
5527       break;
5528     }
5529
5530   // Anything else is a problem.
5531   // If we are building a static executable, the libc startup function
5532   // responsible for applying indirect function relocations is going
5533   // to complain about the reloc type.
5534   // If we are building a dynamic executable, we will have a text
5535   // relocation.  The dynamic loader will set the text segment
5536   // writable and non-executable to apply text relocations.  So we'll
5537   // segfault when trying to run the indirection function to resolve
5538   // the reloc.
5539   if (report_err)
5540     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5541                object->name().c_str(), r_type);
5542   return false;
5543 }
5544
5545 // Scan a relocation for a local symbol.
5546
5547 template<int size, bool big_endian>
5548 inline void
5549 Target_powerpc<size, big_endian>::Scan::local(
5550     Symbol_table* symtab,
5551     Layout* layout,
5552     Target_powerpc<size, big_endian>* target,
5553     Sized_relobj_file<size, big_endian>* object,
5554     unsigned int data_shndx,
5555     Output_section* output_section,
5556     const elfcpp::Rela<size, big_endian>& reloc,
5557     unsigned int r_type,
5558     const elfcpp::Sym<size, big_endian>& lsym,
5559     bool is_discarded)
5560 {
5561   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5562
5563   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5564       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5565     {
5566       this->expect_tls_get_addr_call();
5567       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5568       if (tls_type != tls::TLSOPT_NONE)
5569         this->skip_next_tls_get_addr_call();
5570     }
5571   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5572            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5573     {
5574       this->expect_tls_get_addr_call();
5575       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5576       if (tls_type != tls::TLSOPT_NONE)
5577         this->skip_next_tls_get_addr_call();
5578     }
5579
5580   Powerpc_relobj<size, big_endian>* ppc_object
5581     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5582
5583   if (is_discarded)
5584     {
5585       if (size == 64
5586           && data_shndx == ppc_object->opd_shndx()
5587           && r_type == elfcpp::R_PPC64_ADDR64)
5588         ppc_object->set_opd_discard(reloc.get_r_offset());
5589       return;
5590     }
5591
5592   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5593   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5594   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5595     {
5596       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5597       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5598                           r_type, r_sym, reloc.get_r_addend());
5599       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5600     }
5601
5602   switch (r_type)
5603     {
5604     case elfcpp::R_POWERPC_NONE:
5605     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5606     case elfcpp::R_POWERPC_GNU_VTENTRY:
5607     case elfcpp::R_PPC64_TOCSAVE:
5608     case elfcpp::R_POWERPC_TLS:
5609     case elfcpp::R_PPC64_ENTRY:
5610       break;
5611
5612     case elfcpp::R_PPC64_TOC:
5613       {
5614         Output_data_got_powerpc<size, big_endian>* got
5615           = target->got_section(symtab, layout);
5616         if (parameters->options().output_is_position_independent())
5617           {
5618             Address off = reloc.get_r_offset();
5619             if (size == 64
5620                 && target->abiversion() < 2
5621                 && data_shndx == ppc_object->opd_shndx()
5622                 && ppc_object->get_opd_discard(off - 8))
5623               break;
5624
5625             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5626             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5627             rela_dyn->add_output_section_relative(got->output_section(),
5628                                                   elfcpp::R_POWERPC_RELATIVE,
5629                                                   output_section,
5630                                                   object, data_shndx, off,
5631                                                   symobj->toc_base_offset());
5632           }
5633       }
5634       break;
5635
5636     case elfcpp::R_PPC64_ADDR64:
5637     case elfcpp::R_PPC64_UADDR64:
5638     case elfcpp::R_POWERPC_ADDR32:
5639     case elfcpp::R_POWERPC_UADDR32:
5640     case elfcpp::R_POWERPC_ADDR24:
5641     case elfcpp::R_POWERPC_ADDR16:
5642     case elfcpp::R_POWERPC_ADDR16_LO:
5643     case elfcpp::R_POWERPC_ADDR16_HI:
5644     case elfcpp::R_POWERPC_ADDR16_HA:
5645     case elfcpp::R_POWERPC_UADDR16:
5646     case elfcpp::R_PPC64_ADDR16_HIGH:
5647     case elfcpp::R_PPC64_ADDR16_HIGHA:
5648     case elfcpp::R_PPC64_ADDR16_HIGHER:
5649     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5650     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5651     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5652     case elfcpp::R_PPC64_ADDR16_DS:
5653     case elfcpp::R_PPC64_ADDR16_LO_DS:
5654     case elfcpp::R_POWERPC_ADDR14:
5655     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5656     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5657       // If building a shared library (or a position-independent
5658       // executable), we need to create a dynamic relocation for
5659       // this location.
5660       if (parameters->options().output_is_position_independent()
5661           || (size == 64 && is_ifunc && target->abiversion() < 2))
5662         {
5663           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5664                                                              is_ifunc);
5665           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5666           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5667               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5668             {
5669               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5670                                      : elfcpp::R_POWERPC_RELATIVE);
5671               rela_dyn->add_local_relative(object, r_sym, dynrel,
5672                                            output_section, data_shndx,
5673                                            reloc.get_r_offset(),
5674                                            reloc.get_r_addend(), false);
5675             }
5676           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5677             {
5678               check_non_pic(object, r_type);
5679               rela_dyn->add_local(object, r_sym, r_type, output_section,
5680                                   data_shndx, reloc.get_r_offset(),
5681                                   reloc.get_r_addend());
5682             }
5683           else
5684             {
5685               gold_assert(lsym.get_st_value() == 0);
5686               unsigned int shndx = lsym.get_st_shndx();
5687               bool is_ordinary;
5688               shndx = object->adjust_sym_shndx(r_sym, shndx,
5689                                                &is_ordinary);
5690               if (!is_ordinary)
5691                 object->error(_("section symbol %u has bad shndx %u"),
5692                               r_sym, shndx);
5693               else
5694                 rela_dyn->add_local_section(object, shndx, r_type,
5695                                             output_section, data_shndx,
5696                                             reloc.get_r_offset());
5697             }
5698         }
5699       break;
5700
5701     case elfcpp::R_POWERPC_REL24:
5702     case elfcpp::R_PPC_PLTREL24:
5703     case elfcpp::R_PPC_LOCAL24PC:
5704     case elfcpp::R_POWERPC_REL14:
5705     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5706     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5707       if (!is_ifunc)
5708         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5709                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5710                             reloc.get_r_addend());
5711       break;
5712
5713     case elfcpp::R_PPC64_REL64:
5714     case elfcpp::R_POWERPC_REL32:
5715     case elfcpp::R_POWERPC_REL16:
5716     case elfcpp::R_POWERPC_REL16_LO:
5717     case elfcpp::R_POWERPC_REL16_HI:
5718     case elfcpp::R_POWERPC_REL16_HA:
5719     case elfcpp::R_POWERPC_REL16DX_HA:
5720     case elfcpp::R_POWERPC_SECTOFF:
5721     case elfcpp::R_POWERPC_SECTOFF_LO:
5722     case elfcpp::R_POWERPC_SECTOFF_HI:
5723     case elfcpp::R_POWERPC_SECTOFF_HA:
5724     case elfcpp::R_PPC64_SECTOFF_DS:
5725     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5726     case elfcpp::R_POWERPC_TPREL16:
5727     case elfcpp::R_POWERPC_TPREL16_LO:
5728     case elfcpp::R_POWERPC_TPREL16_HI:
5729     case elfcpp::R_POWERPC_TPREL16_HA:
5730     case elfcpp::R_PPC64_TPREL16_DS:
5731     case elfcpp::R_PPC64_TPREL16_LO_DS:
5732     case elfcpp::R_PPC64_TPREL16_HIGH:
5733     case elfcpp::R_PPC64_TPREL16_HIGHA:
5734     case elfcpp::R_PPC64_TPREL16_HIGHER:
5735     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5736     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5737     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5738     case elfcpp::R_POWERPC_DTPREL16:
5739     case elfcpp::R_POWERPC_DTPREL16_LO:
5740     case elfcpp::R_POWERPC_DTPREL16_HI:
5741     case elfcpp::R_POWERPC_DTPREL16_HA:
5742     case elfcpp::R_PPC64_DTPREL16_DS:
5743     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5744     case elfcpp::R_PPC64_DTPREL16_HIGH:
5745     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5746     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5747     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5748     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5749     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5750     case elfcpp::R_PPC64_TLSGD:
5751     case elfcpp::R_PPC64_TLSLD:
5752     case elfcpp::R_PPC64_ADDR64_LOCAL:
5753       break;
5754
5755     case elfcpp::R_POWERPC_GOT16:
5756     case elfcpp::R_POWERPC_GOT16_LO:
5757     case elfcpp::R_POWERPC_GOT16_HI:
5758     case elfcpp::R_POWERPC_GOT16_HA:
5759     case elfcpp::R_PPC64_GOT16_DS:
5760     case elfcpp::R_PPC64_GOT16_LO_DS:
5761       {
5762         // The symbol requires a GOT entry.
5763         Output_data_got_powerpc<size, big_endian>* got
5764           = target->got_section(symtab, layout);
5765         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5766
5767         if (!parameters->options().output_is_position_independent())
5768           {
5769             if (is_ifunc
5770                 && (size == 32 || target->abiversion() >= 2))
5771               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5772             else
5773               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5774           }
5775         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5776           {
5777             // If we are generating a shared object or a pie, this
5778             // symbol's GOT entry will be set by a dynamic relocation.
5779             unsigned int off;
5780             off = got->add_constant(0);
5781             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5782
5783             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5784                                                                is_ifunc);
5785             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5786                                    : elfcpp::R_POWERPC_RELATIVE);
5787             rela_dyn->add_local_relative(object, r_sym, dynrel,
5788                                          got, off, 0, false);
5789           }
5790       }
5791       break;
5792
5793     case elfcpp::R_PPC64_TOC16:
5794     case elfcpp::R_PPC64_TOC16_LO:
5795     case elfcpp::R_PPC64_TOC16_HI:
5796     case elfcpp::R_PPC64_TOC16_HA:
5797     case elfcpp::R_PPC64_TOC16_DS:
5798     case elfcpp::R_PPC64_TOC16_LO_DS:
5799       // We need a GOT section.
5800       target->got_section(symtab, layout);
5801       break;
5802
5803     case elfcpp::R_POWERPC_GOT_TLSGD16:
5804     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5805     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5806     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5807       {
5808         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5809         if (tls_type == tls::TLSOPT_NONE)
5810           {
5811             Output_data_got_powerpc<size, big_endian>* got
5812               = target->got_section(symtab, layout);
5813             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5814             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5815             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5816                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5817           }
5818         else if (tls_type == tls::TLSOPT_TO_LE)
5819           {
5820             // no GOT relocs needed for Local Exec.
5821           }
5822         else
5823           gold_unreachable();
5824       }
5825       break;
5826
5827     case elfcpp::R_POWERPC_GOT_TLSLD16:
5828     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5829     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5830     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5831       {
5832         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5833         if (tls_type == tls::TLSOPT_NONE)
5834           target->tlsld_got_offset(symtab, layout, object);
5835         else if (tls_type == tls::TLSOPT_TO_LE)
5836           {
5837             // no GOT relocs needed for Local Exec.
5838             if (parameters->options().emit_relocs())
5839               {
5840                 Output_section* os = layout->tls_segment()->first_section();
5841                 gold_assert(os != NULL);
5842                 os->set_needs_symtab_index();
5843               }
5844           }
5845         else
5846           gold_unreachable();
5847       }
5848       break;
5849
5850     case elfcpp::R_POWERPC_GOT_DTPREL16:
5851     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5852     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5853     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5854       {
5855         Output_data_got_powerpc<size, big_endian>* got
5856           = target->got_section(symtab, layout);
5857         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5858         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5859       }
5860       break;
5861
5862     case elfcpp::R_POWERPC_GOT_TPREL16:
5863     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5864     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5865     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5866       {
5867         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5868         if (tls_type == tls::TLSOPT_NONE)
5869           {
5870             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5871             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5872               {
5873                 Output_data_got_powerpc<size, big_endian>* got
5874                   = target->got_section(symtab, layout);
5875                 unsigned int off = got->add_constant(0);
5876                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5877
5878                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5879                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5880                                                       elfcpp::R_POWERPC_TPREL,
5881                                                       got, off, 0);
5882               }
5883           }
5884         else if (tls_type == tls::TLSOPT_TO_LE)
5885           {
5886             // no GOT relocs needed for Local Exec.
5887           }
5888         else
5889           gold_unreachable();
5890       }
5891       break;
5892
5893     default:
5894       unsupported_reloc_local(object, r_type);
5895       break;
5896     }
5897
5898   switch (r_type)
5899     {
5900     case elfcpp::R_POWERPC_GOT_TLSLD16:
5901     case elfcpp::R_POWERPC_GOT_TLSGD16:
5902     case elfcpp::R_POWERPC_GOT_TPREL16:
5903     case elfcpp::R_POWERPC_GOT_DTPREL16:
5904     case elfcpp::R_POWERPC_GOT16:
5905     case elfcpp::R_PPC64_GOT16_DS:
5906     case elfcpp::R_PPC64_TOC16:
5907     case elfcpp::R_PPC64_TOC16_DS:
5908       ppc_object->set_has_small_toc_reloc();
5909     default:
5910       break;
5911     }
5912 }
5913
5914 // Report an unsupported relocation against a global symbol.
5915
5916 template<int size, bool big_endian>
5917 void
5918 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5919     Sized_relobj_file<size, big_endian>* object,
5920     unsigned int r_type,
5921     Symbol* gsym)
5922 {
5923   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5924              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5925 }
5926
5927 // Scan a relocation for a global symbol.
5928
5929 template<int size, bool big_endian>
5930 inline void
5931 Target_powerpc<size, big_endian>::Scan::global(
5932     Symbol_table* symtab,
5933     Layout* layout,
5934     Target_powerpc<size, big_endian>* target,
5935     Sized_relobj_file<size, big_endian>* object,
5936     unsigned int data_shndx,
5937     Output_section* output_section,
5938     const elfcpp::Rela<size, big_endian>& reloc,
5939     unsigned int r_type,
5940     Symbol* gsym)
5941 {
5942   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5943     return;
5944
5945   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5946       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5947     {
5948       this->expect_tls_get_addr_call();
5949       const bool final = gsym->final_value_is_known();
5950       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5951       if (tls_type != tls::TLSOPT_NONE)
5952         this->skip_next_tls_get_addr_call();
5953     }
5954   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5955            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5956     {
5957       this->expect_tls_get_addr_call();
5958       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5959       if (tls_type != tls::TLSOPT_NONE)
5960         this->skip_next_tls_get_addr_call();
5961     }
5962
5963   Powerpc_relobj<size, big_endian>* ppc_object
5964     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5965
5966   // A STT_GNU_IFUNC symbol may require a PLT entry.
5967   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5968   bool pushed_ifunc = false;
5969   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5970     {
5971       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5972                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5973                           reloc.get_r_addend());
5974       target->make_plt_entry(symtab, layout, gsym);
5975       pushed_ifunc = true;
5976     }
5977
5978   switch (r_type)
5979     {
5980     case elfcpp::R_POWERPC_NONE:
5981     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5982     case elfcpp::R_POWERPC_GNU_VTENTRY:
5983     case elfcpp::R_PPC_LOCAL24PC:
5984     case elfcpp::R_POWERPC_TLS:
5985     case elfcpp::R_PPC64_ENTRY:
5986       break;
5987
5988     case elfcpp::R_PPC64_TOC:
5989       {
5990         Output_data_got_powerpc<size, big_endian>* got
5991           = target->got_section(symtab, layout);
5992         if (parameters->options().output_is_position_independent())
5993           {
5994             Address off = reloc.get_r_offset();
5995             if (size == 64
5996                 && data_shndx == ppc_object->opd_shndx()
5997                 && ppc_object->get_opd_discard(off - 8))
5998               break;
5999
6000             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6001             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6002             if (data_shndx != ppc_object->opd_shndx())
6003               symobj = static_cast
6004                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6005             rela_dyn->add_output_section_relative(got->output_section(),
6006                                                   elfcpp::R_POWERPC_RELATIVE,
6007                                                   output_section,
6008                                                   object, data_shndx, off,
6009                                                   symobj->toc_base_offset());
6010           }
6011       }
6012       break;
6013
6014     case elfcpp::R_PPC64_ADDR64:
6015       if (size == 64
6016           && target->abiversion() < 2
6017           && data_shndx == ppc_object->opd_shndx()
6018           && (gsym->is_defined_in_discarded_section()
6019               || gsym->object() != object))
6020         {
6021           ppc_object->set_opd_discard(reloc.get_r_offset());
6022           break;
6023         }
6024       // Fall thru
6025     case elfcpp::R_PPC64_UADDR64:
6026     case elfcpp::R_POWERPC_ADDR32:
6027     case elfcpp::R_POWERPC_UADDR32:
6028     case elfcpp::R_POWERPC_ADDR24:
6029     case elfcpp::R_POWERPC_ADDR16:
6030     case elfcpp::R_POWERPC_ADDR16_LO:
6031     case elfcpp::R_POWERPC_ADDR16_HI:
6032     case elfcpp::R_POWERPC_ADDR16_HA:
6033     case elfcpp::R_POWERPC_UADDR16:
6034     case elfcpp::R_PPC64_ADDR16_HIGH:
6035     case elfcpp::R_PPC64_ADDR16_HIGHA:
6036     case elfcpp::R_PPC64_ADDR16_HIGHER:
6037     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6038     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6039     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6040     case elfcpp::R_PPC64_ADDR16_DS:
6041     case elfcpp::R_PPC64_ADDR16_LO_DS:
6042     case elfcpp::R_POWERPC_ADDR14:
6043     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6044     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6045       {
6046         // Make a PLT entry if necessary.
6047         if (gsym->needs_plt_entry())
6048           {
6049             // Since this is not a PC-relative relocation, we may be
6050             // taking the address of a function. In that case we need to
6051             // set the entry in the dynamic symbol table to the address of
6052             // the PLT call stub.
6053             bool need_ifunc_plt = false;
6054             if ((size == 32 || target->abiversion() >= 2)
6055                 && gsym->is_from_dynobj()
6056                 && !parameters->options().output_is_position_independent())
6057               {
6058                 gsym->set_needs_dynsym_value();
6059                 need_ifunc_plt = true;
6060               }
6061             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6062               {
6063                 target->push_branch(ppc_object, data_shndx,
6064                                     reloc.get_r_offset(), r_type,
6065                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6066                                     reloc.get_r_addend());
6067                 target->make_plt_entry(symtab, layout, gsym);
6068               }
6069           }
6070         // Make a dynamic relocation if necessary.
6071         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6072             || (size == 64 && is_ifunc && target->abiversion() < 2))
6073           {
6074             if (!parameters->options().output_is_position_independent()
6075                 && gsym->may_need_copy_reloc())
6076               {
6077                 target->copy_reloc(symtab, layout, object,
6078                                    data_shndx, output_section, gsym, reloc);
6079               }
6080             else if ((((size == 32
6081                         && r_type == elfcpp::R_POWERPC_ADDR32)
6082                        || (size == 64
6083                            && r_type == elfcpp::R_PPC64_ADDR64
6084                            && target->abiversion() >= 2))
6085                       && gsym->can_use_relative_reloc(false)
6086                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6087                            && parameters->options().shared()))
6088                      || (size == 64
6089                          && r_type == elfcpp::R_PPC64_ADDR64
6090                          && target->abiversion() < 2
6091                          && (gsym->can_use_relative_reloc(false)
6092                              || data_shndx == ppc_object->opd_shndx())))
6093               {
6094                 Reloc_section* rela_dyn
6095                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6096                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6097                                        : elfcpp::R_POWERPC_RELATIVE);
6098                 rela_dyn->add_symbolless_global_addend(
6099                     gsym, dynrel, output_section, object, data_shndx,
6100                     reloc.get_r_offset(), reloc.get_r_addend());
6101               }
6102             else
6103               {
6104                 Reloc_section* rela_dyn
6105                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6106                 check_non_pic(object, r_type);
6107                 rela_dyn->add_global(gsym, r_type, output_section,
6108                                      object, data_shndx,
6109                                      reloc.get_r_offset(),
6110                                      reloc.get_r_addend());
6111               }
6112           }
6113       }
6114       break;
6115
6116     case elfcpp::R_PPC_PLTREL24:
6117     case elfcpp::R_POWERPC_REL24:
6118       if (!is_ifunc)
6119         {
6120           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6121                               r_type,
6122                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6123                               reloc.get_r_addend());
6124           if (gsym->needs_plt_entry()
6125               || (!gsym->final_value_is_known()
6126                   && (gsym->is_undefined()
6127                       || gsym->is_from_dynobj()
6128                       || gsym->is_preemptible())))
6129             target->make_plt_entry(symtab, layout, gsym);
6130         }
6131       // Fall thru
6132
6133     case elfcpp::R_PPC64_REL64:
6134     case elfcpp::R_POWERPC_REL32:
6135       // Make a dynamic relocation if necessary.
6136       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6137         {
6138           if (!parameters->options().output_is_position_independent()
6139               && gsym->may_need_copy_reloc())
6140             {
6141               target->copy_reloc(symtab, layout, object,
6142                                  data_shndx, output_section, gsym,
6143                                  reloc);
6144             }
6145           else
6146             {
6147               Reloc_section* rela_dyn
6148                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6149               check_non_pic(object, r_type);
6150               rela_dyn->add_global(gsym, r_type, output_section, object,
6151                                    data_shndx, reloc.get_r_offset(),
6152                                    reloc.get_r_addend());
6153             }
6154         }
6155       break;
6156
6157     case elfcpp::R_POWERPC_REL14:
6158     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6159     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6160       if (!is_ifunc)
6161         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6162                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6163                             reloc.get_r_addend());
6164       break;
6165
6166     case elfcpp::R_POWERPC_REL16:
6167     case elfcpp::R_POWERPC_REL16_LO:
6168     case elfcpp::R_POWERPC_REL16_HI:
6169     case elfcpp::R_POWERPC_REL16_HA:
6170     case elfcpp::R_POWERPC_REL16DX_HA:
6171     case elfcpp::R_POWERPC_SECTOFF:
6172     case elfcpp::R_POWERPC_SECTOFF_LO:
6173     case elfcpp::R_POWERPC_SECTOFF_HI:
6174     case elfcpp::R_POWERPC_SECTOFF_HA:
6175     case elfcpp::R_PPC64_SECTOFF_DS:
6176     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6177     case elfcpp::R_POWERPC_TPREL16:
6178     case elfcpp::R_POWERPC_TPREL16_LO:
6179     case elfcpp::R_POWERPC_TPREL16_HI:
6180     case elfcpp::R_POWERPC_TPREL16_HA:
6181     case elfcpp::R_PPC64_TPREL16_DS:
6182     case elfcpp::R_PPC64_TPREL16_LO_DS:
6183     case elfcpp::R_PPC64_TPREL16_HIGH:
6184     case elfcpp::R_PPC64_TPREL16_HIGHA:
6185     case elfcpp::R_PPC64_TPREL16_HIGHER:
6186     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6187     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6188     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6189     case elfcpp::R_POWERPC_DTPREL16:
6190     case elfcpp::R_POWERPC_DTPREL16_LO:
6191     case elfcpp::R_POWERPC_DTPREL16_HI:
6192     case elfcpp::R_POWERPC_DTPREL16_HA:
6193     case elfcpp::R_PPC64_DTPREL16_DS:
6194     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6195     case elfcpp::R_PPC64_DTPREL16_HIGH:
6196     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6197     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6198     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6199     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6200     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6201     case elfcpp::R_PPC64_TLSGD:
6202     case elfcpp::R_PPC64_TLSLD:
6203     case elfcpp::R_PPC64_ADDR64_LOCAL:
6204       break;
6205
6206     case elfcpp::R_POWERPC_GOT16:
6207     case elfcpp::R_POWERPC_GOT16_LO:
6208     case elfcpp::R_POWERPC_GOT16_HI:
6209     case elfcpp::R_POWERPC_GOT16_HA:
6210     case elfcpp::R_PPC64_GOT16_DS:
6211     case elfcpp::R_PPC64_GOT16_LO_DS:
6212       {
6213         // The symbol requires a GOT entry.
6214         Output_data_got_powerpc<size, big_endian>* got;
6215
6216         got = target->got_section(symtab, layout);
6217         if (gsym->final_value_is_known())
6218           {
6219             if (is_ifunc
6220                 && (size == 32 || target->abiversion() >= 2))
6221               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6222             else
6223               got->add_global(gsym, GOT_TYPE_STANDARD);
6224           }
6225         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6226           {
6227             // If we are generating a shared object or a pie, this
6228             // symbol's GOT entry will be set by a dynamic relocation.
6229             unsigned int off = got->add_constant(0);
6230             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6231
6232             Reloc_section* rela_dyn
6233               = target->rela_dyn_section(symtab, layout, is_ifunc);
6234
6235             if (gsym->can_use_relative_reloc(false)
6236                 && !((size == 32
6237                       || target->abiversion() >= 2)
6238                      && gsym->visibility() == elfcpp::STV_PROTECTED
6239                      && parameters->options().shared()))
6240               {
6241                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6242                                        : elfcpp::R_POWERPC_RELATIVE);
6243                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6244               }
6245             else
6246               {
6247                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6248                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6249               }
6250           }
6251       }
6252       break;
6253
6254     case elfcpp::R_PPC64_TOC16:
6255     case elfcpp::R_PPC64_TOC16_LO:
6256     case elfcpp::R_PPC64_TOC16_HI:
6257     case elfcpp::R_PPC64_TOC16_HA:
6258     case elfcpp::R_PPC64_TOC16_DS:
6259     case elfcpp::R_PPC64_TOC16_LO_DS:
6260       // We need a GOT section.
6261       target->got_section(symtab, layout);
6262       break;
6263
6264     case elfcpp::R_POWERPC_GOT_TLSGD16:
6265     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6266     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6267     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6268       {
6269         const bool final = gsym->final_value_is_known();
6270         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6271         if (tls_type == tls::TLSOPT_NONE)
6272           {
6273             Output_data_got_powerpc<size, big_endian>* got
6274               = target->got_section(symtab, layout);
6275             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6276             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6277                                           elfcpp::R_POWERPC_DTPMOD,
6278                                           elfcpp::R_POWERPC_DTPREL);
6279           }
6280         else if (tls_type == tls::TLSOPT_TO_IE)
6281           {
6282             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6283               {
6284                 Output_data_got_powerpc<size, big_endian>* got
6285                   = target->got_section(symtab, layout);
6286                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6287                 if (gsym->is_undefined()
6288                     || gsym->is_from_dynobj())
6289                   {
6290                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6291                                              elfcpp::R_POWERPC_TPREL);
6292                   }
6293                 else
6294                   {
6295                     unsigned int off = got->add_constant(0);
6296                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6297                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6298                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6299                                                            got, off, 0);
6300                   }
6301               }
6302           }
6303         else if (tls_type == tls::TLSOPT_TO_LE)
6304           {
6305             // no GOT relocs needed for Local Exec.
6306           }
6307         else
6308           gold_unreachable();
6309       }
6310       break;
6311
6312     case elfcpp::R_POWERPC_GOT_TLSLD16:
6313     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6314     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6315     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6316       {
6317         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6318         if (tls_type == tls::TLSOPT_NONE)
6319           target->tlsld_got_offset(symtab, layout, object);
6320         else if (tls_type == tls::TLSOPT_TO_LE)
6321           {
6322             // no GOT relocs needed for Local Exec.
6323             if (parameters->options().emit_relocs())
6324               {
6325                 Output_section* os = layout->tls_segment()->first_section();
6326                 gold_assert(os != NULL);
6327                 os->set_needs_symtab_index();
6328               }
6329           }
6330         else
6331           gold_unreachable();
6332       }
6333       break;
6334
6335     case elfcpp::R_POWERPC_GOT_DTPREL16:
6336     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6337     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6338     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6339       {
6340         Output_data_got_powerpc<size, big_endian>* got
6341           = target->got_section(symtab, layout);
6342         if (!gsym->final_value_is_known()
6343             && (gsym->is_from_dynobj()
6344                 || gsym->is_undefined()
6345                 || gsym->is_preemptible()))
6346           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6347                                    target->rela_dyn_section(layout),
6348                                    elfcpp::R_POWERPC_DTPREL);
6349         else
6350           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6351       }
6352       break;
6353
6354     case elfcpp::R_POWERPC_GOT_TPREL16:
6355     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6356     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6357     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6358       {
6359         const bool final = gsym->final_value_is_known();
6360         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6361         if (tls_type == tls::TLSOPT_NONE)
6362           {
6363             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6364               {
6365                 Output_data_got_powerpc<size, big_endian>* got
6366                   = target->got_section(symtab, layout);
6367                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6368                 if (gsym->is_undefined()
6369                     || gsym->is_from_dynobj())
6370                   {
6371                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6372                                              elfcpp::R_POWERPC_TPREL);
6373                   }
6374                 else
6375                   {
6376                     unsigned int off = got->add_constant(0);
6377                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6378                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6379                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6380                                                            got, off, 0);
6381                   }
6382               }
6383           }
6384         else if (tls_type == tls::TLSOPT_TO_LE)
6385           {
6386             // no GOT relocs needed for Local Exec.
6387           }
6388         else
6389           gold_unreachable();
6390       }
6391       break;
6392
6393     default:
6394       unsupported_reloc_global(object, r_type, gsym);
6395       break;
6396     }
6397
6398   switch (r_type)
6399     {
6400     case elfcpp::R_POWERPC_GOT_TLSLD16:
6401     case elfcpp::R_POWERPC_GOT_TLSGD16:
6402     case elfcpp::R_POWERPC_GOT_TPREL16:
6403     case elfcpp::R_POWERPC_GOT_DTPREL16:
6404     case elfcpp::R_POWERPC_GOT16:
6405     case elfcpp::R_PPC64_GOT16_DS:
6406     case elfcpp::R_PPC64_TOC16:
6407     case elfcpp::R_PPC64_TOC16_DS:
6408       ppc_object->set_has_small_toc_reloc();
6409     default:
6410       break;
6411     }
6412 }
6413
6414 // Process relocations for gc.
6415
6416 template<int size, bool big_endian>
6417 void
6418 Target_powerpc<size, big_endian>::gc_process_relocs(
6419     Symbol_table* symtab,
6420     Layout* layout,
6421     Sized_relobj_file<size, big_endian>* object,
6422     unsigned int data_shndx,
6423     unsigned int,
6424     const unsigned char* prelocs,
6425     size_t reloc_count,
6426     Output_section* output_section,
6427     bool needs_special_offset_handling,
6428     size_t local_symbol_count,
6429     const unsigned char* plocal_symbols)
6430 {
6431   typedef Target_powerpc<size, big_endian> Powerpc;
6432   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6433   Powerpc_relobj<size, big_endian>* ppc_object
6434     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6435   if (size == 64)
6436     ppc_object->set_opd_valid();
6437   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6438     {
6439       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6440       for (p = ppc_object->access_from_map()->begin();
6441            p != ppc_object->access_from_map()->end();
6442            ++p)
6443         {
6444           Address dst_off = p->first;
6445           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6446           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6447           for (s = p->second.begin(); s != p->second.end(); ++s)
6448             {
6449               Relobj* src_obj = s->first;
6450               unsigned int src_indx = s->second;
6451               symtab->gc()->add_reference(src_obj, src_indx,
6452                                           ppc_object, dst_indx);
6453             }
6454           p->second.clear();
6455         }
6456       ppc_object->access_from_map()->clear();
6457       ppc_object->process_gc_mark(symtab);
6458       // Don't look at .opd relocs as .opd will reference everything.
6459       return;
6460     }
6461
6462   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6463                           typename Target_powerpc::Relocatable_size_for_reloc>(
6464     symtab,
6465     layout,
6466     this,
6467     object,
6468     data_shndx,
6469     prelocs,
6470     reloc_count,
6471     output_section,
6472     needs_special_offset_handling,
6473     local_symbol_count,
6474     plocal_symbols);
6475 }
6476
6477 // Handle target specific gc actions when adding a gc reference from
6478 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6479 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6480 // section of a function descriptor.
6481
6482 template<int size, bool big_endian>
6483 void
6484 Target_powerpc<size, big_endian>::do_gc_add_reference(
6485     Symbol_table* symtab,
6486     Relobj* src_obj,
6487     unsigned int src_shndx,
6488     Relobj* dst_obj,
6489     unsigned int dst_shndx,
6490     Address dst_off) const
6491 {
6492   if (size != 64 || dst_obj->is_dynamic())
6493     return;
6494
6495   Powerpc_relobj<size, big_endian>* ppc_object
6496     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6497   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6498     {
6499       if (ppc_object->opd_valid())
6500         {
6501           dst_shndx = ppc_object->get_opd_ent(dst_off);
6502           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6503         }
6504       else
6505         {
6506           // If we haven't run scan_opd_relocs, we must delay
6507           // processing this function descriptor reference.
6508           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6509         }
6510     }
6511 }
6512
6513 // Add any special sections for this symbol to the gc work list.
6514 // For powerpc64, this adds the code section of a function
6515 // descriptor.
6516
6517 template<int size, bool big_endian>
6518 void
6519 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6520     Symbol_table* symtab,
6521     Symbol* sym) const
6522 {
6523   if (size == 64)
6524     {
6525       Powerpc_relobj<size, big_endian>* ppc_object
6526         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6527       bool is_ordinary;
6528       unsigned int shndx = sym->shndx(&is_ordinary);
6529       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6530         {
6531           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6532           Address dst_off = gsym->value();
6533           if (ppc_object->opd_valid())
6534             {
6535               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6536               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6537                                                             dst_indx));
6538             }
6539           else
6540             ppc_object->add_gc_mark(dst_off);
6541         }
6542     }
6543 }
6544
6545 // For a symbol location in .opd, set LOC to the location of the
6546 // function entry.
6547
6548 template<int size, bool big_endian>
6549 void
6550 Target_powerpc<size, big_endian>::do_function_location(
6551     Symbol_location* loc) const
6552 {
6553   if (size == 64 && loc->shndx != 0)
6554     {
6555       if (loc->object->is_dynamic())
6556         {
6557           Powerpc_dynobj<size, big_endian>* ppc_object
6558             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6559           if (loc->shndx == ppc_object->opd_shndx())
6560             {
6561               Address dest_off;
6562               Address off = loc->offset - ppc_object->opd_address();
6563               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6564               loc->offset = dest_off;
6565             }
6566         }
6567       else
6568         {
6569           const Powerpc_relobj<size, big_endian>* ppc_object
6570             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6571           if (loc->shndx == ppc_object->opd_shndx())
6572             {
6573               Address dest_off;
6574               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6575               loc->offset = dest_off;
6576             }
6577         }
6578     }
6579 }
6580
6581 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6582 // compiled with -fsplit-stack.  The function calls non-split-stack
6583 // code.  Change the function to ensure it has enough stack space to
6584 // call some random function.
6585
6586 template<int size, bool big_endian>
6587 void
6588 Target_powerpc<size, big_endian>::do_calls_non_split(
6589     Relobj* object,
6590     unsigned int shndx,
6591     section_offset_type fnoffset,
6592     section_size_type fnsize,
6593     unsigned char* view,
6594     section_size_type view_size,
6595     std::string* from,
6596     std::string* to) const
6597 {
6598   // 32-bit not supported.
6599   if (size == 32)
6600     {
6601       // warn
6602       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6603                                  view, view_size, from, to);
6604       return;
6605     }
6606
6607   // The function always starts with
6608   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6609   //    addis %r12,%r1,-allocate@ha
6610   //    addi %r12,%r12,-allocate@l
6611   //    cmpld %r12,%r0
6612   // but note that the addis or addi may be replaced with a nop
6613
6614   unsigned char *entry = view + fnoffset;
6615   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6616
6617   if ((insn & 0xffff0000) == addis_2_12)
6618     {
6619       /* Skip ELFv2 global entry code.  */
6620       entry += 8;
6621       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6622     }
6623
6624   unsigned char *pinsn = entry;
6625   bool ok = false;
6626   const uint32_t ld_private_ss = 0xe80d8fc0;
6627   if (insn == ld_private_ss)
6628     {
6629       int32_t allocate = 0;
6630       while (1)
6631         {
6632           pinsn += 4;
6633           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6634           if ((insn & 0xffff0000) == addis_12_1)
6635             allocate += (insn & 0xffff) << 16;
6636           else if ((insn & 0xffff0000) == addi_12_1
6637                    || (insn & 0xffff0000) == addi_12_12)
6638             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6639           else if (insn != nop)
6640             break;
6641         }
6642       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6643         {
6644           int extra = parameters->options().split_stack_adjust_size();
6645           allocate -= extra;
6646           if (allocate >= 0 || extra < 0)
6647             {
6648               object->error(_("split-stack stack size overflow at "
6649                               "section %u offset %0zx"),
6650                             shndx, static_cast<size_t>(fnoffset));
6651               return;
6652             }
6653           pinsn = entry + 4;
6654           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6655           if (insn != addis_12_1)
6656             {
6657               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6658               pinsn += 4;
6659               insn = addi_12_12 | (allocate & 0xffff);
6660               if (insn != addi_12_12)
6661                 {
6662                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6663                   pinsn += 4;
6664                 }
6665             }
6666           else
6667             {
6668               insn = addi_12_1 | (allocate & 0xffff);
6669               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6670               pinsn += 4;
6671             }
6672           if (pinsn != entry + 12)
6673             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6674
6675           ok = true;
6676         }
6677     }
6678
6679   if (!ok)
6680     {
6681       if (!object->has_no_split_stack())
6682         object->error(_("failed to match split-stack sequence at "
6683                         "section %u offset %0zx"),
6684                       shndx, static_cast<size_t>(fnoffset));
6685     }
6686 }
6687
6688 // Scan relocations for a section.
6689
6690 template<int size, bool big_endian>
6691 void
6692 Target_powerpc<size, big_endian>::scan_relocs(
6693     Symbol_table* symtab,
6694     Layout* layout,
6695     Sized_relobj_file<size, big_endian>* object,
6696     unsigned int data_shndx,
6697     unsigned int sh_type,
6698     const unsigned char* prelocs,
6699     size_t reloc_count,
6700     Output_section* output_section,
6701     bool needs_special_offset_handling,
6702     size_t local_symbol_count,
6703     const unsigned char* plocal_symbols)
6704 {
6705   typedef Target_powerpc<size, big_endian> Powerpc;
6706   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6707
6708   if (sh_type == elfcpp::SHT_REL)
6709     {
6710       gold_error(_("%s: unsupported REL reloc section"),
6711                  object->name().c_str());
6712       return;
6713     }
6714
6715   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6716     symtab,
6717     layout,
6718     this,
6719     object,
6720     data_shndx,
6721     prelocs,
6722     reloc_count,
6723     output_section,
6724     needs_special_offset_handling,
6725     local_symbol_count,
6726     plocal_symbols);
6727 }
6728
6729 // Functor class for processing the global symbol table.
6730 // Removes symbols defined on discarded opd entries.
6731
6732 template<bool big_endian>
6733 class Global_symbol_visitor_opd
6734 {
6735  public:
6736   Global_symbol_visitor_opd()
6737   { }
6738
6739   void
6740   operator()(Sized_symbol<64>* sym)
6741   {
6742     if (sym->has_symtab_index()
6743         || sym->source() != Symbol::FROM_OBJECT
6744         || !sym->in_real_elf())
6745       return;
6746
6747     if (sym->object()->is_dynamic())
6748       return;
6749
6750     Powerpc_relobj<64, big_endian>* symobj
6751       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6752     if (symobj->opd_shndx() == 0)
6753       return;
6754
6755     bool is_ordinary;
6756     unsigned int shndx = sym->shndx(&is_ordinary);
6757     if (shndx == symobj->opd_shndx()
6758         && symobj->get_opd_discard(sym->value()))
6759       {
6760         sym->set_undefined();
6761         sym->set_visibility(elfcpp::STV_DEFAULT);
6762         sym->set_is_defined_in_discarded_section();
6763         sym->set_symtab_index(-1U);
6764       }
6765   }
6766 };
6767
6768 template<int size, bool big_endian>
6769 void
6770 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6771     Layout* layout,
6772     Symbol_table* symtab)
6773 {
6774   if (size == 64)
6775     {
6776       Output_data_save_res<size, big_endian>* savres
6777         = new Output_data_save_res<size, big_endian>(symtab);
6778       this->savres_section_ = savres;
6779       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6780                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6781                                       savres, ORDER_TEXT, false);
6782     }
6783 }
6784
6785 // Sort linker created .got section first (for the header), then input
6786 // sections belonging to files using small model code.
6787
6788 template<bool big_endian>
6789 class Sort_toc_sections
6790 {
6791  public:
6792   bool
6793   operator()(const Output_section::Input_section& is1,
6794              const Output_section::Input_section& is2) const
6795   {
6796     if (!is1.is_input_section() && is2.is_input_section())
6797       return true;
6798     bool small1
6799       = (is1.is_input_section()
6800          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6801              ->has_small_toc_reloc()));
6802     bool small2
6803       = (is2.is_input_section()
6804          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6805              ->has_small_toc_reloc()));
6806     return small1 && !small2;
6807   }
6808 };
6809
6810 // Finalize the sections.
6811
6812 template<int size, bool big_endian>
6813 void
6814 Target_powerpc<size, big_endian>::do_finalize_sections(
6815     Layout* layout,
6816     const Input_objects*,
6817     Symbol_table* symtab)
6818 {
6819   if (parameters->doing_static_link())
6820     {
6821       // At least some versions of glibc elf-init.o have a strong
6822       // reference to __rela_iplt marker syms.  A weak ref would be
6823       // better..
6824       if (this->iplt_ != NULL)
6825         {
6826           Reloc_section* rel = this->iplt_->rel_plt();
6827           symtab->define_in_output_data("__rela_iplt_start", NULL,
6828                                         Symbol_table::PREDEFINED, rel, 0, 0,
6829                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6830                                         elfcpp::STV_HIDDEN, 0, false, true);
6831           symtab->define_in_output_data("__rela_iplt_end", NULL,
6832                                         Symbol_table::PREDEFINED, rel, 0, 0,
6833                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6834                                         elfcpp::STV_HIDDEN, 0, true, true);
6835         }
6836       else
6837         {
6838           symtab->define_as_constant("__rela_iplt_start", NULL,
6839                                      Symbol_table::PREDEFINED, 0, 0,
6840                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6841                                      elfcpp::STV_HIDDEN, 0, true, false);
6842           symtab->define_as_constant("__rela_iplt_end", NULL,
6843                                      Symbol_table::PREDEFINED, 0, 0,
6844                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6845                                      elfcpp::STV_HIDDEN, 0, true, false);
6846         }
6847     }
6848
6849   if (size == 64)
6850     {
6851       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6852       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6853
6854       if (!parameters->options().relocatable())
6855         {
6856           this->define_save_restore_funcs(layout, symtab);
6857
6858           // Annoyingly, we need to make these sections now whether or
6859           // not we need them.  If we delay until do_relax then we
6860           // need to mess with the relaxation machinery checkpointing.
6861           this->got_section(symtab, layout);
6862           this->make_brlt_section(layout);
6863
6864           if (parameters->options().toc_sort())
6865             {
6866               Output_section* os = this->got_->output_section();
6867               if (os != NULL && os->input_sections().size() > 1)
6868                 std::stable_sort(os->input_sections().begin(),
6869                                  os->input_sections().end(),
6870                                  Sort_toc_sections<big_endian>());
6871             }
6872         }
6873     }
6874
6875   // Fill in some more dynamic tags.
6876   Output_data_dynamic* odyn = layout->dynamic_data();
6877   if (odyn != NULL)
6878     {
6879       const Reloc_section* rel_plt = (this->plt_ == NULL
6880                                       ? NULL
6881                                       : this->plt_->rel_plt());
6882       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6883                                       this->rela_dyn_, true, size == 32);
6884
6885       if (size == 32)
6886         {
6887           if (this->got_ != NULL)
6888             {
6889               this->got_->finalize_data_size();
6890               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6891                                             this->got_, this->got_->g_o_t());
6892             }
6893         }
6894       else
6895         {
6896           if (this->glink_ != NULL)
6897             {
6898               this->glink_->finalize_data_size();
6899               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6900                                             this->glink_,
6901                                             (this->glink_->pltresolve_size
6902                                              - 32));
6903             }
6904         }
6905     }
6906
6907   // Emit any relocs we saved in an attempt to avoid generating COPY
6908   // relocs.
6909   if (this->copy_relocs_.any_saved_relocs())
6910     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6911 }
6912
6913 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6914 // reloc.
6915
6916 static bool
6917 ok_lo_toc_insn(uint32_t insn)
6918 {
6919   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6920           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6921           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6922           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6923           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6924           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6925           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6926           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6927           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6928           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6929           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6930           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6931           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6932           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6933           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6934               && (insn & 3) != 1)
6935           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6936               && ((insn & 3) == 0 || (insn & 3) == 3))
6937           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6938 }
6939
6940 // Return the value to use for a branch relocation.
6941
6942 template<int size, bool big_endian>
6943 bool
6944 Target_powerpc<size, big_endian>::symval_for_branch(
6945     const Symbol_table* symtab,
6946     const Sized_symbol<size>* gsym,
6947     Powerpc_relobj<size, big_endian>* object,
6948     Address *value,
6949     unsigned int *dest_shndx)
6950 {
6951   if (size == 32 || this->abiversion() >= 2)
6952     gold_unreachable();
6953   *dest_shndx = 0;
6954
6955   // If the symbol is defined in an opd section, ie. is a function
6956   // descriptor, use the function descriptor code entry address
6957   Powerpc_relobj<size, big_endian>* symobj = object;
6958   if (gsym != NULL
6959       && gsym->source() != Symbol::FROM_OBJECT)
6960     return true;
6961   if (gsym != NULL)
6962     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6963   unsigned int shndx = symobj->opd_shndx();
6964   if (shndx == 0)
6965     return true;
6966   Address opd_addr = symobj->get_output_section_offset(shndx);
6967   if (opd_addr == invalid_address)
6968     return true;
6969   opd_addr += symobj->output_section_address(shndx);
6970   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6971     {
6972       Address sec_off;
6973       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6974       if (symtab->is_section_folded(symobj, *dest_shndx))
6975         {
6976           Section_id folded
6977             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6978           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6979           *dest_shndx = folded.second;
6980         }
6981       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6982       if (sec_addr == invalid_address)
6983         return false;
6984
6985       sec_addr += symobj->output_section(*dest_shndx)->address();
6986       *value = sec_addr + sec_off;
6987     }
6988   return true;
6989 }
6990
6991 // Perform a relocation.
6992
6993 template<int size, bool big_endian>
6994 inline bool
6995 Target_powerpc<size, big_endian>::Relocate::relocate(
6996     const Relocate_info<size, big_endian>* relinfo,
6997     unsigned int,
6998     Target_powerpc* target,
6999     Output_section* os,
7000     size_t relnum,
7001     const unsigned char* preloc,
7002     const Sized_symbol<size>* gsym,
7003     const Symbol_value<size>* psymval,
7004     unsigned char* view,
7005     Address address,
7006     section_size_type view_size)
7007 {
7008   if (view == NULL)
7009     return true;
7010
7011   const elfcpp::Rela<size, big_endian> rela(preloc);
7012   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7013   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7014     {
7015     case Track_tls::NOT_EXPECTED:
7016       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7017                              _("__tls_get_addr call lacks marker reloc"));
7018       break;
7019     case Track_tls::EXPECTED:
7020       // We have already complained.
7021       break;
7022     case Track_tls::SKIP:
7023       return true;
7024     case Track_tls::NORMAL:
7025       break;
7026     }
7027
7028   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7029   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7030   typedef typename Reloc_types<elfcpp::SHT_RELA,
7031                                size, big_endian>::Reloc Reltype;
7032   Powerpc_relobj<size, big_endian>* const object
7033     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7034   Address value = 0;
7035   bool has_stub_value = false;
7036   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7037   if ((gsym != NULL
7038        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7039        : object->local_has_plt_offset(r_sym))
7040       && (!psymval->is_ifunc_symbol()
7041           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7042     {
7043       if (size == 64
7044           && gsym != NULL
7045           && target->abiversion() >= 2
7046           && !parameters->options().output_is_position_independent()
7047           && !is_branch_reloc(r_type))
7048         {
7049           Address off = target->glink_section()->find_global_entry(gsym);
7050           if (off != invalid_address)
7051             {
7052               value = target->glink_section()->global_entry_address() + off;
7053               has_stub_value = true;
7054             }
7055         }
7056       else
7057         {
7058           Stub_table<size, big_endian>* stub_table
7059             = object->stub_table(relinfo->data_shndx);
7060           if (stub_table == NULL)
7061             {
7062               // This is a ref from a data section to an ifunc symbol.
7063               if (target->stub_tables().size() != 0)
7064                 stub_table = target->stub_tables()[0];
7065             }
7066           if (stub_table != NULL)
7067             {
7068               Address off;
7069               if (gsym != NULL)
7070                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7071                                                       rela.get_r_addend());
7072               else
7073                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7074                                                       rela.get_r_addend());
7075               if (off != invalid_address)
7076                 {
7077                   value = stub_table->stub_address() + off;
7078                   has_stub_value = true;
7079                 }
7080             }
7081         }
7082       // We don't care too much about bogus debug references to
7083       // non-local functions, but otherwise there had better be a plt
7084       // call stub or global entry stub as appropriate.
7085       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7086     }
7087
7088   if (r_type == elfcpp::R_POWERPC_GOT16
7089       || r_type == elfcpp::R_POWERPC_GOT16_LO
7090       || r_type == elfcpp::R_POWERPC_GOT16_HI
7091       || r_type == elfcpp::R_POWERPC_GOT16_HA
7092       || r_type == elfcpp::R_PPC64_GOT16_DS
7093       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7094     {
7095       if (gsym != NULL)
7096         {
7097           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7098           value = gsym->got_offset(GOT_TYPE_STANDARD);
7099         }
7100       else
7101         {
7102           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7103           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7104           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7105         }
7106       value -= target->got_section()->got_base_offset(object);
7107     }
7108   else if (r_type == elfcpp::R_PPC64_TOC)
7109     {
7110       value = (target->got_section()->output_section()->address()
7111                + object->toc_base_offset());
7112     }
7113   else if (gsym != NULL
7114            && (r_type == elfcpp::R_POWERPC_REL24
7115                || r_type == elfcpp::R_PPC_PLTREL24)
7116            && has_stub_value)
7117     {
7118       if (size == 64)
7119         {
7120           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7121           Valtype* wv = reinterpret_cast<Valtype*>(view);
7122           bool can_plt_call = false;
7123           if (rela.get_r_offset() + 8 <= view_size)
7124             {
7125               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7126               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7127               if ((insn & 1) != 0
7128                   && (insn2 == nop
7129                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7130                 {
7131                   elfcpp::Swap<32, big_endian>::
7132                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7133                   can_plt_call = true;
7134                 }
7135             }
7136           if (!can_plt_call)
7137             {
7138               // If we don't have a branch and link followed by a nop,
7139               // we can't go via the plt because there is no place to
7140               // put a toc restoring instruction.
7141               // Unless we know we won't be returning.
7142               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7143                 can_plt_call = true;
7144             }
7145           if (!can_plt_call)
7146             {
7147               // g++ as of 20130507 emits self-calls without a
7148               // following nop.  This is arguably wrong since we have
7149               // conflicting information.  On the one hand a global
7150               // symbol and on the other a local call sequence, but
7151               // don't error for this special case.
7152               // It isn't possible to cheaply verify we have exactly
7153               // such a call.  Allow all calls to the same section.
7154               bool ok = false;
7155               Address code = value;
7156               if (gsym->source() == Symbol::FROM_OBJECT
7157                   && gsym->object() == object)
7158                 {
7159                   unsigned int dest_shndx = 0;
7160                   if (target->abiversion() < 2)
7161                     {
7162                       Address addend = rela.get_r_addend();
7163                       code = psymval->value(object, addend);
7164                       target->symval_for_branch(relinfo->symtab, gsym, object,
7165                                                 &code, &dest_shndx);
7166                     }
7167                   bool is_ordinary;
7168                   if (dest_shndx == 0)
7169                     dest_shndx = gsym->shndx(&is_ordinary);
7170                   ok = dest_shndx == relinfo->data_shndx;
7171                 }
7172               if (!ok)
7173                 {
7174                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7175                                          _("call lacks nop, can't restore toc; "
7176                                            "recompile with -fPIC"));
7177                   value = code;
7178                 }
7179             }
7180         }
7181     }
7182   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7183            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7184            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7185            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7186     {
7187       // First instruction of a global dynamic sequence, arg setup insn.
7188       const bool final = gsym == NULL || gsym->final_value_is_known();
7189       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7190       enum Got_type got_type = GOT_TYPE_STANDARD;
7191       if (tls_type == tls::TLSOPT_NONE)
7192         got_type = GOT_TYPE_TLSGD;
7193       else if (tls_type == tls::TLSOPT_TO_IE)
7194         got_type = GOT_TYPE_TPREL;
7195       if (got_type != GOT_TYPE_STANDARD)
7196         {
7197           if (gsym != NULL)
7198             {
7199               gold_assert(gsym->has_got_offset(got_type));
7200               value = gsym->got_offset(got_type);
7201             }
7202           else
7203             {
7204               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7205               gold_assert(object->local_has_got_offset(r_sym, got_type));
7206               value = object->local_got_offset(r_sym, got_type);
7207             }
7208           value -= target->got_section()->got_base_offset(object);
7209         }
7210       if (tls_type == tls::TLSOPT_TO_IE)
7211         {
7212           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7213               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7214             {
7215               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7216               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7217               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7218               if (size == 32)
7219                 insn |= 32 << 26; // lwz
7220               else
7221                 insn |= 58 << 26; // ld
7222               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7223             }
7224           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7225                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7226         }
7227       else if (tls_type == tls::TLSOPT_TO_LE)
7228         {
7229           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7230               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7231             {
7232               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7233               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7234               insn &= (1 << 26) - (1 << 21); // extract rt
7235               if (size == 32)
7236                 insn |= addis_0_2;
7237               else
7238                 insn |= addis_0_13;
7239               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7240               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7241               value = psymval->value(object, rela.get_r_addend());
7242             }
7243           else
7244             {
7245               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7246               Insn insn = nop;
7247               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7248               r_type = elfcpp::R_POWERPC_NONE;
7249             }
7250         }
7251     }
7252   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7253            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7254            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7255            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7256     {
7257       // First instruction of a local dynamic sequence, arg setup insn.
7258       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7259       if (tls_type == tls::TLSOPT_NONE)
7260         {
7261           value = target->tlsld_got_offset();
7262           value -= target->got_section()->got_base_offset(object);
7263         }
7264       else
7265         {
7266           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7267           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7268               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7269             {
7270               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7271               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7272               insn &= (1 << 26) - (1 << 21); // extract rt
7273               if (size == 32)
7274                 insn |= addis_0_2;
7275               else
7276                 insn |= addis_0_13;
7277               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7278               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7279               value = dtp_offset;
7280             }
7281           else
7282             {
7283               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7284               Insn insn = nop;
7285               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7286               r_type = elfcpp::R_POWERPC_NONE;
7287             }
7288         }
7289     }
7290   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7291            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7292            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7293            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7294     {
7295       // Accesses relative to a local dynamic sequence address,
7296       // no optimisation here.
7297       if (gsym != NULL)
7298         {
7299           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7300           value = gsym->got_offset(GOT_TYPE_DTPREL);
7301         }
7302       else
7303         {
7304           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7305           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7306           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7307         }
7308       value -= target->got_section()->got_base_offset(object);
7309     }
7310   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7311            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7312            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7313            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7314     {
7315       // First instruction of initial exec sequence.
7316       const bool final = gsym == NULL || gsym->final_value_is_known();
7317       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7318       if (tls_type == tls::TLSOPT_NONE)
7319         {
7320           if (gsym != NULL)
7321             {
7322               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7323               value = gsym->got_offset(GOT_TYPE_TPREL);
7324             }
7325           else
7326             {
7327               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7328               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7329               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7330             }
7331           value -= target->got_section()->got_base_offset(object);
7332         }
7333       else
7334         {
7335           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7336           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7337               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7338             {
7339               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7340               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7341               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7342               if (size == 32)
7343                 insn |= addis_0_2;
7344               else
7345                 insn |= addis_0_13;
7346               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7347               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7348               value = psymval->value(object, rela.get_r_addend());
7349             }
7350           else
7351             {
7352               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7353               Insn insn = nop;
7354               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7355               r_type = elfcpp::R_POWERPC_NONE;
7356             }
7357         }
7358     }
7359   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7360            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7361     {
7362       // Second instruction of a global dynamic sequence,
7363       // the __tls_get_addr call
7364       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7365       const bool final = gsym == NULL || gsym->final_value_is_known();
7366       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7367       if (tls_type != tls::TLSOPT_NONE)
7368         {
7369           if (tls_type == tls::TLSOPT_TO_IE)
7370             {
7371               Insn* iview = reinterpret_cast<Insn*>(view);
7372               Insn insn = add_3_3_13;
7373               if (size == 32)
7374                 insn = add_3_3_2;
7375               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7376               r_type = elfcpp::R_POWERPC_NONE;
7377             }
7378           else
7379             {
7380               Insn* iview = reinterpret_cast<Insn*>(view);
7381               Insn insn = addi_3_3;
7382               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7383               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7384               view += 2 * big_endian;
7385               value = psymval->value(object, rela.get_r_addend());
7386             }
7387           this->skip_next_tls_get_addr_call();
7388         }
7389     }
7390   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7391            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7392     {
7393       // Second instruction of a local dynamic sequence,
7394       // the __tls_get_addr call
7395       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7396       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7397       if (tls_type == tls::TLSOPT_TO_LE)
7398         {
7399           Insn* iview = reinterpret_cast<Insn*>(view);
7400           Insn insn = addi_3_3;
7401           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7402           this->skip_next_tls_get_addr_call();
7403           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7404           view += 2 * big_endian;
7405           value = dtp_offset;
7406         }
7407     }
7408   else if (r_type == elfcpp::R_POWERPC_TLS)
7409     {
7410       // Second instruction of an initial exec sequence
7411       const bool final = gsym == NULL || gsym->final_value_is_known();
7412       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7413       if (tls_type == tls::TLSOPT_TO_LE)
7414         {
7415           Insn* iview = reinterpret_cast<Insn*>(view);
7416           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7417           unsigned int reg = size == 32 ? 2 : 13;
7418           insn = at_tls_transform(insn, reg);
7419           gold_assert(insn != 0);
7420           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7421           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7422           view += 2 * big_endian;
7423           value = psymval->value(object, rela.get_r_addend());
7424         }
7425     }
7426   else if (!has_stub_value)
7427     {
7428       Address addend = 0;
7429       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7430         addend = rela.get_r_addend();
7431       value = psymval->value(object, addend);
7432       if (size == 64 && is_branch_reloc(r_type))
7433         {
7434           if (target->abiversion() >= 2)
7435             {
7436               if (gsym != NULL)
7437                 value += object->ppc64_local_entry_offset(gsym);
7438               else
7439                 value += object->ppc64_local_entry_offset(r_sym);
7440             }
7441           else
7442             {
7443               unsigned int dest_shndx;
7444               target->symval_for_branch(relinfo->symtab, gsym, object,
7445                                         &value, &dest_shndx);
7446             }
7447         }
7448       Address max_branch_offset = max_branch_delta(r_type);
7449       if (max_branch_offset != 0
7450           && value - address + max_branch_offset >= 2 * max_branch_offset)
7451         {
7452           Stub_table<size, big_endian>* stub_table
7453             = object->stub_table(relinfo->data_shndx);
7454           if (stub_table != NULL)
7455             {
7456               Address off = stub_table->find_long_branch_entry(object, value);
7457               if (off != invalid_address)
7458                 {
7459                   value = (stub_table->stub_address() + stub_table->plt_size()
7460                            + off);
7461                   has_stub_value = true;
7462                 }
7463             }
7464         }
7465     }
7466
7467   switch (r_type)
7468     {
7469     case elfcpp::R_PPC64_REL64:
7470     case elfcpp::R_POWERPC_REL32:
7471     case elfcpp::R_POWERPC_REL24:
7472     case elfcpp::R_PPC_PLTREL24:
7473     case elfcpp::R_PPC_LOCAL24PC:
7474     case elfcpp::R_POWERPC_REL16:
7475     case elfcpp::R_POWERPC_REL16_LO:
7476     case elfcpp::R_POWERPC_REL16_HI:
7477     case elfcpp::R_POWERPC_REL16_HA:
7478     case elfcpp::R_POWERPC_REL16DX_HA:
7479     case elfcpp::R_POWERPC_REL14:
7480     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7481     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7482       value -= address;
7483       break;
7484
7485     case elfcpp::R_PPC64_TOC16:
7486     case elfcpp::R_PPC64_TOC16_LO:
7487     case elfcpp::R_PPC64_TOC16_HI:
7488     case elfcpp::R_PPC64_TOC16_HA:
7489     case elfcpp::R_PPC64_TOC16_DS:
7490     case elfcpp::R_PPC64_TOC16_LO_DS:
7491       // Subtract the TOC base address.
7492       value -= (target->got_section()->output_section()->address()
7493                 + object->toc_base_offset());
7494       break;
7495
7496     case elfcpp::R_POWERPC_SECTOFF:
7497     case elfcpp::R_POWERPC_SECTOFF_LO:
7498     case elfcpp::R_POWERPC_SECTOFF_HI:
7499     case elfcpp::R_POWERPC_SECTOFF_HA:
7500     case elfcpp::R_PPC64_SECTOFF_DS:
7501     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7502       if (os != NULL)
7503         value -= os->address();
7504       break;
7505
7506     case elfcpp::R_PPC64_TPREL16_DS:
7507     case elfcpp::R_PPC64_TPREL16_LO_DS:
7508     case elfcpp::R_PPC64_TPREL16_HIGH:
7509     case elfcpp::R_PPC64_TPREL16_HIGHA:
7510       if (size != 64)
7511         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7512         break;
7513     case elfcpp::R_POWERPC_TPREL16:
7514     case elfcpp::R_POWERPC_TPREL16_LO:
7515     case elfcpp::R_POWERPC_TPREL16_HI:
7516     case elfcpp::R_POWERPC_TPREL16_HA:
7517     case elfcpp::R_POWERPC_TPREL:
7518     case elfcpp::R_PPC64_TPREL16_HIGHER:
7519     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7520     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7521     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7522       // tls symbol values are relative to tls_segment()->vaddr()
7523       value -= tp_offset;
7524       break;
7525
7526     case elfcpp::R_PPC64_DTPREL16_DS:
7527     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7528     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7529     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7530     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7531     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7532       if (size != 64)
7533         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7534         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7535         break;
7536     case elfcpp::R_POWERPC_DTPREL16:
7537     case elfcpp::R_POWERPC_DTPREL16_LO:
7538     case elfcpp::R_POWERPC_DTPREL16_HI:
7539     case elfcpp::R_POWERPC_DTPREL16_HA:
7540     case elfcpp::R_POWERPC_DTPREL:
7541     case elfcpp::R_PPC64_DTPREL16_HIGH:
7542     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7543       // tls symbol values are relative to tls_segment()->vaddr()
7544       value -= dtp_offset;
7545       break;
7546
7547     case elfcpp::R_PPC64_ADDR64_LOCAL:
7548       if (gsym != NULL)
7549         value += object->ppc64_local_entry_offset(gsym);
7550       else
7551         value += object->ppc64_local_entry_offset(r_sym);
7552       break;
7553
7554     default:
7555       break;
7556     }
7557
7558   Insn branch_bit = 0;
7559   switch (r_type)
7560     {
7561     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7562     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7563       branch_bit = 1 << 21;
7564     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7565     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7566       {
7567         Insn* iview = reinterpret_cast<Insn*>(view);
7568         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7569         insn &= ~(1 << 21);
7570         insn |= branch_bit;
7571         if (this->is_isa_v2)
7572           {
7573             // Set 'a' bit.  This is 0b00010 in BO field for branch
7574             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7575             // for branch on CTR insns (BO == 1a00t or 1a01t).
7576             if ((insn & (0x14 << 21)) == (0x04 << 21))
7577               insn |= 0x02 << 21;
7578             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7579               insn |= 0x08 << 21;
7580             else
7581               break;
7582           }
7583         else
7584           {
7585             // Invert 'y' bit if not the default.
7586             if (static_cast<Signed_address>(value) < 0)
7587               insn ^= 1 << 21;
7588           }
7589         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7590       }
7591       break;
7592
7593     default:
7594       break;
7595     }
7596
7597   if (size == 64)
7598     {
7599       // Multi-instruction sequences that access the TOC can be
7600       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7601       // to             nop;           addi rb,r2,x;
7602       switch (r_type)
7603         {
7604         default:
7605           break;
7606
7607         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7608         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7609         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7610         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7611         case elfcpp::R_POWERPC_GOT16_HA:
7612         case elfcpp::R_PPC64_TOC16_HA:
7613           if (parameters->options().toc_optimize())
7614             {
7615               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7616               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7617               if ((insn & ((0x3f << 26) | 0x1f << 16))
7618                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7619                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7620                                        _("toc optimization is not supported "
7621                                          "for %#08x instruction"), insn);
7622               else if (value + 0x8000 < 0x10000)
7623                 {
7624                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7625                   return true;
7626                 }
7627             }
7628           break;
7629
7630         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7631         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7632         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7633         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7634         case elfcpp::R_POWERPC_GOT16_LO:
7635         case elfcpp::R_PPC64_GOT16_LO_DS:
7636         case elfcpp::R_PPC64_TOC16_LO:
7637         case elfcpp::R_PPC64_TOC16_LO_DS:
7638           if (parameters->options().toc_optimize())
7639             {
7640               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7641               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7642               if (!ok_lo_toc_insn(insn))
7643                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7644                                        _("toc optimization is not supported "
7645                                          "for %#08x instruction"), insn);
7646               else if (value + 0x8000 < 0x10000)
7647                 {
7648                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7649                     {
7650                       // Transform addic to addi when we change reg.
7651                       insn &= ~((0x3f << 26) | (0x1f << 16));
7652                       insn |= (14u << 26) | (2 << 16);
7653                     }
7654                   else
7655                     {
7656                       insn &= ~(0x1f << 16);
7657                       insn |= 2 << 16;
7658                     }
7659                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7660                 }
7661             }
7662           break;
7663
7664         case elfcpp::R_PPC64_ENTRY:
7665           value = (target->got_section()->output_section()->address()
7666                    + object->toc_base_offset());
7667           if (value + 0x80008000 <= 0xffffffff
7668               && !parameters->options().output_is_position_independent())
7669             {
7670               Insn* iview = reinterpret_cast<Insn*>(view);
7671               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7672               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7673
7674               if ((insn1 & ~0xfffc) == ld_2_12
7675                   && insn2 == add_2_2_12)
7676                 {
7677                   insn1 = lis_2 + ha(value);
7678                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7679                   insn2 = addi_2_2 + l(value);
7680                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7681                   return true;
7682                 }
7683             }
7684           else
7685             {
7686               value -= address;
7687               if (value + 0x80008000 <= 0xffffffff)
7688                 {
7689                   Insn* iview = reinterpret_cast<Insn*>(view);
7690                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7691                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7692
7693                   if ((insn1 & ~0xfffc) == ld_2_12
7694                       && insn2 == add_2_2_12)
7695                     {
7696                       insn1 = addis_2_12 + ha(value);
7697                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7698                       insn2 = addi_2_2 + l(value);
7699                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7700                       return true;
7701                     }
7702                 }
7703             }
7704           break;
7705
7706         case elfcpp::R_POWERPC_REL16_LO:
7707           // If we are generating a non-PIC executable, edit
7708           //    0:      addis 2,12,.TOC.-0b@ha
7709           //            addi 2,2,.TOC.-0b@l
7710           // used by ELFv2 global entry points to set up r2, to
7711           //            lis 2,.TOC.@ha
7712           //            addi 2,2,.TOC.@l
7713           // if .TOC. is in range.  */
7714           if (value + address - 4 + 0x80008000 <= 0xffffffff
7715               && relnum != 0
7716               && preloc != NULL
7717               && target->abiversion() >= 2
7718               && !parameters->options().output_is_position_independent()
7719               && gsym != NULL
7720               && strcmp(gsym->name(), ".TOC.") == 0)
7721             {
7722               const int reloc_size
7723                 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7724               Reltype prev_rela(preloc - reloc_size);
7725               if ((prev_rela.get_r_info()
7726                    == elfcpp::elf_r_info<size>(r_sym,
7727                                                elfcpp::R_POWERPC_REL16_HA))
7728                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7729                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7730                 {
7731                   Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7732                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7733                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7734
7735                   if ((insn1 & 0xffff0000) == addis_2_12
7736                       && (insn2 & 0xffff0000) == addi_2_2)
7737                     {
7738                       insn1 = lis_2 + ha(value + address - 4);
7739                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7740                       insn2 = addi_2_2 + l(value + address - 4);
7741                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7742                       if (relinfo->rr)
7743                         {
7744                           relinfo->rr->set_strategy(relnum - 1,
7745                                                     Relocatable_relocs::RELOC_SPECIAL);
7746                           relinfo->rr->set_strategy(relnum,
7747                                                     Relocatable_relocs::RELOC_SPECIAL);
7748                         }
7749                       return true;
7750                     }
7751                 }
7752             }
7753           break;
7754         }
7755     }
7756
7757   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7758   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7759   switch (r_type)
7760     {
7761     case elfcpp::R_POWERPC_ADDR32:
7762     case elfcpp::R_POWERPC_UADDR32:
7763       if (size == 64)
7764         overflow = Reloc::CHECK_BITFIELD;
7765       break;
7766
7767     case elfcpp::R_POWERPC_REL32:
7768     case elfcpp::R_POWERPC_REL16DX_HA:
7769       if (size == 64)
7770         overflow = Reloc::CHECK_SIGNED;
7771       break;
7772
7773     case elfcpp::R_POWERPC_UADDR16:
7774       overflow = Reloc::CHECK_BITFIELD;
7775       break;
7776
7777     case elfcpp::R_POWERPC_ADDR16:
7778       // We really should have three separate relocations,
7779       // one for 16-bit data, one for insns with 16-bit signed fields,
7780       // and one for insns with 16-bit unsigned fields.
7781       overflow = Reloc::CHECK_BITFIELD;
7782       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7783         overflow = Reloc::CHECK_LOW_INSN;
7784       break;
7785
7786     case elfcpp::R_POWERPC_ADDR16_HI:
7787     case elfcpp::R_POWERPC_ADDR16_HA:
7788     case elfcpp::R_POWERPC_GOT16_HI:
7789     case elfcpp::R_POWERPC_GOT16_HA:
7790     case elfcpp::R_POWERPC_PLT16_HI:
7791     case elfcpp::R_POWERPC_PLT16_HA:
7792     case elfcpp::R_POWERPC_SECTOFF_HI:
7793     case elfcpp::R_POWERPC_SECTOFF_HA:
7794     case elfcpp::R_PPC64_TOC16_HI:
7795     case elfcpp::R_PPC64_TOC16_HA:
7796     case elfcpp::R_PPC64_PLTGOT16_HI:
7797     case elfcpp::R_PPC64_PLTGOT16_HA:
7798     case elfcpp::R_POWERPC_TPREL16_HI:
7799     case elfcpp::R_POWERPC_TPREL16_HA:
7800     case elfcpp::R_POWERPC_DTPREL16_HI:
7801     case elfcpp::R_POWERPC_DTPREL16_HA:
7802     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7803     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7804     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7805     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7806     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7807     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7808     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7809     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7810     case elfcpp::R_POWERPC_REL16_HI:
7811     case elfcpp::R_POWERPC_REL16_HA:
7812       if (size != 32)
7813         overflow = Reloc::CHECK_HIGH_INSN;
7814       break;
7815
7816     case elfcpp::R_POWERPC_REL16:
7817     case elfcpp::R_PPC64_TOC16:
7818     case elfcpp::R_POWERPC_GOT16:
7819     case elfcpp::R_POWERPC_SECTOFF:
7820     case elfcpp::R_POWERPC_TPREL16:
7821     case elfcpp::R_POWERPC_DTPREL16:
7822     case elfcpp::R_POWERPC_GOT_TLSGD16:
7823     case elfcpp::R_POWERPC_GOT_TLSLD16:
7824     case elfcpp::R_POWERPC_GOT_TPREL16:
7825     case elfcpp::R_POWERPC_GOT_DTPREL16:
7826       overflow = Reloc::CHECK_LOW_INSN;
7827       break;
7828
7829     case elfcpp::R_POWERPC_ADDR24:
7830     case elfcpp::R_POWERPC_ADDR14:
7831     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7832     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7833     case elfcpp::R_PPC64_ADDR16_DS:
7834     case elfcpp::R_POWERPC_REL24:
7835     case elfcpp::R_PPC_PLTREL24:
7836     case elfcpp::R_PPC_LOCAL24PC:
7837     case elfcpp::R_PPC64_TPREL16_DS:
7838     case elfcpp::R_PPC64_DTPREL16_DS:
7839     case elfcpp::R_PPC64_TOC16_DS:
7840     case elfcpp::R_PPC64_GOT16_DS:
7841     case elfcpp::R_PPC64_SECTOFF_DS:
7842     case elfcpp::R_POWERPC_REL14:
7843     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7844     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7845       overflow = Reloc::CHECK_SIGNED;
7846       break;
7847     }
7848
7849   Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7850   Insn insn = 0;
7851
7852   if (overflow == Reloc::CHECK_LOW_INSN
7853       || overflow == Reloc::CHECK_HIGH_INSN)
7854     {
7855       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7856
7857       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7858         overflow = Reloc::CHECK_BITFIELD;
7859       else if (overflow == Reloc::CHECK_LOW_INSN
7860                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7861                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7862                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7863                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7864                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7865                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7866         overflow = Reloc::CHECK_UNSIGNED;
7867       else
7868         overflow = Reloc::CHECK_SIGNED;
7869     }
7870
7871   bool maybe_dq_reloc = false;
7872   typename Powerpc_relocate_functions<size, big_endian>::Status status
7873     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7874   switch (r_type)
7875     {
7876     case elfcpp::R_POWERPC_NONE:
7877     case elfcpp::R_POWERPC_TLS:
7878     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7879     case elfcpp::R_POWERPC_GNU_VTENTRY:
7880       break;
7881
7882     case elfcpp::R_PPC64_ADDR64:
7883     case elfcpp::R_PPC64_REL64:
7884     case elfcpp::R_PPC64_TOC:
7885     case elfcpp::R_PPC64_ADDR64_LOCAL:
7886       Reloc::addr64(view, value);
7887       break;
7888
7889     case elfcpp::R_POWERPC_TPREL:
7890     case elfcpp::R_POWERPC_DTPREL:
7891       if (size == 64)
7892         Reloc::addr64(view, value);
7893       else
7894         status = Reloc::addr32(view, value, overflow);
7895       break;
7896
7897     case elfcpp::R_PPC64_UADDR64:
7898       Reloc::addr64_u(view, value);
7899       break;
7900
7901     case elfcpp::R_POWERPC_ADDR32:
7902       status = Reloc::addr32(view, value, overflow);
7903       break;
7904
7905     case elfcpp::R_POWERPC_REL32:
7906     case elfcpp::R_POWERPC_UADDR32:
7907       status = Reloc::addr32_u(view, value, overflow);
7908       break;
7909
7910     case elfcpp::R_POWERPC_ADDR24:
7911     case elfcpp::R_POWERPC_REL24:
7912     case elfcpp::R_PPC_PLTREL24:
7913     case elfcpp::R_PPC_LOCAL24PC:
7914       status = Reloc::addr24(view, value, overflow);
7915       break;
7916
7917     case elfcpp::R_POWERPC_GOT_DTPREL16:
7918     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7919     case elfcpp::R_POWERPC_GOT_TPREL16:
7920     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7921       if (size == 64)
7922         {
7923           // On ppc64 these are all ds form
7924           maybe_dq_reloc = true;
7925           break;
7926         }
7927     case elfcpp::R_POWERPC_ADDR16:
7928     case elfcpp::R_POWERPC_REL16:
7929     case elfcpp::R_PPC64_TOC16:
7930     case elfcpp::R_POWERPC_GOT16:
7931     case elfcpp::R_POWERPC_SECTOFF:
7932     case elfcpp::R_POWERPC_TPREL16:
7933     case elfcpp::R_POWERPC_DTPREL16:
7934     case elfcpp::R_POWERPC_GOT_TLSGD16:
7935     case elfcpp::R_POWERPC_GOT_TLSLD16:
7936     case elfcpp::R_POWERPC_ADDR16_LO:
7937     case elfcpp::R_POWERPC_REL16_LO:
7938     case elfcpp::R_PPC64_TOC16_LO:
7939     case elfcpp::R_POWERPC_GOT16_LO:
7940     case elfcpp::R_POWERPC_SECTOFF_LO:
7941     case elfcpp::R_POWERPC_TPREL16_LO:
7942     case elfcpp::R_POWERPC_DTPREL16_LO:
7943     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7944     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7945       if (size == 64)
7946         status = Reloc::addr16(view, value, overflow);
7947       else
7948         maybe_dq_reloc = true;
7949       break;
7950
7951     case elfcpp::R_POWERPC_UADDR16:
7952       status = Reloc::addr16_u(view, value, overflow);
7953       break;
7954
7955     case elfcpp::R_PPC64_ADDR16_HIGH:
7956     case elfcpp::R_PPC64_TPREL16_HIGH:
7957     case elfcpp::R_PPC64_DTPREL16_HIGH:
7958       if (size == 32)
7959         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7960         goto unsupp;
7961     case elfcpp::R_POWERPC_ADDR16_HI:
7962     case elfcpp::R_POWERPC_REL16_HI:
7963     case elfcpp::R_PPC64_TOC16_HI:
7964     case elfcpp::R_POWERPC_GOT16_HI:
7965     case elfcpp::R_POWERPC_SECTOFF_HI:
7966     case elfcpp::R_POWERPC_TPREL16_HI:
7967     case elfcpp::R_POWERPC_DTPREL16_HI:
7968     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7969     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7970     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7971     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7972       Reloc::addr16_hi(view, value);
7973       break;
7974
7975     case elfcpp::R_PPC64_ADDR16_HIGHA:
7976     case elfcpp::R_PPC64_TPREL16_HIGHA:
7977     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7978       if (size == 32)
7979         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7980         goto unsupp;
7981     case elfcpp::R_POWERPC_ADDR16_HA:
7982     case elfcpp::R_POWERPC_REL16_HA:
7983     case elfcpp::R_PPC64_TOC16_HA:
7984     case elfcpp::R_POWERPC_GOT16_HA:
7985     case elfcpp::R_POWERPC_SECTOFF_HA:
7986     case elfcpp::R_POWERPC_TPREL16_HA:
7987     case elfcpp::R_POWERPC_DTPREL16_HA:
7988     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7989     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7990     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7991     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7992       Reloc::addr16_ha(view, value);
7993       break;
7994
7995     case elfcpp::R_POWERPC_REL16DX_HA:
7996       status = Reloc::addr16dx_ha(view, value, overflow);
7997       break;
7998
7999     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8000       if (size == 32)
8001         // R_PPC_EMB_NADDR16_LO
8002         goto unsupp;
8003     case elfcpp::R_PPC64_ADDR16_HIGHER:
8004     case elfcpp::R_PPC64_TPREL16_HIGHER:
8005       Reloc::addr16_hi2(view, value);
8006       break;
8007
8008     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8009       if (size == 32)
8010         // R_PPC_EMB_NADDR16_HI
8011         goto unsupp;
8012     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8013     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8014       Reloc::addr16_ha2(view, value);
8015       break;
8016
8017     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8018       if (size == 32)
8019         // R_PPC_EMB_NADDR16_HA
8020         goto unsupp;
8021     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8022     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8023       Reloc::addr16_hi3(view, value);
8024       break;
8025
8026     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8027       if (size == 32)
8028         // R_PPC_EMB_SDAI16
8029         goto unsupp;
8030     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8031     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8032       Reloc::addr16_ha3(view, value);
8033       break;
8034
8035     case elfcpp::R_PPC64_DTPREL16_DS:
8036     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8037       if (size == 32)
8038         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8039         goto unsupp;
8040     case elfcpp::R_PPC64_TPREL16_DS:
8041     case elfcpp::R_PPC64_TPREL16_LO_DS:
8042       if (size == 32)
8043         // R_PPC_TLSGD, R_PPC_TLSLD
8044         break;
8045     case elfcpp::R_PPC64_ADDR16_DS:
8046     case elfcpp::R_PPC64_ADDR16_LO_DS:
8047     case elfcpp::R_PPC64_TOC16_DS:
8048     case elfcpp::R_PPC64_TOC16_LO_DS:
8049     case elfcpp::R_PPC64_GOT16_DS:
8050     case elfcpp::R_PPC64_GOT16_LO_DS:
8051     case elfcpp::R_PPC64_SECTOFF_DS:
8052     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8053       maybe_dq_reloc = true;
8054       break;
8055
8056     case elfcpp::R_POWERPC_ADDR14:
8057     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8058     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8059     case elfcpp::R_POWERPC_REL14:
8060     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8061     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8062       status = Reloc::addr14(view, value, overflow);
8063       break;
8064
8065     case elfcpp::R_POWERPC_COPY:
8066     case elfcpp::R_POWERPC_GLOB_DAT:
8067     case elfcpp::R_POWERPC_JMP_SLOT:
8068     case elfcpp::R_POWERPC_RELATIVE:
8069     case elfcpp::R_POWERPC_DTPMOD:
8070     case elfcpp::R_PPC64_JMP_IREL:
8071     case elfcpp::R_POWERPC_IRELATIVE:
8072       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8073                              _("unexpected reloc %u in object file"),
8074                              r_type);
8075       break;
8076
8077     case elfcpp::R_PPC_EMB_SDA21:
8078       if (size == 32)
8079         goto unsupp;
8080       else
8081         {
8082           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8083         }
8084       break;
8085
8086     case elfcpp::R_PPC_EMB_SDA2I16:
8087     case elfcpp::R_PPC_EMB_SDA2REL:
8088       if (size == 32)
8089         goto unsupp;
8090       // R_PPC64_TLSGD, R_PPC64_TLSLD
8091       break;
8092
8093     case elfcpp::R_POWERPC_PLT32:
8094     case elfcpp::R_POWERPC_PLTREL32:
8095     case elfcpp::R_POWERPC_PLT16_LO:
8096     case elfcpp::R_POWERPC_PLT16_HI:
8097     case elfcpp::R_POWERPC_PLT16_HA:
8098     case elfcpp::R_PPC_SDAREL16:
8099     case elfcpp::R_POWERPC_ADDR30:
8100     case elfcpp::R_PPC64_PLT64:
8101     case elfcpp::R_PPC64_PLTREL64:
8102     case elfcpp::R_PPC64_PLTGOT16:
8103     case elfcpp::R_PPC64_PLTGOT16_LO:
8104     case elfcpp::R_PPC64_PLTGOT16_HI:
8105     case elfcpp::R_PPC64_PLTGOT16_HA:
8106     case elfcpp::R_PPC64_PLT16_LO_DS:
8107     case elfcpp::R_PPC64_PLTGOT16_DS:
8108     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8109     case elfcpp::R_PPC_EMB_RELSDA:
8110     case elfcpp::R_PPC_TOC16:
8111     default:
8112     unsupp:
8113       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8114                              _("unsupported reloc %u"),
8115                              r_type);
8116       break;
8117     }
8118
8119   if (maybe_dq_reloc)
8120     {
8121       if (insn == 0)
8122         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8123
8124       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8125           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8126               && (insn & 3) == 1))
8127         status = Reloc::addr16_dq(view, value, overflow);
8128       else if (size == 64
8129                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8130                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8131                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8132                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8133         status = Reloc::addr16_ds(view, value, overflow);
8134       else
8135         status = Reloc::addr16(view, value, overflow);
8136     }
8137
8138   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8139       && (has_stub_value
8140           || !(gsym != NULL
8141                && gsym->is_undefined()
8142                && is_branch_reloc(r_type))))
8143     {
8144       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8145                              _("relocation overflow"));
8146       if (has_stub_value)
8147         gold_info(_("try relinking with a smaller --stub-group-size"));
8148     }
8149
8150   return true;
8151 }
8152
8153 // Relocate section data.
8154
8155 template<int size, bool big_endian>
8156 void
8157 Target_powerpc<size, big_endian>::relocate_section(
8158     const Relocate_info<size, big_endian>* relinfo,
8159     unsigned int sh_type,
8160     const unsigned char* prelocs,
8161     size_t reloc_count,
8162     Output_section* output_section,
8163     bool needs_special_offset_handling,
8164     unsigned char* view,
8165     Address address,
8166     section_size_type view_size,
8167     const Reloc_symbol_changes* reloc_symbol_changes)
8168 {
8169   typedef Target_powerpc<size, big_endian> Powerpc;
8170   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8171   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8172     Powerpc_comdat_behavior;
8173
8174   gold_assert(sh_type == elfcpp::SHT_RELA);
8175
8176   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8177                          Powerpc_relocate, Powerpc_comdat_behavior>(
8178     relinfo,
8179     this,
8180     prelocs,
8181     reloc_count,
8182     output_section,
8183     needs_special_offset_handling,
8184     view,
8185     address,
8186     view_size,
8187     reloc_symbol_changes);
8188 }
8189
8190 class Powerpc_scan_relocatable_reloc
8191 {
8192 public:
8193   // Return the strategy to use for a local symbol which is not a
8194   // section symbol, given the relocation type.
8195   inline Relocatable_relocs::Reloc_strategy
8196   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8197   {
8198     if (r_type == 0 && r_sym == 0)
8199       return Relocatable_relocs::RELOC_DISCARD;
8200     return Relocatable_relocs::RELOC_COPY;
8201   }
8202
8203   // Return the strategy to use for a local symbol which is a section
8204   // symbol, given the relocation type.
8205   inline Relocatable_relocs::Reloc_strategy
8206   local_section_strategy(unsigned int, Relobj*)
8207   {
8208     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8209   }
8210
8211   // Return the strategy to use for a global symbol, given the
8212   // relocation type, the object, and the symbol index.
8213   inline Relocatable_relocs::Reloc_strategy
8214   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8215   {
8216     if (r_type == elfcpp::R_PPC_PLTREL24)
8217       return Relocatable_relocs::RELOC_SPECIAL;
8218     return Relocatable_relocs::RELOC_COPY;
8219   }
8220 };
8221
8222 // Scan the relocs during a relocatable link.
8223
8224 template<int size, bool big_endian>
8225 void
8226 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8227     Symbol_table* symtab,
8228     Layout* layout,
8229     Sized_relobj_file<size, big_endian>* object,
8230     unsigned int data_shndx,
8231     unsigned int sh_type,
8232     const unsigned char* prelocs,
8233     size_t reloc_count,
8234     Output_section* output_section,
8235     bool needs_special_offset_handling,
8236     size_t local_symbol_count,
8237     const unsigned char* plocal_symbols,
8238     Relocatable_relocs* rr)
8239 {
8240   gold_assert(sh_type == elfcpp::SHT_RELA);
8241
8242   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8243                                 Powerpc_scan_relocatable_reloc>(
8244     symtab,
8245     layout,
8246     object,
8247     data_shndx,
8248     prelocs,
8249     reloc_count,
8250     output_section,
8251     needs_special_offset_handling,
8252     local_symbol_count,
8253     plocal_symbols,
8254     rr);
8255 }
8256
8257 // Emit relocations for a section.
8258 // This is a modified version of the function by the same name in
8259 // target-reloc.h.  Using relocate_special_relocatable for
8260 // R_PPC_PLTREL24 would require duplication of the entire body of the
8261 // loop, so we may as well duplicate the whole thing.
8262
8263 template<int size, bool big_endian>
8264 void
8265 Target_powerpc<size, big_endian>::relocate_relocs(
8266     const Relocate_info<size, big_endian>* relinfo,
8267     unsigned int sh_type,
8268     const unsigned char* prelocs,
8269     size_t reloc_count,
8270     Output_section* output_section,
8271     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8272     unsigned char*,
8273     Address view_address,
8274     section_size_type,
8275     unsigned char* reloc_view,
8276     section_size_type reloc_view_size)
8277 {
8278   gold_assert(sh_type == elfcpp::SHT_RELA);
8279
8280   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8281     Reltype;
8282   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8283     Reltype_write;
8284   const int reloc_size
8285     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8286
8287   Powerpc_relobj<size, big_endian>* const object
8288     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8289   const unsigned int local_count = object->local_symbol_count();
8290   unsigned int got2_shndx = object->got2_shndx();
8291   Address got2_addend = 0;
8292   if (got2_shndx != 0)
8293     {
8294       got2_addend = object->get_output_section_offset(got2_shndx);
8295       gold_assert(got2_addend != invalid_address);
8296     }
8297
8298   unsigned char* pwrite = reloc_view;
8299   bool zap_next = false;
8300   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8301     {
8302       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8303       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8304         continue;
8305
8306       Reltype reloc(prelocs);
8307       Reltype_write reloc_write(pwrite);
8308
8309       Address offset = reloc.get_r_offset();
8310       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8311       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8312       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8313       const unsigned int orig_r_sym = r_sym;
8314       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8315         = reloc.get_r_addend();
8316       const Symbol* gsym = NULL;
8317
8318       if (zap_next)
8319         {
8320           // We could arrange to discard these and other relocs for
8321           // tls optimised sequences in the strategy methods, but for
8322           // now do as BFD ld does.
8323           r_type = elfcpp::R_POWERPC_NONE;
8324           zap_next = false;
8325         }
8326
8327       // Get the new symbol index.
8328       Output_section* os = NULL;
8329       if (r_sym < local_count)
8330         {
8331           switch (strategy)
8332             {
8333             case Relocatable_relocs::RELOC_COPY:
8334             case Relocatable_relocs::RELOC_SPECIAL:
8335               if (r_sym != 0)
8336                 {
8337                   r_sym = object->symtab_index(r_sym);
8338                   gold_assert(r_sym != -1U);
8339                 }
8340               break;
8341
8342             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8343               {
8344                 // We are adjusting a section symbol.  We need to find
8345                 // the symbol table index of the section symbol for
8346                 // the output section corresponding to input section
8347                 // in which this symbol is defined.
8348                 gold_assert(r_sym < local_count);
8349                 bool is_ordinary;
8350                 unsigned int shndx =
8351                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8352                 gold_assert(is_ordinary);
8353                 os = object->output_section(shndx);
8354                 gold_assert(os != NULL);
8355                 gold_assert(os->needs_symtab_index());
8356                 r_sym = os->symtab_index();
8357               }
8358               break;
8359
8360             default:
8361               gold_unreachable();
8362             }
8363         }
8364       else
8365         {
8366           gsym = object->global_symbol(r_sym);
8367           gold_assert(gsym != NULL);
8368           if (gsym->is_forwarder())
8369             gsym = relinfo->symtab->resolve_forwards(gsym);
8370
8371           gold_assert(gsym->has_symtab_index());
8372           r_sym = gsym->symtab_index();
8373         }
8374
8375       // Get the new offset--the location in the output section where
8376       // this relocation should be applied.
8377       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8378         offset += offset_in_output_section;
8379       else
8380         {
8381           section_offset_type sot_offset =
8382             convert_types<section_offset_type, Address>(offset);
8383           section_offset_type new_sot_offset =
8384             output_section->output_offset(object, relinfo->data_shndx,
8385                                           sot_offset);
8386           gold_assert(new_sot_offset != -1);
8387           offset = new_sot_offset;
8388         }
8389
8390       // In an object file, r_offset is an offset within the section.
8391       // In an executable or dynamic object, generated by
8392       // --emit-relocs, r_offset is an absolute address.
8393       if (!parameters->options().relocatable())
8394         {
8395           offset += view_address;
8396           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8397             offset -= offset_in_output_section;
8398         }
8399
8400       // Handle the reloc addend based on the strategy.
8401       if (strategy == Relocatable_relocs::RELOC_COPY)
8402         ;
8403       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8404         {
8405           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8406           gold_assert(os != NULL);
8407           addend = psymval->value(object, addend) - os->address();
8408         }
8409       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8410         {
8411           if (size == 32)
8412             {
8413               if (addend >= 32768)
8414                 addend += got2_addend;
8415             }
8416           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8417             {
8418               r_type = elfcpp::R_POWERPC_ADDR16_HA;
8419               addend -= 2 * big_endian;
8420             }
8421           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8422             {
8423               r_type = elfcpp::R_POWERPC_ADDR16_LO;
8424               addend -= 2 * big_endian + 4;
8425             }
8426         }
8427       else
8428         gold_unreachable();
8429
8430       if (!parameters->options().relocatable())
8431         {
8432           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8433               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8434               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8435               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8436             {
8437               // First instruction of a global dynamic sequence,
8438               // arg setup insn.
8439               const bool final = gsym == NULL || gsym->final_value_is_known();
8440               switch (this->optimize_tls_gd(final))
8441                 {
8442                 case tls::TLSOPT_TO_IE:
8443                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8444                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8445                   break;
8446                 case tls::TLSOPT_TO_LE:
8447                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8448                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8449                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8450                   else
8451                     {
8452                       r_type = elfcpp::R_POWERPC_NONE;
8453                       offset -= 2 * big_endian;
8454                     }
8455                   break;
8456                 default:
8457                   break;
8458                 }
8459             }
8460           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8461                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8462                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8463                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8464             {
8465               // First instruction of a local dynamic sequence,
8466               // arg setup insn.
8467               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8468                 {
8469                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8470                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8471                     {
8472                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8473                       const Output_section* os = relinfo->layout->tls_segment()
8474                         ->first_section();
8475                       gold_assert(os != NULL);
8476                       gold_assert(os->needs_symtab_index());
8477                       r_sym = os->symtab_index();
8478                       addend = dtp_offset;
8479                     }
8480                   else
8481                     {
8482                       r_type = elfcpp::R_POWERPC_NONE;
8483                       offset -= 2 * big_endian;
8484                     }
8485                 }
8486             }
8487           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8488                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8489                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8490                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8491             {
8492               // First instruction of initial exec sequence.
8493               const bool final = gsym == NULL || gsym->final_value_is_known();
8494               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8495                 {
8496                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8497                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8498                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8499                   else
8500                     {
8501                       r_type = elfcpp::R_POWERPC_NONE;
8502                       offset -= 2 * big_endian;
8503                     }
8504                 }
8505             }
8506           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8507                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8508             {
8509               // Second instruction of a global dynamic sequence,
8510               // the __tls_get_addr call
8511               const bool final = gsym == NULL || gsym->final_value_is_known();
8512               switch (this->optimize_tls_gd(final))
8513                 {
8514                 case tls::TLSOPT_TO_IE:
8515                   r_type = elfcpp::R_POWERPC_NONE;
8516                   zap_next = true;
8517                   break;
8518                 case tls::TLSOPT_TO_LE:
8519                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8520                   offset += 2 * big_endian;
8521                   zap_next = true;
8522                   break;
8523                 default:
8524                   break;
8525                 }
8526             }
8527           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8528                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8529             {
8530               // Second instruction of a local dynamic sequence,
8531               // the __tls_get_addr call
8532               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8533                 {
8534                   const Output_section* os = relinfo->layout->tls_segment()
8535                     ->first_section();
8536                   gold_assert(os != NULL);
8537                   gold_assert(os->needs_symtab_index());
8538                   r_sym = os->symtab_index();
8539                   addend = dtp_offset;
8540                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8541                   offset += 2 * big_endian;
8542                   zap_next = true;
8543                 }
8544             }
8545           else if (r_type == elfcpp::R_POWERPC_TLS)
8546             {
8547               // Second instruction of an initial exec sequence
8548               const bool final = gsym == NULL || gsym->final_value_is_known();
8549               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8550                 {
8551                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8552                   offset += 2 * big_endian;
8553                 }
8554             }
8555         }
8556
8557       reloc_write.put_r_offset(offset);
8558       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8559       reloc_write.put_r_addend(addend);
8560
8561       pwrite += reloc_size;
8562     }
8563
8564   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8565               == reloc_view_size);
8566 }
8567
8568 // Return the value to use for a dynamic symbol which requires special
8569 // treatment.  This is how we support equality comparisons of function
8570 // pointers across shared library boundaries, as described in the
8571 // processor specific ABI supplement.
8572
8573 template<int size, bool big_endian>
8574 uint64_t
8575 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8576 {
8577   if (size == 32)
8578     {
8579       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8580       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8581            p != this->stub_tables_.end();
8582            ++p)
8583         {
8584           Address off = (*p)->find_plt_call_entry(gsym);
8585           if (off != invalid_address)
8586             return (*p)->stub_address() + off;
8587         }
8588     }
8589   else if (this->abiversion() >= 2)
8590     {
8591       Address off = this->glink_section()->find_global_entry(gsym);
8592       if (off != invalid_address)
8593         return this->glink_section()->global_entry_address() + off;
8594     }
8595   gold_unreachable();
8596 }
8597
8598 // Return the PLT address to use for a local symbol.
8599 template<int size, bool big_endian>
8600 uint64_t
8601 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8602     const Relobj* object,
8603     unsigned int symndx) const
8604 {
8605   if (size == 32)
8606     {
8607       const Sized_relobj<size, big_endian>* relobj
8608         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8609       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8610            p != this->stub_tables_.end();
8611            ++p)
8612         {
8613           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8614                                                   symndx);
8615           if (off != invalid_address)
8616             return (*p)->stub_address() + off;
8617         }
8618     }
8619   gold_unreachable();
8620 }
8621
8622 // Return the PLT address to use for a global symbol.
8623 template<int size, bool big_endian>
8624 uint64_t
8625 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8626     const Symbol* gsym) const
8627 {
8628   if (size == 32)
8629     {
8630       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8631            p != this->stub_tables_.end();
8632            ++p)
8633         {
8634           Address off = (*p)->find_plt_call_entry(gsym);
8635           if (off != invalid_address)
8636             return (*p)->stub_address() + off;
8637         }
8638     }
8639   else if (this->abiversion() >= 2)
8640     {
8641       Address off = this->glink_section()->find_global_entry(gsym);
8642       if (off != invalid_address)
8643         return this->glink_section()->global_entry_address() + off;
8644     }
8645   gold_unreachable();
8646 }
8647
8648 // Return the offset to use for the GOT_INDX'th got entry which is
8649 // for a local tls symbol specified by OBJECT, SYMNDX.
8650 template<int size, bool big_endian>
8651 int64_t
8652 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8653     const Relobj* object,
8654     unsigned int symndx,
8655     unsigned int got_indx) const
8656 {
8657   const Powerpc_relobj<size, big_endian>* ppc_object
8658     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8659   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8660     {
8661       for (Got_type got_type = GOT_TYPE_TLSGD;
8662            got_type <= GOT_TYPE_TPREL;
8663            got_type = Got_type(got_type + 1))
8664         if (ppc_object->local_has_got_offset(symndx, got_type))
8665           {
8666             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8667             if (got_type == GOT_TYPE_TLSGD)
8668               off += size / 8;
8669             if (off == got_indx * (size / 8))
8670               {
8671                 if (got_type == GOT_TYPE_TPREL)
8672                   return -tp_offset;
8673                 else
8674                   return -dtp_offset;
8675               }
8676           }
8677     }
8678   gold_unreachable();
8679 }
8680
8681 // Return the offset to use for the GOT_INDX'th got entry which is
8682 // for global tls symbol GSYM.
8683 template<int size, bool big_endian>
8684 int64_t
8685 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8686     Symbol* gsym,
8687     unsigned int got_indx) const
8688 {
8689   if (gsym->type() == elfcpp::STT_TLS)
8690     {
8691       for (Got_type got_type = GOT_TYPE_TLSGD;
8692            got_type <= GOT_TYPE_TPREL;
8693            got_type = Got_type(got_type + 1))
8694         if (gsym->has_got_offset(got_type))
8695           {
8696             unsigned int off = gsym->got_offset(got_type);
8697             if (got_type == GOT_TYPE_TLSGD)
8698               off += size / 8;
8699             if (off == got_indx * (size / 8))
8700               {
8701                 if (got_type == GOT_TYPE_TPREL)
8702                   return -tp_offset;
8703                 else
8704                   return -dtp_offset;
8705               }
8706           }
8707     }
8708   gold_unreachable();
8709 }
8710
8711 // The selector for powerpc object files.
8712
8713 template<int size, bool big_endian>
8714 class Target_selector_powerpc : public Target_selector
8715 {
8716 public:
8717   Target_selector_powerpc()
8718     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8719                       size, big_endian,
8720                       (size == 64
8721                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8722                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8723                       (size == 64
8724                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8725                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8726   { }
8727
8728   virtual Target*
8729   do_instantiate_target()
8730   { return new Target_powerpc<size, big_endian>(); }
8731 };
8732
8733 Target_selector_powerpc<32, true> target_selector_ppc32;
8734 Target_selector_powerpc<32, false> target_selector_ppc32le;
8735 Target_selector_powerpc<64, true> target_selector_ppc64;
8736 Target_selector_powerpc<64, false> target_selector_ppc64le;
8737
8738 // Instantiate these constants for -O0
8739 template<int size, bool big_endian>
8740 const int Output_data_glink<size, big_endian>::pltresolve_size;
8741 template<int size, bool big_endian>
8742 const typename Output_data_glink<size, big_endian>::Address
8743   Output_data_glink<size, big_endian>::invalid_address;
8744 template<int size, bool big_endian>
8745 const typename Stub_table<size, big_endian>::Address
8746   Stub_table<size, big_endian>::invalid_address;
8747 template<int size, bool big_endian>
8748 const typename Target_powerpc<size, big_endian>::Address
8749   Target_powerpc<size, big_endian>::invalid_address;
8750
8751 } // End anonymous namespace.