PowerPC gold, fix 32-bit branch address arithmetic
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Target_powerpc;
67
68 struct Stub_table_owner
69 {
70   Output_section* output_section;
71   const Output_section::Input_section* owner;
72 };
73
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83   typedef Unordered_map<Address, Section_refs> Access_from;
84
85   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90       e_flags_(ehdr.get_e_flags()), st_other_()
91   {
92     this->set_abiversion(0);
93   }
94
95   ~Powerpc_relobj()
96   { }
97
98   // Read the symbols then set up st_other vector.
99   void
100   do_read_symbols(Read_symbols_data*);
101
102   // The .got2 section shndx.
103   unsigned int
104   got2_shndx() const
105   {
106     if (size == 32)
107       return this->special_;
108     else
109       return 0;
110   }
111
112   // The .opd section shndx.
113   unsigned int
114   opd_shndx() const
115   {
116     if (size == 32)
117       return 0;
118     else
119       return this->special_;
120   }
121
122   // Init OPD entry arrays.
123   void
124   init_opd(size_t opd_size)
125   {
126     size_t count = this->opd_ent_ndx(opd_size);
127     this->opd_ent_.resize(count);
128   }
129
130   // Return section and offset of function entry for .opd + R_OFF.
131   unsigned int
132   get_opd_ent(Address r_off, Address* value = NULL) const
133   {
134     size_t ndx = this->opd_ent_ndx(r_off);
135     gold_assert(ndx < this->opd_ent_.size());
136     gold_assert(this->opd_ent_[ndx].shndx != 0);
137     if (value != NULL)
138       *value = this->opd_ent_[ndx].off;
139     return this->opd_ent_[ndx].shndx;
140   }
141
142   // Set section and offset of function entry for .opd + R_OFF.
143   void
144   set_opd_ent(Address r_off, unsigned int shndx, Address value)
145   {
146     size_t ndx = this->opd_ent_ndx(r_off);
147     gold_assert(ndx < this->opd_ent_.size());
148     this->opd_ent_[ndx].shndx = shndx;
149     this->opd_ent_[ndx].off = value;
150   }
151
152   // Return discard flag for .opd + R_OFF.
153   bool
154   get_opd_discard(Address r_off) const
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     return this->opd_ent_[ndx].discard;
159   }
160
161   // Set discard flag for .opd + R_OFF.
162   void
163   set_opd_discard(Address r_off)
164   {
165     size_t ndx = this->opd_ent_ndx(r_off);
166     gold_assert(ndx < this->opd_ent_.size());
167     this->opd_ent_[ndx].discard = true;
168   }
169
170   bool
171   opd_valid() const
172   { return this->opd_valid_; }
173
174   void
175   set_opd_valid()
176   { this->opd_valid_ = true; }
177
178   // Examine .rela.opd to build info about function entry points.
179   void
180   scan_opd_relocs(size_t reloc_count,
181                   const unsigned char* prelocs,
182                   const unsigned char* plocal_syms);
183
184   // Perform the Sized_relobj_file method, then set up opd info from
185   // .opd relocs.
186   void
187   do_read_relocs(Read_relocs_data*);
188
189   bool
190   do_find_special_sections(Read_symbols_data* sd);
191
192   // Adjust this local symbol value.  Return false if the symbol
193   // should be discarded from the output file.
194   bool
195   do_adjust_local_symbol(Symbol_value<size>* lv) const
196   {
197     if (size == 64 && this->opd_shndx() != 0)
198       {
199         bool is_ordinary;
200         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201           return true;
202         if (this->get_opd_discard(lv->input_value()))
203           return false;
204       }
205     return true;
206   }
207
208   Access_from*
209   access_from_map()
210   { return &this->access_from_map_; }
211
212   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213   // section at DST_OFF.
214   void
215   add_reference(Object* src_obj,
216                 unsigned int src_indx,
217                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     Section_id src_id(src_obj, src_indx);
220     this->access_from_map_[dst_off].insert(src_id);
221   }
222
223   // Add a reference to the code section specified by the .opd entry
224   // at DST_OFF
225   void
226   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227   {
228     size_t ndx = this->opd_ent_ndx(dst_off);
229     if (ndx >= this->opd_ent_.size())
230       this->opd_ent_.resize(ndx + 1);
231     this->opd_ent_[ndx].gc_mark = true;
232   }
233
234   void
235   process_gc_mark(Symbol_table* symtab)
236   {
237     for (size_t i = 0; i < this->opd_ent_.size(); i++)
238       if (this->opd_ent_[i].gc_mark)
239         {
240           unsigned int shndx = this->opd_ent_[i].shndx;
241           symtab->gc()->worklist().push(Section_id(this, shndx));
242         }
243   }
244
245   // Return offset in output GOT section that this object will use
246   // as a TOC pointer.  Won't be just a constant with multi-toc support.
247   Address
248   toc_base_offset() const
249   { return 0x8000; }
250
251   void
252   set_has_small_toc_reloc()
253   { has_small_toc_reloc_ = true; }
254
255   bool
256   has_small_toc_reloc() const
257   { return has_small_toc_reloc_; }
258
259   void
260   set_has_14bit_branch(unsigned int shndx)
261   {
262     if (shndx >= this->has14_.size())
263       this->has14_.resize(shndx + 1);
264     this->has14_[shndx] = true;
265   }
266
267   bool
268   has_14bit_branch(unsigned int shndx) const
269   { return shndx < this->has14_.size() && this->has14_[shndx];  }
270
271   void
272   set_stub_table(unsigned int shndx, unsigned int stub_index)
273   {
274     if (shndx >= this->stub_table_index_.size())
275       this->stub_table_index_.resize(shndx + 1);
276     this->stub_table_index_[shndx] = stub_index;
277   }
278
279   Stub_table<size, big_endian>*
280   stub_table(unsigned int shndx)
281   {
282     if (shndx < this->stub_table_index_.size())
283       {
284         Target_powerpc<size, big_endian>* target
285           = static_cast<Target_powerpc<size, big_endian>*>(
286               parameters->sized_target<size, big_endian>());
287         unsigned int indx = this->stub_table_index_[shndx];
288         gold_assert(indx < target->stub_tables().size());
289         return target->stub_tables()[indx];
290       }
291     return NULL;
292   }
293
294   void
295   clear_stub_table()
296   {
297     this->stub_table_index_.clear();
298   }
299
300   int
301   abiversion() const
302   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303
304   // Set ABI version for input and output
305   void
306   set_abiversion(int ver);
307
308   unsigned int
309   ppc64_local_entry_offset(const Symbol* sym) const
310   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311
312   unsigned int
313   ppc64_local_entry_offset(unsigned int symndx) const
314   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315
316 private:
317   struct Opd_ent
318   {
319     unsigned int shndx;
320     bool discard : 1;
321     bool gc_mark : 1;
322     Address off;
323   };
324
325   // Return index into opd_ent_ array for .opd entry at OFF.
326   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327   // apart when the language doesn't use the last 8-byte word, the
328   // environment pointer.  Thus dividing the entry section offset by
329   // 16 will give an index into opd_ent_ that works for either layout
330   // of .opd.  (It leaves some elements of the vector unused when .opd
331   // entries are spaced 24 bytes apart, but we don't know the spacing
332   // until relocations are processed, and in any case it is possible
333   // for an object to have some entries spaced 16 bytes apart and
334   // others 24 bytes apart.)
335   size_t
336   opd_ent_ndx(size_t off) const
337   { return off >> 4;}
338
339   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340   unsigned int special_;
341
342   // For 64-bit, whether this object uses small model relocs to access
343   // the toc.
344   bool has_small_toc_reloc_;
345
346   // Set at the start of gc_process_relocs, when we know opd_ent_
347   // vector is valid.  The flag could be made atomic and set in
348   // do_read_relocs with memory_order_release and then tested with
349   // memory_order_acquire, potentially resulting in fewer entries in
350   // access_from_map_.
351   bool opd_valid_;
352
353   // The first 8-byte word of an OPD entry gives the address of the
354   // entry point of the function.  Relocatable object files have a
355   // relocation on this word.  The following vector records the
356   // section and offset specified by these relocations.
357   std::vector<Opd_ent> opd_ent_;
358
359   // References made to this object's .opd section when running
360   // gc_process_relocs for another object, before the opd_ent_ vector
361   // is valid for this object.
362   Access_from access_from_map_;
363
364   // Whether input section has a 14-bit branch reloc.
365   std::vector<bool> has14_;
366
367   // The stub table to use for a given input section.
368   std::vector<unsigned int> stub_table_index_;
369
370   // Header e_flags
371   elfcpp::Elf_Word e_flags_;
372
373   // ELF st_other field for local symbols.
374   std::vector<unsigned char> st_other_;
375 };
376
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382
383   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387   {
388     this->set_abiversion(0);
389   }
390
391   ~Powerpc_dynobj()
392   { }
393
394   // Call Sized_dynobj::do_read_symbols to read the symbols then
395   // read .opd from a dynamic object, filling in opd_ent_ vector,
396   void
397   do_read_symbols(Read_symbols_data*);
398
399   // The .opd section shndx.
400   unsigned int
401   opd_shndx() const
402   {
403     return this->opd_shndx_;
404   }
405
406   // The .opd section address.
407   Address
408   opd_address() const
409   {
410     return this->opd_address_;
411   }
412
413   // Init OPD entry arrays.
414   void
415   init_opd(size_t opd_size)
416   {
417     size_t count = this->opd_ent_ndx(opd_size);
418     this->opd_ent_.resize(count);
419   }
420
421   // Return section and offset of function entry for .opd + R_OFF.
422   unsigned int
423   get_opd_ent(Address r_off, Address* value = NULL) const
424   {
425     size_t ndx = this->opd_ent_ndx(r_off);
426     gold_assert(ndx < this->opd_ent_.size());
427     gold_assert(this->opd_ent_[ndx].shndx != 0);
428     if (value != NULL)
429       *value = this->opd_ent_[ndx].off;
430     return this->opd_ent_[ndx].shndx;
431   }
432
433   // Set section and offset of function entry for .opd + R_OFF.
434   void
435   set_opd_ent(Address r_off, unsigned int shndx, Address value)
436   {
437     size_t ndx = this->opd_ent_ndx(r_off);
438     gold_assert(ndx < this->opd_ent_.size());
439     this->opd_ent_[ndx].shndx = shndx;
440     this->opd_ent_[ndx].off = value;
441   }
442
443   int
444   abiversion() const
445   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446
447   // Set ABI version for input and output.
448   void
449   set_abiversion(int ver);
450
451 private:
452   // Used to specify extent of executable sections.
453   struct Sec_info
454   {
455     Sec_info(Address start_, Address len_, unsigned int shndx_)
456       : start(start_), len(len_), shndx(shndx_)
457     { }
458
459     bool
460     operator<(const Sec_info& that) const
461     { return this->start < that.start; }
462
463     Address start;
464     Address len;
465     unsigned int shndx;
466   };
467
468   struct Opd_ent
469   {
470     unsigned int shndx;
471     Address off;
472   };
473
474   // Return index into opd_ent_ array for .opd entry at OFF.
475   size_t
476   opd_ent_ndx(size_t off) const
477   { return off >> 4;}
478
479   // For 64-bit the .opd section shndx and address.
480   unsigned int opd_shndx_;
481   Address opd_address_;
482
483   // The first 8-byte word of an OPD entry gives the address of the
484   // entry point of the function.  Records the section and offset
485   // corresponding to the address.  Note that in dynamic objects,
486   // offset is *not* relative to the section.
487   std::vector<Opd_ent> opd_ent_;
488
489   // Header e_flags
490   elfcpp::Elf_Word e_flags_;
491 };
492
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496  public:
497   typedef
498     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501   static const Address invalid_address = static_cast<Address>(0) - 1;
502   // Offset of tp and dtp pointers from start of TLS block.
503   static const Address tp_offset = 0x7000;
504   static const Address dtp_offset = 0x8000;
505
506   Target_powerpc()
507     : Sized_target<size, big_endian>(&powerpc_info),
508       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510       tlsld_got_offset_(-1U),
511       stub_tables_(), branch_lookup_table_(), branch_info_(),
512       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513       stub_group_size_(0)
514   {
515   }
516
517   // Process the relocations to determine unreferenced sections for
518   // garbage collection.
519   void
520   gc_process_relocs(Symbol_table* symtab,
521                     Layout* layout,
522                     Sized_relobj_file<size, big_endian>* object,
523                     unsigned int data_shndx,
524                     unsigned int sh_type,
525                     const unsigned char* prelocs,
526                     size_t reloc_count,
527                     Output_section* output_section,
528                     bool needs_special_offset_handling,
529                     size_t local_symbol_count,
530                     const unsigned char* plocal_symbols);
531
532   // Scan the relocations to look for symbol adjustments.
533   void
534   scan_relocs(Symbol_table* symtab,
535               Layout* layout,
536               Sized_relobj_file<size, big_endian>* object,
537               unsigned int data_shndx,
538               unsigned int sh_type,
539               const unsigned char* prelocs,
540               size_t reloc_count,
541               Output_section* output_section,
542               bool needs_special_offset_handling,
543               size_t local_symbol_count,
544               const unsigned char* plocal_symbols);
545
546   // Map input .toc section to output .got section.
547   const char*
548   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549   {
550     if (size == 64 && strcmp(name, ".toc") == 0)
551       {
552         *plen = 4;
553         return ".got";
554       }
555     return NULL;
556   }
557
558   // Provide linker defined save/restore functions.
559   void
560   define_save_restore_funcs(Layout*, Symbol_table*);
561
562   // No stubs unless a final link.
563   bool
564   do_may_relax() const
565   { return !parameters->options().relocatable(); }
566
567   bool
568   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569
570   void
571   do_plt_fde_location(const Output_data*, unsigned char*,
572                       uint64_t*, off_t*) const;
573
574   // Stash info about branches, for stub generation.
575   void
576   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577               unsigned int data_shndx, Address r_offset,
578               unsigned int r_type, unsigned int r_sym, Address addend)
579   {
580     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581     this->branch_info_.push_back(info);
582     if (r_type == elfcpp::R_POWERPC_REL14
583         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585       ppc_object->set_has_14bit_branch(data_shndx);
586   }
587
588   void
589   do_define_standard_symbols(Symbol_table*, Layout*);
590
591   // Finalize the sections.
592   void
593   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594
595   // Return the value to use for a dynamic which requires special
596   // treatment.
597   uint64_t
598   do_dynsym_value(const Symbol*) const;
599
600   // Return the PLT address to use for a local symbol.
601   uint64_t
602   do_plt_address_for_local(const Relobj*, unsigned int) const;
603
604   // Return the PLT address to use for a global symbol.
605   uint64_t
606   do_plt_address_for_global(const Symbol*) const;
607
608   // Return the offset to use for the GOT_INDX'th got entry which is
609   // for a local tls symbol specified by OBJECT, SYMNDX.
610   int64_t
611   do_tls_offset_for_local(const Relobj* object,
612                           unsigned int symndx,
613                           unsigned int got_indx) const;
614
615   // Return the offset to use for the GOT_INDX'th got entry which is
616   // for global tls symbol GSYM.
617   int64_t
618   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619
620   void
621   do_function_location(Symbol_location*) const;
622
623   bool
624   do_can_check_for_function_pointers() const
625   { return true; }
626
627   // Relocate a section.
628   void
629   relocate_section(const Relocate_info<size, big_endian>*,
630                    unsigned int sh_type,
631                    const unsigned char* prelocs,
632                    size_t reloc_count,
633                    Output_section* output_section,
634                    bool needs_special_offset_handling,
635                    unsigned char* view,
636                    Address view_address,
637                    section_size_type view_size,
638                    const Reloc_symbol_changes*);
639
640   // Scan the relocs during a relocatable link.
641   void
642   scan_relocatable_relocs(Symbol_table* symtab,
643                           Layout* layout,
644                           Sized_relobj_file<size, big_endian>* object,
645                           unsigned int data_shndx,
646                           unsigned int sh_type,
647                           const unsigned char* prelocs,
648                           size_t reloc_count,
649                           Output_section* output_section,
650                           bool needs_special_offset_handling,
651                           size_t local_symbol_count,
652                           const unsigned char* plocal_symbols,
653                           Relocatable_relocs*);
654
655   // Emit relocations for a section.
656   void
657   relocate_relocs(const Relocate_info<size, big_endian>*,
658                   unsigned int sh_type,
659                   const unsigned char* prelocs,
660                   size_t reloc_count,
661                   Output_section* output_section,
662                   typename elfcpp::Elf_types<size>::Elf_Off
663                     offset_in_output_section,
664                   const Relocatable_relocs*,
665                   unsigned char*,
666                   Address view_address,
667                   section_size_type,
668                   unsigned char* reloc_view,
669                   section_size_type reloc_view_size);
670
671   // Return whether SYM is defined by the ABI.
672   bool
673   do_is_defined_by_abi(const Symbol* sym) const
674   {
675     return strcmp(sym->name(), "__tls_get_addr") == 0;
676   }
677
678   // Return the size of the GOT section.
679   section_size_type
680   got_size() const
681   {
682     gold_assert(this->got_ != NULL);
683     return this->got_->data_size();
684   }
685
686   // Get the PLT section.
687   const Output_data_plt_powerpc<size, big_endian>*
688   plt_section() const
689   {
690     gold_assert(this->plt_ != NULL);
691     return this->plt_;
692   }
693
694   // Get the IPLT section.
695   const Output_data_plt_powerpc<size, big_endian>*
696   iplt_section() const
697   {
698     gold_assert(this->iplt_ != NULL);
699     return this->iplt_;
700   }
701
702   // Get the .glink section.
703   const Output_data_glink<size, big_endian>*
704   glink_section() const
705   {
706     gold_assert(this->glink_ != NULL);
707     return this->glink_;
708   }
709
710   Output_data_glink<size, big_endian>*
711   glink_section()
712   {
713     gold_assert(this->glink_ != NULL);
714     return this->glink_;
715   }
716
717   bool has_glink() const
718   { return this->glink_ != NULL; }
719
720   // Get the GOT section.
721   const Output_data_got_powerpc<size, big_endian>*
722   got_section() const
723   {
724     gold_assert(this->got_ != NULL);
725     return this->got_;
726   }
727
728   // Get the GOT section, creating it if necessary.
729   Output_data_got_powerpc<size, big_endian>*
730   got_section(Symbol_table*, Layout*);
731
732   Object*
733   do_make_elf_object(const std::string&, Input_file*, off_t,
734                      const elfcpp::Ehdr<size, big_endian>&);
735
736   // Return the number of entries in the GOT.
737   unsigned int
738   got_entry_count() const
739   {
740     if (this->got_ == NULL)
741       return 0;
742     return this->got_size() / (size / 8);
743   }
744
745   // Return the number of entries in the PLT.
746   unsigned int
747   plt_entry_count() const;
748
749   // Return the offset of the first non-reserved PLT entry.
750   unsigned int
751   first_plt_entry_offset() const
752   {
753     if (size == 32)
754       return 0;
755     if (this->abiversion() >= 2)
756       return 16;
757     return 24;
758   }
759
760   // Return the size of each PLT entry.
761   unsigned int
762   plt_entry_size() const
763   {
764     if (size == 32)
765       return 4;
766     if (this->abiversion() >= 2)
767       return 8;
768     return 24;
769   }
770
771   // Add any special sections for this symbol to the gc work list.
772   // For powerpc64, this adds the code section of a function
773   // descriptor.
774   void
775   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
776
777   // Handle target specific gc actions when adding a gc reference from
778   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779   // and DST_OFF.  For powerpc64, this adds a referenc to the code
780   // section of a function descriptor.
781   void
782   do_gc_add_reference(Symbol_table* symtab,
783                       Object* src_obj,
784                       unsigned int src_shndx,
785                       Object* dst_obj,
786                       unsigned int dst_shndx,
787                       Address dst_off) const;
788
789   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
790   const Stub_tables&
791   stub_tables() const
792   { return this->stub_tables_; }
793
794   const Output_data_brlt_powerpc<size, big_endian>*
795   brlt_section() const
796   { return this->brlt_section_; }
797
798   void
799   add_branch_lookup_table(Address to)
800   {
801     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802     this->branch_lookup_table_.insert(std::make_pair(to, off));
803   }
804
805   Address
806   find_branch_lookup_table(Address to)
807   {
808     typename Branch_lookup_table::const_iterator p
809       = this->branch_lookup_table_.find(to);
810     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
811   }
812
813   void
814   write_branch_lookup_table(unsigned char *oview)
815   {
816     for (typename Branch_lookup_table::const_iterator p
817            = this->branch_lookup_table_.begin();
818          p != this->branch_lookup_table_.end();
819          ++p)
820       {
821         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
822       }
823   }
824
825   bool
826   plt_thread_safe() const
827   { return this->plt_thread_safe_; }
828
829   int
830   abiversion () const
831   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
832
833   void
834   set_abiversion (int ver)
835   {
836     elfcpp::Elf_Word flags = this->processor_specific_flags();
837     flags &= ~elfcpp::EF_PPC64_ABI;
838     flags |= ver & elfcpp::EF_PPC64_ABI;
839     this->set_processor_specific_flags(flags);
840   }
841
842   // Offset to to save stack slot
843   int
844   stk_toc () const
845   { return this->abiversion() < 2 ? 40 : 24; }
846
847  private:
848
849   class Track_tls
850   {
851   public:
852     enum Tls_get_addr
853     {
854       NOT_EXPECTED = 0,
855       EXPECTED = 1,
856       SKIP = 2,
857       NORMAL = 3
858     };
859
860     Track_tls()
861       : tls_get_addr_(NOT_EXPECTED),
862         relinfo_(NULL), relnum_(0), r_offset_(0)
863     { }
864
865     ~Track_tls()
866     {
867       if (this->tls_get_addr_ != NOT_EXPECTED)
868         this->missing();
869     }
870
871     void
872     missing(void)
873     {
874       if (this->relinfo_ != NULL)
875         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876                                _("missing expected __tls_get_addr call"));
877     }
878
879     void
880     expect_tls_get_addr_call(
881         const Relocate_info<size, big_endian>* relinfo,
882         size_t relnum,
883         Address r_offset)
884     {
885       this->tls_get_addr_ = EXPECTED;
886       this->relinfo_ = relinfo;
887       this->relnum_ = relnum;
888       this->r_offset_ = r_offset;
889     }
890
891     void
892     expect_tls_get_addr_call()
893     { this->tls_get_addr_ = EXPECTED; }
894
895     void
896     skip_next_tls_get_addr_call()
897     {this->tls_get_addr_ = SKIP; }
898
899     Tls_get_addr
900     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
901     {
902       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903                            || r_type == elfcpp::R_PPC_PLTREL24)
904                           && gsym != NULL
905                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
906       Tls_get_addr last_tls = this->tls_get_addr_;
907       this->tls_get_addr_ = NOT_EXPECTED;
908       if (is_tls_call && last_tls != EXPECTED)
909         return last_tls;
910       else if (!is_tls_call && last_tls != NOT_EXPECTED)
911         {
912           this->missing();
913           return EXPECTED;
914         }
915       return NORMAL;
916     }
917
918   private:
919     // What we're up to regarding calls to __tls_get_addr.
920     // On powerpc, the branch and link insn making a call to
921     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924     // The marker relocation always comes first, and has the same
925     // symbol as the reloc on the insn setting up the __tls_get_addr
926     // argument.  This ties the arg setup insn with the call insn,
927     // allowing ld to safely optimize away the call.  We check that
928     // every call to __tls_get_addr has a marker relocation, and that
929     // every marker relocation is on a call to __tls_get_addr.
930     Tls_get_addr tls_get_addr_;
931     // Info about the last reloc for error message.
932     const Relocate_info<size, big_endian>* relinfo_;
933     size_t relnum_;
934     Address r_offset_;
935   };
936
937   // The class which scans relocations.
938   class Scan : protected Track_tls
939   {
940   public:
941     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
942
943     Scan()
944       : Track_tls(), issued_non_pic_error_(false)
945     { }
946
947     static inline int
948     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
949
950     inline void
951     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952           Sized_relobj_file<size, big_endian>* object,
953           unsigned int data_shndx,
954           Output_section* output_section,
955           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956           const elfcpp::Sym<size, big_endian>& lsym,
957           bool is_discarded);
958
959     inline void
960     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961            Sized_relobj_file<size, big_endian>* object,
962            unsigned int data_shndx,
963            Output_section* output_section,
964            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
965            Symbol* gsym);
966
967     inline bool
968     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969                                         Target_powerpc* ,
970                                         Sized_relobj_file<size, big_endian>* relobj,
971                                         unsigned int ,
972                                         Output_section* ,
973                                         const elfcpp::Rela<size, big_endian>& ,
974                                         unsigned int r_type,
975                                         const elfcpp::Sym<size, big_endian>&)
976     {
977       // PowerPC64 .opd is not folded, so any identical function text
978       // may be folded and we'll still keep function addresses distinct.
979       // That means no reloc is of concern here.
980       if (size == 64)
981         {
982           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983             <Powerpc_relobj<size, big_endian>*>(relobj);
984           if (ppcobj->abiversion() == 1)
985             return false;
986         }
987       // For 32-bit and ELFv2, conservatively assume anything but calls to
988       // function code might be taking the address of the function.
989       return !is_branch_reloc(r_type);
990     }
991
992     inline bool
993     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
994                                          Target_powerpc* ,
995                                          Sized_relobj_file<size, big_endian>* relobj,
996                                          unsigned int ,
997                                          Output_section* ,
998                                          const elfcpp::Rela<size, big_endian>& ,
999                                          unsigned int r_type,
1000                                          Symbol*)
1001     {
1002       // As above.
1003       if (size == 64)
1004         {
1005           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006             <Powerpc_relobj<size, big_endian>*>(relobj);
1007           if (ppcobj->abiversion() == 1)
1008             return false;
1009         }
1010       return !is_branch_reloc(r_type);
1011     }
1012
1013     static bool
1014     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015                               Sized_relobj_file<size, big_endian>* object,
1016                               unsigned int r_type, bool report_err);
1017
1018   private:
1019     static void
1020     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021                             unsigned int r_type);
1022
1023     static void
1024     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025                              unsigned int r_type, Symbol*);
1026
1027     static void
1028     generate_tls_call(Symbol_table* symtab, Layout* layout,
1029                       Target_powerpc* target);
1030
1031     void
1032     check_non_pic(Relobj*, unsigned int r_type);
1033
1034     // Whether we have issued an error about a non-PIC compilation.
1035     bool issued_non_pic_error_;
1036   };
1037
1038   bool
1039   symval_for_branch(const Symbol_table* symtab,
1040                     const Sized_symbol<size>* gsym,
1041                     Powerpc_relobj<size, big_endian>* object,
1042                     Address *value, unsigned int *dest_shndx);
1043
1044   // The class which implements relocation.
1045   class Relocate : protected Track_tls
1046   {
1047    public:
1048     // Use 'at' branch hints when true, 'y' when false.
1049     // FIXME maybe: set this with an option.
1050     static const bool is_isa_v2 = true;
1051
1052     Relocate()
1053       : Track_tls()
1054     { }
1055
1056     // Do a relocation.  Return false if the caller should not issue
1057     // any warnings about this relocation.
1058     inline bool
1059     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060              Output_section*, size_t relnum,
1061              const elfcpp::Rela<size, big_endian>&,
1062              unsigned int r_type, const Sized_symbol<size>*,
1063              const Symbol_value<size>*,
1064              unsigned char*,
1065              typename elfcpp::Elf_types<size>::Elf_Addr,
1066              section_size_type);
1067   };
1068
1069   class Relocate_comdat_behavior
1070   {
1071    public:
1072     // Decide what the linker should do for relocations that refer to
1073     // discarded comdat sections.
1074     inline Comdat_behavior
1075     get(const char* name)
1076     {
1077       gold::Default_comdat_behavior default_behavior;
1078       Comdat_behavior ret = default_behavior.get(name);
1079       if (ret == CB_WARNING)
1080         {
1081           if (size == 32
1082               && (strcmp(name, ".fixup") == 0
1083                   || strcmp(name, ".got2") == 0))
1084             ret = CB_IGNORE;
1085           if (size == 64
1086               && (strcmp(name, ".opd") == 0
1087                   || strcmp(name, ".toc") == 0
1088                   || strcmp(name, ".toc1") == 0))
1089             ret = CB_IGNORE;
1090         }
1091       return ret;
1092     }
1093   };
1094
1095   // A class which returns the size required for a relocation type,
1096   // used while scanning relocs during a relocatable link.
1097   class Relocatable_size_for_reloc
1098   {
1099    public:
1100     unsigned int
1101     get_size_for_reloc(unsigned int, Relobj*)
1102     {
1103       gold_unreachable();
1104       return 0;
1105     }
1106   };
1107
1108   // Optimize the TLS relocation type based on what we know about the
1109   // symbol.  IS_FINAL is true if the final address of this symbol is
1110   // known at link time.
1111
1112   tls::Tls_optimization
1113   optimize_tls_gd(bool is_final)
1114   {
1115     // If we are generating a shared library, then we can't do anything
1116     // in the linker.
1117     if (parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     if (!is_final)
1121       return tls::TLSOPT_TO_IE;
1122     return tls::TLSOPT_TO_LE;
1123   }
1124
1125   tls::Tls_optimization
1126   optimize_tls_ld()
1127   {
1128     if (parameters->options().shared())
1129       return tls::TLSOPT_NONE;
1130
1131     return tls::TLSOPT_TO_LE;
1132   }
1133
1134   tls::Tls_optimization
1135   optimize_tls_ie(bool is_final)
1136   {
1137     if (!is_final || parameters->options().shared())
1138       return tls::TLSOPT_NONE;
1139
1140     return tls::TLSOPT_TO_LE;
1141   }
1142
1143   // Create glink.
1144   void
1145   make_glink_section(Layout*);
1146
1147   // Create the PLT section.
1148   void
1149   make_plt_section(Symbol_table*, Layout*);
1150
1151   void
1152   make_iplt_section(Symbol_table*, Layout*);
1153
1154   void
1155   make_brlt_section(Layout*);
1156
1157   // Create a PLT entry for a global symbol.
1158   void
1159   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1160
1161   // Create a PLT entry for a local IFUNC symbol.
1162   void
1163   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164                              Sized_relobj_file<size, big_endian>*,
1165                              unsigned int);
1166
1167
1168   // Create a GOT entry for local dynamic __tls_get_addr.
1169   unsigned int
1170   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171                    Sized_relobj_file<size, big_endian>* object);
1172
1173   unsigned int
1174   tlsld_got_offset() const
1175   {
1176     return this->tlsld_got_offset_;
1177   }
1178
1179   // Get the dynamic reloc section, creating it if necessary.
1180   Reloc_section*
1181   rela_dyn_section(Layout*);
1182
1183   // Similarly, but for ifunc symbols get the one for ifunc.
1184   Reloc_section*
1185   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1186
1187   // Copy a relocation against a global symbol.
1188   void
1189   copy_reloc(Symbol_table* symtab, Layout* layout,
1190              Sized_relobj_file<size, big_endian>* object,
1191              unsigned int shndx, Output_section* output_section,
1192              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1193   {
1194     this->copy_relocs_.copy_reloc(symtab, layout,
1195                                   symtab->get_sized_symbol<size>(sym),
1196                                   object, shndx, output_section,
1197                                   reloc, this->rela_dyn_section(layout));
1198   }
1199
1200   // Look over all the input sections, deciding where to place stubs.
1201   void
1202   group_sections(Layout*, const Task*, bool);
1203
1204   // Sort output sections by address.
1205   struct Sort_sections
1206   {
1207     bool
1208     operator()(const Output_section* sec1, const Output_section* sec2)
1209     { return sec1->address() < sec2->address(); }
1210   };
1211
1212   class Branch_info
1213   {
1214    public:
1215     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216                 unsigned int data_shndx,
1217                 Address r_offset,
1218                 unsigned int r_type,
1219                 unsigned int r_sym,
1220                 Address addend)
1221       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1223     { }
1224
1225     ~Branch_info()
1226     { }
1227
1228     // If this branch needs a plt call stub, or a long branch stub, make one.
1229     bool
1230     make_stub(Stub_table<size, big_endian>*,
1231               Stub_table<size, big_endian>*,
1232               Symbol_table*) const;
1233
1234    private:
1235     // The branch location..
1236     Powerpc_relobj<size, big_endian>* object_;
1237     unsigned int shndx_;
1238     Address offset_;
1239     // ..and the branch type and destination.
1240     unsigned int r_type_;
1241     unsigned int r_sym_;
1242     Address addend_;
1243   };
1244
1245   // Information about this specific target which we pass to the
1246   // general Target structure.
1247   static Target::Target_info powerpc_info;
1248
1249   // The types of GOT entries needed for this platform.
1250   // These values are exposed to the ABI in an incremental link.
1251   // Do not renumber existing values without changing the version
1252   // number of the .gnu_incremental_inputs section.
1253   enum Got_type
1254   {
1255     GOT_TYPE_STANDARD,
1256     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1257     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1258     GOT_TYPE_TPREL      // entry for @got@tprel
1259   };
1260
1261   // The GOT section.
1262   Output_data_got_powerpc<size, big_endian>* got_;
1263   // The PLT section.  This is a container for a table of addresses,
1264   // and their relocations.  Each address in the PLT has a dynamic
1265   // relocation (R_*_JMP_SLOT) and each address will have a
1266   // corresponding entry in .glink for lazy resolution of the PLT.
1267   // ppc32 initialises the PLT to point at the .glink entry, while
1268   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1269   // linker adds a stub that loads the PLT entry into ctr then
1270   // branches to ctr.  There may be more than one stub for each PLT
1271   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1272   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273   Output_data_plt_powerpc<size, big_endian>* plt_;
1274   // The IPLT section.  Like plt_, this is a container for a table of
1275   // addresses and their relocations, specifically for STT_GNU_IFUNC
1276   // functions that resolve locally (STT_GNU_IFUNC functions that
1277   // don't resolve locally go in PLT).  Unlike plt_, these have no
1278   // entry in .glink for lazy resolution, and the relocation section
1279   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1280   // the relocation section may contain relocations against
1281   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1282   // relocation section will appear at the end of other dynamic
1283   // relocations, so that ld.so applies these relocations after other
1284   // dynamic relocations.  In a static executable, the relocation
1285   // section is emitted and marked with __rela_iplt_start and
1286   // __rela_iplt_end symbols.
1287   Output_data_plt_powerpc<size, big_endian>* iplt_;
1288   // Section holding long branch destinations.
1289   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290   // The .glink section.
1291   Output_data_glink<size, big_endian>* glink_;
1292   // The dynamic reloc section.
1293   Reloc_section* rela_dyn_;
1294   // Relocs saved to avoid a COPY reloc.
1295   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297   unsigned int tlsld_got_offset_;
1298
1299   Stub_tables stub_tables_;
1300   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301   Branch_lookup_table branch_lookup_table_;
1302
1303   typedef std::vector<Branch_info> Branches;
1304   Branches branch_info_;
1305
1306   bool plt_thread_safe_;
1307
1308   bool relax_failed_;
1309   int relax_fail_count_;
1310   int32_t stub_group_size_;
1311 };
1312
1313 template<>
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1315 {
1316   32,                   // size
1317   true,                 // is_big_endian
1318   elfcpp::EM_PPC,       // machine_code
1319   false,                // has_make_symbol
1320   false,                // has_resolve
1321   false,                // has_code_fill
1322   true,                 // is_default_stack_executable
1323   false,                // can_icf_inline_merge_sections
1324   '\0',                 // wrap_char
1325   "/usr/lib/ld.so.1",   // dynamic_linker
1326   0x10000000,           // default_text_segment_address
1327   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1328   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1329   false,                // isolate_execinstr
1330   0,                    // rosegment_gap
1331   elfcpp::SHN_UNDEF,    // small_common_shndx
1332   elfcpp::SHN_UNDEF,    // large_common_shndx
1333   0,                    // small_common_section_flags
1334   0,                    // large_common_section_flags
1335   NULL,                 // attributes_section
1336   NULL,                 // attributes_vendor
1337   "_start"              // entry_symbol_name
1338 };
1339
1340 template<>
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1342 {
1343   32,                   // size
1344   false,                // is_big_endian
1345   elfcpp::EM_PPC,       // machine_code
1346   false,                // has_make_symbol
1347   false,                // has_resolve
1348   false,                // has_code_fill
1349   true,                 // is_default_stack_executable
1350   false,                // can_icf_inline_merge_sections
1351   '\0',                 // wrap_char
1352   "/usr/lib/ld.so.1",   // dynamic_linker
1353   0x10000000,           // default_text_segment_address
1354   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1355   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1356   false,                // isolate_execinstr
1357   0,                    // rosegment_gap
1358   elfcpp::SHN_UNDEF,    // small_common_shndx
1359   elfcpp::SHN_UNDEF,    // large_common_shndx
1360   0,                    // small_common_section_flags
1361   0,                    // large_common_section_flags
1362   NULL,                 // attributes_section
1363   NULL,                 // attributes_vendor
1364   "_start"              // entry_symbol_name
1365 };
1366
1367 template<>
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1369 {
1370   64,                   // size
1371   true,                 // is_big_endian
1372   elfcpp::EM_PPC64,     // machine_code
1373   false,                // has_make_symbol
1374   false,                // has_resolve
1375   false,                // has_code_fill
1376   true,                 // is_default_stack_executable
1377   false,                // can_icf_inline_merge_sections
1378   '\0',                 // wrap_char
1379   "/usr/lib/ld.so.1",   // dynamic_linker
1380   0x10000000,           // default_text_segment_address
1381   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1382   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1383   false,                // isolate_execinstr
1384   0,                    // rosegment_gap
1385   elfcpp::SHN_UNDEF,    // small_common_shndx
1386   elfcpp::SHN_UNDEF,    // large_common_shndx
1387   0,                    // small_common_section_flags
1388   0,                    // large_common_section_flags
1389   NULL,                 // attributes_section
1390   NULL,                 // attributes_vendor
1391   "_start"              // entry_symbol_name
1392 };
1393
1394 template<>
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1396 {
1397   64,                   // size
1398   false,                // is_big_endian
1399   elfcpp::EM_PPC64,     // machine_code
1400   false,                // has_make_symbol
1401   false,                // has_resolve
1402   false,                // has_code_fill
1403   true,                 // is_default_stack_executable
1404   false,                // can_icf_inline_merge_sections
1405   '\0',                 // wrap_char
1406   "/usr/lib/ld.so.1",   // dynamic_linker
1407   0x10000000,           // default_text_segment_address
1408   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1409   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1410   false,                // isolate_execinstr
1411   0,                    // rosegment_gap
1412   elfcpp::SHN_UNDEF,    // small_common_shndx
1413   elfcpp::SHN_UNDEF,    // large_common_shndx
1414   0,                    // small_common_section_flags
1415   0,                    // large_common_section_flags
1416   NULL,                 // attributes_section
1417   NULL,                 // attributes_vendor
1418   "_start"              // entry_symbol_name
1419 };
1420
1421 inline bool
1422 is_branch_reloc(unsigned int r_type)
1423 {
1424   return (r_type == elfcpp::R_POWERPC_REL24
1425           || r_type == elfcpp::R_PPC_PLTREL24
1426           || r_type == elfcpp::R_PPC_LOCAL24PC
1427           || r_type == elfcpp::R_POWERPC_REL14
1428           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430           || r_type == elfcpp::R_POWERPC_ADDR24
1431           || r_type == elfcpp::R_POWERPC_ADDR14
1432           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1434 }
1435
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0.  If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1439 uint32_t
1440 at_tls_transform(uint32_t insn, unsigned int reg)
1441 {
1442   if ((insn & (0x3f << 26)) != 31 << 26)
1443     return 0;
1444
1445   unsigned int rtra;
1446   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447     rtra = insn & ((1 << 26) - (1 << 16));
1448   else if (((insn >> 16) & 0x1f) == reg)
1449     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1450   else
1451     return 0;
1452
1453   if ((insn & (0x3ff << 1)) == 266 << 1)
1454     // add -> addi
1455     insn = 14 << 26;
1456   else if ((insn & (0x1f << 1)) == 23 << 1
1457            && ((insn & (0x1f << 6)) < 14 << 6
1458                || ((insn & (0x1f << 6)) >= 16 << 6
1459                    && (insn & (0x1f << 6)) < 24 << 6)))
1460     // load and store indexed -> dform
1461     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1466     // lwax -> lwa
1467     insn = (58 << 26) | 2;
1468   else
1469     return 0;
1470   insn |= rtra;
1471   return insn;
1472 }
1473
1474
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1477 {
1478 public:
1479   enum Overflow_check
1480   {
1481     CHECK_NONE,
1482     CHECK_SIGNED,
1483     CHECK_UNSIGNED,
1484     CHECK_BITFIELD,
1485     CHECK_LOW_INSN,
1486     CHECK_HIGH_INSN
1487   };
1488
1489   enum Status
1490   {
1491     STATUS_OK,
1492     STATUS_OVERFLOW
1493   };
1494
1495 private:
1496   typedef Powerpc_relocate_functions<size, big_endian> This;
1497   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1498
1499   template<int valsize>
1500   static inline bool
1501   has_overflow_signed(Address value)
1502   {
1503     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505     limit <<= ((valsize - 1) >> 1);
1506     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507     return value + limit > (limit << 1) - 1;
1508   }
1509
1510   template<int valsize>
1511   static inline bool
1512   has_overflow_unsigned(Address value)
1513   {
1514     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515     limit <<= ((valsize - 1) >> 1);
1516     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517     return value > (limit << 1) - 1;
1518   }
1519
1520   template<int valsize>
1521   static inline bool
1522   has_overflow_bitfield(Address value)
1523   {
1524     return (has_overflow_unsigned<valsize>(value)
1525             && has_overflow_signed<valsize>(value));
1526   }
1527
1528   template<int valsize>
1529   static inline Status
1530   overflowed(Address value, Overflow_check overflow)
1531   {
1532     if (overflow == CHECK_SIGNED)
1533       {
1534         if (has_overflow_signed<valsize>(value))
1535           return STATUS_OVERFLOW;
1536       }
1537     else if (overflow == CHECK_UNSIGNED)
1538       {
1539         if (has_overflow_unsigned<valsize>(value))
1540           return STATUS_OVERFLOW;
1541       }
1542     else if (overflow == CHECK_BITFIELD)
1543       {
1544         if (has_overflow_bitfield<valsize>(value))
1545           return STATUS_OVERFLOW;
1546       }
1547     return STATUS_OK;
1548   }
1549
1550   // Do a simple RELA relocation
1551   template<int fieldsize, int valsize>
1552   static inline Status
1553   rela(unsigned char* view, Address value, Overflow_check overflow)
1554   {
1555     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556     Valtype* wv = reinterpret_cast<Valtype*>(view);
1557     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558     return overflowed<valsize>(value, overflow);
1559   }
1560
1561   template<int fieldsize, int valsize>
1562   static inline Status
1563   rela(unsigned char* view,
1564        unsigned int right_shift,
1565        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1566        Address value,
1567        Overflow_check overflow)
1568   {
1569     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570     Valtype* wv = reinterpret_cast<Valtype*>(view);
1571     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572     Valtype reloc = value >> right_shift;
1573     val &= ~dst_mask;
1574     reloc &= dst_mask;
1575     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576     return overflowed<valsize>(value >> right_shift, overflow);
1577   }
1578
1579   // Do a simple RELA relocation, unaligned.
1580   template<int fieldsize, int valsize>
1581   static inline Status
1582   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1583   {
1584     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585     return overflowed<valsize>(value, overflow);
1586   }
1587
1588   template<int fieldsize, int valsize>
1589   static inline Status
1590   rela_ua(unsigned char* view,
1591           unsigned int right_shift,
1592           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1593           Address value,
1594           Overflow_check overflow)
1595   {
1596     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1597       Valtype;
1598     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599     Valtype reloc = value >> right_shift;
1600     val &= ~dst_mask;
1601     reloc &= dst_mask;
1602     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603     return overflowed<valsize>(value >> right_shift, overflow);
1604   }
1605
1606 public:
1607   // R_PPC64_ADDR64: (Symbol + Addend)
1608   static inline void
1609   addr64(unsigned char* view, Address value)
1610   { This::template rela<64,64>(view, value, CHECK_NONE); }
1611
1612   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1613   static inline void
1614   addr64_u(unsigned char* view, Address value)
1615   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1616
1617   // R_POWERPC_ADDR32: (Symbol + Addend)
1618   static inline Status
1619   addr32(unsigned char* view, Address value, Overflow_check overflow)
1620   { return This::template rela<32,32>(view, value, overflow); }
1621
1622   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623   static inline Status
1624   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625   { return This::template rela_ua<32,32>(view, value, overflow); }
1626
1627   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628   static inline Status
1629   addr24(unsigned char* view, Address value, Overflow_check overflow)
1630   {
1631     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1632                                              value, overflow);
1633     if (overflow != CHECK_NONE && (value & 3) != 0)
1634       stat = STATUS_OVERFLOW;
1635     return stat;
1636   }
1637
1638   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639   static inline Status
1640   addr16(unsigned char* view, Address value, Overflow_check overflow)
1641   { return This::template rela<16,16>(view, value, overflow); }
1642
1643   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644   static inline Status
1645   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646   { return This::template rela_ua<16,16>(view, value, overflow); }
1647
1648   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649   static inline Status
1650   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1651   {
1652     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653     if (overflow != CHECK_NONE && (value & 3) != 0)
1654       stat = STATUS_OVERFLOW;
1655     return stat;
1656   }
1657
1658   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1659   static inline void
1660   addr16_hi(unsigned char* view, Address value)
1661   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1662
1663   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1664   static inline void
1665   addr16_ha(unsigned char* view, Address value)
1666   { This::addr16_hi(view, value + 0x8000); }
1667
1668   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1669   static inline void
1670   addr16_hi2(unsigned char* view, Address value)
1671   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1672
1673   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1674   static inline void
1675   addr16_ha2(unsigned char* view, Address value)
1676   { This::addr16_hi2(view, value + 0x8000); }
1677
1678   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1679   static inline void
1680   addr16_hi3(unsigned char* view, Address value)
1681   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1682
1683   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1684   static inline void
1685   addr16_ha3(unsigned char* view, Address value)
1686   { This::addr16_hi3(view, value + 0x8000); }
1687
1688   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689   static inline Status
1690   addr14(unsigned char* view, Address value, Overflow_check overflow)
1691   {
1692     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693     if (overflow != CHECK_NONE && (value & 3) != 0)
1694       stat = STATUS_OVERFLOW;
1695     return stat;
1696   }
1697 };
1698
1699 // Set ABI version for input and output.
1700
1701 template<int size, bool big_endian>
1702 void
1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1704 {
1705   this->e_flags_ |= ver;
1706   if (this->abiversion() != 0)
1707     {
1708       Target_powerpc<size, big_endian>* target =
1709         static_cast<Target_powerpc<size, big_endian>*>(
1710            parameters->sized_target<size, big_endian>());
1711       if (target->abiversion() == 0)
1712         target->set_abiversion(this->abiversion());
1713       else if (target->abiversion() != this->abiversion())
1714         gold_error(_("%s: ABI version %d is not compatible "
1715                      "with ABI version %d output"),
1716                    this->name().c_str(),
1717                    this->abiversion(), target->abiversion());
1718
1719     }
1720 }
1721
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1724
1725 template<int size, bool big_endian>
1726 bool
1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728     Read_symbols_data* sd)
1729 {
1730   const unsigned char* const pshdrs = sd->section_headers->data();
1731   const unsigned char* namesu = sd->section_names->data();
1732   const char* names = reinterpret_cast<const char*>(namesu);
1733   section_size_type names_size = sd->section_names_size;
1734   const unsigned char* s;
1735
1736   s = this->template find_shdr<size, big_endian>(pshdrs,
1737                                                  size == 32 ? ".got2" : ".opd",
1738                                                  names, names_size, NULL);
1739   if (s != NULL)
1740     {
1741       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742       this->special_ = ndx;
1743       if (size == 64)
1744         {
1745           if (this->abiversion() == 0)
1746             this->set_abiversion(1);
1747           else if (this->abiversion() > 1)
1748             gold_error(_("%s: .opd invalid in abiv%d"),
1749                        this->name().c_str(), this->abiversion());
1750         }
1751     }
1752   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1753 }
1754
1755 // Examine .rela.opd to build info about function entry points.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1760     size_t reloc_count,
1761     const unsigned char* prelocs,
1762     const unsigned char* plocal_syms)
1763 {
1764   if (size == 64)
1765     {
1766       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1767         Reltype;
1768       const int reloc_size
1769         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771       Address expected_off = 0;
1772       bool regular = true;
1773       unsigned int opd_ent_size = 0;
1774
1775       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1776         {
1777           Reltype reloc(prelocs);
1778           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779             = reloc.get_r_info();
1780           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781           if (r_type == elfcpp::R_PPC64_ADDR64)
1782             {
1783               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784               typename elfcpp::Elf_types<size>::Elf_Addr value;
1785               bool is_ordinary;
1786               unsigned int shndx;
1787               if (r_sym < this->local_symbol_count())
1788                 {
1789                   typename elfcpp::Sym<size, big_endian>
1790                     lsym(plocal_syms + r_sym * sym_size);
1791                   shndx = lsym.get_st_shndx();
1792                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793                   value = lsym.get_st_value();
1794                 }
1795               else
1796                 shndx = this->symbol_section_and_value(r_sym, &value,
1797                                                        &is_ordinary);
1798               this->set_opd_ent(reloc.get_r_offset(), shndx,
1799                                 value + reloc.get_r_addend());
1800               if (i == 2)
1801                 {
1802                   expected_off = reloc.get_r_offset();
1803                   opd_ent_size = expected_off;
1804                 }
1805               else if (expected_off != reloc.get_r_offset())
1806                 regular = false;
1807               expected_off += opd_ent_size;
1808             }
1809           else if (r_type == elfcpp::R_PPC64_TOC)
1810             {
1811               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1812                 regular = false;
1813             }
1814           else
1815             {
1816               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817                            this->name().c_str(), r_type);
1818               regular = false;
1819             }
1820         }
1821       if (reloc_count <= 2)
1822         opd_ent_size = this->section_size(this->opd_shndx());
1823       if (opd_ent_size != 24 && opd_ent_size != 16)
1824         regular = false;
1825       if (!regular)
1826         {
1827           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828                        this->name().c_str());
1829           opd_ent_size = 0;
1830         }
1831     }
1832 }
1833
1834 template<int size, bool big_endian>
1835 void
1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1837 {
1838   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1839   if (size == 64)
1840     {
1841       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842            p != rd->relocs.end();
1843            ++p)
1844         {
1845           if (p->data_shndx == this->opd_shndx())
1846             {
1847               uint64_t opd_size = this->section_size(this->opd_shndx());
1848               gold_assert(opd_size == static_cast<size_t>(opd_size));
1849               if (opd_size != 0)
1850                 {
1851                   this->init_opd(opd_size);
1852                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853                                         rd->local_symbols->data());
1854                 }
1855               break;
1856             }
1857         }
1858     }
1859 }
1860
1861 // Read the symbols then set up st_other vector.
1862
1863 template<int size, bool big_endian>
1864 void
1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1866 {
1867   this->base_read_symbols(sd);
1868   if (size == 64)
1869     {
1870       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871       const unsigned char* const pshdrs = sd->section_headers->data();
1872       const unsigned int loccount = this->do_local_symbol_count();
1873       if (loccount != 0)
1874         {
1875           this->st_other_.resize(loccount);
1876           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877           off_t locsize = loccount * sym_size;
1878           const unsigned int symtab_shndx = this->symtab_shndx();
1879           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882                                                       locsize, true, false);
1883           psyms += sym_size;
1884           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1885             {
1886               elfcpp::Sym<size, big_endian> sym(psyms);
1887               unsigned char st_other = sym.get_st_other();
1888               this->st_other_[i] = st_other;
1889               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1890                 {
1891                   if (this->abiversion() == 0)
1892                     this->set_abiversion(2);
1893                   else if (this->abiversion() < 2)
1894                     gold_error(_("%s: local symbol %d has invalid st_other"
1895                                  " for ABI version 1"),
1896                                this->name().c_str(), i);
1897                 }
1898             }
1899         }
1900     }
1901 }
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1906 {
1907   this->e_flags_ |= ver;
1908   if (this->abiversion() != 0)
1909     {
1910       Target_powerpc<size, big_endian>* target =
1911         static_cast<Target_powerpc<size, big_endian>*>(
1912           parameters->sized_target<size, big_endian>());
1913       if (target->abiversion() == 0)
1914         target->set_abiversion(this->abiversion());
1915       else if (target->abiversion() != this->abiversion())
1916         gold_error(_("%s: ABI version %d is not compatible "
1917                      "with ABI version %d output"),
1918                    this->name().c_str(),
1919                    this->abiversion(), target->abiversion());
1920
1921     }
1922 }
1923
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1926
1927 template<int size, bool big_endian>
1928 void
1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1930 {
1931   this->base_read_symbols(sd);
1932   if (size == 64)
1933     {
1934       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935       const unsigned char* const pshdrs = sd->section_headers->data();
1936       const unsigned char* namesu = sd->section_names->data();
1937       const char* names = reinterpret_cast<const char*>(namesu);
1938       const unsigned char* s = NULL;
1939       const unsigned char* opd;
1940       section_size_type opd_size;
1941
1942       // Find and read .opd section.
1943       while (1)
1944         {
1945           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946                                                          sd->section_names_size,
1947                                                          s);
1948           if (s == NULL)
1949             return;
1950
1951           typename elfcpp::Shdr<size, big_endian> shdr(s);
1952           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1954             {
1955               if (this->abiversion() == 0)
1956                 this->set_abiversion(1);
1957               else if (this->abiversion() > 1)
1958                 gold_error(_("%s: .opd invalid in abiv%d"),
1959                            this->name().c_str(), this->abiversion());
1960
1961               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962               this->opd_address_ = shdr.get_sh_addr();
1963               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1965                                    true, false);
1966               break;
1967             }
1968         }
1969
1970       // Build set of executable sections.
1971       // Using a set is probably overkill.  There is likely to be only
1972       // a few executable sections, typically .init, .text and .fini,
1973       // and they are generally grouped together.
1974       typedef std::set<Sec_info> Exec_sections;
1975       Exec_sections exec_sections;
1976       s = pshdrs;
1977       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1978         {
1979           typename elfcpp::Shdr<size, big_endian> shdr(s);
1980           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981               && ((shdr.get_sh_flags()
1982                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984               && shdr.get_sh_size() != 0)
1985             {
1986               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987                                             shdr.get_sh_size(), i));
1988             }
1989         }
1990       if (exec_sections.empty())
1991         return;
1992
1993       // Look over the OPD entries.  This is complicated by the fact
1994       // that some binaries will use two-word entries while others
1995       // will use the standard three-word entries.  In most cases
1996       // the third word (the environment pointer for languages like
1997       // Pascal) is unused and will be zero.  If the third word is
1998       // used it should not be pointing into executable sections,
1999       // I think.
2000       this->init_opd(opd_size);
2001       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2002         {
2003           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2006           if (val == 0)
2007             // Chances are that this is the third word of an OPD entry.
2008             continue;
2009           typename Exec_sections::const_iterator e
2010             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011           if (e != exec_sections.begin())
2012             {
2013               --e;
2014               if (e->start <= val && val < e->start + e->len)
2015                 {
2016                   // We have an address in an executable section.
2017                   // VAL ought to be the function entry, set it up.
2018                   this->set_opd_ent(p - opd, e->shndx, val);
2019                   // Skip second word of OPD entry, the TOC pointer.
2020                   p += 8;
2021                 }
2022             }
2023           // If we didn't match any executable sections, we likely
2024           // have a non-zero third word in the OPD entry.
2025         }
2026     }
2027 }
2028
2029 // Set up some symbols.
2030
2031 template<int size, bool big_endian>
2032 void
2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034     Symbol_table* symtab,
2035     Layout* layout)
2036 {
2037   if (size == 32)
2038     {
2039       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040       // undefined when scanning relocs (and thus requires
2041       // non-relative dynamic relocs).  The proper value will be
2042       // updated later.
2043       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044       if (gotsym != NULL && gotsym->is_undefined())
2045         {
2046           Target_powerpc<size, big_endian>* target =
2047             static_cast<Target_powerpc<size, big_endian>*>(
2048                 parameters->sized_target<size, big_endian>());
2049           Output_data_got_powerpc<size, big_endian>* got
2050             = target->got_section(symtab, layout);
2051           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052                                         Symbol_table::PREDEFINED,
2053                                         got, 0, 0,
2054                                         elfcpp::STT_OBJECT,
2055                                         elfcpp::STB_LOCAL,
2056                                         elfcpp::STV_HIDDEN, 0,
2057                                         false, false);
2058         }
2059
2060       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062       if (sdasym != NULL && sdasym->is_undefined())
2063         {
2064           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2065           Output_section* os
2066             = layout->add_output_section_data(".sdata", 0,
2067                                               elfcpp::SHF_ALLOC
2068                                               | elfcpp::SHF_WRITE,
2069                                               sdata, ORDER_SMALL_DATA, false);
2070           symtab->define_in_output_data("_SDA_BASE_", NULL,
2071                                         Symbol_table::PREDEFINED,
2072                                         os, 32768, 0, elfcpp::STT_OBJECT,
2073                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2074                                         0, false, false);
2075         }
2076     }
2077   else
2078     {
2079       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081       if (gotsym != NULL && gotsym->is_undefined())
2082         {
2083           Target_powerpc<size, big_endian>* target =
2084             static_cast<Target_powerpc<size, big_endian>*>(
2085                 parameters->sized_target<size, big_endian>());
2086           Output_data_got_powerpc<size, big_endian>* got
2087             = target->got_section(symtab, layout);
2088           symtab->define_in_output_data(".TOC.", NULL,
2089                                         Symbol_table::PREDEFINED,
2090                                         got, 0x8000, 0,
2091                                         elfcpp::STT_OBJECT,
2092                                         elfcpp::STB_LOCAL,
2093                                         elfcpp::STV_HIDDEN, 0,
2094                                         false, false);
2095         }
2096     }
2097 }
2098
2099 // Set up PowerPC target specific relobj.
2100
2101 template<int size, bool big_endian>
2102 Object*
2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104     const std::string& name,
2105     Input_file* input_file,
2106     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2107 {
2108   int et = ehdr.get_e_type();
2109   // ET_EXEC files are valid input for --just-symbols/-R,
2110   // and we treat them as relocatable objects.
2111   if (et == elfcpp::ET_REL
2112       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2113     {
2114       Powerpc_relobj<size, big_endian>* obj =
2115         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2116       obj->setup();
2117       return obj;
2118     }
2119   else if (et == elfcpp::ET_DYN)
2120     {
2121       Powerpc_dynobj<size, big_endian>* obj =
2122         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2123       obj->setup();
2124       return obj;
2125     }
2126   else
2127     {
2128       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2129       return NULL;
2130     }
2131 }
2132
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2135 {
2136 public:
2137   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2139
2140   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141     : Output_data_got<size, big_endian>(),
2142       symtab_(symtab), layout_(layout),
2143       header_ent_cnt_(size == 32 ? 3 : 1),
2144       header_index_(size == 32 ? 0x2000 : 0)
2145   { }
2146
2147   // Override all the Output_data_got methods we use so as to first call
2148   // reserve_ent().
2149   bool
2150   add_global(Symbol* gsym, unsigned int got_type)
2151   {
2152     this->reserve_ent();
2153     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2154   }
2155
2156   bool
2157   add_global_plt(Symbol* gsym, unsigned int got_type)
2158   {
2159     this->reserve_ent();
2160     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2161   }
2162
2163   bool
2164   add_global_tls(Symbol* gsym, unsigned int got_type)
2165   { return this->add_global_plt(gsym, got_type); }
2166
2167   void
2168   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2170   {
2171     this->reserve_ent();
2172     Output_data_got<size, big_endian>::
2173       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2174   }
2175
2176   void
2177   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178                            Output_data_reloc_generic* rel_dyn,
2179                            unsigned int r_type_1, unsigned int r_type_2)
2180   {
2181     this->reserve_ent(2);
2182     Output_data_got<size, big_endian>::
2183       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2184   }
2185
2186   bool
2187   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2188   {
2189     this->reserve_ent();
2190     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2191                                                         got_type);
2192   }
2193
2194   bool
2195   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2196   {
2197     this->reserve_ent();
2198     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2199                                                             got_type);
2200   }
2201
2202   bool
2203   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204   { return this->add_local_plt(object, sym_index, got_type); }
2205
2206   void
2207   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208                      unsigned int got_type,
2209                      Output_data_reloc_generic* rel_dyn,
2210                      unsigned int r_type)
2211   {
2212     this->reserve_ent(2);
2213     Output_data_got<size, big_endian>::
2214       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2215   }
2216
2217   unsigned int
2218   add_constant(Valtype constant)
2219   {
2220     this->reserve_ent();
2221     return Output_data_got<size, big_endian>::add_constant(constant);
2222   }
2223
2224   unsigned int
2225   add_constant_pair(Valtype c1, Valtype c2)
2226   {
2227     this->reserve_ent(2);
2228     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2229   }
2230
2231   // Offset of _GLOBAL_OFFSET_TABLE_.
2232   unsigned int
2233   g_o_t() const
2234   {
2235     return this->got_offset(this->header_index_);
2236   }
2237
2238   // Offset of base used to access the GOT/TOC.
2239   // The got/toc pointer reg will be set to this value.
2240   Valtype
2241   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2242   {
2243     if (size == 32)
2244       return this->g_o_t();
2245     else
2246       return (this->output_section()->address()
2247               + object->toc_base_offset()
2248               - this->address());
2249   }
2250
2251   // Ensure our GOT has a header.
2252   void
2253   set_final_data_size()
2254   {
2255     if (this->header_ent_cnt_ != 0)
2256       this->make_header();
2257     Output_data_got<size, big_endian>::set_final_data_size();
2258   }
2259
2260   // First word of GOT header needs some values that are not
2261   // handled by Output_data_got so poke them in here.
2262   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2263   void
2264   do_write(Output_file* of)
2265   {
2266     Valtype val = 0;
2267     if (size == 32 && this->layout_->dynamic_data() != NULL)
2268       val = this->layout_->dynamic_section()->address();
2269     if (size == 64)
2270       val = this->output_section()->address() + 0x8000;
2271     this->replace_constant(this->header_index_, val);
2272     Output_data_got<size, big_endian>::do_write(of);
2273   }
2274
2275 private:
2276   void
2277   reserve_ent(unsigned int cnt = 1)
2278   {
2279     if (this->header_ent_cnt_ == 0)
2280       return;
2281     if (this->num_entries() + cnt > this->header_index_)
2282       this->make_header();
2283   }
2284
2285   void
2286   make_header()
2287   {
2288     this->header_ent_cnt_ = 0;
2289     this->header_index_ = this->num_entries();
2290     if (size == 32)
2291       {
2292         Output_data_got<size, big_endian>::add_constant(0);
2293         Output_data_got<size, big_endian>::add_constant(0);
2294         Output_data_got<size, big_endian>::add_constant(0);
2295
2296         // Define _GLOBAL_OFFSET_TABLE_ at the header
2297         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2298         if (gotsym != NULL)
2299           {
2300             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301             sym->set_value(this->g_o_t());
2302           }
2303         else
2304           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305                                                Symbol_table::PREDEFINED,
2306                                                this, this->g_o_t(), 0,
2307                                                elfcpp::STT_OBJECT,
2308                                                elfcpp::STB_LOCAL,
2309                                                elfcpp::STV_HIDDEN, 0,
2310                                                false, false);
2311       }
2312     else
2313       Output_data_got<size, big_endian>::add_constant(0);
2314   }
2315
2316   // Stashed pointers.
2317   Symbol_table* symtab_;
2318   Layout* layout_;
2319
2320   // GOT header size.
2321   unsigned int header_ent_cnt_;
2322   // GOT header index.
2323   unsigned int header_index_;
2324 };
2325
2326 // Get the GOT section, creating it if necessary.
2327
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2331                                               Layout* layout)
2332 {
2333   if (this->got_ == NULL)
2334     {
2335       gold_assert(symtab != NULL && layout != NULL);
2336
2337       this->got_
2338         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2339
2340       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342                                       this->got_, ORDER_DATA, false);
2343     }
2344
2345   return this->got_;
2346 }
2347
2348 // Get the dynamic reloc section, creating it if necessary.
2349
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2353 {
2354   if (this->rela_dyn_ == NULL)
2355     {
2356       gold_assert(layout != NULL);
2357       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2360                                       ORDER_DYNAMIC_RELOCS, false);
2361     }
2362   return this->rela_dyn_;
2363 }
2364
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2366
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2370                                                    Layout* layout,
2371                                                    bool for_ifunc)
2372 {
2373   if (!for_ifunc)
2374     return this->rela_dyn_section(layout);
2375
2376   if (this->iplt_ == NULL)
2377     this->make_iplt_section(symtab, layout);
2378   return this->iplt_->rel_plt();
2379 }
2380
2381 class Stub_control
2382 {
2383  public:
2384   // Determine the stub group size.  The group size is the absolute
2385   // value of the parameter --stub-group-size.  If --stub-group-size
2386   // is passed a negative value, we restrict stubs to be always before
2387   // the stubbed branches.
2388   Stub_control(int32_t size, bool no_size_errors)
2389     : state_(NO_GROUP), stub_group_size_(abs(size)),
2390       stub14_group_size_(abs(size) >> 10),
2391       stubs_always_before_branch_(size < 0),
2392       suppress_size_errors_(no_size_errors),
2393       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2394   {
2395   }
2396
2397   // Return true iff input section can be handled by current stub
2398   // group.
2399   bool
2400   can_add_to_stub_group(Output_section* o,
2401                         const Output_section::Input_section* i,
2402                         bool has14);
2403
2404   const Output_section::Input_section*
2405   owner()
2406   { return owner_; }
2407
2408   Output_section*
2409   output_section()
2410   { return output_section_; }
2411
2412   void
2413   set_output_and_owner(Output_section* o,
2414                        const Output_section::Input_section* i)
2415   {
2416     this->output_section_ = o;
2417     this->owner_ = i;
2418   }
2419
2420  private:
2421   typedef enum
2422   {
2423     NO_GROUP,
2424     FINDING_STUB_SECTION,
2425     HAS_STUB_SECTION
2426   } State;
2427
2428   State state_;
2429   uint32_t stub_group_size_;
2430   uint32_t stub14_group_size_;
2431   bool stubs_always_before_branch_;
2432   bool suppress_size_errors_;
2433   uint64_t group_end_addr_;
2434   const Output_section::Input_section* owner_;
2435   Output_section* output_section_;
2436 };
2437
2438 // Return true iff input section can be handled by current stub
2439 // group.
2440
2441 bool
2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443                                     const Output_section::Input_section* i,
2444                                     bool has14)
2445 {
2446   uint32_t group_size
2447     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2449   uint64_t this_size;
2450   uint64_t start_addr = o->address();
2451
2452   if (whole_sec)
2453     // .init and .fini sections are pasted together to form a single
2454     // function.  We can't be adding stubs in the middle of the function.
2455     this_size = o->data_size();
2456   else
2457     {
2458       start_addr += i->relobj()->output_section_offset(i->shndx());
2459       this_size = i->data_size();
2460     }
2461   uint64_t end_addr = start_addr + this_size;
2462   bool toobig = this_size > group_size;
2463
2464   if (toobig && !this->suppress_size_errors_)
2465     gold_warning(_("%s:%s exceeds group size"),
2466                  i->relobj()->name().c_str(),
2467                  i->relobj()->section_name(i->shndx()).c_str());
2468
2469   if (this->state_ != HAS_STUB_SECTION
2470       && (!whole_sec || this->output_section_ != o)
2471       && (this->state_ == NO_GROUP
2472           || this->group_end_addr_ - end_addr < group_size))
2473     {
2474       this->owner_ = i;
2475       this->output_section_ = o;
2476     }
2477
2478   if (this->state_ == NO_GROUP)
2479     {
2480       this->state_ = FINDING_STUB_SECTION;
2481       this->group_end_addr_ = end_addr;
2482     }
2483   else if (this->group_end_addr_ - start_addr < group_size)
2484     ;
2485   // Adding this section would make the group larger than GROUP_SIZE.
2486   else if (this->state_ == FINDING_STUB_SECTION
2487            && !this->stubs_always_before_branch_
2488            && !toobig)
2489     {
2490       // But wait, there's more!  Input sections up to GROUP_SIZE
2491       // bytes before the stub table can be handled by it too.
2492       this->state_ = HAS_STUB_SECTION;
2493       this->group_end_addr_ = end_addr;
2494     }
2495   else
2496     {
2497       this->state_ = NO_GROUP;
2498       return false;
2499     }
2500   return true;
2501 }
2502
2503 // Look over all the input sections, deciding where to place stubs.
2504
2505 template<int size, bool big_endian>
2506 void
2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2508                                                  const Task*,
2509                                                  bool no_size_errors)
2510 {
2511   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2512
2513   // Group input sections and insert stub table
2514   Stub_table_owner* table_owner = NULL;
2515   std::vector<Stub_table_owner*> tables;
2516   Layout::Section_list section_list;
2517   layout->get_executable_sections(&section_list);
2518   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520        o != section_list.rend();
2521        ++o)
2522     {
2523       typedef Output_section::Input_section_list Input_section_list;
2524       for (Input_section_list::const_reverse_iterator i
2525              = (*o)->input_sections().rbegin();
2526            i != (*o)->input_sections().rend();
2527            ++i)
2528         {
2529           if (i->is_input_section()
2530               || i->is_relaxed_input_section())
2531             {
2532               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2534               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2536                 {
2537                   table_owner->output_section = stub_control.output_section();
2538                   table_owner->owner = stub_control.owner();
2539                   stub_control.set_output_and_owner(*o, &*i);
2540                   table_owner = NULL;
2541                 }
2542               if (table_owner == NULL)
2543                 {
2544                   table_owner = new Stub_table_owner;
2545                   tables.push_back(table_owner);
2546                 }
2547               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2548             }
2549         }
2550     }
2551   if (table_owner != NULL)
2552     {
2553       const Output_section::Input_section* i = stub_control.owner();
2554
2555       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2556         {
2557           // Corner case.  A new stub group was made for the first
2558           // section (last one looked at here) for some reason, but
2559           // the first section is already being used as the owner for
2560           // a stub table for following sections.  Force it into that
2561           // stub group.
2562           tables.pop_back();
2563           delete table_owner;
2564           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2567         }
2568       else
2569         {
2570           table_owner->output_section = stub_control.output_section();
2571           table_owner->owner = i;
2572         }
2573     }
2574   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2575        t != tables.end();
2576        ++t)
2577     {
2578       Stub_table<size, big_endian>* stub_table;
2579
2580       if ((*t)->owner->is_input_section())
2581         stub_table = new Stub_table<size, big_endian>(this,
2582                                                       (*t)->output_section,
2583                                                       (*t)->owner);
2584       else if ((*t)->owner->is_relaxed_input_section())
2585         stub_table = static_cast<Stub_table<size, big_endian>*>(
2586                         (*t)->owner->relaxed_input_section());
2587       else
2588         gold_unreachable();
2589       this->stub_tables_.push_back(stub_table);
2590       delete *t;
2591     }
2592 }
2593
2594 static unsigned long
2595 max_branch_delta (unsigned int r_type)
2596 {
2597   if (r_type == elfcpp::R_POWERPC_REL14
2598       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2600     return 1L << 15;
2601   if (r_type == elfcpp::R_POWERPC_REL24
2602       || r_type == elfcpp::R_PPC_PLTREL24
2603       || r_type == elfcpp::R_PPC_LOCAL24PC)
2604     return 1L << 25;
2605   return 0;
2606 }
2607
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2609
2610 template<int size, bool big_endian>
2611 bool
2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613     Stub_table<size, big_endian>* stub_table,
2614     Stub_table<size, big_endian>* ifunc_stub_table,
2615     Symbol_table* symtab) const
2616 {
2617   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618   if (sym != NULL && sym->is_forwarder())
2619     sym = symtab->resolve_forwards(sym);
2620   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621   Target_powerpc<size, big_endian>* target =
2622     static_cast<Target_powerpc<size, big_endian>*>(
2623       parameters->sized_target<size, big_endian>());
2624   if (gsym != NULL
2625       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626       : this->object_->local_has_plt_offset(this->r_sym_))
2627     {
2628       if (size == 64
2629           && gsym != NULL
2630           && target->abiversion() >= 2
2631           && !parameters->options().output_is_position_independent()
2632           && !is_branch_reloc(this->r_type_))
2633         target->glink_section()->add_global_entry(gsym);
2634       else
2635         {
2636           if (stub_table == NULL)
2637             stub_table = this->object_->stub_table(this->shndx_);
2638           if (stub_table == NULL)
2639             {
2640               // This is a ref from a data section to an ifunc symbol.
2641               stub_table = ifunc_stub_table;
2642             }
2643           gold_assert(stub_table != NULL);
2644           Address from = this->object_->get_output_section_offset(this->shndx_);
2645           if (from != invalid_address)
2646             from += (this->object_->output_section(this->shndx_)->address()
2647                      + this->offset_);
2648           if (gsym != NULL)
2649             return stub_table->add_plt_call_entry(from,
2650                                                   this->object_, gsym,
2651                                                   this->r_type_, this->addend_);
2652           else
2653             return stub_table->add_plt_call_entry(from,
2654                                                   this->object_, this->r_sym_,
2655                                                   this->r_type_, this->addend_);
2656         }
2657     }
2658   else
2659     {
2660       Address max_branch_offset = max_branch_delta(this->r_type_);
2661       if (max_branch_offset == 0)
2662         return true;
2663       Address from = this->object_->get_output_section_offset(this->shndx_);
2664       gold_assert(from != invalid_address);
2665       from += (this->object_->output_section(this->shndx_)->address()
2666                + this->offset_);
2667       Address to;
2668       if (gsym != NULL)
2669         {
2670           switch (gsym->source())
2671             {
2672             case Symbol::FROM_OBJECT:
2673               {
2674                 Object* symobj = gsym->object();
2675                 if (symobj->is_dynamic()
2676                     || symobj->pluginobj() != NULL)
2677                   return true;
2678                 bool is_ordinary;
2679                 unsigned int shndx = gsym->shndx(&is_ordinary);
2680                 if (shndx == elfcpp::SHN_UNDEF)
2681                   return true;
2682               }
2683               break;
2684
2685             case Symbol::IS_UNDEFINED:
2686               return true;
2687
2688             default:
2689               break;
2690             }
2691           Symbol_table::Compute_final_value_status status;
2692           to = symtab->compute_final_value<size>(gsym, &status);
2693           if (status != Symbol_table::CFVS_OK)
2694             return true;
2695           if (size == 64)
2696             to += this->object_->ppc64_local_entry_offset(gsym);
2697         }
2698       else
2699         {
2700           const Symbol_value<size>* psymval
2701             = this->object_->local_symbol(this->r_sym_);
2702           Symbol_value<size> symval;
2703           typedef Sized_relobj_file<size, big_endian> ObjType;
2704           typename ObjType::Compute_final_local_value_status status
2705             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2706                                                        &symval, symtab);
2707           if (status != ObjType::CFLV_OK
2708               || !symval.has_output_value())
2709             return true;
2710           to = symval.value(this->object_, 0);
2711           if (size == 64)
2712             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2713         }
2714       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2715         to += this->addend_;
2716       if (stub_table == NULL)
2717         stub_table = this->object_->stub_table(this->shndx_);
2718       if (size == 64 && target->abiversion() < 2)
2719         {
2720           unsigned int dest_shndx;
2721           if (!target->symval_for_branch(symtab, gsym, this->object_,
2722                                          &to, &dest_shndx))
2723             return true;
2724         }
2725       Address delta = to - from;
2726       if (delta + max_branch_offset >= 2 * max_branch_offset)
2727         {
2728           if (stub_table == NULL)
2729             {
2730               gold_warning(_("%s:%s: branch in non-executable section,"
2731                              " no long branch stub for you"),
2732                            this->object_->name().c_str(),
2733                            this->object_->section_name(this->shndx_).c_str());
2734               return true;
2735             }
2736           return stub_table->add_long_branch_entry(this->object_,
2737                                                    this->r_type_, from, to);
2738         }
2739     }
2740   return true;
2741 }
2742
2743 // Relaxation hook.  This is where we do stub generation.
2744
2745 template<int size, bool big_endian>
2746 bool
2747 Target_powerpc<size, big_endian>::do_relax(int pass,
2748                                            const Input_objects*,
2749                                            Symbol_table* symtab,
2750                                            Layout* layout,
2751                                            const Task* task)
2752 {
2753   unsigned int prev_brlt_size = 0;
2754   if (pass == 1)
2755     {
2756       bool thread_safe
2757         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2758       if (size == 64
2759           && this->abiversion() < 2
2760           && !thread_safe
2761           && !parameters->options().user_set_plt_thread_safe())
2762         {
2763           static const char* const thread_starter[] =
2764             {
2765               "pthread_create",
2766               /* libstdc++ */
2767               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2768               /* librt */
2769               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2770               "mq_notify", "create_timer",
2771               /* libanl */
2772               "getaddrinfo_a",
2773               /* libgomp */
2774               "GOMP_parallel",
2775               "GOMP_parallel_start",
2776               "GOMP_parallel_loop_static",
2777               "GOMP_parallel_loop_static_start",
2778               "GOMP_parallel_loop_dynamic",
2779               "GOMP_parallel_loop_dynamic_start",
2780               "GOMP_parallel_loop_guided",
2781               "GOMP_parallel_loop_guided_start",
2782               "GOMP_parallel_loop_runtime",
2783               "GOMP_parallel_loop_runtime_start",
2784               "GOMP_parallel_sections",
2785               "GOMP_parallel_sections_start",
2786               /* libgo */
2787               "__go_go",
2788             };
2789
2790           if (parameters->options().shared())
2791             thread_safe = true;
2792           else
2793             {
2794               for (unsigned int i = 0;
2795                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2796                    i++)
2797                 {
2798                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2799                   thread_safe = (sym != NULL
2800                                  && sym->in_reg()
2801                                  && sym->in_real_elf());
2802                   if (thread_safe)
2803                     break;
2804                 }
2805             }
2806         }
2807       this->plt_thread_safe_ = thread_safe;
2808     }
2809
2810   if (pass == 1)
2811     {
2812       this->stub_group_size_ = parameters->options().stub_group_size();
2813       bool no_size_errors = true;
2814       if (this->stub_group_size_ == 1)
2815         this->stub_group_size_ = 0x1c00000;
2816       else if (this->stub_group_size_ == -1)
2817         this->stub_group_size_ = -0x1e00000;
2818       else
2819         no_size_errors = false;
2820       this->group_sections(layout, task, no_size_errors);
2821     }
2822   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2823     {
2824       this->branch_lookup_table_.clear();
2825       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2826            p != this->stub_tables_.end();
2827            ++p)
2828         {
2829           (*p)->clear_stubs(true);
2830         }
2831       this->stub_tables_.clear();
2832       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2833       gold_info(_("%s: stub group size is too large; retrying with %d"),
2834                 program_name, this->stub_group_size_);
2835       this->group_sections(layout, task, true);
2836     }
2837
2838   // We need address of stub tables valid for make_stub.
2839   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2840        p != this->stub_tables_.end();
2841        ++p)
2842     {
2843       const Powerpc_relobj<size, big_endian>* object
2844         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2845       Address off = object->get_output_section_offset((*p)->shndx());
2846       gold_assert(off != invalid_address);
2847       Output_section* os = (*p)->output_section();
2848       (*p)->set_address_and_size(os, off);
2849     }
2850
2851   if (pass != 1)
2852     {
2853       // Clear plt call stubs, long branch stubs and branch lookup table.
2854       prev_brlt_size = this->branch_lookup_table_.size();
2855       this->branch_lookup_table_.clear();
2856       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2857            p != this->stub_tables_.end();
2858            ++p)
2859         {
2860           (*p)->clear_stubs(false);
2861         }
2862     }
2863
2864   // Build all the stubs.
2865   this->relax_failed_ = false;
2866   Stub_table<size, big_endian>* ifunc_stub_table
2867     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2868   Stub_table<size, big_endian>* one_stub_table
2869     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2870   for (typename Branches::const_iterator b = this->branch_info_.begin();
2871        b != this->branch_info_.end();
2872        b++)
2873     {
2874       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2875           && !this->relax_failed_)
2876         {
2877           this->relax_failed_ = true;
2878           this->relax_fail_count_++;
2879           if (this->relax_fail_count_ < 3)
2880             return true;
2881         }
2882     }
2883
2884   // Did anything change size?
2885   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2886   bool again = num_huge_branches != prev_brlt_size;
2887   if (size == 64 && num_huge_branches != 0)
2888     this->make_brlt_section(layout);
2889   if (size == 64 && again)
2890     this->brlt_section_->set_current_size(num_huge_branches);
2891
2892   typedef Unordered_set<Output_section*> Output_sections;
2893   Output_sections os_need_update;
2894   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2895        p != this->stub_tables_.end();
2896        ++p)
2897     {
2898       if ((*p)->size_update())
2899         {
2900           again = true;
2901           (*p)->add_eh_frame(layout);
2902           os_need_update.insert((*p)->output_section());
2903         }
2904     }
2905
2906   // Set output section offsets for all input sections in an output
2907   // section that just changed size.  Anything past the stubs will
2908   // need updating.
2909   for (typename Output_sections::iterator p = os_need_update.begin();
2910        p != os_need_update.end();
2911        p++)
2912     {
2913       Output_section* os = *p;
2914       Address off = 0;
2915       typedef Output_section::Input_section_list Input_section_list;
2916       for (Input_section_list::const_iterator i = os->input_sections().begin();
2917            i != os->input_sections().end();
2918            ++i)
2919         {
2920           off = align_address(off, i->addralign());
2921           if (i->is_input_section() || i->is_relaxed_input_section())
2922             i->relobj()->set_section_offset(i->shndx(), off);
2923           if (i->is_relaxed_input_section())
2924             {
2925               Stub_table<size, big_endian>* stub_table
2926                 = static_cast<Stub_table<size, big_endian>*>(
2927                     i->relaxed_input_section());
2928               off += stub_table->set_address_and_size(os, off);
2929             }
2930           else
2931             off += i->data_size();
2932         }
2933       // If .branch_lt is part of this output section, then we have
2934       // just done the offset adjustment.
2935       os->clear_section_offsets_need_adjustment();
2936     }
2937
2938   if (size == 64
2939       && !again
2940       && num_huge_branches != 0
2941       && parameters->options().output_is_position_independent())
2942     {
2943       // Fill in the BRLT relocs.
2944       this->brlt_section_->reset_brlt_sizes();
2945       for (typename Branch_lookup_table::const_iterator p
2946              = this->branch_lookup_table_.begin();
2947            p != this->branch_lookup_table_.end();
2948            ++p)
2949         {
2950           this->brlt_section_->add_reloc(p->first, p->second);
2951         }
2952       this->brlt_section_->finalize_brlt_sizes();
2953     }
2954   return again;
2955 }
2956
2957 template<int size, bool big_endian>
2958 void
2959 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2960                                                       unsigned char* oview,
2961                                                       uint64_t* paddress,
2962                                                       off_t* plen) const
2963 {
2964   uint64_t address = plt->address();
2965   off_t len = plt->data_size();
2966
2967   if (plt == this->glink_)
2968     {
2969       // See Output_data_glink::do_write() for glink contents.
2970       if (len == 0)
2971         {
2972           gold_assert(parameters->doing_static_link());
2973           // Static linking may need stubs, to support ifunc and long
2974           // branches.  We need to create an output section for
2975           // .eh_frame early in the link process, to have a place to
2976           // attach stub .eh_frame info.  We also need to have
2977           // registered a CIE that matches the stub CIE.  Both of
2978           // these requirements are satisfied by creating an FDE and
2979           // CIE for .glink, even though static linking will leave
2980           // .glink zero length.
2981           // ??? Hopefully generating an FDE with a zero address range
2982           // won't confuse anything that consumes .eh_frame info.
2983         }
2984       else if (size == 64)
2985         {
2986           // There is one word before __glink_PLTresolve
2987           address += 8;
2988           len -= 8;
2989         }
2990       else if (parameters->options().output_is_position_independent())
2991         {
2992           // There are two FDEs for a position independent glink.
2993           // The first covers the branch table, the second
2994           // __glink_PLTresolve at the end of glink.
2995           off_t resolve_size = this->glink_->pltresolve_size;
2996           if (oview[9] == elfcpp::DW_CFA_nop)
2997             len -= resolve_size;
2998           else
2999             {
3000               address += len - resolve_size;
3001               len = resolve_size;
3002             }
3003         }
3004     }
3005   else
3006     {
3007       // Must be a stub table.
3008       const Stub_table<size, big_endian>* stub_table
3009         = static_cast<const Stub_table<size, big_endian>*>(plt);
3010       uint64_t stub_address = stub_table->stub_address();
3011       len -= stub_address - address;
3012       address = stub_address;
3013     }
3014
3015   *paddress = address;
3016   *plen = len;
3017 }
3018
3019 // A class to handle the PLT data.
3020
3021 template<int size, bool big_endian>
3022 class Output_data_plt_powerpc : public Output_section_data_build
3023 {
3024  public:
3025   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3026                             size, big_endian> Reloc_section;
3027
3028   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3029                           Reloc_section* plt_rel,
3030                           const char* name)
3031     : Output_section_data_build(size == 32 ? 4 : 8),
3032       rel_(plt_rel),
3033       targ_(targ),
3034       name_(name)
3035   { }
3036
3037   // Add an entry to the PLT.
3038   void
3039   add_entry(Symbol*);
3040
3041   void
3042   add_ifunc_entry(Symbol*);
3043
3044   void
3045   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3046
3047   // Return the .rela.plt section data.
3048   Reloc_section*
3049   rel_plt() const
3050   {
3051     return this->rel_;
3052   }
3053
3054   // Return the number of PLT entries.
3055   unsigned int
3056   entry_count() const
3057   {
3058     if (this->current_data_size() == 0)
3059       return 0;
3060     return ((this->current_data_size() - this->first_plt_entry_offset())
3061             / this->plt_entry_size());
3062   }
3063
3064  protected:
3065   void
3066   do_adjust_output_section(Output_section* os)
3067   {
3068     os->set_entsize(0);
3069   }
3070
3071   // Write to a map file.
3072   void
3073   do_print_to_mapfile(Mapfile* mapfile) const
3074   { mapfile->print_output_data(this, this->name_); }
3075
3076  private:
3077   // Return the offset of the first non-reserved PLT entry.
3078   unsigned int
3079   first_plt_entry_offset() const
3080   {
3081     // IPLT has no reserved entry.
3082     if (this->name_[3] == 'I')
3083       return 0;
3084     return this->targ_->first_plt_entry_offset();
3085   }
3086
3087   // Return the size of each PLT entry.
3088   unsigned int
3089   plt_entry_size() const
3090   {
3091     return this->targ_->plt_entry_size();
3092   }
3093
3094   // Write out the PLT data.
3095   void
3096   do_write(Output_file*);
3097
3098   // The reloc section.
3099   Reloc_section* rel_;
3100   // Allows access to .glink for do_write.
3101   Target_powerpc<size, big_endian>* targ_;
3102   // What to report in map file.
3103   const char *name_;
3104 };
3105
3106 // Add an entry to the PLT.
3107
3108 template<int size, bool big_endian>
3109 void
3110 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3111 {
3112   if (!gsym->has_plt_offset())
3113     {
3114       section_size_type off = this->current_data_size();
3115       if (off == 0)
3116         off += this->first_plt_entry_offset();
3117       gsym->set_plt_offset(off);
3118       gsym->set_needs_dynsym_entry();
3119       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3120       this->rel_->add_global(gsym, dynrel, this, off, 0);
3121       off += this->plt_entry_size();
3122       this->set_current_data_size(off);
3123     }
3124 }
3125
3126 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3127
3128 template<int size, bool big_endian>
3129 void
3130 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3131 {
3132   if (!gsym->has_plt_offset())
3133     {
3134       section_size_type off = this->current_data_size();
3135       gsym->set_plt_offset(off);
3136       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3137       if (size == 64 && this->targ_->abiversion() < 2)
3138         dynrel = elfcpp::R_PPC64_JMP_IREL;
3139       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3140       off += this->plt_entry_size();
3141       this->set_current_data_size(off);
3142     }
3143 }
3144
3145 // Add an entry for a local ifunc symbol to the IPLT.
3146
3147 template<int size, bool big_endian>
3148 void
3149 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3150     Sized_relobj_file<size, big_endian>* relobj,
3151     unsigned int local_sym_index)
3152 {
3153   if (!relobj->local_has_plt_offset(local_sym_index))
3154     {
3155       section_size_type off = this->current_data_size();
3156       relobj->set_local_plt_offset(local_sym_index, off);
3157       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3158       if (size == 64 && this->targ_->abiversion() < 2)
3159         dynrel = elfcpp::R_PPC64_JMP_IREL;
3160       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3161                                               this, off, 0);
3162       off += this->plt_entry_size();
3163       this->set_current_data_size(off);
3164     }
3165 }
3166
3167 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3168 static const uint32_t add_2_2_11        = 0x7c425a14;
3169 static const uint32_t add_3_3_2         = 0x7c631214;
3170 static const uint32_t add_3_3_13        = 0x7c636a14;
3171 static const uint32_t add_11_0_11       = 0x7d605a14;
3172 static const uint32_t add_11_2_11       = 0x7d625a14;
3173 static const uint32_t add_11_11_2       = 0x7d6b1214;
3174 static const uint32_t addi_0_12         = 0x380c0000;
3175 static const uint32_t addi_2_2          = 0x38420000;
3176 static const uint32_t addi_3_3          = 0x38630000;
3177 static const uint32_t addi_11_11        = 0x396b0000;
3178 static const uint32_t addi_12_12        = 0x398c0000;
3179 static const uint32_t addis_0_2         = 0x3c020000;
3180 static const uint32_t addis_0_13        = 0x3c0d0000;
3181 static const uint32_t addis_3_2         = 0x3c620000;
3182 static const uint32_t addis_3_13        = 0x3c6d0000;
3183 static const uint32_t addis_11_2        = 0x3d620000;
3184 static const uint32_t addis_11_11       = 0x3d6b0000;
3185 static const uint32_t addis_11_30       = 0x3d7e0000;
3186 static const uint32_t addis_12_2        = 0x3d820000;
3187 static const uint32_t addis_12_12       = 0x3d8c0000;
3188 static const uint32_t b                 = 0x48000000;
3189 static const uint32_t bcl_20_31         = 0x429f0005;
3190 static const uint32_t bctr              = 0x4e800420;
3191 static const uint32_t blr               = 0x4e800020;
3192 static const uint32_t bnectr_p4         = 0x4ce20420;
3193 static const uint32_t cmpldi_2_0        = 0x28220000;
3194 static const uint32_t cror_15_15_15     = 0x4def7b82;
3195 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3196 static const uint32_t ld_0_1            = 0xe8010000;
3197 static const uint32_t ld_0_12           = 0xe80c0000;
3198 static const uint32_t ld_2_1            = 0xe8410000;
3199 static const uint32_t ld_2_2            = 0xe8420000;
3200 static const uint32_t ld_2_11           = 0xe84b0000;
3201 static const uint32_t ld_11_2           = 0xe9620000;
3202 static const uint32_t ld_11_11          = 0xe96b0000;
3203 static const uint32_t ld_12_2           = 0xe9820000;
3204 static const uint32_t ld_12_11          = 0xe98b0000;
3205 static const uint32_t ld_12_12          = 0xe98c0000;
3206 static const uint32_t lfd_0_1           = 0xc8010000;
3207 static const uint32_t li_0_0            = 0x38000000;
3208 static const uint32_t li_12_0           = 0x39800000;
3209 static const uint32_t lis_0_0           = 0x3c000000;
3210 static const uint32_t lis_11            = 0x3d600000;
3211 static const uint32_t lis_12            = 0x3d800000;
3212 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3213 static const uint32_t lwz_0_12          = 0x800c0000;
3214 static const uint32_t lwz_11_11         = 0x816b0000;
3215 static const uint32_t lwz_11_30         = 0x817e0000;
3216 static const uint32_t lwz_12_12         = 0x818c0000;
3217 static const uint32_t lwzu_0_12         = 0x840c0000;
3218 static const uint32_t mflr_0            = 0x7c0802a6;
3219 static const uint32_t mflr_11           = 0x7d6802a6;
3220 static const uint32_t mflr_12           = 0x7d8802a6;
3221 static const uint32_t mtctr_0           = 0x7c0903a6;
3222 static const uint32_t mtctr_11          = 0x7d6903a6;
3223 static const uint32_t mtctr_12          = 0x7d8903a6;
3224 static const uint32_t mtlr_0            = 0x7c0803a6;
3225 static const uint32_t mtlr_12           = 0x7d8803a6;
3226 static const uint32_t nop               = 0x60000000;
3227 static const uint32_t ori_0_0_0         = 0x60000000;
3228 static const uint32_t srdi_0_0_2        = 0x7800f082;
3229 static const uint32_t std_0_1           = 0xf8010000;
3230 static const uint32_t std_0_12          = 0xf80c0000;
3231 static const uint32_t std_2_1           = 0xf8410000;
3232 static const uint32_t stfd_0_1          = 0xd8010000;
3233 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3234 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3235 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3236 static const uint32_t xor_2_12_12       = 0x7d826278;
3237 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3238
3239 // Write out the PLT.
3240
3241 template<int size, bool big_endian>
3242 void
3243 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3244 {
3245   if (size == 32 && this->name_[3] != 'I')
3246     {
3247       const section_size_type offset = this->offset();
3248       const section_size_type oview_size
3249         = convert_to_section_size_type(this->data_size());
3250       unsigned char* const oview = of->get_output_view(offset, oview_size);
3251       unsigned char* pov = oview;
3252       unsigned char* endpov = oview + oview_size;
3253
3254       // The address of the .glink branch table
3255       const Output_data_glink<size, big_endian>* glink
3256         = this->targ_->glink_section();
3257       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3258
3259       while (pov < endpov)
3260         {
3261           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3262           pov += 4;
3263           branch_tab += 4;
3264         }
3265
3266       of->write_output_view(offset, oview_size, oview);
3267     }
3268 }
3269
3270 // Create the PLT section.
3271
3272 template<int size, bool big_endian>
3273 void
3274 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3275                                                    Layout* layout)
3276 {
3277   if (this->plt_ == NULL)
3278     {
3279       if (this->got_ == NULL)
3280         this->got_section(symtab, layout);
3281
3282       if (this->glink_ == NULL)
3283         make_glink_section(layout);
3284
3285       // Ensure that .rela.dyn always appears before .rela.plt  This is
3286       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3287       // needs to include .rela.plt in its range.
3288       this->rela_dyn_section(layout);
3289
3290       Reloc_section* plt_rel = new Reloc_section(false);
3291       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3292                                       elfcpp::SHF_ALLOC, plt_rel,
3293                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3294       this->plt_
3295         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3296                                                         "** PLT");
3297       layout->add_output_section_data(".plt",
3298                                       (size == 32
3299                                        ? elfcpp::SHT_PROGBITS
3300                                        : elfcpp::SHT_NOBITS),
3301                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3302                                       this->plt_,
3303                                       (size == 32
3304                                        ? ORDER_SMALL_DATA
3305                                        : ORDER_SMALL_BSS),
3306                                       false);
3307     }
3308 }
3309
3310 // Create the IPLT section.
3311
3312 template<int size, bool big_endian>
3313 void
3314 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3315                                                     Layout* layout)
3316 {
3317   if (this->iplt_ == NULL)
3318     {
3319       this->make_plt_section(symtab, layout);
3320
3321       Reloc_section* iplt_rel = new Reloc_section(false);
3322       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3323       this->iplt_
3324         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3325                                                         "** IPLT");
3326       this->plt_->output_section()->add_output_section_data(this->iplt_);
3327     }
3328 }
3329
3330 // A section for huge long branch addresses, similar to plt section.
3331
3332 template<int size, bool big_endian>
3333 class Output_data_brlt_powerpc : public Output_section_data_build
3334 {
3335  public:
3336   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3337   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3338                             size, big_endian> Reloc_section;
3339
3340   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3341                            Reloc_section* brlt_rel)
3342     : Output_section_data_build(size == 32 ? 4 : 8),
3343       rel_(brlt_rel),
3344       targ_(targ)
3345   { }
3346
3347   void
3348   reset_brlt_sizes()
3349   {
3350     this->reset_data_size();
3351     this->rel_->reset_data_size();
3352   }
3353
3354   void
3355   finalize_brlt_sizes()
3356   {
3357     this->finalize_data_size();
3358     this->rel_->finalize_data_size();
3359   }
3360
3361   // Add a reloc for an entry in the BRLT.
3362   void
3363   add_reloc(Address to, unsigned int off)
3364   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3365
3366   // Update section and reloc section size.
3367   void
3368   set_current_size(unsigned int num_branches)
3369   {
3370     this->reset_address_and_file_offset();
3371     this->set_current_data_size(num_branches * 16);
3372     this->finalize_data_size();
3373     Output_section* os = this->output_section();
3374     os->set_section_offsets_need_adjustment();
3375     if (this->rel_ != NULL)
3376       {
3377         unsigned int reloc_size
3378           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3379         this->rel_->reset_address_and_file_offset();
3380         this->rel_->set_current_data_size(num_branches * reloc_size);
3381         this->rel_->finalize_data_size();
3382         Output_section* os = this->rel_->output_section();
3383         os->set_section_offsets_need_adjustment();
3384       }
3385   }
3386
3387  protected:
3388   void
3389   do_adjust_output_section(Output_section* os)
3390   {
3391     os->set_entsize(0);
3392   }
3393
3394   // Write to a map file.
3395   void
3396   do_print_to_mapfile(Mapfile* mapfile) const
3397   { mapfile->print_output_data(this, "** BRLT"); }
3398
3399  private:
3400   // Write out the BRLT data.
3401   void
3402   do_write(Output_file*);
3403
3404   // The reloc section.
3405   Reloc_section* rel_;
3406   Target_powerpc<size, big_endian>* targ_;
3407 };
3408
3409 // Make the branch lookup table section.
3410
3411 template<int size, bool big_endian>
3412 void
3413 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3414 {
3415   if (size == 64 && this->brlt_section_ == NULL)
3416     {
3417       Reloc_section* brlt_rel = NULL;
3418       bool is_pic = parameters->options().output_is_position_independent();
3419       if (is_pic)
3420         {
3421           // When PIC we can't fill in .branch_lt (like .plt it can be
3422           // a bss style section) but must initialise at runtime via
3423           // dynamic relocats.
3424           this->rela_dyn_section(layout);
3425           brlt_rel = new Reloc_section(false);
3426           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3427         }
3428       this->brlt_section_
3429         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3430       if (this->plt_ && is_pic)
3431         this->plt_->output_section()
3432           ->add_output_section_data(this->brlt_section_);
3433       else
3434         layout->add_output_section_data(".branch_lt",
3435                                         (is_pic ? elfcpp::SHT_NOBITS
3436                                          : elfcpp::SHT_PROGBITS),
3437                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3438                                         this->brlt_section_,
3439                                         (is_pic ? ORDER_SMALL_BSS
3440                                          : ORDER_SMALL_DATA),
3441                                         false);
3442     }
3443 }
3444
3445 // Write out .branch_lt when non-PIC.
3446
3447 template<int size, bool big_endian>
3448 void
3449 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3450 {
3451   if (size == 64 && !parameters->options().output_is_position_independent())
3452     {
3453       const section_size_type offset = this->offset();
3454       const section_size_type oview_size
3455         = convert_to_section_size_type(this->data_size());
3456       unsigned char* const oview = of->get_output_view(offset, oview_size);
3457
3458       this->targ_->write_branch_lookup_table(oview);
3459       of->write_output_view(offset, oview_size, oview);
3460     }
3461 }
3462
3463 static inline uint32_t
3464 l(uint32_t a)
3465 {
3466   return a & 0xffff;
3467 }
3468
3469 static inline uint32_t
3470 hi(uint32_t a)
3471 {
3472   return l(a >> 16);
3473 }
3474
3475 static inline uint32_t
3476 ha(uint32_t a)
3477 {
3478   return hi(a + 0x8000);
3479 }
3480
3481 template<int size>
3482 struct Eh_cie
3483 {
3484   static const unsigned char eh_frame_cie[12];
3485 };
3486
3487 template<int size>
3488 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3489 {
3490   1,                                    // CIE version.
3491   'z', 'R', 0,                          // Augmentation string.
3492   4,                                    // Code alignment.
3493   0x80 - size / 8 ,                     // Data alignment.
3494   65,                                   // RA reg.
3495   1,                                    // Augmentation size.
3496   (elfcpp::DW_EH_PE_pcrel
3497    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3498   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3499 };
3500
3501 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3502 static const unsigned char glink_eh_frame_fde_64v1[] =
3503 {
3504   0, 0, 0, 0,                           // Replaced with offset to .glink.
3505   0, 0, 0, 0,                           // Replaced with size of .glink.
3506   0,                                    // Augmentation size.
3507   elfcpp::DW_CFA_advance_loc + 1,
3508   elfcpp::DW_CFA_register, 65, 12,
3509   elfcpp::DW_CFA_advance_loc + 4,
3510   elfcpp::DW_CFA_restore_extended, 65
3511 };
3512
3513 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3514 static const unsigned char glink_eh_frame_fde_64v2[] =
3515 {
3516   0, 0, 0, 0,                           // Replaced with offset to .glink.
3517   0, 0, 0, 0,                           // Replaced with size of .glink.
3518   0,                                    // Augmentation size.
3519   elfcpp::DW_CFA_advance_loc + 1,
3520   elfcpp::DW_CFA_register, 65, 0,
3521   elfcpp::DW_CFA_advance_loc + 4,
3522   elfcpp::DW_CFA_restore_extended, 65
3523 };
3524
3525 // Describe __glink_PLTresolve use of LR, 32-bit version.
3526 static const unsigned char glink_eh_frame_fde_32[] =
3527 {
3528   0, 0, 0, 0,                           // Replaced with offset to .glink.
3529   0, 0, 0, 0,                           // Replaced with size of .glink.
3530   0,                                    // Augmentation size.
3531   elfcpp::DW_CFA_advance_loc + 2,
3532   elfcpp::DW_CFA_register, 65, 0,
3533   elfcpp::DW_CFA_advance_loc + 4,
3534   elfcpp::DW_CFA_restore_extended, 65
3535 };
3536
3537 static const unsigned char default_fde[] =
3538 {
3539   0, 0, 0, 0,                           // Replaced with offset to stubs.
3540   0, 0, 0, 0,                           // Replaced with size of stubs.
3541   0,                                    // Augmentation size.
3542   elfcpp::DW_CFA_nop,                   // Pad.
3543   elfcpp::DW_CFA_nop,
3544   elfcpp::DW_CFA_nop
3545 };
3546
3547 template<bool big_endian>
3548 static inline void
3549 write_insn(unsigned char* p, uint32_t v)
3550 {
3551   elfcpp::Swap<32, big_endian>::writeval(p, v);
3552 }
3553
3554 // Stub_table holds information about plt and long branch stubs.
3555 // Stubs are built in an area following some input section determined
3556 // by group_sections().  This input section is converted to a relaxed
3557 // input section allowing it to be resized to accommodate the stubs
3558
3559 template<int size, bool big_endian>
3560 class Stub_table : public Output_relaxed_input_section
3561 {
3562  public:
3563   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3564   static const Address invalid_address = static_cast<Address>(0) - 1;
3565
3566   Stub_table(Target_powerpc<size, big_endian>* targ,
3567              Output_section* output_section,
3568              const Output_section::Input_section* owner)
3569     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3570                                    owner->relobj()
3571                                    ->section_addralign(owner->shndx())),
3572       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3573       orig_data_size_(owner->current_data_size()),
3574       plt_size_(0), last_plt_size_(0),
3575       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3576   {
3577     this->set_output_section(output_section);
3578
3579     std::vector<Output_relaxed_input_section*> new_relaxed;
3580     new_relaxed.push_back(this);
3581     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3582   }
3583
3584   // Add a plt call stub.
3585   bool
3586   add_plt_call_entry(Address,
3587                      const Sized_relobj_file<size, big_endian>*,
3588                      const Symbol*,
3589                      unsigned int,
3590                      Address);
3591
3592   bool
3593   add_plt_call_entry(Address,
3594                      const Sized_relobj_file<size, big_endian>*,
3595                      unsigned int,
3596                      unsigned int,
3597                      Address);
3598
3599   // Find a given plt call stub.
3600   Address
3601   find_plt_call_entry(const Symbol*) const;
3602
3603   Address
3604   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3605                       unsigned int) const;
3606
3607   Address
3608   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3609                       const Symbol*,
3610                       unsigned int,
3611                       Address) const;
3612
3613   Address
3614   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3615                       unsigned int,
3616                       unsigned int,
3617                       Address) const;
3618
3619   // Add a long branch stub.
3620   bool
3621   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3622                         unsigned int, Address, Address);
3623
3624   Address
3625   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3626                          Address) const;
3627
3628   bool
3629   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3630   {
3631     Address max_branch_offset = max_branch_delta(r_type);
3632     if (max_branch_offset == 0)
3633       return true;
3634     gold_assert(from != invalid_address);
3635     Address loc = off + this->stub_address();
3636     return loc - from + max_branch_offset < 2 * max_branch_offset;
3637   }
3638
3639   void
3640   clear_stubs(bool all)
3641   {
3642     this->plt_call_stubs_.clear();
3643     this->plt_size_ = 0;
3644     this->long_branch_stubs_.clear();
3645     this->branch_size_ = 0;
3646     if (all)
3647       {
3648         this->last_plt_size_ = 0;
3649         this->last_branch_size_ = 0;
3650       }
3651   }
3652
3653   Address
3654   set_address_and_size(const Output_section* os, Address off)
3655   {
3656     Address start_off = off;
3657     off += this->orig_data_size_;
3658     Address my_size = this->plt_size_ + this->branch_size_;
3659     if (my_size != 0)
3660       off = align_address(off, this->stub_align());
3661     // Include original section size and alignment padding in size
3662     my_size += off - start_off;
3663     this->reset_address_and_file_offset();
3664     this->set_current_data_size(my_size);
3665     this->set_address_and_file_offset(os->address() + start_off,
3666                                       os->offset() + start_off);
3667     return my_size;
3668   }
3669
3670   Address
3671   stub_address() const
3672   {
3673     return align_address(this->address() + this->orig_data_size_,
3674                          this->stub_align());
3675   }
3676
3677   Address
3678   stub_offset() const
3679   {
3680     return align_address(this->offset() + this->orig_data_size_,
3681                          this->stub_align());
3682   }
3683
3684   section_size_type
3685   plt_size() const
3686   { return this->plt_size_; }
3687
3688   bool
3689   size_update()
3690   {
3691     Output_section* os = this->output_section();
3692     if (os->addralign() < this->stub_align())
3693       {
3694         os->set_addralign(this->stub_align());
3695         // FIXME: get rid of the insane checkpointing.
3696         // We can't increase alignment of the input section to which
3697         // stubs are attached;  The input section may be .init which
3698         // is pasted together with other .init sections to form a
3699         // function.  Aligning might insert zero padding resulting in
3700         // sigill.  However we do need to increase alignment of the
3701         // output section so that the align_address() on offset in
3702         // set_address_and_size() adds the same padding as the
3703         // align_address() on address in stub_address().
3704         // What's more, we need this alignment for the layout done in
3705         // relaxation_loop_body() so that the output section starts at
3706         // a suitably aligned address.
3707         os->checkpoint_set_addralign(this->stub_align());
3708       }
3709     if (this->last_plt_size_ != this->plt_size_
3710         || this->last_branch_size_ != this->branch_size_)
3711       {
3712         this->last_plt_size_ = this->plt_size_;
3713         this->last_branch_size_ = this->branch_size_;
3714         return true;
3715       }
3716     return false;
3717   }
3718
3719   // Add .eh_frame info for this stub section.  Unlike other linker
3720   // generated .eh_frame this is added late in the link, because we
3721   // only want the .eh_frame info if this particular stub section is
3722   // non-empty.
3723   void
3724   add_eh_frame(Layout* layout)
3725   {
3726     if (!this->eh_frame_added_)
3727       {
3728         if (!parameters->options().ld_generated_unwind_info())
3729           return;
3730
3731         // Since we add stub .eh_frame info late, it must be placed
3732         // after all other linker generated .eh_frame info so that
3733         // merge mapping need not be updated for input sections.
3734         // There is no provision to use a different CIE to that used
3735         // by .glink.
3736         if (!this->targ_->has_glink())
3737           return;
3738
3739         layout->add_eh_frame_for_plt(this,
3740                                      Eh_cie<size>::eh_frame_cie,
3741                                      sizeof (Eh_cie<size>::eh_frame_cie),
3742                                      default_fde,
3743                                      sizeof (default_fde));
3744         this->eh_frame_added_ = true;
3745       }
3746   }
3747
3748   Target_powerpc<size, big_endian>*
3749   targ() const
3750   { return targ_; }
3751
3752  private:
3753   class Plt_stub_ent;
3754   class Plt_stub_ent_hash;
3755   typedef Unordered_map<Plt_stub_ent, unsigned int,
3756                         Plt_stub_ent_hash> Plt_stub_entries;
3757
3758   // Alignment of stub section.
3759   unsigned int
3760   stub_align() const
3761   {
3762     if (size == 32)
3763       return 16;
3764     unsigned int min_align = 32;
3765     unsigned int user_align = 1 << parameters->options().plt_align();
3766     return std::max(user_align, min_align);
3767   }
3768
3769   // Return the plt offset for the given call stub.
3770   Address
3771   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3772   {
3773     const Symbol* gsym = p->first.sym_;
3774     if (gsym != NULL)
3775       {
3776         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3777                     && gsym->can_use_relative_reloc(false));
3778         return gsym->plt_offset();
3779       }
3780     else
3781       {
3782         *is_iplt = true;
3783         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3784         unsigned int local_sym_index = p->first.locsym_;
3785         return relobj->local_plt_offset(local_sym_index);
3786       }
3787   }
3788
3789   // Size of a given plt call stub.
3790   unsigned int
3791   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3792   {
3793     if (size == 32)
3794       return 16;
3795
3796     bool is_iplt;
3797     Address plt_addr = this->plt_off(p, &is_iplt);
3798     if (is_iplt)
3799       plt_addr += this->targ_->iplt_section()->address();
3800     else
3801       plt_addr += this->targ_->plt_section()->address();
3802     Address got_addr = this->targ_->got_section()->output_section()->address();
3803     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3804       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3805     got_addr += ppcobj->toc_base_offset();
3806     Address off = plt_addr - got_addr;
3807     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3808     if (this->targ_->abiversion() < 2)
3809       {
3810         bool static_chain = parameters->options().plt_static_chain();
3811         bool thread_safe = this->targ_->plt_thread_safe();
3812         bytes += (4
3813                   + 4 * static_chain
3814                   + 8 * thread_safe
3815                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3816       }
3817     unsigned int align = 1 << parameters->options().plt_align();
3818     if (align > 1)
3819       bytes = (bytes + align - 1) & -align;
3820     return bytes;
3821   }
3822
3823   // Return long branch stub size.
3824   unsigned int
3825   branch_stub_size(Address to)
3826   {
3827     Address loc
3828       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3829     if (to - loc + (1 << 25) < 2 << 25)
3830       return 4;
3831     if (size == 64 || !parameters->options().output_is_position_independent())
3832       return 16;
3833     return 32;
3834   }
3835
3836   // Write out stubs.
3837   void
3838   do_write(Output_file*);
3839
3840   // Plt call stub keys.
3841   class Plt_stub_ent
3842   {
3843   public:
3844     Plt_stub_ent(const Symbol* sym)
3845       : sym_(sym), object_(0), addend_(0), locsym_(0)
3846     { }
3847
3848     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3849                  unsigned int locsym_index)
3850       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3851     { }
3852
3853     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3854                  const Symbol* sym,
3855                  unsigned int r_type,
3856                  Address addend)
3857       : sym_(sym), object_(0), addend_(0), locsym_(0)
3858     {
3859       if (size != 32)
3860         this->addend_ = addend;
3861       else if (parameters->options().output_is_position_independent()
3862                && r_type == elfcpp::R_PPC_PLTREL24)
3863         {
3864           this->addend_ = addend;
3865           if (this->addend_ >= 32768)
3866             this->object_ = object;
3867         }
3868     }
3869
3870     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3871                  unsigned int locsym_index,
3872                  unsigned int r_type,
3873                  Address addend)
3874       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3875     {
3876       if (size != 32)
3877         this->addend_ = addend;
3878       else if (parameters->options().output_is_position_independent()
3879                && r_type == elfcpp::R_PPC_PLTREL24)
3880         this->addend_ = addend;
3881     }
3882
3883     bool operator==(const Plt_stub_ent& that) const
3884     {
3885       return (this->sym_ == that.sym_
3886               && this->object_ == that.object_
3887               && this->addend_ == that.addend_
3888               && this->locsym_ == that.locsym_);
3889     }
3890
3891     const Symbol* sym_;
3892     const Sized_relobj_file<size, big_endian>* object_;
3893     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3894     unsigned int locsym_;
3895   };
3896
3897   class Plt_stub_ent_hash
3898   {
3899   public:
3900     size_t operator()(const Plt_stub_ent& ent) const
3901     {
3902       return (reinterpret_cast<uintptr_t>(ent.sym_)
3903               ^ reinterpret_cast<uintptr_t>(ent.object_)
3904               ^ ent.addend_
3905               ^ ent.locsym_);
3906     }
3907   };
3908
3909   // Long branch stub keys.
3910   class Branch_stub_ent
3911   {
3912   public:
3913     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3914       : dest_(to), toc_base_off_(0)
3915     {
3916       if (size == 64)
3917         toc_base_off_ = obj->toc_base_offset();
3918     }
3919
3920     bool operator==(const Branch_stub_ent& that) const
3921     {
3922       return (this->dest_ == that.dest_
3923               && (size == 32
3924                   || this->toc_base_off_ == that.toc_base_off_));
3925     }
3926
3927     Address dest_;
3928     unsigned int toc_base_off_;
3929   };
3930
3931   class Branch_stub_ent_hash
3932   {
3933   public:
3934     size_t operator()(const Branch_stub_ent& ent) const
3935     { return ent.dest_ ^ ent.toc_base_off_; }
3936   };
3937
3938   // In a sane world this would be a global.
3939   Target_powerpc<size, big_endian>* targ_;
3940   // Map sym/object/addend to stub offset.
3941   Plt_stub_entries plt_call_stubs_;
3942   // Map destination address to stub offset.
3943   typedef Unordered_map<Branch_stub_ent, unsigned int,
3944                         Branch_stub_ent_hash> Branch_stub_entries;
3945   Branch_stub_entries long_branch_stubs_;
3946   // size of input section
3947   section_size_type orig_data_size_;
3948   // size of stubs
3949   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3950   // Whether .eh_frame info has been created for this stub section.
3951   bool eh_frame_added_;
3952 };
3953
3954 // Add a plt call stub, if we do not already have one for this
3955 // sym/object/addend combo.
3956
3957 template<int size, bool big_endian>
3958 bool
3959 Stub_table<size, big_endian>::add_plt_call_entry(
3960     Address from,
3961     const Sized_relobj_file<size, big_endian>* object,
3962     const Symbol* gsym,
3963     unsigned int r_type,
3964     Address addend)
3965 {
3966   Plt_stub_ent ent(object, gsym, r_type, addend);
3967   unsigned int off = this->plt_size_;
3968   std::pair<typename Plt_stub_entries::iterator, bool> p
3969     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3970   if (p.second)
3971     this->plt_size_ = off + this->plt_call_size(p.first);
3972   return this->can_reach_stub(from, off, r_type);
3973 }
3974
3975 template<int size, bool big_endian>
3976 bool
3977 Stub_table<size, big_endian>::add_plt_call_entry(
3978     Address from,
3979     const Sized_relobj_file<size, big_endian>* object,
3980     unsigned int locsym_index,
3981     unsigned int r_type,
3982     Address addend)
3983 {
3984   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3985   unsigned int off = this->plt_size_;
3986   std::pair<typename Plt_stub_entries::iterator, bool> p
3987     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3988   if (p.second)
3989     this->plt_size_ = off + this->plt_call_size(p.first);
3990   return this->can_reach_stub(from, off, r_type);
3991 }
3992
3993 // Find a plt call stub.
3994
3995 template<int size, bool big_endian>
3996 typename Stub_table<size, big_endian>::Address
3997 Stub_table<size, big_endian>::find_plt_call_entry(
3998     const Sized_relobj_file<size, big_endian>* object,
3999     const Symbol* gsym,
4000     unsigned int r_type,
4001     Address addend) const
4002 {
4003   Plt_stub_ent ent(object, gsym, r_type, addend);
4004   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4005   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4006 }
4007
4008 template<int size, bool big_endian>
4009 typename Stub_table<size, big_endian>::Address
4010 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4011 {
4012   Plt_stub_ent ent(gsym);
4013   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4014   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4015 }
4016
4017 template<int size, bool big_endian>
4018 typename Stub_table<size, big_endian>::Address
4019 Stub_table<size, big_endian>::find_plt_call_entry(
4020     const Sized_relobj_file<size, big_endian>* object,
4021     unsigned int locsym_index,
4022     unsigned int r_type,
4023     Address addend) const
4024 {
4025   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4026   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4027   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4028 }
4029
4030 template<int size, bool big_endian>
4031 typename Stub_table<size, big_endian>::Address
4032 Stub_table<size, big_endian>::find_plt_call_entry(
4033     const Sized_relobj_file<size, big_endian>* object,
4034     unsigned int locsym_index) const
4035 {
4036   Plt_stub_ent ent(object, locsym_index);
4037   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4038   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4039 }
4040
4041 // Add a long branch stub if we don't already have one to given
4042 // destination.
4043
4044 template<int size, bool big_endian>
4045 bool
4046 Stub_table<size, big_endian>::add_long_branch_entry(
4047     const Powerpc_relobj<size, big_endian>* object,
4048     unsigned int r_type,
4049     Address from,
4050     Address to)
4051 {
4052   Branch_stub_ent ent(object, to);
4053   Address off = this->branch_size_;
4054   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4055     {
4056       unsigned int stub_size = this->branch_stub_size(to);
4057       this->branch_size_ = off + stub_size;
4058       if (size == 64 && stub_size != 4)
4059         this->targ_->add_branch_lookup_table(to);
4060     }
4061   return this->can_reach_stub(from, off, r_type);
4062 }
4063
4064 // Find long branch stub.
4065
4066 template<int size, bool big_endian>
4067 typename Stub_table<size, big_endian>::Address
4068 Stub_table<size, big_endian>::find_long_branch_entry(
4069     const Powerpc_relobj<size, big_endian>* object,
4070     Address to) const
4071 {
4072   Branch_stub_ent ent(object, to);
4073   typename Branch_stub_entries::const_iterator p
4074     = this->long_branch_stubs_.find(ent);
4075   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4076 }
4077
4078 // A class to handle .glink.
4079
4080 template<int size, bool big_endian>
4081 class Output_data_glink : public Output_section_data
4082 {
4083  public:
4084   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4085   static const Address invalid_address = static_cast<Address>(0) - 1;
4086   static const int pltresolve_size = 16*4;
4087
4088   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4089     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4090       end_branch_table_(), ge_size_(0)
4091   { }
4092
4093   void
4094   add_eh_frame(Layout* layout);
4095
4096   void
4097   add_global_entry(const Symbol*);
4098
4099   Address
4100   find_global_entry(const Symbol*) const;
4101
4102   Address
4103   global_entry_address() const
4104   {
4105     gold_assert(this->is_data_size_valid());
4106     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4107     return this->address() + global_entry_off;
4108   }
4109
4110  protected:
4111   // Write to a map file.
4112   void
4113   do_print_to_mapfile(Mapfile* mapfile) const
4114   { mapfile->print_output_data(this, _("** glink")); }
4115
4116  private:
4117   void
4118   set_final_data_size();
4119
4120   // Write out .glink
4121   void
4122   do_write(Output_file*);
4123
4124   // Allows access to .got and .plt for do_write.
4125   Target_powerpc<size, big_endian>* targ_;
4126
4127   // Map sym to stub offset.
4128   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4129   Global_entry_stub_entries global_entry_stubs_;
4130
4131   unsigned int end_branch_table_, ge_size_;
4132 };
4133
4134 template<int size, bool big_endian>
4135 void
4136 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4137 {
4138   if (!parameters->options().ld_generated_unwind_info())
4139     return;
4140
4141   if (size == 64)
4142     {
4143       if (this->targ_->abiversion() < 2)
4144         layout->add_eh_frame_for_plt(this,
4145                                      Eh_cie<64>::eh_frame_cie,
4146                                      sizeof (Eh_cie<64>::eh_frame_cie),
4147                                      glink_eh_frame_fde_64v1,
4148                                      sizeof (glink_eh_frame_fde_64v1));
4149       else
4150         layout->add_eh_frame_for_plt(this,
4151                                      Eh_cie<64>::eh_frame_cie,
4152                                      sizeof (Eh_cie<64>::eh_frame_cie),
4153                                      glink_eh_frame_fde_64v2,
4154                                      sizeof (glink_eh_frame_fde_64v2));
4155     }
4156   else
4157     {
4158       // 32-bit .glink can use the default since the CIE return
4159       // address reg, LR, is valid.
4160       layout->add_eh_frame_for_plt(this,
4161                                    Eh_cie<32>::eh_frame_cie,
4162                                    sizeof (Eh_cie<32>::eh_frame_cie),
4163                                    default_fde,
4164                                    sizeof (default_fde));
4165       // Except where LR is used in a PIC __glink_PLTresolve.
4166       if (parameters->options().output_is_position_independent())
4167         layout->add_eh_frame_for_plt(this,
4168                                      Eh_cie<32>::eh_frame_cie,
4169                                      sizeof (Eh_cie<32>::eh_frame_cie),
4170                                      glink_eh_frame_fde_32,
4171                                      sizeof (glink_eh_frame_fde_32));
4172     }
4173 }
4174
4175 template<int size, bool big_endian>
4176 void
4177 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4178 {
4179   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4180     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4181   if (p.second)
4182     this->ge_size_ += 16;
4183 }
4184
4185 template<int size, bool big_endian>
4186 typename Output_data_glink<size, big_endian>::Address
4187 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4188 {
4189   typename Global_entry_stub_entries::const_iterator p
4190     = this->global_entry_stubs_.find(gsym);
4191   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4192 }
4193
4194 template<int size, bool big_endian>
4195 void
4196 Output_data_glink<size, big_endian>::set_final_data_size()
4197 {
4198   unsigned int count = this->targ_->plt_entry_count();
4199   section_size_type total = 0;
4200
4201   if (count != 0)
4202     {
4203       if (size == 32)
4204         {
4205           // space for branch table
4206           total += 4 * (count - 1);
4207
4208           total += -total & 15;
4209           total += this->pltresolve_size;
4210         }
4211       else
4212         {
4213           total += this->pltresolve_size;
4214
4215           // space for branch table
4216           total += 4 * count;
4217           if (this->targ_->abiversion() < 2)
4218             {
4219               total += 4 * count;
4220               if (count > 0x8000)
4221                 total += 4 * (count - 0x8000);
4222             }
4223         }
4224     }
4225   this->end_branch_table_ = total;
4226   total = (total + 15) & -16;
4227   total += this->ge_size_;
4228
4229   this->set_data_size(total);
4230 }
4231
4232 // Write out plt and long branch stub code.
4233
4234 template<int size, bool big_endian>
4235 void
4236 Stub_table<size, big_endian>::do_write(Output_file* of)
4237 {
4238   if (this->plt_call_stubs_.empty()
4239       && this->long_branch_stubs_.empty())
4240     return;
4241
4242   const section_size_type start_off = this->offset();
4243   const section_size_type off = this->stub_offset();
4244   const section_size_type oview_size =
4245     convert_to_section_size_type(this->data_size() - (off - start_off));
4246   unsigned char* const oview = of->get_output_view(off, oview_size);
4247   unsigned char* p;
4248
4249   if (size == 64)
4250     {
4251       const Output_data_got_powerpc<size, big_endian>* got
4252         = this->targ_->got_section();
4253       Address got_os_addr = got->output_section()->address();
4254
4255       if (!this->plt_call_stubs_.empty())
4256         {
4257           // The base address of the .plt section.
4258           Address plt_base = this->targ_->plt_section()->address();
4259           Address iplt_base = invalid_address;
4260
4261           // Write out plt call stubs.
4262           typename Plt_stub_entries::const_iterator cs;
4263           for (cs = this->plt_call_stubs_.begin();
4264                cs != this->plt_call_stubs_.end();
4265                ++cs)
4266             {
4267               bool is_iplt;
4268               Address pltoff = this->plt_off(cs, &is_iplt);
4269               Address plt_addr = pltoff;
4270               if (is_iplt)
4271                 {
4272                   if (iplt_base == invalid_address)
4273                     iplt_base = this->targ_->iplt_section()->address();
4274                   plt_addr += iplt_base;
4275                 }
4276               else
4277                 plt_addr += plt_base;
4278               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4279                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4280               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4281               Address off = plt_addr - got_addr;
4282
4283               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4284                 gold_error(_("%s: linkage table error against `%s'"),
4285                            cs->first.object_->name().c_str(),
4286                            cs->first.sym_->demangled_name().c_str());
4287
4288               bool plt_load_toc = this->targ_->abiversion() < 2;
4289               bool static_chain
4290                 = plt_load_toc && parameters->options().plt_static_chain();
4291               bool thread_safe
4292                 = plt_load_toc && this->targ_->plt_thread_safe();
4293               bool use_fake_dep = false;
4294               Address cmp_branch_off = 0;
4295               if (thread_safe)
4296                 {
4297                   unsigned int pltindex
4298                     = ((pltoff - this->targ_->first_plt_entry_offset())
4299                        / this->targ_->plt_entry_size());
4300                   Address glinkoff
4301                     = (this->targ_->glink_section()->pltresolve_size
4302                        + pltindex * 8);
4303                   if (pltindex > 32768)
4304                     glinkoff += (pltindex - 32768) * 4;
4305                   Address to
4306                     = this->targ_->glink_section()->address() + glinkoff;
4307                   Address from
4308                     = (this->stub_address() + cs->second + 24
4309                        + 4 * (ha(off) != 0)
4310                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4311                        + 4 * static_chain);
4312                   cmp_branch_off = to - from;
4313                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4314                 }
4315
4316               p = oview + cs->second;
4317               if (ha(off) != 0)
4318                 {
4319                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4320                   p += 4;
4321                   if (plt_load_toc)
4322                     {
4323                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4324                       p += 4;
4325                       write_insn<big_endian>(p, ld_12_11 + l(off));
4326                       p += 4;
4327                     }
4328                   else
4329                     {
4330                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4331                       p += 4;
4332                       write_insn<big_endian>(p, ld_12_12 + l(off));
4333                       p += 4;
4334                     }
4335                   if (plt_load_toc
4336                       && ha(off + 8 + 8 * static_chain) != ha(off))
4337                     {
4338                       write_insn<big_endian>(p, addi_11_11 + l(off));
4339                       p += 4;
4340                       off = 0;
4341                     }
4342                   write_insn<big_endian>(p, mtctr_12);
4343                   p += 4;
4344                   if (plt_load_toc)
4345                     {
4346                       if (use_fake_dep)
4347                         {
4348                           write_insn<big_endian>(p, xor_2_12_12);
4349                           p += 4;
4350                           write_insn<big_endian>(p, add_11_11_2);
4351                           p += 4;
4352                         }
4353                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4354                       p += 4;
4355                       if (static_chain)
4356                         {
4357                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4358                           p += 4;
4359                         }
4360                     }
4361                 }
4362               else
4363                 {
4364                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4365                   p += 4;
4366                   write_insn<big_endian>(p, ld_12_2 + l(off));
4367                   p += 4;
4368                   if (plt_load_toc
4369                       && ha(off + 8 + 8 * static_chain) != ha(off))
4370                     {
4371                       write_insn<big_endian>(p, addi_2_2 + l(off));
4372                       p += 4;
4373                       off = 0;
4374                     }
4375                   write_insn<big_endian>(p, mtctr_12);
4376                   p += 4;
4377                   if (plt_load_toc)
4378                     {
4379                       if (use_fake_dep)
4380                         {
4381                           write_insn<big_endian>(p, xor_11_12_12);
4382                           p += 4;
4383                           write_insn<big_endian>(p, add_2_2_11);
4384                           p += 4;
4385                         }
4386                       if (static_chain)
4387                         {
4388                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4389                           p += 4;
4390                         }
4391                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4392                       p += 4;
4393                     }
4394                 }
4395               if (thread_safe && !use_fake_dep)
4396                 {
4397                   write_insn<big_endian>(p, cmpldi_2_0);
4398                   p += 4;
4399                   write_insn<big_endian>(p, bnectr_p4);
4400                   p += 4;
4401                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4402                 }
4403               else
4404                 write_insn<big_endian>(p, bctr);
4405             }
4406         }
4407
4408       // Write out long branch stubs.
4409       typename Branch_stub_entries::const_iterator bs;
4410       for (bs = this->long_branch_stubs_.begin();
4411            bs != this->long_branch_stubs_.end();
4412            ++bs)
4413         {
4414           p = oview + this->plt_size_ + bs->second;
4415           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4416           Address delta = bs->first.dest_ - loc;
4417           if (delta + (1 << 25) < 2 << 25)
4418             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4419           else
4420             {
4421               Address brlt_addr
4422                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4423               gold_assert(brlt_addr != invalid_address);
4424               brlt_addr += this->targ_->brlt_section()->address();
4425               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4426               Address brltoff = brlt_addr - got_addr;
4427               if (ha(brltoff) == 0)
4428                 {
4429                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4430                 }
4431               else
4432                 {
4433                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4434                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4435                 }
4436               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4437               write_insn<big_endian>(p, bctr);
4438             }
4439         }
4440     }
4441   else
4442     {
4443       if (!this->plt_call_stubs_.empty())
4444         {
4445           // The base address of the .plt section.
4446           Address plt_base = this->targ_->plt_section()->address();
4447           Address iplt_base = invalid_address;
4448           // The address of _GLOBAL_OFFSET_TABLE_.
4449           Address g_o_t = invalid_address;
4450
4451           // Write out plt call stubs.
4452           typename Plt_stub_entries::const_iterator cs;
4453           for (cs = this->plt_call_stubs_.begin();
4454                cs != this->plt_call_stubs_.end();
4455                ++cs)
4456             {
4457               bool is_iplt;
4458               Address plt_addr = this->plt_off(cs, &is_iplt);
4459               if (is_iplt)
4460                 {
4461                   if (iplt_base == invalid_address)
4462                     iplt_base = this->targ_->iplt_section()->address();
4463                   plt_addr += iplt_base;
4464                 }
4465               else
4466                 plt_addr += plt_base;
4467
4468               p = oview + cs->second;
4469               if (parameters->options().output_is_position_independent())
4470                 {
4471                   Address got_addr;
4472                   const Powerpc_relobj<size, big_endian>* ppcobj
4473                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4474                        (cs->first.object_));
4475                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4476                     {
4477                       unsigned int got2 = ppcobj->got2_shndx();
4478                       got_addr = ppcobj->get_output_section_offset(got2);
4479                       gold_assert(got_addr != invalid_address);
4480                       got_addr += (ppcobj->output_section(got2)->address()
4481                                    + cs->first.addend_);
4482                     }
4483                   else
4484                     {
4485                       if (g_o_t == invalid_address)
4486                         {
4487                           const Output_data_got_powerpc<size, big_endian>* got
4488                             = this->targ_->got_section();
4489                           g_o_t = got->address() + got->g_o_t();
4490                         }
4491                       got_addr = g_o_t;
4492                     }
4493
4494                   Address off = plt_addr - got_addr;
4495                   if (ha(off) == 0)
4496                     {
4497                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4498                       write_insn<big_endian>(p +  4, mtctr_11);
4499                       write_insn<big_endian>(p +  8, bctr);
4500                     }
4501                   else
4502                     {
4503                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4504                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4505                       write_insn<big_endian>(p +  8, mtctr_11);
4506                       write_insn<big_endian>(p + 12, bctr);
4507                     }
4508                 }
4509               else
4510                 {
4511                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4512                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4513                   write_insn<big_endian>(p +  8, mtctr_11);
4514                   write_insn<big_endian>(p + 12, bctr);
4515                 }
4516             }
4517         }
4518
4519       // Write out long branch stubs.
4520       typename Branch_stub_entries::const_iterator bs;
4521       for (bs = this->long_branch_stubs_.begin();
4522            bs != this->long_branch_stubs_.end();
4523            ++bs)
4524         {
4525           p = oview + this->plt_size_ + bs->second;
4526           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4527           Address delta = bs->first.dest_ - loc;
4528           if (delta + (1 << 25) < 2 << 25)
4529             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4530           else if (!parameters->options().output_is_position_independent())
4531             {
4532               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4533               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4534               write_insn<big_endian>(p +  8, mtctr_12);
4535               write_insn<big_endian>(p + 12, bctr);
4536             }
4537           else
4538             {
4539               delta -= 8;
4540               write_insn<big_endian>(p +  0, mflr_0);
4541               write_insn<big_endian>(p +  4, bcl_20_31);
4542               write_insn<big_endian>(p +  8, mflr_12);
4543               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4544               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4545               write_insn<big_endian>(p + 20, mtlr_0);
4546               write_insn<big_endian>(p + 24, mtctr_12);
4547               write_insn<big_endian>(p + 28, bctr);
4548             }
4549         }
4550     }
4551 }
4552
4553 // Write out .glink.
4554
4555 template<int size, bool big_endian>
4556 void
4557 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4558 {
4559   const section_size_type off = this->offset();
4560   const section_size_type oview_size =
4561     convert_to_section_size_type(this->data_size());
4562   unsigned char* const oview = of->get_output_view(off, oview_size);
4563   unsigned char* p;
4564
4565   // The base address of the .plt section.
4566   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4567   Address plt_base = this->targ_->plt_section()->address();
4568
4569   if (size == 64)
4570     {
4571       if (this->end_branch_table_ != 0)
4572         {
4573           // Write pltresolve stub.
4574           p = oview;
4575           Address after_bcl = this->address() + 16;
4576           Address pltoff = plt_base - after_bcl;
4577
4578           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4579
4580           if (this->targ_->abiversion() < 2)
4581             {
4582               write_insn<big_endian>(p, mflr_12),               p += 4;
4583               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4584               write_insn<big_endian>(p, mflr_11),               p += 4;
4585               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4586               write_insn<big_endian>(p, mtlr_12),               p += 4;
4587               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4588               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4589               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4590               write_insn<big_endian>(p, mtctr_12),              p += 4;
4591               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4592             }
4593           else
4594             {
4595               write_insn<big_endian>(p, mflr_0),                p += 4;
4596               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4597               write_insn<big_endian>(p, mflr_11),               p += 4;
4598               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4599               write_insn<big_endian>(p, mtlr_0),                p += 4;
4600               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4601               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4602               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4603               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4604               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4605               write_insn<big_endian>(p, mtctr_12),              p += 4;
4606               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4607             }
4608           write_insn<big_endian>(p, bctr),                      p += 4;
4609           while (p < oview + this->pltresolve_size)
4610             write_insn<big_endian>(p, nop), p += 4;
4611
4612           // Write lazy link call stubs.
4613           uint32_t indx = 0;
4614           while (p < oview + this->end_branch_table_)
4615             {
4616               if (this->targ_->abiversion() < 2)
4617                 {
4618                   if (indx < 0x8000)
4619                     {
4620                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4621                     }
4622                   else
4623                     {
4624                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4625                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4626                     }
4627                 }
4628               uint32_t branch_off = 8 - (p - oview);
4629               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4630               indx++;
4631             }
4632         }
4633
4634       Address plt_base = this->targ_->plt_section()->address();
4635       Address iplt_base = invalid_address;
4636       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4637       Address global_entry_base = this->address() + global_entry_off;
4638       typename Global_entry_stub_entries::const_iterator ge;
4639       for (ge = this->global_entry_stubs_.begin();
4640            ge != this->global_entry_stubs_.end();
4641            ++ge)
4642         {
4643           p = oview + global_entry_off + ge->second;
4644           Address plt_addr = ge->first->plt_offset();
4645           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4646               && ge->first->can_use_relative_reloc(false))
4647             {
4648               if (iplt_base == invalid_address)
4649                 iplt_base = this->targ_->iplt_section()->address();
4650               plt_addr += iplt_base;
4651             }
4652           else
4653             plt_addr += plt_base;
4654           Address my_addr = global_entry_base + ge->second;
4655           Address off = plt_addr - my_addr;
4656
4657           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4658             gold_error(_("%s: linkage table error against `%s'"),
4659                        ge->first->object()->name().c_str(),
4660                        ge->first->demangled_name().c_str());
4661
4662           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4663           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4664           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4665           write_insn<big_endian>(p, bctr);
4666         }
4667     }
4668   else
4669     {
4670       const Output_data_got_powerpc<size, big_endian>* got
4671         = this->targ_->got_section();
4672       // The address of _GLOBAL_OFFSET_TABLE_.
4673       Address g_o_t = got->address() + got->g_o_t();
4674
4675       // Write out pltresolve branch table.
4676       p = oview;
4677       unsigned int the_end = oview_size - this->pltresolve_size;
4678       unsigned char* end_p = oview + the_end;
4679       while (p < end_p - 8 * 4)
4680         write_insn<big_endian>(p, b + end_p - p), p += 4;
4681       while (p < end_p)
4682         write_insn<big_endian>(p, nop), p += 4;
4683
4684       // Write out pltresolve call stub.
4685       if (parameters->options().output_is_position_independent())
4686         {
4687           Address res0_off = 0;
4688           Address after_bcl_off = the_end + 12;
4689           Address bcl_res0 = after_bcl_off - res0_off;
4690
4691           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4692           write_insn<big_endian>(p +  4, mflr_0);
4693           write_insn<big_endian>(p +  8, bcl_20_31);
4694           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4695           write_insn<big_endian>(p + 16, mflr_12);
4696           write_insn<big_endian>(p + 20, mtlr_0);
4697           write_insn<big_endian>(p + 24, sub_11_11_12);
4698
4699           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4700
4701           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4702           if (ha(got_bcl) == ha(got_bcl + 4))
4703             {
4704               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4705               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4706             }
4707           else
4708             {
4709               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4710               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4711             }
4712           write_insn<big_endian>(p + 40, mtctr_0);
4713           write_insn<big_endian>(p + 44, add_0_11_11);
4714           write_insn<big_endian>(p + 48, add_11_0_11);
4715           write_insn<big_endian>(p + 52, bctr);
4716           write_insn<big_endian>(p + 56, nop);
4717           write_insn<big_endian>(p + 60, nop);
4718         }
4719       else
4720         {
4721           Address res0 = this->address();
4722
4723           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4724           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4725           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4726             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4727           else
4728             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4729           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4730           write_insn<big_endian>(p + 16, mtctr_0);
4731           write_insn<big_endian>(p + 20, add_0_11_11);
4732           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4733             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4734           else
4735             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4736           write_insn<big_endian>(p + 28, add_11_0_11);
4737           write_insn<big_endian>(p + 32, bctr);
4738           write_insn<big_endian>(p + 36, nop);
4739           write_insn<big_endian>(p + 40, nop);
4740           write_insn<big_endian>(p + 44, nop);
4741           write_insn<big_endian>(p + 48, nop);
4742           write_insn<big_endian>(p + 52, nop);
4743           write_insn<big_endian>(p + 56, nop);
4744           write_insn<big_endian>(p + 60, nop);
4745         }
4746       p += 64;
4747     }
4748
4749   of->write_output_view(off, oview_size, oview);
4750 }
4751
4752
4753 // A class to handle linker generated save/restore functions.
4754
4755 template<int size, bool big_endian>
4756 class Output_data_save_res : public Output_section_data_build
4757 {
4758  public:
4759   Output_data_save_res(Symbol_table* symtab);
4760
4761  protected:
4762   // Write to a map file.
4763   void
4764   do_print_to_mapfile(Mapfile* mapfile) const
4765   { mapfile->print_output_data(this, _("** save/restore")); }
4766
4767   void
4768   do_write(Output_file*);
4769
4770  private:
4771   // The maximum size of save/restore contents.
4772   static const unsigned int savres_max = 218*4;
4773
4774   void
4775   savres_define(Symbol_table* symtab,
4776                 const char *name,
4777                 unsigned int lo, unsigned int hi,
4778                 unsigned char* write_ent(unsigned char*, int),
4779                 unsigned char* write_tail(unsigned char*, int));
4780
4781   unsigned char *contents_;
4782 };
4783
4784 template<bool big_endian>
4785 static unsigned char*
4786 savegpr0(unsigned char* p, int r)
4787 {
4788   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4789   write_insn<big_endian>(p, insn);
4790   return p + 4;
4791 }
4792
4793 template<bool big_endian>
4794 static unsigned char*
4795 savegpr0_tail(unsigned char* p, int r)
4796 {
4797   p = savegpr0<big_endian>(p, r);
4798   uint32_t insn = std_0_1 + 16;
4799   write_insn<big_endian>(p, insn);
4800   p = p + 4;
4801   write_insn<big_endian>(p, blr);
4802   return p + 4;
4803 }
4804
4805 template<bool big_endian>
4806 static unsigned char*
4807 restgpr0(unsigned char* p, int r)
4808 {
4809   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4810   write_insn<big_endian>(p, insn);
4811   return p + 4;
4812 }
4813
4814 template<bool big_endian>
4815 static unsigned char*
4816 restgpr0_tail(unsigned char* p, int r)
4817 {
4818   uint32_t insn = ld_0_1 + 16;
4819   write_insn<big_endian>(p, insn);
4820   p = p + 4;
4821   p = restgpr0<big_endian>(p, r);
4822   write_insn<big_endian>(p, mtlr_0);
4823   p = p + 4;
4824   if (r == 29)
4825     {
4826       p = restgpr0<big_endian>(p, 30);
4827       p = restgpr0<big_endian>(p, 31);
4828     }
4829   write_insn<big_endian>(p, blr);
4830   return p + 4;
4831 }
4832
4833 template<bool big_endian>
4834 static unsigned char*
4835 savegpr1(unsigned char* p, int r)
4836 {
4837   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4838   write_insn<big_endian>(p, insn);
4839   return p + 4;
4840 }
4841
4842 template<bool big_endian>
4843 static unsigned char*
4844 savegpr1_tail(unsigned char* p, int r)
4845 {
4846   p = savegpr1<big_endian>(p, r);
4847   write_insn<big_endian>(p, blr);
4848   return p + 4;
4849 }
4850
4851 template<bool big_endian>
4852 static unsigned char*
4853 restgpr1(unsigned char* p, int r)
4854 {
4855   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4856   write_insn<big_endian>(p, insn);
4857   return p + 4;
4858 }
4859
4860 template<bool big_endian>
4861 static unsigned char*
4862 restgpr1_tail(unsigned char* p, int r)
4863 {
4864   p = restgpr1<big_endian>(p, r);
4865   write_insn<big_endian>(p, blr);
4866   return p + 4;
4867 }
4868
4869 template<bool big_endian>
4870 static unsigned char*
4871 savefpr(unsigned char* p, int r)
4872 {
4873   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4874   write_insn<big_endian>(p, insn);
4875   return p + 4;
4876 }
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 savefpr0_tail(unsigned char* p, int r)
4881 {
4882   p = savefpr<big_endian>(p, r);
4883   write_insn<big_endian>(p, std_0_1 + 16);
4884   p = p + 4;
4885   write_insn<big_endian>(p, blr);
4886   return p + 4;
4887 }
4888
4889 template<bool big_endian>
4890 static unsigned char*
4891 restfpr(unsigned char* p, int r)
4892 {
4893   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4894   write_insn<big_endian>(p, insn);
4895   return p + 4;
4896 }
4897
4898 template<bool big_endian>
4899 static unsigned char*
4900 restfpr0_tail(unsigned char* p, int r)
4901 {
4902   write_insn<big_endian>(p, ld_0_1 + 16);
4903   p = p + 4;
4904   p = restfpr<big_endian>(p, r);
4905   write_insn<big_endian>(p, mtlr_0);
4906   p = p + 4;
4907   if (r == 29)
4908     {
4909       p = restfpr<big_endian>(p, 30);
4910       p = restfpr<big_endian>(p, 31);
4911     }
4912   write_insn<big_endian>(p, blr);
4913   return p + 4;
4914 }
4915
4916 template<bool big_endian>
4917 static unsigned char*
4918 savefpr1_tail(unsigned char* p, int r)
4919 {
4920   p = savefpr<big_endian>(p, r);
4921   write_insn<big_endian>(p, blr);
4922   return p + 4;
4923 }
4924
4925 template<bool big_endian>
4926 static unsigned char*
4927 restfpr1_tail(unsigned char* p, int r)
4928 {
4929   p = restfpr<big_endian>(p, r);
4930   write_insn<big_endian>(p, blr);
4931   return p + 4;
4932 }
4933
4934 template<bool big_endian>
4935 static unsigned char*
4936 savevr(unsigned char* p, int r)
4937 {
4938   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4939   write_insn<big_endian>(p, insn);
4940   p = p + 4;
4941   insn = stvx_0_12_0 + (r << 21);
4942   write_insn<big_endian>(p, insn);
4943   return p + 4;
4944 }
4945
4946 template<bool big_endian>
4947 static unsigned char*
4948 savevr_tail(unsigned char* p, int r)
4949 {
4950   p = savevr<big_endian>(p, r);
4951   write_insn<big_endian>(p, blr);
4952   return p + 4;
4953 }
4954
4955 template<bool big_endian>
4956 static unsigned char*
4957 restvr(unsigned char* p, int r)
4958 {
4959   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4960   write_insn<big_endian>(p, insn);
4961   p = p + 4;
4962   insn = lvx_0_12_0 + (r << 21);
4963   write_insn<big_endian>(p, insn);
4964   return p + 4;
4965 }
4966
4967 template<bool big_endian>
4968 static unsigned char*
4969 restvr_tail(unsigned char* p, int r)
4970 {
4971   p = restvr<big_endian>(p, r);
4972   write_insn<big_endian>(p, blr);
4973   return p + 4;
4974 }
4975
4976
4977 template<int size, bool big_endian>
4978 Output_data_save_res<size, big_endian>::Output_data_save_res(
4979     Symbol_table* symtab)
4980   : Output_section_data_build(4),
4981     contents_(NULL)
4982 {
4983   this->savres_define(symtab,
4984                       "_savegpr0_", 14, 31,
4985                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4986   this->savres_define(symtab,
4987                       "_restgpr0_", 14, 29,
4988                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4989   this->savres_define(symtab,
4990                       "_restgpr0_", 30, 31,
4991                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4992   this->savres_define(symtab,
4993                       "_savegpr1_", 14, 31,
4994                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4995   this->savres_define(symtab,
4996                       "_restgpr1_", 14, 31,
4997                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4998   this->savres_define(symtab,
4999                       "_savefpr_", 14, 31,
5000                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5001   this->savres_define(symtab,
5002                       "_restfpr_", 14, 29,
5003                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5004   this->savres_define(symtab,
5005                       "_restfpr_", 30, 31,
5006                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5007   this->savres_define(symtab,
5008                       "._savef", 14, 31,
5009                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5010   this->savres_define(symtab,
5011                       "._restf", 14, 31,
5012                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5013   this->savres_define(symtab,
5014                       "_savevr_", 20, 31,
5015                       savevr<big_endian>, savevr_tail<big_endian>);
5016   this->savres_define(symtab,
5017                       "_restvr_", 20, 31,
5018                       restvr<big_endian>, restvr_tail<big_endian>);
5019 }
5020
5021 template<int size, bool big_endian>
5022 void
5023 Output_data_save_res<size, big_endian>::savres_define(
5024     Symbol_table* symtab,
5025     const char *name,
5026     unsigned int lo, unsigned int hi,
5027     unsigned char* write_ent(unsigned char*, int),
5028     unsigned char* write_tail(unsigned char*, int))
5029 {
5030   size_t len = strlen(name);
5031   bool writing = false;
5032   char sym[16];
5033
5034   memcpy(sym, name, len);
5035   sym[len + 2] = 0;
5036
5037   for (unsigned int i = lo; i <= hi; i++)
5038     {
5039       sym[len + 0] = i / 10 + '0';
5040       sym[len + 1] = i % 10 + '0';
5041       Symbol* gsym = symtab->lookup(sym);
5042       bool refd = gsym != NULL && gsym->is_undefined();
5043       writing = writing || refd;
5044       if (writing)
5045         {
5046           if (this->contents_ == NULL)
5047             this->contents_ = new unsigned char[this->savres_max];
5048
5049           section_size_type value = this->current_data_size();
5050           unsigned char* p = this->contents_ + value;
5051           if (i != hi)
5052             p = write_ent(p, i);
5053           else
5054             p = write_tail(p, i);
5055           section_size_type cur_size = p - this->contents_;
5056           this->set_current_data_size(cur_size);
5057           if (refd)
5058             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5059                                           this, value, cur_size - value,
5060                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5061                                           elfcpp::STV_HIDDEN, 0, false, false);
5062         }
5063     }
5064 }
5065
5066 // Write out save/restore.
5067
5068 template<int size, bool big_endian>
5069 void
5070 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5071 {
5072   const section_size_type off = this->offset();
5073   const section_size_type oview_size =
5074     convert_to_section_size_type(this->data_size());
5075   unsigned char* const oview = of->get_output_view(off, oview_size);
5076   memcpy(oview, this->contents_, oview_size);
5077   of->write_output_view(off, oview_size, oview);
5078 }
5079
5080
5081 // Create the glink section.
5082
5083 template<int size, bool big_endian>
5084 void
5085 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5086 {
5087   if (this->glink_ == NULL)
5088     {
5089       this->glink_ = new Output_data_glink<size, big_endian>(this);
5090       this->glink_->add_eh_frame(layout);
5091       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5092                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5093                                       this->glink_, ORDER_TEXT, false);
5094     }
5095 }
5096
5097 // Create a PLT entry for a global symbol.
5098
5099 template<int size, bool big_endian>
5100 void
5101 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5102                                                  Layout* layout,
5103                                                  Symbol* gsym)
5104 {
5105   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5106       && gsym->can_use_relative_reloc(false))
5107     {
5108       if (this->iplt_ == NULL)
5109         this->make_iplt_section(symtab, layout);
5110       this->iplt_->add_ifunc_entry(gsym);
5111     }
5112   else
5113     {
5114       if (this->plt_ == NULL)
5115         this->make_plt_section(symtab, layout);
5116       this->plt_->add_entry(gsym);
5117     }
5118 }
5119
5120 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5121
5122 template<int size, bool big_endian>
5123 void
5124 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5125     Symbol_table* symtab,
5126     Layout* layout,
5127     Sized_relobj_file<size, big_endian>* relobj,
5128     unsigned int r_sym)
5129 {
5130   if (this->iplt_ == NULL)
5131     this->make_iplt_section(symtab, layout);
5132   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5133 }
5134
5135 // Return the number of entries in the PLT.
5136
5137 template<int size, bool big_endian>
5138 unsigned int
5139 Target_powerpc<size, big_endian>::plt_entry_count() const
5140 {
5141   if (this->plt_ == NULL)
5142     return 0;
5143   return this->plt_->entry_count();
5144 }
5145
5146 // Create a GOT entry for local dynamic __tls_get_addr calls.
5147
5148 template<int size, bool big_endian>
5149 unsigned int
5150 Target_powerpc<size, big_endian>::tlsld_got_offset(
5151     Symbol_table* symtab,
5152     Layout* layout,
5153     Sized_relobj_file<size, big_endian>* object)
5154 {
5155   if (this->tlsld_got_offset_ == -1U)
5156     {
5157       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5158       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5159       Output_data_got_powerpc<size, big_endian>* got
5160         = this->got_section(symtab, layout);
5161       unsigned int got_offset = got->add_constant_pair(0, 0);
5162       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5163                           got_offset, 0);
5164       this->tlsld_got_offset_ = got_offset;
5165     }
5166   return this->tlsld_got_offset_;
5167 }
5168
5169 // Get the Reference_flags for a particular relocation.
5170
5171 template<int size, bool big_endian>
5172 int
5173 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5174     unsigned int r_type,
5175     const Target_powerpc* target)
5176 {
5177   int ref = 0;
5178
5179   switch (r_type)
5180     {
5181     case elfcpp::R_POWERPC_NONE:
5182     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5183     case elfcpp::R_POWERPC_GNU_VTENTRY:
5184     case elfcpp::R_PPC64_TOC:
5185       // No symbol reference.
5186       break;
5187
5188     case elfcpp::R_PPC64_ADDR64:
5189     case elfcpp::R_PPC64_UADDR64:
5190     case elfcpp::R_POWERPC_ADDR32:
5191     case elfcpp::R_POWERPC_UADDR32:
5192     case elfcpp::R_POWERPC_ADDR16:
5193     case elfcpp::R_POWERPC_UADDR16:
5194     case elfcpp::R_POWERPC_ADDR16_LO:
5195     case elfcpp::R_POWERPC_ADDR16_HI:
5196     case elfcpp::R_POWERPC_ADDR16_HA:
5197       ref = Symbol::ABSOLUTE_REF;
5198       break;
5199
5200     case elfcpp::R_POWERPC_ADDR24:
5201     case elfcpp::R_POWERPC_ADDR14:
5202     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5203     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5204       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5205       break;
5206
5207     case elfcpp::R_PPC64_REL64:
5208     case elfcpp::R_POWERPC_REL32:
5209     case elfcpp::R_PPC_LOCAL24PC:
5210     case elfcpp::R_POWERPC_REL16:
5211     case elfcpp::R_POWERPC_REL16_LO:
5212     case elfcpp::R_POWERPC_REL16_HI:
5213     case elfcpp::R_POWERPC_REL16_HA:
5214       ref = Symbol::RELATIVE_REF;
5215       break;
5216
5217     case elfcpp::R_POWERPC_REL24:
5218     case elfcpp::R_PPC_PLTREL24:
5219     case elfcpp::R_POWERPC_REL14:
5220     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5221     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5222       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5223       break;
5224
5225     case elfcpp::R_POWERPC_GOT16:
5226     case elfcpp::R_POWERPC_GOT16_LO:
5227     case elfcpp::R_POWERPC_GOT16_HI:
5228     case elfcpp::R_POWERPC_GOT16_HA:
5229     case elfcpp::R_PPC64_GOT16_DS:
5230     case elfcpp::R_PPC64_GOT16_LO_DS:
5231     case elfcpp::R_PPC64_TOC16:
5232     case elfcpp::R_PPC64_TOC16_LO:
5233     case elfcpp::R_PPC64_TOC16_HI:
5234     case elfcpp::R_PPC64_TOC16_HA:
5235     case elfcpp::R_PPC64_TOC16_DS:
5236     case elfcpp::R_PPC64_TOC16_LO_DS:
5237       // Absolute in GOT.
5238       ref = Symbol::ABSOLUTE_REF;
5239       break;
5240
5241     case elfcpp::R_POWERPC_GOT_TPREL16:
5242     case elfcpp::R_POWERPC_TLS:
5243       ref = Symbol::TLS_REF;
5244       break;
5245
5246     case elfcpp::R_POWERPC_COPY:
5247     case elfcpp::R_POWERPC_GLOB_DAT:
5248     case elfcpp::R_POWERPC_JMP_SLOT:
5249     case elfcpp::R_POWERPC_RELATIVE:
5250     case elfcpp::R_POWERPC_DTPMOD:
5251     default:
5252       // Not expected.  We will give an error later.
5253       break;
5254     }
5255
5256   if (size == 64 && target->abiversion() < 2)
5257     ref |= Symbol::FUNC_DESC_ABI;
5258   return ref;
5259 }
5260
5261 // Report an unsupported relocation against a local symbol.
5262
5263 template<int size, bool big_endian>
5264 void
5265 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5266     Sized_relobj_file<size, big_endian>* object,
5267     unsigned int r_type)
5268 {
5269   gold_error(_("%s: unsupported reloc %u against local symbol"),
5270              object->name().c_str(), r_type);
5271 }
5272
5273 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5274 // dynamic linker does not support it, issue an error.
5275
5276 template<int size, bool big_endian>
5277 void
5278 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5279                                                       unsigned int r_type)
5280 {
5281   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5282
5283   // These are the relocation types supported by glibc for both 32-bit
5284   // and 64-bit powerpc.
5285   switch (r_type)
5286     {
5287     case elfcpp::R_POWERPC_NONE:
5288     case elfcpp::R_POWERPC_RELATIVE:
5289     case elfcpp::R_POWERPC_GLOB_DAT:
5290     case elfcpp::R_POWERPC_DTPMOD:
5291     case elfcpp::R_POWERPC_DTPREL:
5292     case elfcpp::R_POWERPC_TPREL:
5293     case elfcpp::R_POWERPC_JMP_SLOT:
5294     case elfcpp::R_POWERPC_COPY:
5295     case elfcpp::R_POWERPC_IRELATIVE:
5296     case elfcpp::R_POWERPC_ADDR32:
5297     case elfcpp::R_POWERPC_UADDR32:
5298     case elfcpp::R_POWERPC_ADDR24:
5299     case elfcpp::R_POWERPC_ADDR16:
5300     case elfcpp::R_POWERPC_UADDR16:
5301     case elfcpp::R_POWERPC_ADDR16_LO:
5302     case elfcpp::R_POWERPC_ADDR16_HI:
5303     case elfcpp::R_POWERPC_ADDR16_HA:
5304     case elfcpp::R_POWERPC_ADDR14:
5305     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5306     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5307     case elfcpp::R_POWERPC_REL32:
5308     case elfcpp::R_POWERPC_REL24:
5309     case elfcpp::R_POWERPC_TPREL16:
5310     case elfcpp::R_POWERPC_TPREL16_LO:
5311     case elfcpp::R_POWERPC_TPREL16_HI:
5312     case elfcpp::R_POWERPC_TPREL16_HA:
5313       return;
5314
5315     default:
5316       break;
5317     }
5318
5319   if (size == 64)
5320     {
5321       switch (r_type)
5322         {
5323           // These are the relocation types supported only on 64-bit.
5324         case elfcpp::R_PPC64_ADDR64:
5325         case elfcpp::R_PPC64_UADDR64:
5326         case elfcpp::R_PPC64_JMP_IREL:
5327         case elfcpp::R_PPC64_ADDR16_DS:
5328         case elfcpp::R_PPC64_ADDR16_LO_DS:
5329         case elfcpp::R_PPC64_ADDR16_HIGH:
5330         case elfcpp::R_PPC64_ADDR16_HIGHA:
5331         case elfcpp::R_PPC64_ADDR16_HIGHER:
5332         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5333         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5334         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5335         case elfcpp::R_PPC64_REL64:
5336         case elfcpp::R_POWERPC_ADDR30:
5337         case elfcpp::R_PPC64_TPREL16_DS:
5338         case elfcpp::R_PPC64_TPREL16_LO_DS:
5339         case elfcpp::R_PPC64_TPREL16_HIGH:
5340         case elfcpp::R_PPC64_TPREL16_HIGHA:
5341         case elfcpp::R_PPC64_TPREL16_HIGHER:
5342         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5343         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5344         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5345           return;
5346
5347         default:
5348           break;
5349         }
5350     }
5351   else
5352     {
5353       switch (r_type)
5354         {
5355           // These are the relocation types supported only on 32-bit.
5356           // ??? glibc ld.so doesn't need to support these.
5357         case elfcpp::R_POWERPC_DTPREL16:
5358         case elfcpp::R_POWERPC_DTPREL16_LO:
5359         case elfcpp::R_POWERPC_DTPREL16_HI:
5360         case elfcpp::R_POWERPC_DTPREL16_HA:
5361           return;
5362
5363         default:
5364           break;
5365         }
5366     }
5367
5368   // This prevents us from issuing more than one error per reloc
5369   // section.  But we can still wind up issuing more than one
5370   // error per object file.
5371   if (this->issued_non_pic_error_)
5372     return;
5373   gold_assert(parameters->options().output_is_position_independent());
5374   object->error(_("requires unsupported dynamic reloc; "
5375                   "recompile with -fPIC"));
5376   this->issued_non_pic_error_ = true;
5377   return;
5378 }
5379
5380 // Return whether we need to make a PLT entry for a relocation of the
5381 // given type against a STT_GNU_IFUNC symbol.
5382
5383 template<int size, bool big_endian>
5384 bool
5385 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5386      Target_powerpc<size, big_endian>* target,
5387      Sized_relobj_file<size, big_endian>* object,
5388      unsigned int r_type,
5389      bool report_err)
5390 {
5391   // In non-pic code any reference will resolve to the plt call stub
5392   // for the ifunc symbol.
5393   if ((size == 32 || target->abiversion() >= 2)
5394       && !parameters->options().output_is_position_independent())
5395     return true;
5396
5397   switch (r_type)
5398     {
5399     // Word size refs from data sections are OK, but don't need a PLT entry.
5400     case elfcpp::R_POWERPC_ADDR32:
5401     case elfcpp::R_POWERPC_UADDR32:
5402       if (size == 32)
5403         return false;
5404       break;
5405
5406     case elfcpp::R_PPC64_ADDR64:
5407     case elfcpp::R_PPC64_UADDR64:
5408       if (size == 64)
5409         return false;
5410       break;
5411
5412     // GOT refs are good, but also don't need a PLT entry.
5413     case elfcpp::R_POWERPC_GOT16:
5414     case elfcpp::R_POWERPC_GOT16_LO:
5415     case elfcpp::R_POWERPC_GOT16_HI:
5416     case elfcpp::R_POWERPC_GOT16_HA:
5417     case elfcpp::R_PPC64_GOT16_DS:
5418     case elfcpp::R_PPC64_GOT16_LO_DS:
5419       return false;
5420
5421     // Function calls are good, and these do need a PLT entry.
5422     case elfcpp::R_POWERPC_ADDR24:
5423     case elfcpp::R_POWERPC_ADDR14:
5424     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5425     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5426     case elfcpp::R_POWERPC_REL24:
5427     case elfcpp::R_PPC_PLTREL24:
5428     case elfcpp::R_POWERPC_REL14:
5429     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5430     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5431       return true;
5432
5433     default:
5434       break;
5435     }
5436
5437   // Anything else is a problem.
5438   // If we are building a static executable, the libc startup function
5439   // responsible for applying indirect function relocations is going
5440   // to complain about the reloc type.
5441   // If we are building a dynamic executable, we will have a text
5442   // relocation.  The dynamic loader will set the text segment
5443   // writable and non-executable to apply text relocations.  So we'll
5444   // segfault when trying to run the indirection function to resolve
5445   // the reloc.
5446   if (report_err)
5447     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5448                object->name().c_str(), r_type);
5449   return false;
5450 }
5451
5452 // Scan a relocation for a local symbol.
5453
5454 template<int size, bool big_endian>
5455 inline void
5456 Target_powerpc<size, big_endian>::Scan::local(
5457     Symbol_table* symtab,
5458     Layout* layout,
5459     Target_powerpc<size, big_endian>* target,
5460     Sized_relobj_file<size, big_endian>* object,
5461     unsigned int data_shndx,
5462     Output_section* output_section,
5463     const elfcpp::Rela<size, big_endian>& reloc,
5464     unsigned int r_type,
5465     const elfcpp::Sym<size, big_endian>& lsym,
5466     bool is_discarded)
5467 {
5468   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5469
5470   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5471       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5472     {
5473       this->expect_tls_get_addr_call();
5474       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5475       if (tls_type != tls::TLSOPT_NONE)
5476         this->skip_next_tls_get_addr_call();
5477     }
5478   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5479            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5480     {
5481       this->expect_tls_get_addr_call();
5482       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5483       if (tls_type != tls::TLSOPT_NONE)
5484         this->skip_next_tls_get_addr_call();
5485     }
5486
5487   Powerpc_relobj<size, big_endian>* ppc_object
5488     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5489
5490   if (is_discarded)
5491     {
5492       if (size == 64
5493           && data_shndx == ppc_object->opd_shndx()
5494           && r_type == elfcpp::R_PPC64_ADDR64)
5495         ppc_object->set_opd_discard(reloc.get_r_offset());
5496       return;
5497     }
5498
5499   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5500   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5501   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5502     {
5503       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5504       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5505                           r_type, r_sym, reloc.get_r_addend());
5506       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5507     }
5508
5509   switch (r_type)
5510     {
5511     case elfcpp::R_POWERPC_NONE:
5512     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5513     case elfcpp::R_POWERPC_GNU_VTENTRY:
5514     case elfcpp::R_PPC64_TOCSAVE:
5515     case elfcpp::R_POWERPC_TLS:
5516       break;
5517
5518     case elfcpp::R_PPC64_TOC:
5519       {
5520         Output_data_got_powerpc<size, big_endian>* got
5521           = target->got_section(symtab, layout);
5522         if (parameters->options().output_is_position_independent())
5523           {
5524             Address off = reloc.get_r_offset();
5525             if (size == 64
5526                 && target->abiversion() < 2
5527                 && data_shndx == ppc_object->opd_shndx()
5528                 && ppc_object->get_opd_discard(off - 8))
5529               break;
5530
5531             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5532             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5533             rela_dyn->add_output_section_relative(got->output_section(),
5534                                                   elfcpp::R_POWERPC_RELATIVE,
5535                                                   output_section,
5536                                                   object, data_shndx, off,
5537                                                   symobj->toc_base_offset());
5538           }
5539       }
5540       break;
5541
5542     case elfcpp::R_PPC64_ADDR64:
5543     case elfcpp::R_PPC64_UADDR64:
5544     case elfcpp::R_POWERPC_ADDR32:
5545     case elfcpp::R_POWERPC_UADDR32:
5546     case elfcpp::R_POWERPC_ADDR24:
5547     case elfcpp::R_POWERPC_ADDR16:
5548     case elfcpp::R_POWERPC_ADDR16_LO:
5549     case elfcpp::R_POWERPC_ADDR16_HI:
5550     case elfcpp::R_POWERPC_ADDR16_HA:
5551     case elfcpp::R_POWERPC_UADDR16:
5552     case elfcpp::R_PPC64_ADDR16_HIGH:
5553     case elfcpp::R_PPC64_ADDR16_HIGHA:
5554     case elfcpp::R_PPC64_ADDR16_HIGHER:
5555     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5556     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5557     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5558     case elfcpp::R_PPC64_ADDR16_DS:
5559     case elfcpp::R_PPC64_ADDR16_LO_DS:
5560     case elfcpp::R_POWERPC_ADDR14:
5561     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5562     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5563       // If building a shared library (or a position-independent
5564       // executable), we need to create a dynamic relocation for
5565       // this location.
5566       if (parameters->options().output_is_position_independent()
5567           || (size == 64 && is_ifunc && target->abiversion() < 2))
5568         {
5569           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5570                                                              is_ifunc);
5571           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5572           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5573               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5574             {
5575               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5576                                      : elfcpp::R_POWERPC_RELATIVE);
5577               rela_dyn->add_local_relative(object, r_sym, dynrel,
5578                                            output_section, data_shndx,
5579                                            reloc.get_r_offset(),
5580                                            reloc.get_r_addend(), false);
5581             }
5582           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5583             {
5584               check_non_pic(object, r_type);
5585               rela_dyn->add_local(object, r_sym, r_type, output_section,
5586                                   data_shndx, reloc.get_r_offset(),
5587                                   reloc.get_r_addend());
5588             }
5589           else
5590             {
5591               gold_assert(lsym.get_st_value() == 0);
5592               unsigned int shndx = lsym.get_st_shndx();
5593               bool is_ordinary;
5594               shndx = object->adjust_sym_shndx(r_sym, shndx,
5595                                                &is_ordinary);
5596               if (!is_ordinary)
5597                 object->error(_("section symbol %u has bad shndx %u"),
5598                               r_sym, shndx);
5599               else
5600                 rela_dyn->add_local_section(object, shndx, r_type,
5601                                             output_section, data_shndx,
5602                                             reloc.get_r_offset());
5603             }
5604         }
5605       break;
5606
5607     case elfcpp::R_POWERPC_REL24:
5608     case elfcpp::R_PPC_PLTREL24:
5609     case elfcpp::R_PPC_LOCAL24PC:
5610     case elfcpp::R_POWERPC_REL14:
5611     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5612     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5613       if (!is_ifunc)
5614         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5615                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5616                             reloc.get_r_addend());
5617       break;
5618
5619     case elfcpp::R_PPC64_REL64:
5620     case elfcpp::R_POWERPC_REL32:
5621     case elfcpp::R_POWERPC_REL16:
5622     case elfcpp::R_POWERPC_REL16_LO:
5623     case elfcpp::R_POWERPC_REL16_HI:
5624     case elfcpp::R_POWERPC_REL16_HA:
5625     case elfcpp::R_POWERPC_SECTOFF:
5626     case elfcpp::R_POWERPC_SECTOFF_LO:
5627     case elfcpp::R_POWERPC_SECTOFF_HI:
5628     case elfcpp::R_POWERPC_SECTOFF_HA:
5629     case elfcpp::R_PPC64_SECTOFF_DS:
5630     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5631     case elfcpp::R_POWERPC_TPREL16:
5632     case elfcpp::R_POWERPC_TPREL16_LO:
5633     case elfcpp::R_POWERPC_TPREL16_HI:
5634     case elfcpp::R_POWERPC_TPREL16_HA:
5635     case elfcpp::R_PPC64_TPREL16_DS:
5636     case elfcpp::R_PPC64_TPREL16_LO_DS:
5637     case elfcpp::R_PPC64_TPREL16_HIGH:
5638     case elfcpp::R_PPC64_TPREL16_HIGHA:
5639     case elfcpp::R_PPC64_TPREL16_HIGHER:
5640     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5641     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5642     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5643     case elfcpp::R_POWERPC_DTPREL16:
5644     case elfcpp::R_POWERPC_DTPREL16_LO:
5645     case elfcpp::R_POWERPC_DTPREL16_HI:
5646     case elfcpp::R_POWERPC_DTPREL16_HA:
5647     case elfcpp::R_PPC64_DTPREL16_DS:
5648     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5649     case elfcpp::R_PPC64_DTPREL16_HIGH:
5650     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5651     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5652     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5653     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5654     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5655     case elfcpp::R_PPC64_TLSGD:
5656     case elfcpp::R_PPC64_TLSLD:
5657     case elfcpp::R_PPC64_ADDR64_LOCAL:
5658       break;
5659
5660     case elfcpp::R_POWERPC_GOT16:
5661     case elfcpp::R_POWERPC_GOT16_LO:
5662     case elfcpp::R_POWERPC_GOT16_HI:
5663     case elfcpp::R_POWERPC_GOT16_HA:
5664     case elfcpp::R_PPC64_GOT16_DS:
5665     case elfcpp::R_PPC64_GOT16_LO_DS:
5666       {
5667         // The symbol requires a GOT entry.
5668         Output_data_got_powerpc<size, big_endian>* got
5669           = target->got_section(symtab, layout);
5670         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5671
5672         if (!parameters->options().output_is_position_independent())
5673           {
5674             if ((size == 32 && is_ifunc)
5675                 || (size == 64 && target->abiversion() >= 2))
5676               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5677             else
5678               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5679           }
5680         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5681           {
5682             // If we are generating a shared object or a pie, this
5683             // symbol's GOT entry will be set by a dynamic relocation.
5684             unsigned int off;
5685             off = got->add_constant(0);
5686             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5687
5688             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5689                                                                is_ifunc);
5690             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5691                                    : elfcpp::R_POWERPC_RELATIVE);
5692             rela_dyn->add_local_relative(object, r_sym, dynrel,
5693                                          got, off, 0, false);
5694           }
5695       }
5696       break;
5697
5698     case elfcpp::R_PPC64_TOC16:
5699     case elfcpp::R_PPC64_TOC16_LO:
5700     case elfcpp::R_PPC64_TOC16_HI:
5701     case elfcpp::R_PPC64_TOC16_HA:
5702     case elfcpp::R_PPC64_TOC16_DS:
5703     case elfcpp::R_PPC64_TOC16_LO_DS:
5704       // We need a GOT section.
5705       target->got_section(symtab, layout);
5706       break;
5707
5708     case elfcpp::R_POWERPC_GOT_TLSGD16:
5709     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5710     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5711     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5712       {
5713         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5714         if (tls_type == tls::TLSOPT_NONE)
5715           {
5716             Output_data_got_powerpc<size, big_endian>* got
5717               = target->got_section(symtab, layout);
5718             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5719             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5720             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5721                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5722           }
5723         else if (tls_type == tls::TLSOPT_TO_LE)
5724           {
5725             // no GOT relocs needed for Local Exec.
5726           }
5727         else
5728           gold_unreachable();
5729       }
5730       break;
5731
5732     case elfcpp::R_POWERPC_GOT_TLSLD16:
5733     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5734     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5735     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5736       {
5737         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5738         if (tls_type == tls::TLSOPT_NONE)
5739           target->tlsld_got_offset(symtab, layout, object);
5740         else if (tls_type == tls::TLSOPT_TO_LE)
5741           {
5742             // no GOT relocs needed for Local Exec.
5743             if (parameters->options().emit_relocs())
5744               {
5745                 Output_section* os = layout->tls_segment()->first_section();
5746                 gold_assert(os != NULL);
5747                 os->set_needs_symtab_index();
5748               }
5749           }
5750         else
5751           gold_unreachable();
5752       }
5753       break;
5754
5755     case elfcpp::R_POWERPC_GOT_DTPREL16:
5756     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5757     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5758     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5759       {
5760         Output_data_got_powerpc<size, big_endian>* got
5761           = target->got_section(symtab, layout);
5762         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5763         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5764       }
5765       break;
5766
5767     case elfcpp::R_POWERPC_GOT_TPREL16:
5768     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5769     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5770     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5771       {
5772         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5773         if (tls_type == tls::TLSOPT_NONE)
5774           {
5775             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5776             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5777               {
5778                 Output_data_got_powerpc<size, big_endian>* got
5779                   = target->got_section(symtab, layout);
5780                 unsigned int off = got->add_constant(0);
5781                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5782
5783                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5784                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5785                                                       elfcpp::R_POWERPC_TPREL,
5786                                                       got, off, 0);
5787               }
5788           }
5789         else if (tls_type == tls::TLSOPT_TO_LE)
5790           {
5791             // no GOT relocs needed for Local Exec.
5792           }
5793         else
5794           gold_unreachable();
5795       }
5796       break;
5797
5798     default:
5799       unsupported_reloc_local(object, r_type);
5800       break;
5801     }
5802
5803   switch (r_type)
5804     {
5805     case elfcpp::R_POWERPC_GOT_TLSLD16:
5806     case elfcpp::R_POWERPC_GOT_TLSGD16:
5807     case elfcpp::R_POWERPC_GOT_TPREL16:
5808     case elfcpp::R_POWERPC_GOT_DTPREL16:
5809     case elfcpp::R_POWERPC_GOT16:
5810     case elfcpp::R_PPC64_GOT16_DS:
5811     case elfcpp::R_PPC64_TOC16:
5812     case elfcpp::R_PPC64_TOC16_DS:
5813       ppc_object->set_has_small_toc_reloc();
5814     default:
5815       break;
5816     }
5817 }
5818
5819 // Report an unsupported relocation against a global symbol.
5820
5821 template<int size, bool big_endian>
5822 void
5823 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5824     Sized_relobj_file<size, big_endian>* object,
5825     unsigned int r_type,
5826     Symbol* gsym)
5827 {
5828   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5829              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5830 }
5831
5832 // Scan a relocation for a global symbol.
5833
5834 template<int size, bool big_endian>
5835 inline void
5836 Target_powerpc<size, big_endian>::Scan::global(
5837     Symbol_table* symtab,
5838     Layout* layout,
5839     Target_powerpc<size, big_endian>* target,
5840     Sized_relobj_file<size, big_endian>* object,
5841     unsigned int data_shndx,
5842     Output_section* output_section,
5843     const elfcpp::Rela<size, big_endian>& reloc,
5844     unsigned int r_type,
5845     Symbol* gsym)
5846 {
5847   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5848     return;
5849
5850   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5851       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5852     {
5853       this->expect_tls_get_addr_call();
5854       const bool final = gsym->final_value_is_known();
5855       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5856       if (tls_type != tls::TLSOPT_NONE)
5857         this->skip_next_tls_get_addr_call();
5858     }
5859   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5860            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5861     {
5862       this->expect_tls_get_addr_call();
5863       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5864       if (tls_type != tls::TLSOPT_NONE)
5865         this->skip_next_tls_get_addr_call();
5866     }
5867
5868   Powerpc_relobj<size, big_endian>* ppc_object
5869     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5870
5871   // A STT_GNU_IFUNC symbol may require a PLT entry.
5872   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5873   bool pushed_ifunc = false;
5874   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5875     {
5876       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5877                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5878                           reloc.get_r_addend());
5879       target->make_plt_entry(symtab, layout, gsym);
5880       pushed_ifunc = true;
5881     }
5882
5883   switch (r_type)
5884     {
5885     case elfcpp::R_POWERPC_NONE:
5886     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5887     case elfcpp::R_POWERPC_GNU_VTENTRY:
5888     case elfcpp::R_PPC_LOCAL24PC:
5889     case elfcpp::R_POWERPC_TLS:
5890       break;
5891
5892     case elfcpp::R_PPC64_TOC:
5893       {
5894         Output_data_got_powerpc<size, big_endian>* got
5895           = target->got_section(symtab, layout);
5896         if (parameters->options().output_is_position_independent())
5897           {
5898             Address off = reloc.get_r_offset();
5899             if (size == 64
5900                 && data_shndx == ppc_object->opd_shndx()
5901                 && ppc_object->get_opd_discard(off - 8))
5902               break;
5903
5904             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5905             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5906             if (data_shndx != ppc_object->opd_shndx())
5907               symobj = static_cast
5908                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5909             rela_dyn->add_output_section_relative(got->output_section(),
5910                                                   elfcpp::R_POWERPC_RELATIVE,
5911                                                   output_section,
5912                                                   object, data_shndx, off,
5913                                                   symobj->toc_base_offset());
5914           }
5915       }
5916       break;
5917
5918     case elfcpp::R_PPC64_ADDR64:
5919       if (size == 64
5920           && target->abiversion() < 2
5921           && data_shndx == ppc_object->opd_shndx()
5922           && (gsym->is_defined_in_discarded_section()
5923               || gsym->object() != object))
5924         {
5925           ppc_object->set_opd_discard(reloc.get_r_offset());
5926           break;
5927         }
5928       // Fall thru
5929     case elfcpp::R_PPC64_UADDR64:
5930     case elfcpp::R_POWERPC_ADDR32:
5931     case elfcpp::R_POWERPC_UADDR32:
5932     case elfcpp::R_POWERPC_ADDR24:
5933     case elfcpp::R_POWERPC_ADDR16:
5934     case elfcpp::R_POWERPC_ADDR16_LO:
5935     case elfcpp::R_POWERPC_ADDR16_HI:
5936     case elfcpp::R_POWERPC_ADDR16_HA:
5937     case elfcpp::R_POWERPC_UADDR16:
5938     case elfcpp::R_PPC64_ADDR16_HIGH:
5939     case elfcpp::R_PPC64_ADDR16_HIGHA:
5940     case elfcpp::R_PPC64_ADDR16_HIGHER:
5941     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5942     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5943     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5944     case elfcpp::R_PPC64_ADDR16_DS:
5945     case elfcpp::R_PPC64_ADDR16_LO_DS:
5946     case elfcpp::R_POWERPC_ADDR14:
5947     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5948     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5949       {
5950         // Make a PLT entry if necessary.
5951         if (gsym->needs_plt_entry())
5952           {
5953             // Since this is not a PC-relative relocation, we may be
5954             // taking the address of a function. In that case we need to
5955             // set the entry in the dynamic symbol table to the address of
5956             // the PLT call stub.
5957             bool need_ifunc_plt = false;
5958             if ((size == 32 || target->abiversion() >= 2)
5959                 && gsym->is_from_dynobj()
5960                 && !parameters->options().output_is_position_independent())
5961               {
5962                 gsym->set_needs_dynsym_value();
5963                 need_ifunc_plt = true;
5964               }
5965             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5966               {
5967                 target->push_branch(ppc_object, data_shndx,
5968                                     reloc.get_r_offset(), r_type,
5969                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5970                                     reloc.get_r_addend());
5971                 target->make_plt_entry(symtab, layout, gsym);
5972               }
5973           }
5974         // Make a dynamic relocation if necessary.
5975         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5976             || (size == 64 && is_ifunc && target->abiversion() < 2))
5977           {
5978             if (!parameters->options().output_is_position_independent()
5979                 && gsym->may_need_copy_reloc())
5980               {
5981                 target->copy_reloc(symtab, layout, object,
5982                                    data_shndx, output_section, gsym, reloc);
5983               }
5984             else if ((((size == 32
5985                         && r_type == elfcpp::R_POWERPC_ADDR32)
5986                        || (size == 64
5987                            && r_type == elfcpp::R_PPC64_ADDR64
5988                            && target->abiversion() >= 2))
5989                       && gsym->can_use_relative_reloc(false)
5990                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5991                            && parameters->options().shared()))
5992                      || (size == 64
5993                          && r_type == elfcpp::R_PPC64_ADDR64
5994                          && target->abiversion() < 2
5995                          && (gsym->can_use_relative_reloc(false)
5996                              || data_shndx == ppc_object->opd_shndx())))
5997               {
5998                 Reloc_section* rela_dyn
5999                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6000                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6001                                        : elfcpp::R_POWERPC_RELATIVE);
6002                 rela_dyn->add_symbolless_global_addend(
6003                     gsym, dynrel, output_section, object, data_shndx,
6004                     reloc.get_r_offset(), reloc.get_r_addend());
6005               }
6006             else
6007               {
6008                 Reloc_section* rela_dyn
6009                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6010                 check_non_pic(object, r_type);
6011                 rela_dyn->add_global(gsym, r_type, output_section,
6012                                      object, data_shndx,
6013                                      reloc.get_r_offset(),
6014                                      reloc.get_r_addend());
6015               }
6016           }
6017       }
6018       break;
6019
6020     case elfcpp::R_PPC_PLTREL24:
6021     case elfcpp::R_POWERPC_REL24:
6022       if (!is_ifunc)
6023         {
6024           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6025                               r_type,
6026                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6027                               reloc.get_r_addend());
6028           if (gsym->needs_plt_entry()
6029               || (!gsym->final_value_is_known()
6030                   && (gsym->is_undefined()
6031                       || gsym->is_from_dynobj()
6032                       || gsym->is_preemptible())))
6033             target->make_plt_entry(symtab, layout, gsym);
6034         }
6035       // Fall thru
6036
6037     case elfcpp::R_PPC64_REL64:
6038     case elfcpp::R_POWERPC_REL32:
6039       // Make a dynamic relocation if necessary.
6040       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6041         {
6042           if (!parameters->options().output_is_position_independent()
6043               && gsym->may_need_copy_reloc())
6044             {
6045               target->copy_reloc(symtab, layout, object,
6046                                  data_shndx, output_section, gsym,
6047                                  reloc);
6048             }
6049           else
6050             {
6051               Reloc_section* rela_dyn
6052                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6053               check_non_pic(object, r_type);
6054               rela_dyn->add_global(gsym, r_type, output_section, object,
6055                                    data_shndx, reloc.get_r_offset(),
6056                                    reloc.get_r_addend());
6057             }
6058         }
6059       break;
6060
6061     case elfcpp::R_POWERPC_REL14:
6062     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6063     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6064       if (!is_ifunc)
6065         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6066                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6067                             reloc.get_r_addend());
6068       break;
6069
6070     case elfcpp::R_POWERPC_REL16:
6071     case elfcpp::R_POWERPC_REL16_LO:
6072     case elfcpp::R_POWERPC_REL16_HI:
6073     case elfcpp::R_POWERPC_REL16_HA:
6074     case elfcpp::R_POWERPC_SECTOFF:
6075     case elfcpp::R_POWERPC_SECTOFF_LO:
6076     case elfcpp::R_POWERPC_SECTOFF_HI:
6077     case elfcpp::R_POWERPC_SECTOFF_HA:
6078     case elfcpp::R_PPC64_SECTOFF_DS:
6079     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6080     case elfcpp::R_POWERPC_TPREL16:
6081     case elfcpp::R_POWERPC_TPREL16_LO:
6082     case elfcpp::R_POWERPC_TPREL16_HI:
6083     case elfcpp::R_POWERPC_TPREL16_HA:
6084     case elfcpp::R_PPC64_TPREL16_DS:
6085     case elfcpp::R_PPC64_TPREL16_LO_DS:
6086     case elfcpp::R_PPC64_TPREL16_HIGH:
6087     case elfcpp::R_PPC64_TPREL16_HIGHA:
6088     case elfcpp::R_PPC64_TPREL16_HIGHER:
6089     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6090     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6091     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6092     case elfcpp::R_POWERPC_DTPREL16:
6093     case elfcpp::R_POWERPC_DTPREL16_LO:
6094     case elfcpp::R_POWERPC_DTPREL16_HI:
6095     case elfcpp::R_POWERPC_DTPREL16_HA:
6096     case elfcpp::R_PPC64_DTPREL16_DS:
6097     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6098     case elfcpp::R_PPC64_DTPREL16_HIGH:
6099     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6100     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6101     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6102     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6103     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6104     case elfcpp::R_PPC64_TLSGD:
6105     case elfcpp::R_PPC64_TLSLD:
6106     case elfcpp::R_PPC64_ADDR64_LOCAL:
6107       break;
6108
6109     case elfcpp::R_POWERPC_GOT16:
6110     case elfcpp::R_POWERPC_GOT16_LO:
6111     case elfcpp::R_POWERPC_GOT16_HI:
6112     case elfcpp::R_POWERPC_GOT16_HA:
6113     case elfcpp::R_PPC64_GOT16_DS:
6114     case elfcpp::R_PPC64_GOT16_LO_DS:
6115       {
6116         // The symbol requires a GOT entry.
6117         Output_data_got_powerpc<size, big_endian>* got;
6118
6119         got = target->got_section(symtab, layout);
6120         if (gsym->final_value_is_known())
6121           {
6122             if ((size == 32 && is_ifunc)
6123                 || (size == 64 && target->abiversion() >= 2))
6124               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6125             else
6126               got->add_global(gsym, GOT_TYPE_STANDARD);
6127           }
6128         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6129           {
6130             // If we are generating a shared object or a pie, this
6131             // symbol's GOT entry will be set by a dynamic relocation.
6132             unsigned int off = got->add_constant(0);
6133             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6134
6135             Reloc_section* rela_dyn
6136               = target->rela_dyn_section(symtab, layout, is_ifunc);
6137
6138             if (gsym->can_use_relative_reloc(false)
6139                 && !((size == 32
6140                       || target->abiversion() >= 2)
6141                      && gsym->visibility() == elfcpp::STV_PROTECTED
6142                      && parameters->options().shared()))
6143               {
6144                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6145                                        : elfcpp::R_POWERPC_RELATIVE);
6146                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6147               }
6148             else
6149               {
6150                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6151                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6152               }
6153           }
6154       }
6155       break;
6156
6157     case elfcpp::R_PPC64_TOC16:
6158     case elfcpp::R_PPC64_TOC16_LO:
6159     case elfcpp::R_PPC64_TOC16_HI:
6160     case elfcpp::R_PPC64_TOC16_HA:
6161     case elfcpp::R_PPC64_TOC16_DS:
6162     case elfcpp::R_PPC64_TOC16_LO_DS:
6163       // We need a GOT section.
6164       target->got_section(symtab, layout);
6165       break;
6166
6167     case elfcpp::R_POWERPC_GOT_TLSGD16:
6168     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6169     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6170     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6171       {
6172         const bool final = gsym->final_value_is_known();
6173         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6174         if (tls_type == tls::TLSOPT_NONE)
6175           {
6176             Output_data_got_powerpc<size, big_endian>* got
6177               = target->got_section(symtab, layout);
6178             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6179             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6180                                           elfcpp::R_POWERPC_DTPMOD,
6181                                           elfcpp::R_POWERPC_DTPREL);
6182           }
6183         else if (tls_type == tls::TLSOPT_TO_IE)
6184           {
6185             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6186               {
6187                 Output_data_got_powerpc<size, big_endian>* got
6188                   = target->got_section(symtab, layout);
6189                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6190                 if (gsym->is_undefined()
6191                     || gsym->is_from_dynobj())
6192                   {
6193                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6194                                              elfcpp::R_POWERPC_TPREL);
6195                   }
6196                 else
6197                   {
6198                     unsigned int off = got->add_constant(0);
6199                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6200                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6201                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6202                                                            got, off, 0);
6203                   }
6204               }
6205           }
6206         else if (tls_type == tls::TLSOPT_TO_LE)
6207           {
6208             // no GOT relocs needed for Local Exec.
6209           }
6210         else
6211           gold_unreachable();
6212       }
6213       break;
6214
6215     case elfcpp::R_POWERPC_GOT_TLSLD16:
6216     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6217     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6218     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6219       {
6220         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6221         if (tls_type == tls::TLSOPT_NONE)
6222           target->tlsld_got_offset(symtab, layout, object);
6223         else if (tls_type == tls::TLSOPT_TO_LE)
6224           {
6225             // no GOT relocs needed for Local Exec.
6226             if (parameters->options().emit_relocs())
6227               {
6228                 Output_section* os = layout->tls_segment()->first_section();
6229                 gold_assert(os != NULL);
6230                 os->set_needs_symtab_index();
6231               }
6232           }
6233         else
6234           gold_unreachable();
6235       }
6236       break;
6237
6238     case elfcpp::R_POWERPC_GOT_DTPREL16:
6239     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6240     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6241     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6242       {
6243         Output_data_got_powerpc<size, big_endian>* got
6244           = target->got_section(symtab, layout);
6245         if (!gsym->final_value_is_known()
6246             && (gsym->is_from_dynobj()
6247                 || gsym->is_undefined()
6248                 || gsym->is_preemptible()))
6249           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6250                                    target->rela_dyn_section(layout),
6251                                    elfcpp::R_POWERPC_DTPREL);
6252         else
6253           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6254       }
6255       break;
6256
6257     case elfcpp::R_POWERPC_GOT_TPREL16:
6258     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6259     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6260     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6261       {
6262         const bool final = gsym->final_value_is_known();
6263         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6264         if (tls_type == tls::TLSOPT_NONE)
6265           {
6266             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6267               {
6268                 Output_data_got_powerpc<size, big_endian>* got
6269                   = target->got_section(symtab, layout);
6270                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6271                 if (gsym->is_undefined()
6272                     || gsym->is_from_dynobj())
6273                   {
6274                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6275                                              elfcpp::R_POWERPC_TPREL);
6276                   }
6277                 else
6278                   {
6279                     unsigned int off = got->add_constant(0);
6280                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6281                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6282                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6283                                                            got, off, 0);
6284                   }
6285               }
6286           }
6287         else if (tls_type == tls::TLSOPT_TO_LE)
6288           {
6289             // no GOT relocs needed for Local Exec.
6290           }
6291         else
6292           gold_unreachable();
6293       }
6294       break;
6295
6296     default:
6297       unsupported_reloc_global(object, r_type, gsym);
6298       break;
6299     }
6300
6301   switch (r_type)
6302     {
6303     case elfcpp::R_POWERPC_GOT_TLSLD16:
6304     case elfcpp::R_POWERPC_GOT_TLSGD16:
6305     case elfcpp::R_POWERPC_GOT_TPREL16:
6306     case elfcpp::R_POWERPC_GOT_DTPREL16:
6307     case elfcpp::R_POWERPC_GOT16:
6308     case elfcpp::R_PPC64_GOT16_DS:
6309     case elfcpp::R_PPC64_TOC16:
6310     case elfcpp::R_PPC64_TOC16_DS:
6311       ppc_object->set_has_small_toc_reloc();
6312     default:
6313       break;
6314     }
6315 }
6316
6317 // Process relocations for gc.
6318
6319 template<int size, bool big_endian>
6320 void
6321 Target_powerpc<size, big_endian>::gc_process_relocs(
6322     Symbol_table* symtab,
6323     Layout* layout,
6324     Sized_relobj_file<size, big_endian>* object,
6325     unsigned int data_shndx,
6326     unsigned int,
6327     const unsigned char* prelocs,
6328     size_t reloc_count,
6329     Output_section* output_section,
6330     bool needs_special_offset_handling,
6331     size_t local_symbol_count,
6332     const unsigned char* plocal_symbols)
6333 {
6334   typedef Target_powerpc<size, big_endian> Powerpc;
6335   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6336   Powerpc_relobj<size, big_endian>* ppc_object
6337     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6338   if (size == 64)
6339     ppc_object->set_opd_valid();
6340   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6341     {
6342       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6343       for (p = ppc_object->access_from_map()->begin();
6344            p != ppc_object->access_from_map()->end();
6345            ++p)
6346         {
6347           Address dst_off = p->first;
6348           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6349           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6350           for (s = p->second.begin(); s != p->second.end(); ++s)
6351             {
6352               Object* src_obj = s->first;
6353               unsigned int src_indx = s->second;
6354               symtab->gc()->add_reference(src_obj, src_indx,
6355                                           ppc_object, dst_indx);
6356             }
6357           p->second.clear();
6358         }
6359       ppc_object->access_from_map()->clear();
6360       ppc_object->process_gc_mark(symtab);
6361       // Don't look at .opd relocs as .opd will reference everything.
6362       return;
6363     }
6364
6365   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6366                           typename Target_powerpc::Relocatable_size_for_reloc>(
6367     symtab,
6368     layout,
6369     this,
6370     object,
6371     data_shndx,
6372     prelocs,
6373     reloc_count,
6374     output_section,
6375     needs_special_offset_handling,
6376     local_symbol_count,
6377     plocal_symbols);
6378 }
6379
6380 // Handle target specific gc actions when adding a gc reference from
6381 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6382 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6383 // section of a function descriptor.
6384
6385 template<int size, bool big_endian>
6386 void
6387 Target_powerpc<size, big_endian>::do_gc_add_reference(
6388     Symbol_table* symtab,
6389     Object* src_obj,
6390     unsigned int src_shndx,
6391     Object* dst_obj,
6392     unsigned int dst_shndx,
6393     Address dst_off) const
6394 {
6395   if (size != 64 || dst_obj->is_dynamic())
6396     return;
6397
6398   Powerpc_relobj<size, big_endian>* ppc_object
6399     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6400   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6401     {
6402       if (ppc_object->opd_valid())
6403         {
6404           dst_shndx = ppc_object->get_opd_ent(dst_off);
6405           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6406         }
6407       else
6408         {
6409           // If we haven't run scan_opd_relocs, we must delay
6410           // processing this function descriptor reference.
6411           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6412         }
6413     }
6414 }
6415
6416 // Add any special sections for this symbol to the gc work list.
6417 // For powerpc64, this adds the code section of a function
6418 // descriptor.
6419
6420 template<int size, bool big_endian>
6421 void
6422 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6423     Symbol_table* symtab,
6424     Symbol* sym) const
6425 {
6426   if (size == 64)
6427     {
6428       Powerpc_relobj<size, big_endian>* ppc_object
6429         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6430       bool is_ordinary;
6431       unsigned int shndx = sym->shndx(&is_ordinary);
6432       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6433         {
6434           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6435           Address dst_off = gsym->value();
6436           if (ppc_object->opd_valid())
6437             {
6438               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6439               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6440             }
6441           else
6442             ppc_object->add_gc_mark(dst_off);
6443         }
6444     }
6445 }
6446
6447 // For a symbol location in .opd, set LOC to the location of the
6448 // function entry.
6449
6450 template<int size, bool big_endian>
6451 void
6452 Target_powerpc<size, big_endian>::do_function_location(
6453     Symbol_location* loc) const
6454 {
6455   if (size == 64 && loc->shndx != 0)
6456     {
6457       if (loc->object->is_dynamic())
6458         {
6459           Powerpc_dynobj<size, big_endian>* ppc_object
6460             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6461           if (loc->shndx == ppc_object->opd_shndx())
6462             {
6463               Address dest_off;
6464               Address off = loc->offset - ppc_object->opd_address();
6465               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6466               loc->offset = dest_off;
6467             }
6468         }
6469       else
6470         {
6471           const Powerpc_relobj<size, big_endian>* ppc_object
6472             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6473           if (loc->shndx == ppc_object->opd_shndx())
6474             {
6475               Address dest_off;
6476               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6477               loc->offset = dest_off;
6478             }
6479         }
6480     }
6481 }
6482
6483 // Scan relocations for a section.
6484
6485 template<int size, bool big_endian>
6486 void
6487 Target_powerpc<size, big_endian>::scan_relocs(
6488     Symbol_table* symtab,
6489     Layout* layout,
6490     Sized_relobj_file<size, big_endian>* object,
6491     unsigned int data_shndx,
6492     unsigned int sh_type,
6493     const unsigned char* prelocs,
6494     size_t reloc_count,
6495     Output_section* output_section,
6496     bool needs_special_offset_handling,
6497     size_t local_symbol_count,
6498     const unsigned char* plocal_symbols)
6499 {
6500   typedef Target_powerpc<size, big_endian> Powerpc;
6501   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6502
6503   if (sh_type == elfcpp::SHT_REL)
6504     {
6505       gold_error(_("%s: unsupported REL reloc section"),
6506                  object->name().c_str());
6507       return;
6508     }
6509
6510   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6511     symtab,
6512     layout,
6513     this,
6514     object,
6515     data_shndx,
6516     prelocs,
6517     reloc_count,
6518     output_section,
6519     needs_special_offset_handling,
6520     local_symbol_count,
6521     plocal_symbols);
6522 }
6523
6524 // Functor class for processing the global symbol table.
6525 // Removes symbols defined on discarded opd entries.
6526
6527 template<bool big_endian>
6528 class Global_symbol_visitor_opd
6529 {
6530  public:
6531   Global_symbol_visitor_opd()
6532   { }
6533
6534   void
6535   operator()(Sized_symbol<64>* sym)
6536   {
6537     if (sym->has_symtab_index()
6538         || sym->source() != Symbol::FROM_OBJECT
6539         || !sym->in_real_elf())
6540       return;
6541
6542     if (sym->object()->is_dynamic())
6543       return;
6544
6545     Powerpc_relobj<64, big_endian>* symobj
6546       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6547     if (symobj->opd_shndx() == 0)
6548       return;
6549
6550     bool is_ordinary;
6551     unsigned int shndx = sym->shndx(&is_ordinary);
6552     if (shndx == symobj->opd_shndx()
6553         && symobj->get_opd_discard(sym->value()))
6554       {
6555         sym->set_undefined();
6556         sym->set_is_defined_in_discarded_section();
6557         sym->set_symtab_index(-1U);
6558       }
6559   }
6560 };
6561
6562 template<int size, bool big_endian>
6563 void
6564 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6565     Layout* layout,
6566     Symbol_table* symtab)
6567 {
6568   if (size == 64)
6569     {
6570       Output_data_save_res<64, big_endian>* savres
6571         = new Output_data_save_res<64, big_endian>(symtab);
6572       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6573                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6574                                       savres, ORDER_TEXT, false);
6575     }
6576 }
6577
6578 // Sort linker created .got section first (for the header), then input
6579 // sections belonging to files using small model code.
6580
6581 template<bool big_endian>
6582 class Sort_toc_sections
6583 {
6584  public:
6585   bool
6586   operator()(const Output_section::Input_section& is1,
6587              const Output_section::Input_section& is2) const
6588   {
6589     if (!is1.is_input_section() && is2.is_input_section())
6590       return true;
6591     bool small1
6592       = (is1.is_input_section()
6593          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6594              ->has_small_toc_reloc()));
6595     bool small2
6596       = (is2.is_input_section()
6597          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6598              ->has_small_toc_reloc()));
6599     return small1 && !small2;
6600   }
6601 };
6602
6603 // Finalize the sections.
6604
6605 template<int size, bool big_endian>
6606 void
6607 Target_powerpc<size, big_endian>::do_finalize_sections(
6608     Layout* layout,
6609     const Input_objects*,
6610     Symbol_table* symtab)
6611 {
6612   if (parameters->doing_static_link())
6613     {
6614       // At least some versions of glibc elf-init.o have a strong
6615       // reference to __rela_iplt marker syms.  A weak ref would be
6616       // better..
6617       if (this->iplt_ != NULL)
6618         {
6619           Reloc_section* rel = this->iplt_->rel_plt();
6620           symtab->define_in_output_data("__rela_iplt_start", NULL,
6621                                         Symbol_table::PREDEFINED, rel, 0, 0,
6622                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6623                                         elfcpp::STV_HIDDEN, 0, false, true);
6624           symtab->define_in_output_data("__rela_iplt_end", NULL,
6625                                         Symbol_table::PREDEFINED, rel, 0, 0,
6626                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6627                                         elfcpp::STV_HIDDEN, 0, true, true);
6628         }
6629       else
6630         {
6631           symtab->define_as_constant("__rela_iplt_start", NULL,
6632                                      Symbol_table::PREDEFINED, 0, 0,
6633                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6634                                      elfcpp::STV_HIDDEN, 0, true, false);
6635           symtab->define_as_constant("__rela_iplt_end", NULL,
6636                                      Symbol_table::PREDEFINED, 0, 0,
6637                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6638                                      elfcpp::STV_HIDDEN, 0, true, false);
6639         }
6640     }
6641
6642   if (size == 64)
6643     {
6644       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6645       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6646
6647       if (!parameters->options().relocatable())
6648         {
6649           this->define_save_restore_funcs(layout, symtab);
6650
6651           // Annoyingly, we need to make these sections now whether or
6652           // not we need them.  If we delay until do_relax then we
6653           // need to mess with the relaxation machinery checkpointing.
6654           this->got_section(symtab, layout);
6655           this->make_brlt_section(layout);
6656
6657           if (parameters->options().toc_sort())
6658             {
6659               Output_section* os = this->got_->output_section();
6660               if (os != NULL && os->input_sections().size() > 1)
6661                 std::stable_sort(os->input_sections().begin(),
6662                                  os->input_sections().end(),
6663                                  Sort_toc_sections<big_endian>());
6664             }
6665         }
6666     }
6667
6668   // Fill in some more dynamic tags.
6669   Output_data_dynamic* odyn = layout->dynamic_data();
6670   if (odyn != NULL)
6671     {
6672       const Reloc_section* rel_plt = (this->plt_ == NULL
6673                                       ? NULL
6674                                       : this->plt_->rel_plt());
6675       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6676                                       this->rela_dyn_, true, size == 32);
6677
6678       if (size == 32)
6679         {
6680           if (this->got_ != NULL)
6681             {
6682               this->got_->finalize_data_size();
6683               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6684                                             this->got_, this->got_->g_o_t());
6685             }
6686         }
6687       else
6688         {
6689           if (this->glink_ != NULL)
6690             {
6691               this->glink_->finalize_data_size();
6692               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6693                                             this->glink_,
6694                                             (this->glink_->pltresolve_size
6695                                              - 32));
6696             }
6697         }
6698     }
6699
6700   // Emit any relocs we saved in an attempt to avoid generating COPY
6701   // relocs.
6702   if (this->copy_relocs_.any_saved_relocs())
6703     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6704 }
6705
6706 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6707 // reloc.
6708
6709 static bool
6710 ok_lo_toc_insn(uint32_t insn)
6711 {
6712   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6713           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6714           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6715           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6716           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6717           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6718           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6719           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6720           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6721           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6722           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6723           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6724           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6725           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6726           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6727               && (insn & 3) != 1)
6728           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6729               && ((insn & 3) == 0 || (insn & 3) == 3))
6730           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6731 }
6732
6733 // Return the value to use for a branch relocation.
6734
6735 template<int size, bool big_endian>
6736 bool
6737 Target_powerpc<size, big_endian>::symval_for_branch(
6738     const Symbol_table* symtab,
6739     const Sized_symbol<size>* gsym,
6740     Powerpc_relobj<size, big_endian>* object,
6741     Address *value,
6742     unsigned int *dest_shndx)
6743 {
6744   if (size == 32 || this->abiversion() >= 2)
6745     gold_unreachable();
6746   *dest_shndx = 0;
6747
6748   // If the symbol is defined in an opd section, ie. is a function
6749   // descriptor, use the function descriptor code entry address
6750   Powerpc_relobj<size, big_endian>* symobj = object;
6751   if (gsym != NULL
6752       && gsym->source() != Symbol::FROM_OBJECT)
6753     return true;
6754   if (gsym != NULL)
6755     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6756   unsigned int shndx = symobj->opd_shndx();
6757   if (shndx == 0)
6758     return true;
6759   Address opd_addr = symobj->get_output_section_offset(shndx);
6760   if (opd_addr == invalid_address)
6761     return true;
6762   opd_addr += symobj->output_section_address(shndx);
6763   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6764     {
6765       Address sec_off;
6766       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6767       if (symtab->is_section_folded(symobj, *dest_shndx))
6768         {
6769           Section_id folded
6770             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6771           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6772           *dest_shndx = folded.second;
6773         }
6774       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6775       if (sec_addr == invalid_address)
6776         return false;
6777
6778       sec_addr += symobj->output_section(*dest_shndx)->address();
6779       *value = sec_addr + sec_off;
6780     }
6781   return true;
6782 }
6783
6784 // Perform a relocation.
6785
6786 template<int size, bool big_endian>
6787 inline bool
6788 Target_powerpc<size, big_endian>::Relocate::relocate(
6789     const Relocate_info<size, big_endian>* relinfo,
6790     Target_powerpc* target,
6791     Output_section* os,
6792     size_t relnum,
6793     const elfcpp::Rela<size, big_endian>& rela,
6794     unsigned int r_type,
6795     const Sized_symbol<size>* gsym,
6796     const Symbol_value<size>* psymval,
6797     unsigned char* view,
6798     Address address,
6799     section_size_type view_size)
6800 {
6801   if (view == NULL)
6802     return true;
6803
6804   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6805     {
6806     case Track_tls::NOT_EXPECTED:
6807       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6808                              _("__tls_get_addr call lacks marker reloc"));
6809       break;
6810     case Track_tls::EXPECTED:
6811       // We have already complained.
6812       break;
6813     case Track_tls::SKIP:
6814       return true;
6815     case Track_tls::NORMAL:
6816       break;
6817     }
6818
6819   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6820   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6821   Powerpc_relobj<size, big_endian>* const object
6822     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6823   Address value = 0;
6824   bool has_stub_value = false;
6825   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6826   if ((gsym != NULL
6827        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6828        : object->local_has_plt_offset(r_sym))
6829       && (!psymval->is_ifunc_symbol()
6830           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6831     {
6832       if (size == 64
6833           && gsym != NULL
6834           && target->abiversion() >= 2
6835           && !parameters->options().output_is_position_independent()
6836           && !is_branch_reloc(r_type))
6837         {
6838           unsigned int off = target->glink_section()->find_global_entry(gsym);
6839           gold_assert(off != (unsigned int)-1);
6840           value = target->glink_section()->global_entry_address() + off;
6841         }
6842       else
6843         {
6844           Stub_table<size, big_endian>* stub_table
6845             = object->stub_table(relinfo->data_shndx);
6846           if (stub_table == NULL)
6847             {
6848               // This is a ref from a data section to an ifunc symbol.
6849               if (target->stub_tables().size() != 0)
6850                 stub_table = target->stub_tables()[0];
6851             }
6852           gold_assert(stub_table != NULL);
6853           Address off;
6854           if (gsym != NULL)
6855             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6856                                                   rela.get_r_addend());
6857           else
6858             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6859                                                   rela.get_r_addend());
6860           gold_assert(off != invalid_address);
6861           value = stub_table->stub_address() + off;
6862         }
6863       has_stub_value = true;
6864     }
6865
6866   if (r_type == elfcpp::R_POWERPC_GOT16
6867       || r_type == elfcpp::R_POWERPC_GOT16_LO
6868       || r_type == elfcpp::R_POWERPC_GOT16_HI
6869       || r_type == elfcpp::R_POWERPC_GOT16_HA
6870       || r_type == elfcpp::R_PPC64_GOT16_DS
6871       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6872     {
6873       if (gsym != NULL)
6874         {
6875           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6876           value = gsym->got_offset(GOT_TYPE_STANDARD);
6877         }
6878       else
6879         {
6880           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6881           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6882           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6883         }
6884       value -= target->got_section()->got_base_offset(object);
6885     }
6886   else if (r_type == elfcpp::R_PPC64_TOC)
6887     {
6888       value = (target->got_section()->output_section()->address()
6889                + object->toc_base_offset());
6890     }
6891   else if (gsym != NULL
6892            && (r_type == elfcpp::R_POWERPC_REL24
6893                || r_type == elfcpp::R_PPC_PLTREL24)
6894            && has_stub_value)
6895     {
6896       if (size == 64)
6897         {
6898           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6899           Valtype* wv = reinterpret_cast<Valtype*>(view);
6900           bool can_plt_call = false;
6901           if (rela.get_r_offset() + 8 <= view_size)
6902             {
6903               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6904               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6905               if ((insn & 1) != 0
6906                   && (insn2 == nop
6907                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6908                 {
6909                   elfcpp::Swap<32, big_endian>::
6910                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6911                   can_plt_call = true;
6912                 }
6913             }
6914           if (!can_plt_call)
6915             {
6916               // If we don't have a branch and link followed by a nop,
6917               // we can't go via the plt because there is no place to
6918               // put a toc restoring instruction.
6919               // Unless we know we won't be returning.
6920               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6921                 can_plt_call = true;
6922             }
6923           if (!can_plt_call)
6924             {
6925               // g++ as of 20130507 emits self-calls without a
6926               // following nop.  This is arguably wrong since we have
6927               // conflicting information.  On the one hand a global
6928               // symbol and on the other a local call sequence, but
6929               // don't error for this special case.
6930               // It isn't possible to cheaply verify we have exactly
6931               // such a call.  Allow all calls to the same section.
6932               bool ok = false;
6933               Address code = value;
6934               if (gsym->source() == Symbol::FROM_OBJECT
6935                   && gsym->object() == object)
6936                 {
6937                   unsigned int dest_shndx = 0;
6938                   if (target->abiversion() < 2)
6939                     {
6940                       Address addend = rela.get_r_addend();
6941                       code = psymval->value(object, addend);
6942                       target->symval_for_branch(relinfo->symtab, gsym, object,
6943                                                 &code, &dest_shndx);
6944                     }
6945                   bool is_ordinary;
6946                   if (dest_shndx == 0)
6947                     dest_shndx = gsym->shndx(&is_ordinary);
6948                   ok = dest_shndx == relinfo->data_shndx;
6949                 }
6950               if (!ok)
6951                 {
6952                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6953                                          _("call lacks nop, can't restore toc; "
6954                                            "recompile with -fPIC"));
6955                   value = code;
6956                 }
6957             }
6958         }
6959     }
6960   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6961            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6962            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6963            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6964     {
6965       // First instruction of a global dynamic sequence, arg setup insn.
6966       const bool final = gsym == NULL || gsym->final_value_is_known();
6967       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6968       enum Got_type got_type = GOT_TYPE_STANDARD;
6969       if (tls_type == tls::TLSOPT_NONE)
6970         got_type = GOT_TYPE_TLSGD;
6971       else if (tls_type == tls::TLSOPT_TO_IE)
6972         got_type = GOT_TYPE_TPREL;
6973       if (got_type != GOT_TYPE_STANDARD)
6974         {
6975           if (gsym != NULL)
6976             {
6977               gold_assert(gsym->has_got_offset(got_type));
6978               value = gsym->got_offset(got_type);
6979             }
6980           else
6981             {
6982               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6983               gold_assert(object->local_has_got_offset(r_sym, got_type));
6984               value = object->local_got_offset(r_sym, got_type);
6985             }
6986           value -= target->got_section()->got_base_offset(object);
6987         }
6988       if (tls_type == tls::TLSOPT_TO_IE)
6989         {
6990           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6991               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6992             {
6993               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6994               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6995               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6996               if (size == 32)
6997                 insn |= 32 << 26; // lwz
6998               else
6999                 insn |= 58 << 26; // ld
7000               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001             }
7002           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7003                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7004         }
7005       else if (tls_type == tls::TLSOPT_TO_LE)
7006         {
7007           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7008               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7009             {
7010               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7011               Insn insn = addis_3_13;
7012               if (size == 32)
7013                 insn = addis_3_2;
7014               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7015               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7016               value = psymval->value(object, rela.get_r_addend());
7017             }
7018           else
7019             {
7020               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7021               Insn insn = nop;
7022               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7023               r_type = elfcpp::R_POWERPC_NONE;
7024             }
7025         }
7026     }
7027   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7028            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7029            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7030            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7031     {
7032       // First instruction of a local dynamic sequence, arg setup insn.
7033       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7034       if (tls_type == tls::TLSOPT_NONE)
7035         {
7036           value = target->tlsld_got_offset();
7037           value -= target->got_section()->got_base_offset(object);
7038         }
7039       else
7040         {
7041           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7042           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7043               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7044             {
7045               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7046               Insn insn = addis_3_13;
7047               if (size == 32)
7048                 insn = addis_3_2;
7049               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7050               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7051               value = dtp_offset;
7052             }
7053           else
7054             {
7055               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7056               Insn insn = nop;
7057               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7058               r_type = elfcpp::R_POWERPC_NONE;
7059             }
7060         }
7061     }
7062   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7063            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7064            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7065            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7066     {
7067       // Accesses relative to a local dynamic sequence address,
7068       // no optimisation here.
7069       if (gsym != NULL)
7070         {
7071           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7072           value = gsym->got_offset(GOT_TYPE_DTPREL);
7073         }
7074       else
7075         {
7076           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7077           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7078           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7079         }
7080       value -= target->got_section()->got_base_offset(object);
7081     }
7082   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7083            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7084            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7085            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7086     {
7087       // First instruction of initial exec sequence.
7088       const bool final = gsym == NULL || gsym->final_value_is_known();
7089       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7090       if (tls_type == tls::TLSOPT_NONE)
7091         {
7092           if (gsym != NULL)
7093             {
7094               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7095               value = gsym->got_offset(GOT_TYPE_TPREL);
7096             }
7097           else
7098             {
7099               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7100               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7101               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7102             }
7103           value -= target->got_section()->got_base_offset(object);
7104         }
7105       else
7106         {
7107           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7108           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7109               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7110             {
7111               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7112               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7113               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7114               if (size == 32)
7115                 insn |= addis_0_2;
7116               else
7117                 insn |= addis_0_13;
7118               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7119               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7120               value = psymval->value(object, rela.get_r_addend());
7121             }
7122           else
7123             {
7124               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7125               Insn insn = nop;
7126               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7127               r_type = elfcpp::R_POWERPC_NONE;
7128             }
7129         }
7130     }
7131   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7132            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7133     {
7134       // Second instruction of a global dynamic sequence,
7135       // the __tls_get_addr call
7136       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7137       const bool final = gsym == NULL || gsym->final_value_is_known();
7138       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7139       if (tls_type != tls::TLSOPT_NONE)
7140         {
7141           if (tls_type == tls::TLSOPT_TO_IE)
7142             {
7143               Insn* iview = reinterpret_cast<Insn*>(view);
7144               Insn insn = add_3_3_13;
7145               if (size == 32)
7146                 insn = add_3_3_2;
7147               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7148               r_type = elfcpp::R_POWERPC_NONE;
7149             }
7150           else
7151             {
7152               Insn* iview = reinterpret_cast<Insn*>(view);
7153               Insn insn = addi_3_3;
7154               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7155               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7156               view += 2 * big_endian;
7157               value = psymval->value(object, rela.get_r_addend());
7158             }
7159           this->skip_next_tls_get_addr_call();
7160         }
7161     }
7162   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7163            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7164     {
7165       // Second instruction of a local dynamic sequence,
7166       // the __tls_get_addr call
7167       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7168       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7169       if (tls_type == tls::TLSOPT_TO_LE)
7170         {
7171           Insn* iview = reinterpret_cast<Insn*>(view);
7172           Insn insn = addi_3_3;
7173           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7174           this->skip_next_tls_get_addr_call();
7175           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7176           view += 2 * big_endian;
7177           value = dtp_offset;
7178         }
7179     }
7180   else if (r_type == elfcpp::R_POWERPC_TLS)
7181     {
7182       // Second instruction of an initial exec sequence
7183       const bool final = gsym == NULL || gsym->final_value_is_known();
7184       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7185       if (tls_type == tls::TLSOPT_TO_LE)
7186         {
7187           Insn* iview = reinterpret_cast<Insn*>(view);
7188           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7189           unsigned int reg = size == 32 ? 2 : 13;
7190           insn = at_tls_transform(insn, reg);
7191           gold_assert(insn != 0);
7192           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7193           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7194           view += 2 * big_endian;
7195           value = psymval->value(object, rela.get_r_addend());
7196         }
7197     }
7198   else if (!has_stub_value)
7199     {
7200       Address addend = 0;
7201       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7202         addend = rela.get_r_addend();
7203       value = psymval->value(object, addend);
7204       if (size == 64 && is_branch_reloc(r_type))
7205         {
7206           if (target->abiversion() >= 2)
7207             {
7208               if (gsym != NULL)
7209                 value += object->ppc64_local_entry_offset(gsym);
7210               else
7211                 value += object->ppc64_local_entry_offset(r_sym);
7212             }
7213           else
7214             {
7215               unsigned int dest_shndx;
7216               target->symval_for_branch(relinfo->symtab, gsym, object,
7217                                         &value, &dest_shndx);
7218             }
7219         }
7220       Address max_branch_offset = max_branch_delta(r_type);
7221       if (max_branch_offset != 0
7222           && value - address + max_branch_offset >= 2 * max_branch_offset)
7223         {
7224           Stub_table<size, big_endian>* stub_table
7225             = object->stub_table(relinfo->data_shndx);
7226           if (stub_table != NULL)
7227             {
7228               Address off = stub_table->find_long_branch_entry(object, value);
7229               if (off != invalid_address)
7230                 {
7231                   value = (stub_table->stub_address() + stub_table->plt_size()
7232                            + off);
7233                   has_stub_value = true;
7234                 }
7235             }
7236         }
7237     }
7238
7239   switch (r_type)
7240     {
7241     case elfcpp::R_PPC64_REL64:
7242     case elfcpp::R_POWERPC_REL32:
7243     case elfcpp::R_POWERPC_REL24:
7244     case elfcpp::R_PPC_PLTREL24:
7245     case elfcpp::R_PPC_LOCAL24PC:
7246     case elfcpp::R_POWERPC_REL16:
7247     case elfcpp::R_POWERPC_REL16_LO:
7248     case elfcpp::R_POWERPC_REL16_HI:
7249     case elfcpp::R_POWERPC_REL16_HA:
7250     case elfcpp::R_POWERPC_REL14:
7251     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7252     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7253       value -= address;
7254       break;
7255
7256     case elfcpp::R_PPC64_TOC16:
7257     case elfcpp::R_PPC64_TOC16_LO:
7258     case elfcpp::R_PPC64_TOC16_HI:
7259     case elfcpp::R_PPC64_TOC16_HA:
7260     case elfcpp::R_PPC64_TOC16_DS:
7261     case elfcpp::R_PPC64_TOC16_LO_DS:
7262       // Subtract the TOC base address.
7263       value -= (target->got_section()->output_section()->address()
7264                 + object->toc_base_offset());
7265       break;
7266
7267     case elfcpp::R_POWERPC_SECTOFF:
7268     case elfcpp::R_POWERPC_SECTOFF_LO:
7269     case elfcpp::R_POWERPC_SECTOFF_HI:
7270     case elfcpp::R_POWERPC_SECTOFF_HA:
7271     case elfcpp::R_PPC64_SECTOFF_DS:
7272     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7273       if (os != NULL)
7274         value -= os->address();
7275       break;
7276
7277     case elfcpp::R_PPC64_TPREL16_DS:
7278     case elfcpp::R_PPC64_TPREL16_LO_DS:
7279     case elfcpp::R_PPC64_TPREL16_HIGH:
7280     case elfcpp::R_PPC64_TPREL16_HIGHA:
7281       if (size != 64)
7282         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7283         break;
7284     case elfcpp::R_POWERPC_TPREL16:
7285     case elfcpp::R_POWERPC_TPREL16_LO:
7286     case elfcpp::R_POWERPC_TPREL16_HI:
7287     case elfcpp::R_POWERPC_TPREL16_HA:
7288     case elfcpp::R_POWERPC_TPREL:
7289     case elfcpp::R_PPC64_TPREL16_HIGHER:
7290     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7291     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7292     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7293       // tls symbol values are relative to tls_segment()->vaddr()
7294       value -= tp_offset;
7295       break;
7296
7297     case elfcpp::R_PPC64_DTPREL16_DS:
7298     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7299     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7300     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7301     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7302     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7303       if (size != 64)
7304         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7305         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7306         break;
7307     case elfcpp::R_POWERPC_DTPREL16:
7308     case elfcpp::R_POWERPC_DTPREL16_LO:
7309     case elfcpp::R_POWERPC_DTPREL16_HI:
7310     case elfcpp::R_POWERPC_DTPREL16_HA:
7311     case elfcpp::R_POWERPC_DTPREL:
7312     case elfcpp::R_PPC64_DTPREL16_HIGH:
7313     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7314       // tls symbol values are relative to tls_segment()->vaddr()
7315       value -= dtp_offset;
7316       break;
7317
7318     case elfcpp::R_PPC64_ADDR64_LOCAL:
7319       if (gsym != NULL)
7320         value += object->ppc64_local_entry_offset(gsym);
7321       else
7322         value += object->ppc64_local_entry_offset(r_sym);
7323       break;
7324
7325     default:
7326       break;
7327     }
7328
7329   Insn branch_bit = 0;
7330   switch (r_type)
7331     {
7332     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7333     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7334       branch_bit = 1 << 21;
7335     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7336     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7337       {
7338         Insn* iview = reinterpret_cast<Insn*>(view);
7339         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7340         insn &= ~(1 << 21);
7341         insn |= branch_bit;
7342         if (this->is_isa_v2)
7343           {
7344             // Set 'a' bit.  This is 0b00010 in BO field for branch
7345             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7346             // for branch on CTR insns (BO == 1a00t or 1a01t).
7347             if ((insn & (0x14 << 21)) == (0x04 << 21))
7348               insn |= 0x02 << 21;
7349             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7350               insn |= 0x08 << 21;
7351             else
7352               break;
7353           }
7354         else
7355           {
7356             // Invert 'y' bit if not the default.
7357             if (static_cast<Signed_address>(value) < 0)
7358               insn ^= 1 << 21;
7359           }
7360         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7361       }
7362       break;
7363
7364     default:
7365       break;
7366     }
7367
7368   if (size == 64)
7369     {
7370       // Multi-instruction sequences that access the TOC can be
7371       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7372       // to             nop;           addi rb,r2,x;
7373       switch (r_type)
7374         {
7375         default:
7376           break;
7377
7378         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7379         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7380         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7381         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7382         case elfcpp::R_POWERPC_GOT16_HA:
7383         case elfcpp::R_PPC64_TOC16_HA:
7384           if (parameters->options().toc_optimize())
7385             {
7386               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7387               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7388               if ((insn & ((0x3f << 26) | 0x1f << 16))
7389                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7390                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7391                                        _("toc optimization is not supported "
7392                                          "for %#08x instruction"), insn);
7393               else if (value + 0x8000 < 0x10000)
7394                 {
7395                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7396                   return true;
7397                 }
7398             }
7399           break;
7400
7401         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7402         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7403         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7404         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7405         case elfcpp::R_POWERPC_GOT16_LO:
7406         case elfcpp::R_PPC64_GOT16_LO_DS:
7407         case elfcpp::R_PPC64_TOC16_LO:
7408         case elfcpp::R_PPC64_TOC16_LO_DS:
7409           if (parameters->options().toc_optimize())
7410             {
7411               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7412               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7413               if (!ok_lo_toc_insn(insn))
7414                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7415                                        _("toc optimization is not supported "
7416                                          "for %#08x instruction"), insn);
7417               else if (value + 0x8000 < 0x10000)
7418                 {
7419                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7420                     {
7421                       // Transform addic to addi when we change reg.
7422                       insn &= ~((0x3f << 26) | (0x1f << 16));
7423                       insn |= (14u << 26) | (2 << 16);
7424                     }
7425                   else
7426                     {
7427                       insn &= ~(0x1f << 16);
7428                       insn |= 2 << 16;
7429                     }
7430                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7431                 }
7432             }
7433           break;
7434         }
7435     }
7436
7437   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7438   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7439   switch (r_type)
7440     {
7441     case elfcpp::R_POWERPC_ADDR32:
7442     case elfcpp::R_POWERPC_UADDR32:
7443       if (size == 64)
7444         overflow = Reloc::CHECK_BITFIELD;
7445       break;
7446
7447     case elfcpp::R_POWERPC_REL32:
7448       if (size == 64)
7449         overflow = Reloc::CHECK_SIGNED;
7450       break;
7451
7452     case elfcpp::R_POWERPC_UADDR16:
7453       overflow = Reloc::CHECK_BITFIELD;
7454       break;
7455
7456     case elfcpp::R_POWERPC_ADDR16:
7457       // We really should have three separate relocations,
7458       // one for 16-bit data, one for insns with 16-bit signed fields,
7459       // and one for insns with 16-bit unsigned fields.
7460       overflow = Reloc::CHECK_BITFIELD;
7461       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7462         overflow = Reloc::CHECK_LOW_INSN;
7463       break;
7464
7465     case elfcpp::R_POWERPC_ADDR16_HI:
7466     case elfcpp::R_POWERPC_ADDR16_HA:
7467     case elfcpp::R_POWERPC_GOT16_HI:
7468     case elfcpp::R_POWERPC_GOT16_HA:
7469     case elfcpp::R_POWERPC_PLT16_HI:
7470     case elfcpp::R_POWERPC_PLT16_HA:
7471     case elfcpp::R_POWERPC_SECTOFF_HI:
7472     case elfcpp::R_POWERPC_SECTOFF_HA:
7473     case elfcpp::R_PPC64_TOC16_HI:
7474     case elfcpp::R_PPC64_TOC16_HA:
7475     case elfcpp::R_PPC64_PLTGOT16_HI:
7476     case elfcpp::R_PPC64_PLTGOT16_HA:
7477     case elfcpp::R_POWERPC_TPREL16_HI:
7478     case elfcpp::R_POWERPC_TPREL16_HA:
7479     case elfcpp::R_POWERPC_DTPREL16_HI:
7480     case elfcpp::R_POWERPC_DTPREL16_HA:
7481     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7482     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7483     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7484     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7485     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7486     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7487     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7488     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7489     case elfcpp::R_POWERPC_REL16_HI:
7490     case elfcpp::R_POWERPC_REL16_HA:
7491       if (size != 32)
7492         overflow = Reloc::CHECK_HIGH_INSN;
7493       break;
7494
7495     case elfcpp::R_POWERPC_REL16:
7496     case elfcpp::R_PPC64_TOC16:
7497     case elfcpp::R_POWERPC_GOT16:
7498     case elfcpp::R_POWERPC_SECTOFF:
7499     case elfcpp::R_POWERPC_TPREL16:
7500     case elfcpp::R_POWERPC_DTPREL16:
7501     case elfcpp::R_POWERPC_GOT_TLSGD16:
7502     case elfcpp::R_POWERPC_GOT_TLSLD16:
7503     case elfcpp::R_POWERPC_GOT_TPREL16:
7504     case elfcpp::R_POWERPC_GOT_DTPREL16:
7505       overflow = Reloc::CHECK_LOW_INSN;
7506       break;
7507
7508     case elfcpp::R_POWERPC_ADDR24:
7509     case elfcpp::R_POWERPC_ADDR14:
7510     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7511     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7512     case elfcpp::R_PPC64_ADDR16_DS:
7513     case elfcpp::R_POWERPC_REL24:
7514     case elfcpp::R_PPC_PLTREL24:
7515     case elfcpp::R_PPC_LOCAL24PC:
7516     case elfcpp::R_PPC64_TPREL16_DS:
7517     case elfcpp::R_PPC64_DTPREL16_DS:
7518     case elfcpp::R_PPC64_TOC16_DS:
7519     case elfcpp::R_PPC64_GOT16_DS:
7520     case elfcpp::R_PPC64_SECTOFF_DS:
7521     case elfcpp::R_POWERPC_REL14:
7522     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7523     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7524       overflow = Reloc::CHECK_SIGNED;
7525       break;
7526     }
7527
7528   if (overflow == Reloc::CHECK_LOW_INSN
7529       || overflow == Reloc::CHECK_HIGH_INSN)
7530     {
7531       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7532       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7533
7534       overflow = Reloc::CHECK_SIGNED;
7535       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7536         overflow = Reloc::CHECK_BITFIELD;
7537       else if (overflow == Reloc::CHECK_LOW_INSN
7538                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7539                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7540                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7541                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7542                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7543                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7544         overflow = Reloc::CHECK_UNSIGNED;
7545     }
7546
7547   typename Powerpc_relocate_functions<size, big_endian>::Status status
7548     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7549   switch (r_type)
7550     {
7551     case elfcpp::R_POWERPC_NONE:
7552     case elfcpp::R_POWERPC_TLS:
7553     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7554     case elfcpp::R_POWERPC_GNU_VTENTRY:
7555       break;
7556
7557     case elfcpp::R_PPC64_ADDR64:
7558     case elfcpp::R_PPC64_REL64:
7559     case elfcpp::R_PPC64_TOC:
7560     case elfcpp::R_PPC64_ADDR64_LOCAL:
7561       Reloc::addr64(view, value);
7562       break;
7563
7564     case elfcpp::R_POWERPC_TPREL:
7565     case elfcpp::R_POWERPC_DTPREL:
7566       if (size == 64)
7567         Reloc::addr64(view, value);
7568       else
7569         status = Reloc::addr32(view, value, overflow);
7570       break;
7571
7572     case elfcpp::R_PPC64_UADDR64:
7573       Reloc::addr64_u(view, value);
7574       break;
7575
7576     case elfcpp::R_POWERPC_ADDR32:
7577       status = Reloc::addr32(view, value, overflow);
7578       break;
7579
7580     case elfcpp::R_POWERPC_REL32:
7581     case elfcpp::R_POWERPC_UADDR32:
7582       status = Reloc::addr32_u(view, value, overflow);
7583       break;
7584
7585     case elfcpp::R_POWERPC_ADDR24:
7586     case elfcpp::R_POWERPC_REL24:
7587     case elfcpp::R_PPC_PLTREL24:
7588     case elfcpp::R_PPC_LOCAL24PC:
7589       status = Reloc::addr24(view, value, overflow);
7590       break;
7591
7592     case elfcpp::R_POWERPC_GOT_DTPREL16:
7593     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7594       if (size == 64)
7595         {
7596           status = Reloc::addr16_ds(view, value, overflow);
7597           break;
7598         }
7599     case elfcpp::R_POWERPC_ADDR16:
7600     case elfcpp::R_POWERPC_REL16:
7601     case elfcpp::R_PPC64_TOC16:
7602     case elfcpp::R_POWERPC_GOT16:
7603     case elfcpp::R_POWERPC_SECTOFF:
7604     case elfcpp::R_POWERPC_TPREL16:
7605     case elfcpp::R_POWERPC_DTPREL16:
7606     case elfcpp::R_POWERPC_GOT_TLSGD16:
7607     case elfcpp::R_POWERPC_GOT_TLSLD16:
7608     case elfcpp::R_POWERPC_GOT_TPREL16:
7609     case elfcpp::R_POWERPC_ADDR16_LO:
7610     case elfcpp::R_POWERPC_REL16_LO:
7611     case elfcpp::R_PPC64_TOC16_LO:
7612     case elfcpp::R_POWERPC_GOT16_LO:
7613     case elfcpp::R_POWERPC_SECTOFF_LO:
7614     case elfcpp::R_POWERPC_TPREL16_LO:
7615     case elfcpp::R_POWERPC_DTPREL16_LO:
7616     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7617     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7618     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7619       status = Reloc::addr16(view, value, overflow);
7620       break;
7621
7622     case elfcpp::R_POWERPC_UADDR16:
7623       status = Reloc::addr16_u(view, value, overflow);
7624       break;
7625
7626     case elfcpp::R_PPC64_ADDR16_HIGH:
7627     case elfcpp::R_PPC64_TPREL16_HIGH:
7628     case elfcpp::R_PPC64_DTPREL16_HIGH:
7629       if (size == 32)
7630         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7631         goto unsupp;
7632     case elfcpp::R_POWERPC_ADDR16_HI:
7633     case elfcpp::R_POWERPC_REL16_HI:
7634     case elfcpp::R_PPC64_TOC16_HI:
7635     case elfcpp::R_POWERPC_GOT16_HI:
7636     case elfcpp::R_POWERPC_SECTOFF_HI:
7637     case elfcpp::R_POWERPC_TPREL16_HI:
7638     case elfcpp::R_POWERPC_DTPREL16_HI:
7639     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7640     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7641     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7642     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7643       Reloc::addr16_hi(view, value);
7644       break;
7645
7646     case elfcpp::R_PPC64_ADDR16_HIGHA:
7647     case elfcpp::R_PPC64_TPREL16_HIGHA:
7648     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7649       if (size == 32)
7650         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7651         goto unsupp;
7652     case elfcpp::R_POWERPC_ADDR16_HA:
7653     case elfcpp::R_POWERPC_REL16_HA:
7654     case elfcpp::R_PPC64_TOC16_HA:
7655     case elfcpp::R_POWERPC_GOT16_HA:
7656     case elfcpp::R_POWERPC_SECTOFF_HA:
7657     case elfcpp::R_POWERPC_TPREL16_HA:
7658     case elfcpp::R_POWERPC_DTPREL16_HA:
7659     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7660     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7661     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7662     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7663       Reloc::addr16_ha(view, value);
7664       break;
7665
7666     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7667       if (size == 32)
7668         // R_PPC_EMB_NADDR16_LO
7669         goto unsupp;
7670     case elfcpp::R_PPC64_ADDR16_HIGHER:
7671     case elfcpp::R_PPC64_TPREL16_HIGHER:
7672       Reloc::addr16_hi2(view, value);
7673       break;
7674
7675     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7676       if (size == 32)
7677         // R_PPC_EMB_NADDR16_HI
7678         goto unsupp;
7679     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7680     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7681       Reloc::addr16_ha2(view, value);
7682       break;
7683
7684     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7685       if (size == 32)
7686         // R_PPC_EMB_NADDR16_HA
7687         goto unsupp;
7688     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7689     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7690       Reloc::addr16_hi3(view, value);
7691       break;
7692
7693     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7694       if (size == 32)
7695         // R_PPC_EMB_SDAI16
7696         goto unsupp;
7697     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7698     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7699       Reloc::addr16_ha3(view, value);
7700       break;
7701
7702     case elfcpp::R_PPC64_DTPREL16_DS:
7703     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7704       if (size == 32)
7705         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7706         goto unsupp;
7707     case elfcpp::R_PPC64_TPREL16_DS:
7708     case elfcpp::R_PPC64_TPREL16_LO_DS:
7709       if (size == 32)
7710         // R_PPC_TLSGD, R_PPC_TLSLD
7711         break;
7712     case elfcpp::R_PPC64_ADDR16_DS:
7713     case elfcpp::R_PPC64_ADDR16_LO_DS:
7714     case elfcpp::R_PPC64_TOC16_DS:
7715     case elfcpp::R_PPC64_TOC16_LO_DS:
7716     case elfcpp::R_PPC64_GOT16_DS:
7717     case elfcpp::R_PPC64_GOT16_LO_DS:
7718     case elfcpp::R_PPC64_SECTOFF_DS:
7719     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7720       status = Reloc::addr16_ds(view, value, overflow);
7721       break;
7722
7723     case elfcpp::R_POWERPC_ADDR14:
7724     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7725     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7726     case elfcpp::R_POWERPC_REL14:
7727     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7728     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7729       status = Reloc::addr14(view, value, overflow);
7730       break;
7731
7732     case elfcpp::R_POWERPC_COPY:
7733     case elfcpp::R_POWERPC_GLOB_DAT:
7734     case elfcpp::R_POWERPC_JMP_SLOT:
7735     case elfcpp::R_POWERPC_RELATIVE:
7736     case elfcpp::R_POWERPC_DTPMOD:
7737     case elfcpp::R_PPC64_JMP_IREL:
7738     case elfcpp::R_POWERPC_IRELATIVE:
7739       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7740                              _("unexpected reloc %u in object file"),
7741                              r_type);
7742       break;
7743
7744     case elfcpp::R_PPC_EMB_SDA21:
7745       if (size == 32)
7746         goto unsupp;
7747       else
7748         {
7749           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7750         }
7751       break;
7752
7753     case elfcpp::R_PPC_EMB_SDA2I16:
7754     case elfcpp::R_PPC_EMB_SDA2REL:
7755       if (size == 32)
7756         goto unsupp;
7757       // R_PPC64_TLSGD, R_PPC64_TLSLD
7758       break;
7759
7760     case elfcpp::R_POWERPC_PLT32:
7761     case elfcpp::R_POWERPC_PLTREL32:
7762     case elfcpp::R_POWERPC_PLT16_LO:
7763     case elfcpp::R_POWERPC_PLT16_HI:
7764     case elfcpp::R_POWERPC_PLT16_HA:
7765     case elfcpp::R_PPC_SDAREL16:
7766     case elfcpp::R_POWERPC_ADDR30:
7767     case elfcpp::R_PPC64_PLT64:
7768     case elfcpp::R_PPC64_PLTREL64:
7769     case elfcpp::R_PPC64_PLTGOT16:
7770     case elfcpp::R_PPC64_PLTGOT16_LO:
7771     case elfcpp::R_PPC64_PLTGOT16_HI:
7772     case elfcpp::R_PPC64_PLTGOT16_HA:
7773     case elfcpp::R_PPC64_PLT16_LO_DS:
7774     case elfcpp::R_PPC64_PLTGOT16_DS:
7775     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7776     case elfcpp::R_PPC_EMB_RELSDA:
7777     case elfcpp::R_PPC_TOC16:
7778     default:
7779     unsupp:
7780       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7781                              _("unsupported reloc %u"),
7782                              r_type);
7783       break;
7784     }
7785   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7786       && (has_stub_value
7787           || !(gsym != NULL
7788                && gsym->is_weak_undefined()
7789                && is_branch_reloc(r_type))))
7790     {
7791       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7792                              _("relocation overflow"));
7793       if (has_stub_value)
7794         gold_info(_("try relinking with a smaller --stub-group-size"));
7795     }
7796
7797   return true;
7798 }
7799
7800 // Relocate section data.
7801
7802 template<int size, bool big_endian>
7803 void
7804 Target_powerpc<size, big_endian>::relocate_section(
7805     const Relocate_info<size, big_endian>* relinfo,
7806     unsigned int sh_type,
7807     const unsigned char* prelocs,
7808     size_t reloc_count,
7809     Output_section* output_section,
7810     bool needs_special_offset_handling,
7811     unsigned char* view,
7812     Address address,
7813     section_size_type view_size,
7814     const Reloc_symbol_changes* reloc_symbol_changes)
7815 {
7816   typedef Target_powerpc<size, big_endian> Powerpc;
7817   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7818   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7819     Powerpc_comdat_behavior;
7820
7821   gold_assert(sh_type == elfcpp::SHT_RELA);
7822
7823   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7824                          Powerpc_relocate, Powerpc_comdat_behavior>(
7825     relinfo,
7826     this,
7827     prelocs,
7828     reloc_count,
7829     output_section,
7830     needs_special_offset_handling,
7831     view,
7832     address,
7833     view_size,
7834     reloc_symbol_changes);
7835 }
7836
7837 class Powerpc_scan_relocatable_reloc
7838 {
7839 public:
7840   // Return the strategy to use for a local symbol which is not a
7841   // section symbol, given the relocation type.
7842   inline Relocatable_relocs::Reloc_strategy
7843   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7844   {
7845     if (r_type == 0 && r_sym == 0)
7846       return Relocatable_relocs::RELOC_DISCARD;
7847     return Relocatable_relocs::RELOC_COPY;
7848   }
7849
7850   // Return the strategy to use for a local symbol which is a section
7851   // symbol, given the relocation type.
7852   inline Relocatable_relocs::Reloc_strategy
7853   local_section_strategy(unsigned int, Relobj*)
7854   {
7855     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7856   }
7857
7858   // Return the strategy to use for a global symbol, given the
7859   // relocation type, the object, and the symbol index.
7860   inline Relocatable_relocs::Reloc_strategy
7861   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7862   {
7863     if (r_type == elfcpp::R_PPC_PLTREL24)
7864       return Relocatable_relocs::RELOC_SPECIAL;
7865     return Relocatable_relocs::RELOC_COPY;
7866   }
7867 };
7868
7869 // Scan the relocs during a relocatable link.
7870
7871 template<int size, bool big_endian>
7872 void
7873 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7874     Symbol_table* symtab,
7875     Layout* layout,
7876     Sized_relobj_file<size, big_endian>* object,
7877     unsigned int data_shndx,
7878     unsigned int sh_type,
7879     const unsigned char* prelocs,
7880     size_t reloc_count,
7881     Output_section* output_section,
7882     bool needs_special_offset_handling,
7883     size_t local_symbol_count,
7884     const unsigned char* plocal_symbols,
7885     Relocatable_relocs* rr)
7886 {
7887   gold_assert(sh_type == elfcpp::SHT_RELA);
7888
7889   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7890                                 Powerpc_scan_relocatable_reloc>(
7891     symtab,
7892     layout,
7893     object,
7894     data_shndx,
7895     prelocs,
7896     reloc_count,
7897     output_section,
7898     needs_special_offset_handling,
7899     local_symbol_count,
7900     plocal_symbols,
7901     rr);
7902 }
7903
7904 // Emit relocations for a section.
7905 // This is a modified version of the function by the same name in
7906 // target-reloc.h.  Using relocate_special_relocatable for
7907 // R_PPC_PLTREL24 would require duplication of the entire body of the
7908 // loop, so we may as well duplicate the whole thing.
7909
7910 template<int size, bool big_endian>
7911 void
7912 Target_powerpc<size, big_endian>::relocate_relocs(
7913     const Relocate_info<size, big_endian>* relinfo,
7914     unsigned int sh_type,
7915     const unsigned char* prelocs,
7916     size_t reloc_count,
7917     Output_section* output_section,
7918     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7919     const Relocatable_relocs* rr,
7920     unsigned char*,
7921     Address view_address,
7922     section_size_type,
7923     unsigned char* reloc_view,
7924     section_size_type reloc_view_size)
7925 {
7926   gold_assert(sh_type == elfcpp::SHT_RELA);
7927
7928   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7929     Reltype;
7930   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7931     Reltype_write;
7932   const int reloc_size
7933     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7934
7935   Powerpc_relobj<size, big_endian>* const object
7936     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7937   const unsigned int local_count = object->local_symbol_count();
7938   unsigned int got2_shndx = object->got2_shndx();
7939   Address got2_addend = 0;
7940   if (got2_shndx != 0)
7941     {
7942       got2_addend = object->get_output_section_offset(got2_shndx);
7943       gold_assert(got2_addend != invalid_address);
7944     }
7945
7946   unsigned char* pwrite = reloc_view;
7947   bool zap_next = false;
7948   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7949     {
7950       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7951       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7952         continue;
7953
7954       Reltype reloc(prelocs);
7955       Reltype_write reloc_write(pwrite);
7956
7957       Address offset = reloc.get_r_offset();
7958       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7959       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7960       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7961       const unsigned int orig_r_sym = r_sym;
7962       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7963         = reloc.get_r_addend();
7964       const Symbol* gsym = NULL;
7965
7966       if (zap_next)
7967         {
7968           // We could arrange to discard these and other relocs for
7969           // tls optimised sequences in the strategy methods, but for
7970           // now do as BFD ld does.
7971           r_type = elfcpp::R_POWERPC_NONE;
7972           zap_next = false;
7973         }
7974
7975       // Get the new symbol index.
7976       if (r_sym < local_count)
7977         {
7978           switch (strategy)
7979             {
7980             case Relocatable_relocs::RELOC_COPY:
7981             case Relocatable_relocs::RELOC_SPECIAL:
7982               if (r_sym != 0)
7983                 {
7984                   r_sym = object->symtab_index(r_sym);
7985                   gold_assert(r_sym != -1U);
7986                 }
7987               break;
7988
7989             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7990               {
7991                 // We are adjusting a section symbol.  We need to find
7992                 // the symbol table index of the section symbol for
7993                 // the output section corresponding to input section
7994                 // in which this symbol is defined.
7995                 gold_assert(r_sym < local_count);
7996                 bool is_ordinary;
7997                 unsigned int shndx =
7998                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7999                 gold_assert(is_ordinary);
8000                 Output_section* os = object->output_section(shndx);
8001                 gold_assert(os != NULL);
8002                 gold_assert(os->needs_symtab_index());
8003                 r_sym = os->symtab_index();
8004               }
8005               break;
8006
8007             default:
8008               gold_unreachable();
8009             }
8010         }
8011       else
8012         {
8013           gsym = object->global_symbol(r_sym);
8014           gold_assert(gsym != NULL);
8015           if (gsym->is_forwarder())
8016             gsym = relinfo->symtab->resolve_forwards(gsym);
8017
8018           gold_assert(gsym->has_symtab_index());
8019           r_sym = gsym->symtab_index();
8020         }
8021
8022       // Get the new offset--the location in the output section where
8023       // this relocation should be applied.
8024       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8025         offset += offset_in_output_section;
8026       else
8027         {
8028           section_offset_type sot_offset =
8029             convert_types<section_offset_type, Address>(offset);
8030           section_offset_type new_sot_offset =
8031             output_section->output_offset(object, relinfo->data_shndx,
8032                                           sot_offset);
8033           gold_assert(new_sot_offset != -1);
8034           offset = new_sot_offset;
8035         }
8036
8037       // In an object file, r_offset is an offset within the section.
8038       // In an executable or dynamic object, generated by
8039       // --emit-relocs, r_offset is an absolute address.
8040       if (!parameters->options().relocatable())
8041         {
8042           offset += view_address;
8043           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8044             offset -= offset_in_output_section;
8045         }
8046
8047       // Handle the reloc addend based on the strategy.
8048       if (strategy == Relocatable_relocs::RELOC_COPY)
8049         ;
8050       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8051         {
8052           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8053           addend = psymval->value(object, addend);
8054         }
8055       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8056         {
8057           if (addend >= 32768)
8058             addend += got2_addend;
8059         }
8060       else
8061         gold_unreachable();
8062
8063       if (!parameters->options().relocatable())
8064         {
8065           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8066               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8067               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8068               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8069             {
8070               // First instruction of a global dynamic sequence,
8071               // arg setup insn.
8072               const bool final = gsym == NULL || gsym->final_value_is_known();
8073               switch (this->optimize_tls_gd(final))
8074                 {
8075                 case tls::TLSOPT_TO_IE:
8076                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8077                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8078                   break;
8079                 case tls::TLSOPT_TO_LE:
8080                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8081                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8082                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8083                   else
8084                     {
8085                       r_type = elfcpp::R_POWERPC_NONE;
8086                       offset -= 2 * big_endian;
8087                     }
8088                   break;
8089                 default:
8090                   break;
8091                 }
8092             }
8093           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8094                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8095                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8096                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8097             {
8098               // First instruction of a local dynamic sequence,
8099               // arg setup insn.
8100               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8101                 {
8102                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8103                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8104                     {
8105                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8106                       const Output_section* os = relinfo->layout->tls_segment()
8107                         ->first_section();
8108                       gold_assert(os != NULL);
8109                       gold_assert(os->needs_symtab_index());
8110                       r_sym = os->symtab_index();
8111                       addend = dtp_offset;
8112                     }
8113                   else
8114                     {
8115                       r_type = elfcpp::R_POWERPC_NONE;
8116                       offset -= 2 * big_endian;
8117                     }
8118                 }
8119             }
8120           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8121                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8122                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8123                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8124             {
8125               // First instruction of initial exec sequence.
8126               const bool final = gsym == NULL || gsym->final_value_is_known();
8127               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8128                 {
8129                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8130                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8131                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8132                   else
8133                     {
8134                       r_type = elfcpp::R_POWERPC_NONE;
8135                       offset -= 2 * big_endian;
8136                     }
8137                 }
8138             }
8139           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8140                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8141             {
8142               // Second instruction of a global dynamic sequence,
8143               // the __tls_get_addr call
8144               const bool final = gsym == NULL || gsym->final_value_is_known();
8145               switch (this->optimize_tls_gd(final))
8146                 {
8147                 case tls::TLSOPT_TO_IE:
8148                   r_type = elfcpp::R_POWERPC_NONE;
8149                   zap_next = true;
8150                   break;
8151                 case tls::TLSOPT_TO_LE:
8152                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8153                   offset += 2 * big_endian;
8154                   zap_next = true;
8155                   break;
8156                 default:
8157                   break;
8158                 }
8159             }
8160           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8161                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8162             {
8163               // Second instruction of a local dynamic sequence,
8164               // the __tls_get_addr call
8165               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8166                 {
8167                   const Output_section* os = relinfo->layout->tls_segment()
8168                     ->first_section();
8169                   gold_assert(os != NULL);
8170                   gold_assert(os->needs_symtab_index());
8171                   r_sym = os->symtab_index();
8172                   addend = dtp_offset;
8173                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8174                   offset += 2 * big_endian;
8175                   zap_next = true;
8176                 }
8177             }
8178           else if (r_type == elfcpp::R_POWERPC_TLS)
8179             {
8180               // Second instruction of an initial exec sequence
8181               const bool final = gsym == NULL || gsym->final_value_is_known();
8182               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8183                 {
8184                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8185                   offset += 2 * big_endian;
8186                 }
8187             }
8188         }
8189
8190       reloc_write.put_r_offset(offset);
8191       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8192       reloc_write.put_r_addend(addend);
8193
8194       pwrite += reloc_size;
8195     }
8196
8197   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8198               == reloc_view_size);
8199 }
8200
8201 // Return the value to use for a dynamic symbol which requires special
8202 // treatment.  This is how we support equality comparisons of function
8203 // pointers across shared library boundaries, as described in the
8204 // processor specific ABI supplement.
8205
8206 template<int size, bool big_endian>
8207 uint64_t
8208 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8209 {
8210   if (size == 32)
8211     {
8212       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8213       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8214            p != this->stub_tables_.end();
8215            ++p)
8216         {
8217           Address off = (*p)->find_plt_call_entry(gsym);
8218           if (off != invalid_address)
8219             return (*p)->stub_address() + off;
8220         }
8221     }
8222   else if (this->abiversion() >= 2)
8223     {
8224       unsigned int off = this->glink_section()->find_global_entry(gsym);
8225       if (off != (unsigned int)-1)
8226         return this->glink_section()->global_entry_address() + off;
8227     }
8228   gold_unreachable();
8229 }
8230
8231 // Return the PLT address to use for a local symbol.
8232 template<int size, bool big_endian>
8233 uint64_t
8234 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8235     const Relobj* object,
8236     unsigned int symndx) const
8237 {
8238   if (size == 32)
8239     {
8240       const Sized_relobj<size, big_endian>* relobj
8241         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8242       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8243            p != this->stub_tables_.end();
8244            ++p)
8245         {
8246           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8247                                                   symndx);
8248           if (off != invalid_address)
8249             return (*p)->stub_address() + off;
8250         }
8251     }
8252   gold_unreachable();
8253 }
8254
8255 // Return the PLT address to use for a global symbol.
8256 template<int size, bool big_endian>
8257 uint64_t
8258 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8259     const Symbol* gsym) const
8260 {
8261   if (size == 32)
8262     {
8263       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8264            p != this->stub_tables_.end();
8265            ++p)
8266         {
8267           Address off = (*p)->find_plt_call_entry(gsym);
8268           if (off != invalid_address)
8269             return (*p)->stub_address() + off;
8270         }
8271     }
8272   else if (this->abiversion() >= 2)
8273     {
8274       unsigned int off = this->glink_section()->find_global_entry(gsym);
8275       if (off != (unsigned int)-1)
8276         return this->glink_section()->global_entry_address() + off;
8277     }
8278   gold_unreachable();
8279 }
8280
8281 // Return the offset to use for the GOT_INDX'th got entry which is
8282 // for a local tls symbol specified by OBJECT, SYMNDX.
8283 template<int size, bool big_endian>
8284 int64_t
8285 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8286     const Relobj* object,
8287     unsigned int symndx,
8288     unsigned int got_indx) const
8289 {
8290   const Powerpc_relobj<size, big_endian>* ppc_object
8291     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8292   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8293     {
8294       for (Got_type got_type = GOT_TYPE_TLSGD;
8295            got_type <= GOT_TYPE_TPREL;
8296            got_type = Got_type(got_type + 1))
8297         if (ppc_object->local_has_got_offset(symndx, got_type))
8298           {
8299             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8300             if (got_type == GOT_TYPE_TLSGD)
8301               off += size / 8;
8302             if (off == got_indx * (size / 8))
8303               {
8304                 if (got_type == GOT_TYPE_TPREL)
8305                   return -tp_offset;
8306                 else
8307                   return -dtp_offset;
8308               }
8309           }
8310     }
8311   gold_unreachable();
8312 }
8313
8314 // Return the offset to use for the GOT_INDX'th got entry which is
8315 // for global tls symbol GSYM.
8316 template<int size, bool big_endian>
8317 int64_t
8318 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8319     Symbol* gsym,
8320     unsigned int got_indx) const
8321 {
8322   if (gsym->type() == elfcpp::STT_TLS)
8323     {
8324       for (Got_type got_type = GOT_TYPE_TLSGD;
8325            got_type <= GOT_TYPE_TPREL;
8326            got_type = Got_type(got_type + 1))
8327         if (gsym->has_got_offset(got_type))
8328           {
8329             unsigned int off = gsym->got_offset(got_type);
8330             if (got_type == GOT_TYPE_TLSGD)
8331               off += size / 8;
8332             if (off == got_indx * (size / 8))
8333               {
8334                 if (got_type == GOT_TYPE_TPREL)
8335                   return -tp_offset;
8336                 else
8337                   return -dtp_offset;
8338               }
8339           }
8340     }
8341   gold_unreachable();
8342 }
8343
8344 // The selector for powerpc object files.
8345
8346 template<int size, bool big_endian>
8347 class Target_selector_powerpc : public Target_selector
8348 {
8349 public:
8350   Target_selector_powerpc()
8351     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8352                       size, big_endian,
8353                       (size == 64
8354                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8355                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8356                       (size == 64
8357                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8358                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8359   { }
8360
8361   virtual Target*
8362   do_instantiate_target()
8363   { return new Target_powerpc<size, big_endian>(); }
8364 };
8365
8366 Target_selector_powerpc<32, true> target_selector_ppc32;
8367 Target_selector_powerpc<32, false> target_selector_ppc32le;
8368 Target_selector_powerpc<64, true> target_selector_ppc64;
8369 Target_selector_powerpc<64, false> target_selector_ppc64le;
8370
8371 // Instantiate these constants for -O0
8372 template<int size, bool big_endian>
8373 const int Output_data_glink<size, big_endian>::pltresolve_size;
8374 template<int size, bool big_endian>
8375 const typename Output_data_glink<size, big_endian>::Address
8376   Output_data_glink<size, big_endian>::invalid_address;
8377 template<int size, bool big_endian>
8378 const typename Stub_table<size, big_endian>::Address
8379   Stub_table<size, big_endian>::invalid_address;
8380 template<int size, bool big_endian>
8381 const typename Target_powerpc<size, big_endian>::Address
8382   Target_powerpc<size, big_endian>::invalid_address;
8383
8384 } // End anonymous namespace.