[GOLD] Add debug output for powerpc section grouping
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      const unsigned char* prelocs, size_t reloc_count,
635                      unsigned char* view, section_size_type view_size,
636                      std::string* from, std::string* to) const;
637
638   // Relocate a section.
639   void
640   relocate_section(const Relocate_info<size, big_endian>*,
641                    unsigned int sh_type,
642                    const unsigned char* prelocs,
643                    size_t reloc_count,
644                    Output_section* output_section,
645                    bool needs_special_offset_handling,
646                    unsigned char* view,
647                    Address view_address,
648                    section_size_type view_size,
649                    const Reloc_symbol_changes*);
650
651   // Scan the relocs during a relocatable link.
652   void
653   scan_relocatable_relocs(Symbol_table* symtab,
654                           Layout* layout,
655                           Sized_relobj_file<size, big_endian>* object,
656                           unsigned int data_shndx,
657                           unsigned int sh_type,
658                           const unsigned char* prelocs,
659                           size_t reloc_count,
660                           Output_section* output_section,
661                           bool needs_special_offset_handling,
662                           size_t local_symbol_count,
663                           const unsigned char* plocal_symbols,
664                           Relocatable_relocs*);
665
666   // Scan the relocs for --emit-relocs.
667   void
668   emit_relocs_scan(Symbol_table* symtab,
669                    Layout* layout,
670                    Sized_relobj_file<size, big_endian>* object,
671                    unsigned int data_shndx,
672                    unsigned int sh_type,
673                    const unsigned char* prelocs,
674                    size_t reloc_count,
675                    Output_section* output_section,
676                    bool needs_special_offset_handling,
677                    size_t local_symbol_count,
678                    const unsigned char* plocal_syms,
679                    Relocatable_relocs* rr);
680
681   // Emit relocations for a section.
682   void
683   relocate_relocs(const Relocate_info<size, big_endian>*,
684                   unsigned int sh_type,
685                   const unsigned char* prelocs,
686                   size_t reloc_count,
687                   Output_section* output_section,
688                   typename elfcpp::Elf_types<size>::Elf_Off
689                     offset_in_output_section,
690                   unsigned char*,
691                   Address view_address,
692                   section_size_type,
693                   unsigned char* reloc_view,
694                   section_size_type reloc_view_size);
695
696   // Return whether SYM is defined by the ABI.
697   bool
698   do_is_defined_by_abi(const Symbol* sym) const
699   {
700     return strcmp(sym->name(), "__tls_get_addr") == 0;
701   }
702
703   // Return the size of the GOT section.
704   section_size_type
705   got_size() const
706   {
707     gold_assert(this->got_ != NULL);
708     return this->got_->data_size();
709   }
710
711   // Get the PLT section.
712   const Output_data_plt_powerpc<size, big_endian>*
713   plt_section() const
714   {
715     gold_assert(this->plt_ != NULL);
716     return this->plt_;
717   }
718
719   // Get the IPLT section.
720   const Output_data_plt_powerpc<size, big_endian>*
721   iplt_section() const
722   {
723     gold_assert(this->iplt_ != NULL);
724     return this->iplt_;
725   }
726
727   // Get the .glink section.
728   const Output_data_glink<size, big_endian>*
729   glink_section() const
730   {
731     gold_assert(this->glink_ != NULL);
732     return this->glink_;
733   }
734
735   Output_data_glink<size, big_endian>*
736   glink_section()
737   {
738     gold_assert(this->glink_ != NULL);
739     return this->glink_;
740   }
741
742   bool has_glink() const
743   { return this->glink_ != NULL; }
744
745   // Get the GOT section.
746   const Output_data_got_powerpc<size, big_endian>*
747   got_section() const
748   {
749     gold_assert(this->got_ != NULL);
750     return this->got_;
751   }
752
753   // Get the GOT section, creating it if necessary.
754   Output_data_got_powerpc<size, big_endian>*
755   got_section(Symbol_table*, Layout*);
756
757   Object*
758   do_make_elf_object(const std::string&, Input_file*, off_t,
759                      const elfcpp::Ehdr<size, big_endian>&);
760
761   // Return the number of entries in the GOT.
762   unsigned int
763   got_entry_count() const
764   {
765     if (this->got_ == NULL)
766       return 0;
767     return this->got_size() / (size / 8);
768   }
769
770   // Return the number of entries in the PLT.
771   unsigned int
772   plt_entry_count() const;
773
774   // Return the offset of the first non-reserved PLT entry.
775   unsigned int
776   first_plt_entry_offset() const
777   {
778     if (size == 32)
779       return 0;
780     if (this->abiversion() >= 2)
781       return 16;
782     return 24;
783   }
784
785   // Return the size of each PLT entry.
786   unsigned int
787   plt_entry_size() const
788   {
789     if (size == 32)
790       return 4;
791     if (this->abiversion() >= 2)
792       return 8;
793     return 24;
794   }
795
796   Output_data_save_res<size, big_endian>*
797   savres_section() const
798   {
799     return this->savres_section_;
800   }
801
802   // Add any special sections for this symbol to the gc work list.
803   // For powerpc64, this adds the code section of a function
804   // descriptor.
805   void
806   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808   // Handle target specific gc actions when adding a gc reference from
809   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810   // and DST_OFF.  For powerpc64, this adds a referenc to the code
811   // section of a function descriptor.
812   void
813   do_gc_add_reference(Symbol_table* symtab,
814                       Relobj* src_obj,
815                       unsigned int src_shndx,
816                       Relobj* dst_obj,
817                       unsigned int dst_shndx,
818                       Address dst_off) const;
819
820   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821   const Stub_tables&
822   stub_tables() const
823   { return this->stub_tables_; }
824
825   const Output_data_brlt_powerpc<size, big_endian>*
826   brlt_section() const
827   { return this->brlt_section_; }
828
829   void
830   add_branch_lookup_table(Address to)
831   {
832     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833     this->branch_lookup_table_.insert(std::make_pair(to, off));
834   }
835
836   Address
837   find_branch_lookup_table(Address to)
838   {
839     typename Branch_lookup_table::const_iterator p
840       = this->branch_lookup_table_.find(to);
841     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842   }
843
844   void
845   write_branch_lookup_table(unsigned char *oview)
846   {
847     for (typename Branch_lookup_table::const_iterator p
848            = this->branch_lookup_table_.begin();
849          p != this->branch_lookup_table_.end();
850          ++p)
851       {
852         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853       }
854   }
855
856   bool
857   plt_thread_safe() const
858   { return this->plt_thread_safe_; }
859
860   int
861   abiversion () const
862   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864   void
865   set_abiversion (int ver)
866   {
867     elfcpp::Elf_Word flags = this->processor_specific_flags();
868     flags &= ~elfcpp::EF_PPC64_ABI;
869     flags |= ver & elfcpp::EF_PPC64_ABI;
870     this->set_processor_specific_flags(flags);
871   }
872
873   // Offset to to save stack slot
874   int
875   stk_toc () const
876   { return this->abiversion() < 2 ? 40 : 24; }
877
878  private:
879
880   class Track_tls
881   {
882   public:
883     enum Tls_get_addr
884     {
885       NOT_EXPECTED = 0,
886       EXPECTED = 1,
887       SKIP = 2,
888       NORMAL = 3
889     };
890
891     Track_tls()
892       : tls_get_addr_(NOT_EXPECTED),
893         relinfo_(NULL), relnum_(0), r_offset_(0)
894     { }
895
896     ~Track_tls()
897     {
898       if (this->tls_get_addr_ != NOT_EXPECTED)
899         this->missing();
900     }
901
902     void
903     missing(void)
904     {
905       if (this->relinfo_ != NULL)
906         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907                                _("missing expected __tls_get_addr call"));
908     }
909
910     void
911     expect_tls_get_addr_call(
912         const Relocate_info<size, big_endian>* relinfo,
913         size_t relnum,
914         Address r_offset)
915     {
916       this->tls_get_addr_ = EXPECTED;
917       this->relinfo_ = relinfo;
918       this->relnum_ = relnum;
919       this->r_offset_ = r_offset;
920     }
921
922     void
923     expect_tls_get_addr_call()
924     { this->tls_get_addr_ = EXPECTED; }
925
926     void
927     skip_next_tls_get_addr_call()
928     {this->tls_get_addr_ = SKIP; }
929
930     Tls_get_addr
931     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932     {
933       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934                            || r_type == elfcpp::R_PPC_PLTREL24)
935                           && gsym != NULL
936                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
937       Tls_get_addr last_tls = this->tls_get_addr_;
938       this->tls_get_addr_ = NOT_EXPECTED;
939       if (is_tls_call && last_tls != EXPECTED)
940         return last_tls;
941       else if (!is_tls_call && last_tls != NOT_EXPECTED)
942         {
943           this->missing();
944           return EXPECTED;
945         }
946       return NORMAL;
947     }
948
949   private:
950     // What we're up to regarding calls to __tls_get_addr.
951     // On powerpc, the branch and link insn making a call to
952     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955     // The marker relocation always comes first, and has the same
956     // symbol as the reloc on the insn setting up the __tls_get_addr
957     // argument.  This ties the arg setup insn with the call insn,
958     // allowing ld to safely optimize away the call.  We check that
959     // every call to __tls_get_addr has a marker relocation, and that
960     // every marker relocation is on a call to __tls_get_addr.
961     Tls_get_addr tls_get_addr_;
962     // Info about the last reloc for error message.
963     const Relocate_info<size, big_endian>* relinfo_;
964     size_t relnum_;
965     Address r_offset_;
966   };
967
968   // The class which scans relocations.
969   class Scan : protected Track_tls
970   {
971   public:
972     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974     Scan()
975       : Track_tls(), issued_non_pic_error_(false)
976     { }
977
978     static inline int
979     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981     inline void
982     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983           Sized_relobj_file<size, big_endian>* object,
984           unsigned int data_shndx,
985           Output_section* output_section,
986           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987           const elfcpp::Sym<size, big_endian>& lsym,
988           bool is_discarded);
989
990     inline void
991     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992            Sized_relobj_file<size, big_endian>* object,
993            unsigned int data_shndx,
994            Output_section* output_section,
995            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996            Symbol* gsym);
997
998     inline bool
999     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000                                         Target_powerpc* ,
1001                                         Sized_relobj_file<size, big_endian>* relobj,
1002                                         unsigned int ,
1003                                         Output_section* ,
1004                                         const elfcpp::Rela<size, big_endian>& ,
1005                                         unsigned int r_type,
1006                                         const elfcpp::Sym<size, big_endian>&)
1007     {
1008       // PowerPC64 .opd is not folded, so any identical function text
1009       // may be folded and we'll still keep function addresses distinct.
1010       // That means no reloc is of concern here.
1011       if (size == 64)
1012         {
1013           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014             <Powerpc_relobj<size, big_endian>*>(relobj);
1015           if (ppcobj->abiversion() == 1)
1016             return false;
1017         }
1018       // For 32-bit and ELFv2, conservatively assume anything but calls to
1019       // function code might be taking the address of the function.
1020       return !is_branch_reloc(r_type);
1021     }
1022
1023     inline bool
1024     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025                                          Target_powerpc* ,
1026                                          Sized_relobj_file<size, big_endian>* relobj,
1027                                          unsigned int ,
1028                                          Output_section* ,
1029                                          const elfcpp::Rela<size, big_endian>& ,
1030                                          unsigned int r_type,
1031                                          Symbol*)
1032     {
1033       // As above.
1034       if (size == 64)
1035         {
1036           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037             <Powerpc_relobj<size, big_endian>*>(relobj);
1038           if (ppcobj->abiversion() == 1)
1039             return false;
1040         }
1041       return !is_branch_reloc(r_type);
1042     }
1043
1044     static bool
1045     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046                               Sized_relobj_file<size, big_endian>* object,
1047                               unsigned int r_type, bool report_err);
1048
1049   private:
1050     static void
1051     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052                             unsigned int r_type);
1053
1054     static void
1055     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056                              unsigned int r_type, Symbol*);
1057
1058     static void
1059     generate_tls_call(Symbol_table* symtab, Layout* layout,
1060                       Target_powerpc* target);
1061
1062     void
1063     check_non_pic(Relobj*, unsigned int r_type);
1064
1065     // Whether we have issued an error about a non-PIC compilation.
1066     bool issued_non_pic_error_;
1067   };
1068
1069   bool
1070   symval_for_branch(const Symbol_table* symtab,
1071                     const Sized_symbol<size>* gsym,
1072                     Powerpc_relobj<size, big_endian>* object,
1073                     Address *value, unsigned int *dest_shndx);
1074
1075   // The class which implements relocation.
1076   class Relocate : protected Track_tls
1077   {
1078    public:
1079     // Use 'at' branch hints when true, 'y' when false.
1080     // FIXME maybe: set this with an option.
1081     static const bool is_isa_v2 = true;
1082
1083     Relocate()
1084       : Track_tls()
1085     { }
1086
1087     // Do a relocation.  Return false if the caller should not issue
1088     // any warnings about this relocation.
1089     inline bool
1090     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092              const Sized_symbol<size>*, const Symbol_value<size>*,
1093              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094              section_size_type);
1095   };
1096
1097   class Relocate_comdat_behavior
1098   {
1099    public:
1100     // Decide what the linker should do for relocations that refer to
1101     // discarded comdat sections.
1102     inline Comdat_behavior
1103     get(const char* name)
1104     {
1105       gold::Default_comdat_behavior default_behavior;
1106       Comdat_behavior ret = default_behavior.get(name);
1107       if (ret == CB_WARNING)
1108         {
1109           if (size == 32
1110               && (strcmp(name, ".fixup") == 0
1111                   || strcmp(name, ".got2") == 0))
1112             ret = CB_IGNORE;
1113           if (size == 64
1114               && (strcmp(name, ".opd") == 0
1115                   || strcmp(name, ".toc") == 0
1116                   || strcmp(name, ".toc1") == 0))
1117             ret = CB_IGNORE;
1118         }
1119       return ret;
1120     }
1121   };
1122
1123   // Optimize the TLS relocation type based on what we know about the
1124   // symbol.  IS_FINAL is true if the final address of this symbol is
1125   // known at link time.
1126
1127   tls::Tls_optimization
1128   optimize_tls_gd(bool is_final)
1129   {
1130     // If we are generating a shared library, then we can't do anything
1131     // in the linker.
1132     if (parameters->options().shared())
1133       return tls::TLSOPT_NONE;
1134
1135     if (!is_final)
1136       return tls::TLSOPT_TO_IE;
1137     return tls::TLSOPT_TO_LE;
1138   }
1139
1140   tls::Tls_optimization
1141   optimize_tls_ld()
1142   {
1143     if (parameters->options().shared())
1144       return tls::TLSOPT_NONE;
1145
1146     return tls::TLSOPT_TO_LE;
1147   }
1148
1149   tls::Tls_optimization
1150   optimize_tls_ie(bool is_final)
1151   {
1152     if (!is_final || parameters->options().shared())
1153       return tls::TLSOPT_NONE;
1154
1155     return tls::TLSOPT_TO_LE;
1156   }
1157
1158   // Create glink.
1159   void
1160   make_glink_section(Layout*);
1161
1162   // Create the PLT section.
1163   void
1164   make_plt_section(Symbol_table*, Layout*);
1165
1166   void
1167   make_iplt_section(Symbol_table*, Layout*);
1168
1169   void
1170   make_brlt_section(Layout*);
1171
1172   // Create a PLT entry for a global symbol.
1173   void
1174   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176   // Create a PLT entry for a local IFUNC symbol.
1177   void
1178   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179                              Sized_relobj_file<size, big_endian>*,
1180                              unsigned int);
1181
1182
1183   // Create a GOT entry for local dynamic __tls_get_addr.
1184   unsigned int
1185   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186                    Sized_relobj_file<size, big_endian>* object);
1187
1188   unsigned int
1189   tlsld_got_offset() const
1190   {
1191     return this->tlsld_got_offset_;
1192   }
1193
1194   // Get the dynamic reloc section, creating it if necessary.
1195   Reloc_section*
1196   rela_dyn_section(Layout*);
1197
1198   // Similarly, but for ifunc symbols get the one for ifunc.
1199   Reloc_section*
1200   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202   // Copy a relocation against a global symbol.
1203   void
1204   copy_reloc(Symbol_table* symtab, Layout* layout,
1205              Sized_relobj_file<size, big_endian>* object,
1206              unsigned int shndx, Output_section* output_section,
1207              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208   {
1209     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210     this->copy_relocs_.copy_reloc(symtab, layout,
1211                                   symtab->get_sized_symbol<size>(sym),
1212                                   object, shndx, output_section,
1213                                   r_type, reloc.get_r_offset(),
1214                                   reloc.get_r_addend(),
1215                                   this->rela_dyn_section(layout));
1216   }
1217
1218   // Look over all the input sections, deciding where to place stubs.
1219   void
1220   group_sections(Layout*, const Task*, bool);
1221
1222   // Sort output sections by address.
1223   struct Sort_sections
1224   {
1225     bool
1226     operator()(const Output_section* sec1, const Output_section* sec2)
1227     { return sec1->address() < sec2->address(); }
1228   };
1229
1230   class Branch_info
1231   {
1232    public:
1233     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234                 unsigned int data_shndx,
1235                 Address r_offset,
1236                 unsigned int r_type,
1237                 unsigned int r_sym,
1238                 Address addend)
1239       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241     { }
1242
1243     ~Branch_info()
1244     { }
1245
1246     // If this branch needs a plt call stub, or a long branch stub, make one.
1247     bool
1248     make_stub(Stub_table<size, big_endian>*,
1249               Stub_table<size, big_endian>*,
1250               Symbol_table*) const;
1251
1252    private:
1253     // The branch location..
1254     Powerpc_relobj<size, big_endian>* object_;
1255     unsigned int shndx_;
1256     Address offset_;
1257     // ..and the branch type and destination.
1258     unsigned int r_type_;
1259     unsigned int r_sym_;
1260     Address addend_;
1261   };
1262
1263   // Information about this specific target which we pass to the
1264   // general Target structure.
1265   static Target::Target_info powerpc_info;
1266
1267   // The types of GOT entries needed for this platform.
1268   // These values are exposed to the ABI in an incremental link.
1269   // Do not renumber existing values without changing the version
1270   // number of the .gnu_incremental_inputs section.
1271   enum Got_type
1272   {
1273     GOT_TYPE_STANDARD,
1274     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1275     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1276     GOT_TYPE_TPREL      // entry for @got@tprel
1277   };
1278
1279   // The GOT section.
1280   Output_data_got_powerpc<size, big_endian>* got_;
1281   // The PLT section.  This is a container for a table of addresses,
1282   // and their relocations.  Each address in the PLT has a dynamic
1283   // relocation (R_*_JMP_SLOT) and each address will have a
1284   // corresponding entry in .glink for lazy resolution of the PLT.
1285   // ppc32 initialises the PLT to point at the .glink entry, while
1286   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1287   // linker adds a stub that loads the PLT entry into ctr then
1288   // branches to ctr.  There may be more than one stub for each PLT
1289   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1290   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291   Output_data_plt_powerpc<size, big_endian>* plt_;
1292   // The IPLT section.  Like plt_, this is a container for a table of
1293   // addresses and their relocations, specifically for STT_GNU_IFUNC
1294   // functions that resolve locally (STT_GNU_IFUNC functions that
1295   // don't resolve locally go in PLT).  Unlike plt_, these have no
1296   // entry in .glink for lazy resolution, and the relocation section
1297   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1298   // the relocation section may contain relocations against
1299   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1300   // relocation section will appear at the end of other dynamic
1301   // relocations, so that ld.so applies these relocations after other
1302   // dynamic relocations.  In a static executable, the relocation
1303   // section is emitted and marked with __rela_iplt_start and
1304   // __rela_iplt_end symbols.
1305   Output_data_plt_powerpc<size, big_endian>* iplt_;
1306   // Section holding long branch destinations.
1307   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308   // The .glink section.
1309   Output_data_glink<size, big_endian>* glink_;
1310   // The dynamic reloc section.
1311   Reloc_section* rela_dyn_;
1312   // Relocs saved to avoid a COPY reloc.
1313   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315   unsigned int tlsld_got_offset_;
1316
1317   Stub_tables stub_tables_;
1318   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319   Branch_lookup_table branch_lookup_table_;
1320
1321   typedef std::vector<Branch_info> Branches;
1322   Branches branch_info_;
1323
1324   bool plt_thread_safe_;
1325
1326   bool relax_failed_;
1327   int relax_fail_count_;
1328   int32_t stub_group_size_;
1329
1330   Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336   32,                   // size
1337   true,                 // is_big_endian
1338   elfcpp::EM_PPC,       // machine_code
1339   false,                // has_make_symbol
1340   false,                // has_resolve
1341   false,                // has_code_fill
1342   true,                 // is_default_stack_executable
1343   false,                // can_icf_inline_merge_sections
1344   '\0',                 // wrap_char
1345   "/usr/lib/ld.so.1",   // dynamic_linker
1346   0x10000000,           // default_text_segment_address
1347   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1348   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1349   false,                // isolate_execinstr
1350   0,                    // rosegment_gap
1351   elfcpp::SHN_UNDEF,    // small_common_shndx
1352   elfcpp::SHN_UNDEF,    // large_common_shndx
1353   0,                    // small_common_section_flags
1354   0,                    // large_common_section_flags
1355   NULL,                 // attributes_section
1356   NULL,                 // attributes_vendor
1357   "_start",             // entry_symbol_name
1358   32,                   // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364   32,                   // size
1365   false,                // is_big_endian
1366   elfcpp::EM_PPC,       // machine_code
1367   false,                // has_make_symbol
1368   false,                // has_resolve
1369   false,                // has_code_fill
1370   true,                 // is_default_stack_executable
1371   false,                // can_icf_inline_merge_sections
1372   '\0',                 // wrap_char
1373   "/usr/lib/ld.so.1",   // dynamic_linker
1374   0x10000000,           // default_text_segment_address
1375   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1376   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1377   false,                // isolate_execinstr
1378   0,                    // rosegment_gap
1379   elfcpp::SHN_UNDEF,    // small_common_shndx
1380   elfcpp::SHN_UNDEF,    // large_common_shndx
1381   0,                    // small_common_section_flags
1382   0,                    // large_common_section_flags
1383   NULL,                 // attributes_section
1384   NULL,                 // attributes_vendor
1385   "_start",             // entry_symbol_name
1386   32,                   // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392   64,                   // size
1393   true,                 // is_big_endian
1394   elfcpp::EM_PPC64,     // machine_code
1395   false,                // has_make_symbol
1396   false,                // has_resolve
1397   false,                // has_code_fill
1398   true,                 // is_default_stack_executable
1399   false,                // can_icf_inline_merge_sections
1400   '\0',                 // wrap_char
1401   "/usr/lib/ld.so.1",   // dynamic_linker
1402   0x10000000,           // default_text_segment_address
1403   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1404   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1405   false,                // isolate_execinstr
1406   0,                    // rosegment_gap
1407   elfcpp::SHN_UNDEF,    // small_common_shndx
1408   elfcpp::SHN_UNDEF,    // large_common_shndx
1409   0,                    // small_common_section_flags
1410   0,                    // large_common_section_flags
1411   NULL,                 // attributes_section
1412   NULL,                 // attributes_vendor
1413   "_start",             // entry_symbol_name
1414   32,                   // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420   64,                   // size
1421   false,                // is_big_endian
1422   elfcpp::EM_PPC64,     // machine_code
1423   false,                // has_make_symbol
1424   false,                // has_resolve
1425   false,                // has_code_fill
1426   true,                 // is_default_stack_executable
1427   false,                // can_icf_inline_merge_sections
1428   '\0',                 // wrap_char
1429   "/usr/lib/ld.so.1",   // dynamic_linker
1430   0x10000000,           // default_text_segment_address
1431   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1432   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1433   false,                // isolate_execinstr
1434   0,                    // rosegment_gap
1435   elfcpp::SHN_UNDEF,    // small_common_shndx
1436   elfcpp::SHN_UNDEF,    // large_common_shndx
1437   0,                    // small_common_section_flags
1438   0,                    // large_common_section_flags
1439   NULL,                 // attributes_section
1440   NULL,                 // attributes_vendor
1441   "_start",             // entry_symbol_name
1442   32,                   // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448   return (r_type == elfcpp::R_POWERPC_REL24
1449           || r_type == elfcpp::R_PPC_PLTREL24
1450           || r_type == elfcpp::R_PPC_LOCAL24PC
1451           || r_type == elfcpp::R_POWERPC_REL14
1452           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454           || r_type == elfcpp::R_POWERPC_ADDR24
1455           || r_type == elfcpp::R_POWERPC_ADDR14
1456           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0.  If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466   if ((insn & (0x3f << 26)) != 31 << 26)
1467     return 0;
1468
1469   unsigned int rtra;
1470   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471     rtra = insn & ((1 << 26) - (1 << 16));
1472   else if (((insn >> 16) & 0x1f) == reg)
1473     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474   else
1475     return 0;
1476
1477   if ((insn & (0x3ff << 1)) == 266 << 1)
1478     // add -> addi
1479     insn = 14 << 26;
1480   else if ((insn & (0x1f << 1)) == 23 << 1
1481            && ((insn & (0x1f << 6)) < 14 << 6
1482                || ((insn & (0x1f << 6)) >= 16 << 6
1483                    && (insn & (0x1f << 6)) < 24 << 6)))
1484     // load and store indexed -> dform
1485     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490     // lwax -> lwa
1491     insn = (58 << 26) | 2;
1492   else
1493     return 0;
1494   insn |= rtra;
1495   return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503   enum Overflow_check
1504   {
1505     CHECK_NONE,
1506     CHECK_SIGNED,
1507     CHECK_UNSIGNED,
1508     CHECK_BITFIELD,
1509     CHECK_LOW_INSN,
1510     CHECK_HIGH_INSN
1511   };
1512
1513   enum Status
1514   {
1515     STATUS_OK,
1516     STATUS_OVERFLOW
1517   };
1518
1519 private:
1520   typedef Powerpc_relocate_functions<size, big_endian> This;
1521   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524   template<int valsize>
1525   static inline bool
1526   has_overflow_signed(Address value)
1527   {
1528     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530     limit <<= ((valsize - 1) >> 1);
1531     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532     return value + limit > (limit << 1) - 1;
1533   }
1534
1535   template<int valsize>
1536   static inline bool
1537   has_overflow_unsigned(Address value)
1538   {
1539     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540     limit <<= ((valsize - 1) >> 1);
1541     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542     return value > (limit << 1) - 1;
1543   }
1544
1545   template<int valsize>
1546   static inline bool
1547   has_overflow_bitfield(Address value)
1548   {
1549     return (has_overflow_unsigned<valsize>(value)
1550             && has_overflow_signed<valsize>(value));
1551   }
1552
1553   template<int valsize>
1554   static inline Status
1555   overflowed(Address value, Overflow_check overflow)
1556   {
1557     if (overflow == CHECK_SIGNED)
1558       {
1559         if (has_overflow_signed<valsize>(value))
1560           return STATUS_OVERFLOW;
1561       }
1562     else if (overflow == CHECK_UNSIGNED)
1563       {
1564         if (has_overflow_unsigned<valsize>(value))
1565           return STATUS_OVERFLOW;
1566       }
1567     else if (overflow == CHECK_BITFIELD)
1568       {
1569         if (has_overflow_bitfield<valsize>(value))
1570           return STATUS_OVERFLOW;
1571       }
1572     return STATUS_OK;
1573   }
1574
1575   // Do a simple RELA relocation
1576   template<int fieldsize, int valsize>
1577   static inline Status
1578   rela(unsigned char* view, Address value, Overflow_check overflow)
1579   {
1580     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581     Valtype* wv = reinterpret_cast<Valtype*>(view);
1582     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583     return overflowed<valsize>(value, overflow);
1584   }
1585
1586   template<int fieldsize, int valsize>
1587   static inline Status
1588   rela(unsigned char* view,
1589        unsigned int right_shift,
1590        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591        Address value,
1592        Overflow_check overflow)
1593   {
1594     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595     Valtype* wv = reinterpret_cast<Valtype*>(view);
1596     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597     Valtype reloc = value >> right_shift;
1598     val &= ~dst_mask;
1599     reloc &= dst_mask;
1600     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601     return overflowed<valsize>(value >> right_shift, overflow);
1602   }
1603
1604   // Do a simple RELA relocation, unaligned.
1605   template<int fieldsize, int valsize>
1606   static inline Status
1607   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608   {
1609     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610     return overflowed<valsize>(value, overflow);
1611   }
1612
1613   template<int fieldsize, int valsize>
1614   static inline Status
1615   rela_ua(unsigned char* view,
1616           unsigned int right_shift,
1617           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618           Address value,
1619           Overflow_check overflow)
1620   {
1621     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622       Valtype;
1623     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624     Valtype reloc = value >> right_shift;
1625     val &= ~dst_mask;
1626     reloc &= dst_mask;
1627     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628     return overflowed<valsize>(value >> right_shift, overflow);
1629   }
1630
1631 public:
1632   // R_PPC64_ADDR64: (Symbol + Addend)
1633   static inline void
1634   addr64(unsigned char* view, Address value)
1635   { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638   static inline void
1639   addr64_u(unsigned char* view, Address value)
1640   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642   // R_POWERPC_ADDR32: (Symbol + Addend)
1643   static inline Status
1644   addr32(unsigned char* view, Address value, Overflow_check overflow)
1645   { return This::template rela<32,32>(view, value, overflow); }
1646
1647   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648   static inline Status
1649   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650   { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653   static inline Status
1654   addr24(unsigned char* view, Address value, Overflow_check overflow)
1655   {
1656     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657                                              value, overflow);
1658     if (overflow != CHECK_NONE && (value & 3) != 0)
1659       stat = STATUS_OVERFLOW;
1660     return stat;
1661   }
1662
1663   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664   static inline Status
1665   addr16(unsigned char* view, Address value, Overflow_check overflow)
1666   { return This::template rela<16,16>(view, value, overflow); }
1667
1668   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669   static inline Status
1670   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671   { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674   static inline Status
1675   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676   {
1677     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678     if ((value & 3) != 0)
1679       stat = STATUS_OVERFLOW;
1680     return stat;
1681   }
1682
1683   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684   static inline Status
1685   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686   {
1687     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688     if ((value & 15) != 0)
1689       stat = STATUS_OVERFLOW;
1690     return stat;
1691   }
1692
1693   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694   static inline void
1695   addr16_hi(unsigned char* view, Address value)
1696   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699   static inline void
1700   addr16_ha(unsigned char* view, Address value)
1701   { This::addr16_hi(view, value + 0x8000); }
1702
1703   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704   static inline void
1705   addr16_hi2(unsigned char* view, Address value)
1706   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709   static inline void
1710   addr16_ha2(unsigned char* view, Address value)
1711   { This::addr16_hi2(view, value + 0x8000); }
1712
1713   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714   static inline void
1715   addr16_hi3(unsigned char* view, Address value)
1716   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719   static inline void
1720   addr16_ha3(unsigned char* view, Address value)
1721   { This::addr16_hi3(view, value + 0x8000); }
1722
1723   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724   static inline Status
1725   addr14(unsigned char* view, Address value, Overflow_check overflow)
1726   {
1727     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728     if (overflow != CHECK_NONE && (value & 3) != 0)
1729       stat = STATUS_OVERFLOW;
1730     return stat;
1731   }
1732
1733   // R_POWERPC_REL16DX_HA
1734   static inline Status
1735   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736   {
1737     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738     Valtype* wv = reinterpret_cast<Valtype*>(view);
1739     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740     value += 0x8000;
1741     value = static_cast<SignedAddress>(value) >> 16;
1742     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744     return overflowed<16>(value, overflow);
1745   }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754   this->e_flags_ |= ver;
1755   if (this->abiversion() != 0)
1756     {
1757       Target_powerpc<size, big_endian>* target =
1758         static_cast<Target_powerpc<size, big_endian>*>(
1759            parameters->sized_target<size, big_endian>());
1760       if (target->abiversion() == 0)
1761         target->set_abiversion(this->abiversion());
1762       else if (target->abiversion() != this->abiversion())
1763         gold_error(_("%s: ABI version %d is not compatible "
1764                      "with ABI version %d output"),
1765                    this->name().c_str(),
1766                    this->abiversion(), target->abiversion());
1767
1768     }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777     Read_symbols_data* sd)
1778 {
1779   const unsigned char* const pshdrs = sd->section_headers->data();
1780   const unsigned char* namesu = sd->section_names->data();
1781   const char* names = reinterpret_cast<const char*>(namesu);
1782   section_size_type names_size = sd->section_names_size;
1783   const unsigned char* s;
1784
1785   s = this->template find_shdr<size, big_endian>(pshdrs,
1786                                                  size == 32 ? ".got2" : ".opd",
1787                                                  names, names_size, NULL);
1788   if (s != NULL)
1789     {
1790       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791       this->special_ = ndx;
1792       if (size == 64)
1793         {
1794           if (this->abiversion() == 0)
1795             this->set_abiversion(1);
1796           else if (this->abiversion() > 1)
1797             gold_error(_("%s: .opd invalid in abiv%d"),
1798                        this->name().c_str(), this->abiversion());
1799         }
1800     }
1801   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809     size_t reloc_count,
1810     const unsigned char* prelocs,
1811     const unsigned char* plocal_syms)
1812 {
1813   if (size == 64)
1814     {
1815       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816         Reltype;
1817       const int reloc_size
1818         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820       Address expected_off = 0;
1821       bool regular = true;
1822       unsigned int opd_ent_size = 0;
1823
1824       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825         {
1826           Reltype reloc(prelocs);
1827           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828             = reloc.get_r_info();
1829           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830           if (r_type == elfcpp::R_PPC64_ADDR64)
1831             {
1832               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833               typename elfcpp::Elf_types<size>::Elf_Addr value;
1834               bool is_ordinary;
1835               unsigned int shndx;
1836               if (r_sym < this->local_symbol_count())
1837                 {
1838                   typename elfcpp::Sym<size, big_endian>
1839                     lsym(plocal_syms + r_sym * sym_size);
1840                   shndx = lsym.get_st_shndx();
1841                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842                   value = lsym.get_st_value();
1843                 }
1844               else
1845                 shndx = this->symbol_section_and_value(r_sym, &value,
1846                                                        &is_ordinary);
1847               this->set_opd_ent(reloc.get_r_offset(), shndx,
1848                                 value + reloc.get_r_addend());
1849               if (i == 2)
1850                 {
1851                   expected_off = reloc.get_r_offset();
1852                   opd_ent_size = expected_off;
1853                 }
1854               else if (expected_off != reloc.get_r_offset())
1855                 regular = false;
1856               expected_off += opd_ent_size;
1857             }
1858           else if (r_type == elfcpp::R_PPC64_TOC)
1859             {
1860               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861                 regular = false;
1862             }
1863           else
1864             {
1865               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866                            this->name().c_str(), r_type);
1867               regular = false;
1868             }
1869         }
1870       if (reloc_count <= 2)
1871         opd_ent_size = this->section_size(this->opd_shndx());
1872       if (opd_ent_size != 24 && opd_ent_size != 16)
1873         regular = false;
1874       if (!regular)
1875         {
1876           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877                        this->name().c_str());
1878           opd_ent_size = 0;
1879         }
1880     }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888   if (size == 64)
1889     {
1890       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891            p != rd->relocs.end();
1892            ++p)
1893         {
1894           if (p->data_shndx == this->opd_shndx())
1895             {
1896               uint64_t opd_size = this->section_size(this->opd_shndx());
1897               gold_assert(opd_size == static_cast<size_t>(opd_size));
1898               if (opd_size != 0)
1899                 {
1900                   this->init_opd(opd_size);
1901                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902                                         rd->local_symbols->data());
1903                 }
1904               break;
1905             }
1906         }
1907     }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916   this->base_read_symbols(sd);
1917   if (size == 64)
1918     {
1919       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920       const unsigned char* const pshdrs = sd->section_headers->data();
1921       const unsigned int loccount = this->do_local_symbol_count();
1922       if (loccount != 0)
1923         {
1924           this->st_other_.resize(loccount);
1925           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926           off_t locsize = loccount * sym_size;
1927           const unsigned int symtab_shndx = this->symtab_shndx();
1928           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931                                                       locsize, true, false);
1932           psyms += sym_size;
1933           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934             {
1935               elfcpp::Sym<size, big_endian> sym(psyms);
1936               unsigned char st_other = sym.get_st_other();
1937               this->st_other_[i] = st_other;
1938               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939                 {
1940                   if (this->abiversion() == 0)
1941                     this->set_abiversion(2);
1942                   else if (this->abiversion() < 2)
1943                     gold_error(_("%s: local symbol %d has invalid st_other"
1944                                  " for ABI version 1"),
1945                                this->name().c_str(), i);
1946                 }
1947             }
1948         }
1949     }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956   this->e_flags_ |= ver;
1957   if (this->abiversion() != 0)
1958     {
1959       Target_powerpc<size, big_endian>* target =
1960         static_cast<Target_powerpc<size, big_endian>*>(
1961           parameters->sized_target<size, big_endian>());
1962       if (target->abiversion() == 0)
1963         target->set_abiversion(this->abiversion());
1964       else if (target->abiversion() != this->abiversion())
1965         gold_error(_("%s: ABI version %d is not compatible "
1966                      "with ABI version %d output"),
1967                    this->name().c_str(),
1968                    this->abiversion(), target->abiversion());
1969
1970     }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980   this->base_read_symbols(sd);
1981   if (size == 64)
1982     {
1983       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984       const unsigned char* const pshdrs = sd->section_headers->data();
1985       const unsigned char* namesu = sd->section_names->data();
1986       const char* names = reinterpret_cast<const char*>(namesu);
1987       const unsigned char* s = NULL;
1988       const unsigned char* opd;
1989       section_size_type opd_size;
1990
1991       // Find and read .opd section.
1992       while (1)
1993         {
1994           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995                                                          sd->section_names_size,
1996                                                          s);
1997           if (s == NULL)
1998             return;
1999
2000           typename elfcpp::Shdr<size, big_endian> shdr(s);
2001           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003             {
2004               if (this->abiversion() == 0)
2005                 this->set_abiversion(1);
2006               else if (this->abiversion() > 1)
2007                 gold_error(_("%s: .opd invalid in abiv%d"),
2008                            this->name().c_str(), this->abiversion());
2009
2010               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011               this->opd_address_ = shdr.get_sh_addr();
2012               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014                                    true, false);
2015               break;
2016             }
2017         }
2018
2019       // Build set of executable sections.
2020       // Using a set is probably overkill.  There is likely to be only
2021       // a few executable sections, typically .init, .text and .fini,
2022       // and they are generally grouped together.
2023       typedef std::set<Sec_info> Exec_sections;
2024       Exec_sections exec_sections;
2025       s = pshdrs;
2026       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027         {
2028           typename elfcpp::Shdr<size, big_endian> shdr(s);
2029           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030               && ((shdr.get_sh_flags()
2031                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033               && shdr.get_sh_size() != 0)
2034             {
2035               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036                                             shdr.get_sh_size(), i));
2037             }
2038         }
2039       if (exec_sections.empty())
2040         return;
2041
2042       // Look over the OPD entries.  This is complicated by the fact
2043       // that some binaries will use two-word entries while others
2044       // will use the standard three-word entries.  In most cases
2045       // the third word (the environment pointer for languages like
2046       // Pascal) is unused and will be zero.  If the third word is
2047       // used it should not be pointing into executable sections,
2048       // I think.
2049       this->init_opd(opd_size);
2050       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051         {
2052           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055           if (val == 0)
2056             // Chances are that this is the third word of an OPD entry.
2057             continue;
2058           typename Exec_sections::const_iterator e
2059             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060           if (e != exec_sections.begin())
2061             {
2062               --e;
2063               if (e->start <= val && val < e->start + e->len)
2064                 {
2065                   // We have an address in an executable section.
2066                   // VAL ought to be the function entry, set it up.
2067                   this->set_opd_ent(p - opd, e->shndx, val);
2068                   // Skip second word of OPD entry, the TOC pointer.
2069                   p += 8;
2070                 }
2071             }
2072           // If we didn't match any executable sections, we likely
2073           // have a non-zero third word in the OPD entry.
2074         }
2075     }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083     Symbol_table* symtab,
2084     Layout* layout)
2085 {
2086   if (size == 32)
2087     {
2088       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089       // undefined when scanning relocs (and thus requires
2090       // non-relative dynamic relocs).  The proper value will be
2091       // updated later.
2092       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093       if (gotsym != NULL && gotsym->is_undefined())
2094         {
2095           Target_powerpc<size, big_endian>* target =
2096             static_cast<Target_powerpc<size, big_endian>*>(
2097                 parameters->sized_target<size, big_endian>());
2098           Output_data_got_powerpc<size, big_endian>* got
2099             = target->got_section(symtab, layout);
2100           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101                                         Symbol_table::PREDEFINED,
2102                                         got, 0, 0,
2103                                         elfcpp::STT_OBJECT,
2104                                         elfcpp::STB_LOCAL,
2105                                         elfcpp::STV_HIDDEN, 0,
2106                                         false, false);
2107         }
2108
2109       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111       if (sdasym != NULL && sdasym->is_undefined())
2112         {
2113           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114           Output_section* os
2115             = layout->add_output_section_data(".sdata", 0,
2116                                               elfcpp::SHF_ALLOC
2117                                               | elfcpp::SHF_WRITE,
2118                                               sdata, ORDER_SMALL_DATA, false);
2119           symtab->define_in_output_data("_SDA_BASE_", NULL,
2120                                         Symbol_table::PREDEFINED,
2121                                         os, 32768, 0, elfcpp::STT_OBJECT,
2122                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123                                         0, false, false);
2124         }
2125     }
2126   else
2127     {
2128       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130       if (gotsym != NULL && gotsym->is_undefined())
2131         {
2132           Target_powerpc<size, big_endian>* target =
2133             static_cast<Target_powerpc<size, big_endian>*>(
2134                 parameters->sized_target<size, big_endian>());
2135           Output_data_got_powerpc<size, big_endian>* got
2136             = target->got_section(symtab, layout);
2137           symtab->define_in_output_data(".TOC.", NULL,
2138                                         Symbol_table::PREDEFINED,
2139                                         got, 0x8000, 0,
2140                                         elfcpp::STT_OBJECT,
2141                                         elfcpp::STB_LOCAL,
2142                                         elfcpp::STV_HIDDEN, 0,
2143                                         false, false);
2144         }
2145     }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153     const std::string& name,
2154     Input_file* input_file,
2155     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157   int et = ehdr.get_e_type();
2158   // ET_EXEC files are valid input for --just-symbols/-R,
2159   // and we treat them as relocatable objects.
2160   if (et == elfcpp::ET_REL
2161       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162     {
2163       Powerpc_relobj<size, big_endian>* obj =
2164         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165       obj->setup();
2166       return obj;
2167     }
2168   else if (et == elfcpp::ET_DYN)
2169     {
2170       Powerpc_dynobj<size, big_endian>* obj =
2171         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172       obj->setup();
2173       return obj;
2174     }
2175   else
2176     {
2177       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178       return NULL;
2179     }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190     : Output_data_got<size, big_endian>(),
2191       symtab_(symtab), layout_(layout),
2192       header_ent_cnt_(size == 32 ? 3 : 1),
2193       header_index_(size == 32 ? 0x2000 : 0)
2194   {
2195     if (size == 64)
2196       this->set_addralign(256);
2197   }
2198
2199   // Override all the Output_data_got methods we use so as to first call
2200   // reserve_ent().
2201   bool
2202   add_global(Symbol* gsym, unsigned int got_type)
2203   {
2204     this->reserve_ent();
2205     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206   }
2207
2208   bool
2209   add_global_plt(Symbol* gsym, unsigned int got_type)
2210   {
2211     this->reserve_ent();
2212     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213   }
2214
2215   bool
2216   add_global_tls(Symbol* gsym, unsigned int got_type)
2217   { return this->add_global_plt(gsym, got_type); }
2218
2219   void
2220   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222   {
2223     this->reserve_ent();
2224     Output_data_got<size, big_endian>::
2225       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226   }
2227
2228   void
2229   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230                            Output_data_reloc_generic* rel_dyn,
2231                            unsigned int r_type_1, unsigned int r_type_2)
2232   {
2233     this->reserve_ent(2);
2234     Output_data_got<size, big_endian>::
2235       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236   }
2237
2238   bool
2239   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240   {
2241     this->reserve_ent();
2242     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243                                                         got_type);
2244   }
2245
2246   bool
2247   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248   {
2249     this->reserve_ent();
2250     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251                                                             got_type);
2252   }
2253
2254   bool
2255   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256   { return this->add_local_plt(object, sym_index, got_type); }
2257
2258   void
2259   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260                      unsigned int got_type,
2261                      Output_data_reloc_generic* rel_dyn,
2262                      unsigned int r_type)
2263   {
2264     this->reserve_ent(2);
2265     Output_data_got<size, big_endian>::
2266       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267   }
2268
2269   unsigned int
2270   add_constant(Valtype constant)
2271   {
2272     this->reserve_ent();
2273     return Output_data_got<size, big_endian>::add_constant(constant);
2274   }
2275
2276   unsigned int
2277   add_constant_pair(Valtype c1, Valtype c2)
2278   {
2279     this->reserve_ent(2);
2280     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281   }
2282
2283   // Offset of _GLOBAL_OFFSET_TABLE_.
2284   unsigned int
2285   g_o_t() const
2286   {
2287     return this->got_offset(this->header_index_);
2288   }
2289
2290   // Offset of base used to access the GOT/TOC.
2291   // The got/toc pointer reg will be set to this value.
2292   Valtype
2293   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294   {
2295     if (size == 32)
2296       return this->g_o_t();
2297     else
2298       return (this->output_section()->address()
2299               + object->toc_base_offset()
2300               - this->address());
2301   }
2302
2303   // Ensure our GOT has a header.
2304   void
2305   set_final_data_size()
2306   {
2307     if (this->header_ent_cnt_ != 0)
2308       this->make_header();
2309     Output_data_got<size, big_endian>::set_final_data_size();
2310   }
2311
2312   // First word of GOT header needs some values that are not
2313   // handled by Output_data_got so poke them in here.
2314   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315   void
2316   do_write(Output_file* of)
2317   {
2318     Valtype val = 0;
2319     if (size == 32 && this->layout_->dynamic_data() != NULL)
2320       val = this->layout_->dynamic_section()->address();
2321     if (size == 64)
2322       val = this->output_section()->address() + 0x8000;
2323     this->replace_constant(this->header_index_, val);
2324     Output_data_got<size, big_endian>::do_write(of);
2325   }
2326
2327 private:
2328   void
2329   reserve_ent(unsigned int cnt = 1)
2330   {
2331     if (this->header_ent_cnt_ == 0)
2332       return;
2333     if (this->num_entries() + cnt > this->header_index_)
2334       this->make_header();
2335   }
2336
2337   void
2338   make_header()
2339   {
2340     this->header_ent_cnt_ = 0;
2341     this->header_index_ = this->num_entries();
2342     if (size == 32)
2343       {
2344         Output_data_got<size, big_endian>::add_constant(0);
2345         Output_data_got<size, big_endian>::add_constant(0);
2346         Output_data_got<size, big_endian>::add_constant(0);
2347
2348         // Define _GLOBAL_OFFSET_TABLE_ at the header
2349         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350         if (gotsym != NULL)
2351           {
2352             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353             sym->set_value(this->g_o_t());
2354           }
2355         else
2356           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357                                                Symbol_table::PREDEFINED,
2358                                                this, this->g_o_t(), 0,
2359                                                elfcpp::STT_OBJECT,
2360                                                elfcpp::STB_LOCAL,
2361                                                elfcpp::STV_HIDDEN, 0,
2362                                                false, false);
2363       }
2364     else
2365       Output_data_got<size, big_endian>::add_constant(0);
2366   }
2367
2368   // Stashed pointers.
2369   Symbol_table* symtab_;
2370   Layout* layout_;
2371
2372   // GOT header size.
2373   unsigned int header_ent_cnt_;
2374   // GOT header index.
2375   unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383                                               Layout* layout)
2384 {
2385   if (this->got_ == NULL)
2386     {
2387       gold_assert(symtab != NULL && layout != NULL);
2388
2389       this->got_
2390         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394                                       this->got_, ORDER_DATA, false);
2395     }
2396
2397   return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406   if (this->rela_dyn_ == NULL)
2407     {
2408       gold_assert(layout != NULL);
2409       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2412                                       ORDER_DYNAMIC_RELOCS, false);
2413     }
2414   return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422                                                    Layout* layout,
2423                                                    bool for_ifunc)
2424 {
2425   if (!for_ifunc)
2426     return this->rela_dyn_section(layout);
2427
2428   if (this->iplt_ == NULL)
2429     this->make_iplt_section(symtab, layout);
2430   return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435  public:
2436   // Determine the stub group size.  The group size is the absolute
2437   // value of the parameter --stub-group-size.  If --stub-group-size
2438   // is passed a negative value, we restrict stubs to be always before
2439   // the stubbed branches.
2440   Stub_control(int32_t size, bool no_size_errors)
2441     : state_(NO_GROUP), stub_group_size_(abs(size)),
2442       stub14_group_size_(abs(size) >> 10),
2443       stubs_always_before_branch_(size < 0),
2444       suppress_size_errors_(no_size_errors), has14_(false),
2445       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2446   {
2447   }
2448
2449   // Return true iff input section can be handled by current stub
2450   // group.
2451   bool
2452   can_add_to_stub_group(Output_section* o,
2453                         const Output_section::Input_section* i,
2454                         bool has14);
2455
2456   const Output_section::Input_section*
2457   owner()
2458   { return owner_; }
2459
2460   Output_section*
2461   output_section()
2462   { return output_section_; }
2463
2464   void
2465   set_output_and_owner(Output_section* o,
2466                        const Output_section::Input_section* i)
2467   {
2468     this->output_section_ = o;
2469     this->owner_ = i;
2470   }
2471
2472  private:
2473   typedef enum
2474   {
2475     NO_GROUP,
2476     FINDING_STUB_SECTION,
2477     HAS_STUB_SECTION
2478   } State;
2479
2480   State state_;
2481   uint32_t stub_group_size_;
2482   uint32_t stub14_group_size_;
2483   bool stubs_always_before_branch_;
2484   bool suppress_size_errors_;
2485   bool has14_;
2486   uint64_t group_end_addr_;
2487   // owner_ and output_section_ specify the section to which stubs are
2488   // attached.  The stubs are placed at the end of this section.
2489   const Output_section::Input_section* owner_;
2490   Output_section* output_section_;
2491 };
2492
2493 // Return true iff input section can be handled by current stub
2494 // group.  Sections are presented to this function in reverse order,
2495 // so the first section is the tail of the group.
2496
2497 bool
2498 Stub_control::can_add_to_stub_group(Output_section* o,
2499                                     const Output_section::Input_section* i,
2500                                     bool has14)
2501 {
2502   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2503   uint64_t this_size;
2504   uint64_t start_addr = o->address();
2505
2506   if (whole_sec)
2507     // .init and .fini sections are pasted together to form a single
2508     // function.  We can't be adding stubs in the middle of the function.
2509     this_size = o->data_size();
2510   else
2511     {
2512       start_addr += i->relobj()->output_section_offset(i->shndx());
2513       this_size = i->data_size();
2514     }
2515
2516   uint32_t group_size
2517     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2518   uint64_t end_addr = start_addr + this_size;
2519
2520   if (this_size > group_size && !this->suppress_size_errors_)
2521     gold_warning(_("%s:%s exceeds group size"),
2522                  i->relobj()->name().c_str(),
2523                  i->relobj()->section_name(i->shndx()).c_str());
2524
2525   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2526              has14 ? " 14bit" : "",
2527              i->relobj()->name().c_str(),
2528              i->relobj()->section_name(i->shndx()).c_str(),
2529              (long long) this_size,
2530              (long long) this->group_end_addr_ - start_addr);
2531
2532   this->has14_ = this->has14_ || has14;
2533   group_size = this->has14_ ? this->stub14_group_size_ : this->stub_group_size_;
2534
2535   if (this->state_ == HAS_STUB_SECTION)
2536     {
2537       // Can we add this section, which is before the stubs, to the
2538       // group?
2539       if (this->group_end_addr_ - start_addr <= group_size)
2540         return true;
2541     }
2542   else
2543     {
2544       // Stubs are added at the end of "owner_".
2545       // The current section can always be the stub owner, except when
2546       // whole_sec is true and the current section isn't the last of
2547       // the pasted sections.  (This restriction for the whole_sec
2548       // case is just to simplify the corner case mentioned in
2549       // group_sections.)
2550       // Note that "owner_" itself is not necessarily part of the
2551       // group of sections served by these stubs!
2552       if (!whole_sec || this->output_section_ != o)
2553         {
2554           this->owner_ = i;
2555           this->output_section_ = o;
2556         }
2557
2558       if (this->state_ == FINDING_STUB_SECTION)
2559         {
2560           if (this->group_end_addr_ - start_addr <= group_size)
2561             return true;
2562           // The group after the stubs has reached maximum size.
2563           // Now see about adding sections before the stubs to the
2564           // group.  If the current section has a 14-bit branch and
2565           // the group after the stubs exceeds stub14_group_size_
2566           // (because they didn't have 14-bit branches), don't add
2567           // sections before the stubs:  The size of stubs for such a
2568           // large group may exceed the reach of a 14-bit branch.
2569           if (!this->stubs_always_before_branch_
2570               && this_size <= group_size
2571               && this->group_end_addr_ - end_addr <= group_size)
2572             {
2573               this->state_ = HAS_STUB_SECTION;
2574               this->group_end_addr_ = end_addr;
2575               return true;
2576             }
2577         }
2578       else if (this->state_ == NO_GROUP)
2579         {
2580           // Only here on very first use of Stub_control
2581           this->state_ = FINDING_STUB_SECTION;
2582           this->group_end_addr_ = end_addr;
2583           return true;
2584         }
2585       else
2586         gold_unreachable();
2587     }
2588
2589   gold_debug(DEBUG_TARGET, "nope, didn't fit\n");
2590
2591   // The section fails to fit in the current group.  Set up a few
2592   // things for the next group.  owner_ and output_section_ will be
2593   // set later after we've retrieved those values for the current
2594   // group.
2595   this->state_ = FINDING_STUB_SECTION;
2596   this->has14_ = has14;
2597   this->group_end_addr_ = end_addr;
2598   return false;
2599 }
2600
2601 // Look over all the input sections, deciding where to place stubs.
2602
2603 template<int size, bool big_endian>
2604 void
2605 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2606                                                  const Task*,
2607                                                  bool no_size_errors)
2608 {
2609   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2610
2611   // Group input sections and insert stub table
2612   Stub_table_owner* table_owner = NULL;
2613   std::vector<Stub_table_owner*> tables;
2614   Layout::Section_list section_list;
2615   layout->get_executable_sections(&section_list);
2616   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2617   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2618        o != section_list.rend();
2619        ++o)
2620     {
2621       typedef Output_section::Input_section_list Input_section_list;
2622       for (Input_section_list::const_reverse_iterator i
2623              = (*o)->input_sections().rbegin();
2624            i != (*o)->input_sections().rend();
2625            ++i)
2626         {
2627           if (i->is_input_section()
2628               || i->is_relaxed_input_section())
2629             {
2630               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2631                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2632               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2633               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2634                 {
2635                   table_owner->output_section = stub_control.output_section();
2636                   table_owner->owner = stub_control.owner();
2637                   stub_control.set_output_and_owner(*o, &*i);
2638                   table_owner = NULL;
2639                 }
2640               if (table_owner == NULL)
2641                 {
2642                   table_owner = new Stub_table_owner;
2643                   tables.push_back(table_owner);
2644                 }
2645               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2646             }
2647         }
2648     }
2649   if (table_owner != NULL)
2650     {
2651       const Output_section::Input_section* i = stub_control.owner();
2652
2653       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2654         {
2655           // Corner case.  A new stub group was made for the first
2656           // section (last one looked at here) for some reason, but
2657           // the first section is already being used as the owner for
2658           // a stub table for following sections.  Force it into that
2659           // stub group.
2660           tables.pop_back();
2661           delete table_owner;
2662           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2663             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2664           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2665         }
2666       else
2667         {
2668           table_owner->output_section = stub_control.output_section();
2669           table_owner->owner = i;
2670         }
2671     }
2672   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2673        t != tables.end();
2674        ++t)
2675     {
2676       Stub_table<size, big_endian>* stub_table;
2677
2678       if ((*t)->owner->is_input_section())
2679         stub_table = new Stub_table<size, big_endian>(this,
2680                                                       (*t)->output_section,
2681                                                       (*t)->owner);
2682       else if ((*t)->owner->is_relaxed_input_section())
2683         stub_table = static_cast<Stub_table<size, big_endian>*>(
2684                         (*t)->owner->relaxed_input_section());
2685       else
2686         gold_unreachable();
2687       this->stub_tables_.push_back(stub_table);
2688       delete *t;
2689     }
2690 }
2691
2692 static unsigned long
2693 max_branch_delta (unsigned int r_type)
2694 {
2695   if (r_type == elfcpp::R_POWERPC_REL14
2696       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2697       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2698     return 1L << 15;
2699   if (r_type == elfcpp::R_POWERPC_REL24
2700       || r_type == elfcpp::R_PPC_PLTREL24
2701       || r_type == elfcpp::R_PPC_LOCAL24PC)
2702     return 1L << 25;
2703   return 0;
2704 }
2705
2706 // If this branch needs a plt call stub, or a long branch stub, make one.
2707
2708 template<int size, bool big_endian>
2709 bool
2710 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2711     Stub_table<size, big_endian>* stub_table,
2712     Stub_table<size, big_endian>* ifunc_stub_table,
2713     Symbol_table* symtab) const
2714 {
2715   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2716   if (sym != NULL && sym->is_forwarder())
2717     sym = symtab->resolve_forwards(sym);
2718   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2719   Target_powerpc<size, big_endian>* target =
2720     static_cast<Target_powerpc<size, big_endian>*>(
2721       parameters->sized_target<size, big_endian>());
2722   if (gsym != NULL
2723       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2724       : this->object_->local_has_plt_offset(this->r_sym_))
2725     {
2726       if (size == 64
2727           && gsym != NULL
2728           && target->abiversion() >= 2
2729           && !parameters->options().output_is_position_independent()
2730           && !is_branch_reloc(this->r_type_))
2731         target->glink_section()->add_global_entry(gsym);
2732       else
2733         {
2734           if (stub_table == NULL)
2735             stub_table = this->object_->stub_table(this->shndx_);
2736           if (stub_table == NULL)
2737             {
2738               // This is a ref from a data section to an ifunc symbol.
2739               stub_table = ifunc_stub_table;
2740             }
2741           gold_assert(stub_table != NULL);
2742           Address from = this->object_->get_output_section_offset(this->shndx_);
2743           if (from != invalid_address)
2744             from += (this->object_->output_section(this->shndx_)->address()
2745                      + this->offset_);
2746           if (gsym != NULL)
2747             return stub_table->add_plt_call_entry(from,
2748                                                   this->object_, gsym,
2749                                                   this->r_type_, this->addend_);
2750           else
2751             return stub_table->add_plt_call_entry(from,
2752                                                   this->object_, this->r_sym_,
2753                                                   this->r_type_, this->addend_);
2754         }
2755     }
2756   else
2757     {
2758       Address max_branch_offset = max_branch_delta(this->r_type_);
2759       if (max_branch_offset == 0)
2760         return true;
2761       Address from = this->object_->get_output_section_offset(this->shndx_);
2762       gold_assert(from != invalid_address);
2763       from += (this->object_->output_section(this->shndx_)->address()
2764                + this->offset_);
2765       Address to;
2766       if (gsym != NULL)
2767         {
2768           switch (gsym->source())
2769             {
2770             case Symbol::FROM_OBJECT:
2771               {
2772                 Object* symobj = gsym->object();
2773                 if (symobj->is_dynamic()
2774                     || symobj->pluginobj() != NULL)
2775                   return true;
2776                 bool is_ordinary;
2777                 unsigned int shndx = gsym->shndx(&is_ordinary);
2778                 if (shndx == elfcpp::SHN_UNDEF)
2779                   return true;
2780               }
2781               break;
2782
2783             case Symbol::IS_UNDEFINED:
2784               return true;
2785
2786             default:
2787               break;
2788             }
2789           Symbol_table::Compute_final_value_status status;
2790           to = symtab->compute_final_value<size>(gsym, &status);
2791           if (status != Symbol_table::CFVS_OK)
2792             return true;
2793           if (size == 64)
2794             to += this->object_->ppc64_local_entry_offset(gsym);
2795         }
2796       else
2797         {
2798           const Symbol_value<size>* psymval
2799             = this->object_->local_symbol(this->r_sym_);
2800           Symbol_value<size> symval;
2801           typedef Sized_relobj_file<size, big_endian> ObjType;
2802           typename ObjType::Compute_final_local_value_status status
2803             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2804                                                        &symval, symtab);
2805           if (status != ObjType::CFLV_OK
2806               || !symval.has_output_value())
2807             return true;
2808           to = symval.value(this->object_, 0);
2809           if (size == 64)
2810             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2811         }
2812       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2813         to += this->addend_;
2814       if (stub_table == NULL)
2815         stub_table = this->object_->stub_table(this->shndx_);
2816       if (size == 64 && target->abiversion() < 2)
2817         {
2818           unsigned int dest_shndx;
2819           if (!target->symval_for_branch(symtab, gsym, this->object_,
2820                                          &to, &dest_shndx))
2821             return true;
2822         }
2823       Address delta = to - from;
2824       if (delta + max_branch_offset >= 2 * max_branch_offset)
2825         {
2826           if (stub_table == NULL)
2827             {
2828               gold_warning(_("%s:%s: branch in non-executable section,"
2829                              " no long branch stub for you"),
2830                            this->object_->name().c_str(),
2831                            this->object_->section_name(this->shndx_).c_str());
2832               return true;
2833             }
2834           bool save_res = (size == 64
2835                            && gsym != NULL
2836                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2837                            && gsym->output_data() == target->savres_section());
2838           return stub_table->add_long_branch_entry(this->object_,
2839                                                    this->r_type_,
2840                                                    from, to, save_res);
2841         }
2842     }
2843   return true;
2844 }
2845
2846 // Relaxation hook.  This is where we do stub generation.
2847
2848 template<int size, bool big_endian>
2849 bool
2850 Target_powerpc<size, big_endian>::do_relax(int pass,
2851                                            const Input_objects*,
2852                                            Symbol_table* symtab,
2853                                            Layout* layout,
2854                                            const Task* task)
2855 {
2856   unsigned int prev_brlt_size = 0;
2857   if (pass == 1)
2858     {
2859       bool thread_safe
2860         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2861       if (size == 64
2862           && this->abiversion() < 2
2863           && !thread_safe
2864           && !parameters->options().user_set_plt_thread_safe())
2865         {
2866           static const char* const thread_starter[] =
2867             {
2868               "pthread_create",
2869               /* libstdc++ */
2870               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2871               /* librt */
2872               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2873               "mq_notify", "create_timer",
2874               /* libanl */
2875               "getaddrinfo_a",
2876               /* libgomp */
2877               "GOMP_parallel",
2878               "GOMP_parallel_start",
2879               "GOMP_parallel_loop_static",
2880               "GOMP_parallel_loop_static_start",
2881               "GOMP_parallel_loop_dynamic",
2882               "GOMP_parallel_loop_dynamic_start",
2883               "GOMP_parallel_loop_guided",
2884               "GOMP_parallel_loop_guided_start",
2885               "GOMP_parallel_loop_runtime",
2886               "GOMP_parallel_loop_runtime_start",
2887               "GOMP_parallel_sections",
2888               "GOMP_parallel_sections_start",
2889               /* libgo */
2890               "__go_go",
2891             };
2892
2893           if (parameters->options().shared())
2894             thread_safe = true;
2895           else
2896             {
2897               for (unsigned int i = 0;
2898                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2899                    i++)
2900                 {
2901                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2902                   thread_safe = (sym != NULL
2903                                  && sym->in_reg()
2904                                  && sym->in_real_elf());
2905                   if (thread_safe)
2906                     break;
2907                 }
2908             }
2909         }
2910       this->plt_thread_safe_ = thread_safe;
2911     }
2912
2913   if (pass == 1)
2914     {
2915       this->stub_group_size_ = parameters->options().stub_group_size();
2916       bool no_size_errors = true;
2917       if (this->stub_group_size_ == 1)
2918         this->stub_group_size_ = 0x1c00000;
2919       else if (this->stub_group_size_ == -1)
2920         this->stub_group_size_ = -0x1e00000;
2921       else
2922         no_size_errors = false;
2923       this->group_sections(layout, task, no_size_errors);
2924     }
2925   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2926     {
2927       this->branch_lookup_table_.clear();
2928       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2929            p != this->stub_tables_.end();
2930            ++p)
2931         {
2932           (*p)->clear_stubs(true);
2933         }
2934       this->stub_tables_.clear();
2935       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2936       gold_info(_("%s: stub group size is too large; retrying with %#x"),
2937                 program_name, this->stub_group_size_);
2938       this->group_sections(layout, task, true);
2939     }
2940
2941   // We need address of stub tables valid for make_stub.
2942   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2943        p != this->stub_tables_.end();
2944        ++p)
2945     {
2946       const Powerpc_relobj<size, big_endian>* object
2947         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2948       Address off = object->get_output_section_offset((*p)->shndx());
2949       gold_assert(off != invalid_address);
2950       Output_section* os = (*p)->output_section();
2951       (*p)->set_address_and_size(os, off);
2952     }
2953
2954   if (pass != 1)
2955     {
2956       // Clear plt call stubs, long branch stubs and branch lookup table.
2957       prev_brlt_size = this->branch_lookup_table_.size();
2958       this->branch_lookup_table_.clear();
2959       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2960            p != this->stub_tables_.end();
2961            ++p)
2962         {
2963           (*p)->clear_stubs(false);
2964         }
2965     }
2966
2967   // Build all the stubs.
2968   this->relax_failed_ = false;
2969   Stub_table<size, big_endian>* ifunc_stub_table
2970     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2971   Stub_table<size, big_endian>* one_stub_table
2972     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2973   for (typename Branches::const_iterator b = this->branch_info_.begin();
2974        b != this->branch_info_.end();
2975        b++)
2976     {
2977       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2978           && !this->relax_failed_)
2979         {
2980           this->relax_failed_ = true;
2981           this->relax_fail_count_++;
2982           if (this->relax_fail_count_ < 3)
2983             return true;
2984         }
2985     }
2986
2987   // Did anything change size?
2988   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2989   bool again = num_huge_branches != prev_brlt_size;
2990   if (size == 64 && num_huge_branches != 0)
2991     this->make_brlt_section(layout);
2992   if (size == 64 && again)
2993     this->brlt_section_->set_current_size(num_huge_branches);
2994
2995   typedef Unordered_set<Output_section*> Output_sections;
2996   Output_sections os_need_update;
2997   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2998        p != this->stub_tables_.end();
2999        ++p)
3000     {
3001       if ((*p)->size_update())
3002         {
3003           again = true;
3004           (*p)->add_eh_frame(layout);
3005           os_need_update.insert((*p)->output_section());
3006         }
3007     }
3008
3009   // Set output section offsets for all input sections in an output
3010   // section that just changed size.  Anything past the stubs will
3011   // need updating.
3012   for (typename Output_sections::iterator p = os_need_update.begin();
3013        p != os_need_update.end();
3014        p++)
3015     {
3016       Output_section* os = *p;
3017       Address off = 0;
3018       typedef Output_section::Input_section_list Input_section_list;
3019       for (Input_section_list::const_iterator i = os->input_sections().begin();
3020            i != os->input_sections().end();
3021            ++i)
3022         {
3023           off = align_address(off, i->addralign());
3024           if (i->is_input_section() || i->is_relaxed_input_section())
3025             i->relobj()->set_section_offset(i->shndx(), off);
3026           if (i->is_relaxed_input_section())
3027             {
3028               Stub_table<size, big_endian>* stub_table
3029                 = static_cast<Stub_table<size, big_endian>*>(
3030                     i->relaxed_input_section());
3031               Address stub_table_size = stub_table->set_address_and_size(os, off);
3032               off += stub_table_size;
3033               // After a few iterations, set current stub table size
3034               // as min size threshold, so later stub tables can only
3035               // grow in size.
3036               if (pass >= 4)
3037                 stub_table->set_min_size_threshold(stub_table_size);
3038             }
3039           else
3040             off += i->data_size();
3041         }
3042       // If .branch_lt is part of this output section, then we have
3043       // just done the offset adjustment.
3044       os->clear_section_offsets_need_adjustment();
3045     }
3046
3047   if (size == 64
3048       && !again
3049       && num_huge_branches != 0
3050       && parameters->options().output_is_position_independent())
3051     {
3052       // Fill in the BRLT relocs.
3053       this->brlt_section_->reset_brlt_sizes();
3054       for (typename Branch_lookup_table::const_iterator p
3055              = this->branch_lookup_table_.begin();
3056            p != this->branch_lookup_table_.end();
3057            ++p)
3058         {
3059           this->brlt_section_->add_reloc(p->first, p->second);
3060         }
3061       this->brlt_section_->finalize_brlt_sizes();
3062     }
3063   return again;
3064 }
3065
3066 template<int size, bool big_endian>
3067 void
3068 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3069                                                       unsigned char* oview,
3070                                                       uint64_t* paddress,
3071                                                       off_t* plen) const
3072 {
3073   uint64_t address = plt->address();
3074   off_t len = plt->data_size();
3075
3076   if (plt == this->glink_)
3077     {
3078       // See Output_data_glink::do_write() for glink contents.
3079       if (len == 0)
3080         {
3081           gold_assert(parameters->doing_static_link());
3082           // Static linking may need stubs, to support ifunc and long
3083           // branches.  We need to create an output section for
3084           // .eh_frame early in the link process, to have a place to
3085           // attach stub .eh_frame info.  We also need to have
3086           // registered a CIE that matches the stub CIE.  Both of
3087           // these requirements are satisfied by creating an FDE and
3088           // CIE for .glink, even though static linking will leave
3089           // .glink zero length.
3090           // ??? Hopefully generating an FDE with a zero address range
3091           // won't confuse anything that consumes .eh_frame info.
3092         }
3093       else if (size == 64)
3094         {
3095           // There is one word before __glink_PLTresolve
3096           address += 8;
3097           len -= 8;
3098         }
3099       else if (parameters->options().output_is_position_independent())
3100         {
3101           // There are two FDEs for a position independent glink.
3102           // The first covers the branch table, the second
3103           // __glink_PLTresolve at the end of glink.
3104           off_t resolve_size = this->glink_->pltresolve_size;
3105           if (oview[9] == elfcpp::DW_CFA_nop)
3106             len -= resolve_size;
3107           else
3108             {
3109               address += len - resolve_size;
3110               len = resolve_size;
3111             }
3112         }
3113     }
3114   else
3115     {
3116       // Must be a stub table.
3117       const Stub_table<size, big_endian>* stub_table
3118         = static_cast<const Stub_table<size, big_endian>*>(plt);
3119       uint64_t stub_address = stub_table->stub_address();
3120       len -= stub_address - address;
3121       address = stub_address;
3122     }
3123
3124   *paddress = address;
3125   *plen = len;
3126 }
3127
3128 // A class to handle the PLT data.
3129
3130 template<int size, bool big_endian>
3131 class Output_data_plt_powerpc : public Output_section_data_build
3132 {
3133  public:
3134   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3135                             size, big_endian> Reloc_section;
3136
3137   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3138                           Reloc_section* plt_rel,
3139                           const char* name)
3140     : Output_section_data_build(size == 32 ? 4 : 8),
3141       rel_(plt_rel),
3142       targ_(targ),
3143       name_(name)
3144   { }
3145
3146   // Add an entry to the PLT.
3147   void
3148   add_entry(Symbol*);
3149
3150   void
3151   add_ifunc_entry(Symbol*);
3152
3153   void
3154   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3155
3156   // Return the .rela.plt section data.
3157   Reloc_section*
3158   rel_plt() const
3159   {
3160     return this->rel_;
3161   }
3162
3163   // Return the number of PLT entries.
3164   unsigned int
3165   entry_count() const
3166   {
3167     if (this->current_data_size() == 0)
3168       return 0;
3169     return ((this->current_data_size() - this->first_plt_entry_offset())
3170             / this->plt_entry_size());
3171   }
3172
3173  protected:
3174   void
3175   do_adjust_output_section(Output_section* os)
3176   {
3177     os->set_entsize(0);
3178   }
3179
3180   // Write to a map file.
3181   void
3182   do_print_to_mapfile(Mapfile* mapfile) const
3183   { mapfile->print_output_data(this, this->name_); }
3184
3185  private:
3186   // Return the offset of the first non-reserved PLT entry.
3187   unsigned int
3188   first_plt_entry_offset() const
3189   {
3190     // IPLT has no reserved entry.
3191     if (this->name_[3] == 'I')
3192       return 0;
3193     return this->targ_->first_plt_entry_offset();
3194   }
3195
3196   // Return the size of each PLT entry.
3197   unsigned int
3198   plt_entry_size() const
3199   {
3200     return this->targ_->plt_entry_size();
3201   }
3202
3203   // Write out the PLT data.
3204   void
3205   do_write(Output_file*);
3206
3207   // The reloc section.
3208   Reloc_section* rel_;
3209   // Allows access to .glink for do_write.
3210   Target_powerpc<size, big_endian>* targ_;
3211   // What to report in map file.
3212   const char *name_;
3213 };
3214
3215 // Add an entry to the PLT.
3216
3217 template<int size, bool big_endian>
3218 void
3219 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3220 {
3221   if (!gsym->has_plt_offset())
3222     {
3223       section_size_type off = this->current_data_size();
3224       if (off == 0)
3225         off += this->first_plt_entry_offset();
3226       gsym->set_plt_offset(off);
3227       gsym->set_needs_dynsym_entry();
3228       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3229       this->rel_->add_global(gsym, dynrel, this, off, 0);
3230       off += this->plt_entry_size();
3231       this->set_current_data_size(off);
3232     }
3233 }
3234
3235 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3236
3237 template<int size, bool big_endian>
3238 void
3239 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3240 {
3241   if (!gsym->has_plt_offset())
3242     {
3243       section_size_type off = this->current_data_size();
3244       gsym->set_plt_offset(off);
3245       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3246       if (size == 64 && this->targ_->abiversion() < 2)
3247         dynrel = elfcpp::R_PPC64_JMP_IREL;
3248       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3249       off += this->plt_entry_size();
3250       this->set_current_data_size(off);
3251     }
3252 }
3253
3254 // Add an entry for a local ifunc symbol to the IPLT.
3255
3256 template<int size, bool big_endian>
3257 void
3258 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3259     Sized_relobj_file<size, big_endian>* relobj,
3260     unsigned int local_sym_index)
3261 {
3262   if (!relobj->local_has_plt_offset(local_sym_index))
3263     {
3264       section_size_type off = this->current_data_size();
3265       relobj->set_local_plt_offset(local_sym_index, off);
3266       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3267       if (size == 64 && this->targ_->abiversion() < 2)
3268         dynrel = elfcpp::R_PPC64_JMP_IREL;
3269       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3270                                               this, off, 0);
3271       off += this->plt_entry_size();
3272       this->set_current_data_size(off);
3273     }
3274 }
3275
3276 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3277 static const uint32_t add_2_2_11        = 0x7c425a14;
3278 static const uint32_t add_2_2_12        = 0x7c426214;
3279 static const uint32_t add_3_3_2         = 0x7c631214;
3280 static const uint32_t add_3_3_13        = 0x7c636a14;
3281 static const uint32_t add_11_0_11       = 0x7d605a14;
3282 static const uint32_t add_11_2_11       = 0x7d625a14;
3283 static const uint32_t add_11_11_2       = 0x7d6b1214;
3284 static const uint32_t addi_0_12         = 0x380c0000;
3285 static const uint32_t addi_2_2          = 0x38420000;
3286 static const uint32_t addi_3_3          = 0x38630000;
3287 static const uint32_t addi_11_11        = 0x396b0000;
3288 static const uint32_t addi_12_1         = 0x39810000;
3289 static const uint32_t addi_12_12        = 0x398c0000;
3290 static const uint32_t addis_0_2         = 0x3c020000;
3291 static const uint32_t addis_0_13        = 0x3c0d0000;
3292 static const uint32_t addis_2_12        = 0x3c4c0000;
3293 static const uint32_t addis_11_2        = 0x3d620000;
3294 static const uint32_t addis_11_11       = 0x3d6b0000;
3295 static const uint32_t addis_11_30       = 0x3d7e0000;
3296 static const uint32_t addis_12_1        = 0x3d810000;
3297 static const uint32_t addis_12_2        = 0x3d820000;
3298 static const uint32_t addis_12_12       = 0x3d8c0000;
3299 static const uint32_t b                 = 0x48000000;
3300 static const uint32_t bcl_20_31         = 0x429f0005;
3301 static const uint32_t bctr              = 0x4e800420;
3302 static const uint32_t blr               = 0x4e800020;
3303 static const uint32_t bnectr_p4         = 0x4ce20420;
3304 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3305 static const uint32_t cmpldi_2_0        = 0x28220000;
3306 static const uint32_t cror_15_15_15     = 0x4def7b82;
3307 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3308 static const uint32_t ld_0_1            = 0xe8010000;
3309 static const uint32_t ld_0_12           = 0xe80c0000;
3310 static const uint32_t ld_2_1            = 0xe8410000;
3311 static const uint32_t ld_2_2            = 0xe8420000;
3312 static const uint32_t ld_2_11           = 0xe84b0000;
3313 static const uint32_t ld_2_12           = 0xe84c0000;
3314 static const uint32_t ld_11_2           = 0xe9620000;
3315 static const uint32_t ld_11_11          = 0xe96b0000;
3316 static const uint32_t ld_12_2           = 0xe9820000;
3317 static const uint32_t ld_12_11          = 0xe98b0000;
3318 static const uint32_t ld_12_12          = 0xe98c0000;
3319 static const uint32_t lfd_0_1           = 0xc8010000;
3320 static const uint32_t li_0_0            = 0x38000000;
3321 static const uint32_t li_12_0           = 0x39800000;
3322 static const uint32_t lis_0             = 0x3c000000;
3323 static const uint32_t lis_2             = 0x3c400000;
3324 static const uint32_t lis_11            = 0x3d600000;
3325 static const uint32_t lis_12            = 0x3d800000;
3326 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3327 static const uint32_t lwz_0_12          = 0x800c0000;
3328 static const uint32_t lwz_11_11         = 0x816b0000;
3329 static const uint32_t lwz_11_30         = 0x817e0000;
3330 static const uint32_t lwz_12_12         = 0x818c0000;
3331 static const uint32_t lwzu_0_12         = 0x840c0000;
3332 static const uint32_t mflr_0            = 0x7c0802a6;
3333 static const uint32_t mflr_11           = 0x7d6802a6;
3334 static const uint32_t mflr_12           = 0x7d8802a6;
3335 static const uint32_t mtctr_0           = 0x7c0903a6;
3336 static const uint32_t mtctr_11          = 0x7d6903a6;
3337 static const uint32_t mtctr_12          = 0x7d8903a6;
3338 static const uint32_t mtlr_0            = 0x7c0803a6;
3339 static const uint32_t mtlr_12           = 0x7d8803a6;
3340 static const uint32_t nop               = 0x60000000;
3341 static const uint32_t ori_0_0_0         = 0x60000000;
3342 static const uint32_t srdi_0_0_2        = 0x7800f082;
3343 static const uint32_t std_0_1           = 0xf8010000;
3344 static const uint32_t std_0_12          = 0xf80c0000;
3345 static const uint32_t std_2_1           = 0xf8410000;
3346 static const uint32_t stfd_0_1          = 0xd8010000;
3347 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3348 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3349 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3350 static const uint32_t xor_2_12_12       = 0x7d826278;
3351 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3352
3353 // Write out the PLT.
3354
3355 template<int size, bool big_endian>
3356 void
3357 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3358 {
3359   if (size == 32 && this->name_[3] != 'I')
3360     {
3361       const section_size_type offset = this->offset();
3362       const section_size_type oview_size
3363         = convert_to_section_size_type(this->data_size());
3364       unsigned char* const oview = of->get_output_view(offset, oview_size);
3365       unsigned char* pov = oview;
3366       unsigned char* endpov = oview + oview_size;
3367
3368       // The address of the .glink branch table
3369       const Output_data_glink<size, big_endian>* glink
3370         = this->targ_->glink_section();
3371       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3372
3373       while (pov < endpov)
3374         {
3375           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3376           pov += 4;
3377           branch_tab += 4;
3378         }
3379
3380       of->write_output_view(offset, oview_size, oview);
3381     }
3382 }
3383
3384 // Create the PLT section.
3385
3386 template<int size, bool big_endian>
3387 void
3388 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3389                                                    Layout* layout)
3390 {
3391   if (this->plt_ == NULL)
3392     {
3393       if (this->got_ == NULL)
3394         this->got_section(symtab, layout);
3395
3396       if (this->glink_ == NULL)
3397         make_glink_section(layout);
3398
3399       // Ensure that .rela.dyn always appears before .rela.plt  This is
3400       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3401       // needs to include .rela.plt in its range.
3402       this->rela_dyn_section(layout);
3403
3404       Reloc_section* plt_rel = new Reloc_section(false);
3405       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3406                                       elfcpp::SHF_ALLOC, plt_rel,
3407                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3408       this->plt_
3409         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3410                                                         "** PLT");
3411       layout->add_output_section_data(".plt",
3412                                       (size == 32
3413                                        ? elfcpp::SHT_PROGBITS
3414                                        : elfcpp::SHT_NOBITS),
3415                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3416                                       this->plt_,
3417                                       (size == 32
3418                                        ? ORDER_SMALL_DATA
3419                                        : ORDER_SMALL_BSS),
3420                                       false);
3421     }
3422 }
3423
3424 // Create the IPLT section.
3425
3426 template<int size, bool big_endian>
3427 void
3428 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3429                                                     Layout* layout)
3430 {
3431   if (this->iplt_ == NULL)
3432     {
3433       this->make_plt_section(symtab, layout);
3434
3435       Reloc_section* iplt_rel = new Reloc_section(false);
3436       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3437       this->iplt_
3438         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3439                                                         "** IPLT");
3440       this->plt_->output_section()->add_output_section_data(this->iplt_);
3441     }
3442 }
3443
3444 // A section for huge long branch addresses, similar to plt section.
3445
3446 template<int size, bool big_endian>
3447 class Output_data_brlt_powerpc : public Output_section_data_build
3448 {
3449  public:
3450   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3451   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3452                             size, big_endian> Reloc_section;
3453
3454   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3455                            Reloc_section* brlt_rel)
3456     : Output_section_data_build(size == 32 ? 4 : 8),
3457       rel_(brlt_rel),
3458       targ_(targ)
3459   { }
3460
3461   void
3462   reset_brlt_sizes()
3463   {
3464     this->reset_data_size();
3465     this->rel_->reset_data_size();
3466   }
3467
3468   void
3469   finalize_brlt_sizes()
3470   {
3471     this->finalize_data_size();
3472     this->rel_->finalize_data_size();
3473   }
3474
3475   // Add a reloc for an entry in the BRLT.
3476   void
3477   add_reloc(Address to, unsigned int off)
3478   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3479
3480   // Update section and reloc section size.
3481   void
3482   set_current_size(unsigned int num_branches)
3483   {
3484     this->reset_address_and_file_offset();
3485     this->set_current_data_size(num_branches * 16);
3486     this->finalize_data_size();
3487     Output_section* os = this->output_section();
3488     os->set_section_offsets_need_adjustment();
3489     if (this->rel_ != NULL)
3490       {
3491         unsigned int reloc_size
3492           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3493         this->rel_->reset_address_and_file_offset();
3494         this->rel_->set_current_data_size(num_branches * reloc_size);
3495         this->rel_->finalize_data_size();
3496         Output_section* os = this->rel_->output_section();
3497         os->set_section_offsets_need_adjustment();
3498       }
3499   }
3500
3501  protected:
3502   void
3503   do_adjust_output_section(Output_section* os)
3504   {
3505     os->set_entsize(0);
3506   }
3507
3508   // Write to a map file.
3509   void
3510   do_print_to_mapfile(Mapfile* mapfile) const
3511   { mapfile->print_output_data(this, "** BRLT"); }
3512
3513  private:
3514   // Write out the BRLT data.
3515   void
3516   do_write(Output_file*);
3517
3518   // The reloc section.
3519   Reloc_section* rel_;
3520   Target_powerpc<size, big_endian>* targ_;
3521 };
3522
3523 // Make the branch lookup table section.
3524
3525 template<int size, bool big_endian>
3526 void
3527 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3528 {
3529   if (size == 64 && this->brlt_section_ == NULL)
3530     {
3531       Reloc_section* brlt_rel = NULL;
3532       bool is_pic = parameters->options().output_is_position_independent();
3533       if (is_pic)
3534         {
3535           // When PIC we can't fill in .branch_lt (like .plt it can be
3536           // a bss style section) but must initialise at runtime via
3537           // dynamic relocats.
3538           this->rela_dyn_section(layout);
3539           brlt_rel = new Reloc_section(false);
3540           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3541         }
3542       this->brlt_section_
3543         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3544       if (this->plt_ && is_pic)
3545         this->plt_->output_section()
3546           ->add_output_section_data(this->brlt_section_);
3547       else
3548         layout->add_output_section_data(".branch_lt",
3549                                         (is_pic ? elfcpp::SHT_NOBITS
3550                                          : elfcpp::SHT_PROGBITS),
3551                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3552                                         this->brlt_section_,
3553                                         (is_pic ? ORDER_SMALL_BSS
3554                                          : ORDER_SMALL_DATA),
3555                                         false);
3556     }
3557 }
3558
3559 // Write out .branch_lt when non-PIC.
3560
3561 template<int size, bool big_endian>
3562 void
3563 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3564 {
3565   if (size == 64 && !parameters->options().output_is_position_independent())
3566     {
3567       const section_size_type offset = this->offset();
3568       const section_size_type oview_size
3569         = convert_to_section_size_type(this->data_size());
3570       unsigned char* const oview = of->get_output_view(offset, oview_size);
3571
3572       this->targ_->write_branch_lookup_table(oview);
3573       of->write_output_view(offset, oview_size, oview);
3574     }
3575 }
3576
3577 static inline uint32_t
3578 l(uint32_t a)
3579 {
3580   return a & 0xffff;
3581 }
3582
3583 static inline uint32_t
3584 hi(uint32_t a)
3585 {
3586   return l(a >> 16);
3587 }
3588
3589 static inline uint32_t
3590 ha(uint32_t a)
3591 {
3592   return hi(a + 0x8000);
3593 }
3594
3595 template<int size>
3596 struct Eh_cie
3597 {
3598   static const unsigned char eh_frame_cie[12];
3599 };
3600
3601 template<int size>
3602 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3603 {
3604   1,                                    // CIE version.
3605   'z', 'R', 0,                          // Augmentation string.
3606   4,                                    // Code alignment.
3607   0x80 - size / 8 ,                     // Data alignment.
3608   65,                                   // RA reg.
3609   1,                                    // Augmentation size.
3610   (elfcpp::DW_EH_PE_pcrel
3611    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3612   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3613 };
3614
3615 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3616 static const unsigned char glink_eh_frame_fde_64v1[] =
3617 {
3618   0, 0, 0, 0,                           // Replaced with offset to .glink.
3619   0, 0, 0, 0,                           // Replaced with size of .glink.
3620   0,                                    // Augmentation size.
3621   elfcpp::DW_CFA_advance_loc + 1,
3622   elfcpp::DW_CFA_register, 65, 12,
3623   elfcpp::DW_CFA_advance_loc + 4,
3624   elfcpp::DW_CFA_restore_extended, 65
3625 };
3626
3627 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3628 static const unsigned char glink_eh_frame_fde_64v2[] =
3629 {
3630   0, 0, 0, 0,                           // Replaced with offset to .glink.
3631   0, 0, 0, 0,                           // Replaced with size of .glink.
3632   0,                                    // Augmentation size.
3633   elfcpp::DW_CFA_advance_loc + 1,
3634   elfcpp::DW_CFA_register, 65, 0,
3635   elfcpp::DW_CFA_advance_loc + 4,
3636   elfcpp::DW_CFA_restore_extended, 65
3637 };
3638
3639 // Describe __glink_PLTresolve use of LR, 32-bit version.
3640 static const unsigned char glink_eh_frame_fde_32[] =
3641 {
3642   0, 0, 0, 0,                           // Replaced with offset to .glink.
3643   0, 0, 0, 0,                           // Replaced with size of .glink.
3644   0,                                    // Augmentation size.
3645   elfcpp::DW_CFA_advance_loc + 2,
3646   elfcpp::DW_CFA_register, 65, 0,
3647   elfcpp::DW_CFA_advance_loc + 4,
3648   elfcpp::DW_CFA_restore_extended, 65
3649 };
3650
3651 static const unsigned char default_fde[] =
3652 {
3653   0, 0, 0, 0,                           // Replaced with offset to stubs.
3654   0, 0, 0, 0,                           // Replaced with size of stubs.
3655   0,                                    // Augmentation size.
3656   elfcpp::DW_CFA_nop,                   // Pad.
3657   elfcpp::DW_CFA_nop,
3658   elfcpp::DW_CFA_nop
3659 };
3660
3661 template<bool big_endian>
3662 static inline void
3663 write_insn(unsigned char* p, uint32_t v)
3664 {
3665   elfcpp::Swap<32, big_endian>::writeval(p, v);
3666 }
3667
3668 // Stub_table holds information about plt and long branch stubs.
3669 // Stubs are built in an area following some input section determined
3670 // by group_sections().  This input section is converted to a relaxed
3671 // input section allowing it to be resized to accommodate the stubs
3672
3673 template<int size, bool big_endian>
3674 class Stub_table : public Output_relaxed_input_section
3675 {
3676  public:
3677   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3678   static const Address invalid_address = static_cast<Address>(0) - 1;
3679
3680   Stub_table(Target_powerpc<size, big_endian>* targ,
3681              Output_section* output_section,
3682              const Output_section::Input_section* owner)
3683     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3684                                    owner->relobj()
3685                                    ->section_addralign(owner->shndx())),
3686       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3687       orig_data_size_(owner->current_data_size()),
3688       plt_size_(0), last_plt_size_(0),
3689       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3690       eh_frame_added_(false), need_save_res_(false)
3691   {
3692     this->set_output_section(output_section);
3693
3694     std::vector<Output_relaxed_input_section*> new_relaxed;
3695     new_relaxed.push_back(this);
3696     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3697   }
3698
3699   // Add a plt call stub.
3700   bool
3701   add_plt_call_entry(Address,
3702                      const Sized_relobj_file<size, big_endian>*,
3703                      const Symbol*,
3704                      unsigned int,
3705                      Address);
3706
3707   bool
3708   add_plt_call_entry(Address,
3709                      const Sized_relobj_file<size, big_endian>*,
3710                      unsigned int,
3711                      unsigned int,
3712                      Address);
3713
3714   // Find a given plt call stub.
3715   Address
3716   find_plt_call_entry(const Symbol*) const;
3717
3718   Address
3719   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3720                       unsigned int) const;
3721
3722   Address
3723   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3724                       const Symbol*,
3725                       unsigned int,
3726                       Address) const;
3727
3728   Address
3729   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3730                       unsigned int,
3731                       unsigned int,
3732                       Address) const;
3733
3734   // Add a long branch stub.
3735   bool
3736   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3737                         unsigned int, Address, Address, bool);
3738
3739   Address
3740   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3741                          Address) const;
3742
3743   bool
3744   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3745   {
3746     Address max_branch_offset = max_branch_delta(r_type);
3747     if (max_branch_offset == 0)
3748       return true;
3749     gold_assert(from != invalid_address);
3750     Address loc = off + this->stub_address();
3751     return loc - from + max_branch_offset < 2 * max_branch_offset;
3752   }
3753
3754   void
3755   clear_stubs(bool all)
3756   {
3757     this->plt_call_stubs_.clear();
3758     this->plt_size_ = 0;
3759     this->long_branch_stubs_.clear();
3760     this->branch_size_ = 0;
3761     this->need_save_res_ = false;
3762     if (all)
3763       {
3764         this->last_plt_size_ = 0;
3765         this->last_branch_size_ = 0;
3766       }
3767   }
3768
3769   Address
3770   set_address_and_size(const Output_section* os, Address off)
3771   {
3772     Address start_off = off;
3773     off += this->orig_data_size_;
3774     Address my_size = this->plt_size_ + this->branch_size_;
3775     if (this->need_save_res_)
3776       my_size += this->targ_->savres_section()->data_size();
3777     if (my_size != 0)
3778       off = align_address(off, this->stub_align());
3779     // Include original section size and alignment padding in size
3780     my_size += off - start_off;
3781     // Ensure new size is always larger than min size
3782     // threshold. Alignment requirement is included in "my_size", so
3783     // increase "my_size" does not invalidate alignment.
3784     if (my_size < this->min_size_threshold_)
3785       my_size = this->min_size_threshold_;
3786     this->reset_address_and_file_offset();
3787     this->set_current_data_size(my_size);
3788     this->set_address_and_file_offset(os->address() + start_off,
3789                                       os->offset() + start_off);
3790     return my_size;
3791   }
3792
3793   Address
3794   stub_address() const
3795   {
3796     return align_address(this->address() + this->orig_data_size_,
3797                          this->stub_align());
3798   }
3799
3800   Address
3801   stub_offset() const
3802   {
3803     return align_address(this->offset() + this->orig_data_size_,
3804                          this->stub_align());
3805   }
3806
3807   section_size_type
3808   plt_size() const
3809   { return this->plt_size_; }
3810
3811   void set_min_size_threshold(Address min_size)
3812   { this->min_size_threshold_ = min_size; }
3813
3814   bool
3815   size_update()
3816   {
3817     Output_section* os = this->output_section();
3818     if (os->addralign() < this->stub_align())
3819       {
3820         os->set_addralign(this->stub_align());
3821         // FIXME: get rid of the insane checkpointing.
3822         // We can't increase alignment of the input section to which
3823         // stubs are attached;  The input section may be .init which
3824         // is pasted together with other .init sections to form a
3825         // function.  Aligning might insert zero padding resulting in
3826         // sigill.  However we do need to increase alignment of the
3827         // output section so that the align_address() on offset in
3828         // set_address_and_size() adds the same padding as the
3829         // align_address() on address in stub_address().
3830         // What's more, we need this alignment for the layout done in
3831         // relaxation_loop_body() so that the output section starts at
3832         // a suitably aligned address.
3833         os->checkpoint_set_addralign(this->stub_align());
3834       }
3835     if (this->last_plt_size_ != this->plt_size_
3836         || this->last_branch_size_ != this->branch_size_)
3837       {
3838         this->last_plt_size_ = this->plt_size_;
3839         this->last_branch_size_ = this->branch_size_;
3840         return true;
3841       }
3842     return false;
3843   }
3844
3845   // Add .eh_frame info for this stub section.  Unlike other linker
3846   // generated .eh_frame this is added late in the link, because we
3847   // only want the .eh_frame info if this particular stub section is
3848   // non-empty.
3849   void
3850   add_eh_frame(Layout* layout)
3851   {
3852     if (!this->eh_frame_added_)
3853       {
3854         if (!parameters->options().ld_generated_unwind_info())
3855           return;
3856
3857         // Since we add stub .eh_frame info late, it must be placed
3858         // after all other linker generated .eh_frame info so that
3859         // merge mapping need not be updated for input sections.
3860         // There is no provision to use a different CIE to that used
3861         // by .glink.
3862         if (!this->targ_->has_glink())
3863           return;
3864
3865         layout->add_eh_frame_for_plt(this,
3866                                      Eh_cie<size>::eh_frame_cie,
3867                                      sizeof (Eh_cie<size>::eh_frame_cie),
3868                                      default_fde,
3869                                      sizeof (default_fde));
3870         this->eh_frame_added_ = true;
3871       }
3872   }
3873
3874   Target_powerpc<size, big_endian>*
3875   targ() const
3876   { return targ_; }
3877
3878  private:
3879   class Plt_stub_ent;
3880   class Plt_stub_ent_hash;
3881   typedef Unordered_map<Plt_stub_ent, unsigned int,
3882                         Plt_stub_ent_hash> Plt_stub_entries;
3883
3884   // Alignment of stub section.
3885   unsigned int
3886   stub_align() const
3887   {
3888     if (size == 32)
3889       return 16;
3890     unsigned int min_align = 32;
3891     unsigned int user_align = 1 << parameters->options().plt_align();
3892     return std::max(user_align, min_align);
3893   }
3894
3895   // Return the plt offset for the given call stub.
3896   Address
3897   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3898   {
3899     const Symbol* gsym = p->first.sym_;
3900     if (gsym != NULL)
3901       {
3902         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3903                     && gsym->can_use_relative_reloc(false));
3904         return gsym->plt_offset();
3905       }
3906     else
3907       {
3908         *is_iplt = true;
3909         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3910         unsigned int local_sym_index = p->first.locsym_;
3911         return relobj->local_plt_offset(local_sym_index);
3912       }
3913   }
3914
3915   // Size of a given plt call stub.
3916   unsigned int
3917   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3918   {
3919     if (size == 32)
3920       return 16;
3921
3922     bool is_iplt;
3923     Address plt_addr = this->plt_off(p, &is_iplt);
3924     if (is_iplt)
3925       plt_addr += this->targ_->iplt_section()->address();
3926     else
3927       plt_addr += this->targ_->plt_section()->address();
3928     Address got_addr = this->targ_->got_section()->output_section()->address();
3929     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3930       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3931     got_addr += ppcobj->toc_base_offset();
3932     Address off = plt_addr - got_addr;
3933     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3934     if (this->targ_->abiversion() < 2)
3935       {
3936         bool static_chain = parameters->options().plt_static_chain();
3937         bool thread_safe = this->targ_->plt_thread_safe();
3938         bytes += (4
3939                   + 4 * static_chain
3940                   + 8 * thread_safe
3941                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3942       }
3943     unsigned int align = 1 << parameters->options().plt_align();
3944     if (align > 1)
3945       bytes = (bytes + align - 1) & -align;
3946     return bytes;
3947   }
3948
3949   // Return long branch stub size.
3950   unsigned int
3951   branch_stub_size(Address to)
3952   {
3953     Address loc
3954       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3955     if (to - loc + (1 << 25) < 2 << 25)
3956       return 4;
3957     if (size == 64 || !parameters->options().output_is_position_independent())
3958       return 16;
3959     return 32;
3960   }
3961
3962   // Write out stubs.
3963   void
3964   do_write(Output_file*);
3965
3966   // Plt call stub keys.
3967   class Plt_stub_ent
3968   {
3969   public:
3970     Plt_stub_ent(const Symbol* sym)
3971       : sym_(sym), object_(0), addend_(0), locsym_(0)
3972     { }
3973
3974     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3975                  unsigned int locsym_index)
3976       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3977     { }
3978
3979     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3980                  const Symbol* sym,
3981                  unsigned int r_type,
3982                  Address addend)
3983       : sym_(sym), object_(0), addend_(0), locsym_(0)
3984     {
3985       if (size != 32)
3986         this->addend_ = addend;
3987       else if (parameters->options().output_is_position_independent()
3988                && r_type == elfcpp::R_PPC_PLTREL24)
3989         {
3990           this->addend_ = addend;
3991           if (this->addend_ >= 32768)
3992             this->object_ = object;
3993         }
3994     }
3995
3996     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3997                  unsigned int locsym_index,
3998                  unsigned int r_type,
3999                  Address addend)
4000       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4001     {
4002       if (size != 32)
4003         this->addend_ = addend;
4004       else if (parameters->options().output_is_position_independent()
4005                && r_type == elfcpp::R_PPC_PLTREL24)
4006         this->addend_ = addend;
4007     }
4008
4009     bool operator==(const Plt_stub_ent& that) const
4010     {
4011       return (this->sym_ == that.sym_
4012               && this->object_ == that.object_
4013               && this->addend_ == that.addend_
4014               && this->locsym_ == that.locsym_);
4015     }
4016
4017     const Symbol* sym_;
4018     const Sized_relobj_file<size, big_endian>* object_;
4019     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4020     unsigned int locsym_;
4021   };
4022
4023   class Plt_stub_ent_hash
4024   {
4025   public:
4026     size_t operator()(const Plt_stub_ent& ent) const
4027     {
4028       return (reinterpret_cast<uintptr_t>(ent.sym_)
4029               ^ reinterpret_cast<uintptr_t>(ent.object_)
4030               ^ ent.addend_
4031               ^ ent.locsym_);
4032     }
4033   };
4034
4035   // Long branch stub keys.
4036   class Branch_stub_ent
4037   {
4038   public:
4039     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4040                     Address to, bool save_res)
4041       : dest_(to), toc_base_off_(0), save_res_(save_res)
4042     {
4043       if (size == 64)
4044         toc_base_off_ = obj->toc_base_offset();
4045     }
4046
4047     bool operator==(const Branch_stub_ent& that) const
4048     {
4049       return (this->dest_ == that.dest_
4050               && (size == 32
4051                   || this->toc_base_off_ == that.toc_base_off_));
4052     }
4053
4054     Address dest_;
4055     unsigned int toc_base_off_;
4056     bool save_res_;
4057   };
4058
4059   class Branch_stub_ent_hash
4060   {
4061   public:
4062     size_t operator()(const Branch_stub_ent& ent) const
4063     { return ent.dest_ ^ ent.toc_base_off_; }
4064   };
4065
4066   // In a sane world this would be a global.
4067   Target_powerpc<size, big_endian>* targ_;
4068   // Map sym/object/addend to stub offset.
4069   Plt_stub_entries plt_call_stubs_;
4070   // Map destination address to stub offset.
4071   typedef Unordered_map<Branch_stub_ent, unsigned int,
4072                         Branch_stub_ent_hash> Branch_stub_entries;
4073   Branch_stub_entries long_branch_stubs_;
4074   // size of input section
4075   section_size_type orig_data_size_;
4076   // size of stubs
4077   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4078   // Some rare cases cause (PR/20529) fluctuation in stub table
4079   // size, which leads to an endless relax loop. This is to be fixed
4080   // by, after the first few iterations, allowing only increase of
4081   // stub table size. This variable sets the minimal possible size of
4082   // a stub table, it is zero for the first few iterations, then
4083   // increases monotonically.
4084   Address min_size_threshold_;
4085   // Whether .eh_frame info has been created for this stub section.
4086   bool eh_frame_added_;
4087   // Set if this stub group needs a copy of out-of-line register
4088   // save/restore functions.
4089   bool need_save_res_;
4090 };
4091
4092 // Add a plt call stub, if we do not already have one for this
4093 // sym/object/addend combo.
4094
4095 template<int size, bool big_endian>
4096 bool
4097 Stub_table<size, big_endian>::add_plt_call_entry(
4098     Address from,
4099     const Sized_relobj_file<size, big_endian>* object,
4100     const Symbol* gsym,
4101     unsigned int r_type,
4102     Address addend)
4103 {
4104   Plt_stub_ent ent(object, gsym, r_type, addend);
4105   unsigned int off = this->plt_size_;
4106   std::pair<typename Plt_stub_entries::iterator, bool> p
4107     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4108   if (p.second)
4109     this->plt_size_ = off + this->plt_call_size(p.first);
4110   return this->can_reach_stub(from, off, r_type);
4111 }
4112
4113 template<int size, bool big_endian>
4114 bool
4115 Stub_table<size, big_endian>::add_plt_call_entry(
4116     Address from,
4117     const Sized_relobj_file<size, big_endian>* object,
4118     unsigned int locsym_index,
4119     unsigned int r_type,
4120     Address addend)
4121 {
4122   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4123   unsigned int off = this->plt_size_;
4124   std::pair<typename Plt_stub_entries::iterator, bool> p
4125     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4126   if (p.second)
4127     this->plt_size_ = off + this->plt_call_size(p.first);
4128   return this->can_reach_stub(from, off, r_type);
4129 }
4130
4131 // Find a plt call stub.
4132
4133 template<int size, bool big_endian>
4134 typename Stub_table<size, big_endian>::Address
4135 Stub_table<size, big_endian>::find_plt_call_entry(
4136     const Sized_relobj_file<size, big_endian>* object,
4137     const Symbol* gsym,
4138     unsigned int r_type,
4139     Address addend) const
4140 {
4141   Plt_stub_ent ent(object, gsym, r_type, addend);
4142   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4143   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4144 }
4145
4146 template<int size, bool big_endian>
4147 typename Stub_table<size, big_endian>::Address
4148 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4149 {
4150   Plt_stub_ent ent(gsym);
4151   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4152   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4153 }
4154
4155 template<int size, bool big_endian>
4156 typename Stub_table<size, big_endian>::Address
4157 Stub_table<size, big_endian>::find_plt_call_entry(
4158     const Sized_relobj_file<size, big_endian>* object,
4159     unsigned int locsym_index,
4160     unsigned int r_type,
4161     Address addend) const
4162 {
4163   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4164   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4165   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4166 }
4167
4168 template<int size, bool big_endian>
4169 typename Stub_table<size, big_endian>::Address
4170 Stub_table<size, big_endian>::find_plt_call_entry(
4171     const Sized_relobj_file<size, big_endian>* object,
4172     unsigned int locsym_index) const
4173 {
4174   Plt_stub_ent ent(object, locsym_index);
4175   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4176   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4177 }
4178
4179 // Add a long branch stub if we don't already have one to given
4180 // destination.
4181
4182 template<int size, bool big_endian>
4183 bool
4184 Stub_table<size, big_endian>::add_long_branch_entry(
4185     const Powerpc_relobj<size, big_endian>* object,
4186     unsigned int r_type,
4187     Address from,
4188     Address to,
4189     bool save_res)
4190 {
4191   Branch_stub_ent ent(object, to, save_res);
4192   Address off = this->branch_size_;
4193   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4194     {
4195       if (save_res)
4196         this->need_save_res_ = true;
4197       else
4198         {
4199           unsigned int stub_size = this->branch_stub_size(to);
4200           this->branch_size_ = off + stub_size;
4201           if (size == 64 && stub_size != 4)
4202             this->targ_->add_branch_lookup_table(to);
4203         }
4204     }
4205   return this->can_reach_stub(from, off, r_type);
4206 }
4207
4208 // Find long branch stub offset.
4209
4210 template<int size, bool big_endian>
4211 typename Stub_table<size, big_endian>::Address
4212 Stub_table<size, big_endian>::find_long_branch_entry(
4213     const Powerpc_relobj<size, big_endian>* object,
4214     Address to) const
4215 {
4216   Branch_stub_ent ent(object, to, false);
4217   typename Branch_stub_entries::const_iterator p
4218     = this->long_branch_stubs_.find(ent);
4219   if (p == this->long_branch_stubs_.end())
4220     return invalid_address;
4221   if (p->first.save_res_)
4222     return to - this->targ_->savres_section()->address() + this->branch_size_;
4223   return p->second;
4224 }
4225
4226 // A class to handle .glink.
4227
4228 template<int size, bool big_endian>
4229 class Output_data_glink : public Output_section_data
4230 {
4231  public:
4232   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4233   static const Address invalid_address = static_cast<Address>(0) - 1;
4234   static const int pltresolve_size = 16*4;
4235
4236   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4237     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4238       end_branch_table_(), ge_size_(0)
4239   { }
4240
4241   void
4242   add_eh_frame(Layout* layout);
4243
4244   void
4245   add_global_entry(const Symbol*);
4246
4247   Address
4248   find_global_entry(const Symbol*) const;
4249
4250   Address
4251   global_entry_address() const
4252   {
4253     gold_assert(this->is_data_size_valid());
4254     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4255     return this->address() + global_entry_off;
4256   }
4257
4258  protected:
4259   // Write to a map file.
4260   void
4261   do_print_to_mapfile(Mapfile* mapfile) const
4262   { mapfile->print_output_data(this, _("** glink")); }
4263
4264  private:
4265   void
4266   set_final_data_size();
4267
4268   // Write out .glink
4269   void
4270   do_write(Output_file*);
4271
4272   // Allows access to .got and .plt for do_write.
4273   Target_powerpc<size, big_endian>* targ_;
4274
4275   // Map sym to stub offset.
4276   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4277   Global_entry_stub_entries global_entry_stubs_;
4278
4279   unsigned int end_branch_table_, ge_size_;
4280 };
4281
4282 template<int size, bool big_endian>
4283 void
4284 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4285 {
4286   if (!parameters->options().ld_generated_unwind_info())
4287     return;
4288
4289   if (size == 64)
4290     {
4291       if (this->targ_->abiversion() < 2)
4292         layout->add_eh_frame_for_plt(this,
4293                                      Eh_cie<64>::eh_frame_cie,
4294                                      sizeof (Eh_cie<64>::eh_frame_cie),
4295                                      glink_eh_frame_fde_64v1,
4296                                      sizeof (glink_eh_frame_fde_64v1));
4297       else
4298         layout->add_eh_frame_for_plt(this,
4299                                      Eh_cie<64>::eh_frame_cie,
4300                                      sizeof (Eh_cie<64>::eh_frame_cie),
4301                                      glink_eh_frame_fde_64v2,
4302                                      sizeof (glink_eh_frame_fde_64v2));
4303     }
4304   else
4305     {
4306       // 32-bit .glink can use the default since the CIE return
4307       // address reg, LR, is valid.
4308       layout->add_eh_frame_for_plt(this,
4309                                    Eh_cie<32>::eh_frame_cie,
4310                                    sizeof (Eh_cie<32>::eh_frame_cie),
4311                                    default_fde,
4312                                    sizeof (default_fde));
4313       // Except where LR is used in a PIC __glink_PLTresolve.
4314       if (parameters->options().output_is_position_independent())
4315         layout->add_eh_frame_for_plt(this,
4316                                      Eh_cie<32>::eh_frame_cie,
4317                                      sizeof (Eh_cie<32>::eh_frame_cie),
4318                                      glink_eh_frame_fde_32,
4319                                      sizeof (glink_eh_frame_fde_32));
4320     }
4321 }
4322
4323 template<int size, bool big_endian>
4324 void
4325 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4326 {
4327   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4328     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4329   if (p.second)
4330     this->ge_size_ += 16;
4331 }
4332
4333 template<int size, bool big_endian>
4334 typename Output_data_glink<size, big_endian>::Address
4335 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4336 {
4337   typename Global_entry_stub_entries::const_iterator p
4338     = this->global_entry_stubs_.find(gsym);
4339   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4340 }
4341
4342 template<int size, bool big_endian>
4343 void
4344 Output_data_glink<size, big_endian>::set_final_data_size()
4345 {
4346   unsigned int count = this->targ_->plt_entry_count();
4347   section_size_type total = 0;
4348
4349   if (count != 0)
4350     {
4351       if (size == 32)
4352         {
4353           // space for branch table
4354           total += 4 * (count - 1);
4355
4356           total += -total & 15;
4357           total += this->pltresolve_size;
4358         }
4359       else
4360         {
4361           total += this->pltresolve_size;
4362
4363           // space for branch table
4364           total += 4 * count;
4365           if (this->targ_->abiversion() < 2)
4366             {
4367               total += 4 * count;
4368               if (count > 0x8000)
4369                 total += 4 * (count - 0x8000);
4370             }
4371         }
4372     }
4373   this->end_branch_table_ = total;
4374   total = (total + 15) & -16;
4375   total += this->ge_size_;
4376
4377   this->set_data_size(total);
4378 }
4379
4380 // Write out plt and long branch stub code.
4381
4382 template<int size, bool big_endian>
4383 void
4384 Stub_table<size, big_endian>::do_write(Output_file* of)
4385 {
4386   if (this->plt_call_stubs_.empty()
4387       && this->long_branch_stubs_.empty())
4388     return;
4389
4390   const section_size_type start_off = this->offset();
4391   const section_size_type off = this->stub_offset();
4392   const section_size_type oview_size =
4393     convert_to_section_size_type(this->data_size() - (off - start_off));
4394   unsigned char* const oview = of->get_output_view(off, oview_size);
4395   unsigned char* p;
4396
4397   if (size == 64)
4398     {
4399       const Output_data_got_powerpc<size, big_endian>* got
4400         = this->targ_->got_section();
4401       Address got_os_addr = got->output_section()->address();
4402
4403       if (!this->plt_call_stubs_.empty())
4404         {
4405           // The base address of the .plt section.
4406           Address plt_base = this->targ_->plt_section()->address();
4407           Address iplt_base = invalid_address;
4408
4409           // Write out plt call stubs.
4410           typename Plt_stub_entries::const_iterator cs;
4411           for (cs = this->plt_call_stubs_.begin();
4412                cs != this->plt_call_stubs_.end();
4413                ++cs)
4414             {
4415               bool is_iplt;
4416               Address pltoff = this->plt_off(cs, &is_iplt);
4417               Address plt_addr = pltoff;
4418               if (is_iplt)
4419                 {
4420                   if (iplt_base == invalid_address)
4421                     iplt_base = this->targ_->iplt_section()->address();
4422                   plt_addr += iplt_base;
4423                 }
4424               else
4425                 plt_addr += plt_base;
4426               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4427                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4428               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4429               Address off = plt_addr - got_addr;
4430
4431               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4432                 gold_error(_("%s: linkage table error against `%s'"),
4433                            cs->first.object_->name().c_str(),
4434                            cs->first.sym_->demangled_name().c_str());
4435
4436               bool plt_load_toc = this->targ_->abiversion() < 2;
4437               bool static_chain
4438                 = plt_load_toc && parameters->options().plt_static_chain();
4439               bool thread_safe
4440                 = plt_load_toc && this->targ_->plt_thread_safe();
4441               bool use_fake_dep = false;
4442               Address cmp_branch_off = 0;
4443               if (thread_safe)
4444                 {
4445                   unsigned int pltindex
4446                     = ((pltoff - this->targ_->first_plt_entry_offset())
4447                        / this->targ_->plt_entry_size());
4448                   Address glinkoff
4449                     = (this->targ_->glink_section()->pltresolve_size
4450                        + pltindex * 8);
4451                   if (pltindex > 32768)
4452                     glinkoff += (pltindex - 32768) * 4;
4453                   Address to
4454                     = this->targ_->glink_section()->address() + glinkoff;
4455                   Address from
4456                     = (this->stub_address() + cs->second + 24
4457                        + 4 * (ha(off) != 0)
4458                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4459                        + 4 * static_chain);
4460                   cmp_branch_off = to - from;
4461                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4462                 }
4463
4464               p = oview + cs->second;
4465               if (ha(off) != 0)
4466                 {
4467                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4468                   p += 4;
4469                   if (plt_load_toc)
4470                     {
4471                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4472                       p += 4;
4473                       write_insn<big_endian>(p, ld_12_11 + l(off));
4474                       p += 4;
4475                     }
4476                   else
4477                     {
4478                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4479                       p += 4;
4480                       write_insn<big_endian>(p, ld_12_12 + l(off));
4481                       p += 4;
4482                     }
4483                   if (plt_load_toc
4484                       && ha(off + 8 + 8 * static_chain) != ha(off))
4485                     {
4486                       write_insn<big_endian>(p, addi_11_11 + l(off));
4487                       p += 4;
4488                       off = 0;
4489                     }
4490                   write_insn<big_endian>(p, mtctr_12);
4491                   p += 4;
4492                   if (plt_load_toc)
4493                     {
4494                       if (use_fake_dep)
4495                         {
4496                           write_insn<big_endian>(p, xor_2_12_12);
4497                           p += 4;
4498                           write_insn<big_endian>(p, add_11_11_2);
4499                           p += 4;
4500                         }
4501                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4502                       p += 4;
4503                       if (static_chain)
4504                         {
4505                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4506                           p += 4;
4507                         }
4508                     }
4509                 }
4510               else
4511                 {
4512                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4513                   p += 4;
4514                   write_insn<big_endian>(p, ld_12_2 + l(off));
4515                   p += 4;
4516                   if (plt_load_toc
4517                       && ha(off + 8 + 8 * static_chain) != ha(off))
4518                     {
4519                       write_insn<big_endian>(p, addi_2_2 + l(off));
4520                       p += 4;
4521                       off = 0;
4522                     }
4523                   write_insn<big_endian>(p, mtctr_12);
4524                   p += 4;
4525                   if (plt_load_toc)
4526                     {
4527                       if (use_fake_dep)
4528                         {
4529                           write_insn<big_endian>(p, xor_11_12_12);
4530                           p += 4;
4531                           write_insn<big_endian>(p, add_2_2_11);
4532                           p += 4;
4533                         }
4534                       if (static_chain)
4535                         {
4536                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4537                           p += 4;
4538                         }
4539                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4540                       p += 4;
4541                     }
4542                 }
4543               if (thread_safe && !use_fake_dep)
4544                 {
4545                   write_insn<big_endian>(p, cmpldi_2_0);
4546                   p += 4;
4547                   write_insn<big_endian>(p, bnectr_p4);
4548                   p += 4;
4549                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4550                 }
4551               else
4552                 write_insn<big_endian>(p, bctr);
4553             }
4554         }
4555
4556       // Write out long branch stubs.
4557       typename Branch_stub_entries::const_iterator bs;
4558       for (bs = this->long_branch_stubs_.begin();
4559            bs != this->long_branch_stubs_.end();
4560            ++bs)
4561         {
4562           if (bs->first.save_res_)
4563             continue;
4564           p = oview + this->plt_size_ + bs->second;
4565           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4566           Address delta = bs->first.dest_ - loc;
4567           if (delta + (1 << 25) < 2 << 25)
4568             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4569           else
4570             {
4571               Address brlt_addr
4572                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4573               gold_assert(brlt_addr != invalid_address);
4574               brlt_addr += this->targ_->brlt_section()->address();
4575               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4576               Address brltoff = brlt_addr - got_addr;
4577               if (ha(brltoff) == 0)
4578                 {
4579                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4580                 }
4581               else
4582                 {
4583                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4584                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4585                 }
4586               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4587               write_insn<big_endian>(p, bctr);
4588             }
4589         }
4590     }
4591   else
4592     {
4593       if (!this->plt_call_stubs_.empty())
4594         {
4595           // The base address of the .plt section.
4596           Address plt_base = this->targ_->plt_section()->address();
4597           Address iplt_base = invalid_address;
4598           // The address of _GLOBAL_OFFSET_TABLE_.
4599           Address g_o_t = invalid_address;
4600
4601           // Write out plt call stubs.
4602           typename Plt_stub_entries::const_iterator cs;
4603           for (cs = this->plt_call_stubs_.begin();
4604                cs != this->plt_call_stubs_.end();
4605                ++cs)
4606             {
4607               bool is_iplt;
4608               Address plt_addr = this->plt_off(cs, &is_iplt);
4609               if (is_iplt)
4610                 {
4611                   if (iplt_base == invalid_address)
4612                     iplt_base = this->targ_->iplt_section()->address();
4613                   plt_addr += iplt_base;
4614                 }
4615               else
4616                 plt_addr += plt_base;
4617
4618               p = oview + cs->second;
4619               if (parameters->options().output_is_position_independent())
4620                 {
4621                   Address got_addr;
4622                   const Powerpc_relobj<size, big_endian>* ppcobj
4623                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4624                        (cs->first.object_));
4625                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4626                     {
4627                       unsigned int got2 = ppcobj->got2_shndx();
4628                       got_addr = ppcobj->get_output_section_offset(got2);
4629                       gold_assert(got_addr != invalid_address);
4630                       got_addr += (ppcobj->output_section(got2)->address()
4631                                    + cs->first.addend_);
4632                     }
4633                   else
4634                     {
4635                       if (g_o_t == invalid_address)
4636                         {
4637                           const Output_data_got_powerpc<size, big_endian>* got
4638                             = this->targ_->got_section();
4639                           g_o_t = got->address() + got->g_o_t();
4640                         }
4641                       got_addr = g_o_t;
4642                     }
4643
4644                   Address off = plt_addr - got_addr;
4645                   if (ha(off) == 0)
4646                     {
4647                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4648                       write_insn<big_endian>(p +  4, mtctr_11);
4649                       write_insn<big_endian>(p +  8, bctr);
4650                     }
4651                   else
4652                     {
4653                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4654                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4655                       write_insn<big_endian>(p +  8, mtctr_11);
4656                       write_insn<big_endian>(p + 12, bctr);
4657                     }
4658                 }
4659               else
4660                 {
4661                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4662                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4663                   write_insn<big_endian>(p +  8, mtctr_11);
4664                   write_insn<big_endian>(p + 12, bctr);
4665                 }
4666             }
4667         }
4668
4669       // Write out long branch stubs.
4670       typename Branch_stub_entries::const_iterator bs;
4671       for (bs = this->long_branch_stubs_.begin();
4672            bs != this->long_branch_stubs_.end();
4673            ++bs)
4674         {
4675           if (bs->first.save_res_)
4676             continue;
4677           p = oview + this->plt_size_ + bs->second;
4678           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4679           Address delta = bs->first.dest_ - loc;
4680           if (delta + (1 << 25) < 2 << 25)
4681             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4682           else if (!parameters->options().output_is_position_independent())
4683             {
4684               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4685               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4686               write_insn<big_endian>(p +  8, mtctr_12);
4687               write_insn<big_endian>(p + 12, bctr);
4688             }
4689           else
4690             {
4691               delta -= 8;
4692               write_insn<big_endian>(p +  0, mflr_0);
4693               write_insn<big_endian>(p +  4, bcl_20_31);
4694               write_insn<big_endian>(p +  8, mflr_12);
4695               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4696               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4697               write_insn<big_endian>(p + 20, mtlr_0);
4698               write_insn<big_endian>(p + 24, mtctr_12);
4699               write_insn<big_endian>(p + 28, bctr);
4700             }
4701         }
4702     }
4703   if (this->need_save_res_)
4704     {
4705       p = oview + this->plt_size_ + this->branch_size_;
4706       memcpy (p, this->targ_->savres_section()->contents(),
4707               this->targ_->savres_section()->data_size());
4708     }
4709 }
4710
4711 // Write out .glink.
4712
4713 template<int size, bool big_endian>
4714 void
4715 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4716 {
4717   const section_size_type off = this->offset();
4718   const section_size_type oview_size =
4719     convert_to_section_size_type(this->data_size());
4720   unsigned char* const oview = of->get_output_view(off, oview_size);
4721   unsigned char* p;
4722
4723   // The base address of the .plt section.
4724   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4725   Address plt_base = this->targ_->plt_section()->address();
4726
4727   if (size == 64)
4728     {
4729       if (this->end_branch_table_ != 0)
4730         {
4731           // Write pltresolve stub.
4732           p = oview;
4733           Address after_bcl = this->address() + 16;
4734           Address pltoff = plt_base - after_bcl;
4735
4736           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4737
4738           if (this->targ_->abiversion() < 2)
4739             {
4740               write_insn<big_endian>(p, mflr_12),               p += 4;
4741               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4742               write_insn<big_endian>(p, mflr_11),               p += 4;
4743               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4744               write_insn<big_endian>(p, mtlr_12),               p += 4;
4745               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4746               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4747               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4748               write_insn<big_endian>(p, mtctr_12),              p += 4;
4749               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4750             }
4751           else
4752             {
4753               write_insn<big_endian>(p, mflr_0),                p += 4;
4754               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4755               write_insn<big_endian>(p, mflr_11),               p += 4;
4756               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4757               write_insn<big_endian>(p, mtlr_0),                p += 4;
4758               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4759               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4760               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4761               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4762               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4763               write_insn<big_endian>(p, mtctr_12),              p += 4;
4764               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4765             }
4766           write_insn<big_endian>(p, bctr),                      p += 4;
4767           while (p < oview + this->pltresolve_size)
4768             write_insn<big_endian>(p, nop), p += 4;
4769
4770           // Write lazy link call stubs.
4771           uint32_t indx = 0;
4772           while (p < oview + this->end_branch_table_)
4773             {
4774               if (this->targ_->abiversion() < 2)
4775                 {
4776                   if (indx < 0x8000)
4777                     {
4778                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4779                     }
4780                   else
4781                     {
4782                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4783                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4784                     }
4785                 }
4786               uint32_t branch_off = 8 - (p - oview);
4787               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4788               indx++;
4789             }
4790         }
4791
4792       Address plt_base = this->targ_->plt_section()->address();
4793       Address iplt_base = invalid_address;
4794       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4795       Address global_entry_base = this->address() + global_entry_off;
4796       typename Global_entry_stub_entries::const_iterator ge;
4797       for (ge = this->global_entry_stubs_.begin();
4798            ge != this->global_entry_stubs_.end();
4799            ++ge)
4800         {
4801           p = oview + global_entry_off + ge->second;
4802           Address plt_addr = ge->first->plt_offset();
4803           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4804               && ge->first->can_use_relative_reloc(false))
4805             {
4806               if (iplt_base == invalid_address)
4807                 iplt_base = this->targ_->iplt_section()->address();
4808               plt_addr += iplt_base;
4809             }
4810           else
4811             plt_addr += plt_base;
4812           Address my_addr = global_entry_base + ge->second;
4813           Address off = plt_addr - my_addr;
4814
4815           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4816             gold_error(_("%s: linkage table error against `%s'"),
4817                        ge->first->object()->name().c_str(),
4818                        ge->first->demangled_name().c_str());
4819
4820           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4821           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4822           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4823           write_insn<big_endian>(p, bctr);
4824         }
4825     }
4826   else
4827     {
4828       const Output_data_got_powerpc<size, big_endian>* got
4829         = this->targ_->got_section();
4830       // The address of _GLOBAL_OFFSET_TABLE_.
4831       Address g_o_t = got->address() + got->g_o_t();
4832
4833       // Write out pltresolve branch table.
4834       p = oview;
4835       unsigned int the_end = oview_size - this->pltresolve_size;
4836       unsigned char* end_p = oview + the_end;
4837       while (p < end_p - 8 * 4)
4838         write_insn<big_endian>(p, b + end_p - p), p += 4;
4839       while (p < end_p)
4840         write_insn<big_endian>(p, nop), p += 4;
4841
4842       // Write out pltresolve call stub.
4843       if (parameters->options().output_is_position_independent())
4844         {
4845           Address res0_off = 0;
4846           Address after_bcl_off = the_end + 12;
4847           Address bcl_res0 = after_bcl_off - res0_off;
4848
4849           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4850           write_insn<big_endian>(p +  4, mflr_0);
4851           write_insn<big_endian>(p +  8, bcl_20_31);
4852           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4853           write_insn<big_endian>(p + 16, mflr_12);
4854           write_insn<big_endian>(p + 20, mtlr_0);
4855           write_insn<big_endian>(p + 24, sub_11_11_12);
4856
4857           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4858
4859           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4860           if (ha(got_bcl) == ha(got_bcl + 4))
4861             {
4862               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4863               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4864             }
4865           else
4866             {
4867               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4868               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4869             }
4870           write_insn<big_endian>(p + 40, mtctr_0);
4871           write_insn<big_endian>(p + 44, add_0_11_11);
4872           write_insn<big_endian>(p + 48, add_11_0_11);
4873           write_insn<big_endian>(p + 52, bctr);
4874           write_insn<big_endian>(p + 56, nop);
4875           write_insn<big_endian>(p + 60, nop);
4876         }
4877       else
4878         {
4879           Address res0 = this->address();
4880
4881           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4882           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4883           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4884             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4885           else
4886             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4887           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4888           write_insn<big_endian>(p + 16, mtctr_0);
4889           write_insn<big_endian>(p + 20, add_0_11_11);
4890           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4891             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4892           else
4893             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4894           write_insn<big_endian>(p + 28, add_11_0_11);
4895           write_insn<big_endian>(p + 32, bctr);
4896           write_insn<big_endian>(p + 36, nop);
4897           write_insn<big_endian>(p + 40, nop);
4898           write_insn<big_endian>(p + 44, nop);
4899           write_insn<big_endian>(p + 48, nop);
4900           write_insn<big_endian>(p + 52, nop);
4901           write_insn<big_endian>(p + 56, nop);
4902           write_insn<big_endian>(p + 60, nop);
4903         }
4904       p += 64;
4905     }
4906
4907   of->write_output_view(off, oview_size, oview);
4908 }
4909
4910
4911 // A class to handle linker generated save/restore functions.
4912
4913 template<int size, bool big_endian>
4914 class Output_data_save_res : public Output_section_data_build
4915 {
4916  public:
4917   Output_data_save_res(Symbol_table* symtab);
4918
4919   const unsigned char*
4920   contents() const
4921   {
4922     return contents_;
4923   }
4924
4925  protected:
4926   // Write to a map file.
4927   void
4928   do_print_to_mapfile(Mapfile* mapfile) const
4929   { mapfile->print_output_data(this, _("** save/restore")); }
4930
4931   void
4932   do_write(Output_file*);
4933
4934  private:
4935   // The maximum size of save/restore contents.
4936   static const unsigned int savres_max = 218*4;
4937
4938   void
4939   savres_define(Symbol_table* symtab,
4940                 const char *name,
4941                 unsigned int lo, unsigned int hi,
4942                 unsigned char* write_ent(unsigned char*, int),
4943                 unsigned char* write_tail(unsigned char*, int));
4944
4945   unsigned char *contents_;
4946 };
4947
4948 template<bool big_endian>
4949 static unsigned char*
4950 savegpr0(unsigned char* p, int r)
4951 {
4952   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4953   write_insn<big_endian>(p, insn);
4954   return p + 4;
4955 }
4956
4957 template<bool big_endian>
4958 static unsigned char*
4959 savegpr0_tail(unsigned char* p, int r)
4960 {
4961   p = savegpr0<big_endian>(p, r);
4962   uint32_t insn = std_0_1 + 16;
4963   write_insn<big_endian>(p, insn);
4964   p = p + 4;
4965   write_insn<big_endian>(p, blr);
4966   return p + 4;
4967 }
4968
4969 template<bool big_endian>
4970 static unsigned char*
4971 restgpr0(unsigned char* p, int r)
4972 {
4973   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4974   write_insn<big_endian>(p, insn);
4975   return p + 4;
4976 }
4977
4978 template<bool big_endian>
4979 static unsigned char*
4980 restgpr0_tail(unsigned char* p, int r)
4981 {
4982   uint32_t insn = ld_0_1 + 16;
4983   write_insn<big_endian>(p, insn);
4984   p = p + 4;
4985   p = restgpr0<big_endian>(p, r);
4986   write_insn<big_endian>(p, mtlr_0);
4987   p = p + 4;
4988   if (r == 29)
4989     {
4990       p = restgpr0<big_endian>(p, 30);
4991       p = restgpr0<big_endian>(p, 31);
4992     }
4993   write_insn<big_endian>(p, blr);
4994   return p + 4;
4995 }
4996
4997 template<bool big_endian>
4998 static unsigned char*
4999 savegpr1(unsigned char* p, int r)
5000 {
5001   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5002   write_insn<big_endian>(p, insn);
5003   return p + 4;
5004 }
5005
5006 template<bool big_endian>
5007 static unsigned char*
5008 savegpr1_tail(unsigned char* p, int r)
5009 {
5010   p = savegpr1<big_endian>(p, r);
5011   write_insn<big_endian>(p, blr);
5012   return p + 4;
5013 }
5014
5015 template<bool big_endian>
5016 static unsigned char*
5017 restgpr1(unsigned char* p, int r)
5018 {
5019   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5020   write_insn<big_endian>(p, insn);
5021   return p + 4;
5022 }
5023
5024 template<bool big_endian>
5025 static unsigned char*
5026 restgpr1_tail(unsigned char* p, int r)
5027 {
5028   p = restgpr1<big_endian>(p, r);
5029   write_insn<big_endian>(p, blr);
5030   return p + 4;
5031 }
5032
5033 template<bool big_endian>
5034 static unsigned char*
5035 savefpr(unsigned char* p, int r)
5036 {
5037   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5038   write_insn<big_endian>(p, insn);
5039   return p + 4;
5040 }
5041
5042 template<bool big_endian>
5043 static unsigned char*
5044 savefpr0_tail(unsigned char* p, int r)
5045 {
5046   p = savefpr<big_endian>(p, r);
5047   write_insn<big_endian>(p, std_0_1 + 16);
5048   p = p + 4;
5049   write_insn<big_endian>(p, blr);
5050   return p + 4;
5051 }
5052
5053 template<bool big_endian>
5054 static unsigned char*
5055 restfpr(unsigned char* p, int r)
5056 {
5057   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5058   write_insn<big_endian>(p, insn);
5059   return p + 4;
5060 }
5061
5062 template<bool big_endian>
5063 static unsigned char*
5064 restfpr0_tail(unsigned char* p, int r)
5065 {
5066   write_insn<big_endian>(p, ld_0_1 + 16);
5067   p = p + 4;
5068   p = restfpr<big_endian>(p, r);
5069   write_insn<big_endian>(p, mtlr_0);
5070   p = p + 4;
5071   if (r == 29)
5072     {
5073       p = restfpr<big_endian>(p, 30);
5074       p = restfpr<big_endian>(p, 31);
5075     }
5076   write_insn<big_endian>(p, blr);
5077   return p + 4;
5078 }
5079
5080 template<bool big_endian>
5081 static unsigned char*
5082 savefpr1_tail(unsigned char* p, int r)
5083 {
5084   p = savefpr<big_endian>(p, r);
5085   write_insn<big_endian>(p, blr);
5086   return p + 4;
5087 }
5088
5089 template<bool big_endian>
5090 static unsigned char*
5091 restfpr1_tail(unsigned char* p, int r)
5092 {
5093   p = restfpr<big_endian>(p, r);
5094   write_insn<big_endian>(p, blr);
5095   return p + 4;
5096 }
5097
5098 template<bool big_endian>
5099 static unsigned char*
5100 savevr(unsigned char* p, int r)
5101 {
5102   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5103   write_insn<big_endian>(p, insn);
5104   p = p + 4;
5105   insn = stvx_0_12_0 + (r << 21);
5106   write_insn<big_endian>(p, insn);
5107   return p + 4;
5108 }
5109
5110 template<bool big_endian>
5111 static unsigned char*
5112 savevr_tail(unsigned char* p, int r)
5113 {
5114   p = savevr<big_endian>(p, r);
5115   write_insn<big_endian>(p, blr);
5116   return p + 4;
5117 }
5118
5119 template<bool big_endian>
5120 static unsigned char*
5121 restvr(unsigned char* p, int r)
5122 {
5123   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5124   write_insn<big_endian>(p, insn);
5125   p = p + 4;
5126   insn = lvx_0_12_0 + (r << 21);
5127   write_insn<big_endian>(p, insn);
5128   return p + 4;
5129 }
5130
5131 template<bool big_endian>
5132 static unsigned char*
5133 restvr_tail(unsigned char* p, int r)
5134 {
5135   p = restvr<big_endian>(p, r);
5136   write_insn<big_endian>(p, blr);
5137   return p + 4;
5138 }
5139
5140
5141 template<int size, bool big_endian>
5142 Output_data_save_res<size, big_endian>::Output_data_save_res(
5143     Symbol_table* symtab)
5144   : Output_section_data_build(4),
5145     contents_(NULL)
5146 {
5147   this->savres_define(symtab,
5148                       "_savegpr0_", 14, 31,
5149                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5150   this->savres_define(symtab,
5151                       "_restgpr0_", 14, 29,
5152                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5153   this->savres_define(symtab,
5154                       "_restgpr0_", 30, 31,
5155                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5156   this->savres_define(symtab,
5157                       "_savegpr1_", 14, 31,
5158                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5159   this->savres_define(symtab,
5160                       "_restgpr1_", 14, 31,
5161                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5162   this->savres_define(symtab,
5163                       "_savefpr_", 14, 31,
5164                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5165   this->savres_define(symtab,
5166                       "_restfpr_", 14, 29,
5167                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5168   this->savres_define(symtab,
5169                       "_restfpr_", 30, 31,
5170                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5171   this->savres_define(symtab,
5172                       "._savef", 14, 31,
5173                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5174   this->savres_define(symtab,
5175                       "._restf", 14, 31,
5176                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5177   this->savres_define(symtab,
5178                       "_savevr_", 20, 31,
5179                       savevr<big_endian>, savevr_tail<big_endian>);
5180   this->savres_define(symtab,
5181                       "_restvr_", 20, 31,
5182                       restvr<big_endian>, restvr_tail<big_endian>);
5183 }
5184
5185 template<int size, bool big_endian>
5186 void
5187 Output_data_save_res<size, big_endian>::savres_define(
5188     Symbol_table* symtab,
5189     const char *name,
5190     unsigned int lo, unsigned int hi,
5191     unsigned char* write_ent(unsigned char*, int),
5192     unsigned char* write_tail(unsigned char*, int))
5193 {
5194   size_t len = strlen(name);
5195   bool writing = false;
5196   char sym[16];
5197
5198   memcpy(sym, name, len);
5199   sym[len + 2] = 0;
5200
5201   for (unsigned int i = lo; i <= hi; i++)
5202     {
5203       sym[len + 0] = i / 10 + '0';
5204       sym[len + 1] = i % 10 + '0';
5205       Symbol* gsym = symtab->lookup(sym);
5206       bool refd = gsym != NULL && gsym->is_undefined();
5207       writing = writing || refd;
5208       if (writing)
5209         {
5210           if (this->contents_ == NULL)
5211             this->contents_ = new unsigned char[this->savres_max];
5212
5213           section_size_type value = this->current_data_size();
5214           unsigned char* p = this->contents_ + value;
5215           if (i != hi)
5216             p = write_ent(p, i);
5217           else
5218             p = write_tail(p, i);
5219           section_size_type cur_size = p - this->contents_;
5220           this->set_current_data_size(cur_size);
5221           if (refd)
5222             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5223                                           this, value, cur_size - value,
5224                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5225                                           elfcpp::STV_HIDDEN, 0, false, false);
5226         }
5227     }
5228 }
5229
5230 // Write out save/restore.
5231
5232 template<int size, bool big_endian>
5233 void
5234 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5235 {
5236   const section_size_type off = this->offset();
5237   const section_size_type oview_size =
5238     convert_to_section_size_type(this->data_size());
5239   unsigned char* const oview = of->get_output_view(off, oview_size);
5240   memcpy(oview, this->contents_, oview_size);
5241   of->write_output_view(off, oview_size, oview);
5242 }
5243
5244
5245 // Create the glink section.
5246
5247 template<int size, bool big_endian>
5248 void
5249 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5250 {
5251   if (this->glink_ == NULL)
5252     {
5253       this->glink_ = new Output_data_glink<size, big_endian>(this);
5254       this->glink_->add_eh_frame(layout);
5255       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5256                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5257                                       this->glink_, ORDER_TEXT, false);
5258     }
5259 }
5260
5261 // Create a PLT entry for a global symbol.
5262
5263 template<int size, bool big_endian>
5264 void
5265 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5266                                                  Layout* layout,
5267                                                  Symbol* gsym)
5268 {
5269   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5270       && gsym->can_use_relative_reloc(false))
5271     {
5272       if (this->iplt_ == NULL)
5273         this->make_iplt_section(symtab, layout);
5274       this->iplt_->add_ifunc_entry(gsym);
5275     }
5276   else
5277     {
5278       if (this->plt_ == NULL)
5279         this->make_plt_section(symtab, layout);
5280       this->plt_->add_entry(gsym);
5281     }
5282 }
5283
5284 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5285
5286 template<int size, bool big_endian>
5287 void
5288 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5289     Symbol_table* symtab,
5290     Layout* layout,
5291     Sized_relobj_file<size, big_endian>* relobj,
5292     unsigned int r_sym)
5293 {
5294   if (this->iplt_ == NULL)
5295     this->make_iplt_section(symtab, layout);
5296   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5297 }
5298
5299 // Return the number of entries in the PLT.
5300
5301 template<int size, bool big_endian>
5302 unsigned int
5303 Target_powerpc<size, big_endian>::plt_entry_count() const
5304 {
5305   if (this->plt_ == NULL)
5306     return 0;
5307   return this->plt_->entry_count();
5308 }
5309
5310 // Create a GOT entry for local dynamic __tls_get_addr calls.
5311
5312 template<int size, bool big_endian>
5313 unsigned int
5314 Target_powerpc<size, big_endian>::tlsld_got_offset(
5315     Symbol_table* symtab,
5316     Layout* layout,
5317     Sized_relobj_file<size, big_endian>* object)
5318 {
5319   if (this->tlsld_got_offset_ == -1U)
5320     {
5321       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5322       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5323       Output_data_got_powerpc<size, big_endian>* got
5324         = this->got_section(symtab, layout);
5325       unsigned int got_offset = got->add_constant_pair(0, 0);
5326       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5327                           got_offset, 0);
5328       this->tlsld_got_offset_ = got_offset;
5329     }
5330   return this->tlsld_got_offset_;
5331 }
5332
5333 // Get the Reference_flags for a particular relocation.
5334
5335 template<int size, bool big_endian>
5336 int
5337 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5338     unsigned int r_type,
5339     const Target_powerpc* target)
5340 {
5341   int ref = 0;
5342
5343   switch (r_type)
5344     {
5345     case elfcpp::R_POWERPC_NONE:
5346     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5347     case elfcpp::R_POWERPC_GNU_VTENTRY:
5348     case elfcpp::R_PPC64_TOC:
5349       // No symbol reference.
5350       break;
5351
5352     case elfcpp::R_PPC64_ADDR64:
5353     case elfcpp::R_PPC64_UADDR64:
5354     case elfcpp::R_POWERPC_ADDR32:
5355     case elfcpp::R_POWERPC_UADDR32:
5356     case elfcpp::R_POWERPC_ADDR16:
5357     case elfcpp::R_POWERPC_UADDR16:
5358     case elfcpp::R_POWERPC_ADDR16_LO:
5359     case elfcpp::R_POWERPC_ADDR16_HI:
5360     case elfcpp::R_POWERPC_ADDR16_HA:
5361       ref = Symbol::ABSOLUTE_REF;
5362       break;
5363
5364     case elfcpp::R_POWERPC_ADDR24:
5365     case elfcpp::R_POWERPC_ADDR14:
5366     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5367     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5368       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5369       break;
5370
5371     case elfcpp::R_PPC64_REL64:
5372     case elfcpp::R_POWERPC_REL32:
5373     case elfcpp::R_PPC_LOCAL24PC:
5374     case elfcpp::R_POWERPC_REL16:
5375     case elfcpp::R_POWERPC_REL16_LO:
5376     case elfcpp::R_POWERPC_REL16_HI:
5377     case elfcpp::R_POWERPC_REL16_HA:
5378       ref = Symbol::RELATIVE_REF;
5379       break;
5380
5381     case elfcpp::R_POWERPC_REL24:
5382     case elfcpp::R_PPC_PLTREL24:
5383     case elfcpp::R_POWERPC_REL14:
5384     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5385     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5386       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5387       break;
5388
5389     case elfcpp::R_POWERPC_GOT16:
5390     case elfcpp::R_POWERPC_GOT16_LO:
5391     case elfcpp::R_POWERPC_GOT16_HI:
5392     case elfcpp::R_POWERPC_GOT16_HA:
5393     case elfcpp::R_PPC64_GOT16_DS:
5394     case elfcpp::R_PPC64_GOT16_LO_DS:
5395     case elfcpp::R_PPC64_TOC16:
5396     case elfcpp::R_PPC64_TOC16_LO:
5397     case elfcpp::R_PPC64_TOC16_HI:
5398     case elfcpp::R_PPC64_TOC16_HA:
5399     case elfcpp::R_PPC64_TOC16_DS:
5400     case elfcpp::R_PPC64_TOC16_LO_DS:
5401       ref = Symbol::RELATIVE_REF;
5402       break;
5403
5404     case elfcpp::R_POWERPC_GOT_TPREL16:
5405     case elfcpp::R_POWERPC_TLS:
5406       ref = Symbol::TLS_REF;
5407       break;
5408
5409     case elfcpp::R_POWERPC_COPY:
5410     case elfcpp::R_POWERPC_GLOB_DAT:
5411     case elfcpp::R_POWERPC_JMP_SLOT:
5412     case elfcpp::R_POWERPC_RELATIVE:
5413     case elfcpp::R_POWERPC_DTPMOD:
5414     default:
5415       // Not expected.  We will give an error later.
5416       break;
5417     }
5418
5419   if (size == 64 && target->abiversion() < 2)
5420     ref |= Symbol::FUNC_DESC_ABI;
5421   return ref;
5422 }
5423
5424 // Report an unsupported relocation against a local symbol.
5425
5426 template<int size, bool big_endian>
5427 void
5428 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5429     Sized_relobj_file<size, big_endian>* object,
5430     unsigned int r_type)
5431 {
5432   gold_error(_("%s: unsupported reloc %u against local symbol"),
5433              object->name().c_str(), r_type);
5434 }
5435
5436 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5437 // dynamic linker does not support it, issue an error.
5438
5439 template<int size, bool big_endian>
5440 void
5441 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5442                                                       unsigned int r_type)
5443 {
5444   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5445
5446   // These are the relocation types supported by glibc for both 32-bit
5447   // and 64-bit powerpc.
5448   switch (r_type)
5449     {
5450     case elfcpp::R_POWERPC_NONE:
5451     case elfcpp::R_POWERPC_RELATIVE:
5452     case elfcpp::R_POWERPC_GLOB_DAT:
5453     case elfcpp::R_POWERPC_DTPMOD:
5454     case elfcpp::R_POWERPC_DTPREL:
5455     case elfcpp::R_POWERPC_TPREL:
5456     case elfcpp::R_POWERPC_JMP_SLOT:
5457     case elfcpp::R_POWERPC_COPY:
5458     case elfcpp::R_POWERPC_IRELATIVE:
5459     case elfcpp::R_POWERPC_ADDR32:
5460     case elfcpp::R_POWERPC_UADDR32:
5461     case elfcpp::R_POWERPC_ADDR24:
5462     case elfcpp::R_POWERPC_ADDR16:
5463     case elfcpp::R_POWERPC_UADDR16:
5464     case elfcpp::R_POWERPC_ADDR16_LO:
5465     case elfcpp::R_POWERPC_ADDR16_HI:
5466     case elfcpp::R_POWERPC_ADDR16_HA:
5467     case elfcpp::R_POWERPC_ADDR14:
5468     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5469     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5470     case elfcpp::R_POWERPC_REL32:
5471     case elfcpp::R_POWERPC_REL24:
5472     case elfcpp::R_POWERPC_TPREL16:
5473     case elfcpp::R_POWERPC_TPREL16_LO:
5474     case elfcpp::R_POWERPC_TPREL16_HI:
5475     case elfcpp::R_POWERPC_TPREL16_HA:
5476       return;
5477
5478     default:
5479       break;
5480     }
5481
5482   if (size == 64)
5483     {
5484       switch (r_type)
5485         {
5486           // These are the relocation types supported only on 64-bit.
5487         case elfcpp::R_PPC64_ADDR64:
5488         case elfcpp::R_PPC64_UADDR64:
5489         case elfcpp::R_PPC64_JMP_IREL:
5490         case elfcpp::R_PPC64_ADDR16_DS:
5491         case elfcpp::R_PPC64_ADDR16_LO_DS:
5492         case elfcpp::R_PPC64_ADDR16_HIGH:
5493         case elfcpp::R_PPC64_ADDR16_HIGHA:
5494         case elfcpp::R_PPC64_ADDR16_HIGHER:
5495         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5496         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5497         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5498         case elfcpp::R_PPC64_REL64:
5499         case elfcpp::R_POWERPC_ADDR30:
5500         case elfcpp::R_PPC64_TPREL16_DS:
5501         case elfcpp::R_PPC64_TPREL16_LO_DS:
5502         case elfcpp::R_PPC64_TPREL16_HIGH:
5503         case elfcpp::R_PPC64_TPREL16_HIGHA:
5504         case elfcpp::R_PPC64_TPREL16_HIGHER:
5505         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5506         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5507         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5508           return;
5509
5510         default:
5511           break;
5512         }
5513     }
5514   else
5515     {
5516       switch (r_type)
5517         {
5518           // These are the relocation types supported only on 32-bit.
5519           // ??? glibc ld.so doesn't need to support these.
5520         case elfcpp::R_POWERPC_DTPREL16:
5521         case elfcpp::R_POWERPC_DTPREL16_LO:
5522         case elfcpp::R_POWERPC_DTPREL16_HI:
5523         case elfcpp::R_POWERPC_DTPREL16_HA:
5524           return;
5525
5526         default:
5527           break;
5528         }
5529     }
5530
5531   // This prevents us from issuing more than one error per reloc
5532   // section.  But we can still wind up issuing more than one
5533   // error per object file.
5534   if (this->issued_non_pic_error_)
5535     return;
5536   gold_assert(parameters->options().output_is_position_independent());
5537   object->error(_("requires unsupported dynamic reloc; "
5538                   "recompile with -fPIC"));
5539   this->issued_non_pic_error_ = true;
5540   return;
5541 }
5542
5543 // Return whether we need to make a PLT entry for a relocation of the
5544 // given type against a STT_GNU_IFUNC symbol.
5545
5546 template<int size, bool big_endian>
5547 bool
5548 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5549      Target_powerpc<size, big_endian>* target,
5550      Sized_relobj_file<size, big_endian>* object,
5551      unsigned int r_type,
5552      bool report_err)
5553 {
5554   // In non-pic code any reference will resolve to the plt call stub
5555   // for the ifunc symbol.
5556   if ((size == 32 || target->abiversion() >= 2)
5557       && !parameters->options().output_is_position_independent())
5558     return true;
5559
5560   switch (r_type)
5561     {
5562     // Word size refs from data sections are OK, but don't need a PLT entry.
5563     case elfcpp::R_POWERPC_ADDR32:
5564     case elfcpp::R_POWERPC_UADDR32:
5565       if (size == 32)
5566         return false;
5567       break;
5568
5569     case elfcpp::R_PPC64_ADDR64:
5570     case elfcpp::R_PPC64_UADDR64:
5571       if (size == 64)
5572         return false;
5573       break;
5574
5575     // GOT refs are good, but also don't need a PLT entry.
5576     case elfcpp::R_POWERPC_GOT16:
5577     case elfcpp::R_POWERPC_GOT16_LO:
5578     case elfcpp::R_POWERPC_GOT16_HI:
5579     case elfcpp::R_POWERPC_GOT16_HA:
5580     case elfcpp::R_PPC64_GOT16_DS:
5581     case elfcpp::R_PPC64_GOT16_LO_DS:
5582       return false;
5583
5584     // Function calls are good, and these do need a PLT entry.
5585     case elfcpp::R_POWERPC_ADDR24:
5586     case elfcpp::R_POWERPC_ADDR14:
5587     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5588     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5589     case elfcpp::R_POWERPC_REL24:
5590     case elfcpp::R_PPC_PLTREL24:
5591     case elfcpp::R_POWERPC_REL14:
5592     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5593     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5594       return true;
5595
5596     default:
5597       break;
5598     }
5599
5600   // Anything else is a problem.
5601   // If we are building a static executable, the libc startup function
5602   // responsible for applying indirect function relocations is going
5603   // to complain about the reloc type.
5604   // If we are building a dynamic executable, we will have a text
5605   // relocation.  The dynamic loader will set the text segment
5606   // writable and non-executable to apply text relocations.  So we'll
5607   // segfault when trying to run the indirection function to resolve
5608   // the reloc.
5609   if (report_err)
5610     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5611                object->name().c_str(), r_type);
5612   return false;
5613 }
5614
5615 // Scan a relocation for a local symbol.
5616
5617 template<int size, bool big_endian>
5618 inline void
5619 Target_powerpc<size, big_endian>::Scan::local(
5620     Symbol_table* symtab,
5621     Layout* layout,
5622     Target_powerpc<size, big_endian>* target,
5623     Sized_relobj_file<size, big_endian>* object,
5624     unsigned int data_shndx,
5625     Output_section* output_section,
5626     const elfcpp::Rela<size, big_endian>& reloc,
5627     unsigned int r_type,
5628     const elfcpp::Sym<size, big_endian>& lsym,
5629     bool is_discarded)
5630 {
5631   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5632
5633   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5634       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5635     {
5636       this->expect_tls_get_addr_call();
5637       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5638       if (tls_type != tls::TLSOPT_NONE)
5639         this->skip_next_tls_get_addr_call();
5640     }
5641   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5642            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5643     {
5644       this->expect_tls_get_addr_call();
5645       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5646       if (tls_type != tls::TLSOPT_NONE)
5647         this->skip_next_tls_get_addr_call();
5648     }
5649
5650   Powerpc_relobj<size, big_endian>* ppc_object
5651     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5652
5653   if (is_discarded)
5654     {
5655       if (size == 64
5656           && data_shndx == ppc_object->opd_shndx()
5657           && r_type == elfcpp::R_PPC64_ADDR64)
5658         ppc_object->set_opd_discard(reloc.get_r_offset());
5659       return;
5660     }
5661
5662   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5663   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5664   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5665     {
5666       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5667       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5668                           r_type, r_sym, reloc.get_r_addend());
5669       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5670     }
5671
5672   switch (r_type)
5673     {
5674     case elfcpp::R_POWERPC_NONE:
5675     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5676     case elfcpp::R_POWERPC_GNU_VTENTRY:
5677     case elfcpp::R_PPC64_TOCSAVE:
5678     case elfcpp::R_POWERPC_TLS:
5679     case elfcpp::R_PPC64_ENTRY:
5680       break;
5681
5682     case elfcpp::R_PPC64_TOC:
5683       {
5684         Output_data_got_powerpc<size, big_endian>* got
5685           = target->got_section(symtab, layout);
5686         if (parameters->options().output_is_position_independent())
5687           {
5688             Address off = reloc.get_r_offset();
5689             if (size == 64
5690                 && target->abiversion() < 2
5691                 && data_shndx == ppc_object->opd_shndx()
5692                 && ppc_object->get_opd_discard(off - 8))
5693               break;
5694
5695             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5696             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5697             rela_dyn->add_output_section_relative(got->output_section(),
5698                                                   elfcpp::R_POWERPC_RELATIVE,
5699                                                   output_section,
5700                                                   object, data_shndx, off,
5701                                                   symobj->toc_base_offset());
5702           }
5703       }
5704       break;
5705
5706     case elfcpp::R_PPC64_ADDR64:
5707     case elfcpp::R_PPC64_UADDR64:
5708     case elfcpp::R_POWERPC_ADDR32:
5709     case elfcpp::R_POWERPC_UADDR32:
5710     case elfcpp::R_POWERPC_ADDR24:
5711     case elfcpp::R_POWERPC_ADDR16:
5712     case elfcpp::R_POWERPC_ADDR16_LO:
5713     case elfcpp::R_POWERPC_ADDR16_HI:
5714     case elfcpp::R_POWERPC_ADDR16_HA:
5715     case elfcpp::R_POWERPC_UADDR16:
5716     case elfcpp::R_PPC64_ADDR16_HIGH:
5717     case elfcpp::R_PPC64_ADDR16_HIGHA:
5718     case elfcpp::R_PPC64_ADDR16_HIGHER:
5719     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5720     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5721     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5722     case elfcpp::R_PPC64_ADDR16_DS:
5723     case elfcpp::R_PPC64_ADDR16_LO_DS:
5724     case elfcpp::R_POWERPC_ADDR14:
5725     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5726     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5727       // If building a shared library (or a position-independent
5728       // executable), we need to create a dynamic relocation for
5729       // this location.
5730       if (parameters->options().output_is_position_independent()
5731           || (size == 64 && is_ifunc && target->abiversion() < 2))
5732         {
5733           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5734                                                              is_ifunc);
5735           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5736           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5737               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5738             {
5739               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5740                                      : elfcpp::R_POWERPC_RELATIVE);
5741               rela_dyn->add_local_relative(object, r_sym, dynrel,
5742                                            output_section, data_shndx,
5743                                            reloc.get_r_offset(),
5744                                            reloc.get_r_addend(), false);
5745             }
5746           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5747             {
5748               check_non_pic(object, r_type);
5749               rela_dyn->add_local(object, r_sym, r_type, output_section,
5750                                   data_shndx, reloc.get_r_offset(),
5751                                   reloc.get_r_addend());
5752             }
5753           else
5754             {
5755               gold_assert(lsym.get_st_value() == 0);
5756               unsigned int shndx = lsym.get_st_shndx();
5757               bool is_ordinary;
5758               shndx = object->adjust_sym_shndx(r_sym, shndx,
5759                                                &is_ordinary);
5760               if (!is_ordinary)
5761                 object->error(_("section symbol %u has bad shndx %u"),
5762                               r_sym, shndx);
5763               else
5764                 rela_dyn->add_local_section(object, shndx, r_type,
5765                                             output_section, data_shndx,
5766                                             reloc.get_r_offset());
5767             }
5768         }
5769       break;
5770
5771     case elfcpp::R_POWERPC_REL24:
5772     case elfcpp::R_PPC_PLTREL24:
5773     case elfcpp::R_PPC_LOCAL24PC:
5774     case elfcpp::R_POWERPC_REL14:
5775     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5776     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5777       if (!is_ifunc)
5778         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5779                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5780                             reloc.get_r_addend());
5781       break;
5782
5783     case elfcpp::R_PPC64_REL64:
5784     case elfcpp::R_POWERPC_REL32:
5785     case elfcpp::R_POWERPC_REL16:
5786     case elfcpp::R_POWERPC_REL16_LO:
5787     case elfcpp::R_POWERPC_REL16_HI:
5788     case elfcpp::R_POWERPC_REL16_HA:
5789     case elfcpp::R_POWERPC_REL16DX_HA:
5790     case elfcpp::R_POWERPC_SECTOFF:
5791     case elfcpp::R_POWERPC_SECTOFF_LO:
5792     case elfcpp::R_POWERPC_SECTOFF_HI:
5793     case elfcpp::R_POWERPC_SECTOFF_HA:
5794     case elfcpp::R_PPC64_SECTOFF_DS:
5795     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5796     case elfcpp::R_POWERPC_TPREL16:
5797     case elfcpp::R_POWERPC_TPREL16_LO:
5798     case elfcpp::R_POWERPC_TPREL16_HI:
5799     case elfcpp::R_POWERPC_TPREL16_HA:
5800     case elfcpp::R_PPC64_TPREL16_DS:
5801     case elfcpp::R_PPC64_TPREL16_LO_DS:
5802     case elfcpp::R_PPC64_TPREL16_HIGH:
5803     case elfcpp::R_PPC64_TPREL16_HIGHA:
5804     case elfcpp::R_PPC64_TPREL16_HIGHER:
5805     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5806     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5807     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5808     case elfcpp::R_POWERPC_DTPREL16:
5809     case elfcpp::R_POWERPC_DTPREL16_LO:
5810     case elfcpp::R_POWERPC_DTPREL16_HI:
5811     case elfcpp::R_POWERPC_DTPREL16_HA:
5812     case elfcpp::R_PPC64_DTPREL16_DS:
5813     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5814     case elfcpp::R_PPC64_DTPREL16_HIGH:
5815     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5816     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5817     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5818     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5819     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5820     case elfcpp::R_PPC64_TLSGD:
5821     case elfcpp::R_PPC64_TLSLD:
5822     case elfcpp::R_PPC64_ADDR64_LOCAL:
5823       break;
5824
5825     case elfcpp::R_POWERPC_GOT16:
5826     case elfcpp::R_POWERPC_GOT16_LO:
5827     case elfcpp::R_POWERPC_GOT16_HI:
5828     case elfcpp::R_POWERPC_GOT16_HA:
5829     case elfcpp::R_PPC64_GOT16_DS:
5830     case elfcpp::R_PPC64_GOT16_LO_DS:
5831       {
5832         // The symbol requires a GOT entry.
5833         Output_data_got_powerpc<size, big_endian>* got
5834           = target->got_section(symtab, layout);
5835         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5836
5837         if (!parameters->options().output_is_position_independent())
5838           {
5839             if (is_ifunc
5840                 && (size == 32 || target->abiversion() >= 2))
5841               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5842             else
5843               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5844           }
5845         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5846           {
5847             // If we are generating a shared object or a pie, this
5848             // symbol's GOT entry will be set by a dynamic relocation.
5849             unsigned int off;
5850             off = got->add_constant(0);
5851             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5852
5853             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5854                                                                is_ifunc);
5855             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5856                                    : elfcpp::R_POWERPC_RELATIVE);
5857             rela_dyn->add_local_relative(object, r_sym, dynrel,
5858                                          got, off, 0, false);
5859           }
5860       }
5861       break;
5862
5863     case elfcpp::R_PPC64_TOC16:
5864     case elfcpp::R_PPC64_TOC16_LO:
5865     case elfcpp::R_PPC64_TOC16_HI:
5866     case elfcpp::R_PPC64_TOC16_HA:
5867     case elfcpp::R_PPC64_TOC16_DS:
5868     case elfcpp::R_PPC64_TOC16_LO_DS:
5869       // We need a GOT section.
5870       target->got_section(symtab, layout);
5871       break;
5872
5873     case elfcpp::R_POWERPC_GOT_TLSGD16:
5874     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5875     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5876     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5877       {
5878         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5879         if (tls_type == tls::TLSOPT_NONE)
5880           {
5881             Output_data_got_powerpc<size, big_endian>* got
5882               = target->got_section(symtab, layout);
5883             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5884             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5885             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5886                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5887           }
5888         else if (tls_type == tls::TLSOPT_TO_LE)
5889           {
5890             // no GOT relocs needed for Local Exec.
5891           }
5892         else
5893           gold_unreachable();
5894       }
5895       break;
5896
5897     case elfcpp::R_POWERPC_GOT_TLSLD16:
5898     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5899     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5900     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5901       {
5902         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5903         if (tls_type == tls::TLSOPT_NONE)
5904           target->tlsld_got_offset(symtab, layout, object);
5905         else if (tls_type == tls::TLSOPT_TO_LE)
5906           {
5907             // no GOT relocs needed for Local Exec.
5908             if (parameters->options().emit_relocs())
5909               {
5910                 Output_section* os = layout->tls_segment()->first_section();
5911                 gold_assert(os != NULL);
5912                 os->set_needs_symtab_index();
5913               }
5914           }
5915         else
5916           gold_unreachable();
5917       }
5918       break;
5919
5920     case elfcpp::R_POWERPC_GOT_DTPREL16:
5921     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5922     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5923     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5924       {
5925         Output_data_got_powerpc<size, big_endian>* got
5926           = target->got_section(symtab, layout);
5927         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5928         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5929       }
5930       break;
5931
5932     case elfcpp::R_POWERPC_GOT_TPREL16:
5933     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5934     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5935     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5936       {
5937         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5938         if (tls_type == tls::TLSOPT_NONE)
5939           {
5940             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5941             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5942               {
5943                 Output_data_got_powerpc<size, big_endian>* got
5944                   = target->got_section(symtab, layout);
5945                 unsigned int off = got->add_constant(0);
5946                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5947
5948                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5949                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5950                                                       elfcpp::R_POWERPC_TPREL,
5951                                                       got, off, 0);
5952               }
5953           }
5954         else if (tls_type == tls::TLSOPT_TO_LE)
5955           {
5956             // no GOT relocs needed for Local Exec.
5957           }
5958         else
5959           gold_unreachable();
5960       }
5961       break;
5962
5963     default:
5964       unsupported_reloc_local(object, r_type);
5965       break;
5966     }
5967
5968   switch (r_type)
5969     {
5970     case elfcpp::R_POWERPC_GOT_TLSLD16:
5971     case elfcpp::R_POWERPC_GOT_TLSGD16:
5972     case elfcpp::R_POWERPC_GOT_TPREL16:
5973     case elfcpp::R_POWERPC_GOT_DTPREL16:
5974     case elfcpp::R_POWERPC_GOT16:
5975     case elfcpp::R_PPC64_GOT16_DS:
5976     case elfcpp::R_PPC64_TOC16:
5977     case elfcpp::R_PPC64_TOC16_DS:
5978       ppc_object->set_has_small_toc_reloc();
5979     default:
5980       break;
5981     }
5982 }
5983
5984 // Report an unsupported relocation against a global symbol.
5985
5986 template<int size, bool big_endian>
5987 void
5988 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5989     Sized_relobj_file<size, big_endian>* object,
5990     unsigned int r_type,
5991     Symbol* gsym)
5992 {
5993   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5994              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5995 }
5996
5997 // Scan a relocation for a global symbol.
5998
5999 template<int size, bool big_endian>
6000 inline void
6001 Target_powerpc<size, big_endian>::Scan::global(
6002     Symbol_table* symtab,
6003     Layout* layout,
6004     Target_powerpc<size, big_endian>* target,
6005     Sized_relobj_file<size, big_endian>* object,
6006     unsigned int data_shndx,
6007     Output_section* output_section,
6008     const elfcpp::Rela<size, big_endian>& reloc,
6009     unsigned int r_type,
6010     Symbol* gsym)
6011 {
6012   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6013     return;
6014
6015   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6016       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6017     {
6018       this->expect_tls_get_addr_call();
6019       const bool final = gsym->final_value_is_known();
6020       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6021       if (tls_type != tls::TLSOPT_NONE)
6022         this->skip_next_tls_get_addr_call();
6023     }
6024   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6025            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6026     {
6027       this->expect_tls_get_addr_call();
6028       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6029       if (tls_type != tls::TLSOPT_NONE)
6030         this->skip_next_tls_get_addr_call();
6031     }
6032
6033   Powerpc_relobj<size, big_endian>* ppc_object
6034     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6035
6036   // A STT_GNU_IFUNC symbol may require a PLT entry.
6037   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6038   bool pushed_ifunc = false;
6039   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6040     {
6041       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6042                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6043                           reloc.get_r_addend());
6044       target->make_plt_entry(symtab, layout, gsym);
6045       pushed_ifunc = true;
6046     }
6047
6048   switch (r_type)
6049     {
6050     case elfcpp::R_POWERPC_NONE:
6051     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6052     case elfcpp::R_POWERPC_GNU_VTENTRY:
6053     case elfcpp::R_PPC_LOCAL24PC:
6054     case elfcpp::R_POWERPC_TLS:
6055     case elfcpp::R_PPC64_ENTRY:
6056       break;
6057
6058     case elfcpp::R_PPC64_TOC:
6059       {
6060         Output_data_got_powerpc<size, big_endian>* got
6061           = target->got_section(symtab, layout);
6062         if (parameters->options().output_is_position_independent())
6063           {
6064             Address off = reloc.get_r_offset();
6065             if (size == 64
6066                 && data_shndx == ppc_object->opd_shndx()
6067                 && ppc_object->get_opd_discard(off - 8))
6068               break;
6069
6070             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6071             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6072             if (data_shndx != ppc_object->opd_shndx())
6073               symobj = static_cast
6074                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6075             rela_dyn->add_output_section_relative(got->output_section(),
6076                                                   elfcpp::R_POWERPC_RELATIVE,
6077                                                   output_section,
6078                                                   object, data_shndx, off,
6079                                                   symobj->toc_base_offset());
6080           }
6081       }
6082       break;
6083
6084     case elfcpp::R_PPC64_ADDR64:
6085       if (size == 64
6086           && target->abiversion() < 2
6087           && data_shndx == ppc_object->opd_shndx()
6088           && (gsym->is_defined_in_discarded_section()
6089               || gsym->object() != object))
6090         {
6091           ppc_object->set_opd_discard(reloc.get_r_offset());
6092           break;
6093         }
6094       // Fall thru
6095     case elfcpp::R_PPC64_UADDR64:
6096     case elfcpp::R_POWERPC_ADDR32:
6097     case elfcpp::R_POWERPC_UADDR32:
6098     case elfcpp::R_POWERPC_ADDR24:
6099     case elfcpp::R_POWERPC_ADDR16:
6100     case elfcpp::R_POWERPC_ADDR16_LO:
6101     case elfcpp::R_POWERPC_ADDR16_HI:
6102     case elfcpp::R_POWERPC_ADDR16_HA:
6103     case elfcpp::R_POWERPC_UADDR16:
6104     case elfcpp::R_PPC64_ADDR16_HIGH:
6105     case elfcpp::R_PPC64_ADDR16_HIGHA:
6106     case elfcpp::R_PPC64_ADDR16_HIGHER:
6107     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6108     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6109     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6110     case elfcpp::R_PPC64_ADDR16_DS:
6111     case elfcpp::R_PPC64_ADDR16_LO_DS:
6112     case elfcpp::R_POWERPC_ADDR14:
6113     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6114     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6115       {
6116         // Make a PLT entry if necessary.
6117         if (gsym->needs_plt_entry())
6118           {
6119             // Since this is not a PC-relative relocation, we may be
6120             // taking the address of a function. In that case we need to
6121             // set the entry in the dynamic symbol table to the address of
6122             // the PLT call stub.
6123             bool need_ifunc_plt = false;
6124             if ((size == 32 || target->abiversion() >= 2)
6125                 && gsym->is_from_dynobj()
6126                 && !parameters->options().output_is_position_independent())
6127               {
6128                 gsym->set_needs_dynsym_value();
6129                 need_ifunc_plt = true;
6130               }
6131             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6132               {
6133                 target->push_branch(ppc_object, data_shndx,
6134                                     reloc.get_r_offset(), r_type,
6135                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6136                                     reloc.get_r_addend());
6137                 target->make_plt_entry(symtab, layout, gsym);
6138               }
6139           }
6140         // Make a dynamic relocation if necessary.
6141         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6142             || (size == 64 && is_ifunc && target->abiversion() < 2))
6143           {
6144             if (!parameters->options().output_is_position_independent()
6145                 && gsym->may_need_copy_reloc())
6146               {
6147                 target->copy_reloc(symtab, layout, object,
6148                                    data_shndx, output_section, gsym, reloc);
6149               }
6150             else if ((((size == 32
6151                         && r_type == elfcpp::R_POWERPC_ADDR32)
6152                        || (size == 64
6153                            && r_type == elfcpp::R_PPC64_ADDR64
6154                            && target->abiversion() >= 2))
6155                       && gsym->can_use_relative_reloc(false)
6156                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6157                            && parameters->options().shared()))
6158                      || (size == 64
6159                          && r_type == elfcpp::R_PPC64_ADDR64
6160                          && target->abiversion() < 2
6161                          && (gsym->can_use_relative_reloc(false)
6162                              || data_shndx == ppc_object->opd_shndx())))
6163               {
6164                 Reloc_section* rela_dyn
6165                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6166                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6167                                        : elfcpp::R_POWERPC_RELATIVE);
6168                 rela_dyn->add_symbolless_global_addend(
6169                     gsym, dynrel, output_section, object, data_shndx,
6170                     reloc.get_r_offset(), reloc.get_r_addend());
6171               }
6172             else
6173               {
6174                 Reloc_section* rela_dyn
6175                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6176                 check_non_pic(object, r_type);
6177                 rela_dyn->add_global(gsym, r_type, output_section,
6178                                      object, data_shndx,
6179                                      reloc.get_r_offset(),
6180                                      reloc.get_r_addend());
6181               }
6182           }
6183       }
6184       break;
6185
6186     case elfcpp::R_PPC_PLTREL24:
6187     case elfcpp::R_POWERPC_REL24:
6188       if (!is_ifunc)
6189         {
6190           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6191                               r_type,
6192                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6193                               reloc.get_r_addend());
6194           if (gsym->needs_plt_entry()
6195               || (!gsym->final_value_is_known()
6196                   && (gsym->is_undefined()
6197                       || gsym->is_from_dynobj()
6198                       || gsym->is_preemptible())))
6199             target->make_plt_entry(symtab, layout, gsym);
6200         }
6201       // Fall thru
6202
6203     case elfcpp::R_PPC64_REL64:
6204     case elfcpp::R_POWERPC_REL32:
6205       // Make a dynamic relocation if necessary.
6206       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6207         {
6208           if (!parameters->options().output_is_position_independent()
6209               && gsym->may_need_copy_reloc())
6210             {
6211               target->copy_reloc(symtab, layout, object,
6212                                  data_shndx, output_section, gsym,
6213                                  reloc);
6214             }
6215           else
6216             {
6217               Reloc_section* rela_dyn
6218                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6219               check_non_pic(object, r_type);
6220               rela_dyn->add_global(gsym, r_type, output_section, object,
6221                                    data_shndx, reloc.get_r_offset(),
6222                                    reloc.get_r_addend());
6223             }
6224         }
6225       break;
6226
6227     case elfcpp::R_POWERPC_REL14:
6228     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6229     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6230       if (!is_ifunc)
6231         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6232                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6233                             reloc.get_r_addend());
6234       break;
6235
6236     case elfcpp::R_POWERPC_REL16:
6237     case elfcpp::R_POWERPC_REL16_LO:
6238     case elfcpp::R_POWERPC_REL16_HI:
6239     case elfcpp::R_POWERPC_REL16_HA:
6240     case elfcpp::R_POWERPC_REL16DX_HA:
6241     case elfcpp::R_POWERPC_SECTOFF:
6242     case elfcpp::R_POWERPC_SECTOFF_LO:
6243     case elfcpp::R_POWERPC_SECTOFF_HI:
6244     case elfcpp::R_POWERPC_SECTOFF_HA:
6245     case elfcpp::R_PPC64_SECTOFF_DS:
6246     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6247     case elfcpp::R_POWERPC_TPREL16:
6248     case elfcpp::R_POWERPC_TPREL16_LO:
6249     case elfcpp::R_POWERPC_TPREL16_HI:
6250     case elfcpp::R_POWERPC_TPREL16_HA:
6251     case elfcpp::R_PPC64_TPREL16_DS:
6252     case elfcpp::R_PPC64_TPREL16_LO_DS:
6253     case elfcpp::R_PPC64_TPREL16_HIGH:
6254     case elfcpp::R_PPC64_TPREL16_HIGHA:
6255     case elfcpp::R_PPC64_TPREL16_HIGHER:
6256     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6257     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6258     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6259     case elfcpp::R_POWERPC_DTPREL16:
6260     case elfcpp::R_POWERPC_DTPREL16_LO:
6261     case elfcpp::R_POWERPC_DTPREL16_HI:
6262     case elfcpp::R_POWERPC_DTPREL16_HA:
6263     case elfcpp::R_PPC64_DTPREL16_DS:
6264     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6265     case elfcpp::R_PPC64_DTPREL16_HIGH:
6266     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6267     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6268     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6269     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6270     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6271     case elfcpp::R_PPC64_TLSGD:
6272     case elfcpp::R_PPC64_TLSLD:
6273     case elfcpp::R_PPC64_ADDR64_LOCAL:
6274       break;
6275
6276     case elfcpp::R_POWERPC_GOT16:
6277     case elfcpp::R_POWERPC_GOT16_LO:
6278     case elfcpp::R_POWERPC_GOT16_HI:
6279     case elfcpp::R_POWERPC_GOT16_HA:
6280     case elfcpp::R_PPC64_GOT16_DS:
6281     case elfcpp::R_PPC64_GOT16_LO_DS:
6282       {
6283         // The symbol requires a GOT entry.
6284         Output_data_got_powerpc<size, big_endian>* got;
6285
6286         got = target->got_section(symtab, layout);
6287         if (gsym->final_value_is_known())
6288           {
6289             if (is_ifunc
6290                 && (size == 32 || target->abiversion() >= 2))
6291               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6292             else
6293               got->add_global(gsym, GOT_TYPE_STANDARD);
6294           }
6295         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6296           {
6297             // If we are generating a shared object or a pie, this
6298             // symbol's GOT entry will be set by a dynamic relocation.
6299             unsigned int off = got->add_constant(0);
6300             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6301
6302             Reloc_section* rela_dyn
6303               = target->rela_dyn_section(symtab, layout, is_ifunc);
6304
6305             if (gsym->can_use_relative_reloc(false)
6306                 && !((size == 32
6307                       || target->abiversion() >= 2)
6308                      && gsym->visibility() == elfcpp::STV_PROTECTED
6309                      && parameters->options().shared()))
6310               {
6311                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6312                                        : elfcpp::R_POWERPC_RELATIVE);
6313                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6314               }
6315             else
6316               {
6317                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6318                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6319               }
6320           }
6321       }
6322       break;
6323
6324     case elfcpp::R_PPC64_TOC16:
6325     case elfcpp::R_PPC64_TOC16_LO:
6326     case elfcpp::R_PPC64_TOC16_HI:
6327     case elfcpp::R_PPC64_TOC16_HA:
6328     case elfcpp::R_PPC64_TOC16_DS:
6329     case elfcpp::R_PPC64_TOC16_LO_DS:
6330       // We need a GOT section.
6331       target->got_section(symtab, layout);
6332       break;
6333
6334     case elfcpp::R_POWERPC_GOT_TLSGD16:
6335     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6336     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6337     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6338       {
6339         const bool final = gsym->final_value_is_known();
6340         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6341         if (tls_type == tls::TLSOPT_NONE)
6342           {
6343             Output_data_got_powerpc<size, big_endian>* got
6344               = target->got_section(symtab, layout);
6345             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6346             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6347                                           elfcpp::R_POWERPC_DTPMOD,
6348                                           elfcpp::R_POWERPC_DTPREL);
6349           }
6350         else if (tls_type == tls::TLSOPT_TO_IE)
6351           {
6352             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6353               {
6354                 Output_data_got_powerpc<size, big_endian>* got
6355                   = target->got_section(symtab, layout);
6356                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6357                 if (gsym->is_undefined()
6358                     || gsym->is_from_dynobj())
6359                   {
6360                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6361                                              elfcpp::R_POWERPC_TPREL);
6362                   }
6363                 else
6364                   {
6365                     unsigned int off = got->add_constant(0);
6366                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6367                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6368                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6369                                                            got, off, 0);
6370                   }
6371               }
6372           }
6373         else if (tls_type == tls::TLSOPT_TO_LE)
6374           {
6375             // no GOT relocs needed for Local Exec.
6376           }
6377         else
6378           gold_unreachable();
6379       }
6380       break;
6381
6382     case elfcpp::R_POWERPC_GOT_TLSLD16:
6383     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6384     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6385     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6386       {
6387         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6388         if (tls_type == tls::TLSOPT_NONE)
6389           target->tlsld_got_offset(symtab, layout, object);
6390         else if (tls_type == tls::TLSOPT_TO_LE)
6391           {
6392             // no GOT relocs needed for Local Exec.
6393             if (parameters->options().emit_relocs())
6394               {
6395                 Output_section* os = layout->tls_segment()->first_section();
6396                 gold_assert(os != NULL);
6397                 os->set_needs_symtab_index();
6398               }
6399           }
6400         else
6401           gold_unreachable();
6402       }
6403       break;
6404
6405     case elfcpp::R_POWERPC_GOT_DTPREL16:
6406     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6407     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6408     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6409       {
6410         Output_data_got_powerpc<size, big_endian>* got
6411           = target->got_section(symtab, layout);
6412         if (!gsym->final_value_is_known()
6413             && (gsym->is_from_dynobj()
6414                 || gsym->is_undefined()
6415                 || gsym->is_preemptible()))
6416           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6417                                    target->rela_dyn_section(layout),
6418                                    elfcpp::R_POWERPC_DTPREL);
6419         else
6420           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6421       }
6422       break;
6423
6424     case elfcpp::R_POWERPC_GOT_TPREL16:
6425     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6426     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6427     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6428       {
6429         const bool final = gsym->final_value_is_known();
6430         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6431         if (tls_type == tls::TLSOPT_NONE)
6432           {
6433             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6434               {
6435                 Output_data_got_powerpc<size, big_endian>* got
6436                   = target->got_section(symtab, layout);
6437                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6438                 if (gsym->is_undefined()
6439                     || gsym->is_from_dynobj())
6440                   {
6441                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6442                                              elfcpp::R_POWERPC_TPREL);
6443                   }
6444                 else
6445                   {
6446                     unsigned int off = got->add_constant(0);
6447                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6448                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6449                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6450                                                            got, off, 0);
6451                   }
6452               }
6453           }
6454         else if (tls_type == tls::TLSOPT_TO_LE)
6455           {
6456             // no GOT relocs needed for Local Exec.
6457           }
6458         else
6459           gold_unreachable();
6460       }
6461       break;
6462
6463     default:
6464       unsupported_reloc_global(object, r_type, gsym);
6465       break;
6466     }
6467
6468   switch (r_type)
6469     {
6470     case elfcpp::R_POWERPC_GOT_TLSLD16:
6471     case elfcpp::R_POWERPC_GOT_TLSGD16:
6472     case elfcpp::R_POWERPC_GOT_TPREL16:
6473     case elfcpp::R_POWERPC_GOT_DTPREL16:
6474     case elfcpp::R_POWERPC_GOT16:
6475     case elfcpp::R_PPC64_GOT16_DS:
6476     case elfcpp::R_PPC64_TOC16:
6477     case elfcpp::R_PPC64_TOC16_DS:
6478       ppc_object->set_has_small_toc_reloc();
6479     default:
6480       break;
6481     }
6482 }
6483
6484 // Process relocations for gc.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::gc_process_relocs(
6489     Symbol_table* symtab,
6490     Layout* layout,
6491     Sized_relobj_file<size, big_endian>* object,
6492     unsigned int data_shndx,
6493     unsigned int,
6494     const unsigned char* prelocs,
6495     size_t reloc_count,
6496     Output_section* output_section,
6497     bool needs_special_offset_handling,
6498     size_t local_symbol_count,
6499     const unsigned char* plocal_symbols)
6500 {
6501   typedef Target_powerpc<size, big_endian> Powerpc;
6502   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6503       Classify_reloc;
6504
6505   Powerpc_relobj<size, big_endian>* ppc_object
6506     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6507   if (size == 64)
6508     ppc_object->set_opd_valid();
6509   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6510     {
6511       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6512       for (p = ppc_object->access_from_map()->begin();
6513            p != ppc_object->access_from_map()->end();
6514            ++p)
6515         {
6516           Address dst_off = p->first;
6517           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6518           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6519           for (s = p->second.begin(); s != p->second.end(); ++s)
6520             {
6521               Relobj* src_obj = s->first;
6522               unsigned int src_indx = s->second;
6523               symtab->gc()->add_reference(src_obj, src_indx,
6524                                           ppc_object, dst_indx);
6525             }
6526           p->second.clear();
6527         }
6528       ppc_object->access_from_map()->clear();
6529       ppc_object->process_gc_mark(symtab);
6530       // Don't look at .opd relocs as .opd will reference everything.
6531       return;
6532     }
6533
6534   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6535     symtab,
6536     layout,
6537     this,
6538     object,
6539     data_shndx,
6540     prelocs,
6541     reloc_count,
6542     output_section,
6543     needs_special_offset_handling,
6544     local_symbol_count,
6545     plocal_symbols);
6546 }
6547
6548 // Handle target specific gc actions when adding a gc reference from
6549 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6550 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6551 // section of a function descriptor.
6552
6553 template<int size, bool big_endian>
6554 void
6555 Target_powerpc<size, big_endian>::do_gc_add_reference(
6556     Symbol_table* symtab,
6557     Relobj* src_obj,
6558     unsigned int src_shndx,
6559     Relobj* dst_obj,
6560     unsigned int dst_shndx,
6561     Address dst_off) const
6562 {
6563   if (size != 64 || dst_obj->is_dynamic())
6564     return;
6565
6566   Powerpc_relobj<size, big_endian>* ppc_object
6567     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6568   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6569     {
6570       if (ppc_object->opd_valid())
6571         {
6572           dst_shndx = ppc_object->get_opd_ent(dst_off);
6573           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6574         }
6575       else
6576         {
6577           // If we haven't run scan_opd_relocs, we must delay
6578           // processing this function descriptor reference.
6579           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6580         }
6581     }
6582 }
6583
6584 // Add any special sections for this symbol to the gc work list.
6585 // For powerpc64, this adds the code section of a function
6586 // descriptor.
6587
6588 template<int size, bool big_endian>
6589 void
6590 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6591     Symbol_table* symtab,
6592     Symbol* sym) const
6593 {
6594   if (size == 64)
6595     {
6596       Powerpc_relobj<size, big_endian>* ppc_object
6597         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6598       bool is_ordinary;
6599       unsigned int shndx = sym->shndx(&is_ordinary);
6600       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6601         {
6602           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6603           Address dst_off = gsym->value();
6604           if (ppc_object->opd_valid())
6605             {
6606               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6607               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6608                                                             dst_indx));
6609             }
6610           else
6611             ppc_object->add_gc_mark(dst_off);
6612         }
6613     }
6614 }
6615
6616 // For a symbol location in .opd, set LOC to the location of the
6617 // function entry.
6618
6619 template<int size, bool big_endian>
6620 void
6621 Target_powerpc<size, big_endian>::do_function_location(
6622     Symbol_location* loc) const
6623 {
6624   if (size == 64 && loc->shndx != 0)
6625     {
6626       if (loc->object->is_dynamic())
6627         {
6628           Powerpc_dynobj<size, big_endian>* ppc_object
6629             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6630           if (loc->shndx == ppc_object->opd_shndx())
6631             {
6632               Address dest_off;
6633               Address off = loc->offset - ppc_object->opd_address();
6634               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6635               loc->offset = dest_off;
6636             }
6637         }
6638       else
6639         {
6640           const Powerpc_relobj<size, big_endian>* ppc_object
6641             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6642           if (loc->shndx == ppc_object->opd_shndx())
6643             {
6644               Address dest_off;
6645               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6646               loc->offset = dest_off;
6647             }
6648         }
6649     }
6650 }
6651
6652 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6653 // compiled with -fsplit-stack.  The function calls non-split-stack
6654 // code.  Change the function to ensure it has enough stack space to
6655 // call some random function.
6656
6657 template<int size, bool big_endian>
6658 void
6659 Target_powerpc<size, big_endian>::do_calls_non_split(
6660     Relobj* object,
6661     unsigned int shndx,
6662     section_offset_type fnoffset,
6663     section_size_type fnsize,
6664     const unsigned char* prelocs,
6665     size_t reloc_count,
6666     unsigned char* view,
6667     section_size_type view_size,
6668     std::string* from,
6669     std::string* to) const
6670 {
6671   // 32-bit not supported.
6672   if (size == 32)
6673     {
6674       // warn
6675       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6676                                  prelocs, reloc_count, view, view_size,
6677                                  from, to);
6678       return;
6679     }
6680
6681   // The function always starts with
6682   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6683   //    addis %r12,%r1,-allocate@ha
6684   //    addi %r12,%r12,-allocate@l
6685   //    cmpld %r12,%r0
6686   // but note that the addis or addi may be replaced with a nop
6687
6688   unsigned char *entry = view + fnoffset;
6689   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6690
6691   if ((insn & 0xffff0000) == addis_2_12)
6692     {
6693       /* Skip ELFv2 global entry code.  */
6694       entry += 8;
6695       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6696     }
6697
6698   unsigned char *pinsn = entry;
6699   bool ok = false;
6700   const uint32_t ld_private_ss = 0xe80d8fc0;
6701   if (insn == ld_private_ss)
6702     {
6703       int32_t allocate = 0;
6704       while (1)
6705         {
6706           pinsn += 4;
6707           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6708           if ((insn & 0xffff0000) == addis_12_1)
6709             allocate += (insn & 0xffff) << 16;
6710           else if ((insn & 0xffff0000) == addi_12_1
6711                    || (insn & 0xffff0000) == addi_12_12)
6712             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6713           else if (insn != nop)
6714             break;
6715         }
6716       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6717         {
6718           int extra = parameters->options().split_stack_adjust_size();
6719           allocate -= extra;
6720           if (allocate >= 0 || extra < 0)
6721             {
6722               object->error(_("split-stack stack size overflow at "
6723                               "section %u offset %0zx"),
6724                             shndx, static_cast<size_t>(fnoffset));
6725               return;
6726             }
6727           pinsn = entry + 4;
6728           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6729           if (insn != addis_12_1)
6730             {
6731               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6732               pinsn += 4;
6733               insn = addi_12_12 | (allocate & 0xffff);
6734               if (insn != addi_12_12)
6735                 {
6736                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6737                   pinsn += 4;
6738                 }
6739             }
6740           else
6741             {
6742               insn = addi_12_1 | (allocate & 0xffff);
6743               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6744               pinsn += 4;
6745             }
6746           if (pinsn != entry + 12)
6747             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6748
6749           ok = true;
6750         }
6751     }
6752
6753   if (!ok)
6754     {
6755       if (!object->has_no_split_stack())
6756         object->error(_("failed to match split-stack sequence at "
6757                         "section %u offset %0zx"),
6758                       shndx, static_cast<size_t>(fnoffset));
6759     }
6760 }
6761
6762 // Scan relocations for a section.
6763
6764 template<int size, bool big_endian>
6765 void
6766 Target_powerpc<size, big_endian>::scan_relocs(
6767     Symbol_table* symtab,
6768     Layout* layout,
6769     Sized_relobj_file<size, big_endian>* object,
6770     unsigned int data_shndx,
6771     unsigned int sh_type,
6772     const unsigned char* prelocs,
6773     size_t reloc_count,
6774     Output_section* output_section,
6775     bool needs_special_offset_handling,
6776     size_t local_symbol_count,
6777     const unsigned char* plocal_symbols)
6778 {
6779   typedef Target_powerpc<size, big_endian> Powerpc;
6780   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6781       Classify_reloc;
6782
6783   if (sh_type == elfcpp::SHT_REL)
6784     {
6785       gold_error(_("%s: unsupported REL reloc section"),
6786                  object->name().c_str());
6787       return;
6788     }
6789
6790   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6791     symtab,
6792     layout,
6793     this,
6794     object,
6795     data_shndx,
6796     prelocs,
6797     reloc_count,
6798     output_section,
6799     needs_special_offset_handling,
6800     local_symbol_count,
6801     plocal_symbols);
6802 }
6803
6804 // Functor class for processing the global symbol table.
6805 // Removes symbols defined on discarded opd entries.
6806
6807 template<bool big_endian>
6808 class Global_symbol_visitor_opd
6809 {
6810  public:
6811   Global_symbol_visitor_opd()
6812   { }
6813
6814   void
6815   operator()(Sized_symbol<64>* sym)
6816   {
6817     if (sym->has_symtab_index()
6818         || sym->source() != Symbol::FROM_OBJECT
6819         || !sym->in_real_elf())
6820       return;
6821
6822     if (sym->object()->is_dynamic())
6823       return;
6824
6825     Powerpc_relobj<64, big_endian>* symobj
6826       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6827     if (symobj->opd_shndx() == 0)
6828       return;
6829
6830     bool is_ordinary;
6831     unsigned int shndx = sym->shndx(&is_ordinary);
6832     if (shndx == symobj->opd_shndx()
6833         && symobj->get_opd_discard(sym->value()))
6834       {
6835         sym->set_undefined();
6836         sym->set_visibility(elfcpp::STV_DEFAULT);
6837         sym->set_is_defined_in_discarded_section();
6838         sym->set_symtab_index(-1U);
6839       }
6840   }
6841 };
6842
6843 template<int size, bool big_endian>
6844 void
6845 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6846     Layout* layout,
6847     Symbol_table* symtab)
6848 {
6849   if (size == 64)
6850     {
6851       Output_data_save_res<size, big_endian>* savres
6852         = new Output_data_save_res<size, big_endian>(symtab);
6853       this->savres_section_ = savres;
6854       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6855                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6856                                       savres, ORDER_TEXT, false);
6857     }
6858 }
6859
6860 // Sort linker created .got section first (for the header), then input
6861 // sections belonging to files using small model code.
6862
6863 template<bool big_endian>
6864 class Sort_toc_sections
6865 {
6866  public:
6867   bool
6868   operator()(const Output_section::Input_section& is1,
6869              const Output_section::Input_section& is2) const
6870   {
6871     if (!is1.is_input_section() && is2.is_input_section())
6872       return true;
6873     bool small1
6874       = (is1.is_input_section()
6875          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6876              ->has_small_toc_reloc()));
6877     bool small2
6878       = (is2.is_input_section()
6879          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6880              ->has_small_toc_reloc()));
6881     return small1 && !small2;
6882   }
6883 };
6884
6885 // Finalize the sections.
6886
6887 template<int size, bool big_endian>
6888 void
6889 Target_powerpc<size, big_endian>::do_finalize_sections(
6890     Layout* layout,
6891     const Input_objects*,
6892     Symbol_table* symtab)
6893 {
6894   if (parameters->doing_static_link())
6895     {
6896       // At least some versions of glibc elf-init.o have a strong
6897       // reference to __rela_iplt marker syms.  A weak ref would be
6898       // better..
6899       if (this->iplt_ != NULL)
6900         {
6901           Reloc_section* rel = this->iplt_->rel_plt();
6902           symtab->define_in_output_data("__rela_iplt_start", NULL,
6903                                         Symbol_table::PREDEFINED, rel, 0, 0,
6904                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6905                                         elfcpp::STV_HIDDEN, 0, false, true);
6906           symtab->define_in_output_data("__rela_iplt_end", NULL,
6907                                         Symbol_table::PREDEFINED, rel, 0, 0,
6908                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6909                                         elfcpp::STV_HIDDEN, 0, true, true);
6910         }
6911       else
6912         {
6913           symtab->define_as_constant("__rela_iplt_start", NULL,
6914                                      Symbol_table::PREDEFINED, 0, 0,
6915                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6916                                      elfcpp::STV_HIDDEN, 0, true, false);
6917           symtab->define_as_constant("__rela_iplt_end", NULL,
6918                                      Symbol_table::PREDEFINED, 0, 0,
6919                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6920                                      elfcpp::STV_HIDDEN, 0, true, false);
6921         }
6922     }
6923
6924   if (size == 64)
6925     {
6926       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6927       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6928
6929       if (!parameters->options().relocatable())
6930         {
6931           this->define_save_restore_funcs(layout, symtab);
6932
6933           // Annoyingly, we need to make these sections now whether or
6934           // not we need them.  If we delay until do_relax then we
6935           // need to mess with the relaxation machinery checkpointing.
6936           this->got_section(symtab, layout);
6937           this->make_brlt_section(layout);
6938
6939           if (parameters->options().toc_sort())
6940             {
6941               Output_section* os = this->got_->output_section();
6942               if (os != NULL && os->input_sections().size() > 1)
6943                 std::stable_sort(os->input_sections().begin(),
6944                                  os->input_sections().end(),
6945                                  Sort_toc_sections<big_endian>());
6946             }
6947         }
6948     }
6949
6950   // Fill in some more dynamic tags.
6951   Output_data_dynamic* odyn = layout->dynamic_data();
6952   if (odyn != NULL)
6953     {
6954       const Reloc_section* rel_plt = (this->plt_ == NULL
6955                                       ? NULL
6956                                       : this->plt_->rel_plt());
6957       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6958                                       this->rela_dyn_, true, size == 32);
6959
6960       if (size == 32)
6961         {
6962           if (this->got_ != NULL)
6963             {
6964               this->got_->finalize_data_size();
6965               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6966                                             this->got_, this->got_->g_o_t());
6967             }
6968         }
6969       else
6970         {
6971           if (this->glink_ != NULL)
6972             {
6973               this->glink_->finalize_data_size();
6974               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6975                                             this->glink_,
6976                                             (this->glink_->pltresolve_size
6977                                              - 32));
6978             }
6979         }
6980     }
6981
6982   // Emit any relocs we saved in an attempt to avoid generating COPY
6983   // relocs.
6984   if (this->copy_relocs_.any_saved_relocs())
6985     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6986 }
6987
6988 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6989 // reloc.
6990
6991 static bool
6992 ok_lo_toc_insn(uint32_t insn)
6993 {
6994   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6995           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6996           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6997           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6998           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6999           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7000           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7001           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7002           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7003           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7004           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7005           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7006           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7007           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7008           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7009               && (insn & 3) != 1)
7010           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7011               && ((insn & 3) == 0 || (insn & 3) == 3))
7012           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7013 }
7014
7015 // Return the value to use for a branch relocation.
7016
7017 template<int size, bool big_endian>
7018 bool
7019 Target_powerpc<size, big_endian>::symval_for_branch(
7020     const Symbol_table* symtab,
7021     const Sized_symbol<size>* gsym,
7022     Powerpc_relobj<size, big_endian>* object,
7023     Address *value,
7024     unsigned int *dest_shndx)
7025 {
7026   if (size == 32 || this->abiversion() >= 2)
7027     gold_unreachable();
7028   *dest_shndx = 0;
7029
7030   // If the symbol is defined in an opd section, ie. is a function
7031   // descriptor, use the function descriptor code entry address
7032   Powerpc_relobj<size, big_endian>* symobj = object;
7033   if (gsym != NULL
7034       && gsym->source() != Symbol::FROM_OBJECT)
7035     return true;
7036   if (gsym != NULL)
7037     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7038   unsigned int shndx = symobj->opd_shndx();
7039   if (shndx == 0)
7040     return true;
7041   Address opd_addr = symobj->get_output_section_offset(shndx);
7042   if (opd_addr == invalid_address)
7043     return true;
7044   opd_addr += symobj->output_section_address(shndx);
7045   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7046     {
7047       Address sec_off;
7048       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7049       if (symtab->is_section_folded(symobj, *dest_shndx))
7050         {
7051           Section_id folded
7052             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7053           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7054           *dest_shndx = folded.second;
7055         }
7056       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7057       if (sec_addr == invalid_address)
7058         return false;
7059
7060       sec_addr += symobj->output_section(*dest_shndx)->address();
7061       *value = sec_addr + sec_off;
7062     }
7063   return true;
7064 }
7065
7066 // Perform a relocation.
7067
7068 template<int size, bool big_endian>
7069 inline bool
7070 Target_powerpc<size, big_endian>::Relocate::relocate(
7071     const Relocate_info<size, big_endian>* relinfo,
7072     unsigned int,
7073     Target_powerpc* target,
7074     Output_section* os,
7075     size_t relnum,
7076     const unsigned char* preloc,
7077     const Sized_symbol<size>* gsym,
7078     const Symbol_value<size>* psymval,
7079     unsigned char* view,
7080     Address address,
7081     section_size_type view_size)
7082 {
7083   if (view == NULL)
7084     return true;
7085
7086   const elfcpp::Rela<size, big_endian> rela(preloc);
7087   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7088   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7089     {
7090     case Track_tls::NOT_EXPECTED:
7091       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7092                              _("__tls_get_addr call lacks marker reloc"));
7093       break;
7094     case Track_tls::EXPECTED:
7095       // We have already complained.
7096       break;
7097     case Track_tls::SKIP:
7098       return true;
7099     case Track_tls::NORMAL:
7100       break;
7101     }
7102
7103   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7104   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7105   typedef typename Reloc_types<elfcpp::SHT_RELA,
7106                                size, big_endian>::Reloc Reltype;
7107   // Offset from start of insn to d-field reloc.
7108   const int d_offset = big_endian ? 2 : 0;
7109
7110   Powerpc_relobj<size, big_endian>* const object
7111     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7112   Address value = 0;
7113   bool has_stub_value = false;
7114   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7115   if ((gsym != NULL
7116        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7117        : object->local_has_plt_offset(r_sym))
7118       && (!psymval->is_ifunc_symbol()
7119           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7120     {
7121       if (size == 64
7122           && gsym != NULL
7123           && target->abiversion() >= 2
7124           && !parameters->options().output_is_position_independent()
7125           && !is_branch_reloc(r_type))
7126         {
7127           Address off = target->glink_section()->find_global_entry(gsym);
7128           if (off != invalid_address)
7129             {
7130               value = target->glink_section()->global_entry_address() + off;
7131               has_stub_value = true;
7132             }
7133         }
7134       else
7135         {
7136           Stub_table<size, big_endian>* stub_table
7137             = object->stub_table(relinfo->data_shndx);
7138           if (stub_table == NULL)
7139             {
7140               // This is a ref from a data section to an ifunc symbol.
7141               if (target->stub_tables().size() != 0)
7142                 stub_table = target->stub_tables()[0];
7143             }
7144           if (stub_table != NULL)
7145             {
7146               Address off;
7147               if (gsym != NULL)
7148                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7149                                                       rela.get_r_addend());
7150               else
7151                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7152                                                       rela.get_r_addend());
7153               if (off != invalid_address)
7154                 {
7155                   value = stub_table->stub_address() + off;
7156                   has_stub_value = true;
7157                 }
7158             }
7159         }
7160       // We don't care too much about bogus debug references to
7161       // non-local functions, but otherwise there had better be a plt
7162       // call stub or global entry stub as appropriate.
7163       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7164     }
7165
7166   if (r_type == elfcpp::R_POWERPC_GOT16
7167       || r_type == elfcpp::R_POWERPC_GOT16_LO
7168       || r_type == elfcpp::R_POWERPC_GOT16_HI
7169       || r_type == elfcpp::R_POWERPC_GOT16_HA
7170       || r_type == elfcpp::R_PPC64_GOT16_DS
7171       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7172     {
7173       if (gsym != NULL)
7174         {
7175           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7176           value = gsym->got_offset(GOT_TYPE_STANDARD);
7177         }
7178       else
7179         {
7180           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7181           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7182           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7183         }
7184       value -= target->got_section()->got_base_offset(object);
7185     }
7186   else if (r_type == elfcpp::R_PPC64_TOC)
7187     {
7188       value = (target->got_section()->output_section()->address()
7189                + object->toc_base_offset());
7190     }
7191   else if (gsym != NULL
7192            && (r_type == elfcpp::R_POWERPC_REL24
7193                || r_type == elfcpp::R_PPC_PLTREL24)
7194            && has_stub_value)
7195     {
7196       if (size == 64)
7197         {
7198           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7199           Valtype* wv = reinterpret_cast<Valtype*>(view);
7200           bool can_plt_call = false;
7201           if (rela.get_r_offset() + 8 <= view_size)
7202             {
7203               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7204               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7205               if ((insn & 1) != 0
7206                   && (insn2 == nop
7207                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7208                 {
7209                   elfcpp::Swap<32, big_endian>::
7210                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7211                   can_plt_call = true;
7212                 }
7213             }
7214           if (!can_plt_call)
7215             {
7216               // If we don't have a branch and link followed by a nop,
7217               // we can't go via the plt because there is no place to
7218               // put a toc restoring instruction.
7219               // Unless we know we won't be returning.
7220               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7221                 can_plt_call = true;
7222             }
7223           if (!can_plt_call)
7224             {
7225               // g++ as of 20130507 emits self-calls without a
7226               // following nop.  This is arguably wrong since we have
7227               // conflicting information.  On the one hand a global
7228               // symbol and on the other a local call sequence, but
7229               // don't error for this special case.
7230               // It isn't possible to cheaply verify we have exactly
7231               // such a call.  Allow all calls to the same section.
7232               bool ok = false;
7233               Address code = value;
7234               if (gsym->source() == Symbol::FROM_OBJECT
7235                   && gsym->object() == object)
7236                 {
7237                   unsigned int dest_shndx = 0;
7238                   if (target->abiversion() < 2)
7239                     {
7240                       Address addend = rela.get_r_addend();
7241                       code = psymval->value(object, addend);
7242                       target->symval_for_branch(relinfo->symtab, gsym, object,
7243                                                 &code, &dest_shndx);
7244                     }
7245                   bool is_ordinary;
7246                   if (dest_shndx == 0)
7247                     dest_shndx = gsym->shndx(&is_ordinary);
7248                   ok = dest_shndx == relinfo->data_shndx;
7249                 }
7250               if (!ok)
7251                 {
7252                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7253                                          _("call lacks nop, can't restore toc; "
7254                                            "recompile with -fPIC"));
7255                   value = code;
7256                 }
7257             }
7258         }
7259     }
7260   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7261            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7262            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7263            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7264     {
7265       // First instruction of a global dynamic sequence, arg setup insn.
7266       const bool final = gsym == NULL || gsym->final_value_is_known();
7267       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7268       enum Got_type got_type = GOT_TYPE_STANDARD;
7269       if (tls_type == tls::TLSOPT_NONE)
7270         got_type = GOT_TYPE_TLSGD;
7271       else if (tls_type == tls::TLSOPT_TO_IE)
7272         got_type = GOT_TYPE_TPREL;
7273       if (got_type != GOT_TYPE_STANDARD)
7274         {
7275           if (gsym != NULL)
7276             {
7277               gold_assert(gsym->has_got_offset(got_type));
7278               value = gsym->got_offset(got_type);
7279             }
7280           else
7281             {
7282               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7283               gold_assert(object->local_has_got_offset(r_sym, got_type));
7284               value = object->local_got_offset(r_sym, got_type);
7285             }
7286           value -= target->got_section()->got_base_offset(object);
7287         }
7288       if (tls_type == tls::TLSOPT_TO_IE)
7289         {
7290           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7291               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7292             {
7293               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7294               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7295               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7296               if (size == 32)
7297                 insn |= 32 << 26; // lwz
7298               else
7299                 insn |= 58 << 26; // ld
7300               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7301             }
7302           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7303                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7304         }
7305       else if (tls_type == tls::TLSOPT_TO_LE)
7306         {
7307           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7308               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7309             {
7310               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7311               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7312               insn &= (1 << 26) - (1 << 21); // extract rt
7313               if (size == 32)
7314                 insn |= addis_0_2;
7315               else
7316                 insn |= addis_0_13;
7317               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7318               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7319               value = psymval->value(object, rela.get_r_addend());
7320             }
7321           else
7322             {
7323               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7324               Insn insn = nop;
7325               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7326               r_type = elfcpp::R_POWERPC_NONE;
7327             }
7328         }
7329     }
7330   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7331            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7332            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7333            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7334     {
7335       // First instruction of a local dynamic sequence, arg setup insn.
7336       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7337       if (tls_type == tls::TLSOPT_NONE)
7338         {
7339           value = target->tlsld_got_offset();
7340           value -= target->got_section()->got_base_offset(object);
7341         }
7342       else
7343         {
7344           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7345           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7346               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7347             {
7348               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7349               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7350               insn &= (1 << 26) - (1 << 21); // extract rt
7351               if (size == 32)
7352                 insn |= addis_0_2;
7353               else
7354                 insn |= addis_0_13;
7355               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7356               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7357               value = dtp_offset;
7358             }
7359           else
7360             {
7361               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7362               Insn insn = nop;
7363               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7364               r_type = elfcpp::R_POWERPC_NONE;
7365             }
7366         }
7367     }
7368   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7369            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7370            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7371            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7372     {
7373       // Accesses relative to a local dynamic sequence address,
7374       // no optimisation here.
7375       if (gsym != NULL)
7376         {
7377           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7378           value = gsym->got_offset(GOT_TYPE_DTPREL);
7379         }
7380       else
7381         {
7382           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7383           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7384           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7385         }
7386       value -= target->got_section()->got_base_offset(object);
7387     }
7388   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7389            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7390            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7391            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7392     {
7393       // First instruction of initial exec sequence.
7394       const bool final = gsym == NULL || gsym->final_value_is_known();
7395       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7396       if (tls_type == tls::TLSOPT_NONE)
7397         {
7398           if (gsym != NULL)
7399             {
7400               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7401               value = gsym->got_offset(GOT_TYPE_TPREL);
7402             }
7403           else
7404             {
7405               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7406               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7407               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7408             }
7409           value -= target->got_section()->got_base_offset(object);
7410         }
7411       else
7412         {
7413           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7414           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7415               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7416             {
7417               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7418               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7419               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7420               if (size == 32)
7421                 insn |= addis_0_2;
7422               else
7423                 insn |= addis_0_13;
7424               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7425               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7426               value = psymval->value(object, rela.get_r_addend());
7427             }
7428           else
7429             {
7430               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7431               Insn insn = nop;
7432               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7433               r_type = elfcpp::R_POWERPC_NONE;
7434             }
7435         }
7436     }
7437   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7438            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7439     {
7440       // Second instruction of a global dynamic sequence,
7441       // the __tls_get_addr call
7442       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7443       const bool final = gsym == NULL || gsym->final_value_is_known();
7444       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7445       if (tls_type != tls::TLSOPT_NONE)
7446         {
7447           if (tls_type == tls::TLSOPT_TO_IE)
7448             {
7449               Insn* iview = reinterpret_cast<Insn*>(view);
7450               Insn insn = add_3_3_13;
7451               if (size == 32)
7452                 insn = add_3_3_2;
7453               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7454               r_type = elfcpp::R_POWERPC_NONE;
7455             }
7456           else
7457             {
7458               Insn* iview = reinterpret_cast<Insn*>(view);
7459               Insn insn = addi_3_3;
7460               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7461               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7462               view += d_offset;
7463               value = psymval->value(object, rela.get_r_addend());
7464             }
7465           this->skip_next_tls_get_addr_call();
7466         }
7467     }
7468   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7469            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7470     {
7471       // Second instruction of a local dynamic sequence,
7472       // the __tls_get_addr call
7473       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7474       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7475       if (tls_type == tls::TLSOPT_TO_LE)
7476         {
7477           Insn* iview = reinterpret_cast<Insn*>(view);
7478           Insn insn = addi_3_3;
7479           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7480           this->skip_next_tls_get_addr_call();
7481           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7482           view += d_offset;
7483           value = dtp_offset;
7484         }
7485     }
7486   else if (r_type == elfcpp::R_POWERPC_TLS)
7487     {
7488       // Second instruction of an initial exec sequence
7489       const bool final = gsym == NULL || gsym->final_value_is_known();
7490       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7491       if (tls_type == tls::TLSOPT_TO_LE)
7492         {
7493           Insn* iview = reinterpret_cast<Insn*>(view);
7494           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7495           unsigned int reg = size == 32 ? 2 : 13;
7496           insn = at_tls_transform(insn, reg);
7497           gold_assert(insn != 0);
7498           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7499           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7500           view += d_offset;
7501           value = psymval->value(object, rela.get_r_addend());
7502         }
7503     }
7504   else if (!has_stub_value)
7505     {
7506       Address addend = 0;
7507       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7508         addend = rela.get_r_addend();
7509       value = psymval->value(object, addend);
7510       if (size == 64 && is_branch_reloc(r_type))
7511         {
7512           if (target->abiversion() >= 2)
7513             {
7514               if (gsym != NULL)
7515                 value += object->ppc64_local_entry_offset(gsym);
7516               else
7517                 value += object->ppc64_local_entry_offset(r_sym);
7518             }
7519           else
7520             {
7521               unsigned int dest_shndx;
7522               target->symval_for_branch(relinfo->symtab, gsym, object,
7523                                         &value, &dest_shndx);
7524             }
7525         }
7526       Address max_branch_offset = max_branch_delta(r_type);
7527       if (max_branch_offset != 0
7528           && value - address + max_branch_offset >= 2 * max_branch_offset)
7529         {
7530           Stub_table<size, big_endian>* stub_table
7531             = object->stub_table(relinfo->data_shndx);
7532           if (stub_table != NULL)
7533             {
7534               Address off = stub_table->find_long_branch_entry(object, value);
7535               if (off != invalid_address)
7536                 {
7537                   value = (stub_table->stub_address() + stub_table->plt_size()
7538                            + off);
7539                   has_stub_value = true;
7540                 }
7541             }
7542         }
7543     }
7544
7545   switch (r_type)
7546     {
7547     case elfcpp::R_PPC64_REL64:
7548     case elfcpp::R_POWERPC_REL32:
7549     case elfcpp::R_POWERPC_REL24:
7550     case elfcpp::R_PPC_PLTREL24:
7551     case elfcpp::R_PPC_LOCAL24PC:
7552     case elfcpp::R_POWERPC_REL16:
7553     case elfcpp::R_POWERPC_REL16_LO:
7554     case elfcpp::R_POWERPC_REL16_HI:
7555     case elfcpp::R_POWERPC_REL16_HA:
7556     case elfcpp::R_POWERPC_REL16DX_HA:
7557     case elfcpp::R_POWERPC_REL14:
7558     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7559     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7560       value -= address;
7561       break;
7562
7563     case elfcpp::R_PPC64_TOC16:
7564     case elfcpp::R_PPC64_TOC16_LO:
7565     case elfcpp::R_PPC64_TOC16_HI:
7566     case elfcpp::R_PPC64_TOC16_HA:
7567     case elfcpp::R_PPC64_TOC16_DS:
7568     case elfcpp::R_PPC64_TOC16_LO_DS:
7569       // Subtract the TOC base address.
7570       value -= (target->got_section()->output_section()->address()
7571                 + object->toc_base_offset());
7572       break;
7573
7574     case elfcpp::R_POWERPC_SECTOFF:
7575     case elfcpp::R_POWERPC_SECTOFF_LO:
7576     case elfcpp::R_POWERPC_SECTOFF_HI:
7577     case elfcpp::R_POWERPC_SECTOFF_HA:
7578     case elfcpp::R_PPC64_SECTOFF_DS:
7579     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7580       if (os != NULL)
7581         value -= os->address();
7582       break;
7583
7584     case elfcpp::R_PPC64_TPREL16_DS:
7585     case elfcpp::R_PPC64_TPREL16_LO_DS:
7586     case elfcpp::R_PPC64_TPREL16_HIGH:
7587     case elfcpp::R_PPC64_TPREL16_HIGHA:
7588       if (size != 64)
7589         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7590         break;
7591     case elfcpp::R_POWERPC_TPREL16:
7592     case elfcpp::R_POWERPC_TPREL16_LO:
7593     case elfcpp::R_POWERPC_TPREL16_HI:
7594     case elfcpp::R_POWERPC_TPREL16_HA:
7595     case elfcpp::R_POWERPC_TPREL:
7596     case elfcpp::R_PPC64_TPREL16_HIGHER:
7597     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7598     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7599     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7600       // tls symbol values are relative to tls_segment()->vaddr()
7601       value -= tp_offset;
7602       break;
7603
7604     case elfcpp::R_PPC64_DTPREL16_DS:
7605     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7606     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7607     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7608     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7609     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7610       if (size != 64)
7611         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7612         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7613         break;
7614     case elfcpp::R_POWERPC_DTPREL16:
7615     case elfcpp::R_POWERPC_DTPREL16_LO:
7616     case elfcpp::R_POWERPC_DTPREL16_HI:
7617     case elfcpp::R_POWERPC_DTPREL16_HA:
7618     case elfcpp::R_POWERPC_DTPREL:
7619     case elfcpp::R_PPC64_DTPREL16_HIGH:
7620     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7621       // tls symbol values are relative to tls_segment()->vaddr()
7622       value -= dtp_offset;
7623       break;
7624
7625     case elfcpp::R_PPC64_ADDR64_LOCAL:
7626       if (gsym != NULL)
7627         value += object->ppc64_local_entry_offset(gsym);
7628       else
7629         value += object->ppc64_local_entry_offset(r_sym);
7630       break;
7631
7632     default:
7633       break;
7634     }
7635
7636   Insn branch_bit = 0;
7637   switch (r_type)
7638     {
7639     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7640     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7641       branch_bit = 1 << 21;
7642     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7643     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7644       {
7645         Insn* iview = reinterpret_cast<Insn*>(view);
7646         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7647         insn &= ~(1 << 21);
7648         insn |= branch_bit;
7649         if (this->is_isa_v2)
7650           {
7651             // Set 'a' bit.  This is 0b00010 in BO field for branch
7652             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7653             // for branch on CTR insns (BO == 1a00t or 1a01t).
7654             if ((insn & (0x14 << 21)) == (0x04 << 21))
7655               insn |= 0x02 << 21;
7656             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7657               insn |= 0x08 << 21;
7658             else
7659               break;
7660           }
7661         else
7662           {
7663             // Invert 'y' bit if not the default.
7664             if (static_cast<Signed_address>(value) < 0)
7665               insn ^= 1 << 21;
7666           }
7667         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7668       }
7669       break;
7670
7671     default:
7672       break;
7673     }
7674
7675   if (size == 64)
7676     {
7677       // Multi-instruction sequences that access the TOC can be
7678       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7679       // to             nop;           addi rb,r2,x;
7680       switch (r_type)
7681         {
7682         default:
7683           break;
7684
7685         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7686         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7687         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7688         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7689         case elfcpp::R_POWERPC_GOT16_HA:
7690         case elfcpp::R_PPC64_TOC16_HA:
7691           if (parameters->options().toc_optimize())
7692             {
7693               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7694               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7695               if ((insn & ((0x3f << 26) | 0x1f << 16))
7696                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7697                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7698                                        _("toc optimization is not supported "
7699                                          "for %#08x instruction"), insn);
7700               else if (value + 0x8000 < 0x10000)
7701                 {
7702                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7703                   return true;
7704                 }
7705             }
7706           break;
7707
7708         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7709         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7710         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7711         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7712         case elfcpp::R_POWERPC_GOT16_LO:
7713         case elfcpp::R_PPC64_GOT16_LO_DS:
7714         case elfcpp::R_PPC64_TOC16_LO:
7715         case elfcpp::R_PPC64_TOC16_LO_DS:
7716           if (parameters->options().toc_optimize())
7717             {
7718               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7719               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7720               if (!ok_lo_toc_insn(insn))
7721                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7722                                        _("toc optimization is not supported "
7723                                          "for %#08x instruction"), insn);
7724               else if (value + 0x8000 < 0x10000)
7725                 {
7726                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7727                     {
7728                       // Transform addic to addi when we change reg.
7729                       insn &= ~((0x3f << 26) | (0x1f << 16));
7730                       insn |= (14u << 26) | (2 << 16);
7731                     }
7732                   else
7733                     {
7734                       insn &= ~(0x1f << 16);
7735                       insn |= 2 << 16;
7736                     }
7737                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7738                 }
7739             }
7740           break;
7741
7742         case elfcpp::R_PPC64_ENTRY:
7743           value = (target->got_section()->output_section()->address()
7744                    + object->toc_base_offset());
7745           if (value + 0x80008000 <= 0xffffffff
7746               && !parameters->options().output_is_position_independent())
7747             {
7748               Insn* iview = reinterpret_cast<Insn*>(view);
7749               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7750               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7751
7752               if ((insn1 & ~0xfffc) == ld_2_12
7753                   && insn2 == add_2_2_12)
7754                 {
7755                   insn1 = lis_2 + ha(value);
7756                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7757                   insn2 = addi_2_2 + l(value);
7758                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7759                   return true;
7760                 }
7761             }
7762           else
7763             {
7764               value -= address;
7765               if (value + 0x80008000 <= 0xffffffff)
7766                 {
7767                   Insn* iview = reinterpret_cast<Insn*>(view);
7768                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7769                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7770
7771                   if ((insn1 & ~0xfffc) == ld_2_12
7772                       && insn2 == add_2_2_12)
7773                     {
7774                       insn1 = addis_2_12 + ha(value);
7775                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7776                       insn2 = addi_2_2 + l(value);
7777                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7778                       return true;
7779                     }
7780                 }
7781             }
7782           break;
7783
7784         case elfcpp::R_POWERPC_REL16_LO:
7785           // If we are generating a non-PIC executable, edit
7786           //    0:      addis 2,12,.TOC.-0b@ha
7787           //            addi 2,2,.TOC.-0b@l
7788           // used by ELFv2 global entry points to set up r2, to
7789           //            lis 2,.TOC.@ha
7790           //            addi 2,2,.TOC.@l
7791           // if .TOC. is in range.  */
7792           if (value + address - 4 + 0x80008000 <= 0xffffffff
7793               && relnum != 0
7794               && preloc != NULL
7795               && target->abiversion() >= 2
7796               && !parameters->options().output_is_position_independent()
7797               && rela.get_r_addend() == d_offset + 4
7798               && gsym != NULL
7799               && strcmp(gsym->name(), ".TOC.") == 0)
7800             {
7801               const int reloc_size
7802                 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7803               Reltype prev_rela(preloc - reloc_size);
7804               if ((prev_rela.get_r_info()
7805                    == elfcpp::elf_r_info<size>(r_sym,
7806                                                elfcpp::R_POWERPC_REL16_HA))
7807                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7808                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7809                 {
7810                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7811                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7812                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7813
7814                   if ((insn1 & 0xffff0000) == addis_2_12
7815                       && (insn2 & 0xffff0000) == addi_2_2)
7816                     {
7817                       insn1 = lis_2 + ha(value + address - 4);
7818                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7819                       insn2 = addi_2_2 + l(value + address - 4);
7820                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7821                       if (relinfo->rr)
7822                         {
7823                           relinfo->rr->set_strategy(relnum - 1,
7824                                                     Relocatable_relocs::RELOC_SPECIAL);
7825                           relinfo->rr->set_strategy(relnum,
7826                                                     Relocatable_relocs::RELOC_SPECIAL);
7827                         }
7828                       return true;
7829                     }
7830                 }
7831             }
7832           break;
7833         }
7834     }
7835
7836   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7837   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7838   switch (r_type)
7839     {
7840     case elfcpp::R_POWERPC_ADDR32:
7841     case elfcpp::R_POWERPC_UADDR32:
7842       if (size == 64)
7843         overflow = Reloc::CHECK_BITFIELD;
7844       break;
7845
7846     case elfcpp::R_POWERPC_REL32:
7847     case elfcpp::R_POWERPC_REL16DX_HA:
7848       if (size == 64)
7849         overflow = Reloc::CHECK_SIGNED;
7850       break;
7851
7852     case elfcpp::R_POWERPC_UADDR16:
7853       overflow = Reloc::CHECK_BITFIELD;
7854       break;
7855
7856     case elfcpp::R_POWERPC_ADDR16:
7857       // We really should have three separate relocations,
7858       // one for 16-bit data, one for insns with 16-bit signed fields,
7859       // and one for insns with 16-bit unsigned fields.
7860       overflow = Reloc::CHECK_BITFIELD;
7861       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7862         overflow = Reloc::CHECK_LOW_INSN;
7863       break;
7864
7865     case elfcpp::R_POWERPC_ADDR16_HI:
7866     case elfcpp::R_POWERPC_ADDR16_HA:
7867     case elfcpp::R_POWERPC_GOT16_HI:
7868     case elfcpp::R_POWERPC_GOT16_HA:
7869     case elfcpp::R_POWERPC_PLT16_HI:
7870     case elfcpp::R_POWERPC_PLT16_HA:
7871     case elfcpp::R_POWERPC_SECTOFF_HI:
7872     case elfcpp::R_POWERPC_SECTOFF_HA:
7873     case elfcpp::R_PPC64_TOC16_HI:
7874     case elfcpp::R_PPC64_TOC16_HA:
7875     case elfcpp::R_PPC64_PLTGOT16_HI:
7876     case elfcpp::R_PPC64_PLTGOT16_HA:
7877     case elfcpp::R_POWERPC_TPREL16_HI:
7878     case elfcpp::R_POWERPC_TPREL16_HA:
7879     case elfcpp::R_POWERPC_DTPREL16_HI:
7880     case elfcpp::R_POWERPC_DTPREL16_HA:
7881     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7882     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7883     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7884     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7885     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7886     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7887     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7888     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7889     case elfcpp::R_POWERPC_REL16_HI:
7890     case elfcpp::R_POWERPC_REL16_HA:
7891       if (size != 32)
7892         overflow = Reloc::CHECK_HIGH_INSN;
7893       break;
7894
7895     case elfcpp::R_POWERPC_REL16:
7896     case elfcpp::R_PPC64_TOC16:
7897     case elfcpp::R_POWERPC_GOT16:
7898     case elfcpp::R_POWERPC_SECTOFF:
7899     case elfcpp::R_POWERPC_TPREL16:
7900     case elfcpp::R_POWERPC_DTPREL16:
7901     case elfcpp::R_POWERPC_GOT_TLSGD16:
7902     case elfcpp::R_POWERPC_GOT_TLSLD16:
7903     case elfcpp::R_POWERPC_GOT_TPREL16:
7904     case elfcpp::R_POWERPC_GOT_DTPREL16:
7905       overflow = Reloc::CHECK_LOW_INSN;
7906       break;
7907
7908     case elfcpp::R_POWERPC_ADDR24:
7909     case elfcpp::R_POWERPC_ADDR14:
7910     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7911     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7912     case elfcpp::R_PPC64_ADDR16_DS:
7913     case elfcpp::R_POWERPC_REL24:
7914     case elfcpp::R_PPC_PLTREL24:
7915     case elfcpp::R_PPC_LOCAL24PC:
7916     case elfcpp::R_PPC64_TPREL16_DS:
7917     case elfcpp::R_PPC64_DTPREL16_DS:
7918     case elfcpp::R_PPC64_TOC16_DS:
7919     case elfcpp::R_PPC64_GOT16_DS:
7920     case elfcpp::R_PPC64_SECTOFF_DS:
7921     case elfcpp::R_POWERPC_REL14:
7922     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7923     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7924       overflow = Reloc::CHECK_SIGNED;
7925       break;
7926     }
7927
7928   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7929   Insn insn = 0;
7930
7931   if (overflow == Reloc::CHECK_LOW_INSN
7932       || overflow == Reloc::CHECK_HIGH_INSN)
7933     {
7934       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7935
7936       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7937         overflow = Reloc::CHECK_BITFIELD;
7938       else if (overflow == Reloc::CHECK_LOW_INSN
7939                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7940                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7941                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7942                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7943                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7944                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7945         overflow = Reloc::CHECK_UNSIGNED;
7946       else
7947         overflow = Reloc::CHECK_SIGNED;
7948     }
7949
7950   bool maybe_dq_reloc = false;
7951   typename Powerpc_relocate_functions<size, big_endian>::Status status
7952     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7953   switch (r_type)
7954     {
7955     case elfcpp::R_POWERPC_NONE:
7956     case elfcpp::R_POWERPC_TLS:
7957     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7958     case elfcpp::R_POWERPC_GNU_VTENTRY:
7959       break;
7960
7961     case elfcpp::R_PPC64_ADDR64:
7962     case elfcpp::R_PPC64_REL64:
7963     case elfcpp::R_PPC64_TOC:
7964     case elfcpp::R_PPC64_ADDR64_LOCAL:
7965       Reloc::addr64(view, value);
7966       break;
7967
7968     case elfcpp::R_POWERPC_TPREL:
7969     case elfcpp::R_POWERPC_DTPREL:
7970       if (size == 64)
7971         Reloc::addr64(view, value);
7972       else
7973         status = Reloc::addr32(view, value, overflow);
7974       break;
7975
7976     case elfcpp::R_PPC64_UADDR64:
7977       Reloc::addr64_u(view, value);
7978       break;
7979
7980     case elfcpp::R_POWERPC_ADDR32:
7981       status = Reloc::addr32(view, value, overflow);
7982       break;
7983
7984     case elfcpp::R_POWERPC_REL32:
7985     case elfcpp::R_POWERPC_UADDR32:
7986       status = Reloc::addr32_u(view, value, overflow);
7987       break;
7988
7989     case elfcpp::R_POWERPC_ADDR24:
7990     case elfcpp::R_POWERPC_REL24:
7991     case elfcpp::R_PPC_PLTREL24:
7992     case elfcpp::R_PPC_LOCAL24PC:
7993       status = Reloc::addr24(view, value, overflow);
7994       break;
7995
7996     case elfcpp::R_POWERPC_GOT_DTPREL16:
7997     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7998     case elfcpp::R_POWERPC_GOT_TPREL16:
7999     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8000       if (size == 64)
8001         {
8002           // On ppc64 these are all ds form
8003           maybe_dq_reloc = true;
8004           break;
8005         }
8006     case elfcpp::R_POWERPC_ADDR16:
8007     case elfcpp::R_POWERPC_REL16:
8008     case elfcpp::R_PPC64_TOC16:
8009     case elfcpp::R_POWERPC_GOT16:
8010     case elfcpp::R_POWERPC_SECTOFF:
8011     case elfcpp::R_POWERPC_TPREL16:
8012     case elfcpp::R_POWERPC_DTPREL16:
8013     case elfcpp::R_POWERPC_GOT_TLSGD16:
8014     case elfcpp::R_POWERPC_GOT_TLSLD16:
8015     case elfcpp::R_POWERPC_ADDR16_LO:
8016     case elfcpp::R_POWERPC_REL16_LO:
8017     case elfcpp::R_PPC64_TOC16_LO:
8018     case elfcpp::R_POWERPC_GOT16_LO:
8019     case elfcpp::R_POWERPC_SECTOFF_LO:
8020     case elfcpp::R_POWERPC_TPREL16_LO:
8021     case elfcpp::R_POWERPC_DTPREL16_LO:
8022     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8023     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8024       if (size == 64)
8025         status = Reloc::addr16(view, value, overflow);
8026       else
8027         maybe_dq_reloc = true;
8028       break;
8029
8030     case elfcpp::R_POWERPC_UADDR16:
8031       status = Reloc::addr16_u(view, value, overflow);
8032       break;
8033
8034     case elfcpp::R_PPC64_ADDR16_HIGH:
8035     case elfcpp::R_PPC64_TPREL16_HIGH:
8036     case elfcpp::R_PPC64_DTPREL16_HIGH:
8037       if (size == 32)
8038         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8039         goto unsupp;
8040     case elfcpp::R_POWERPC_ADDR16_HI:
8041     case elfcpp::R_POWERPC_REL16_HI:
8042     case elfcpp::R_PPC64_TOC16_HI:
8043     case elfcpp::R_POWERPC_GOT16_HI:
8044     case elfcpp::R_POWERPC_SECTOFF_HI:
8045     case elfcpp::R_POWERPC_TPREL16_HI:
8046     case elfcpp::R_POWERPC_DTPREL16_HI:
8047     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8048     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8049     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8050     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8051       Reloc::addr16_hi(view, value);
8052       break;
8053
8054     case elfcpp::R_PPC64_ADDR16_HIGHA:
8055     case elfcpp::R_PPC64_TPREL16_HIGHA:
8056     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8057       if (size == 32)
8058         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8059         goto unsupp;
8060     case elfcpp::R_POWERPC_ADDR16_HA:
8061     case elfcpp::R_POWERPC_REL16_HA:
8062     case elfcpp::R_PPC64_TOC16_HA:
8063     case elfcpp::R_POWERPC_GOT16_HA:
8064     case elfcpp::R_POWERPC_SECTOFF_HA:
8065     case elfcpp::R_POWERPC_TPREL16_HA:
8066     case elfcpp::R_POWERPC_DTPREL16_HA:
8067     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8068     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8069     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8070     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8071       Reloc::addr16_ha(view, value);
8072       break;
8073
8074     case elfcpp::R_POWERPC_REL16DX_HA:
8075       status = Reloc::addr16dx_ha(view, value, overflow);
8076       break;
8077
8078     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8079       if (size == 32)
8080         // R_PPC_EMB_NADDR16_LO
8081         goto unsupp;
8082     case elfcpp::R_PPC64_ADDR16_HIGHER:
8083     case elfcpp::R_PPC64_TPREL16_HIGHER:
8084       Reloc::addr16_hi2(view, value);
8085       break;
8086
8087     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8088       if (size == 32)
8089         // R_PPC_EMB_NADDR16_HI
8090         goto unsupp;
8091     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8092     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8093       Reloc::addr16_ha2(view, value);
8094       break;
8095
8096     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8097       if (size == 32)
8098         // R_PPC_EMB_NADDR16_HA
8099         goto unsupp;
8100     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8101     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8102       Reloc::addr16_hi3(view, value);
8103       break;
8104
8105     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8106       if (size == 32)
8107         // R_PPC_EMB_SDAI16
8108         goto unsupp;
8109     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8110     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8111       Reloc::addr16_ha3(view, value);
8112       break;
8113
8114     case elfcpp::R_PPC64_DTPREL16_DS:
8115     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8116       if (size == 32)
8117         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8118         goto unsupp;
8119     case elfcpp::R_PPC64_TPREL16_DS:
8120     case elfcpp::R_PPC64_TPREL16_LO_DS:
8121       if (size == 32)
8122         // R_PPC_TLSGD, R_PPC_TLSLD
8123         break;
8124     case elfcpp::R_PPC64_ADDR16_DS:
8125     case elfcpp::R_PPC64_ADDR16_LO_DS:
8126     case elfcpp::R_PPC64_TOC16_DS:
8127     case elfcpp::R_PPC64_TOC16_LO_DS:
8128     case elfcpp::R_PPC64_GOT16_DS:
8129     case elfcpp::R_PPC64_GOT16_LO_DS:
8130     case elfcpp::R_PPC64_SECTOFF_DS:
8131     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8132       maybe_dq_reloc = true;
8133       break;
8134
8135     case elfcpp::R_POWERPC_ADDR14:
8136     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8137     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8138     case elfcpp::R_POWERPC_REL14:
8139     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8140     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8141       status = Reloc::addr14(view, value, overflow);
8142       break;
8143
8144     case elfcpp::R_POWERPC_COPY:
8145     case elfcpp::R_POWERPC_GLOB_DAT:
8146     case elfcpp::R_POWERPC_JMP_SLOT:
8147     case elfcpp::R_POWERPC_RELATIVE:
8148     case elfcpp::R_POWERPC_DTPMOD:
8149     case elfcpp::R_PPC64_JMP_IREL:
8150     case elfcpp::R_POWERPC_IRELATIVE:
8151       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8152                              _("unexpected reloc %u in object file"),
8153                              r_type);
8154       break;
8155
8156     case elfcpp::R_PPC_EMB_SDA21:
8157       if (size == 32)
8158         goto unsupp;
8159       else
8160         {
8161           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8162         }
8163       break;
8164
8165     case elfcpp::R_PPC_EMB_SDA2I16:
8166     case elfcpp::R_PPC_EMB_SDA2REL:
8167       if (size == 32)
8168         goto unsupp;
8169       // R_PPC64_TLSGD, R_PPC64_TLSLD
8170       break;
8171
8172     case elfcpp::R_POWERPC_PLT32:
8173     case elfcpp::R_POWERPC_PLTREL32:
8174     case elfcpp::R_POWERPC_PLT16_LO:
8175     case elfcpp::R_POWERPC_PLT16_HI:
8176     case elfcpp::R_POWERPC_PLT16_HA:
8177     case elfcpp::R_PPC_SDAREL16:
8178     case elfcpp::R_POWERPC_ADDR30:
8179     case elfcpp::R_PPC64_PLT64:
8180     case elfcpp::R_PPC64_PLTREL64:
8181     case elfcpp::R_PPC64_PLTGOT16:
8182     case elfcpp::R_PPC64_PLTGOT16_LO:
8183     case elfcpp::R_PPC64_PLTGOT16_HI:
8184     case elfcpp::R_PPC64_PLTGOT16_HA:
8185     case elfcpp::R_PPC64_PLT16_LO_DS:
8186     case elfcpp::R_PPC64_PLTGOT16_DS:
8187     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8188     case elfcpp::R_PPC_EMB_RELSDA:
8189     case elfcpp::R_PPC_TOC16:
8190     default:
8191     unsupp:
8192       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8193                              _("unsupported reloc %u"),
8194                              r_type);
8195       break;
8196     }
8197
8198   if (maybe_dq_reloc)
8199     {
8200       if (insn == 0)
8201         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8202
8203       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8204           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8205               && (insn & 3) == 1))
8206         status = Reloc::addr16_dq(view, value, overflow);
8207       else if (size == 64
8208                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8209                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8210                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8211                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8212         status = Reloc::addr16_ds(view, value, overflow);
8213       else
8214         status = Reloc::addr16(view, value, overflow);
8215     }
8216
8217   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8218       && (has_stub_value
8219           || !(gsym != NULL
8220                && gsym->is_undefined()
8221                && is_branch_reloc(r_type))))
8222     {
8223       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8224                              _("relocation overflow"));
8225       if (has_stub_value)
8226         gold_info(_("try relinking with a smaller --stub-group-size"));
8227     }
8228
8229   return true;
8230 }
8231
8232 // Relocate section data.
8233
8234 template<int size, bool big_endian>
8235 void
8236 Target_powerpc<size, big_endian>::relocate_section(
8237     const Relocate_info<size, big_endian>* relinfo,
8238     unsigned int sh_type,
8239     const unsigned char* prelocs,
8240     size_t reloc_count,
8241     Output_section* output_section,
8242     bool needs_special_offset_handling,
8243     unsigned char* view,
8244     Address address,
8245     section_size_type view_size,
8246     const Reloc_symbol_changes* reloc_symbol_changes)
8247 {
8248   typedef Target_powerpc<size, big_endian> Powerpc;
8249   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8250   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8251     Powerpc_comdat_behavior;
8252   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8253       Classify_reloc;
8254
8255   gold_assert(sh_type == elfcpp::SHT_RELA);
8256
8257   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8258                          Powerpc_comdat_behavior, Classify_reloc>(
8259     relinfo,
8260     this,
8261     prelocs,
8262     reloc_count,
8263     output_section,
8264     needs_special_offset_handling,
8265     view,
8266     address,
8267     view_size,
8268     reloc_symbol_changes);
8269 }
8270
8271 template<int size, bool big_endian>
8272 class Powerpc_scan_relocatable_reloc
8273 {
8274 public:
8275   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8276       Reltype;
8277   static const int reloc_size =
8278       Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8279   static const int sh_type = elfcpp::SHT_RELA;
8280
8281   // Return the symbol referred to by the relocation.
8282   static inline unsigned int
8283   get_r_sym(const Reltype* reloc)
8284   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8285
8286   // Return the type of the relocation.
8287   static inline unsigned int
8288   get_r_type(const Reltype* reloc)
8289   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8290
8291   // Return the strategy to use for a local symbol which is not a
8292   // section symbol, given the relocation type.
8293   inline Relocatable_relocs::Reloc_strategy
8294   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8295   {
8296     if (r_type == 0 && r_sym == 0)
8297       return Relocatable_relocs::RELOC_DISCARD;
8298     return Relocatable_relocs::RELOC_COPY;
8299   }
8300
8301   // Return the strategy to use for a local symbol which is a section
8302   // symbol, given the relocation type.
8303   inline Relocatable_relocs::Reloc_strategy
8304   local_section_strategy(unsigned int, Relobj*)
8305   {
8306     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8307   }
8308
8309   // Return the strategy to use for a global symbol, given the
8310   // relocation type, the object, and the symbol index.
8311   inline Relocatable_relocs::Reloc_strategy
8312   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8313   {
8314     if (r_type == elfcpp::R_PPC_PLTREL24)
8315       return Relocatable_relocs::RELOC_SPECIAL;
8316     return Relocatable_relocs::RELOC_COPY;
8317   }
8318 };
8319
8320 // Scan the relocs during a relocatable link.
8321
8322 template<int size, bool big_endian>
8323 void
8324 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8325     Symbol_table* symtab,
8326     Layout* layout,
8327     Sized_relobj_file<size, big_endian>* object,
8328     unsigned int data_shndx,
8329     unsigned int sh_type,
8330     const unsigned char* prelocs,
8331     size_t reloc_count,
8332     Output_section* output_section,
8333     bool needs_special_offset_handling,
8334     size_t local_symbol_count,
8335     const unsigned char* plocal_symbols,
8336     Relocatable_relocs* rr)
8337 {
8338   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8339
8340   gold_assert(sh_type == elfcpp::SHT_RELA);
8341
8342   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8343     symtab,
8344     layout,
8345     object,
8346     data_shndx,
8347     prelocs,
8348     reloc_count,
8349     output_section,
8350     needs_special_offset_handling,
8351     local_symbol_count,
8352     plocal_symbols,
8353     rr);
8354 }
8355
8356 // Scan the relocs for --emit-relocs.
8357
8358 template<int size, bool big_endian>
8359 void
8360 Target_powerpc<size, big_endian>::emit_relocs_scan(
8361     Symbol_table* symtab,
8362     Layout* layout,
8363     Sized_relobj_file<size, big_endian>* object,
8364     unsigned int data_shndx,
8365     unsigned int sh_type,
8366     const unsigned char* prelocs,
8367     size_t reloc_count,
8368     Output_section* output_section,
8369     bool needs_special_offset_handling,
8370     size_t local_symbol_count,
8371     const unsigned char* plocal_syms,
8372     Relocatable_relocs* rr)
8373 {
8374   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8375       Classify_reloc;
8376   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8377       Emit_relocs_strategy;
8378
8379   gold_assert(sh_type == elfcpp::SHT_RELA);
8380
8381   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8382     symtab,
8383     layout,
8384     object,
8385     data_shndx,
8386     prelocs,
8387     reloc_count,
8388     output_section,
8389     needs_special_offset_handling,
8390     local_symbol_count,
8391     plocal_syms,
8392     rr);
8393 }
8394
8395 // Emit relocations for a section.
8396 // This is a modified version of the function by the same name in
8397 // target-reloc.h.  Using relocate_special_relocatable for
8398 // R_PPC_PLTREL24 would require duplication of the entire body of the
8399 // loop, so we may as well duplicate the whole thing.
8400
8401 template<int size, bool big_endian>
8402 void
8403 Target_powerpc<size, big_endian>::relocate_relocs(
8404     const Relocate_info<size, big_endian>* relinfo,
8405     unsigned int sh_type,
8406     const unsigned char* prelocs,
8407     size_t reloc_count,
8408     Output_section* output_section,
8409     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8410     unsigned char*,
8411     Address view_address,
8412     section_size_type,
8413     unsigned char* reloc_view,
8414     section_size_type reloc_view_size)
8415 {
8416   gold_assert(sh_type == elfcpp::SHT_RELA);
8417
8418   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8419     Reltype;
8420   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8421     Reltype_write;
8422   const int reloc_size
8423     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8424   // Offset from start of insn to d-field reloc.
8425   const int d_offset = big_endian ? 2 : 0;
8426
8427   Powerpc_relobj<size, big_endian>* const object
8428     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8429   const unsigned int local_count = object->local_symbol_count();
8430   unsigned int got2_shndx = object->got2_shndx();
8431   Address got2_addend = 0;
8432   if (got2_shndx != 0)
8433     {
8434       got2_addend = object->get_output_section_offset(got2_shndx);
8435       gold_assert(got2_addend != invalid_address);
8436     }
8437
8438   unsigned char* pwrite = reloc_view;
8439   bool zap_next = false;
8440   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8441     {
8442       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8443       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8444         continue;
8445
8446       Reltype reloc(prelocs);
8447       Reltype_write reloc_write(pwrite);
8448
8449       Address offset = reloc.get_r_offset();
8450       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8451       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8452       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8453       const unsigned int orig_r_sym = r_sym;
8454       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8455         = reloc.get_r_addend();
8456       const Symbol* gsym = NULL;
8457
8458       if (zap_next)
8459         {
8460           // We could arrange to discard these and other relocs for
8461           // tls optimised sequences in the strategy methods, but for
8462           // now do as BFD ld does.
8463           r_type = elfcpp::R_POWERPC_NONE;
8464           zap_next = false;
8465         }
8466
8467       // Get the new symbol index.
8468       Output_section* os = NULL;
8469       if (r_sym < local_count)
8470         {
8471           switch (strategy)
8472             {
8473             case Relocatable_relocs::RELOC_COPY:
8474             case Relocatable_relocs::RELOC_SPECIAL:
8475               if (r_sym != 0)
8476                 {
8477                   r_sym = object->symtab_index(r_sym);
8478                   gold_assert(r_sym != -1U);
8479                 }
8480               break;
8481
8482             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8483               {
8484                 // We are adjusting a section symbol.  We need to find
8485                 // the symbol table index of the section symbol for
8486                 // the output section corresponding to input section
8487                 // in which this symbol is defined.
8488                 gold_assert(r_sym < local_count);
8489                 bool is_ordinary;
8490                 unsigned int shndx =
8491                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8492                 gold_assert(is_ordinary);
8493                 os = object->output_section(shndx);
8494                 gold_assert(os != NULL);
8495                 gold_assert(os->needs_symtab_index());
8496                 r_sym = os->symtab_index();
8497               }
8498               break;
8499
8500             default:
8501               gold_unreachable();
8502             }
8503         }
8504       else
8505         {
8506           gsym = object->global_symbol(r_sym);
8507           gold_assert(gsym != NULL);
8508           if (gsym->is_forwarder())
8509             gsym = relinfo->symtab->resolve_forwards(gsym);
8510
8511           gold_assert(gsym->has_symtab_index());
8512           r_sym = gsym->symtab_index();
8513         }
8514
8515       // Get the new offset--the location in the output section where
8516       // this relocation should be applied.
8517       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8518         offset += offset_in_output_section;
8519       else
8520         {
8521           section_offset_type sot_offset =
8522             convert_types<section_offset_type, Address>(offset);
8523           section_offset_type new_sot_offset =
8524             output_section->output_offset(object, relinfo->data_shndx,
8525                                           sot_offset);
8526           gold_assert(new_sot_offset != -1);
8527           offset = new_sot_offset;
8528         }
8529
8530       // In an object file, r_offset is an offset within the section.
8531       // In an executable or dynamic object, generated by
8532       // --emit-relocs, r_offset is an absolute address.
8533       if (!parameters->options().relocatable())
8534         {
8535           offset += view_address;
8536           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8537             offset -= offset_in_output_section;
8538         }
8539
8540       // Handle the reloc addend based on the strategy.
8541       if (strategy == Relocatable_relocs::RELOC_COPY)
8542         ;
8543       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8544         {
8545           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8546           gold_assert(os != NULL);
8547           addend = psymval->value(object, addend) - os->address();
8548         }
8549       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8550         {
8551           if (size == 32)
8552             {
8553               if (addend >= 32768)
8554                 addend += got2_addend;
8555             }
8556           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8557             {
8558               r_type = elfcpp::R_POWERPC_ADDR16_HA;
8559               addend -= d_offset;
8560             }
8561           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8562             {
8563               r_type = elfcpp::R_POWERPC_ADDR16_LO;
8564               addend -= d_offset + 4;
8565             }
8566         }
8567       else
8568         gold_unreachable();
8569
8570       if (!parameters->options().relocatable())
8571         {
8572           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8573               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8574               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8575               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8576             {
8577               // First instruction of a global dynamic sequence,
8578               // arg setup insn.
8579               const bool final = gsym == NULL || gsym->final_value_is_known();
8580               switch (this->optimize_tls_gd(final))
8581                 {
8582                 case tls::TLSOPT_TO_IE:
8583                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8584                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8585                   break;
8586                 case tls::TLSOPT_TO_LE:
8587                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8588                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8589                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8590                   else
8591                     {
8592                       r_type = elfcpp::R_POWERPC_NONE;
8593                       offset -= d_offset;
8594                     }
8595                   break;
8596                 default:
8597                   break;
8598                 }
8599             }
8600           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8601                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8602                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8603                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8604             {
8605               // First instruction of a local dynamic sequence,
8606               // arg setup insn.
8607               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8608                 {
8609                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8610                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8611                     {
8612                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8613                       const Output_section* os = relinfo->layout->tls_segment()
8614                         ->first_section();
8615                       gold_assert(os != NULL);
8616                       gold_assert(os->needs_symtab_index());
8617                       r_sym = os->symtab_index();
8618                       addend = dtp_offset;
8619                     }
8620                   else
8621                     {
8622                       r_type = elfcpp::R_POWERPC_NONE;
8623                       offset -= d_offset;
8624                     }
8625                 }
8626             }
8627           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8628                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8629                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8630                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8631             {
8632               // First instruction of initial exec sequence.
8633               const bool final = gsym == NULL || gsym->final_value_is_known();
8634               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8635                 {
8636                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8637                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8638                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8639                   else
8640                     {
8641                       r_type = elfcpp::R_POWERPC_NONE;
8642                       offset -= d_offset;
8643                     }
8644                 }
8645             }
8646           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8647                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8648             {
8649               // Second instruction of a global dynamic sequence,
8650               // the __tls_get_addr call
8651               const bool final = gsym == NULL || gsym->final_value_is_known();
8652               switch (this->optimize_tls_gd(final))
8653                 {
8654                 case tls::TLSOPT_TO_IE:
8655                   r_type = elfcpp::R_POWERPC_NONE;
8656                   zap_next = true;
8657                   break;
8658                 case tls::TLSOPT_TO_LE:
8659                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8660                   offset += d_offset;
8661                   zap_next = true;
8662                   break;
8663                 default:
8664                   break;
8665                 }
8666             }
8667           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8668                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8669             {
8670               // Second instruction of a local dynamic sequence,
8671               // the __tls_get_addr call
8672               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8673                 {
8674                   const Output_section* os = relinfo->layout->tls_segment()
8675                     ->first_section();
8676                   gold_assert(os != NULL);
8677                   gold_assert(os->needs_symtab_index());
8678                   r_sym = os->symtab_index();
8679                   addend = dtp_offset;
8680                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8681                   offset += d_offset;
8682                   zap_next = true;
8683                 }
8684             }
8685           else if (r_type == elfcpp::R_POWERPC_TLS)
8686             {
8687               // Second instruction of an initial exec sequence
8688               const bool final = gsym == NULL || gsym->final_value_is_known();
8689               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8690                 {
8691                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8692                   offset += d_offset;
8693                 }
8694             }
8695         }
8696
8697       reloc_write.put_r_offset(offset);
8698       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8699       reloc_write.put_r_addend(addend);
8700
8701       pwrite += reloc_size;
8702     }
8703
8704   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8705               == reloc_view_size);
8706 }
8707
8708 // Return the value to use for a dynamic symbol which requires special
8709 // treatment.  This is how we support equality comparisons of function
8710 // pointers across shared library boundaries, as described in the
8711 // processor specific ABI supplement.
8712
8713 template<int size, bool big_endian>
8714 uint64_t
8715 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8716 {
8717   if (size == 32)
8718     {
8719       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8720       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8721            p != this->stub_tables_.end();
8722            ++p)
8723         {
8724           Address off = (*p)->find_plt_call_entry(gsym);
8725           if (off != invalid_address)
8726             return (*p)->stub_address() + off;
8727         }
8728     }
8729   else if (this->abiversion() >= 2)
8730     {
8731       Address off = this->glink_section()->find_global_entry(gsym);
8732       if (off != invalid_address)
8733         return this->glink_section()->global_entry_address() + off;
8734     }
8735   gold_unreachable();
8736 }
8737
8738 // Return the PLT address to use for a local symbol.
8739 template<int size, bool big_endian>
8740 uint64_t
8741 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8742     const Relobj* object,
8743     unsigned int symndx) const
8744 {
8745   if (size == 32)
8746     {
8747       const Sized_relobj<size, big_endian>* relobj
8748         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8749       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8750            p != this->stub_tables_.end();
8751            ++p)
8752         {
8753           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8754                                                   symndx);
8755           if (off != invalid_address)
8756             return (*p)->stub_address() + off;
8757         }
8758     }
8759   gold_unreachable();
8760 }
8761
8762 // Return the PLT address to use for a global symbol.
8763 template<int size, bool big_endian>
8764 uint64_t
8765 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8766     const Symbol* gsym) const
8767 {
8768   if (size == 32)
8769     {
8770       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8771            p != this->stub_tables_.end();
8772            ++p)
8773         {
8774           Address off = (*p)->find_plt_call_entry(gsym);
8775           if (off != invalid_address)
8776             return (*p)->stub_address() + off;
8777         }
8778     }
8779   else if (this->abiversion() >= 2)
8780     {
8781       Address off = this->glink_section()->find_global_entry(gsym);
8782       if (off != invalid_address)
8783         return this->glink_section()->global_entry_address() + off;
8784     }
8785   gold_unreachable();
8786 }
8787
8788 // Return the offset to use for the GOT_INDX'th got entry which is
8789 // for a local tls symbol specified by OBJECT, SYMNDX.
8790 template<int size, bool big_endian>
8791 int64_t
8792 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8793     const Relobj* object,
8794     unsigned int symndx,
8795     unsigned int got_indx) const
8796 {
8797   const Powerpc_relobj<size, big_endian>* ppc_object
8798     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8799   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8800     {
8801       for (Got_type got_type = GOT_TYPE_TLSGD;
8802            got_type <= GOT_TYPE_TPREL;
8803            got_type = Got_type(got_type + 1))
8804         if (ppc_object->local_has_got_offset(symndx, got_type))
8805           {
8806             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8807             if (got_type == GOT_TYPE_TLSGD)
8808               off += size / 8;
8809             if (off == got_indx * (size / 8))
8810               {
8811                 if (got_type == GOT_TYPE_TPREL)
8812                   return -tp_offset;
8813                 else
8814                   return -dtp_offset;
8815               }
8816           }
8817     }
8818   gold_unreachable();
8819 }
8820
8821 // Return the offset to use for the GOT_INDX'th got entry which is
8822 // for global tls symbol GSYM.
8823 template<int size, bool big_endian>
8824 int64_t
8825 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8826     Symbol* gsym,
8827     unsigned int got_indx) const
8828 {
8829   if (gsym->type() == elfcpp::STT_TLS)
8830     {
8831       for (Got_type got_type = GOT_TYPE_TLSGD;
8832            got_type <= GOT_TYPE_TPREL;
8833            got_type = Got_type(got_type + 1))
8834         if (gsym->has_got_offset(got_type))
8835           {
8836             unsigned int off = gsym->got_offset(got_type);
8837             if (got_type == GOT_TYPE_TLSGD)
8838               off += size / 8;
8839             if (off == got_indx * (size / 8))
8840               {
8841                 if (got_type == GOT_TYPE_TPREL)
8842                   return -tp_offset;
8843                 else
8844                   return -dtp_offset;
8845               }
8846           }
8847     }
8848   gold_unreachable();
8849 }
8850
8851 // The selector for powerpc object files.
8852
8853 template<int size, bool big_endian>
8854 class Target_selector_powerpc : public Target_selector
8855 {
8856 public:
8857   Target_selector_powerpc()
8858     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8859                       size, big_endian,
8860                       (size == 64
8861                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8862                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8863                       (size == 64
8864                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8865                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8866   { }
8867
8868   virtual Target*
8869   do_instantiate_target()
8870   { return new Target_powerpc<size, big_endian>(); }
8871 };
8872
8873 Target_selector_powerpc<32, true> target_selector_ppc32;
8874 Target_selector_powerpc<32, false> target_selector_ppc32le;
8875 Target_selector_powerpc<64, true> target_selector_ppc64;
8876 Target_selector_powerpc<64, false> target_selector_ppc64le;
8877
8878 // Instantiate these constants for -O0
8879 template<int size, bool big_endian>
8880 const int Output_data_glink<size, big_endian>::pltresolve_size;
8881 template<int size, bool big_endian>
8882 const typename Output_data_glink<size, big_endian>::Address
8883   Output_data_glink<size, big_endian>::invalid_address;
8884 template<int size, bool big_endian>
8885 const typename Stub_table<size, big_endian>::Address
8886   Stub_table<size, big_endian>::invalid_address;
8887 template<int size, bool big_endian>
8888 const typename Target_powerpc<size, big_endian>::Address
8889   Target_powerpc<size, big_endian>::invalid_address;
8890
8891 } // End anonymous namespace.