* powerpc.cc (Powerpc_relobj): Add and use Address typedef.
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include "elfcpp.h"
27 #include "parameters.h"
28 #include "reloc.h"
29 #include "powerpc.h"
30 #include "object.h"
31 #include "symtab.h"
32 #include "layout.h"
33 #include "output.h"
34 #include "copy-relocs.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39 #include "errors.h"
40 #include "gc.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 template<int size, bool big_endian>
48 class Output_data_plt_powerpc;
49
50 template<int size, bool big_endian>
51 class Output_data_got_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_glink;
55
56 template<int size, bool big_endian>
57 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
58 {
59 public:
60   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
61   typedef typename elfcpp::Elf_types<size>::Elf_Off Offset;
62
63   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
64                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
65     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
66       special_(0), opd_ent_shndx_(), opd_ent_off_()
67   { }
68
69   ~Powerpc_relobj()
70   { }
71
72   // The .got2 section shndx.
73   unsigned int
74   got2_shndx() const
75   {
76     if (size == 32)
77       return this->special_;
78     else
79       return 0;
80   }
81
82   // The .opd section shndx.
83   unsigned int
84   opd_shndx() const
85   {
86     if (size == 32)
87       return 0;
88     else
89       return this->special_;
90   }
91
92   // Init OPD entry arrays.
93   void
94   init_opd(size_t opd_size)
95   {
96     size_t count = this->opd_ent_ndx(opd_size);
97     this->opd_ent_shndx_.resize(count);
98     this->opd_ent_off_.reserve(count);
99   }
100
101   // Return section and offset of function entry for .opd + R_OFF.
102   void
103   get_opd_ent(Address r_off, unsigned int* shndx, Address* value)
104   {
105     size_t ndx = this->opd_ent_ndx(r_off);
106     gold_assert(ndx < this->opd_ent_shndx_.size());
107     gold_assert(this->opd_ent_shndx_[ndx] != 0);
108     *shndx = this->opd_ent_shndx_[ndx];
109     *value = this->opd_ent_off_[ndx];
110   }
111
112   // Set section and offset of function entry for .opd + R_OFF.
113   void
114   set_opd_ent(Address r_off, unsigned int shndx, Address value)
115   {
116     size_t ndx = this->opd_ent_ndx(r_off);
117     gold_assert(ndx < this->opd_ent_shndx_.size());
118     this->opd_ent_shndx_[ndx] = shndx;
119     this->opd_ent_off_[ndx] = value;
120   }
121
122   // Examine .rela.opd to build info about function entry points.
123   void
124   scan_opd_relocs(size_t reloc_count,
125                   const unsigned char* prelocs,
126                   const unsigned char* plocal_syms);
127
128   void
129   do_read_relocs(Read_relocs_data*);
130
131   bool
132   do_find_special_sections(Read_symbols_data* sd);
133
134   // Return offset in output GOT section that this object will use
135   // as a TOC pointer.  Won't be just a constant with multi-toc support.
136   Address
137   toc_base_offset() const
138   { return 0x8000; }
139
140 private:
141   // Return index into opd_ent_shndx or opd_ent_off array for .opd entry
142   // at OFF.  .opd entries are 24 bytes long, but they can be spaced
143   // 16 bytes apart when the language doesn't use the last 8-byte
144   // word, the environment pointer.  Thus dividing the entry section
145   // offset by 16 will give an index into opd_ent_shndx_ and
146   // opd_ent_off_ that works for either layout of .opd.  (It leaves
147   // some elements of the vectors unused when .opd entries are spaced
148   // 24 bytes apart, but we don't know the spacing until relocations
149   // are processed, and in any case it is possible for an object to
150   // have some entries spaced 16 bytes apart and others 24 bytes apart.)
151   size_t
152   opd_ent_ndx(size_t off) const
153   { return off >> 4;}
154
155   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
156   unsigned int special_;
157   // The first 8-byte word of an OPD entry gives the address of the
158   // entry point of the function.  Relocatable object files have a
159   // relocation on this word.  The following two vectors record the
160   // section and offset specified by these relocations.
161   std::vector<unsigned int> opd_ent_shndx_;
162   std::vector<Offset> opd_ent_off_;
163 };
164
165 template<int size, bool big_endian>
166 class Target_powerpc : public Sized_target<size, big_endian>
167 {
168  public:
169   typedef
170     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
171   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
172   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
173   static const Address invalid_address = static_cast<Address>(0) - 1;
174   // Offset of tp and dtp pointers from start of TLS block.
175   static const Address tp_offset = 0x7000;
176   static const Address dtp_offset = 0x8000;
177
178   Target_powerpc()
179     : Sized_target<size, big_endian>(&powerpc_info),
180       got_(NULL), plt_(NULL), glink_(NULL), rela_dyn_(NULL),
181       copy_relocs_(elfcpp::R_POWERPC_COPY),
182       dynbss_(NULL), tlsld_got_offset_(-1U)
183   {
184   }
185
186   // Process the relocations to determine unreferenced sections for
187   // garbage collection.
188   void
189   gc_process_relocs(Symbol_table* symtab,
190                     Layout* layout,
191                     Sized_relobj_file<size, big_endian>* object,
192                     unsigned int data_shndx,
193                     unsigned int sh_type,
194                     const unsigned char* prelocs,
195                     size_t reloc_count,
196                     Output_section* output_section,
197                     bool needs_special_offset_handling,
198                     size_t local_symbol_count,
199                     const unsigned char* plocal_symbols);
200
201   // Scan the relocations to look for symbol adjustments.
202   void
203   scan_relocs(Symbol_table* symtab,
204               Layout* layout,
205               Sized_relobj_file<size, big_endian>* object,
206               unsigned int data_shndx,
207               unsigned int sh_type,
208               const unsigned char* prelocs,
209               size_t reloc_count,
210               Output_section* output_section,
211               bool needs_special_offset_handling,
212               size_t local_symbol_count,
213               const unsigned char* plocal_symbols);
214
215   // Map input .toc section to output .got section.
216   const char*
217   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
218   {
219     if (size == 64 && strcmp(name, ".toc") == 0)
220       {
221         *plen = 4;
222         return ".got";
223       }
224     return NULL;
225   }
226
227   // Finalize the sections.
228   void
229   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
230
231   // Return the value to use for a dynamic which requires special
232   // treatment.
233   uint64_t
234   do_dynsym_value(const Symbol*) const;
235
236   // Relocate a section.
237   void
238   relocate_section(const Relocate_info<size, big_endian>*,
239                    unsigned int sh_type,
240                    const unsigned char* prelocs,
241                    size_t reloc_count,
242                    Output_section* output_section,
243                    bool needs_special_offset_handling,
244                    unsigned char* view,
245                    Address view_address,
246                    section_size_type view_size,
247                    const Reloc_symbol_changes*);
248
249   // Scan the relocs during a relocatable link.
250   void
251   scan_relocatable_relocs(Symbol_table* symtab,
252                           Layout* layout,
253                           Sized_relobj_file<size, big_endian>* object,
254                           unsigned int data_shndx,
255                           unsigned int sh_type,
256                           const unsigned char* prelocs,
257                           size_t reloc_count,
258                           Output_section* output_section,
259                           bool needs_special_offset_handling,
260                           size_t local_symbol_count,
261                           const unsigned char* plocal_symbols,
262                           Relocatable_relocs*);
263
264   // Relocate a section during a relocatable link.
265   void
266   relocate_for_relocatable(const Relocate_info<size, big_endian>*,
267                            unsigned int sh_type,
268                            const unsigned char* prelocs,
269                            size_t reloc_count,
270                            Output_section* output_section,
271                            off_t offset_in_output_section,
272                            const Relocatable_relocs*,
273                            unsigned char*,
274                            Address view_address,
275                            section_size_type,
276                            unsigned char* reloc_view,
277                            section_size_type reloc_view_size);
278
279   // Return whether SYM is defined by the ABI.
280   bool
281   do_is_defined_by_abi(const Symbol* sym) const
282   {
283     return strcmp(sym->name(), "__tls_get_addr") == 0;
284   }
285
286   // Return the size of the GOT section.
287   section_size_type
288   got_size() const
289   {
290     gold_assert(this->got_ != NULL);
291     return this->got_->data_size();
292   }
293
294   // Get the PLT section.
295   const Output_data_plt_powerpc<size, big_endian>*
296   plt_section() const
297   {
298     gold_assert(this->plt_ != NULL);
299     return this->plt_;
300   }
301
302   // Get the .glink section.
303   const Output_data_glink<size, big_endian>*
304   glink_section() const
305   {
306     gold_assert(this->glink_ != NULL);
307     return this->glink_;
308   }
309
310   // Get the GOT section.
311   const Output_data_got_powerpc<size, big_endian>*
312   got_section() const
313   {
314     gold_assert(this->got_ != NULL);
315     return this->got_;
316   }
317
318   Object*
319   do_make_elf_object(const std::string&, Input_file*, off_t,
320                      const elfcpp::Ehdr<size, big_endian>&);
321
322   // Return the number of entries in the GOT.
323   unsigned int
324   got_entry_count() const
325   {
326     if (this->got_ == NULL)
327       return 0;
328     return this->got_size() / (size / 8);
329   }
330
331   // Return the number of entries in the PLT.
332   unsigned int
333   plt_entry_count() const;
334
335   // Return the offset of the first non-reserved PLT entry.
336   unsigned int
337   first_plt_entry_offset() const;
338
339   // Return the size of each PLT entry.
340   unsigned int
341   plt_entry_size() const;
342
343  private:
344
345   // The class which scans relocations.
346   class Scan
347   {
348   public:
349     Scan()
350       : issued_non_pic_error_(false)
351     { }
352
353     static inline int
354     get_reference_flags(unsigned int r_type);
355
356     inline void
357     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
358           Sized_relobj_file<size, big_endian>* object,
359           unsigned int data_shndx,
360           Output_section* output_section,
361           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
362           const elfcpp::Sym<size, big_endian>& lsym);
363
364     inline void
365     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
366            Sized_relobj_file<size, big_endian>* object,
367            unsigned int data_shndx,
368            Output_section* output_section,
369            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
370            Symbol* gsym);
371
372     inline bool
373     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
374                                         Target_powerpc* ,
375                                         Sized_relobj_file<size, big_endian>* ,
376                                         unsigned int ,
377                                         Output_section* ,
378                                         const elfcpp::Rela<size, big_endian>& ,
379                                         unsigned int ,
380                                         const elfcpp::Sym<size, big_endian>&)
381     { return false; }
382
383     inline bool
384     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
385                                          Target_powerpc* ,
386                                          Sized_relobj_file<size, big_endian>* ,
387                                          unsigned int ,
388                                          Output_section* ,
389                                          const elfcpp::Rela<size,
390                                                             big_endian>& ,
391                                          unsigned int , Symbol*)
392     { return false; }
393
394   private:
395     static void
396     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
397                             unsigned int r_type);
398
399     static void
400     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
401                              unsigned int r_type, Symbol*);
402
403     static void
404     generate_tls_call(Symbol_table* symtab, Layout* layout,
405                       Target_powerpc* target);
406
407     void
408     check_non_pic(Relobj*, unsigned int r_type);
409
410     // Whether we have issued an error about a non-PIC compilation.
411     bool issued_non_pic_error_;
412   };
413
414   // The class which implements relocation.
415   class Relocate
416   {
417    public:
418     // Use 'at' branch hints when true, 'y' when false.
419     // FIXME maybe: set this with an option.
420     static const bool is_isa_v2 = true;
421
422     enum skip_tls
423     {
424       CALL_NOT_EXPECTED = 0,
425       CALL_EXPECTED = 1,
426       CALL_SKIP = 2
427     };
428
429     Relocate()
430       : call_tls_get_addr_(CALL_NOT_EXPECTED)
431     { }
432
433     ~Relocate()
434     {
435       if (this->call_tls_get_addr_ != CALL_NOT_EXPECTED)
436         {
437           // FIXME: This needs to specify the location somehow.
438           gold_error(_("missing expected __tls_get_addr call"));
439         }
440     }
441
442     // Do a relocation.  Return false if the caller should not issue
443     // any warnings about this relocation.
444     inline bool
445     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
446              Output_section*, size_t relnum,
447              const elfcpp::Rela<size, big_endian>&,
448              unsigned int r_type, const Sized_symbol<size>*,
449              const Symbol_value<size>*,
450              unsigned char*,
451              typename elfcpp::Elf_types<size>::Elf_Addr,
452              section_size_type);
453
454     // This is set if we should skip the next reloc, which should be a
455     // call to __tls_get_addr.
456     enum skip_tls call_tls_get_addr_;
457   };
458
459   // A class which returns the size required for a relocation type,
460   // used while scanning relocs during a relocatable link.
461   class Relocatable_size_for_reloc
462   {
463    public:
464     unsigned int
465     get_size_for_reloc(unsigned int, Relobj*)
466     {
467       gold_unreachable();
468       return 0;
469     }
470   };
471
472   // Optimize the TLS relocation type based on what we know about the
473   // symbol.  IS_FINAL is true if the final address of this symbol is
474   // known at link time.
475
476   tls::Tls_optimization
477   optimize_tls_gd(bool is_final)
478   {
479     // If we are generating a shared library, then we can't do anything
480     // in the linker.
481     if (parameters->options().shared())
482       return tls::TLSOPT_NONE;
483
484     if (!is_final)
485       return tls::TLSOPT_TO_IE;
486     return tls::TLSOPT_TO_LE;
487   }
488
489   tls::Tls_optimization
490   optimize_tls_ld()
491   {
492     if (parameters->options().shared())
493       return tls::TLSOPT_NONE;
494
495     return tls::TLSOPT_TO_LE;
496   }
497
498   tls::Tls_optimization
499   optimize_tls_ie(bool is_final)
500   {
501     if (!is_final || parameters->options().shared())
502       return tls::TLSOPT_NONE;
503
504     return tls::TLSOPT_TO_LE;
505   }
506
507   // Get the GOT section, creating it if necessary.
508   Output_data_got_powerpc<size, big_endian>*
509   got_section(Symbol_table*, Layout*);
510
511   // Create glink.
512   void
513   make_glink_section(Layout*);
514
515   // Create the PLT section.
516   void
517   make_plt_section(Layout*);
518
519   // Create a PLT entry for a global symbol.
520   void
521   make_plt_entry(Layout*, Symbol*,
522                  const elfcpp::Rela<size, big_endian>&,
523                  const Sized_relobj<size, big_endian>* object);
524
525   // Create a GOT entry for local dynamic __tls_get_addr.
526   unsigned int
527   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
528                    Sized_relobj_file<size, big_endian>* object);
529
530   unsigned int
531   tlsld_got_offset() const
532   {
533     return this->tlsld_got_offset_;
534   }
535
536   // Get the dynamic reloc section, creating it if necessary.
537   Reloc_section*
538   rela_dyn_section(Layout*);
539
540   // Copy a relocation against a global symbol.
541   void
542   copy_reloc(Symbol_table* symtab, Layout* layout,
543              Sized_relobj_file<size, big_endian>* object,
544              unsigned int shndx, Output_section* output_section,
545              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
546   {
547     this->copy_relocs_.copy_reloc(symtab, layout,
548                                   symtab->get_sized_symbol<size>(sym),
549                                   object, shndx, output_section,
550                                   reloc, this->rela_dyn_section(layout));
551   }
552
553   // Information about this specific target which we pass to the
554   // general Target structure.
555   static Target::Target_info powerpc_info;
556
557   // The types of GOT entries needed for this platform.
558   // These values are exposed to the ABI in an incremental link.
559   // Do not renumber existing values without changing the version
560   // number of the .gnu_incremental_inputs section.
561   enum Got_type
562   {
563     GOT_TYPE_STANDARD,
564     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
565     GOT_TYPE_DTPREL,    // entry for @got@dtprel
566     GOT_TYPE_TPREL      // entry for @got@tprel
567   };
568
569   // The GOT output section.
570   Output_data_got_powerpc<size, big_endian>* got_;
571   // The PLT output section.
572   Output_data_plt_powerpc<size, big_endian>* plt_;
573   // The .glink output section.
574   Output_data_glink<size, big_endian>* glink_;
575   // The dynamic reloc output section.
576   Reloc_section* rela_dyn_;
577   // Relocs saved to avoid a COPY reloc.
578   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
579   // Space for variables copied with a COPY reloc.
580   Output_data_space* dynbss_;
581   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
582   unsigned int tlsld_got_offset_;
583 };
584
585 template<>
586 Target::Target_info Target_powerpc<32, true>::powerpc_info =
587 {
588   32,                   // size
589   true,                 // is_big_endian
590   elfcpp::EM_PPC,       // machine_code
591   false,                // has_make_symbol
592   false,                // has_resolve
593   false,                // has_code_fill
594   true,                 // is_default_stack_executable
595   false,                // can_icf_inline_merge_sections
596   '\0',                 // wrap_char
597   "/usr/lib/ld.so.1",   // dynamic_linker
598   0x10000000,           // default_text_segment_address
599   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
600   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
601   false,                // isolate_execinstr
602   0,                    // rosegment_gap
603   elfcpp::SHN_UNDEF,    // small_common_shndx
604   elfcpp::SHN_UNDEF,    // large_common_shndx
605   0,                    // small_common_section_flags
606   0,                    // large_common_section_flags
607   NULL,                 // attributes_section
608   NULL                  // attributes_vendor
609 };
610
611 template<>
612 Target::Target_info Target_powerpc<32, false>::powerpc_info =
613 {
614   32,                   // size
615   false,                // is_big_endian
616   elfcpp::EM_PPC,       // machine_code
617   false,                // has_make_symbol
618   false,                // has_resolve
619   false,                // has_code_fill
620   true,                 // is_default_stack_executable
621   false,                // can_icf_inline_merge_sections
622   '\0',                 // wrap_char
623   "/usr/lib/ld.so.1",   // dynamic_linker
624   0x10000000,           // default_text_segment_address
625   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
626   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
627   false,                // isolate_execinstr
628   0,                    // rosegment_gap
629   elfcpp::SHN_UNDEF,    // small_common_shndx
630   elfcpp::SHN_UNDEF,    // large_common_shndx
631   0,                    // small_common_section_flags
632   0,                    // large_common_section_flags
633   NULL,                 // attributes_section
634   NULL                  // attributes_vendor
635 };
636
637 template<>
638 Target::Target_info Target_powerpc<64, true>::powerpc_info =
639 {
640   64,                   // size
641   true,                 // is_big_endian
642   elfcpp::EM_PPC64,     // machine_code
643   false,                // has_make_symbol
644   false,                // has_resolve
645   false,                // has_code_fill
646   true,                 // is_default_stack_executable
647   false,                // can_icf_inline_merge_sections
648   '\0',                 // wrap_char
649   "/usr/lib/ld.so.1",   // dynamic_linker
650   0x10000000,           // default_text_segment_address
651   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
652   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
653   false,                // isolate_execinstr
654   0,                    // rosegment_gap
655   elfcpp::SHN_UNDEF,    // small_common_shndx
656   elfcpp::SHN_UNDEF,    // large_common_shndx
657   0,                    // small_common_section_flags
658   0,                    // large_common_section_flags
659   NULL,                 // attributes_section
660   NULL                  // attributes_vendor
661 };
662
663 template<>
664 Target::Target_info Target_powerpc<64, false>::powerpc_info =
665 {
666   64,                   // size
667   false,                // is_big_endian
668   elfcpp::EM_PPC64,     // machine_code
669   false,                // has_make_symbol
670   false,                // has_resolve
671   false,                // has_code_fill
672   true,                 // is_default_stack_executable
673   false,                // can_icf_inline_merge_sections
674   '\0',                 // wrap_char
675   "/usr/lib/ld.so.1",   // dynamic_linker
676   0x10000000,           // default_text_segment_address
677   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
678   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
679   false,                // isolate_execinstr
680   0,                    // rosegment_gap
681   elfcpp::SHN_UNDEF,    // small_common_shndx
682   elfcpp::SHN_UNDEF,    // large_common_shndx
683   0,                    // small_common_section_flags
684   0,                    // large_common_section_flags
685   NULL,                 // attributes_section
686   NULL                  // attributes_vendor
687 };
688
689 inline bool
690 is_branch_reloc(unsigned int r_type)
691 {
692   return (r_type == elfcpp::R_POWERPC_REL24
693           || r_type == elfcpp::R_PPC_PLTREL24
694           || r_type == elfcpp::R_PPC_LOCAL24PC
695           || r_type == elfcpp::R_POWERPC_REL14
696           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
697           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
698           || r_type == elfcpp::R_POWERPC_ADDR24
699           || r_type == elfcpp::R_POWERPC_ADDR14
700           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
701           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
702 }
703
704 // If INSN is an opcode that may be used with an @tls operand, return
705 // the transformed insn for TLS optimisation, otherwise return 0.  If
706 // REG is non-zero only match an insn with RB or RA equal to REG.
707 uint32_t
708 at_tls_transform(uint32_t insn, unsigned int reg)
709 {
710   if ((insn & (0x3f << 26)) != 31 << 26)
711     return 0;
712
713   unsigned int rtra;
714   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
715     rtra = insn & ((1 << 26) - (1 << 16));
716   else if (((insn >> 16) & 0x1f) == reg)
717     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
718   else
719     return 0;
720
721   if ((insn & (0x3ff << 1)) == 266 << 1)
722     // add -> addi
723     insn = 14 << 26;
724   else if ((insn & (0x1f << 1)) == 23 << 1
725            && ((insn & (0x1f << 6)) < 14 << 6
726                || ((insn & (0x1f << 6)) >= 16 << 6
727                    && (insn & (0x1f << 6)) < 24 << 6)))
728     // load and store indexed -> dform
729     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
730   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
731     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
732     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
733   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
734     // lwax -> lwa
735     insn = (58 << 26) | 2;
736   else
737     return 0;
738   insn |= rtra;
739   return insn;
740 }
741
742 // Modified version of symtab.h class Symbol member
743 // Given a direct absolute or pc-relative static relocation against
744 // the global symbol, this function returns whether a dynamic relocation
745 // is needed.
746
747 template<int size>
748 bool
749 needs_dynamic_reloc(const Symbol* gsym, int flags)
750 {
751   // No dynamic relocations in a static link!
752   if (parameters->doing_static_link())
753     return false;
754
755   // A reference to an undefined symbol from an executable should be
756   // statically resolved to 0, and does not need a dynamic relocation.
757   // This matches gnu ld behavior.
758   if (gsym->is_undefined() && !parameters->options().shared())
759     return false;
760
761   // A reference to an absolute symbol does not need a dynamic relocation.
762   if (gsym->is_absolute())
763     return false;
764
765   // An absolute reference within a position-independent output file
766   // will need a dynamic relocation.
767   if ((flags & Symbol::ABSOLUTE_REF)
768       && parameters->options().output_is_position_independent())
769     return true;
770
771   // A function call that can branch to a local PLT entry does not need
772   // a dynamic relocation.
773   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
774     return false;
775
776   // A reference to any PLT entry in a non-position-independent executable
777   // does not need a dynamic relocation.
778   // Except due to having function descriptors on powerpc64 we don't define
779   // functions to their plt code in an executable, so this doesn't apply.
780   if (size == 32
781       && !parameters->options().output_is_position_independent()
782       && gsym->has_plt_offset())
783     return false;
784
785   // A reference to a symbol defined in a dynamic object or to a
786   // symbol that is preemptible will need a dynamic relocation.
787   if (gsym->is_from_dynobj()
788       || gsym->is_undefined()
789       || gsym->is_preemptible())
790     return true;
791
792   // For all other cases, return FALSE.
793   return false;
794 }
795
796 // Modified version of symtab.h class Symbol member
797 // Whether we should use the PLT offset associated with a symbol for
798 // a relocation.  FLAGS is a set of Reference_flags.
799
800 template<int size>
801 bool
802 use_plt_offset(const Symbol* gsym, int flags)
803 {
804   // If the symbol doesn't have a PLT offset, then naturally we
805   // don't want to use it.
806   if (!gsym->has_plt_offset())
807     return false;
808
809   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
810   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
811     return true;
812
813   // If we are going to generate a dynamic relocation, then we will
814   // wind up using that, so no need to use the PLT entry.
815   if (needs_dynamic_reloc<size>(gsym, flags))
816     return false;
817
818   // If the symbol is from a dynamic object, we need to use the PLT
819   // entry.
820   if (gsym->is_from_dynobj())
821     return true;
822
823   // If we are generating a shared object, and gsym symbol is
824   // undefined or preemptible, we need to use the PLT entry.
825   if (parameters->options().shared()
826       && (gsym->is_undefined() || gsym->is_preemptible()))
827     return true;
828
829   // If gsym is a call to a weak undefined symbol, we need to use
830   // the PLT entry; the symbol may be defined by a library loaded
831   // at runtime.
832   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
833     return true;
834
835   // Otherwise we can use the regular definition.
836   return false;
837 }
838
839 template<int size, bool big_endian>
840 class Powerpc_relocate_functions
841 {
842 public:
843   enum overflow_check
844   {
845     check_none,
846     check_signed,
847     check_bitfield
848   };
849
850   enum overflow_status
851   {
852     status_ok,
853     status_overflow
854   };
855
856 private:
857   typedef Powerpc_relocate_functions<size, big_endian> This;
858   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
859
860   template<int valsize>
861   static inline bool
862   has_overflow_signed(Address value)
863   {
864     // limit = 1 << (valsize - 1) without shift count exceeding size of type
865     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
866     limit <<= ((valsize - 1) >> 1);
867     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
868     return value + limit > (limit << 1) - 1;
869   }
870
871   template<int valsize>
872   static inline bool
873   has_overflow_bitfield(Address value)
874   {
875     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
876     limit <<= ((valsize - 1) >> 1);
877     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
878     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
879   }
880
881   template<int valsize>
882   static inline enum overflow_status
883   overflowed(Address value, enum overflow_check overflow)
884   {
885     if (overflow == check_signed)
886       {
887         if (has_overflow_signed<valsize>(value))
888           return status_overflow;
889       }
890     else if (overflow == check_bitfield)
891       {
892         if (has_overflow_bitfield<valsize>(value))
893           return status_overflow;
894       }
895     return status_ok;
896   }
897
898   // Do a simple RELA relocation
899   template<int valsize>
900   static inline enum overflow_status
901   rela(unsigned char* view, Address value, enum overflow_check overflow)
902   {
903     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
904     Valtype* wv = reinterpret_cast<Valtype*>(view);
905     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
906     return overflowed<valsize>(value, overflow);
907   }
908
909   template<int valsize>
910   static inline enum overflow_status
911   rela(unsigned char* view,
912        unsigned int right_shift,
913        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
914        Address value,
915        enum overflow_check overflow)
916   {
917     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
918     Valtype* wv = reinterpret_cast<Valtype*>(view);
919     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
920     Valtype reloc = value >> right_shift;
921     val &= ~dst_mask;
922     reloc &= dst_mask;
923     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
924     return overflowed<valsize>(value >> right_shift, overflow);
925   }
926
927   // Do a simple RELA relocation, unaligned.
928   template<int valsize>
929   static inline enum overflow_status
930   rela_ua(unsigned char* view, Address value, enum overflow_check overflow)
931   {
932     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
933     return overflowed<valsize>(value, overflow);
934   }
935
936   template<int valsize>
937   static inline enum overflow_status
938   rela_ua(unsigned char* view,
939           unsigned int right_shift,
940           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
941           Address value,
942           enum overflow_check overflow)
943   {
944     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
945       Valtype;
946     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
947     Valtype reloc = value >> right_shift;
948     val &= ~dst_mask;
949     reloc &= dst_mask;
950     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
951     return overflowed<valsize>(value >> right_shift, overflow);
952   }
953
954 public:
955   // R_PPC64_ADDR64: (Symbol + Addend)
956   static inline void
957   addr64(unsigned char* view, Address value)
958   { This::template rela<64>(view, value, check_none); }
959
960   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
961   static inline void
962   addr64_u(unsigned char* view, Address value)
963   { This::template rela_ua<64>(view, value, check_none); }
964
965   // R_POWERPC_ADDR32: (Symbol + Addend)
966   static inline enum overflow_status
967   addr32(unsigned char* view, Address value, enum overflow_check overflow)
968   { return This::template rela<32>(view, value, overflow); }
969
970   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
971   static inline enum overflow_status
972   addr32_u(unsigned char* view, Address value, enum overflow_check overflow)
973   { return This::template rela_ua<32>(view, value, overflow); }
974
975   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
976   static inline enum overflow_status
977   addr24(unsigned char* view, Address value, enum overflow_check overflow)
978   {
979     enum overflow_status stat
980       = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
981     if (overflow != check_none && (value & 3) != 0)
982       stat = status_overflow;
983     return stat;
984   }
985
986   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
987   static inline enum overflow_status
988   addr16(unsigned char* view, Address value, enum overflow_check overflow)
989   { return This::template rela<16>(view, value, overflow); }
990
991   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
992   static inline enum overflow_status
993   addr16_u(unsigned char* view, Address value, enum overflow_check overflow)
994   { return This::template rela_ua<16>(view, value, overflow); }
995
996   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
997   static inline enum overflow_status
998   addr16_ds(unsigned char* view, Address value, enum overflow_check overflow)
999   {
1000     enum overflow_status stat
1001       = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1002     if (overflow != check_none && (value & 3) != 0)
1003       stat = status_overflow;
1004     return stat;
1005   }
1006
1007   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1008   static inline void
1009   addr16_hi(unsigned char* view, Address value)
1010   { This::template rela<16>(view, 16, 0xffff, value, check_none); }
1011
1012   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1013   static inline void
1014   addr16_ha(unsigned char* view, Address value)
1015   { This::addr16_hi(view, value + 0x8000); }
1016
1017   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1018   static inline void
1019   addr16_hi2(unsigned char* view, Address value)
1020   { This::template rela<16>(view, 32, 0xffff, value, check_none); }
1021
1022   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1023   static inline void
1024   addr16_ha2(unsigned char* view, Address value)
1025   { This::addr16_hi2(view, value + 0x8000); }
1026
1027   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1028   static inline void
1029   addr16_hi3(unsigned char* view, Address value)
1030   { This::template rela<16>(view, 48, 0xffff, value, check_none); }
1031
1032   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1033   static inline void
1034   addr16_ha3(unsigned char* view, Address value)
1035   { This::addr16_hi3(view, value + 0x8000); }
1036
1037   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1038   static inline enum overflow_status
1039   addr14(unsigned char* view, Address value, enum overflow_check overflow)
1040   {
1041     enum overflow_status stat
1042       = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1043     if (overflow != check_none && (value & 3) != 0)
1044       stat = status_overflow;
1045     return stat;
1046   }
1047 };
1048
1049 // Stash away the index of .got2 or .opd in a relocatable object, if
1050 // such a section exists.
1051
1052 template<int size, bool big_endian>
1053 bool
1054 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1055     Read_symbols_data* sd)
1056 {
1057   const unsigned char* const pshdrs = sd->section_headers->data();
1058   const unsigned char* namesu = sd->section_names->data();
1059   const char* names = reinterpret_cast<const char*>(namesu);
1060   section_size_type names_size = sd->section_names_size;
1061   const unsigned char* s;
1062
1063   s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1064                       names, names_size, NULL);
1065   if (s != NULL)
1066     {
1067       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1068       this->special_ = ndx;
1069     }
1070   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1071 }
1072
1073 // Examine .rela.opd to build info about function entry points.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1078     size_t reloc_count,
1079     const unsigned char* prelocs,
1080     const unsigned char* plocal_syms)
1081 {
1082   if (size == 64)
1083     {
1084       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1085         Reltype;
1086       const int reloc_size
1087         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1088       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1089
1090       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1091         {
1092           Reltype reloc(prelocs);
1093           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1094             = reloc.get_r_info();
1095           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1096           if (r_type == elfcpp::R_PPC64_ADDR64)
1097             {
1098               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1099               typename elfcpp::Elf_types<size>::Elf_Addr value;
1100               bool is_ordinary;
1101               unsigned int shndx;
1102               if (r_sym < this->local_symbol_count())
1103                 {
1104                   typename elfcpp::Sym<size, big_endian>
1105                     lsym(plocal_syms + r_sym * sym_size);
1106                   shndx = lsym.get_st_shndx();
1107                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1108                   value = lsym.get_st_value();
1109                 }
1110               else
1111                 shndx = this->symbol_section_and_value(r_sym, &value,
1112                                                        &is_ordinary);
1113               this->set_opd_ent(reloc.get_r_offset(), shndx,
1114                                 value + reloc.get_r_addend());
1115             }
1116         }
1117     }
1118 }
1119
1120 template<int size, bool big_endian>
1121 void
1122 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1123 {
1124   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1125   if (size == 64)
1126     {
1127       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1128            p != rd->relocs.end();
1129            ++p)
1130         {
1131           if (p->data_shndx == this->opd_shndx())
1132             {
1133               this->init_opd(this->section_size(this->opd_shndx()));
1134               this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1135                                     rd->local_symbols->data());
1136               break;
1137             }
1138         }
1139     }
1140 }
1141
1142 // Set up PowerPC target specific relobj.
1143
1144 template<int size, bool big_endian>
1145 Object*
1146 Target_powerpc<size, big_endian>::do_make_elf_object(
1147     const std::string& name,
1148     Input_file* input_file,
1149     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1150 {
1151   int et = ehdr.get_e_type();
1152   if (et == elfcpp::ET_REL)
1153     {
1154       Powerpc_relobj<size, big_endian>* obj =
1155         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1156       obj->setup();
1157       return obj;
1158     }
1159   else if (et == elfcpp::ET_DYN)
1160     {
1161       Sized_dynobj<size, big_endian>* obj =
1162         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1163       obj->setup();
1164       return obj;
1165     }
1166   else
1167     {
1168       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1169       return NULL;
1170     }
1171 }
1172
1173 template<int size, bool big_endian>
1174 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1175 {
1176 public:
1177   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1178   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1179
1180   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1181     : Output_data_got<size, big_endian>(),
1182       symtab_(symtab), layout_(layout),
1183       header_ent_cnt_(size == 32 ? 3 : 1),
1184       header_index_(size == 32 ? 0x2000 : 0)
1185   {}
1186
1187   class Got_entry;
1188
1189   // Create a new GOT entry and return its offset.
1190   unsigned int
1191   add_got_entry(Got_entry got_entry)
1192   {
1193     this->reserve_ent();
1194     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1195   }
1196
1197   // Create a pair of new GOT entries and return the offset of the first.
1198   unsigned int
1199   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1200   {
1201     this->reserve_ent(2);
1202     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1203                                                                  got_entry_2);
1204   }
1205
1206   unsigned int
1207   add_constant_pair(Valtype c1, Valtype c2)
1208   {
1209     this->reserve_ent(2);
1210     unsigned int got_offset = this->add_constant(c1);
1211     this->add_constant(c2);
1212     return got_offset;
1213   }
1214
1215   // Offset of _GLOBAL_OFFSET_TABLE_.
1216   unsigned int
1217   g_o_t() const
1218   {
1219     return this->got_offset(this->header_index_);
1220   }
1221
1222   // Offset of base used to access the GOT/TOC.
1223   // The got/toc pointer reg will be set to this value.
1224   typename elfcpp::Elf_types<size>::Elf_Off
1225   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1226   {
1227     if (size == 32)
1228       return this->g_o_t();
1229     else
1230       return (this->output_section()->address()
1231               + object->toc_base_offset()
1232               - this->address());
1233   }
1234
1235   // Ensure our GOT has a header.
1236   void
1237   set_final_data_size()
1238   {
1239     if (this->header_ent_cnt_ != 0)
1240       this->make_header();
1241     Output_data_got<size, big_endian>::set_final_data_size();
1242   }
1243
1244   // First word of GOT header needs some values that are not
1245   // handled by Output_data_got so poke them in here.
1246   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1247   void
1248   do_write(Output_file* of)
1249   {
1250     this->replace_constant(this->header_index_,
1251                            (size == 32
1252                             ? this->layout_->dynamic_section()->address()
1253                             : this->output_section()->address() + 0x8000));
1254
1255     Output_data_got<size, big_endian>::do_write(of);
1256   }
1257
1258 private:
1259   void
1260   reserve_ent(unsigned int cnt = 1)
1261   {
1262     if (this->header_ent_cnt_ == 0)
1263       return;
1264     if (this->num_entries() + cnt > this->header_index_)
1265       this->make_header();
1266   }
1267
1268   void
1269   make_header()
1270   {
1271     this->header_ent_cnt_ = 0;
1272     this->header_index_ = this->num_entries();
1273     if (size == 32)
1274       {
1275         Output_data_got<size, big_endian>::add_constant(0);
1276         Output_data_got<size, big_endian>::add_constant(0);
1277         Output_data_got<size, big_endian>::add_constant(0);
1278
1279         // Define _GLOBAL_OFFSET_TABLE_ at the header
1280         this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1281                                              Symbol_table::PREDEFINED,
1282                                              this, this->g_o_t(), 0,
1283                                              elfcpp::STT_OBJECT,
1284                                              elfcpp::STB_LOCAL,
1285                                              elfcpp::STV_HIDDEN,
1286                                              0, false, false);
1287       }
1288     else
1289       Output_data_got<size, big_endian>::add_constant(0);
1290   }
1291
1292   // Stashed pointers.
1293   Symbol_table* symtab_;
1294   Layout* layout_;
1295
1296   // GOT header size.
1297   unsigned int header_ent_cnt_;
1298   // GOT header index.
1299   unsigned int header_index_;
1300 };
1301
1302 // Get the GOT section, creating it if necessary.
1303
1304 template<int size, bool big_endian>
1305 Output_data_got_powerpc<size, big_endian>*
1306 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1307                                               Layout* layout)
1308 {
1309   if (this->got_ == NULL)
1310     {
1311       gold_assert(symtab != NULL && layout != NULL);
1312
1313       this->got_
1314         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1315
1316       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1317                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1318                                       this->got_, ORDER_DATA, false);
1319     }
1320
1321   return this->got_;
1322 }
1323
1324 // Get the dynamic reloc section, creating it if necessary.
1325
1326 template<int size, bool big_endian>
1327 typename Target_powerpc<size, big_endian>::Reloc_section*
1328 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1329 {
1330   if (this->rela_dyn_ == NULL)
1331     {
1332       gold_assert(layout != NULL);
1333       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1334       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1335                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1336                                       ORDER_DYNAMIC_RELOCS, false);
1337     }
1338   return this->rela_dyn_;
1339 }
1340
1341 // A class to handle the PLT data.
1342
1343 template<int size, bool big_endian>
1344 class Output_data_plt_powerpc : public Output_section_data_build
1345 {
1346  public:
1347   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
1348                             size, big_endian> Reloc_section;
1349
1350   Output_data_plt_powerpc(Layout*, Target_powerpc<size, big_endian>*);
1351
1352   // Add an entry to the PLT.
1353   void
1354   add_entry(Symbol*);
1355
1356   // Return the .rela.plt section data.
1357   const Reloc_section*
1358   rel_plt() const
1359   {
1360     return this->rel_;
1361   }
1362
1363   // Return the number of PLT entries.
1364   unsigned int
1365   entry_count() const
1366   {
1367     return ((this->current_data_size() - initial_plt_entry_size)
1368             / plt_entry_size);
1369   }
1370
1371   // Return the offset of the first non-reserved PLT entry.
1372   static unsigned int
1373   first_plt_entry_offset()
1374   { return initial_plt_entry_size; }
1375
1376   // Return the size of a PLT entry.
1377   static unsigned int
1378   get_plt_entry_size()
1379   { return plt_entry_size; }
1380
1381  protected:
1382   void
1383   do_adjust_output_section(Output_section* os)
1384   {
1385     os->set_entsize(0);
1386   }
1387
1388   // Write to a map file.
1389   void
1390   do_print_to_mapfile(Mapfile* mapfile) const
1391   { mapfile->print_output_data(this, _("** PLT")); }
1392
1393  private:
1394   // The size of an entry in the PLT.
1395   static const int plt_entry_size = size == 32 ? 4 : 24;
1396   // The size of the first reserved entry.
1397   static const int initial_plt_entry_size = size == 32 ? 0 : 24;
1398
1399   // Write out the PLT data.
1400   void
1401   do_write(Output_file*);
1402
1403   // The reloc section.
1404   Reloc_section* rel_;
1405   // Allows access to .glink for do_write.
1406   Target_powerpc<size, big_endian>* targ_;
1407 };
1408
1409 // Create the PLT section.
1410
1411 template<int size, bool big_endian>
1412 Output_data_plt_powerpc<size, big_endian>::Output_data_plt_powerpc(
1413     Layout* layout,
1414     Target_powerpc<size, big_endian>* targ)
1415   : Output_section_data_build(size == 32 ? 4 : 8),
1416     targ_(targ)
1417 {
1418   this->rel_ = new Reloc_section(false);
1419   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1420                                   elfcpp::SHF_ALLOC, this->rel_,
1421                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1422 }
1423
1424 // Add an entry to the PLT.
1425
1426 template<int size, bool big_endian>
1427 void
1428 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
1429 {
1430   if (!gsym->has_plt_offset())
1431     {
1432       off_t off = this->current_data_size();
1433
1434       if (off == 0)
1435         off += initial_plt_entry_size;
1436       gsym->set_plt_offset(off);
1437       gsym->set_needs_dynsym_entry();
1438       this->rel_->add_global(gsym, elfcpp::R_POWERPC_JMP_SLOT, this, off, 0);
1439       off += plt_entry_size;
1440       this->set_current_data_size(off);
1441     }
1442 }
1443
1444 static const uint32_t add_0_11_11       = 0x7c0b5a14;
1445 static const uint32_t add_3_3_2         = 0x7c631214;
1446 static const uint32_t add_3_3_13        = 0x7c636a14;
1447 static const uint32_t add_11_0_11       = 0x7d605a14;
1448 static const uint32_t add_12_2_11       = 0x7d825a14;
1449 static const uint32_t addi_11_11        = 0x396b0000;
1450 static const uint32_t addi_12_12        = 0x398c0000;
1451 static const uint32_t addi_2_2          = 0x38420000;
1452 static const uint32_t addi_3_2          = 0x38620000;
1453 static const uint32_t addi_3_3          = 0x38630000;
1454 static const uint32_t addis_0_2         = 0x3c020000;
1455 static const uint32_t addis_0_13        = 0x3c0d0000;
1456 static const uint32_t addis_11_11       = 0x3d6b0000;
1457 static const uint32_t addis_11_30       = 0x3d7e0000;
1458 static const uint32_t addis_12_12       = 0x3d8c0000;
1459 static const uint32_t addis_12_2        = 0x3d820000;
1460 static const uint32_t addis_3_2         = 0x3c620000;
1461 static const uint32_t addis_3_13        = 0x3c6d0000;
1462 static const uint32_t b                 = 0x48000000;
1463 static const uint32_t bcl_20_31         = 0x429f0005;
1464 static const uint32_t bctr              = 0x4e800420;
1465 static const uint32_t blrl              = 0x4e800021;
1466 static const uint32_t cror_15_15_15     = 0x4def7b82;
1467 static const uint32_t cror_31_31_31     = 0x4ffffb82;
1468 static const uint32_t ld_11_12          = 0xe96c0000;
1469 static const uint32_t ld_11_2           = 0xe9620000;
1470 static const uint32_t ld_2_1            = 0xe8410000;
1471 static const uint32_t ld_2_11           = 0xe84b0000;
1472 static const uint32_t ld_2_12           = 0xe84c0000;
1473 static const uint32_t ld_2_2            = 0xe8420000;
1474 static const uint32_t li_0_0            = 0x38000000;
1475 static const uint32_t lis_0_0           = 0x3c000000;
1476 static const uint32_t lis_11            = 0x3d600000;
1477 static const uint32_t lis_12            = 0x3d800000;
1478 static const uint32_t lwz_0_12          = 0x800c0000;
1479 static const uint32_t lwz_11_11         = 0x816b0000;
1480 static const uint32_t lwz_11_30         = 0x817e0000;
1481 static const uint32_t lwz_12_12         = 0x818c0000;
1482 static const uint32_t lwzu_0_12         = 0x840c0000;
1483 static const uint32_t mflr_0            = 0x7c0802a6;
1484 static const uint32_t mflr_11           = 0x7d6802a6;
1485 static const uint32_t mflr_12           = 0x7d8802a6;
1486 static const uint32_t mtctr_0           = 0x7c0903a6;
1487 static const uint32_t mtctr_11          = 0x7d6903a6;
1488 static const uint32_t mtlr_0            = 0x7c0803a6;
1489 static const uint32_t mtlr_12           = 0x7d8803a6;
1490 static const uint32_t nop               = 0x60000000;
1491 static const uint32_t ori_0_0_0         = 0x60000000;
1492 static const uint32_t std_2_1           = 0xf8410000;
1493 static const uint32_t sub_11_11_12      = 0x7d6c5850;
1494
1495 // Write out the PLT.
1496
1497 template<int size, bool big_endian>
1498 void
1499 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
1500 {
1501   if (size == 32)
1502     {
1503       const off_t offset = this->offset();
1504       const section_size_type oview_size
1505         = convert_to_section_size_type(this->data_size());
1506       unsigned char* const oview = of->get_output_view(offset, oview_size);
1507       unsigned char* pov = oview;
1508       unsigned char* endpov = oview + oview_size;
1509
1510       // The address the .glink branch table
1511       const Output_data_glink<size, big_endian>* glink
1512         = this->targ_->glink_section();
1513       elfcpp::Elf_types<32>::Elf_Addr branch_tab
1514         = glink->address() + glink->pltresolve();
1515
1516       while (pov < endpov)
1517         {
1518           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
1519           pov += 4;
1520           branch_tab += 4;
1521         }
1522
1523       of->write_output_view(offset, oview_size, oview);
1524     }
1525 }
1526
1527 // Create the PLT section.
1528
1529 template<int size, bool big_endian>
1530 void
1531 Target_powerpc<size, big_endian>::make_plt_section(Layout* layout)
1532 {
1533   if (this->plt_ == NULL)
1534     {
1535       if (this->glink_ == NULL)
1536         make_glink_section(layout);
1537
1538       // Ensure that .rela.dyn always appears before .rela.plt  This is
1539       // necessary due to how, on PowerPC and some other targets, .rela.dyn
1540       // needs to include .rela.plt in it's range.
1541       this->rela_dyn_section(layout);
1542
1543       this->plt_ = new Output_data_plt_powerpc<size, big_endian>(layout, this);
1544       layout->add_output_section_data(".plt",
1545                                       (size == 32
1546                                        ? elfcpp::SHT_PROGBITS
1547                                        : elfcpp::SHT_NOBITS),
1548                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1549                                       this->plt_,
1550                                       (size == 32
1551                                        ? ORDER_SMALL_DATA
1552                                        : ORDER_SMALL_BSS),
1553                                       false);
1554     }
1555 }
1556
1557 // A class to handle .glink.
1558
1559 template<int size, bool big_endian>
1560 class Output_data_glink : public Output_section_data
1561 {
1562  public:
1563   static const int pltresolve_size = 16*4;
1564
1565   Output_data_glink(Target_powerpc<size, big_endian>*);
1566
1567   // Add an entry
1568   void
1569   add_entry(const Symbol*, const elfcpp::Rela<size, big_endian>&,
1570             const Sized_relobj<size, big_endian>*);
1571
1572   unsigned int
1573   find_entry(const Symbol*, const elfcpp::Rela<size, big_endian>&,
1574              const Sized_relobj<size, big_endian>*) const;
1575
1576   unsigned int
1577   glink_entry_size() const
1578   {
1579     if (size == 32)
1580       return 4 * 4;
1581     else
1582       // FIXME: We should be using multiple glink sections for
1583       // stubs to support > 33M applications.
1584       return 8 * 4;
1585   }
1586
1587   off_t
1588   pltresolve() const
1589   {
1590     return this->pltresolve_;
1591   }
1592
1593  protected:
1594   // Write to a map file.
1595   void
1596   do_print_to_mapfile(Mapfile* mapfile) const
1597   { mapfile->print_output_data(this, _("** glink")); }
1598
1599  private:
1600   void
1601   set_final_data_size();
1602
1603   // Write out .glink
1604   void
1605   do_write(Output_file*);
1606
1607   class Glink_sym_ent
1608   {
1609   public:
1610     Glink_sym_ent(const Symbol* sym,
1611                   const elfcpp::Rela<size, big_endian>& reloc,
1612                   const Sized_relobj<size, big_endian>* object)
1613       : sym_(sym), addend_(0), object_(0)
1614     {
1615       if (size != 32)
1616         this->addend_ = reloc.get_r_addend();
1617       else if (parameters->options().output_is_position_independent()
1618                && (elfcpp::elf_r_type<size>(reloc.get_r_info())
1619                    == elfcpp::R_PPC_PLTREL24))
1620         {
1621           this->addend_ = reloc.get_r_addend();
1622           if (this->addend_ != 0)
1623             this->object_ = object;
1624         }
1625     }
1626
1627     bool operator==(const Glink_sym_ent& that) const
1628     {
1629       return (this->sym_ == that.sym_
1630               && this->object_ == that.object_
1631               && this->addend_ == that.addend_);
1632     }
1633
1634     const Symbol* sym_;
1635     unsigned int addend_;
1636     const Sized_relobj<size, big_endian>* object_;
1637   };
1638
1639   class Glink_sym_ent_hash
1640   {
1641   public:
1642     size_t operator()(const Glink_sym_ent& ent) const
1643     {
1644       return (reinterpret_cast<uintptr_t>(ent.sym_)
1645               ^ reinterpret_cast<uintptr_t>(ent.object_)
1646               ^ ent.addend_);
1647     }
1648   };
1649
1650   // Map sym/object/addend to index.
1651   typedef Unordered_map<Glink_sym_ent, unsigned int,
1652                         Glink_sym_ent_hash> Glink_entries;
1653   Glink_entries glink_entries_;
1654
1655   // Offset of pltresolve stub (actually, branch table for 32-bit)
1656   off_t pltresolve_;
1657
1658   // Allows access to .got and .plt for do_write.
1659   Target_powerpc<size, big_endian>* targ_;
1660 };
1661
1662 // Create the glink section.
1663
1664 template<int size, bool big_endian>
1665 Output_data_glink<size, big_endian>::Output_data_glink(
1666     Target_powerpc<size, big_endian>* targ)
1667   : Output_section_data(16),
1668     pltresolve_(0), targ_(targ)
1669 {
1670 }
1671
1672 // Add an entry to glink, if we do not already have one for this
1673 // sym/object/addend combo.
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_glink<size, big_endian>::add_entry(
1678     const Symbol* gsym,
1679     const elfcpp::Rela<size, big_endian>& reloc,
1680     const Sized_relobj<size, big_endian>* object)
1681 {
1682   Glink_sym_ent ent(gsym, reloc, object);
1683   unsigned int indx = this->glink_entries_.size();
1684   this->glink_entries_.insert(std::make_pair(ent, indx));
1685 }
1686
1687 template<int size, bool big_endian>
1688 unsigned int
1689 Output_data_glink<size, big_endian>::find_entry(
1690     const Symbol* gsym,
1691     const elfcpp::Rela<size, big_endian>& reloc,
1692     const Sized_relobj<size, big_endian>* object) const
1693 {
1694   Glink_sym_ent ent(gsym, reloc, object);
1695   typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
1696   gold_assert(p != this->glink_entries_.end());
1697   return p->second;
1698 }
1699
1700 template<int size, bool big_endian>
1701 void
1702 Output_data_glink<size, big_endian>::set_final_data_size()
1703 {
1704   unsigned int count = this->glink_entries_.size();
1705   off_t total = count;
1706
1707   if (count != 0)
1708     {
1709       if (size == 32)
1710         {
1711           total *= 16;
1712           this->pltresolve_ = total;
1713
1714           // space for branch table
1715           total += 4 * (count - 1);
1716
1717           total += -total & 15;
1718           total += this->pltresolve_size;
1719         }
1720       else
1721         {
1722           total *= 32;
1723           this->pltresolve_ = total;
1724           total += this->pltresolve_size;
1725
1726           // space for branch table
1727           total += 8 * count;
1728           if (count > 0x8000)
1729             total += 4 * (count - 0x8000);
1730         }
1731     }
1732
1733   this->set_data_size(total);
1734 }
1735
1736 static inline uint32_t
1737 l(uint32_t a)
1738 {
1739   return a & 0xffff;
1740 }
1741
1742 static inline uint32_t
1743 hi(uint32_t a)
1744 {
1745   return l(a >> 16);
1746 }
1747
1748 static inline uint32_t
1749 ha(uint32_t a)
1750 {
1751   return hi(a + 0x8000);
1752 }
1753
1754 template<bool big_endian>
1755 static inline void
1756 write_insn(unsigned char* p, uint32_t v)
1757 {
1758   elfcpp::Swap<32, big_endian>::writeval(p, v);
1759 }
1760
1761 // Write out .glink.
1762
1763 template<int size, bool big_endian>
1764 void
1765 Output_data_glink<size, big_endian>::do_write(Output_file* of)
1766 {
1767   const off_t off = this->offset();
1768   const section_size_type oview_size =
1769     convert_to_section_size_type(this->data_size());
1770   unsigned char* const oview = of->get_output_view(off, oview_size);
1771   unsigned char* p;
1772
1773   // The base address of the .plt section.
1774   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1775   Address plt_base = this->targ_->plt_section()->address();
1776
1777   const Output_data_got_powerpc<size, big_endian>* got
1778     = this->targ_->got_section();
1779
1780   if (size == 64)
1781     {
1782       Address got_os_addr = got->output_section()->address();
1783
1784       // Write out call stubs.
1785       typename Glink_entries::const_iterator g;
1786       for (g = this->glink_entries_.begin();
1787            g != this->glink_entries_.end();
1788            ++g)
1789         {
1790           Address plt_addr = plt_base + g->first.sym_->plt_offset();
1791           const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1792             <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
1793           Address got_addr = got_os_addr + ppcobj->toc_base_offset();
1794           Address pltoff = plt_addr - got_addr;
1795
1796           if (pltoff + 0x80008000 > 0xffffffff || (pltoff & 7) != 0)
1797             gold_error(_("%s: linkage table error against `%s'"),
1798                        g->first.object_->name().c_str(),
1799                        g->first.sym_->demangled_name().c_str());
1800
1801           p = oview + g->second * this->glink_entry_size();
1802           if (ha(pltoff) != 0)
1803             {
1804               write_insn<big_endian>(p, addis_12_2 + ha(pltoff)),       p += 4;
1805               write_insn<big_endian>(p, std_2_1 + 40),                  p += 4;
1806               write_insn<big_endian>(p, ld_11_12 + l(pltoff)),          p += 4;
1807               if (ha(pltoff + 16) != ha(pltoff))
1808                 {
1809                   write_insn<big_endian>(p, addi_12_12 + l(pltoff)),    p += 4;
1810                   pltoff = 0;
1811                 }
1812               write_insn<big_endian>(p, mtctr_11),                      p += 4;
1813               write_insn<big_endian>(p, ld_2_12 + l(pltoff + 8)),       p += 4;
1814               write_insn<big_endian>(p, ld_11_12 + l(pltoff + 16)),     p += 4;
1815               write_insn<big_endian>(p, bctr),                          p += 4;
1816             }
1817           else
1818             {
1819               write_insn<big_endian>(p, std_2_1 + 40),                  p += 4;
1820               write_insn<big_endian>(p, ld_11_2 + l(pltoff)),           p += 4;
1821               if (ha(pltoff + 16) != ha(pltoff))
1822                 {
1823                   write_insn<big_endian>(p, addi_2_2 + l(pltoff)),      p += 4;
1824                   pltoff = 0;
1825                 }
1826               write_insn<big_endian>(p, mtctr_11),                      p += 4;
1827               write_insn<big_endian>(p, ld_11_2 + l(pltoff + 16)),      p += 4;
1828               write_insn<big_endian>(p, ld_2_2 + l(pltoff + 8)),        p += 4;
1829               write_insn<big_endian>(p, bctr),                          p += 4;
1830             }
1831         }
1832
1833       // Write pltresolve stub.
1834       p = oview + this->pltresolve_;
1835       Address after_bcl = this->address() + this->pltresolve_ + 16;
1836       Address pltoff = plt_base - after_bcl;
1837
1838       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
1839
1840       write_insn<big_endian>(p, mflr_12),                       p += 4;
1841       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
1842       write_insn<big_endian>(p, mflr_11),                       p += 4;
1843       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
1844       write_insn<big_endian>(p, mtlr_12),                       p += 4;
1845       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
1846       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
1847       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
1848       write_insn<big_endian>(p, mtctr_11),                      p += 4;
1849       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
1850       write_insn<big_endian>(p, bctr),                          p += 4;
1851       while (p < oview + this->pltresolve_ + this->pltresolve_size)
1852         write_insn<big_endian>(p, nop), p += 4;
1853
1854       // Write lazy link call stubs.
1855       uint32_t indx = 0;
1856       while (p < oview + oview_size)
1857         {
1858           if (indx < 0x8000)
1859             {
1860               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
1861             }
1862           else
1863             {
1864               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
1865               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
1866             }
1867           uint32_t branch_off = this->pltresolve_ + 8 - (p - oview);
1868           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
1869           indx++;
1870         }
1871     }
1872   else
1873     {
1874       // The address of _GLOBAL_OFFSET_TABLE_.
1875       Address g_o_t = got->address() + got->g_o_t();
1876
1877       // Write out call stubs.
1878       typename Glink_entries::const_iterator g;
1879       for (g = this->glink_entries_.begin();
1880            g != this->glink_entries_.end();
1881            ++g)
1882         {
1883           Address plt_addr = plt_base + g->first.sym_->plt_offset();
1884           Address got_addr;
1885           const Address invalid_address = static_cast<Address>(-1);
1886
1887           p = oview + g->second * this->glink_entry_size();
1888           if (parameters->options().output_is_position_independent())
1889             {
1890               const Powerpc_relobj<size, big_endian>* object = static_cast
1891                 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
1892               if (object != NULL)
1893                 {
1894                   unsigned int got2 = object->got2_shndx();
1895                   got_addr = g->first.object_->get_output_section_offset(got2);
1896                   gold_assert(got_addr != invalid_address);
1897                   got_addr += (g->first.object_->output_section(got2)->address()
1898                                + g->first.addend_);
1899                 }
1900               else
1901                 got_addr = g_o_t;
1902
1903               Address pltoff = plt_addr - got_addr;
1904               if (ha(pltoff) == 0)
1905                 {
1906                   write_insn<big_endian>(p +  0, lwz_11_30 + l(pltoff));
1907                   write_insn<big_endian>(p +  4, mtctr_11);
1908                   write_insn<big_endian>(p +  8, bctr);
1909                 }
1910               else
1911                 {
1912                   write_insn<big_endian>(p +  0, addis_11_30 + ha(pltoff));
1913                   write_insn<big_endian>(p +  4, lwz_11_11 + l(pltoff));
1914                   write_insn<big_endian>(p +  8, mtctr_11);
1915                   write_insn<big_endian>(p + 12, bctr);
1916                 }
1917             }
1918           else
1919             {
1920               write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
1921               write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
1922               write_insn<big_endian>(p +  8, mtctr_11);
1923               write_insn<big_endian>(p + 12, bctr);
1924             }
1925         }
1926
1927       // Write out pltresolve branch table.
1928       p = oview + this->pltresolve_;
1929       unsigned int the_end = oview_size - this->pltresolve_size;
1930       unsigned char* end_p = oview + the_end;
1931       while (p < end_p - 8 * 4)
1932         write_insn<big_endian>(p, b + end_p - p), p += 4;
1933       while (p < end_p)
1934         write_insn<big_endian>(p, nop), p += 4;
1935
1936       // Write out pltresolve call stub.
1937       if (parameters->options().output_is_position_independent())
1938         {
1939           Address res0_off = this->pltresolve_;
1940           Address after_bcl_off = the_end + 12;
1941           Address bcl_res0 = after_bcl_off - res0_off;
1942
1943           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
1944           write_insn<big_endian>(p +  4, mflr_0);
1945           write_insn<big_endian>(p +  8, bcl_20_31);
1946           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
1947           write_insn<big_endian>(p + 16, mflr_12);
1948           write_insn<big_endian>(p + 20, mtlr_0);
1949           write_insn<big_endian>(p + 24, sub_11_11_12);
1950
1951           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
1952
1953           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
1954           if (ha(got_bcl) == ha(got_bcl + 4))
1955             {
1956               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
1957               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
1958             }
1959           else
1960             {
1961               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
1962               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
1963             }
1964           write_insn<big_endian>(p + 40, mtctr_0);
1965           write_insn<big_endian>(p + 44, add_0_11_11);
1966           write_insn<big_endian>(p + 48, add_11_0_11);
1967           write_insn<big_endian>(p + 52, bctr);
1968           write_insn<big_endian>(p + 56, nop);
1969           write_insn<big_endian>(p + 60, nop);
1970         }
1971       else
1972         {
1973           Address res0 = this->pltresolve_ + this->address();
1974
1975           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
1976           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
1977           if (ha(g_o_t + 4) == ha(g_o_t + 8))
1978             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
1979           else
1980             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
1981           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
1982           write_insn<big_endian>(p + 16, mtctr_0);
1983           write_insn<big_endian>(p + 20, add_0_11_11);
1984           if (ha(g_o_t + 4) == ha(g_o_t + 8))
1985             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
1986           else
1987             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
1988           write_insn<big_endian>(p + 28, add_11_0_11);
1989           write_insn<big_endian>(p + 32, bctr);
1990           write_insn<big_endian>(p + 36, nop);
1991           write_insn<big_endian>(p + 40, nop);
1992           write_insn<big_endian>(p + 44, nop);
1993           write_insn<big_endian>(p + 48, nop);
1994           write_insn<big_endian>(p + 52, nop);
1995           write_insn<big_endian>(p + 56, nop);
1996           write_insn<big_endian>(p + 60, nop);
1997         }
1998       p += 64;
1999     }
2000
2001   of->write_output_view(off, oview_size, oview);
2002 }
2003
2004 // Create the glink section.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
2009 {
2010   if (this->glink_ == NULL)
2011     {
2012       this->glink_ = new Output_data_glink<size, big_endian>(this);
2013       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
2014                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2015                                       this->glink_, ORDER_TEXT, false);
2016     }
2017 }
2018
2019 // Create a PLT entry for a global symbol.
2020
2021 template<int size, bool big_endian>
2022 void
2023 Target_powerpc<size, big_endian>::make_plt_entry(
2024     Layout* layout,
2025     Symbol* gsym,
2026     const elfcpp::Rela<size, big_endian>& reloc,
2027     const Sized_relobj<size, big_endian>* object)
2028 {
2029   if (this->plt_ == NULL)
2030     this->make_plt_section(layout);
2031
2032   this->plt_->add_entry(gsym);
2033
2034   this->glink_->add_entry(gsym, reloc, object);
2035 }
2036
2037 // Return the number of entries in the PLT.
2038
2039 template<int size, bool big_endian>
2040 unsigned int
2041 Target_powerpc<size, big_endian>::plt_entry_count() const
2042 {
2043   if (this->plt_ == NULL)
2044     return 0;
2045   return this->plt_->entry_count();
2046 }
2047
2048 // Return the offset of the first non-reserved PLT entry.
2049
2050 template<int size, bool big_endian>
2051 unsigned int
2052 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
2053 {
2054   return Output_data_plt_powerpc<size, big_endian>::first_plt_entry_offset();
2055 }
2056
2057 // Return the size of each PLT entry.
2058
2059 template<int size, bool big_endian>
2060 unsigned int
2061 Target_powerpc<size, big_endian>::plt_entry_size() const
2062 {
2063   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
2064 }
2065
2066 // Create a GOT entry for local dynamic __tls_get_addr calls.
2067
2068 template<int size, bool big_endian>
2069 unsigned int
2070 Target_powerpc<size, big_endian>::tlsld_got_offset(
2071     Symbol_table* symtab,
2072     Layout* layout,
2073     Sized_relobj_file<size, big_endian>* object)
2074 {
2075   if (this->tlsld_got_offset_ == -1U)
2076     {
2077       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2078       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2079       Output_data_got_powerpc<size, big_endian>* got
2080         = this->got_section(symtab, layout);
2081       unsigned int got_offset = got->add_constant_pair(0, 0);
2082       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
2083                           got_offset, 0);
2084       this->tlsld_got_offset_ = got_offset;
2085     }
2086   return this->tlsld_got_offset_;
2087 }
2088
2089 // Get the Reference_flags for a particular relocation.
2090
2091 template<int size, bool big_endian>
2092 int
2093 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2094 {
2095   switch (r_type)
2096     {
2097     case elfcpp::R_POWERPC_NONE:
2098     case elfcpp::R_POWERPC_GNU_VTINHERIT:
2099     case elfcpp::R_POWERPC_GNU_VTENTRY:
2100     case elfcpp::R_PPC64_TOC:
2101       // No symbol reference.
2102       return 0;
2103
2104     case elfcpp::R_PPC64_ADDR64:
2105     case elfcpp::R_PPC64_UADDR64:
2106     case elfcpp::R_POWERPC_ADDR32:
2107     case elfcpp::R_POWERPC_UADDR32:
2108     case elfcpp::R_POWERPC_ADDR16:
2109     case elfcpp::R_POWERPC_UADDR16:
2110     case elfcpp::R_POWERPC_ADDR16_LO:
2111     case elfcpp::R_POWERPC_ADDR16_HI:
2112     case elfcpp::R_POWERPC_ADDR16_HA:
2113       return Symbol::ABSOLUTE_REF;
2114
2115     case elfcpp::R_POWERPC_ADDR24:
2116     case elfcpp::R_POWERPC_ADDR14:
2117     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2118     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2119       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
2120
2121     case elfcpp::R_POWERPC_REL32:
2122     case elfcpp::R_PPC_LOCAL24PC:
2123     case elfcpp::R_POWERPC_REL16:
2124     case elfcpp::R_POWERPC_REL16_LO:
2125     case elfcpp::R_POWERPC_REL16_HI:
2126     case elfcpp::R_POWERPC_REL16_HA:
2127       return Symbol::RELATIVE_REF;
2128
2129     case elfcpp::R_POWERPC_REL24:
2130     case elfcpp::R_PPC_PLTREL24:
2131     case elfcpp::R_POWERPC_REL14:
2132     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2133     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2134       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2135
2136     case elfcpp::R_POWERPC_GOT16:
2137     case elfcpp::R_POWERPC_GOT16_LO:
2138     case elfcpp::R_POWERPC_GOT16_HI:
2139     case elfcpp::R_POWERPC_GOT16_HA:
2140     case elfcpp::R_PPC64_TOC16:
2141     case elfcpp::R_PPC64_TOC16_LO:
2142     case elfcpp::R_PPC64_TOC16_HI:
2143     case elfcpp::R_PPC64_TOC16_HA:
2144     case elfcpp::R_PPC64_TOC16_DS:
2145     case elfcpp::R_PPC64_TOC16_LO_DS:
2146       // Absolute in GOT.
2147       return Symbol::ABSOLUTE_REF;
2148
2149     case elfcpp::R_POWERPC_GOT_TPREL16:
2150     case elfcpp::R_POWERPC_TLS:
2151       return Symbol::TLS_REF;
2152
2153     case elfcpp::R_POWERPC_COPY:
2154     case elfcpp::R_POWERPC_GLOB_DAT:
2155     case elfcpp::R_POWERPC_JMP_SLOT:
2156     case elfcpp::R_POWERPC_RELATIVE:
2157     case elfcpp::R_POWERPC_DTPMOD:
2158     default:
2159       // Not expected.  We will give an error later.
2160       return 0;
2161     }
2162 }
2163
2164 // Report an unsupported relocation against a local symbol.
2165
2166 template<int size, bool big_endian>
2167 void
2168 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
2169     Sized_relobj_file<size, big_endian>* object,
2170     unsigned int r_type)
2171 {
2172   gold_error(_("%s: unsupported reloc %u against local symbol"),
2173              object->name().c_str(), r_type);
2174 }
2175
2176 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2177 // dynamic linker does not support it, issue an error.
2178
2179 template<int size, bool big_endian>
2180 void
2181 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
2182                                                       unsigned int r_type)
2183 {
2184   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
2185
2186   // These are the relocation types supported by glibc for both 32-bit
2187   // and 64-bit powerpc.
2188   switch (r_type)
2189     {
2190     case elfcpp::R_POWERPC_RELATIVE:
2191     case elfcpp::R_POWERPC_GLOB_DAT:
2192     case elfcpp::R_POWERPC_DTPMOD:
2193     case elfcpp::R_POWERPC_DTPREL:
2194     case elfcpp::R_POWERPC_TPREL:
2195     case elfcpp::R_POWERPC_JMP_SLOT:
2196     case elfcpp::R_POWERPC_COPY:
2197     case elfcpp::R_POWERPC_ADDR32:
2198     case elfcpp::R_POWERPC_ADDR24:
2199     case elfcpp::R_POWERPC_REL24:
2200       return;
2201
2202     default:
2203       break;
2204     }
2205
2206   if (size == 64)
2207     {
2208       switch (r_type)
2209         {
2210           // These are the relocation types supported only on 64-bit.
2211         case elfcpp::R_PPC64_ADDR64:
2212         case elfcpp::R_PPC64_TPREL16_LO_DS:
2213         case elfcpp::R_PPC64_TPREL16_DS:
2214         case elfcpp::R_POWERPC_TPREL16:
2215         case elfcpp::R_POWERPC_TPREL16_LO:
2216         case elfcpp::R_POWERPC_TPREL16_HI:
2217         case elfcpp::R_POWERPC_TPREL16_HA:
2218         case elfcpp::R_PPC64_TPREL16_HIGHER:
2219         case elfcpp::R_PPC64_TPREL16_HIGHEST:
2220         case elfcpp::R_PPC64_TPREL16_HIGHERA:
2221         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
2222         case elfcpp::R_PPC64_ADDR16_LO_DS:
2223         case elfcpp::R_POWERPC_ADDR16_LO:
2224         case elfcpp::R_POWERPC_ADDR16_HI:
2225         case elfcpp::R_POWERPC_ADDR16_HA:
2226         case elfcpp::R_POWERPC_ADDR30:
2227         case elfcpp::R_PPC64_UADDR64:
2228         case elfcpp::R_POWERPC_UADDR32:
2229         case elfcpp::R_POWERPC_ADDR16:
2230         case elfcpp::R_POWERPC_UADDR16:
2231         case elfcpp::R_PPC64_ADDR16_DS:
2232         case elfcpp::R_PPC64_ADDR16_HIGHER:
2233         case elfcpp::R_PPC64_ADDR16_HIGHEST:
2234         case elfcpp::R_PPC64_ADDR16_HIGHERA:
2235         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
2236         case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2237         case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2238         case elfcpp::R_POWERPC_REL32:
2239         case elfcpp::R_PPC64_REL64:
2240           return;
2241
2242         default:
2243           break;
2244         }
2245     }
2246   else
2247     {
2248       switch (r_type)
2249         {
2250           // These are the relocation types supported only on 32-bit.
2251
2252         default:
2253           break;
2254         }
2255     }
2256
2257   // This prevents us from issuing more than one error per reloc
2258   // section.  But we can still wind up issuing more than one
2259   // error per object file.
2260   if (this->issued_non_pic_error_)
2261     return;
2262   gold_assert(parameters->options().output_is_position_independent());
2263   object->error(_("requires unsupported dynamic reloc; "
2264                   "recompile with -fPIC"));
2265   this->issued_non_pic_error_ = true;
2266   return;
2267 }
2268
2269 // Scan a relocation for a local symbol.
2270
2271 template<int size, bool big_endian>
2272 inline void
2273 Target_powerpc<size, big_endian>::Scan::local(
2274     Symbol_table* symtab,
2275     Layout* layout,
2276     Target_powerpc<size, big_endian>* target,
2277     Sized_relobj_file<size, big_endian>* object,
2278     unsigned int data_shndx,
2279     Output_section* output_section,
2280     const elfcpp::Rela<size, big_endian>& reloc,
2281     unsigned int r_type,
2282     const elfcpp::Sym<size, big_endian>& lsym)
2283 {
2284   Powerpc_relobj<size, big_endian>* ppc_object
2285     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
2286
2287   switch (r_type)
2288     {
2289     case elfcpp::R_POWERPC_NONE:
2290     case elfcpp::R_POWERPC_GNU_VTINHERIT:
2291     case elfcpp::R_POWERPC_GNU_VTENTRY:
2292     case elfcpp::R_PPC64_TOCSAVE:
2293     case elfcpp::R_PPC_EMB_MRKREF:
2294       break;
2295
2296     case elfcpp::R_PPC64_TOC:
2297       {
2298         Output_data_got_powerpc<size, big_endian>* got
2299           = target->got_section(symtab, layout);
2300         if (parameters->options().output_is_position_independent())
2301           {
2302             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2303             rela_dyn->add_output_section_relative(got->output_section(),
2304                                                   elfcpp::R_POWERPC_RELATIVE,
2305                                                   output_section,
2306                                                   object, data_shndx,
2307                                                   reloc.get_r_offset(),
2308                                                   ppc_object->toc_base_offset());
2309           }
2310       }
2311       break;
2312
2313     case elfcpp::R_PPC64_ADDR64:
2314     case elfcpp::R_PPC64_UADDR64:
2315     case elfcpp::R_POWERPC_ADDR32:
2316     case elfcpp::R_POWERPC_UADDR32:
2317     case elfcpp::R_POWERPC_ADDR24:
2318     case elfcpp::R_POWERPC_ADDR16:
2319     case elfcpp::R_POWERPC_ADDR16_LO:
2320     case elfcpp::R_POWERPC_ADDR16_HI:
2321     case elfcpp::R_POWERPC_ADDR16_HA:
2322     case elfcpp::R_POWERPC_UADDR16:
2323     case elfcpp::R_PPC64_ADDR16_HIGHER:
2324     case elfcpp::R_PPC64_ADDR16_HIGHERA:
2325     case elfcpp::R_PPC64_ADDR16_HIGHEST:
2326     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
2327     case elfcpp::R_PPC64_ADDR16_DS:
2328     case elfcpp::R_PPC64_ADDR16_LO_DS:
2329     case elfcpp::R_POWERPC_ADDR14:
2330     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2331     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2332       // If building a shared library (or a position-independent
2333       // executable), we need to create a dynamic relocation for
2334       // this location.
2335       if (parameters->options().output_is_position_independent())
2336         {
2337           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2338
2339           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
2340               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
2341             {
2342               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2343               rela_dyn->add_local_relative(object, r_sym,
2344                                            elfcpp::R_POWERPC_RELATIVE,
2345                                            output_section, data_shndx,
2346                                            reloc.get_r_offset(),
2347                                            reloc.get_r_addend(), false);
2348             }
2349           else
2350             {
2351               check_non_pic(object, r_type);
2352               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2353               rela_dyn->add_local(object, r_sym, r_type, output_section,
2354                                   data_shndx, reloc.get_r_offset(),
2355                                   reloc.get_r_addend());
2356             }
2357         }
2358       break;
2359
2360     case elfcpp::R_POWERPC_REL32:
2361     case elfcpp::R_POWERPC_REL24:
2362     case elfcpp::R_PPC_LOCAL24PC:
2363     case elfcpp::R_POWERPC_REL16:
2364     case elfcpp::R_POWERPC_REL16_LO:
2365     case elfcpp::R_POWERPC_REL16_HI:
2366     case elfcpp::R_POWERPC_REL16_HA:
2367     case elfcpp::R_POWERPC_REL14:
2368     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2369     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2370     case elfcpp::R_POWERPC_SECTOFF:
2371     case elfcpp::R_POWERPC_TPREL16:
2372     case elfcpp::R_POWERPC_DTPREL16:
2373     case elfcpp::R_POWERPC_SECTOFF_LO:
2374     case elfcpp::R_POWERPC_TPREL16_LO:
2375     case elfcpp::R_POWERPC_DTPREL16_LO:
2376     case elfcpp::R_POWERPC_SECTOFF_HI:
2377     case elfcpp::R_POWERPC_TPREL16_HI:
2378     case elfcpp::R_POWERPC_DTPREL16_HI:
2379     case elfcpp::R_POWERPC_SECTOFF_HA:
2380     case elfcpp::R_POWERPC_TPREL16_HA:
2381     case elfcpp::R_POWERPC_DTPREL16_HA:
2382     case elfcpp::R_PPC64_DTPREL16_HIGHER:
2383     case elfcpp::R_PPC64_TPREL16_HIGHER:
2384     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
2385     case elfcpp::R_PPC64_TPREL16_HIGHERA:
2386     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
2387     case elfcpp::R_PPC64_TPREL16_HIGHEST:
2388     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
2389     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
2390     case elfcpp::R_PPC64_TPREL16_DS:
2391     case elfcpp::R_PPC64_TPREL16_LO_DS:
2392     case elfcpp::R_PPC64_DTPREL16_DS:
2393     case elfcpp::R_PPC64_DTPREL16_LO_DS:
2394     case elfcpp::R_PPC64_SECTOFF_DS:
2395     case elfcpp::R_PPC64_SECTOFF_LO_DS:
2396     case elfcpp::R_PPC64_TLSGD:
2397     case elfcpp::R_PPC64_TLSLD:
2398       break;
2399
2400     case elfcpp::R_POWERPC_GOT16:
2401     case elfcpp::R_POWERPC_GOT16_LO:
2402     case elfcpp::R_POWERPC_GOT16_HI:
2403     case elfcpp::R_POWERPC_GOT16_HA:
2404     case elfcpp::R_PPC64_GOT16_DS:
2405     case elfcpp::R_PPC64_GOT16_LO_DS:
2406       {
2407         // The symbol requires a GOT entry.
2408         Output_data_got_powerpc<size, big_endian>* got
2409           = target->got_section(symtab, layout);
2410         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2411
2412         // If we are generating a shared object, we need to add a
2413         // dynamic relocation for this symbol's GOT entry.
2414         if (parameters->options().output_is_position_independent())
2415           {
2416             if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
2417               {
2418                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2419                 unsigned int off;
2420
2421                 off = got->add_constant(0);
2422                 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
2423                 rela_dyn->add_local_relative(object, r_sym,
2424                                              elfcpp::R_POWERPC_RELATIVE,
2425                                              got, off, 0, false);
2426               }
2427           }
2428         else
2429           got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2430       }
2431       break;
2432
2433     case elfcpp::R_PPC64_TOC16:
2434     case elfcpp::R_PPC64_TOC16_LO:
2435     case elfcpp::R_PPC64_TOC16_HI:
2436     case elfcpp::R_PPC64_TOC16_HA:
2437     case elfcpp::R_PPC64_TOC16_DS:
2438     case elfcpp::R_PPC64_TOC16_LO_DS:
2439       // We need a GOT section.
2440       target->got_section(symtab, layout);
2441       break;
2442
2443     case elfcpp::R_POWERPC_GOT_TLSGD16:
2444     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
2445     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
2446     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
2447       {
2448         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
2449         if (tls_type == tls::TLSOPT_NONE)
2450           {
2451             Output_data_got_powerpc<size, big_endian>* got
2452               = target->got_section(symtab, layout);
2453             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2454             unsigned int shndx = lsym.get_st_shndx();
2455             bool is_ordinary;
2456             shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2457             gold_assert(is_ordinary);
2458             got->add_local_pair_with_rel(object, r_sym,
2459                                          shndx,
2460                                          GOT_TYPE_TLSGD,
2461                                          target->rela_dyn_section(layout),
2462                                          elfcpp::R_POWERPC_DTPMOD,
2463                                          elfcpp::R_POWERPC_DTPREL);
2464           }
2465         else if (tls_type == tls::TLSOPT_TO_LE)
2466           {
2467             // no GOT relocs needed for Local Exec.
2468           }
2469         else
2470           gold_unreachable();
2471       }
2472       break;
2473
2474     case elfcpp::R_POWERPC_GOT_TLSLD16:
2475     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
2476     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
2477     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
2478       {
2479         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
2480         if (tls_type == tls::TLSOPT_NONE)
2481           target->tlsld_got_offset(symtab, layout, object);
2482         else if (tls_type == tls::TLSOPT_TO_LE)
2483           {
2484             // no GOT relocs needed for Local Exec.
2485           }
2486         else
2487           gold_unreachable();
2488       }
2489       break;
2490
2491     case elfcpp::R_POWERPC_GOT_DTPREL16:
2492     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
2493     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
2494     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
2495       {
2496         Output_data_got_powerpc<size, big_endian>* got
2497           = target->got_section(symtab, layout);
2498         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2499         got->add_local_with_rel(object, r_sym, GOT_TYPE_DTPREL,
2500                                 target->rela_dyn_section(layout),
2501                                 elfcpp::R_POWERPC_DTPREL);
2502       }
2503       break;
2504
2505     case elfcpp::R_POWERPC_GOT_TPREL16:
2506     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
2507     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
2508     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
2509       {
2510         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
2511         if (tls_type == tls::TLSOPT_NONE)
2512           {
2513             Output_data_got_powerpc<size, big_endian>* got
2514               = target->got_section(symtab, layout);
2515             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2516             got->add_local_with_rel(object, r_sym, GOT_TYPE_TPREL,
2517                                     target->rela_dyn_section(layout),
2518                                     elfcpp::R_POWERPC_TPREL);
2519           }
2520         else if (tls_type == tls::TLSOPT_TO_LE)
2521           {
2522             // no GOT relocs needed for Local Exec.
2523           }
2524         else
2525           gold_unreachable();
2526       }
2527       break;
2528
2529     default:
2530       unsupported_reloc_local(object, r_type);
2531       break;
2532     }
2533 }
2534
2535 // Report an unsupported relocation against a global symbol.
2536
2537 template<int size, bool big_endian>
2538 void
2539 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
2540     Sized_relobj_file<size, big_endian>* object,
2541     unsigned int r_type,
2542     Symbol* gsym)
2543 {
2544   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2545              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2546 }
2547
2548 // Scan a relocation for a global symbol.
2549
2550 template<int size, bool big_endian>
2551 inline void
2552 Target_powerpc<size, big_endian>::Scan::global(
2553     Symbol_table* symtab,
2554     Layout* layout,
2555     Target_powerpc<size, big_endian>* target,
2556     Sized_relobj_file<size, big_endian>* object,
2557     unsigned int data_shndx,
2558     Output_section* output_section,
2559     const elfcpp::Rela<size, big_endian>& reloc,
2560     unsigned int r_type,
2561     Symbol* gsym)
2562 {
2563   Powerpc_relobj<size, big_endian>* ppc_object
2564     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
2565
2566   switch (r_type)
2567     {
2568     case elfcpp::R_POWERPC_NONE:
2569     case elfcpp::R_POWERPC_GNU_VTINHERIT:
2570     case elfcpp::R_POWERPC_GNU_VTENTRY:
2571     case elfcpp::R_PPC_LOCAL24PC:
2572     case elfcpp::R_PPC_EMB_MRKREF:
2573       break;
2574
2575     case elfcpp::R_PPC64_TOC:
2576       {
2577         Output_data_got_powerpc<size, big_endian>* got
2578           = target->got_section(symtab, layout);
2579         if (parameters->options().output_is_position_independent())
2580           {
2581             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2582             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
2583             if (data_shndx != ppc_object->opd_shndx())
2584               symobj = static_cast
2585                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
2586             rela_dyn->add_output_section_relative(got->output_section(),
2587                                                   elfcpp::R_POWERPC_RELATIVE,
2588                                                   output_section,
2589                                                   object, data_shndx,
2590                                                   reloc.get_r_offset(),
2591                                                   symobj->toc_base_offset());
2592           }
2593       }
2594       break;
2595
2596     case elfcpp::R_PPC64_ADDR64:
2597     case elfcpp::R_PPC64_UADDR64:
2598     case elfcpp::R_POWERPC_ADDR32:
2599     case elfcpp::R_POWERPC_UADDR32:
2600     case elfcpp::R_POWERPC_ADDR24:
2601     case elfcpp::R_POWERPC_ADDR16:
2602     case elfcpp::R_POWERPC_ADDR16_LO:
2603     case elfcpp::R_POWERPC_ADDR16_HI:
2604     case elfcpp::R_POWERPC_ADDR16_HA:
2605     case elfcpp::R_POWERPC_UADDR16:
2606     case elfcpp::R_PPC64_ADDR16_HIGHER:
2607     case elfcpp::R_PPC64_ADDR16_HIGHERA:
2608     case elfcpp::R_PPC64_ADDR16_HIGHEST:
2609     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
2610     case elfcpp::R_PPC64_ADDR16_DS:
2611     case elfcpp::R_PPC64_ADDR16_LO_DS:
2612     case elfcpp::R_POWERPC_ADDR14:
2613     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2614     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2615       {
2616         // Make a PLT entry if necessary.
2617         if (gsym->needs_plt_entry())
2618           {
2619             target->make_plt_entry(layout, gsym, reloc, 0);
2620             // Since this is not a PC-relative relocation, we may be
2621             // taking the address of a function. In that case we need to
2622             // set the entry in the dynamic symbol table to the address of
2623             // the PLT entry.
2624             if (size == 32
2625                 && gsym->is_from_dynobj() && !parameters->options().shared())
2626               gsym->set_needs_dynsym_value();
2627           }
2628         // Make a dynamic relocation if necessary.
2629         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
2630           {
2631             if (gsym->may_need_copy_reloc())
2632               {
2633                 target->copy_reloc(symtab, layout, object,
2634                                    data_shndx, output_section, gsym, reloc);
2635               }
2636             else if (((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
2637                       || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
2638                      && (gsym->can_use_relative_reloc(false)
2639                          || data_shndx == ppc_object->opd_shndx()))
2640               {
2641                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2642                 rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE,
2643                                               output_section, object,
2644                                               data_shndx, reloc.get_r_offset(),
2645                                               reloc.get_r_addend(), false);
2646               }
2647             else
2648               {
2649                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2650                 check_non_pic(object, r_type);
2651                 rela_dyn->add_global(gsym, r_type, output_section,
2652                                      object, data_shndx,
2653                                      reloc.get_r_offset(),
2654                                      reloc.get_r_addend());
2655               }
2656           }
2657       }
2658       break;
2659
2660     case elfcpp::R_PPC_PLTREL24:
2661     case elfcpp::R_POWERPC_REL24:
2662       {
2663         if (gsym->needs_plt_entry()
2664             || (!gsym->final_value_is_known()
2665                  && !(gsym->is_defined()
2666                       && !gsym->is_from_dynobj()
2667                       && !gsym->is_preemptible())))
2668           target->make_plt_entry(layout, gsym, reloc, object);
2669         // Make a dynamic relocation if necessary.
2670         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
2671           {
2672             if (gsym->may_need_copy_reloc())
2673               {
2674                 target->copy_reloc(symtab, layout, object,
2675                                    data_shndx, output_section, gsym,
2676                                    reloc);
2677               }
2678             else
2679               {
2680                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2681                 check_non_pic(object, r_type);
2682                 rela_dyn->add_global(gsym, r_type, output_section, object,
2683                                      data_shndx, reloc.get_r_offset(),
2684                                      reloc.get_r_addend());
2685               }
2686           }
2687       }
2688       break;
2689
2690     case elfcpp::R_POWERPC_REL32:
2691     case elfcpp::R_POWERPC_REL16:
2692     case elfcpp::R_POWERPC_REL16_LO:
2693     case elfcpp::R_POWERPC_REL16_HI:
2694     case elfcpp::R_POWERPC_REL16_HA:
2695     case elfcpp::R_POWERPC_REL14:
2696     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2697     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2698     case elfcpp::R_POWERPC_SECTOFF:
2699     case elfcpp::R_POWERPC_TPREL16:
2700     case elfcpp::R_POWERPC_DTPREL16:
2701     case elfcpp::R_POWERPC_SECTOFF_LO:
2702     case elfcpp::R_POWERPC_TPREL16_LO:
2703     case elfcpp::R_POWERPC_DTPREL16_LO:
2704     case elfcpp::R_POWERPC_SECTOFF_HI:
2705     case elfcpp::R_POWERPC_TPREL16_HI:
2706     case elfcpp::R_POWERPC_DTPREL16_HI:
2707     case elfcpp::R_POWERPC_SECTOFF_HA:
2708     case elfcpp::R_POWERPC_TPREL16_HA:
2709     case elfcpp::R_POWERPC_DTPREL16_HA:
2710     case elfcpp::R_PPC64_DTPREL16_HIGHER:
2711     case elfcpp::R_PPC64_TPREL16_HIGHER:
2712     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
2713     case elfcpp::R_PPC64_TPREL16_HIGHERA:
2714     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
2715     case elfcpp::R_PPC64_TPREL16_HIGHEST:
2716     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
2717     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
2718     case elfcpp::R_PPC64_TPREL16_DS:
2719     case elfcpp::R_PPC64_TPREL16_LO_DS:
2720     case elfcpp::R_PPC64_DTPREL16_DS:
2721     case elfcpp::R_PPC64_DTPREL16_LO_DS:
2722     case elfcpp::R_PPC64_SECTOFF_DS:
2723     case elfcpp::R_PPC64_SECTOFF_LO_DS:
2724     case elfcpp::R_PPC64_TLSGD:
2725     case elfcpp::R_PPC64_TLSLD:
2726       break;
2727
2728     case elfcpp::R_POWERPC_GOT16:
2729     case elfcpp::R_POWERPC_GOT16_LO:
2730     case elfcpp::R_POWERPC_GOT16_HI:
2731     case elfcpp::R_POWERPC_GOT16_HA:
2732     case elfcpp::R_PPC64_GOT16_DS:
2733     case elfcpp::R_PPC64_GOT16_LO_DS:
2734       {
2735         // The symbol requires a GOT entry.
2736         Output_data_got_powerpc<size, big_endian>* got;
2737
2738         got = target->got_section(symtab, layout);
2739         if (gsym->final_value_is_known())
2740           got->add_global(gsym, GOT_TYPE_STANDARD);
2741         else
2742           {
2743             // If this symbol is not fully resolved, we need to add a
2744             // dynamic relocation for it.
2745             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2746             if (gsym->is_from_dynobj()
2747                 || gsym->is_undefined()
2748                 || gsym->is_preemptible())
2749               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2750                                        elfcpp::R_POWERPC_GLOB_DAT);
2751             else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
2752               {
2753                 unsigned int off = got->add_constant(0);
2754
2755                 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
2756                 rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE,
2757                                               got, off, 0, false);
2758               }
2759           }
2760       }
2761       break;
2762
2763     case elfcpp::R_PPC64_TOC16:
2764     case elfcpp::R_PPC64_TOC16_LO:
2765     case elfcpp::R_PPC64_TOC16_HI:
2766     case elfcpp::R_PPC64_TOC16_HA:
2767     case elfcpp::R_PPC64_TOC16_DS:
2768     case elfcpp::R_PPC64_TOC16_LO_DS:
2769       // We need a GOT section.
2770       target->got_section(symtab, layout);
2771       break;
2772
2773     case elfcpp::R_POWERPC_GOT_TLSGD16:
2774     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
2775     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
2776     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
2777       {
2778         const bool final = gsym->final_value_is_known();
2779         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
2780         if (tls_type == tls::TLSOPT_NONE)
2781           {
2782             Output_data_got_powerpc<size, big_endian>* got
2783               = target->got_section(symtab, layout);
2784             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
2785                                           target->rela_dyn_section(layout),
2786                                           elfcpp::R_POWERPC_DTPMOD,
2787                                           elfcpp::R_POWERPC_DTPREL);
2788           }
2789         else if (tls_type == tls::TLSOPT_TO_IE)
2790           {
2791             Output_data_got_powerpc<size, big_endian>* got
2792               = target->got_section(symtab, layout);
2793             got->add_global_with_rel(gsym, GOT_TYPE_TPREL,
2794                                      target->rela_dyn_section(layout),
2795                                      elfcpp::R_POWERPC_TPREL);
2796           }
2797         else if (tls_type == tls::TLSOPT_TO_LE)
2798           {
2799             // no GOT relocs needed for Local Exec.
2800           }
2801         else
2802           gold_unreachable();
2803       }
2804       break;
2805
2806     case elfcpp::R_POWERPC_GOT_TLSLD16:
2807     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
2808     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
2809     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
2810       {
2811         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
2812         if (tls_type == tls::TLSOPT_NONE)
2813           target->tlsld_got_offset(symtab, layout, object);
2814         else if (tls_type == tls::TLSOPT_TO_LE)
2815           {
2816             // no GOT relocs needed for Local Exec.
2817           }
2818         else
2819           gold_unreachable();
2820       }
2821       break;
2822
2823     case elfcpp::R_POWERPC_GOT_DTPREL16:
2824     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
2825     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
2826     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
2827       {
2828         Output_data_got_powerpc<size, big_endian>* got
2829           = target->got_section(symtab, layout);
2830         got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
2831                                  target->rela_dyn_section(layout),
2832                                  elfcpp::R_POWERPC_DTPREL);
2833       }
2834       break;
2835
2836     case elfcpp::R_POWERPC_GOT_TPREL16:
2837     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
2838     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
2839     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
2840       {
2841         const bool final = gsym->final_value_is_known();
2842         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
2843         if (tls_type == tls::TLSOPT_NONE)
2844           {
2845             Output_data_got_powerpc<size, big_endian>* got
2846               = target->got_section(symtab, layout);
2847             got->add_global_with_rel(gsym, GOT_TYPE_TPREL,
2848                                      target->rela_dyn_section(layout),
2849                                      elfcpp::R_POWERPC_TPREL);
2850           }
2851         else if (tls_type == tls::TLSOPT_TO_LE)
2852           {
2853             // no GOT relocs needed for Local Exec.
2854           }
2855         else
2856           gold_unreachable();
2857       }
2858       break;
2859
2860     default:
2861       unsupported_reloc_global(object, r_type, gsym);
2862       break;
2863     }
2864 }
2865
2866 // Process relocations for gc.
2867
2868 template<int size, bool big_endian>
2869 void
2870 Target_powerpc<size, big_endian>::gc_process_relocs(
2871     Symbol_table* symtab,
2872     Layout* layout,
2873     Sized_relobj_file<size, big_endian>* object,
2874     unsigned int data_shndx,
2875     unsigned int,
2876     const unsigned char* prelocs,
2877     size_t reloc_count,
2878     Output_section* output_section,
2879     bool needs_special_offset_handling,
2880     size_t local_symbol_count,
2881     const unsigned char* plocal_symbols)
2882 {
2883   typedef Target_powerpc<size, big_endian> Powerpc;
2884   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
2885
2886   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
2887                           typename Target_powerpc::Relocatable_size_for_reloc>(
2888     symtab,
2889     layout,
2890     this,
2891     object,
2892     data_shndx,
2893     prelocs,
2894     reloc_count,
2895     output_section,
2896     needs_special_offset_handling,
2897     local_symbol_count,
2898     plocal_symbols);
2899 }
2900
2901 // Scan relocations for a section.
2902
2903 template<int size, bool big_endian>
2904 void
2905 Target_powerpc<size, big_endian>::scan_relocs(
2906     Symbol_table* symtab,
2907     Layout* layout,
2908     Sized_relobj_file<size, big_endian>* object,
2909     unsigned int data_shndx,
2910     unsigned int sh_type,
2911     const unsigned char* prelocs,
2912     size_t reloc_count,
2913     Output_section* output_section,
2914     bool needs_special_offset_handling,
2915     size_t local_symbol_count,
2916     const unsigned char* plocal_symbols)
2917 {
2918   typedef Target_powerpc<size, big_endian> Powerpc;
2919   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
2920
2921   if (sh_type == elfcpp::SHT_REL)
2922     {
2923       gold_error(_("%s: unsupported REL reloc section"),
2924                  object->name().c_str());
2925       return;
2926     }
2927
2928   if (size == 32)
2929     {
2930       static Output_data_space* sdata;
2931
2932       // Define _SDA_BASE_ at the start of the .sdata section.
2933       if (sdata == NULL)
2934         {
2935           // layout->find_output_section(".sdata") == NULL
2936           sdata = new Output_data_space(4, "** sdata");
2937           Output_section* os
2938             = layout->add_output_section_data(".sdata", 0,
2939                                               elfcpp::SHF_ALLOC
2940                                               | elfcpp::SHF_WRITE,
2941                                               sdata, ORDER_SMALL_DATA, false);
2942           symtab->define_in_output_data("_SDA_BASE_", NULL,
2943                                         Symbol_table::PREDEFINED,
2944                                         os, 32768, 0, elfcpp::STT_OBJECT,
2945                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2946                                         0, false, false);
2947         }
2948     }
2949
2950   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
2951     symtab,
2952     layout,
2953     this,
2954     object,
2955     data_shndx,
2956     prelocs,
2957     reloc_count,
2958     output_section,
2959     needs_special_offset_handling,
2960     local_symbol_count,
2961     plocal_symbols);
2962 }
2963
2964 // Finalize the sections.
2965
2966 template<int size, bool big_endian>
2967 void
2968 Target_powerpc<size, big_endian>::do_finalize_sections(
2969     Layout* layout,
2970     const Input_objects*,
2971     Symbol_table*)
2972 {
2973   // Fill in some more dynamic tags.
2974   const Reloc_section* rel_plt = (this->plt_ == NULL
2975                                   ? NULL
2976                                   : this->plt_->rel_plt());
2977   layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
2978                                   this->rela_dyn_, true, size == 32);
2979
2980   Output_data_dynamic* odyn = layout->dynamic_data();
2981   if (size == 32)
2982     {
2983       if (this->got_ != NULL)
2984         {
2985           this->got_->finalize_data_size();
2986           odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
2987                                         this->got_, this->got_->g_o_t());
2988         }
2989     }
2990   else
2991     {
2992       if (this->glink_ != NULL)
2993         {
2994           this->glink_->finalize_data_size();
2995           odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
2996                                         this->glink_,
2997                                         (this->glink_->pltresolve()
2998                                          + this->glink_->pltresolve_size - 32));
2999         }
3000     }
3001
3002   // Emit any relocs we saved in an attempt to avoid generating COPY
3003   // relocs.
3004   if (this->copy_relocs_.any_saved_relocs())
3005     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3006 }
3007
3008 // Perform a relocation.
3009
3010 template<int size, bool big_endian>
3011 inline bool
3012 Target_powerpc<size, big_endian>::Relocate::relocate(
3013     const Relocate_info<size, big_endian>* relinfo,
3014     Target_powerpc* target,
3015     Output_section* os,
3016     size_t relnum,
3017     const elfcpp::Rela<size, big_endian>& rela,
3018     unsigned int r_type,
3019     const Sized_symbol<size>* gsym,
3020     const Symbol_value<size>* psymval,
3021     unsigned char* view,
3022     Address address,
3023     section_size_type view_size)
3024 {
3025
3026   bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
3027                        || r_type == elfcpp::R_PPC_PLTREL24)
3028                       && gsym != NULL
3029                       && strcmp(gsym->name(), "__tls_get_addr") == 0);
3030   enum skip_tls last_tls = this->call_tls_get_addr_;
3031   this->call_tls_get_addr_ = CALL_NOT_EXPECTED;
3032   if (is_tls_call)
3033     {
3034       if (last_tls == CALL_NOT_EXPECTED)
3035         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3036                                _("__tls_get_addr call lacks marker reloc"));
3037       else if (last_tls == CALL_SKIP)
3038         return false;
3039     }
3040   else if (last_tls != CALL_NOT_EXPECTED)
3041     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3042                            _("missing expected __tls_get_addr call"));
3043
3044   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
3045   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
3046   const Powerpc_relobj<size, big_endian>* const object
3047     = static_cast<const Powerpc_relobj<size, big_endian>*>(relinfo->object);
3048   Address value = 0;
3049   bool has_plt_value = false;
3050   if (gsym != NULL
3051       && use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type)))
3052     {
3053       const Output_data_glink<size, big_endian>* glink
3054         = target->glink_section();
3055       unsigned int glink_index = glink->find_entry(gsym, rela, object);
3056       value = glink->address() + glink_index * glink->glink_entry_size();
3057       has_plt_value = true;
3058     }
3059
3060   if (r_type == elfcpp::R_POWERPC_GOT16
3061       || r_type == elfcpp::R_POWERPC_GOT16_LO
3062       || r_type == elfcpp::R_POWERPC_GOT16_HI
3063       || r_type == elfcpp::R_POWERPC_GOT16_HA
3064       || r_type == elfcpp::R_PPC64_GOT16_DS
3065       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
3066     {
3067       if (gsym != NULL)
3068         {
3069           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3070           value = gsym->got_offset(GOT_TYPE_STANDARD);
3071         }
3072       else
3073         {
3074           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3075           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3076           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3077         }
3078       value -= target->got_section()->got_base_offset(object);
3079     }
3080   else if (r_type == elfcpp::R_PPC64_TOC)
3081     {
3082       value = (target->got_section()->output_section()->address()
3083                + object->toc_base_offset());
3084     }
3085   else if (gsym != NULL
3086            && (r_type == elfcpp::R_POWERPC_REL24
3087                || r_type == elfcpp::R_PPC_PLTREL24)
3088            && has_plt_value)
3089     {
3090       if (size == 64)
3091         {
3092           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3093           Valtype* wv = reinterpret_cast<Valtype*>(view);
3094           bool can_plt_call = false;
3095           if (rela.get_r_offset() + 8 <= view_size)
3096             {
3097               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
3098               if (insn2 == nop
3099                   || insn2 == cror_15_15_15 || insn2 == cror_31_31_31)
3100                 {
3101                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
3102                   can_plt_call = true;
3103                 }
3104             }
3105           if (!can_plt_call)
3106             gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3107                                    _("call lacks nop, can't restore toc"));
3108         }
3109     }
3110   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3111            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
3112            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
3113            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
3114     {
3115       // First instruction of a global dynamic sequence, arg setup insn.
3116       const bool final = gsym == NULL || gsym->final_value_is_known();
3117       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3118       enum Got_type got_type = GOT_TYPE_STANDARD;
3119       if (tls_type == tls::TLSOPT_NONE)
3120         got_type = GOT_TYPE_TLSGD;
3121       else if (tls_type == tls::TLSOPT_TO_IE)
3122         got_type = GOT_TYPE_TPREL;
3123       if (got_type != GOT_TYPE_STANDARD)
3124         {
3125           if (gsym != NULL)
3126             {
3127               gold_assert(gsym->has_got_offset(got_type));
3128               value = gsym->got_offset(got_type);
3129             }
3130           else
3131             {
3132               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3133               gold_assert(object->local_has_got_offset(r_sym, got_type));
3134               value = object->local_got_offset(r_sym, got_type);
3135             }
3136           value -= target->got_section()->got_base_offset(object);
3137         }
3138       if (tls_type == tls::TLSOPT_TO_IE)
3139         {
3140           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3141               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
3142             {
3143               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3144               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
3145               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
3146               if (size == 32)
3147                 insn |= 32 << 26; // lwz
3148               else
3149                 insn |= 58 << 26; // ld
3150               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3151             }
3152           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
3153                      - elfcpp::R_POWERPC_GOT_TLSGD16);
3154         }
3155       else if (tls_type == tls::TLSOPT_TO_LE)
3156         {
3157           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3158               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
3159             {
3160               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3161               Insn insn = addis_3_13;
3162               if (size == 32)
3163                 insn = addis_3_2;
3164               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3165               r_type = elfcpp::R_POWERPC_TPREL16_HA;
3166               value = psymval->value(object, rela.get_r_addend());
3167             }
3168           else
3169             {
3170               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3171               Insn insn = nop;
3172               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3173               r_type = elfcpp::R_POWERPC_NONE;
3174             }
3175         }
3176     }
3177   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
3178            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
3179            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
3180            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
3181     {
3182       // First instruction of a local dynamic sequence, arg setup insn.
3183       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3184       if (tls_type == tls::TLSOPT_NONE)
3185         {
3186           value = target->tlsld_got_offset();
3187           value -= target->got_section()->got_base_offset(object);
3188         }
3189       else
3190         {
3191           gold_assert(tls_type == tls::TLSOPT_TO_LE);
3192           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
3193               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
3194             {
3195               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3196               Insn insn = addis_3_13;
3197               if (size == 32)
3198                 insn = addis_3_2;
3199               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3200               r_type = elfcpp::R_POWERPC_TPREL16_HA;
3201               value = relinfo->layout->tls_segment()->vaddr() + dtp_offset;
3202             }
3203           else
3204             {
3205               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3206               Insn insn = nop;
3207               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3208               r_type = elfcpp::R_POWERPC_NONE;
3209             }
3210         }
3211     }
3212   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
3213            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
3214            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
3215            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
3216     {
3217       // Accesses relative to a local dynamic sequence address,
3218       // no optimisation here.
3219       if (gsym != NULL)
3220         {
3221           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
3222           value = gsym->got_offset(GOT_TYPE_DTPREL);
3223         }
3224       else
3225         {
3226           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3227           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
3228           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
3229         }
3230       value -= target->got_section()->got_base_offset(object);
3231     }
3232   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
3233            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
3234            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
3235            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
3236     {
3237       // First instruction of initial exec sequence.
3238       const bool final = gsym == NULL || gsym->final_value_is_known();
3239       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
3240       if (tls_type == tls::TLSOPT_NONE)
3241         {
3242           if (gsym != NULL)
3243             {
3244               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
3245               value = gsym->got_offset(GOT_TYPE_TPREL);
3246             }
3247           else
3248             {
3249               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3250               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
3251               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
3252             }
3253           value -= target->got_section()->got_base_offset(object);
3254         }
3255       else
3256         {
3257           gold_assert(tls_type == tls::TLSOPT_TO_LE);
3258           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
3259               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
3260             {
3261               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3262               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
3263               insn &= (1 << 26) - (1 << 21); // extract rt from ld
3264               if (size == 32)
3265                 insn |= addis_0_2;
3266               else
3267                 insn |= addis_0_13;
3268               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3269               r_type = elfcpp::R_POWERPC_TPREL16_HA;
3270               value = psymval->value(object, rela.get_r_addend());
3271             }
3272           else
3273             {
3274               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3275               Insn insn = nop;
3276               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3277               r_type = elfcpp::R_POWERPC_NONE;
3278             }
3279         }
3280     }
3281   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
3282            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
3283     {
3284       // Second instruction of a global dynamic sequence,
3285       // the __tls_get_addr call
3286       this->call_tls_get_addr_ = CALL_EXPECTED;
3287       const bool final = gsym == NULL || gsym->final_value_is_known();
3288       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3289       if (tls_type != tls::TLSOPT_NONE)
3290         {
3291           if (tls_type == tls::TLSOPT_TO_IE)
3292             {
3293               Insn* iview = reinterpret_cast<Insn*>(view);
3294               Insn insn = add_3_3_13;
3295               if (size == 32)
3296                 insn = add_3_3_2;
3297               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3298               r_type = elfcpp::R_POWERPC_NONE;
3299             }
3300           else
3301             {
3302               Insn* iview = reinterpret_cast<Insn*>(view);
3303               Insn insn = addi_3_3;
3304               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3305               r_type = elfcpp::R_POWERPC_TPREL16_LO;
3306               view += 2 * big_endian;
3307               value = psymval->value(object, rela.get_r_addend());
3308             }
3309           this->call_tls_get_addr_ = CALL_SKIP;
3310         }
3311     }
3312   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
3313            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
3314     {
3315       // Second instruction of a local dynamic sequence,
3316       // the __tls_get_addr call
3317       this->call_tls_get_addr_ = CALL_EXPECTED;
3318       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3319       if (tls_type == tls::TLSOPT_TO_LE)
3320         {
3321           Insn* iview = reinterpret_cast<Insn*>(view);
3322           Insn insn = addi_3_3;
3323           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3324           this->call_tls_get_addr_ = CALL_SKIP;
3325           r_type = elfcpp::R_POWERPC_TPREL16_LO;
3326           view += 2 * big_endian;
3327           value = relinfo->layout->tls_segment()->vaddr() + dtp_offset;
3328         }
3329     }
3330   else if (r_type == elfcpp::R_POWERPC_TLS)
3331     {
3332       // Second instruction of an initial exec sequence
3333       const bool final = gsym == NULL || gsym->final_value_is_known();
3334       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
3335       if (tls_type == tls::TLSOPT_TO_LE)
3336         {
3337           Insn* iview = reinterpret_cast<Insn*>(view);
3338           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
3339           unsigned int reg = size == 32 ? 2 : 13;
3340           insn = at_tls_transform(insn, reg);
3341           gold_assert(insn != 0);
3342           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3343           r_type = elfcpp::R_POWERPC_TPREL16_LO;
3344           view += 2 * big_endian;
3345           value = psymval->value(object, rela.get_r_addend());
3346         }
3347     }
3348   else
3349     {
3350       Address addend = 0;
3351       if (r_type != elfcpp::R_PPC_PLTREL24)
3352         addend = rela.get_r_addend();
3353       if (size == 64 || !has_plt_value)
3354         value = psymval->value(object, addend);
3355       if (size == 64 && is_branch_reloc(r_type))
3356         {
3357           // If the symbol is defined in an opd section, ie. is a function
3358           // descriptor, use the function descriptor code entry address
3359           Powerpc_relobj<size, big_endian>* symobj = const_cast
3360             <Powerpc_relobj<size, big_endian>*>(object);
3361           if (gsym != NULL)
3362             symobj = static_cast
3363               <Powerpc_relobj<size, big_endian>*>(gsym->object());
3364           unsigned int shndx = symobj->opd_shndx();
3365           Address opd_addr = symobj->get_output_section_offset(shndx);
3366           gold_assert(opd_addr != invalid_address);
3367           opd_addr += symobj->output_section(shndx)->address();
3368           if (value >= opd_addr
3369               && value < opd_addr + symobj->section_size(shndx))
3370             {
3371               Address sec_off;
3372               symobj->get_opd_ent(value - opd_addr, &shndx, &sec_off);
3373               Address sec_addr = symobj->get_output_section_offset(shndx);
3374               gold_assert(sec_addr != invalid_address);
3375               sec_addr += symobj->output_section(shndx)->address();
3376               value = sec_addr + sec_off;
3377             }
3378         }
3379     }
3380
3381   switch (r_type)
3382     {
3383     case elfcpp::R_PPC64_REL64:
3384     case elfcpp::R_POWERPC_REL32:
3385     case elfcpp::R_POWERPC_REL24:
3386     case elfcpp::R_PPC_PLTREL24:
3387     case elfcpp::R_PPC_LOCAL24PC:
3388     case elfcpp::R_POWERPC_REL16:
3389     case elfcpp::R_POWERPC_REL16_LO:
3390     case elfcpp::R_POWERPC_REL16_HI:
3391     case elfcpp::R_POWERPC_REL16_HA:
3392     case elfcpp::R_POWERPC_REL14:
3393     case elfcpp::R_POWERPC_REL14_BRTAKEN:
3394     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3395       value -= address;
3396       break;
3397
3398     case elfcpp::R_PPC64_TOC16:
3399     case elfcpp::R_PPC64_TOC16_LO:
3400     case elfcpp::R_PPC64_TOC16_HI:
3401     case elfcpp::R_PPC64_TOC16_HA:
3402     case elfcpp::R_PPC64_TOC16_DS:
3403     case elfcpp::R_PPC64_TOC16_LO_DS:
3404       // Subtract the TOC base address.
3405       value -= (target->got_section()->output_section()->address()
3406                 + object->toc_base_offset());
3407       break;
3408
3409     case elfcpp::R_POWERPC_SECTOFF:
3410     case elfcpp::R_POWERPC_SECTOFF_LO:
3411     case elfcpp::R_POWERPC_SECTOFF_HI:
3412     case elfcpp::R_POWERPC_SECTOFF_HA:
3413     case elfcpp::R_PPC64_SECTOFF_DS:
3414     case elfcpp::R_PPC64_SECTOFF_LO_DS:
3415       if (os != NULL)
3416         value -= os->address();
3417       break;
3418
3419     case elfcpp::R_PPC64_TPREL16_DS:
3420     case elfcpp::R_PPC64_TPREL16_LO_DS:
3421       if (size != 64)
3422         // R_PPC_TLSGD and R_PPC_TLSLD
3423         break;
3424     case elfcpp::R_POWERPC_TPREL16:
3425     case elfcpp::R_POWERPC_TPREL16_LO:
3426     case elfcpp::R_POWERPC_TPREL16_HI:
3427     case elfcpp::R_POWERPC_TPREL16_HA:
3428     case elfcpp::R_POWERPC_TPREL:
3429     case elfcpp::R_PPC64_TPREL16_HIGHER:
3430     case elfcpp::R_PPC64_TPREL16_HIGHERA:
3431     case elfcpp::R_PPC64_TPREL16_HIGHEST:
3432     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3433       // tls symbol values are relative to tls_segment()->vaddr()
3434       value -= tp_offset;
3435       break;
3436
3437     case elfcpp::R_PPC64_DTPREL16_DS:
3438     case elfcpp::R_PPC64_DTPREL16_LO_DS:
3439     case elfcpp::R_PPC64_DTPREL16_HIGHER:
3440     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3441     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3442     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3443       if (size != 64)
3444         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
3445         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
3446         break;
3447     case elfcpp::R_POWERPC_DTPREL16:
3448     case elfcpp::R_POWERPC_DTPREL16_LO:
3449     case elfcpp::R_POWERPC_DTPREL16_HI:
3450     case elfcpp::R_POWERPC_DTPREL16_HA:
3451     case elfcpp::R_POWERPC_DTPREL:
3452       // tls symbol values are relative to tls_segment()->vaddr()
3453       value -= dtp_offset;
3454       break;
3455
3456     default:
3457       break;
3458     }
3459
3460   Insn branch_bit = 0;
3461   switch (r_type)
3462     {
3463     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3464     case elfcpp::R_POWERPC_REL14_BRTAKEN:
3465       branch_bit = 1 << 21;
3466     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3467     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3468       {
3469         Insn* iview = reinterpret_cast<Insn*>(view);
3470         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
3471         insn &= ~(1 << 21);
3472         insn |= branch_bit;
3473         if (this->is_isa_v2)
3474           {
3475             // Set 'a' bit.  This is 0b00010 in BO field for branch
3476             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
3477             // for branch on CTR insns (BO == 1a00t or 1a01t).
3478             if ((insn & (0x14 << 21)) == (0x04 << 21))
3479               insn |= 0x02 << 21;
3480             else if ((insn & (0x14 << 21)) == (0x10 << 21))
3481               insn |= 0x08 << 21;
3482             else
3483               break;
3484           }
3485         else
3486           {
3487             // Invert 'y' bit if not the default.
3488             if (static_cast<Signed_address>(value) < 0)
3489               insn ^= 1 << 21;
3490           }
3491         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3492       }
3493       break;
3494
3495     default:
3496       break;
3497     }
3498
3499   enum Reloc::overflow_check overflow = Reloc::check_none;
3500   switch (r_type)
3501     {
3502     case elfcpp::R_POWERPC_ADDR32:
3503     case elfcpp::R_POWERPC_UADDR32:
3504       if (size == 64)
3505         overflow = Reloc::check_bitfield;
3506       break;
3507
3508     case elfcpp::R_POWERPC_REL32:
3509       if (size == 64)
3510         overflow = Reloc::check_signed;
3511       break;
3512
3513     case elfcpp::R_POWERPC_ADDR24:
3514     case elfcpp::R_POWERPC_ADDR16:
3515     case elfcpp::R_POWERPC_UADDR16:
3516     case elfcpp::R_PPC64_ADDR16_DS:
3517     case elfcpp::R_POWERPC_ADDR14:
3518     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3519     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3520       overflow = Reloc::check_bitfield;
3521       break;
3522
3523     case elfcpp::R_POWERPC_REL24:
3524     case elfcpp::R_PPC_PLTREL24:
3525     case elfcpp::R_PPC_LOCAL24PC:
3526     case elfcpp::R_POWERPC_REL16:
3527     case elfcpp::R_PPC64_TOC16:
3528     case elfcpp::R_POWERPC_GOT16:
3529     case elfcpp::R_POWERPC_SECTOFF:
3530     case elfcpp::R_POWERPC_TPREL16:
3531     case elfcpp::R_POWERPC_DTPREL16:
3532     case elfcpp::R_PPC64_TPREL16_DS:
3533     case elfcpp::R_PPC64_DTPREL16_DS:
3534     case elfcpp::R_PPC64_TOC16_DS:
3535     case elfcpp::R_PPC64_GOT16_DS:
3536     case elfcpp::R_PPC64_SECTOFF_DS:
3537     case elfcpp::R_POWERPC_REL14:
3538     case elfcpp::R_POWERPC_REL14_BRTAKEN:
3539     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3540     case elfcpp::R_POWERPC_GOT_TLSGD16:
3541     case elfcpp::R_POWERPC_GOT_TLSLD16:
3542     case elfcpp::R_POWERPC_GOT_TPREL16:
3543     case elfcpp::R_POWERPC_GOT_DTPREL16:
3544       overflow = Reloc::check_signed;
3545       break;
3546     }
3547
3548   switch (r_type)
3549     {
3550     case elfcpp::R_POWERPC_NONE:
3551     case elfcpp::R_POWERPC_TLS:
3552     case elfcpp::R_POWERPC_GNU_VTINHERIT:
3553     case elfcpp::R_POWERPC_GNU_VTENTRY:
3554     case elfcpp::R_PPC_EMB_MRKREF:
3555       break;
3556
3557     case elfcpp::R_PPC64_ADDR64:
3558     case elfcpp::R_PPC64_REL64:
3559     case elfcpp::R_PPC64_TOC:
3560       Reloc::addr64(view, value);
3561       break;
3562
3563     case elfcpp::R_POWERPC_TPREL:
3564     case elfcpp::R_POWERPC_DTPREL:
3565       if (size == 64)
3566         Reloc::addr64(view, value);
3567       else
3568         Reloc::addr32(view, value, overflow);
3569       break;
3570
3571     case elfcpp::R_PPC64_UADDR64:
3572       Reloc::addr64_u(view, value);
3573       break;
3574
3575     case elfcpp::R_POWERPC_ADDR32:
3576     case elfcpp::R_POWERPC_REL32:
3577       Reloc::addr32(view, value, overflow);
3578       break;
3579
3580     case elfcpp::R_POWERPC_UADDR32:
3581       Reloc::addr32_u(view, value, overflow);
3582       break;
3583
3584     case elfcpp::R_POWERPC_ADDR24:
3585     case elfcpp::R_POWERPC_REL24:
3586     case elfcpp::R_PPC_PLTREL24:
3587     case elfcpp::R_PPC_LOCAL24PC:
3588       Reloc::addr24(view, value, overflow);
3589       break;
3590
3591     case elfcpp::R_POWERPC_GOT_DTPREL16:
3592     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3593       if (size == 64)
3594         {
3595           Reloc::addr16_ds(view, value, overflow);
3596           break;
3597         }
3598     case elfcpp::R_POWERPC_ADDR16:
3599     case elfcpp::R_POWERPC_REL16:
3600     case elfcpp::R_PPC64_TOC16:
3601     case elfcpp::R_POWERPC_GOT16:
3602     case elfcpp::R_POWERPC_SECTOFF:
3603     case elfcpp::R_POWERPC_TPREL16:
3604     case elfcpp::R_POWERPC_DTPREL16:
3605     case elfcpp::R_POWERPC_GOT_TLSGD16:
3606     case elfcpp::R_POWERPC_GOT_TLSLD16:
3607     case elfcpp::R_POWERPC_GOT_TPREL16:
3608     case elfcpp::R_POWERPC_ADDR16_LO:
3609     case elfcpp::R_POWERPC_REL16_LO:
3610     case elfcpp::R_PPC64_TOC16_LO:
3611     case elfcpp::R_POWERPC_GOT16_LO:
3612     case elfcpp::R_POWERPC_SECTOFF_LO:
3613     case elfcpp::R_POWERPC_TPREL16_LO:
3614     case elfcpp::R_POWERPC_DTPREL16_LO:
3615     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3616     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3617     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3618       Reloc::addr16(view, value, overflow);
3619       break;
3620
3621     case elfcpp::R_POWERPC_UADDR16:
3622       Reloc::addr16_u(view, value, overflow);
3623       break;
3624
3625     case elfcpp::R_POWERPC_ADDR16_HI:
3626     case elfcpp::R_POWERPC_REL16_HI:
3627     case elfcpp::R_PPC64_TOC16_HI:
3628     case elfcpp::R_POWERPC_GOT16_HI:
3629     case elfcpp::R_POWERPC_SECTOFF_HI:
3630     case elfcpp::R_POWERPC_TPREL16_HI:
3631     case elfcpp::R_POWERPC_DTPREL16_HI:
3632     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3633     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3634     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3635     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3636       Reloc::addr16_hi(view, value);
3637       break;
3638
3639     case elfcpp::R_POWERPC_ADDR16_HA:
3640     case elfcpp::R_POWERPC_REL16_HA:
3641     case elfcpp::R_PPC64_TOC16_HA:
3642     case elfcpp::R_POWERPC_GOT16_HA:
3643     case elfcpp::R_POWERPC_SECTOFF_HA:
3644     case elfcpp::R_POWERPC_TPREL16_HA:
3645     case elfcpp::R_POWERPC_DTPREL16_HA:
3646     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3647     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3648     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3649     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3650       Reloc::addr16_ha(view, value);
3651       break;
3652
3653     case elfcpp::R_PPC64_DTPREL16_HIGHER:
3654       if (size == 32)
3655         // R_PPC_EMB_NADDR16_LO
3656         goto unsupp;
3657     case elfcpp::R_PPC64_ADDR16_HIGHER:
3658     case elfcpp::R_PPC64_TPREL16_HIGHER:
3659       Reloc::addr16_hi2(view, value);
3660       break;
3661
3662     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3663       if (size == 32)
3664         // R_PPC_EMB_NADDR16_HI
3665         goto unsupp;
3666     case elfcpp::R_PPC64_ADDR16_HIGHERA:
3667     case elfcpp::R_PPC64_TPREL16_HIGHERA:
3668       Reloc::addr16_ha2(view, value);
3669       break;
3670
3671     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3672       if (size == 32)
3673         // R_PPC_EMB_NADDR16_HA
3674         goto unsupp;
3675     case elfcpp::R_PPC64_ADDR16_HIGHEST:
3676     case elfcpp::R_PPC64_TPREL16_HIGHEST:
3677       Reloc::addr16_hi3(view, value);
3678       break;
3679
3680     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3681       if (size == 32)
3682         // R_PPC_EMB_SDAI16
3683         goto unsupp;
3684     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3685     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3686       Reloc::addr16_ha3(view, value);
3687       break;
3688
3689     case elfcpp::R_PPC64_DTPREL16_DS:
3690     case elfcpp::R_PPC64_DTPREL16_LO_DS:
3691       if (size == 32)
3692         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
3693         goto unsupp;
3694     case elfcpp::R_PPC64_TPREL16_DS:
3695     case elfcpp::R_PPC64_TPREL16_LO_DS:
3696       if (size == 32)
3697         // R_PPC_TLSGD, R_PPC_TLSLD
3698         break;
3699     case elfcpp::R_PPC64_ADDR16_DS:
3700     case elfcpp::R_PPC64_ADDR16_LO_DS:
3701     case elfcpp::R_PPC64_TOC16_DS:
3702     case elfcpp::R_PPC64_TOC16_LO_DS:
3703     case elfcpp::R_PPC64_GOT16_DS:
3704     case elfcpp::R_PPC64_GOT16_LO_DS:
3705     case elfcpp::R_PPC64_SECTOFF_DS:
3706     case elfcpp::R_PPC64_SECTOFF_LO_DS:
3707       Reloc::addr16_ds(view, value, overflow);
3708       break;
3709
3710     case elfcpp::R_POWERPC_ADDR14:
3711     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3712     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3713     case elfcpp::R_POWERPC_REL14:
3714     case elfcpp::R_POWERPC_REL14_BRTAKEN:
3715     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3716       Reloc::addr14(view, value, overflow);
3717       break;
3718
3719     case elfcpp::R_POWERPC_COPY:
3720     case elfcpp::R_POWERPC_GLOB_DAT:
3721     case elfcpp::R_POWERPC_JMP_SLOT:
3722     case elfcpp::R_POWERPC_RELATIVE:
3723     case elfcpp::R_POWERPC_DTPMOD:
3724     case elfcpp::R_PPC64_JMP_IREL:
3725     case elfcpp::R_POWERPC_IRELATIVE:
3726       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3727                              _("unexpected reloc %u in object file"),
3728                              r_type);
3729       break;
3730
3731     case elfcpp::R_PPC_EMB_SDA21:
3732       if (size == 32)
3733         goto unsupp;
3734       else
3735         {
3736           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
3737         }
3738       break;
3739
3740     case elfcpp::R_PPC_EMB_SDA2I16:
3741     case elfcpp::R_PPC_EMB_SDA2REL:
3742       if (size == 32)
3743         goto unsupp;
3744       // R_PPC64_TLSGD, R_PPC64_TLSLD
3745       break;
3746
3747     case elfcpp::R_POWERPC_PLT32:
3748     case elfcpp::R_POWERPC_PLTREL32:
3749     case elfcpp::R_POWERPC_PLT16_LO:
3750     case elfcpp::R_POWERPC_PLT16_HI:
3751     case elfcpp::R_POWERPC_PLT16_HA:
3752     case elfcpp::R_PPC_SDAREL16:
3753     case elfcpp::R_POWERPC_ADDR30:
3754     case elfcpp::R_PPC64_PLT64:
3755     case elfcpp::R_PPC64_PLTREL64:
3756     case elfcpp::R_PPC64_PLTGOT16:
3757     case elfcpp::R_PPC64_PLTGOT16_LO:
3758     case elfcpp::R_PPC64_PLTGOT16_HI:
3759     case elfcpp::R_PPC64_PLTGOT16_HA:
3760     case elfcpp::R_PPC64_PLT16_LO_DS:
3761     case elfcpp::R_PPC64_PLTGOT16_DS:
3762     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
3763     case elfcpp::R_PPC_EMB_RELSEC16:
3764     case elfcpp::R_PPC_EMB_RELST_LO:
3765     case elfcpp::R_PPC_EMB_RELST_HI:
3766     case elfcpp::R_PPC_EMB_RELST_HA:
3767     case elfcpp::R_PPC_EMB_BIT_FLD:
3768     case elfcpp::R_PPC_EMB_RELSDA:
3769     case elfcpp::R_PPC_TOC16:
3770     default:
3771     unsupp:
3772       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3773                              _("unsupported reloc %u"),
3774                              r_type);
3775       break;
3776     }
3777
3778   return true;
3779 }
3780
3781 // Relocate section data.
3782
3783 template<int size, bool big_endian>
3784 void
3785 Target_powerpc<size, big_endian>::relocate_section(
3786     const Relocate_info<size, big_endian>* relinfo,
3787     unsigned int sh_type,
3788     const unsigned char* prelocs,
3789     size_t reloc_count,
3790     Output_section* output_section,
3791     bool needs_special_offset_handling,
3792     unsigned char* view,
3793     Address address,
3794     section_size_type view_size,
3795     const Reloc_symbol_changes* reloc_symbol_changes)
3796 {
3797   typedef Target_powerpc<size, big_endian> Powerpc;
3798   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
3799
3800   gold_assert(sh_type == elfcpp::SHT_RELA);
3801
3802   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
3803                          Powerpc_relocate>(
3804     relinfo,
3805     this,
3806     prelocs,
3807     reloc_count,
3808     output_section,
3809     needs_special_offset_handling,
3810     view,
3811     address,
3812     view_size,
3813     reloc_symbol_changes);
3814 }
3815
3816 class Powerpc_scan_relocatable_reloc
3817 {
3818 public:
3819   // Return the strategy to use for a local symbol which is not a
3820   // section symbol, given the relocation type.
3821   inline Relocatable_relocs::Reloc_strategy
3822   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
3823   {
3824     if (r_type == 0 && r_sym == 0)
3825       return Relocatable_relocs::RELOC_DISCARD;
3826     return Relocatable_relocs::RELOC_COPY;
3827   }
3828
3829   // Return the strategy to use for a local symbol which is a section
3830   // symbol, given the relocation type.
3831   inline Relocatable_relocs::Reloc_strategy
3832   local_section_strategy(unsigned int, Relobj*)
3833   {
3834     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
3835   }
3836
3837   // Return the strategy to use for a global symbol, given the
3838   // relocation type, the object, and the symbol index.
3839   inline Relocatable_relocs::Reloc_strategy
3840   global_strategy(unsigned int r_type, Relobj*, unsigned int)
3841   {
3842     if (r_type == elfcpp::R_PPC_PLTREL24)
3843       return Relocatable_relocs::RELOC_SPECIAL;
3844     return Relocatable_relocs::RELOC_COPY;
3845   }
3846 };
3847
3848 // Scan the relocs during a relocatable link.
3849
3850 template<int size, bool big_endian>
3851 void
3852 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
3853     Symbol_table* symtab,
3854     Layout* layout,
3855     Sized_relobj_file<size, big_endian>* object,
3856     unsigned int data_shndx,
3857     unsigned int sh_type,
3858     const unsigned char* prelocs,
3859     size_t reloc_count,
3860     Output_section* output_section,
3861     bool needs_special_offset_handling,
3862     size_t local_symbol_count,
3863     const unsigned char* plocal_symbols,
3864     Relocatable_relocs* rr)
3865 {
3866   gold_assert(sh_type == elfcpp::SHT_RELA);
3867
3868   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
3869                                 Powerpc_scan_relocatable_reloc>(
3870     symtab,
3871     layout,
3872     object,
3873     data_shndx,
3874     prelocs,
3875     reloc_count,
3876     output_section,
3877     needs_special_offset_handling,
3878     local_symbol_count,
3879     plocal_symbols,
3880     rr);
3881 }
3882
3883 // Relocate a section during a relocatable link.
3884 // This is a modified version of the function by the same name in
3885 // target-reloc.h.  Using relocate_special_relocatable for
3886 // R_PPC_PLTREL24 would require duplication of the entire body of the
3887 // loop, so we may as well duplicate the whole thing.
3888
3889 template<int size, bool big_endian>
3890 void
3891 Target_powerpc<size, big_endian>::relocate_for_relocatable(
3892     const Relocate_info<size, big_endian>* relinfo,
3893     unsigned int sh_type,
3894     const unsigned char* prelocs,
3895     size_t reloc_count,
3896     Output_section* output_section,
3897     off_t offset_in_output_section,
3898     const Relocatable_relocs* rr,
3899     unsigned char*,
3900     Address view_address,
3901     section_size_type,
3902     unsigned char* reloc_view,
3903     section_size_type reloc_view_size)
3904 {
3905   gold_assert(sh_type == elfcpp::SHT_RELA);
3906
3907   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3908     Reltype;
3909   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
3910     Reltype_write;
3911   const int reloc_size
3912     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3913
3914   Powerpc_relobj<size, big_endian>* const object
3915     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
3916   const unsigned int local_count = object->local_symbol_count();
3917   unsigned int got2_shndx = object->got2_shndx();
3918   Address got2_addend = 0;
3919   if (got2_shndx != 0)
3920     {
3921       got2_addend = object->get_output_section_offset(got2_shndx);
3922       gold_assert(got2_addend != invalid_address);
3923     }
3924
3925   unsigned char* pwrite = reloc_view;
3926
3927   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3928     {
3929       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
3930       if (strategy == Relocatable_relocs::RELOC_DISCARD)
3931         continue;
3932
3933       Reltype reloc(prelocs);
3934       Reltype_write reloc_write(pwrite);
3935
3936       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3937       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3938       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3939
3940       // Get the new symbol index.
3941
3942       unsigned int new_symndx;
3943       if (r_sym < local_count)
3944         {
3945           switch (strategy)
3946             {
3947             case Relocatable_relocs::RELOC_COPY:
3948             case Relocatable_relocs::RELOC_SPECIAL:
3949               if (r_sym == 0)
3950                 new_symndx = 0;
3951               else
3952                 {
3953                   new_symndx = object->symtab_index(r_sym);
3954                   gold_assert(new_symndx != -1U);
3955                 }
3956               break;
3957
3958             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
3959               {
3960                 // We are adjusting a section symbol.  We need to find
3961                 // the symbol table index of the section symbol for
3962                 // the output section corresponding to input section
3963                 // in which this symbol is defined.
3964                 gold_assert(r_sym < local_count);
3965                 bool is_ordinary;
3966                 unsigned int shndx =
3967                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
3968                 gold_assert(is_ordinary);
3969                 Output_section* os = object->output_section(shndx);
3970                 gold_assert(os != NULL);
3971                 gold_assert(os->needs_symtab_index());
3972                 new_symndx = os->symtab_index();
3973               }
3974               break;
3975
3976             default:
3977               gold_unreachable();
3978             }
3979         }
3980       else
3981         {
3982           const Symbol* gsym = object->global_symbol(r_sym);
3983           gold_assert(gsym != NULL);
3984           if (gsym->is_forwarder())
3985             gsym = relinfo->symtab->resolve_forwards(gsym);
3986
3987           gold_assert(gsym->has_symtab_index());
3988           new_symndx = gsym->symtab_index();
3989         }
3990
3991       // Get the new offset--the location in the output section where
3992       // this relocation should be applied.
3993
3994       Address offset = reloc.get_r_offset();
3995       Address new_offset;
3996       if (static_cast<Address>(offset_in_output_section) != invalid_address)
3997         new_offset = offset + offset_in_output_section;
3998       else
3999         {
4000           section_offset_type sot_offset =
4001             convert_types<section_offset_type, Address>(offset);
4002           section_offset_type new_sot_offset =
4003             output_section->output_offset(object, relinfo->data_shndx,
4004                                           sot_offset);
4005           gold_assert(new_sot_offset != -1);
4006           new_offset = new_sot_offset;
4007         }
4008
4009       // In an object file, r_offset is an offset within the section.
4010       // In an executable or dynamic object, generated by
4011       // --emit-relocs, r_offset is an absolute address.
4012       // FIXME: Arrange to call this function for --emit-relocs too,
4013       // so that we can make emitted relocs match edited TLS code.
4014       if (0 && !parameters->options().relocatable())
4015         {
4016           new_offset += view_address;
4017           if (static_cast<Address>(offset_in_output_section) != invalid_address)
4018             new_offset -= offset_in_output_section;
4019         }
4020
4021       reloc_write.put_r_offset(new_offset);
4022       reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
4023
4024       // Handle the reloc addend based on the strategy.
4025       typename elfcpp::Elf_types<size>::Elf_Swxword addend;
4026       addend = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::
4027         get_reloc_addend(&reloc);
4028
4029       if (strategy == Relocatable_relocs::RELOC_COPY)
4030         ;
4031       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
4032         {
4033           const Symbol_value<size>* psymval = object->local_symbol(r_sym);
4034           addend = psymval->value(object, addend);
4035         }
4036       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
4037         {
4038           if (addend >= 32768)
4039             addend += got2_addend;
4040         }
4041       else
4042         gold_unreachable();
4043
4044       Reloc_types<elfcpp::SHT_RELA, size, big_endian>::
4045         set_reloc_addend(&reloc_write, addend);
4046
4047       pwrite += reloc_size;
4048     }
4049
4050   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
4051               == reloc_view_size);
4052 }
4053
4054 // Return the value to use for a dynamic which requires special
4055 // treatment.  This is how we support equality comparisons of function
4056 // pointers across shared library boundaries, as described in the
4057 // processor specific ABI supplement.
4058
4059 template<int size, bool big_endian>
4060 uint64_t
4061 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
4062 {
4063   if (size == 32)
4064     {
4065       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4066       return this->plt_section()->address() + gsym->plt_offset();
4067     }
4068   else
4069     gold_unreachable();
4070 }
4071
4072 // The selector for powerpc object files.
4073
4074 template<int size, bool big_endian>
4075 class Target_selector_powerpc : public Target_selector
4076 {
4077 public:
4078   Target_selector_powerpc()
4079     : Target_selector(elfcpp::EM_NONE, size, big_endian,
4080                       (size == 64
4081                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
4082                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
4083                       (size == 64
4084                        ? (big_endian ? "elf64ppc" : "elf64lppc")
4085                        : (big_endian ? "elf32ppc" : "elf32lppc")))
4086   { }
4087
4088   virtual Target*
4089   do_recognize(Input_file*, off_t, int machine, int, int)
4090   {
4091     switch (size)
4092       {
4093       case 64:
4094         if (machine != elfcpp::EM_PPC64)
4095           return NULL;
4096         break;
4097
4098       case 32:
4099         if (machine != elfcpp::EM_PPC)
4100           return NULL;
4101         break;
4102
4103       default:
4104         return NULL;
4105       }
4106
4107     return this->instantiate_target();
4108   }
4109
4110   virtual Target*
4111   do_instantiate_target()
4112   { return new Target_powerpc<size, big_endian>(); }
4113 };
4114
4115 Target_selector_powerpc<32, true> target_selector_ppc32;
4116 Target_selector_powerpc<32, false> target_selector_ppc32le;
4117 Target_selector_powerpc<64, true> target_selector_ppc64;
4118 Target_selector_powerpc<64, false> target_selector_ppc64le;
4119
4120 } // End anonymous namespace.