With -pie and x86, the linker complains if it sees a PC-relative relocation
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* ,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         return false;
962       // For 32-bit, conservatively assume anything but calls to
963       // function code might be taking the address of the function.
964       return !is_branch_reloc(r_type);
965     }
966
967     inline bool
968     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969                                          Target_powerpc* ,
970                                          Sized_relobj_file<size, big_endian>* ,
971                                          unsigned int ,
972                                          Output_section* ,
973                                          const elfcpp::Rela<size, big_endian>& ,
974                                          unsigned int r_type,
975                                          Symbol*)
976     {
977       // As above.
978       if (size == 64)
979         return false;
980       return !is_branch_reloc(r_type);
981     }
982
983     static bool
984     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
985                               Sized_relobj_file<size, big_endian>* object,
986                               unsigned int r_type, bool report_err);
987
988   private:
989     static void
990     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
991                             unsigned int r_type);
992
993     static void
994     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
995                              unsigned int r_type, Symbol*);
996
997     static void
998     generate_tls_call(Symbol_table* symtab, Layout* layout,
999                       Target_powerpc* target);
1000
1001     void
1002     check_non_pic(Relobj*, unsigned int r_type);
1003
1004     // Whether we have issued an error about a non-PIC compilation.
1005     bool issued_non_pic_error_;
1006   };
1007
1008   Address
1009   symval_for_branch(const Symbol_table* symtab, Address value,
1010                     const Sized_symbol<size>* gsym,
1011                     Powerpc_relobj<size, big_endian>* object,
1012                     unsigned int *dest_shndx);
1013
1014   // The class which implements relocation.
1015   class Relocate : protected Track_tls
1016   {
1017    public:
1018     // Use 'at' branch hints when true, 'y' when false.
1019     // FIXME maybe: set this with an option.
1020     static const bool is_isa_v2 = true;
1021
1022     Relocate()
1023       : Track_tls()
1024     { }
1025
1026     // Do a relocation.  Return false if the caller should not issue
1027     // any warnings about this relocation.
1028     inline bool
1029     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1030              Output_section*, size_t relnum,
1031              const elfcpp::Rela<size, big_endian>&,
1032              unsigned int r_type, const Sized_symbol<size>*,
1033              const Symbol_value<size>*,
1034              unsigned char*,
1035              typename elfcpp::Elf_types<size>::Elf_Addr,
1036              section_size_type);
1037   };
1038
1039   class Relocate_comdat_behavior
1040   {
1041    public:
1042     // Decide what the linker should do for relocations that refer to
1043     // discarded comdat sections.
1044     inline Comdat_behavior
1045     get(const char* name)
1046     {
1047       gold::Default_comdat_behavior default_behavior;
1048       Comdat_behavior ret = default_behavior.get(name);
1049       if (ret == CB_WARNING)
1050         {
1051           if (size == 32
1052               && (strcmp(name, ".fixup") == 0
1053                   || strcmp(name, ".got2") == 0))
1054             ret = CB_IGNORE;
1055           if (size == 64
1056               && (strcmp(name, ".opd") == 0
1057                   || strcmp(name, ".toc") == 0
1058                   || strcmp(name, ".toc1") == 0))
1059             ret = CB_IGNORE;
1060         }
1061       return ret;
1062     }
1063   };
1064
1065   // A class which returns the size required for a relocation type,
1066   // used while scanning relocs during a relocatable link.
1067   class Relocatable_size_for_reloc
1068   {
1069    public:
1070     unsigned int
1071     get_size_for_reloc(unsigned int, Relobj*)
1072     {
1073       gold_unreachable();
1074       return 0;
1075     }
1076   };
1077
1078   // Optimize the TLS relocation type based on what we know about the
1079   // symbol.  IS_FINAL is true if the final address of this symbol is
1080   // known at link time.
1081
1082   tls::Tls_optimization
1083   optimize_tls_gd(bool is_final)
1084   {
1085     // If we are generating a shared library, then we can't do anything
1086     // in the linker.
1087     if (parameters->options().shared())
1088       return tls::TLSOPT_NONE;
1089
1090     if (!is_final)
1091       return tls::TLSOPT_TO_IE;
1092     return tls::TLSOPT_TO_LE;
1093   }
1094
1095   tls::Tls_optimization
1096   optimize_tls_ld()
1097   {
1098     if (parameters->options().shared())
1099       return tls::TLSOPT_NONE;
1100
1101     return tls::TLSOPT_TO_LE;
1102   }
1103
1104   tls::Tls_optimization
1105   optimize_tls_ie(bool is_final)
1106   {
1107     if (!is_final || parameters->options().shared())
1108       return tls::TLSOPT_NONE;
1109
1110     return tls::TLSOPT_TO_LE;
1111   }
1112
1113   // Create glink.
1114   void
1115   make_glink_section(Layout*);
1116
1117   // Create the PLT section.
1118   void
1119   make_plt_section(Symbol_table*, Layout*);
1120
1121   void
1122   make_iplt_section(Symbol_table*, Layout*);
1123
1124   void
1125   make_brlt_section(Layout*);
1126
1127   // Create a PLT entry for a global symbol.
1128   void
1129   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1130
1131   // Create a PLT entry for a local IFUNC symbol.
1132   void
1133   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1134                              Sized_relobj_file<size, big_endian>*,
1135                              unsigned int);
1136
1137
1138   // Create a GOT entry for local dynamic __tls_get_addr.
1139   unsigned int
1140   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1141                    Sized_relobj_file<size, big_endian>* object);
1142
1143   unsigned int
1144   tlsld_got_offset() const
1145   {
1146     return this->tlsld_got_offset_;
1147   }
1148
1149   // Get the dynamic reloc section, creating it if necessary.
1150   Reloc_section*
1151   rela_dyn_section(Layout*);
1152
1153   // Similarly, but for ifunc symbols get the one for ifunc.
1154   Reloc_section*
1155   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1156
1157   // Copy a relocation against a global symbol.
1158   void
1159   copy_reloc(Symbol_table* symtab, Layout* layout,
1160              Sized_relobj_file<size, big_endian>* object,
1161              unsigned int shndx, Output_section* output_section,
1162              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1163   {
1164     this->copy_relocs_.copy_reloc(symtab, layout,
1165                                   symtab->get_sized_symbol<size>(sym),
1166                                   object, shndx, output_section,
1167                                   reloc, this->rela_dyn_section(layout));
1168   }
1169
1170   // Look over all the input sections, deciding where to place stubs.
1171   void
1172   group_sections(Layout*, const Task*);
1173
1174   // Sort output sections by address.
1175   struct Sort_sections
1176   {
1177     bool
1178     operator()(const Output_section* sec1, const Output_section* sec2)
1179     { return sec1->address() < sec2->address(); }
1180   };
1181
1182   class Branch_info
1183   {
1184    public:
1185     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1186                 unsigned int data_shndx,
1187                 Address r_offset,
1188                 unsigned int r_type,
1189                 unsigned int r_sym,
1190                 Address addend)
1191       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1192         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1193     { }
1194
1195     ~Branch_info()
1196     { }
1197
1198     // If this branch needs a plt call stub, or a long branch stub, make one.
1199     void
1200     make_stub(Stub_table<size, big_endian>*,
1201               Stub_table<size, big_endian>*,
1202               Symbol_table*) const;
1203
1204    private:
1205     // The branch location..
1206     Powerpc_relobj<size, big_endian>* object_;
1207     unsigned int shndx_;
1208     Address offset_;
1209     // ..and the branch type and destination.
1210     unsigned int r_type_;
1211     unsigned int r_sym_;
1212     Address addend_;
1213   };
1214
1215   // Information about this specific target which we pass to the
1216   // general Target structure.
1217   static Target::Target_info powerpc_info;
1218
1219   // The types of GOT entries needed for this platform.
1220   // These values are exposed to the ABI in an incremental link.
1221   // Do not renumber existing values without changing the version
1222   // number of the .gnu_incremental_inputs section.
1223   enum Got_type
1224   {
1225     GOT_TYPE_STANDARD,
1226     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1227     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1228     GOT_TYPE_TPREL      // entry for @got@tprel
1229   };
1230
1231   // The GOT section.
1232   Output_data_got_powerpc<size, big_endian>* got_;
1233   // The PLT section.  This is a container for a table of addresses,
1234   // and their relocations.  Each address in the PLT has a dynamic
1235   // relocation (R_*_JMP_SLOT) and each address will have a
1236   // corresponding entry in .glink for lazy resolution of the PLT.
1237   // ppc32 initialises the PLT to point at the .glink entry, while
1238   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1239   // linker adds a stub that loads the PLT entry into ctr then
1240   // branches to ctr.  There may be more than one stub for each PLT
1241   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1242   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1243   Output_data_plt_powerpc<size, big_endian>* plt_;
1244   // The IPLT section.  Like plt_, this is a container for a table of
1245   // addresses and their relocations, specifically for STT_GNU_IFUNC
1246   // functions that resolve locally (STT_GNU_IFUNC functions that
1247   // don't resolve locally go in PLT).  Unlike plt_, these have no
1248   // entry in .glink for lazy resolution, and the relocation section
1249   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1250   // the relocation section may contain relocations against
1251   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1252   // relocation section will appear at the end of other dynamic
1253   // relocations, so that ld.so applies these relocations after other
1254   // dynamic relocations.  In a static executable, the relocation
1255   // section is emitted and marked with __rela_iplt_start and
1256   // __rela_iplt_end symbols.
1257   Output_data_plt_powerpc<size, big_endian>* iplt_;
1258   // Section holding long branch destinations.
1259   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1260   // The .glink section.
1261   Output_data_glink<size, big_endian>* glink_;
1262   // The dynamic reloc section.
1263   Reloc_section* rela_dyn_;
1264   // Relocs saved to avoid a COPY reloc.
1265   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1266   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1267   unsigned int tlsld_got_offset_;
1268
1269   Stub_tables stub_tables_;
1270   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1271   Branch_lookup_table branch_lookup_table_;
1272
1273   typedef std::vector<Branch_info> Branches;
1274   Branches branch_info_;
1275
1276   bool plt_thread_safe_;
1277 };
1278
1279 template<>
1280 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1281 {
1282   32,                   // size
1283   true,                 // is_big_endian
1284   elfcpp::EM_PPC,       // machine_code
1285   false,                // has_make_symbol
1286   false,                // has_resolve
1287   false,                // has_code_fill
1288   true,                 // is_default_stack_executable
1289   false,                // can_icf_inline_merge_sections
1290   '\0',                 // wrap_char
1291   "/usr/lib/ld.so.1",   // dynamic_linker
1292   0x10000000,           // default_text_segment_address
1293   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1294   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1295   false,                // isolate_execinstr
1296   0,                    // rosegment_gap
1297   elfcpp::SHN_UNDEF,    // small_common_shndx
1298   elfcpp::SHN_UNDEF,    // large_common_shndx
1299   0,                    // small_common_section_flags
1300   0,                    // large_common_section_flags
1301   NULL,                 // attributes_section
1302   NULL,                 // attributes_vendor
1303   "_start"              // entry_symbol_name
1304 };
1305
1306 template<>
1307 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1308 {
1309   32,                   // size
1310   false,                // is_big_endian
1311   elfcpp::EM_PPC,       // machine_code
1312   false,                // has_make_symbol
1313   false,                // has_resolve
1314   false,                // has_code_fill
1315   true,                 // is_default_stack_executable
1316   false,                // can_icf_inline_merge_sections
1317   '\0',                 // wrap_char
1318   "/usr/lib/ld.so.1",   // dynamic_linker
1319   0x10000000,           // default_text_segment_address
1320   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1321   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1322   false,                // isolate_execinstr
1323   0,                    // rosegment_gap
1324   elfcpp::SHN_UNDEF,    // small_common_shndx
1325   elfcpp::SHN_UNDEF,    // large_common_shndx
1326   0,                    // small_common_section_flags
1327   0,                    // large_common_section_flags
1328   NULL,                 // attributes_section
1329   NULL,                 // attributes_vendor
1330   "_start"              // entry_symbol_name
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1335 {
1336   64,                   // size
1337   true,                 // is_big_endian
1338   elfcpp::EM_PPC64,     // machine_code
1339   false,                // has_make_symbol
1340   false,                // has_resolve
1341   false,                // has_code_fill
1342   true,                 // is_default_stack_executable
1343   false,                // can_icf_inline_merge_sections
1344   '\0',                 // wrap_char
1345   "/usr/lib/ld.so.1",   // dynamic_linker
1346   0x10000000,           // default_text_segment_address
1347   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1348   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1349   false,                // isolate_execinstr
1350   0,                    // rosegment_gap
1351   elfcpp::SHN_UNDEF,    // small_common_shndx
1352   elfcpp::SHN_UNDEF,    // large_common_shndx
1353   0,                    // small_common_section_flags
1354   0,                    // large_common_section_flags
1355   NULL,                 // attributes_section
1356   NULL,                 // attributes_vendor
1357   "_start"              // entry_symbol_name
1358 };
1359
1360 template<>
1361 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1362 {
1363   64,                   // size
1364   false,                // is_big_endian
1365   elfcpp::EM_PPC64,     // machine_code
1366   false,                // has_make_symbol
1367   false,                // has_resolve
1368   false,                // has_code_fill
1369   true,                 // is_default_stack_executable
1370   false,                // can_icf_inline_merge_sections
1371   '\0',                 // wrap_char
1372   "/usr/lib/ld.so.1",   // dynamic_linker
1373   0x10000000,           // default_text_segment_address
1374   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1375   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1376   false,                // isolate_execinstr
1377   0,                    // rosegment_gap
1378   elfcpp::SHN_UNDEF,    // small_common_shndx
1379   elfcpp::SHN_UNDEF,    // large_common_shndx
1380   0,                    // small_common_section_flags
1381   0,                    // large_common_section_flags
1382   NULL,                 // attributes_section
1383   NULL,                 // attributes_vendor
1384   "_start"              // entry_symbol_name
1385 };
1386
1387 inline bool
1388 is_branch_reloc(unsigned int r_type)
1389 {
1390   return (r_type == elfcpp::R_POWERPC_REL24
1391           || r_type == elfcpp::R_PPC_PLTREL24
1392           || r_type == elfcpp::R_PPC_LOCAL24PC
1393           || r_type == elfcpp::R_POWERPC_REL14
1394           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1395           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1396           || r_type == elfcpp::R_POWERPC_ADDR24
1397           || r_type == elfcpp::R_POWERPC_ADDR14
1398           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1399           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1400 }
1401
1402 // If INSN is an opcode that may be used with an @tls operand, return
1403 // the transformed insn for TLS optimisation, otherwise return 0.  If
1404 // REG is non-zero only match an insn with RB or RA equal to REG.
1405 uint32_t
1406 at_tls_transform(uint32_t insn, unsigned int reg)
1407 {
1408   if ((insn & (0x3f << 26)) != 31 << 26)
1409     return 0;
1410
1411   unsigned int rtra;
1412   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1413     rtra = insn & ((1 << 26) - (1 << 16));
1414   else if (((insn >> 16) & 0x1f) == reg)
1415     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1416   else
1417     return 0;
1418
1419   if ((insn & (0x3ff << 1)) == 266 << 1)
1420     // add -> addi
1421     insn = 14 << 26;
1422   else if ((insn & (0x1f << 1)) == 23 << 1
1423            && ((insn & (0x1f << 6)) < 14 << 6
1424                || ((insn & (0x1f << 6)) >= 16 << 6
1425                    && (insn & (0x1f << 6)) < 24 << 6)))
1426     // load and store indexed -> dform
1427     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1428   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1429     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1430     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1431   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1432     // lwax -> lwa
1433     insn = (58 << 26) | 2;
1434   else
1435     return 0;
1436   insn |= rtra;
1437   return insn;
1438 }
1439
1440
1441 template<int size, bool big_endian>
1442 class Powerpc_relocate_functions
1443 {
1444 public:
1445   enum Overflow_check
1446   {
1447     CHECK_NONE,
1448     CHECK_SIGNED,
1449     CHECK_UNSIGNED,
1450     CHECK_BITFIELD,
1451     CHECK_LOW_INSN,
1452     CHECK_HIGH_INSN
1453   };
1454
1455   enum Status
1456   {
1457     STATUS_OK,
1458     STATUS_OVERFLOW
1459   };
1460
1461 private:
1462   typedef Powerpc_relocate_functions<size, big_endian> This;
1463   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1464
1465   template<int valsize>
1466   static inline bool
1467   has_overflow_signed(Address value)
1468   {
1469     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1470     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1471     limit <<= ((valsize - 1) >> 1);
1472     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1473     return value + limit > (limit << 1) - 1;
1474   }
1475
1476   template<int valsize>
1477   static inline bool
1478   has_overflow_unsigned(Address value)
1479   {
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_bitfield(Address value)
1489   {
1490     return (has_overflow_unsigned<valsize>(value)
1491             && has_overflow_signed<valsize>(value));
1492   }
1493
1494   template<int valsize>
1495   static inline Status
1496   overflowed(Address value, Overflow_check overflow)
1497   {
1498     if (overflow == CHECK_SIGNED)
1499       {
1500         if (has_overflow_signed<valsize>(value))
1501           return STATUS_OVERFLOW;
1502       }
1503     else if (overflow == CHECK_UNSIGNED)
1504       {
1505         if (has_overflow_unsigned<valsize>(value))
1506           return STATUS_OVERFLOW;
1507       }
1508     else if (overflow == CHECK_BITFIELD)
1509       {
1510         if (has_overflow_bitfield<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     return STATUS_OK;
1514   }
1515
1516   // Do a simple RELA relocation
1517   template<int valsize>
1518   static inline Status
1519   rela(unsigned char* view, Address value, Overflow_check overflow)
1520   {
1521     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1522     Valtype* wv = reinterpret_cast<Valtype*>(view);
1523     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1524     return overflowed<valsize>(value, overflow);
1525   }
1526
1527   template<int valsize>
1528   static inline Status
1529   rela(unsigned char* view,
1530        unsigned int right_shift,
1531        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1532        Address value,
1533        Overflow_check overflow)
1534   {
1535     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1536     Valtype* wv = reinterpret_cast<Valtype*>(view);
1537     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1538     Valtype reloc = value >> right_shift;
1539     val &= ~dst_mask;
1540     reloc &= dst_mask;
1541     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1542     return overflowed<valsize>(value >> right_shift, overflow);
1543   }
1544
1545   // Do a simple RELA relocation, unaligned.
1546   template<int valsize>
1547   static inline Status
1548   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1549   {
1550     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1551     return overflowed<valsize>(value, overflow);
1552   }
1553
1554   template<int valsize>
1555   static inline Status
1556   rela_ua(unsigned char* view,
1557           unsigned int right_shift,
1558           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1559           Address value,
1560           Overflow_check overflow)
1561   {
1562     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1563       Valtype;
1564     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1565     Valtype reloc = value >> right_shift;
1566     val &= ~dst_mask;
1567     reloc &= dst_mask;
1568     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1569     return overflowed<valsize>(value >> right_shift, overflow);
1570   }
1571
1572 public:
1573   // R_PPC64_ADDR64: (Symbol + Addend)
1574   static inline void
1575   addr64(unsigned char* view, Address value)
1576   { This::template rela<64>(view, value, CHECK_NONE); }
1577
1578   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1579   static inline void
1580   addr64_u(unsigned char* view, Address value)
1581   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1582
1583   // R_POWERPC_ADDR32: (Symbol + Addend)
1584   static inline Status
1585   addr32(unsigned char* view, Address value, Overflow_check overflow)
1586   { return This::template rela<32>(view, value, overflow); }
1587
1588   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1589   static inline Status
1590   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1591   { return This::template rela_ua<32>(view, value, overflow); }
1592
1593   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1594   static inline Status
1595   addr24(unsigned char* view, Address value, Overflow_check overflow)
1596   {
1597     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1598     if (overflow != CHECK_NONE && (value & 3) != 0)
1599       stat = STATUS_OVERFLOW;
1600     return stat;
1601   }
1602
1603   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1604   static inline Status
1605   addr16(unsigned char* view, Address value, Overflow_check overflow)
1606   { return This::template rela<16>(view, value, overflow); }
1607
1608   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1609   static inline Status
1610   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1611   { return This::template rela_ua<16>(view, value, overflow); }
1612
1613   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1614   static inline Status
1615   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1616   {
1617     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1618     if (overflow != CHECK_NONE && (value & 3) != 0)
1619       stat = STATUS_OVERFLOW;
1620     return stat;
1621   }
1622
1623   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1624   static inline void
1625   addr16_hi(unsigned char* view, Address value)
1626   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1627
1628   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1629   static inline void
1630   addr16_ha(unsigned char* view, Address value)
1631   { This::addr16_hi(view, value + 0x8000); }
1632
1633   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1634   static inline void
1635   addr16_hi2(unsigned char* view, Address value)
1636   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1637
1638   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1639   static inline void
1640   addr16_ha2(unsigned char* view, Address value)
1641   { This::addr16_hi2(view, value + 0x8000); }
1642
1643   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1644   static inline void
1645   addr16_hi3(unsigned char* view, Address value)
1646   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1647
1648   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1649   static inline void
1650   addr16_ha3(unsigned char* view, Address value)
1651   { This::addr16_hi3(view, value + 0x8000); }
1652
1653   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1654   static inline Status
1655   addr14(unsigned char* view, Address value, Overflow_check overflow)
1656   {
1657     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1658     if (overflow != CHECK_NONE && (value & 3) != 0)
1659       stat = STATUS_OVERFLOW;
1660     return stat;
1661   }
1662 };
1663
1664 // Set ABI version for input and output.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1669 {
1670   this->e_flags_ |= ver;
1671   if (this->abiversion() != 0)
1672     {
1673       Target_powerpc<size, big_endian>* target =
1674         static_cast<Target_powerpc<size, big_endian>*>(
1675            parameters->sized_target<size, big_endian>());
1676       if (target->abiversion() == 0)
1677         target->set_abiversion(this->abiversion());
1678       else if (target->abiversion() != this->abiversion())
1679         gold_error(_("%s: ABI version %d is not compatible "
1680                      "with ABI version %d output"),
1681                    this->name().c_str(),
1682                    this->abiversion(), target->abiversion());
1683
1684     }
1685 }
1686
1687 // Stash away the index of .got2 or .opd in a relocatable object, if
1688 // such a section exists.
1689
1690 template<int size, bool big_endian>
1691 bool
1692 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1693     Read_symbols_data* sd)
1694 {
1695   const unsigned char* const pshdrs = sd->section_headers->data();
1696   const unsigned char* namesu = sd->section_names->data();
1697   const char* names = reinterpret_cast<const char*>(namesu);
1698   section_size_type names_size = sd->section_names_size;
1699   const unsigned char* s;
1700
1701   s = this->template find_shdr<size, big_endian>(pshdrs,
1702                                                  size == 32 ? ".got2" : ".opd",
1703                                                  names, names_size, NULL);
1704   if (s != NULL)
1705     {
1706       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1707       this->special_ = ndx;
1708       if (size == 64)
1709         {
1710           if (this->abiversion() == 0)
1711             this->set_abiversion(1);
1712           else if (this->abiversion() > 1)
1713             gold_error(_("%s: .opd invalid in abiv%d"),
1714                        this->name().c_str(), this->abiversion());
1715         }
1716     }
1717   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1718 }
1719
1720 // Examine .rela.opd to build info about function entry points.
1721
1722 template<int size, bool big_endian>
1723 void
1724 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1725     size_t reloc_count,
1726     const unsigned char* prelocs,
1727     const unsigned char* plocal_syms)
1728 {
1729   if (size == 64)
1730     {
1731       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1732         Reltype;
1733       const int reloc_size
1734         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1735       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1736       Address expected_off = 0;
1737       bool regular = true;
1738       unsigned int opd_ent_size = 0;
1739
1740       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1741         {
1742           Reltype reloc(prelocs);
1743           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1744             = reloc.get_r_info();
1745           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1746           if (r_type == elfcpp::R_PPC64_ADDR64)
1747             {
1748               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1749               typename elfcpp::Elf_types<size>::Elf_Addr value;
1750               bool is_ordinary;
1751               unsigned int shndx;
1752               if (r_sym < this->local_symbol_count())
1753                 {
1754                   typename elfcpp::Sym<size, big_endian>
1755                     lsym(plocal_syms + r_sym * sym_size);
1756                   shndx = lsym.get_st_shndx();
1757                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1758                   value = lsym.get_st_value();
1759                 }
1760               else
1761                 shndx = this->symbol_section_and_value(r_sym, &value,
1762                                                        &is_ordinary);
1763               this->set_opd_ent(reloc.get_r_offset(), shndx,
1764                                 value + reloc.get_r_addend());
1765               if (i == 2)
1766                 {
1767                   expected_off = reloc.get_r_offset();
1768                   opd_ent_size = expected_off;
1769                 }
1770               else if (expected_off != reloc.get_r_offset())
1771                 regular = false;
1772               expected_off += opd_ent_size;
1773             }
1774           else if (r_type == elfcpp::R_PPC64_TOC)
1775             {
1776               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1777                 regular = false;
1778             }
1779           else
1780             {
1781               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1782                            this->name().c_str(), r_type);
1783               regular = false;
1784             }
1785         }
1786       if (reloc_count <= 2)
1787         opd_ent_size = this->section_size(this->opd_shndx());
1788       if (opd_ent_size != 24 && opd_ent_size != 16)
1789         regular = false;
1790       if (!regular)
1791         {
1792           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1793                        this->name().c_str());
1794           opd_ent_size = 0;
1795         }
1796     }
1797 }
1798
1799 template<int size, bool big_endian>
1800 void
1801 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1802 {
1803   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1804   if (size == 64)
1805     {
1806       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1807            p != rd->relocs.end();
1808            ++p)
1809         {
1810           if (p->data_shndx == this->opd_shndx())
1811             {
1812               uint64_t opd_size = this->section_size(this->opd_shndx());
1813               gold_assert(opd_size == static_cast<size_t>(opd_size));
1814               if (opd_size != 0)
1815                 {
1816                   this->init_opd(opd_size);
1817                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1818                                         rd->local_symbols->data());
1819                 }
1820               break;
1821             }
1822         }
1823     }
1824 }
1825
1826 // Read the symbols then set up st_other vector.
1827
1828 template<int size, bool big_endian>
1829 void
1830 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1831 {
1832   Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1833   if (size == 64)
1834     {
1835       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1836       const unsigned char* const pshdrs = sd->section_headers->data();
1837       const unsigned int loccount = this->do_local_symbol_count();
1838       if (loccount != 0)
1839         {
1840           this->st_other_.resize(loccount);
1841           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1842           off_t locsize = loccount * sym_size;
1843           const unsigned int symtab_shndx = this->symtab_shndx();
1844           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1845           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1846           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1847                                                       locsize, true, false);
1848           psyms += sym_size;
1849           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1850             {
1851               elfcpp::Sym<size, big_endian> sym(psyms);
1852               unsigned char st_other = sym.get_st_other();
1853               this->st_other_[i] = st_other;
1854               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1855                 {
1856                   if (this->abiversion() == 0)
1857                     this->set_abiversion(2);
1858                   else if (this->abiversion() < 2)
1859                     gold_error(_("%s: local symbol %d has invalid st_other"
1860                                  " for ABI version 1"),
1861                                this->name().c_str(), i);
1862                 }
1863             }
1864         }
1865     }
1866 }
1867
1868 template<int size, bool big_endian>
1869 void
1870 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1871 {
1872   this->e_flags_ |= ver;
1873   if (this->abiversion() != 0)
1874     {
1875       Target_powerpc<size, big_endian>* target =
1876         static_cast<Target_powerpc<size, big_endian>*>(
1877           parameters->sized_target<size, big_endian>());
1878       if (target->abiversion() == 0)
1879         target->set_abiversion(this->abiversion());
1880       else if (target->abiversion() != this->abiversion())
1881         gold_error(_("%s: ABI version %d is not compatible "
1882                      "with ABI version %d output"),
1883                    this->name().c_str(),
1884                    this->abiversion(), target->abiversion());
1885
1886     }
1887 }
1888
1889 // Call Sized_dynobj::do_read_symbols to read the symbols then
1890 // read .opd from a dynamic object, filling in opd_ent_ vector,
1891
1892 template<int size, bool big_endian>
1893 void
1894 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1895 {
1896   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1897   if (size == 64)
1898     {
1899       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1900       const unsigned char* const pshdrs = sd->section_headers->data();
1901       const unsigned char* namesu = sd->section_names->data();
1902       const char* names = reinterpret_cast<const char*>(namesu);
1903       const unsigned char* s = NULL;
1904       const unsigned char* opd;
1905       section_size_type opd_size;
1906
1907       // Find and read .opd section.
1908       while (1)
1909         {
1910           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1911                                                          sd->section_names_size,
1912                                                          s);
1913           if (s == NULL)
1914             return;
1915
1916           typename elfcpp::Shdr<size, big_endian> shdr(s);
1917           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1918               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1919             {
1920               if (this->abiversion() == 0)
1921                 this->set_abiversion(1);
1922               else if (this->abiversion() > 1)
1923                 gold_error(_("%s: .opd invalid in abiv%d"),
1924                            this->name().c_str(), this->abiversion());
1925
1926               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1927               this->opd_address_ = shdr.get_sh_addr();
1928               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1929               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1930                                    true, false);
1931               break;
1932             }
1933         }
1934
1935       // Build set of executable sections.
1936       // Using a set is probably overkill.  There is likely to be only
1937       // a few executable sections, typically .init, .text and .fini,
1938       // and they are generally grouped together.
1939       typedef std::set<Sec_info> Exec_sections;
1940       Exec_sections exec_sections;
1941       s = pshdrs;
1942       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1943         {
1944           typename elfcpp::Shdr<size, big_endian> shdr(s);
1945           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1946               && ((shdr.get_sh_flags()
1947                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1948                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1949               && shdr.get_sh_size() != 0)
1950             {
1951               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1952                                             shdr.get_sh_size(), i));
1953             }
1954         }
1955       if (exec_sections.empty())
1956         return;
1957
1958       // Look over the OPD entries.  This is complicated by the fact
1959       // that some binaries will use two-word entries while others
1960       // will use the standard three-word entries.  In most cases
1961       // the third word (the environment pointer for languages like
1962       // Pascal) is unused and will be zero.  If the third word is
1963       // used it should not be pointing into executable sections,
1964       // I think.
1965       this->init_opd(opd_size);
1966       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1967         {
1968           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1969           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1970           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1971           if (val == 0)
1972             // Chances are that this is the third word of an OPD entry.
1973             continue;
1974           typename Exec_sections::const_iterator e
1975             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1976           if (e != exec_sections.begin())
1977             {
1978               --e;
1979               if (e->start <= val && val < e->start + e->len)
1980                 {
1981                   // We have an address in an executable section.
1982                   // VAL ought to be the function entry, set it up.
1983                   this->set_opd_ent(p - opd, e->shndx, val);
1984                   // Skip second word of OPD entry, the TOC pointer.
1985                   p += 8;
1986                 }
1987             }
1988           // If we didn't match any executable sections, we likely
1989           // have a non-zero third word in the OPD entry.
1990         }
1991     }
1992 }
1993
1994 // Set up some symbols.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1999     Symbol_table* symtab,
2000     Layout* layout)
2001 {
2002   if (size == 32)
2003     {
2004       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2005       // undefined when scanning relocs (and thus requires
2006       // non-relative dynamic relocs).  The proper value will be
2007       // updated later.
2008       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2009       if (gotsym != NULL && gotsym->is_undefined())
2010         {
2011           Target_powerpc<size, big_endian>* target =
2012             static_cast<Target_powerpc<size, big_endian>*>(
2013                 parameters->sized_target<size, big_endian>());
2014           Output_data_got_powerpc<size, big_endian>* got
2015             = target->got_section(symtab, layout);
2016           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2017                                         Symbol_table::PREDEFINED,
2018                                         got, 0, 0,
2019                                         elfcpp::STT_OBJECT,
2020                                         elfcpp::STB_LOCAL,
2021                                         elfcpp::STV_HIDDEN, 0,
2022                                         false, false);
2023         }
2024
2025       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2026       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2027       if (sdasym != NULL && sdasym->is_undefined())
2028         {
2029           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2030           Output_section* os
2031             = layout->add_output_section_data(".sdata", 0,
2032                                               elfcpp::SHF_ALLOC
2033                                               | elfcpp::SHF_WRITE,
2034                                               sdata, ORDER_SMALL_DATA, false);
2035           symtab->define_in_output_data("_SDA_BASE_", NULL,
2036                                         Symbol_table::PREDEFINED,
2037                                         os, 32768, 0, elfcpp::STT_OBJECT,
2038                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2039                                         0, false, false);
2040         }
2041     }
2042   else
2043     {
2044       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2045       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2046       if (gotsym != NULL && gotsym->is_undefined())
2047         {
2048           Target_powerpc<size, big_endian>* target =
2049             static_cast<Target_powerpc<size, big_endian>*>(
2050                 parameters->sized_target<size, big_endian>());
2051           Output_data_got_powerpc<size, big_endian>* got
2052             = target->got_section(symtab, layout);
2053           symtab->define_in_output_data(".TOC.", NULL,
2054                                         Symbol_table::PREDEFINED,
2055                                         got, 0x8000, 0,
2056                                         elfcpp::STT_OBJECT,
2057                                         elfcpp::STB_LOCAL,
2058                                         elfcpp::STV_HIDDEN, 0,
2059                                         false, false);
2060         }
2061     }
2062 }
2063
2064 // Set up PowerPC target specific relobj.
2065
2066 template<int size, bool big_endian>
2067 Object*
2068 Target_powerpc<size, big_endian>::do_make_elf_object(
2069     const std::string& name,
2070     Input_file* input_file,
2071     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2072 {
2073   int et = ehdr.get_e_type();
2074   // ET_EXEC files are valid input for --just-symbols/-R,
2075   // and we treat them as relocatable objects.
2076   if (et == elfcpp::ET_REL
2077       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2078     {
2079       Powerpc_relobj<size, big_endian>* obj =
2080         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2081       obj->setup();
2082       return obj;
2083     }
2084   else if (et == elfcpp::ET_DYN)
2085     {
2086       Powerpc_dynobj<size, big_endian>* obj =
2087         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2088       obj->setup();
2089       return obj;
2090     }
2091   else
2092     {
2093       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2094       return NULL;
2095     }
2096 }
2097
2098 template<int size, bool big_endian>
2099 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2100 {
2101 public:
2102   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2103   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2104
2105   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2106     : Output_data_got<size, big_endian>(),
2107       symtab_(symtab), layout_(layout),
2108       header_ent_cnt_(size == 32 ? 3 : 1),
2109       header_index_(size == 32 ? 0x2000 : 0)
2110   { }
2111
2112   // Override all the Output_data_got methods we use so as to first call
2113   // reserve_ent().
2114   bool
2115   add_global(Symbol* gsym, unsigned int got_type)
2116   {
2117     this->reserve_ent();
2118     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2119   }
2120
2121   bool
2122   add_global_plt(Symbol* gsym, unsigned int got_type)
2123   {
2124     this->reserve_ent();
2125     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2126   }
2127
2128   bool
2129   add_global_tls(Symbol* gsym, unsigned int got_type)
2130   { return this->add_global_plt(gsym, got_type); }
2131
2132   void
2133   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2134                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2135   {
2136     this->reserve_ent();
2137     Output_data_got<size, big_endian>::
2138       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2139   }
2140
2141   void
2142   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2143                            Output_data_reloc_generic* rel_dyn,
2144                            unsigned int r_type_1, unsigned int r_type_2)
2145   {
2146     this->reserve_ent(2);
2147     Output_data_got<size, big_endian>::
2148       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2149   }
2150
2151   bool
2152   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2153   {
2154     this->reserve_ent();
2155     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2156                                                         got_type);
2157   }
2158
2159   bool
2160   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2161   {
2162     this->reserve_ent();
2163     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2164                                                             got_type);
2165   }
2166
2167   bool
2168   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2169   { return this->add_local_plt(object, sym_index, got_type); }
2170
2171   void
2172   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2173                      unsigned int got_type,
2174                      Output_data_reloc_generic* rel_dyn,
2175                      unsigned int r_type)
2176   {
2177     this->reserve_ent(2);
2178     Output_data_got<size, big_endian>::
2179       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2180   }
2181
2182   unsigned int
2183   add_constant(Valtype constant)
2184   {
2185     this->reserve_ent();
2186     return Output_data_got<size, big_endian>::add_constant(constant);
2187   }
2188
2189   unsigned int
2190   add_constant_pair(Valtype c1, Valtype c2)
2191   {
2192     this->reserve_ent(2);
2193     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2194   }
2195
2196   // Offset of _GLOBAL_OFFSET_TABLE_.
2197   unsigned int
2198   g_o_t() const
2199   {
2200     return this->got_offset(this->header_index_);
2201   }
2202
2203   // Offset of base used to access the GOT/TOC.
2204   // The got/toc pointer reg will be set to this value.
2205   Valtype
2206   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2207   {
2208     if (size == 32)
2209       return this->g_o_t();
2210     else
2211       return (this->output_section()->address()
2212               + object->toc_base_offset()
2213               - this->address());
2214   }
2215
2216   // Ensure our GOT has a header.
2217   void
2218   set_final_data_size()
2219   {
2220     if (this->header_ent_cnt_ != 0)
2221       this->make_header();
2222     Output_data_got<size, big_endian>::set_final_data_size();
2223   }
2224
2225   // First word of GOT header needs some values that are not
2226   // handled by Output_data_got so poke them in here.
2227   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2228   void
2229   do_write(Output_file* of)
2230   {
2231     Valtype val = 0;
2232     if (size == 32 && this->layout_->dynamic_data() != NULL)
2233       val = this->layout_->dynamic_section()->address();
2234     if (size == 64)
2235       val = this->output_section()->address() + 0x8000;
2236     this->replace_constant(this->header_index_, val);
2237     Output_data_got<size, big_endian>::do_write(of);
2238   }
2239
2240 private:
2241   void
2242   reserve_ent(unsigned int cnt = 1)
2243   {
2244     if (this->header_ent_cnt_ == 0)
2245       return;
2246     if (this->num_entries() + cnt > this->header_index_)
2247       this->make_header();
2248   }
2249
2250   void
2251   make_header()
2252   {
2253     this->header_ent_cnt_ = 0;
2254     this->header_index_ = this->num_entries();
2255     if (size == 32)
2256       {
2257         Output_data_got<size, big_endian>::add_constant(0);
2258         Output_data_got<size, big_endian>::add_constant(0);
2259         Output_data_got<size, big_endian>::add_constant(0);
2260
2261         // Define _GLOBAL_OFFSET_TABLE_ at the header
2262         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2263         if (gotsym != NULL)
2264           {
2265             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2266             sym->set_value(this->g_o_t());
2267           }
2268         else
2269           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2270                                                Symbol_table::PREDEFINED,
2271                                                this, this->g_o_t(), 0,
2272                                                elfcpp::STT_OBJECT,
2273                                                elfcpp::STB_LOCAL,
2274                                                elfcpp::STV_HIDDEN, 0,
2275                                                false, false);
2276       }
2277     else
2278       Output_data_got<size, big_endian>::add_constant(0);
2279   }
2280
2281   // Stashed pointers.
2282   Symbol_table* symtab_;
2283   Layout* layout_;
2284
2285   // GOT header size.
2286   unsigned int header_ent_cnt_;
2287   // GOT header index.
2288   unsigned int header_index_;
2289 };
2290
2291 // Get the GOT section, creating it if necessary.
2292
2293 template<int size, bool big_endian>
2294 Output_data_got_powerpc<size, big_endian>*
2295 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2296                                               Layout* layout)
2297 {
2298   if (this->got_ == NULL)
2299     {
2300       gold_assert(symtab != NULL && layout != NULL);
2301
2302       this->got_
2303         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2304
2305       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2306                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2307                                       this->got_, ORDER_DATA, false);
2308     }
2309
2310   return this->got_;
2311 }
2312
2313 // Get the dynamic reloc section, creating it if necessary.
2314
2315 template<int size, bool big_endian>
2316 typename Target_powerpc<size, big_endian>::Reloc_section*
2317 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2318 {
2319   if (this->rela_dyn_ == NULL)
2320     {
2321       gold_assert(layout != NULL);
2322       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2323       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2324                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2325                                       ORDER_DYNAMIC_RELOCS, false);
2326     }
2327   return this->rela_dyn_;
2328 }
2329
2330 // Similarly, but for ifunc symbols get the one for ifunc.
2331
2332 template<int size, bool big_endian>
2333 typename Target_powerpc<size, big_endian>::Reloc_section*
2334 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2335                                                    Layout* layout,
2336                                                    bool for_ifunc)
2337 {
2338   if (!for_ifunc)
2339     return this->rela_dyn_section(layout);
2340
2341   if (this->iplt_ == NULL)
2342     this->make_iplt_section(symtab, layout);
2343   return this->iplt_->rel_plt();
2344 }
2345
2346 class Stub_control
2347 {
2348  public:
2349   // Determine the stub group size.  The group size is the absolute
2350   // value of the parameter --stub-group-size.  If --stub-group-size
2351   // is passed a negative value, we restrict stubs to be always before
2352   // the stubbed branches.
2353   Stub_control(int32_t size)
2354     : state_(NO_GROUP), stub_group_size_(abs(size)),
2355       stub14_group_size_(abs(size)),
2356       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2357       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2358   {
2359     if (stub_group_size_ == 1)
2360       {
2361         // Default values.
2362         if (stubs_always_before_branch_)
2363           {
2364             stub_group_size_ = 0x1e00000;
2365             stub14_group_size_ = 0x7800;
2366           }
2367         else
2368           {
2369             stub_group_size_ = 0x1c00000;
2370             stub14_group_size_ = 0x7000;
2371           }
2372         suppress_size_errors_ = true;
2373       }
2374   }
2375
2376   // Return true iff input section can be handled by current stub
2377   // group.
2378   bool
2379   can_add_to_stub_group(Output_section* o,
2380                         const Output_section::Input_section* i,
2381                         bool has14);
2382
2383   const Output_section::Input_section*
2384   owner()
2385   { return owner_; }
2386
2387   Output_section*
2388   output_section()
2389   { return output_section_; }
2390
2391  private:
2392   typedef enum
2393   {
2394     NO_GROUP,
2395     FINDING_STUB_SECTION,
2396     HAS_STUB_SECTION
2397   } State;
2398
2399   State state_;
2400   uint32_t stub_group_size_;
2401   uint32_t stub14_group_size_;
2402   bool stubs_always_before_branch_;
2403   bool suppress_size_errors_;
2404   uint64_t group_end_addr_;
2405   const Output_section::Input_section* owner_;
2406   Output_section* output_section_;
2407 };
2408
2409 // Return true iff input section can be handled by current stub
2410 // group.
2411
2412 bool
2413 Stub_control::can_add_to_stub_group(Output_section* o,
2414                                     const Output_section::Input_section* i,
2415                                     bool has14)
2416 {
2417   uint32_t group_size
2418     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2419   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2420   uint64_t this_size;
2421   uint64_t start_addr = o->address();
2422
2423   if (whole_sec)
2424     // .init and .fini sections are pasted together to form a single
2425     // function.  We can't be adding stubs in the middle of the function.
2426     this_size = o->data_size();
2427   else
2428     {
2429       start_addr += i->relobj()->output_section_offset(i->shndx());
2430       this_size = i->data_size();
2431     }
2432   uint64_t end_addr = start_addr + this_size;
2433   bool toobig = this_size > group_size;
2434
2435   if (toobig && !this->suppress_size_errors_)
2436     gold_warning(_("%s:%s exceeds group size"),
2437                  i->relobj()->name().c_str(),
2438                  i->relobj()->section_name(i->shndx()).c_str());
2439
2440   if (this->state_ != HAS_STUB_SECTION
2441       && (!whole_sec || this->output_section_ != o)
2442       && (this->state_ == NO_GROUP
2443           || this->group_end_addr_ - end_addr < group_size))
2444     {
2445       this->owner_ = i;
2446       this->output_section_ = o;
2447     }
2448
2449   if (this->state_ == NO_GROUP)
2450     {
2451       this->state_ = FINDING_STUB_SECTION;
2452       this->group_end_addr_ = end_addr;
2453     }
2454   else if (this->group_end_addr_ - start_addr < group_size)
2455     ;
2456   // Adding this section would make the group larger than GROUP_SIZE.
2457   else if (this->state_ == FINDING_STUB_SECTION
2458            && !this->stubs_always_before_branch_
2459            && !toobig)
2460     {
2461       // But wait, there's more!  Input sections up to GROUP_SIZE
2462       // bytes before the stub table can be handled by it too.
2463       this->state_ = HAS_STUB_SECTION;
2464       this->group_end_addr_ = end_addr;
2465     }
2466   else
2467     {
2468       this->state_ = NO_GROUP;
2469       return false;
2470     }
2471   return true;
2472 }
2473
2474 // Look over all the input sections, deciding where to place stubs.
2475
2476 template<int size, bool big_endian>
2477 void
2478 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2479                                                  const Task*)
2480 {
2481   Stub_control stub_control(parameters->options().stub_group_size());
2482
2483   // Group input sections and insert stub table
2484   Stub_table<size, big_endian>* stub_table = NULL;
2485   Layout::Section_list section_list;
2486   layout->get_executable_sections(&section_list);
2487   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2488   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2489        o != section_list.rend();
2490        ++o)
2491     {
2492       typedef Output_section::Input_section_list Input_section_list;
2493       for (Input_section_list::const_reverse_iterator i
2494              = (*o)->input_sections().rbegin();
2495            i != (*o)->input_sections().rend();
2496            ++i)
2497         {
2498           if (i->is_input_section())
2499             {
2500               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2501                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2502               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2503               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2504                 {
2505                   stub_table->init(stub_control.owner(),
2506                                    stub_control.output_section());
2507                   stub_table = NULL;
2508                 }
2509               if (stub_table == NULL)
2510                 stub_table = this->new_stub_table();
2511               ppcobj->set_stub_table(i->shndx(), stub_table);
2512             }
2513         }
2514     }
2515   if (stub_table != NULL)
2516     {
2517       const Output_section::Input_section* i = stub_control.owner();
2518       if (!i->is_input_section())
2519         {
2520           // Corner case.  A new stub group was made for the first
2521           // section (last one looked at here) for some reason, but
2522           // the first section is already being used as the owner for
2523           // a stub table for following sections.  Force it into that
2524           // stub group.
2525           gold_assert(this->stub_tables_.size() >= 2);
2526           this->stub_tables_.pop_back();
2527           delete stub_table;
2528           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2529             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2530           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2531         }
2532       else
2533         stub_table->init(i, stub_control.output_section());
2534     }
2535 }
2536
2537 // If this branch needs a plt call stub, or a long branch stub, make one.
2538
2539 template<int size, bool big_endian>
2540 void
2541 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2542     Stub_table<size, big_endian>* stub_table,
2543     Stub_table<size, big_endian>* ifunc_stub_table,
2544     Symbol_table* symtab) const
2545 {
2546   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2547   if (sym != NULL && sym->is_forwarder())
2548     sym = symtab->resolve_forwards(sym);
2549   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2550   Target_powerpc<size, big_endian>* target =
2551     static_cast<Target_powerpc<size, big_endian>*>(
2552       parameters->sized_target<size, big_endian>());
2553   if (gsym != NULL
2554       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2555       : this->object_->local_has_plt_offset(this->r_sym_))
2556     {
2557       if (size == 64
2558           && gsym != NULL
2559           && target->abiversion() >= 2
2560           && !parameters->options().output_is_position_independent()
2561           && !is_branch_reloc(this->r_type_))
2562         target->glink_section()->add_global_entry(gsym);
2563       else
2564         {
2565           if (stub_table == NULL)
2566             stub_table = this->object_->stub_table(this->shndx_);
2567           if (stub_table == NULL)
2568             {
2569               // This is a ref from a data section to an ifunc symbol.
2570               stub_table = ifunc_stub_table;
2571             }
2572           gold_assert(stub_table != NULL);
2573           if (gsym != NULL)
2574             stub_table->add_plt_call_entry(this->object_, gsym,
2575                                            this->r_type_, this->addend_);
2576           else
2577             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2578                                            this->r_type_, this->addend_);
2579         }
2580     }
2581   else
2582     {
2583       unsigned long max_branch_offset;
2584       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2585           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2586           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2587         max_branch_offset = 1 << 15;
2588       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2589                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2590                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2591         max_branch_offset = 1 << 25;
2592       else
2593         return;
2594       Address from = this->object_->get_output_section_offset(this->shndx_);
2595       gold_assert(from != invalid_address);
2596       from += (this->object_->output_section(this->shndx_)->address()
2597                + this->offset_);
2598       Address to;
2599       if (gsym != NULL)
2600         {
2601           switch (gsym->source())
2602             {
2603             case Symbol::FROM_OBJECT:
2604               {
2605                 Object* symobj = gsym->object();
2606                 if (symobj->is_dynamic()
2607                     || symobj->pluginobj() != NULL)
2608                   return;
2609                 bool is_ordinary;
2610                 unsigned int shndx = gsym->shndx(&is_ordinary);
2611                 if (shndx == elfcpp::SHN_UNDEF)
2612                   return;
2613               }
2614               break;
2615
2616             case Symbol::IS_UNDEFINED:
2617               return;
2618
2619             default:
2620               break;
2621             }
2622           Symbol_table::Compute_final_value_status status;
2623           to = symtab->compute_final_value<size>(gsym, &status);
2624           if (status != Symbol_table::CFVS_OK)
2625             return;
2626           if (size == 64)
2627             to += this->object_->ppc64_local_entry_offset(gsym);
2628         }
2629       else
2630         {
2631           const Symbol_value<size>* psymval
2632             = this->object_->local_symbol(this->r_sym_);
2633           Symbol_value<size> symval;
2634           typedef Sized_relobj_file<size, big_endian> ObjType;
2635           typename ObjType::Compute_final_local_value_status status
2636             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2637                                                        &symval, symtab);
2638           if (status != ObjType::CFLV_OK
2639               || !symval.has_output_value())
2640             return;
2641           to = symval.value(this->object_, 0);
2642           if (size == 64)
2643             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2644         }
2645       to += this->addend_;
2646       if (stub_table == NULL)
2647         stub_table = this->object_->stub_table(this->shndx_);
2648       if (size == 64 && target->abiversion() < 2)
2649         {
2650           unsigned int dest_shndx;
2651           to = target->symval_for_branch(symtab, to, gsym,
2652                                          this->object_, &dest_shndx);
2653         }
2654       Address delta = to - from;
2655       if (delta + max_branch_offset >= 2 * max_branch_offset)
2656         {
2657           if (stub_table == NULL)
2658             {
2659               gold_warning(_("%s:%s: branch in non-executable section,"
2660                              " no long branch stub for you"),
2661                            this->object_->name().c_str(),
2662                            this->object_->section_name(this->shndx_).c_str());
2663               return;
2664             }
2665           stub_table->add_long_branch_entry(this->object_, to);
2666         }
2667     }
2668 }
2669
2670 // Relaxation hook.  This is where we do stub generation.
2671
2672 template<int size, bool big_endian>
2673 bool
2674 Target_powerpc<size, big_endian>::do_relax(int pass,
2675                                            const Input_objects*,
2676                                            Symbol_table* symtab,
2677                                            Layout* layout,
2678                                            const Task* task)
2679 {
2680   unsigned int prev_brlt_size = 0;
2681   if (pass == 1)
2682     {
2683       bool thread_safe
2684         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2685       if (size == 64
2686           && this->abiversion() < 2
2687           && !thread_safe
2688           && !parameters->options().user_set_plt_thread_safe())
2689         {
2690           static const char* const thread_starter[] =
2691             {
2692               "pthread_create",
2693               /* libstdc++ */
2694               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2695               /* librt */
2696               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2697               "mq_notify", "create_timer",
2698               /* libanl */
2699               "getaddrinfo_a",
2700               /* libgomp */
2701               "GOMP_parallel_start",
2702               "GOMP_parallel_loop_static_start",
2703               "GOMP_parallel_loop_dynamic_start",
2704               "GOMP_parallel_loop_guided_start",
2705               "GOMP_parallel_loop_runtime_start",
2706               "GOMP_parallel_sections_start",
2707             };
2708
2709           if (parameters->options().shared())
2710             thread_safe = true;
2711           else
2712             {
2713               for (unsigned int i = 0;
2714                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2715                    i++)
2716                 {
2717                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2718                   thread_safe = (sym != NULL
2719                                  && sym->in_reg()
2720                                  && sym->in_real_elf());
2721                   if (thread_safe)
2722                     break;
2723                 }
2724             }
2725         }
2726       this->plt_thread_safe_ = thread_safe;
2727       this->group_sections(layout, task);
2728     }
2729
2730   // We need address of stub tables valid for make_stub.
2731   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2732        p != this->stub_tables_.end();
2733        ++p)
2734     {
2735       const Powerpc_relobj<size, big_endian>* object
2736         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2737       Address off = object->get_output_section_offset((*p)->shndx());
2738       gold_assert(off != invalid_address);
2739       Output_section* os = (*p)->output_section();
2740       (*p)->set_address_and_size(os, off);
2741     }
2742
2743   if (pass != 1)
2744     {
2745       // Clear plt call stubs, long branch stubs and branch lookup table.
2746       prev_brlt_size = this->branch_lookup_table_.size();
2747       this->branch_lookup_table_.clear();
2748       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2749            p != this->stub_tables_.end();
2750            ++p)
2751         {
2752           (*p)->clear_stubs();
2753         }
2754     }
2755
2756   // Build all the stubs.
2757   Stub_table<size, big_endian>* ifunc_stub_table
2758     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2759   Stub_table<size, big_endian>* one_stub_table
2760     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2761   for (typename Branches::const_iterator b = this->branch_info_.begin();
2762        b != this->branch_info_.end();
2763        b++)
2764     {
2765       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2766     }
2767
2768   // Did anything change size?
2769   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2770   bool again = num_huge_branches != prev_brlt_size;
2771   if (size == 64 && num_huge_branches != 0)
2772     this->make_brlt_section(layout);
2773   if (size == 64 && again)
2774     this->brlt_section_->set_current_size(num_huge_branches);
2775
2776   typedef Unordered_set<Output_section*> Output_sections;
2777   Output_sections os_need_update;
2778   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2779        p != this->stub_tables_.end();
2780        ++p)
2781     {
2782       if ((*p)->size_update())
2783         {
2784           again = true;
2785           (*p)->add_eh_frame(layout);
2786           os_need_update.insert((*p)->output_section());
2787         }
2788     }
2789
2790   // Set output section offsets for all input sections in an output
2791   // section that just changed size.  Anything past the stubs will
2792   // need updating.
2793   for (typename Output_sections::iterator p = os_need_update.begin();
2794        p != os_need_update.end();
2795        p++)
2796     {
2797       Output_section* os = *p;
2798       Address off = 0;
2799       typedef Output_section::Input_section_list Input_section_list;
2800       for (Input_section_list::const_iterator i = os->input_sections().begin();
2801            i != os->input_sections().end();
2802            ++i)
2803         {
2804           off = align_address(off, i->addralign());
2805           if (i->is_input_section() || i->is_relaxed_input_section())
2806             i->relobj()->set_section_offset(i->shndx(), off);
2807           if (i->is_relaxed_input_section())
2808             {
2809               Stub_table<size, big_endian>* stub_table
2810                 = static_cast<Stub_table<size, big_endian>*>(
2811                     i->relaxed_input_section());
2812               off += stub_table->set_address_and_size(os, off);
2813             }
2814           else
2815             off += i->data_size();
2816         }
2817       // If .branch_lt is part of this output section, then we have
2818       // just done the offset adjustment.
2819       os->clear_section_offsets_need_adjustment();
2820     }
2821
2822   if (size == 64
2823       && !again
2824       && num_huge_branches != 0
2825       && parameters->options().output_is_position_independent())
2826     {
2827       // Fill in the BRLT relocs.
2828       this->brlt_section_->reset_brlt_sizes();
2829       for (typename Branch_lookup_table::const_iterator p
2830              = this->branch_lookup_table_.begin();
2831            p != this->branch_lookup_table_.end();
2832            ++p)
2833         {
2834           this->brlt_section_->add_reloc(p->first, p->second);
2835         }
2836       this->brlt_section_->finalize_brlt_sizes();
2837     }
2838   return again;
2839 }
2840
2841 template<int size, bool big_endian>
2842 void
2843 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2844                                                       unsigned char* oview,
2845                                                       uint64_t* paddress,
2846                                                       off_t* plen) const
2847 {
2848   uint64_t address = plt->address();
2849   off_t len = plt->data_size();
2850
2851   if (plt == this->glink_)
2852     {
2853       // See Output_data_glink::do_write() for glink contents.
2854       if (size == 64)
2855         {
2856           // There is one word before __glink_PLTresolve
2857           address += 8;
2858           len -= 8;
2859         }
2860       else if (parameters->options().output_is_position_independent())
2861         {
2862           // There are two FDEs for a position independent glink.
2863           // The first covers the branch table, the second
2864           // __glink_PLTresolve at the end of glink.
2865           off_t resolve_size = this->glink_->pltresolve_size;
2866           if (oview[9] == 0)
2867             len -= resolve_size;
2868           else
2869             {
2870               address += len - resolve_size;
2871               len = resolve_size;
2872             }
2873         }
2874     }
2875   else
2876     {
2877       // Must be a stub table.
2878       const Stub_table<size, big_endian>* stub_table
2879         = static_cast<const Stub_table<size, big_endian>*>(plt);
2880       uint64_t stub_address = stub_table->stub_address();
2881       len -= stub_address - address;
2882       address = stub_address;
2883     }
2884
2885   *paddress = address;
2886   *plen = len;
2887 }
2888
2889 // A class to handle the PLT data.
2890
2891 template<int size, bool big_endian>
2892 class Output_data_plt_powerpc : public Output_section_data_build
2893 {
2894  public:
2895   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2896                             size, big_endian> Reloc_section;
2897
2898   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2899                           Reloc_section* plt_rel,
2900                           const char* name)
2901     : Output_section_data_build(size == 32 ? 4 : 8),
2902       rel_(plt_rel),
2903       targ_(targ),
2904       name_(name)
2905   { }
2906
2907   // Add an entry to the PLT.
2908   void
2909   add_entry(Symbol*);
2910
2911   void
2912   add_ifunc_entry(Symbol*);
2913
2914   void
2915   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2916
2917   // Return the .rela.plt section data.
2918   Reloc_section*
2919   rel_plt() const
2920   {
2921     return this->rel_;
2922   }
2923
2924   // Return the number of PLT entries.
2925   unsigned int
2926   entry_count() const
2927   {
2928     if (this->current_data_size() == 0)
2929       return 0;
2930     return ((this->current_data_size() - this->first_plt_entry_offset())
2931             / this->plt_entry_size());
2932   }
2933
2934  protected:
2935   void
2936   do_adjust_output_section(Output_section* os)
2937   {
2938     os->set_entsize(0);
2939   }
2940
2941   // Write to a map file.
2942   void
2943   do_print_to_mapfile(Mapfile* mapfile) const
2944   { mapfile->print_output_data(this, this->name_); }
2945
2946  private:
2947   // Return the offset of the first non-reserved PLT entry.
2948   unsigned int
2949   first_plt_entry_offset() const
2950   {
2951     // IPLT has no reserved entry.
2952     if (this->name_[3] == 'I')
2953       return 0;
2954     return this->targ_->first_plt_entry_offset();
2955   }
2956
2957   // Return the size of each PLT entry.
2958   unsigned int
2959   plt_entry_size() const
2960   {
2961     return this->targ_->plt_entry_size();
2962   }
2963
2964   // Write out the PLT data.
2965   void
2966   do_write(Output_file*);
2967
2968   // The reloc section.
2969   Reloc_section* rel_;
2970   // Allows access to .glink for do_write.
2971   Target_powerpc<size, big_endian>* targ_;
2972   // What to report in map file.
2973   const char *name_;
2974 };
2975
2976 // Add an entry to the PLT.
2977
2978 template<int size, bool big_endian>
2979 void
2980 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2981 {
2982   if (!gsym->has_plt_offset())
2983     {
2984       section_size_type off = this->current_data_size();
2985       if (off == 0)
2986         off += this->first_plt_entry_offset();
2987       gsym->set_plt_offset(off);
2988       gsym->set_needs_dynsym_entry();
2989       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2990       this->rel_->add_global(gsym, dynrel, this, off, 0);
2991       off += this->plt_entry_size();
2992       this->set_current_data_size(off);
2993     }
2994 }
2995
2996 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2997
2998 template<int size, bool big_endian>
2999 void
3000 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3001 {
3002   if (!gsym->has_plt_offset())
3003     {
3004       section_size_type off = this->current_data_size();
3005       gsym->set_plt_offset(off);
3006       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3007       if (size == 64 && this->targ_->abiversion() < 2)
3008         dynrel = elfcpp::R_PPC64_JMP_IREL;
3009       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3010       off += this->plt_entry_size();
3011       this->set_current_data_size(off);
3012     }
3013 }
3014
3015 // Add an entry for a local ifunc symbol to the IPLT.
3016
3017 template<int size, bool big_endian>
3018 void
3019 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3020     Sized_relobj_file<size, big_endian>* relobj,
3021     unsigned int local_sym_index)
3022 {
3023   if (!relobj->local_has_plt_offset(local_sym_index))
3024     {
3025       section_size_type off = this->current_data_size();
3026       relobj->set_local_plt_offset(local_sym_index, off);
3027       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3028       if (size == 64 && this->targ_->abiversion() < 2)
3029         dynrel = elfcpp::R_PPC64_JMP_IREL;
3030       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3031                                               this, off, 0);
3032       off += this->plt_entry_size();
3033       this->set_current_data_size(off);
3034     }
3035 }
3036
3037 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3038 static const uint32_t add_2_2_11        = 0x7c425a14;
3039 static const uint32_t add_3_3_2         = 0x7c631214;
3040 static const uint32_t add_3_3_13        = 0x7c636a14;
3041 static const uint32_t add_11_0_11       = 0x7d605a14;
3042 static const uint32_t add_11_2_11       = 0x7d625a14;
3043 static const uint32_t add_11_11_2       = 0x7d6b1214;
3044 static const uint32_t addi_0_12         = 0x380c0000;
3045 static const uint32_t addi_2_2          = 0x38420000;
3046 static const uint32_t addi_3_3          = 0x38630000;
3047 static const uint32_t addi_11_11        = 0x396b0000;
3048 static const uint32_t addi_12_12        = 0x398c0000;
3049 static const uint32_t addis_0_2         = 0x3c020000;
3050 static const uint32_t addis_0_13        = 0x3c0d0000;
3051 static const uint32_t addis_3_2         = 0x3c620000;
3052 static const uint32_t addis_3_13        = 0x3c6d0000;
3053 static const uint32_t addis_11_2        = 0x3d620000;
3054 static const uint32_t addis_11_11       = 0x3d6b0000;
3055 static const uint32_t addis_11_30       = 0x3d7e0000;
3056 static const uint32_t addis_12_12       = 0x3d8c0000;
3057 static const uint32_t b                 = 0x48000000;
3058 static const uint32_t bcl_20_31         = 0x429f0005;
3059 static const uint32_t bctr              = 0x4e800420;
3060 static const uint32_t blr               = 0x4e800020;
3061 static const uint32_t bnectr_p4         = 0x4ce20420;
3062 static const uint32_t cmpldi_2_0        = 0x28220000;
3063 static const uint32_t cror_15_15_15     = 0x4def7b82;
3064 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3065 static const uint32_t ld_0_1            = 0xe8010000;
3066 static const uint32_t ld_0_12           = 0xe80c0000;
3067 static const uint32_t ld_2_1            = 0xe8410000;
3068 static const uint32_t ld_2_2            = 0xe8420000;
3069 static const uint32_t ld_2_11           = 0xe84b0000;
3070 static const uint32_t ld_11_2           = 0xe9620000;
3071 static const uint32_t ld_11_11          = 0xe96b0000;
3072 static const uint32_t ld_12_2           = 0xe9820000;
3073 static const uint32_t ld_12_11          = 0xe98b0000;
3074 static const uint32_t ld_12_12          = 0xe98c0000;
3075 static const uint32_t lfd_0_1           = 0xc8010000;
3076 static const uint32_t li_0_0            = 0x38000000;
3077 static const uint32_t li_12_0           = 0x39800000;
3078 static const uint32_t lis_0_0           = 0x3c000000;
3079 static const uint32_t lis_11            = 0x3d600000;
3080 static const uint32_t lis_12            = 0x3d800000;
3081 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3082 static const uint32_t lwz_0_12          = 0x800c0000;
3083 static const uint32_t lwz_11_11         = 0x816b0000;
3084 static const uint32_t lwz_11_30         = 0x817e0000;
3085 static const uint32_t lwz_12_12         = 0x818c0000;
3086 static const uint32_t lwzu_0_12         = 0x840c0000;
3087 static const uint32_t mflr_0            = 0x7c0802a6;
3088 static const uint32_t mflr_11           = 0x7d6802a6;
3089 static const uint32_t mflr_12           = 0x7d8802a6;
3090 static const uint32_t mtctr_0           = 0x7c0903a6;
3091 static const uint32_t mtctr_11          = 0x7d6903a6;
3092 static const uint32_t mtctr_12          = 0x7d8903a6;
3093 static const uint32_t mtlr_0            = 0x7c0803a6;
3094 static const uint32_t mtlr_12           = 0x7d8803a6;
3095 static const uint32_t nop               = 0x60000000;
3096 static const uint32_t ori_0_0_0         = 0x60000000;
3097 static const uint32_t srdi_0_0_2        = 0x7800f082;
3098 static const uint32_t std_0_1           = 0xf8010000;
3099 static const uint32_t std_0_12          = 0xf80c0000;
3100 static const uint32_t std_2_1           = 0xf8410000;
3101 static const uint32_t stfd_0_1          = 0xd8010000;
3102 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3103 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3104 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3105 static const uint32_t xor_2_12_12       = 0x7d826278;
3106 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3107
3108 // Write out the PLT.
3109
3110 template<int size, bool big_endian>
3111 void
3112 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3113 {
3114   if (size == 32 && this->name_[3] != 'I')
3115     {
3116       const section_size_type offset = this->offset();
3117       const section_size_type oview_size
3118         = convert_to_section_size_type(this->data_size());
3119       unsigned char* const oview = of->get_output_view(offset, oview_size);
3120       unsigned char* pov = oview;
3121       unsigned char* endpov = oview + oview_size;
3122
3123       // The address of the .glink branch table
3124       const Output_data_glink<size, big_endian>* glink
3125         = this->targ_->glink_section();
3126       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3127
3128       while (pov < endpov)
3129         {
3130           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3131           pov += 4;
3132           branch_tab += 4;
3133         }
3134
3135       of->write_output_view(offset, oview_size, oview);
3136     }
3137 }
3138
3139 // Create the PLT section.
3140
3141 template<int size, bool big_endian>
3142 void
3143 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3144                                                    Layout* layout)
3145 {
3146   if (this->plt_ == NULL)
3147     {
3148       if (this->got_ == NULL)
3149         this->got_section(symtab, layout);
3150
3151       if (this->glink_ == NULL)
3152         make_glink_section(layout);
3153
3154       // Ensure that .rela.dyn always appears before .rela.plt  This is
3155       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3156       // needs to include .rela.plt in its range.
3157       this->rela_dyn_section(layout);
3158
3159       Reloc_section* plt_rel = new Reloc_section(false);
3160       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3161                                       elfcpp::SHF_ALLOC, plt_rel,
3162                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3163       this->plt_
3164         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3165                                                         "** PLT");
3166       layout->add_output_section_data(".plt",
3167                                       (size == 32
3168                                        ? elfcpp::SHT_PROGBITS
3169                                        : elfcpp::SHT_NOBITS),
3170                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3171                                       this->plt_,
3172                                       (size == 32
3173                                        ? ORDER_SMALL_DATA
3174                                        : ORDER_SMALL_BSS),
3175                                       false);
3176     }
3177 }
3178
3179 // Create the IPLT section.
3180
3181 template<int size, bool big_endian>
3182 void
3183 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3184                                                     Layout* layout)
3185 {
3186   if (this->iplt_ == NULL)
3187     {
3188       this->make_plt_section(symtab, layout);
3189
3190       Reloc_section* iplt_rel = new Reloc_section(false);
3191       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3192       this->iplt_
3193         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3194                                                         "** IPLT");
3195       this->plt_->output_section()->add_output_section_data(this->iplt_);
3196     }
3197 }
3198
3199 // A section for huge long branch addresses, similar to plt section.
3200
3201 template<int size, bool big_endian>
3202 class Output_data_brlt_powerpc : public Output_section_data_build
3203 {
3204  public:
3205   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3206   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3207                             size, big_endian> Reloc_section;
3208
3209   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3210                            Reloc_section* brlt_rel)
3211     : Output_section_data_build(size == 32 ? 4 : 8),
3212       rel_(brlt_rel),
3213       targ_(targ)
3214   { }
3215
3216   void
3217   reset_brlt_sizes()
3218   {
3219     this->reset_data_size();
3220     this->rel_->reset_data_size();
3221   }
3222
3223   void
3224   finalize_brlt_sizes()
3225   {
3226     this->finalize_data_size();
3227     this->rel_->finalize_data_size();
3228   }
3229
3230   // Add a reloc for an entry in the BRLT.
3231   void
3232   add_reloc(Address to, unsigned int off)
3233   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3234
3235   // Update section and reloc section size.
3236   void
3237   set_current_size(unsigned int num_branches)
3238   {
3239     this->reset_address_and_file_offset();
3240     this->set_current_data_size(num_branches * 16);
3241     this->finalize_data_size();
3242     Output_section* os = this->output_section();
3243     os->set_section_offsets_need_adjustment();
3244     if (this->rel_ != NULL)
3245       {
3246         unsigned int reloc_size
3247           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3248         this->rel_->reset_address_and_file_offset();
3249         this->rel_->set_current_data_size(num_branches * reloc_size);
3250         this->rel_->finalize_data_size();
3251         Output_section* os = this->rel_->output_section();
3252         os->set_section_offsets_need_adjustment();
3253       }
3254   }
3255
3256  protected:
3257   void
3258   do_adjust_output_section(Output_section* os)
3259   {
3260     os->set_entsize(0);
3261   }
3262
3263   // Write to a map file.
3264   void
3265   do_print_to_mapfile(Mapfile* mapfile) const
3266   { mapfile->print_output_data(this, "** BRLT"); }
3267
3268  private:
3269   // Write out the BRLT data.
3270   void
3271   do_write(Output_file*);
3272
3273   // The reloc section.
3274   Reloc_section* rel_;
3275   Target_powerpc<size, big_endian>* targ_;
3276 };
3277
3278 // Make the branch lookup table section.
3279
3280 template<int size, bool big_endian>
3281 void
3282 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3283 {
3284   if (size == 64 && this->brlt_section_ == NULL)
3285     {
3286       Reloc_section* brlt_rel = NULL;
3287       bool is_pic = parameters->options().output_is_position_independent();
3288       if (is_pic)
3289         {
3290           // When PIC we can't fill in .branch_lt (like .plt it can be
3291           // a bss style section) but must initialise at runtime via
3292           // dynamic relocats.
3293           this->rela_dyn_section(layout);
3294           brlt_rel = new Reloc_section(false);
3295           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3296         }
3297       this->brlt_section_
3298         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3299       if (this->plt_ && is_pic)
3300         this->plt_->output_section()
3301           ->add_output_section_data(this->brlt_section_);
3302       else
3303         layout->add_output_section_data(".branch_lt",
3304                                         (is_pic ? elfcpp::SHT_NOBITS
3305                                          : elfcpp::SHT_PROGBITS),
3306                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3307                                         this->brlt_section_,
3308                                         (is_pic ? ORDER_SMALL_BSS
3309                                          : ORDER_SMALL_DATA),
3310                                         false);
3311     }
3312 }
3313
3314 // Write out .branch_lt when non-PIC.
3315
3316 template<int size, bool big_endian>
3317 void
3318 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3319 {
3320   if (size == 64 && !parameters->options().output_is_position_independent())
3321     {
3322       const section_size_type offset = this->offset();
3323       const section_size_type oview_size
3324         = convert_to_section_size_type(this->data_size());
3325       unsigned char* const oview = of->get_output_view(offset, oview_size);
3326
3327       this->targ_->write_branch_lookup_table(oview);
3328       of->write_output_view(offset, oview_size, oview);
3329     }
3330 }
3331
3332 static inline uint32_t
3333 l(uint32_t a)
3334 {
3335   return a & 0xffff;
3336 }
3337
3338 static inline uint32_t
3339 hi(uint32_t a)
3340 {
3341   return l(a >> 16);
3342 }
3343
3344 static inline uint32_t
3345 ha(uint32_t a)
3346 {
3347   return hi(a + 0x8000);
3348 }
3349
3350 template<int size>
3351 struct Eh_cie
3352 {
3353   static const unsigned char eh_frame_cie[12];
3354 };
3355
3356 template<int size>
3357 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3358 {
3359   1,                                    // CIE version.
3360   'z', 'R', 0,                          // Augmentation string.
3361   4,                                    // Code alignment.
3362   0x80 - size / 8 ,                     // Data alignment.
3363   65,                                   // RA reg.
3364   1,                                    // Augmentation size.
3365   (elfcpp::DW_EH_PE_pcrel
3366    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3367   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3368 };
3369
3370 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3371 static const unsigned char glink_eh_frame_fde_64v1[] =
3372 {
3373   0, 0, 0, 0,                           // Replaced with offset to .glink.
3374   0, 0, 0, 0,                           // Replaced with size of .glink.
3375   0,                                    // Augmentation size.
3376   elfcpp::DW_CFA_advance_loc + 1,
3377   elfcpp::DW_CFA_register, 65, 12,
3378   elfcpp::DW_CFA_advance_loc + 4,
3379   elfcpp::DW_CFA_restore_extended, 65
3380 };
3381
3382 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3383 static const unsigned char glink_eh_frame_fde_64v2[] =
3384 {
3385   0, 0, 0, 0,                           // Replaced with offset to .glink.
3386   0, 0, 0, 0,                           // Replaced with size of .glink.
3387   0,                                    // Augmentation size.
3388   elfcpp::DW_CFA_advance_loc + 1,
3389   elfcpp::DW_CFA_register, 65, 0,
3390   elfcpp::DW_CFA_advance_loc + 4,
3391   elfcpp::DW_CFA_restore_extended, 65
3392 };
3393
3394 // Describe __glink_PLTresolve use of LR, 32-bit version.
3395 static const unsigned char glink_eh_frame_fde_32[] =
3396 {
3397   0, 0, 0, 0,                           // Replaced with offset to .glink.
3398   0, 0, 0, 0,                           // Replaced with size of .glink.
3399   0,                                    // Augmentation size.
3400   elfcpp::DW_CFA_advance_loc + 2,
3401   elfcpp::DW_CFA_register, 65, 0,
3402   elfcpp::DW_CFA_advance_loc + 4,
3403   elfcpp::DW_CFA_restore_extended, 65
3404 };
3405
3406 static const unsigned char default_fde[] =
3407 {
3408   0, 0, 0, 0,                           // Replaced with offset to stubs.
3409   0, 0, 0, 0,                           // Replaced with size of stubs.
3410   0,                                    // Augmentation size.
3411   elfcpp::DW_CFA_nop,                   // Pad.
3412   elfcpp::DW_CFA_nop,
3413   elfcpp::DW_CFA_nop
3414 };
3415
3416 template<bool big_endian>
3417 static inline void
3418 write_insn(unsigned char* p, uint32_t v)
3419 {
3420   elfcpp::Swap<32, big_endian>::writeval(p, v);
3421 }
3422
3423 // Stub_table holds information about plt and long branch stubs.
3424 // Stubs are built in an area following some input section determined
3425 // by group_sections().  This input section is converted to a relaxed
3426 // input section allowing it to be resized to accommodate the stubs
3427
3428 template<int size, bool big_endian>
3429 class Stub_table : public Output_relaxed_input_section
3430 {
3431  public:
3432   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3433   static const Address invalid_address = static_cast<Address>(0) - 1;
3434
3435   Stub_table(Target_powerpc<size, big_endian>* targ)
3436     : Output_relaxed_input_section(NULL, 0, 0),
3437       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3438       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3439       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3440   { }
3441
3442   // Delayed Output_relaxed_input_section init.
3443   void
3444   init(const Output_section::Input_section*, Output_section*);
3445
3446   // Add a plt call stub.
3447   void
3448   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3449                      const Symbol*,
3450                      unsigned int,
3451                      Address);
3452
3453   void
3454   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3455                      unsigned int,
3456                      unsigned int,
3457                      Address);
3458
3459   // Find a given plt call stub.
3460   Address
3461   find_plt_call_entry(const Symbol*) const;
3462
3463   Address
3464   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3465                       unsigned int) const;
3466
3467   Address
3468   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3469                       const Symbol*,
3470                       unsigned int,
3471                       Address) const;
3472
3473   Address
3474   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3475                       unsigned int,
3476                       unsigned int,
3477                       Address) const;
3478
3479   // Add a long branch stub.
3480   void
3481   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3482
3483   Address
3484   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3485                          Address) const;
3486
3487   void
3488   clear_stubs()
3489   {
3490     this->plt_call_stubs_.clear();
3491     this->plt_size_ = 0;
3492     this->long_branch_stubs_.clear();
3493     this->branch_size_ = 0;
3494   }
3495
3496   Address
3497   set_address_and_size(const Output_section* os, Address off)
3498   {
3499     Address start_off = off;
3500     off += this->orig_data_size_;
3501     Address my_size = this->plt_size_ + this->branch_size_;
3502     if (my_size != 0)
3503       off = align_address(off, this->stub_align());
3504     // Include original section size and alignment padding in size
3505     my_size += off - start_off;
3506     this->reset_address_and_file_offset();
3507     this->set_current_data_size(my_size);
3508     this->set_address_and_file_offset(os->address() + start_off,
3509                                       os->offset() + start_off);
3510     return my_size;
3511   }
3512
3513   Address
3514   stub_address() const
3515   {
3516     return align_address(this->address() + this->orig_data_size_,
3517                          this->stub_align());
3518   }
3519
3520   Address
3521   stub_offset() const
3522   {
3523     return align_address(this->offset() + this->orig_data_size_,
3524                          this->stub_align());
3525   }
3526
3527   section_size_type
3528   plt_size() const
3529   { return this->plt_size_; }
3530
3531   bool
3532   size_update()
3533   {
3534     Output_section* os = this->output_section();
3535     if (os->addralign() < this->stub_align())
3536       {
3537         os->set_addralign(this->stub_align());
3538         // FIXME: get rid of the insane checkpointing.
3539         // We can't increase alignment of the input section to which
3540         // stubs are attached;  The input section may be .init which
3541         // is pasted together with other .init sections to form a
3542         // function.  Aligning might insert zero padding resulting in
3543         // sigill.  However we do need to increase alignment of the
3544         // output section so that the align_address() on offset in
3545         // set_address_and_size() adds the same padding as the
3546         // align_address() on address in stub_address().
3547         // What's more, we need this alignment for the layout done in
3548         // relaxation_loop_body() so that the output section starts at
3549         // a suitably aligned address.
3550         os->checkpoint_set_addralign(this->stub_align());
3551       }
3552     if (this->last_plt_size_ != this->plt_size_
3553         || this->last_branch_size_ != this->branch_size_)
3554       {
3555         this->last_plt_size_ = this->plt_size_;
3556         this->last_branch_size_ = this->branch_size_;
3557         return true;
3558       }
3559     return false;
3560   }
3561
3562   // Add .eh_frame info for this stub section.  Unlike other linker
3563   // generated .eh_frame this is added late in the link, because we
3564   // only want the .eh_frame info if this particular stub section is
3565   // non-empty.
3566   void
3567   add_eh_frame(Layout* layout)
3568   {
3569     if (!this->eh_frame_added_)
3570       {
3571         if (!parameters->options().ld_generated_unwind_info())
3572           return;
3573
3574         // Since we add stub .eh_frame info late, it must be placed
3575         // after all other linker generated .eh_frame info so that
3576         // merge mapping need not be updated for input sections.
3577         // There is no provision to use a different CIE to that used
3578         // by .glink.
3579         if (!this->targ_->has_glink())
3580           return;
3581
3582         layout->add_eh_frame_for_plt(this,
3583                                      Eh_cie<size>::eh_frame_cie,
3584                                      sizeof (Eh_cie<size>::eh_frame_cie),
3585                                      default_fde,
3586                                      sizeof (default_fde));
3587         this->eh_frame_added_ = true;
3588       }
3589   }
3590
3591   Target_powerpc<size, big_endian>*
3592   targ() const
3593   { return targ_; }
3594
3595  private:
3596   class Plt_stub_ent;
3597   class Plt_stub_ent_hash;
3598   typedef Unordered_map<Plt_stub_ent, unsigned int,
3599                         Plt_stub_ent_hash> Plt_stub_entries;
3600
3601   // Alignment of stub section.
3602   unsigned int
3603   stub_align() const
3604   {
3605     if (size == 32)
3606       return 16;
3607     unsigned int min_align = 32;
3608     unsigned int user_align = 1 << parameters->options().plt_align();
3609     return std::max(user_align, min_align);
3610   }
3611
3612   // Return the plt offset for the given call stub.
3613   Address
3614   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3615   {
3616     const Symbol* gsym = p->first.sym_;
3617     if (gsym != NULL)
3618       {
3619         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3620                     && gsym->can_use_relative_reloc(false));
3621         return gsym->plt_offset();
3622       }
3623     else
3624       {
3625         *is_iplt = true;
3626         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3627         unsigned int local_sym_index = p->first.locsym_;
3628         return relobj->local_plt_offset(local_sym_index);
3629       }
3630   }
3631
3632   // Size of a given plt call stub.
3633   unsigned int
3634   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3635   {
3636     if (size == 32)
3637       return 16;
3638
3639     bool is_iplt;
3640     Address plt_addr = this->plt_off(p, &is_iplt);
3641     if (is_iplt)
3642       plt_addr += this->targ_->iplt_section()->address();
3643     else
3644       plt_addr += this->targ_->plt_section()->address();
3645     Address got_addr = this->targ_->got_section()->output_section()->address();
3646     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3647       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3648     got_addr += ppcobj->toc_base_offset();
3649     Address off = plt_addr - got_addr;
3650     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3651     if (this->targ_->abiversion() < 2)
3652       {
3653         bool static_chain = parameters->options().plt_static_chain();
3654         bool thread_safe = this->targ_->plt_thread_safe();
3655         bytes += (4
3656                   + 4 * static_chain
3657                   + 8 * thread_safe
3658                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3659       }
3660     unsigned int align = 1 << parameters->options().plt_align();
3661     if (align > 1)
3662       bytes = (bytes + align - 1) & -align;
3663     return bytes;
3664   }
3665
3666   // Return long branch stub size.
3667   unsigned int
3668   branch_stub_size(Address to)
3669   {
3670     Address loc
3671       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3672     if (to - loc + (1 << 25) < 2 << 25)
3673       return 4;
3674     if (size == 64 || !parameters->options().output_is_position_independent())
3675       return 16;
3676     return 32;
3677   }
3678
3679   // Write out stubs.
3680   void
3681   do_write(Output_file*);
3682
3683   // Plt call stub keys.
3684   class Plt_stub_ent
3685   {
3686   public:
3687     Plt_stub_ent(const Symbol* sym)
3688       : sym_(sym), object_(0), addend_(0), locsym_(0)
3689     { }
3690
3691     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3692                  unsigned int locsym_index)
3693       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3694     { }
3695
3696     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3697                  const Symbol* sym,
3698                  unsigned int r_type,
3699                  Address addend)
3700       : sym_(sym), object_(0), addend_(0), locsym_(0)
3701     {
3702       if (size != 32)
3703         this->addend_ = addend;
3704       else if (parameters->options().output_is_position_independent()
3705                && r_type == elfcpp::R_PPC_PLTREL24)
3706         {
3707           this->addend_ = addend;
3708           if (this->addend_ >= 32768)
3709             this->object_ = object;
3710         }
3711     }
3712
3713     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3714                  unsigned int locsym_index,
3715                  unsigned int r_type,
3716                  Address addend)
3717       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3718     {
3719       if (size != 32)
3720         this->addend_ = addend;
3721       else if (parameters->options().output_is_position_independent()
3722                && r_type == elfcpp::R_PPC_PLTREL24)
3723         this->addend_ = addend;
3724     }
3725
3726     bool operator==(const Plt_stub_ent& that) const
3727     {
3728       return (this->sym_ == that.sym_
3729               && this->object_ == that.object_
3730               && this->addend_ == that.addend_
3731               && this->locsym_ == that.locsym_);
3732     }
3733
3734     const Symbol* sym_;
3735     const Sized_relobj_file<size, big_endian>* object_;
3736     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3737     unsigned int locsym_;
3738   };
3739
3740   class Plt_stub_ent_hash
3741   {
3742   public:
3743     size_t operator()(const Plt_stub_ent& ent) const
3744     {
3745       return (reinterpret_cast<uintptr_t>(ent.sym_)
3746               ^ reinterpret_cast<uintptr_t>(ent.object_)
3747               ^ ent.addend_
3748               ^ ent.locsym_);
3749     }
3750   };
3751
3752   // Long branch stub keys.
3753   class Branch_stub_ent
3754   {
3755   public:
3756     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3757       : dest_(to), toc_base_off_(0)
3758     {
3759       if (size == 64)
3760         toc_base_off_ = obj->toc_base_offset();
3761     }
3762
3763     bool operator==(const Branch_stub_ent& that) const
3764     {
3765       return (this->dest_ == that.dest_
3766               && (size == 32
3767                   || this->toc_base_off_ == that.toc_base_off_));
3768     }
3769
3770     Address dest_;
3771     unsigned int toc_base_off_;
3772   };
3773
3774   class Branch_stub_ent_hash
3775   {
3776   public:
3777     size_t operator()(const Branch_stub_ent& ent) const
3778     { return ent.dest_ ^ ent.toc_base_off_; }
3779   };
3780
3781   // In a sane world this would be a global.
3782   Target_powerpc<size, big_endian>* targ_;
3783   // Map sym/object/addend to stub offset.
3784   Plt_stub_entries plt_call_stubs_;
3785   // Map destination address to stub offset.
3786   typedef Unordered_map<Branch_stub_ent, unsigned int,
3787                         Branch_stub_ent_hash> Branch_stub_entries;
3788   Branch_stub_entries long_branch_stubs_;
3789   // size of input section
3790   section_size_type orig_data_size_;
3791   // size of stubs
3792   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3793   // Whether .eh_frame info has been created for this stub section.
3794   bool eh_frame_added_;
3795 };
3796
3797 // Make a new stub table, and record.
3798
3799 template<int size, bool big_endian>
3800 Stub_table<size, big_endian>*
3801 Target_powerpc<size, big_endian>::new_stub_table()
3802 {
3803   Stub_table<size, big_endian>* stub_table
3804     = new Stub_table<size, big_endian>(this);
3805   this->stub_tables_.push_back(stub_table);
3806   return stub_table;
3807 }
3808
3809 // Delayed stub table initialisation, because we create the stub table
3810 // before we know to which section it will be attached.
3811
3812 template<int size, bool big_endian>
3813 void
3814 Stub_table<size, big_endian>::init(
3815     const Output_section::Input_section* owner,
3816     Output_section* output_section)
3817 {
3818   this->set_relobj(owner->relobj());
3819   this->set_shndx(owner->shndx());
3820   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3821   this->set_output_section(output_section);
3822   this->orig_data_size_ = owner->current_data_size();
3823
3824   std::vector<Output_relaxed_input_section*> new_relaxed;
3825   new_relaxed.push_back(this);
3826   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3827 }
3828
3829 // Add a plt call stub, if we do not already have one for this
3830 // sym/object/addend combo.
3831
3832 template<int size, bool big_endian>
3833 void
3834 Stub_table<size, big_endian>::add_plt_call_entry(
3835     const Sized_relobj_file<size, big_endian>* object,
3836     const Symbol* gsym,
3837     unsigned int r_type,
3838     Address addend)
3839 {
3840   Plt_stub_ent ent(object, gsym, r_type, addend);
3841   unsigned int off = this->plt_size_;
3842   std::pair<typename Plt_stub_entries::iterator, bool> p
3843     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3844   if (p.second)
3845     this->plt_size_ = off + this->plt_call_size(p.first);
3846 }
3847
3848 template<int size, bool big_endian>
3849 void
3850 Stub_table<size, big_endian>::add_plt_call_entry(
3851     const Sized_relobj_file<size, big_endian>* object,
3852     unsigned int locsym_index,
3853     unsigned int r_type,
3854     Address addend)
3855 {
3856   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3857   unsigned int off = this->plt_size_;
3858   std::pair<typename Plt_stub_entries::iterator, bool> p
3859     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3860   if (p.second)
3861     this->plt_size_ = off + this->plt_call_size(p.first);
3862 }
3863
3864 // Find a plt call stub.
3865
3866 template<int size, bool big_endian>
3867 typename Stub_table<size, big_endian>::Address
3868 Stub_table<size, big_endian>::find_plt_call_entry(
3869     const Sized_relobj_file<size, big_endian>* object,
3870     const Symbol* gsym,
3871     unsigned int r_type,
3872     Address addend) const
3873 {
3874   Plt_stub_ent ent(object, gsym, r_type, addend);
3875   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3876   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3877 }
3878
3879 template<int size, bool big_endian>
3880 typename Stub_table<size, big_endian>::Address
3881 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3882 {
3883   Plt_stub_ent ent(gsym);
3884   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3885   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3886 }
3887
3888 template<int size, bool big_endian>
3889 typename Stub_table<size, big_endian>::Address
3890 Stub_table<size, big_endian>::find_plt_call_entry(
3891     const Sized_relobj_file<size, big_endian>* object,
3892     unsigned int locsym_index,
3893     unsigned int r_type,
3894     Address addend) const
3895 {
3896   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3897   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3898   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3899 }
3900
3901 template<int size, bool big_endian>
3902 typename Stub_table<size, big_endian>::Address
3903 Stub_table<size, big_endian>::find_plt_call_entry(
3904     const Sized_relobj_file<size, big_endian>* object,
3905     unsigned int locsym_index) const
3906 {
3907   Plt_stub_ent ent(object, locsym_index);
3908   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3909   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3910 }
3911
3912 // Add a long branch stub if we don't already have one to given
3913 // destination.
3914
3915 template<int size, bool big_endian>
3916 void
3917 Stub_table<size, big_endian>::add_long_branch_entry(
3918     const Powerpc_relobj<size, big_endian>* object,
3919     Address to)
3920 {
3921   Branch_stub_ent ent(object, to);
3922   Address off = this->branch_size_;
3923   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3924     {
3925       unsigned int stub_size = this->branch_stub_size(to);
3926       this->branch_size_ = off + stub_size;
3927       if (size == 64 && stub_size != 4)
3928         this->targ_->add_branch_lookup_table(to);
3929     }
3930 }
3931
3932 // Find long branch stub.
3933
3934 template<int size, bool big_endian>
3935 typename Stub_table<size, big_endian>::Address
3936 Stub_table<size, big_endian>::find_long_branch_entry(
3937     const Powerpc_relobj<size, big_endian>* object,
3938     Address to) const
3939 {
3940   Branch_stub_ent ent(object, to);
3941   typename Branch_stub_entries::const_iterator p
3942     = this->long_branch_stubs_.find(ent);
3943   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3944 }
3945
3946 // A class to handle .glink.
3947
3948 template<int size, bool big_endian>
3949 class Output_data_glink : public Output_section_data
3950 {
3951  public:
3952   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3953   static const Address invalid_address = static_cast<Address>(0) - 1;
3954   static const int pltresolve_size = 16*4;
3955
3956   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3957     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3958       end_branch_table_(), ge_size_(0)
3959   { }
3960
3961   void
3962   add_eh_frame(Layout* layout);
3963
3964   void
3965   add_global_entry(const Symbol*);
3966
3967   Address
3968   find_global_entry(const Symbol*) const;
3969
3970   Address
3971   global_entry_address() const
3972   {
3973     gold_assert(this->is_data_size_valid());
3974     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3975     return this->address() + global_entry_off;
3976   }
3977
3978  protected:
3979   // Write to a map file.
3980   void
3981   do_print_to_mapfile(Mapfile* mapfile) const
3982   { mapfile->print_output_data(this, _("** glink")); }
3983
3984  private:
3985   void
3986   set_final_data_size();
3987
3988   // Write out .glink
3989   void
3990   do_write(Output_file*);
3991
3992   // Allows access to .got and .plt for do_write.
3993   Target_powerpc<size, big_endian>* targ_;
3994
3995   // Map sym to stub offset.
3996   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
3997   Global_entry_stub_entries global_entry_stubs_;
3998
3999   unsigned int end_branch_table_, ge_size_;
4000 };
4001
4002 template<int size, bool big_endian>
4003 void
4004 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4005 {
4006   if (!parameters->options().ld_generated_unwind_info())
4007     return;
4008
4009   if (size == 64)
4010     {
4011       if (this->targ_->abiversion() < 2)
4012         layout->add_eh_frame_for_plt(this,
4013                                      Eh_cie<64>::eh_frame_cie,
4014                                      sizeof (Eh_cie<64>::eh_frame_cie),
4015                                      glink_eh_frame_fde_64v1,
4016                                      sizeof (glink_eh_frame_fde_64v1));
4017       else
4018         layout->add_eh_frame_for_plt(this,
4019                                      Eh_cie<64>::eh_frame_cie,
4020                                      sizeof (Eh_cie<64>::eh_frame_cie),
4021                                      glink_eh_frame_fde_64v2,
4022                                      sizeof (glink_eh_frame_fde_64v2));
4023     }
4024   else
4025     {
4026       // 32-bit .glink can use the default since the CIE return
4027       // address reg, LR, is valid.
4028       layout->add_eh_frame_for_plt(this,
4029                                    Eh_cie<32>::eh_frame_cie,
4030                                    sizeof (Eh_cie<32>::eh_frame_cie),
4031                                    default_fde,
4032                                    sizeof (default_fde));
4033       // Except where LR is used in a PIC __glink_PLTresolve.
4034       if (parameters->options().output_is_position_independent())
4035         layout->add_eh_frame_for_plt(this,
4036                                      Eh_cie<32>::eh_frame_cie,
4037                                      sizeof (Eh_cie<32>::eh_frame_cie),
4038                                      glink_eh_frame_fde_32,
4039                                      sizeof (glink_eh_frame_fde_32));
4040     }
4041 }
4042
4043 template<int size, bool big_endian>
4044 void
4045 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4046 {
4047   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4048     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4049   if (p.second)
4050     this->ge_size_ += 16;
4051 }
4052
4053 template<int size, bool big_endian>
4054 typename Output_data_glink<size, big_endian>::Address
4055 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4056 {
4057   typename Global_entry_stub_entries::const_iterator p
4058     = this->global_entry_stubs_.find(gsym);
4059   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4060 }
4061
4062 template<int size, bool big_endian>
4063 void
4064 Output_data_glink<size, big_endian>::set_final_data_size()
4065 {
4066   unsigned int count = this->targ_->plt_entry_count();
4067   section_size_type total = 0;
4068
4069   if (count != 0)
4070     {
4071       if (size == 32)
4072         {
4073           // space for branch table
4074           total += 4 * (count - 1);
4075
4076           total += -total & 15;
4077           total += this->pltresolve_size;
4078         }
4079       else
4080         {
4081           total += this->pltresolve_size;
4082
4083           // space for branch table
4084           total += 4 * count;
4085           if (this->targ_->abiversion() < 2)
4086             {
4087               total += 4 * count;
4088               if (count > 0x8000)
4089                 total += 4 * (count - 0x8000);
4090             }
4091         }
4092     }
4093   this->end_branch_table_ = total;
4094   total = (total + 15) & -16;
4095   total += this->ge_size_;
4096
4097   this->set_data_size(total);
4098 }
4099
4100 // Write out plt and long branch stub code.
4101
4102 template<int size, bool big_endian>
4103 void
4104 Stub_table<size, big_endian>::do_write(Output_file* of)
4105 {
4106   if (this->plt_call_stubs_.empty()
4107       && this->long_branch_stubs_.empty())
4108     return;
4109
4110   const section_size_type start_off = this->offset();
4111   const section_size_type off = this->stub_offset();
4112   const section_size_type oview_size =
4113     convert_to_section_size_type(this->data_size() - (off - start_off));
4114   unsigned char* const oview = of->get_output_view(off, oview_size);
4115   unsigned char* p;
4116
4117   if (size == 64)
4118     {
4119       const Output_data_got_powerpc<size, big_endian>* got
4120         = this->targ_->got_section();
4121       Address got_os_addr = got->output_section()->address();
4122
4123       if (!this->plt_call_stubs_.empty())
4124         {
4125           // The base address of the .plt section.
4126           Address plt_base = this->targ_->plt_section()->address();
4127           Address iplt_base = invalid_address;
4128
4129           // Write out plt call stubs.
4130           typename Plt_stub_entries::const_iterator cs;
4131           for (cs = this->plt_call_stubs_.begin();
4132                cs != this->plt_call_stubs_.end();
4133                ++cs)
4134             {
4135               bool is_iplt;
4136               Address pltoff = this->plt_off(cs, &is_iplt);
4137               Address plt_addr = pltoff;
4138               if (is_iplt)
4139                 {
4140                   if (iplt_base == invalid_address)
4141                     iplt_base = this->targ_->iplt_section()->address();
4142                   plt_addr += iplt_base;
4143                 }
4144               else
4145                 plt_addr += plt_base;
4146               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4147                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4148               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4149               Address off = plt_addr - got_addr;
4150
4151               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4152                 gold_error(_("%s: linkage table error against `%s'"),
4153                            cs->first.object_->name().c_str(),
4154                            cs->first.sym_->demangled_name().c_str());
4155
4156               bool plt_load_toc = this->targ_->abiversion() < 2;
4157               bool static_chain
4158                 = plt_load_toc && parameters->options().plt_static_chain();
4159               bool thread_safe
4160                 = plt_load_toc && this->targ_->plt_thread_safe();
4161               bool use_fake_dep = false;
4162               Address cmp_branch_off = 0;
4163               if (thread_safe)
4164                 {
4165                   unsigned int pltindex
4166                     = ((pltoff - this->targ_->first_plt_entry_offset())
4167                        / this->targ_->plt_entry_size());
4168                   Address glinkoff
4169                     = (this->targ_->glink_section()->pltresolve_size
4170                        + pltindex * 8);
4171                   if (pltindex > 32768)
4172                     glinkoff += (pltindex - 32768) * 4;
4173                   Address to
4174                     = this->targ_->glink_section()->address() + glinkoff;
4175                   Address from
4176                     = (this->stub_address() + cs->second + 24
4177                        + 4 * (ha(off) != 0)
4178                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4179                        + 4 * static_chain);
4180                   cmp_branch_off = to - from;
4181                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4182                 }
4183
4184               p = oview + cs->second;
4185               if (ha(off) != 0)
4186                 {
4187                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4188                   p += 4;
4189                   write_insn<big_endian>(p, addis_11_2 + ha(off));
4190                   p += 4;
4191                   write_insn<big_endian>(p, ld_12_11 + l(off));
4192                   p += 4;
4193                   if (plt_load_toc
4194                       && ha(off + 8 + 8 * static_chain) != ha(off))
4195                     {
4196                       write_insn<big_endian>(p, addi_11_11 + l(off));
4197                       p += 4;
4198                       off = 0;
4199                     }
4200                   write_insn<big_endian>(p, mtctr_12);
4201                   p += 4;
4202                   if (plt_load_toc)
4203                     {
4204                       if (use_fake_dep)
4205                         {
4206                           write_insn<big_endian>(p, xor_2_12_12);
4207                           p += 4;
4208                           write_insn<big_endian>(p, add_11_11_2);
4209                           p += 4;
4210                         }
4211                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4212                       p += 4;
4213                       if (static_chain)
4214                         {
4215                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4216                           p += 4;
4217                         }
4218                     }
4219                 }
4220               else
4221                 {
4222                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4223                   p += 4;
4224                   write_insn<big_endian>(p, ld_12_2 + l(off));
4225                   p += 4;
4226                   if (plt_load_toc
4227                       && ha(off + 8 + 8 * static_chain) != ha(off))
4228                     {
4229                       write_insn<big_endian>(p, addi_2_2 + l(off));
4230                       p += 4;
4231                       off = 0;
4232                     }
4233                   write_insn<big_endian>(p, mtctr_12);
4234                   p += 4;
4235                   if (plt_load_toc)
4236                     {
4237                       if (use_fake_dep)
4238                         {
4239                           write_insn<big_endian>(p, xor_11_12_12);
4240                           p += 4;
4241                           write_insn<big_endian>(p, add_2_2_11);
4242                           p += 4;
4243                         }
4244                       if (static_chain)
4245                         {
4246                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4247                           p += 4;
4248                         }
4249                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4250                       p += 4;
4251                     }
4252                 }
4253               if (thread_safe && !use_fake_dep)
4254                 {
4255                   write_insn<big_endian>(p, cmpldi_2_0);
4256                   p += 4;
4257                   write_insn<big_endian>(p, bnectr_p4);
4258                   p += 4;
4259                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4260                 }
4261               else
4262                 write_insn<big_endian>(p, bctr);
4263             }
4264         }
4265
4266       // Write out long branch stubs.
4267       typename Branch_stub_entries::const_iterator bs;
4268       for (bs = this->long_branch_stubs_.begin();
4269            bs != this->long_branch_stubs_.end();
4270            ++bs)
4271         {
4272           p = oview + this->plt_size_ + bs->second;
4273           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4274           Address delta = bs->first.dest_ - loc;
4275           if (delta + (1 << 25) < 2 << 25)
4276             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4277           else
4278             {
4279               Address brlt_addr
4280                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4281               gold_assert(brlt_addr != invalid_address);
4282               brlt_addr += this->targ_->brlt_section()->address();
4283               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4284               Address brltoff = brlt_addr - got_addr;
4285               if (ha(brltoff) == 0)
4286                 {
4287                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4288                 }
4289               else
4290                 {
4291                   write_insn<big_endian>(p, addis_11_2 + ha(brltoff)),  p += 4;
4292                   write_insn<big_endian>(p, ld_12_11 + l(brltoff)),     p += 4;
4293                 }
4294               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4295               write_insn<big_endian>(p, bctr);
4296             }
4297         }
4298     }
4299   else
4300     {
4301       if (!this->plt_call_stubs_.empty())
4302         {
4303           // The base address of the .plt section.
4304           Address plt_base = this->targ_->plt_section()->address();
4305           Address iplt_base = invalid_address;
4306           // The address of _GLOBAL_OFFSET_TABLE_.
4307           Address g_o_t = invalid_address;
4308
4309           // Write out plt call stubs.
4310           typename Plt_stub_entries::const_iterator cs;
4311           for (cs = this->plt_call_stubs_.begin();
4312                cs != this->plt_call_stubs_.end();
4313                ++cs)
4314             {
4315               bool is_iplt;
4316               Address plt_addr = this->plt_off(cs, &is_iplt);
4317               if (is_iplt)
4318                 {
4319                   if (iplt_base == invalid_address)
4320                     iplt_base = this->targ_->iplt_section()->address();
4321                   plt_addr += iplt_base;
4322                 }
4323               else
4324                 plt_addr += plt_base;
4325
4326               p = oview + cs->second;
4327               if (parameters->options().output_is_position_independent())
4328                 {
4329                   Address got_addr;
4330                   const Powerpc_relobj<size, big_endian>* ppcobj
4331                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4332                        (cs->first.object_));
4333                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4334                     {
4335                       unsigned int got2 = ppcobj->got2_shndx();
4336                       got_addr = ppcobj->get_output_section_offset(got2);
4337                       gold_assert(got_addr != invalid_address);
4338                       got_addr += (ppcobj->output_section(got2)->address()
4339                                    + cs->first.addend_);
4340                     }
4341                   else
4342                     {
4343                       if (g_o_t == invalid_address)
4344                         {
4345                           const Output_data_got_powerpc<size, big_endian>* got
4346                             = this->targ_->got_section();
4347                           g_o_t = got->address() + got->g_o_t();
4348                         }
4349                       got_addr = g_o_t;
4350                     }
4351
4352                   Address off = plt_addr - got_addr;
4353                   if (ha(off) == 0)
4354                     {
4355                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4356                       write_insn<big_endian>(p +  4, mtctr_11);
4357                       write_insn<big_endian>(p +  8, bctr);
4358                     }
4359                   else
4360                     {
4361                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4362                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4363                       write_insn<big_endian>(p +  8, mtctr_11);
4364                       write_insn<big_endian>(p + 12, bctr);
4365                     }
4366                 }
4367               else
4368                 {
4369                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4370                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4371                   write_insn<big_endian>(p +  8, mtctr_11);
4372                   write_insn<big_endian>(p + 12, bctr);
4373                 }
4374             }
4375         }
4376
4377       // Write out long branch stubs.
4378       typename Branch_stub_entries::const_iterator bs;
4379       for (bs = this->long_branch_stubs_.begin();
4380            bs != this->long_branch_stubs_.end();
4381            ++bs)
4382         {
4383           p = oview + this->plt_size_ + bs->second;
4384           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4385           Address delta = bs->first.dest_ - loc;
4386           if (delta + (1 << 25) < 2 << 25)
4387             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4388           else if (!parameters->options().output_is_position_independent())
4389             {
4390               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4391               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4392               write_insn<big_endian>(p +  8, mtctr_12);
4393               write_insn<big_endian>(p + 12, bctr);
4394             }
4395           else
4396             {
4397               delta -= 8;
4398               write_insn<big_endian>(p +  0, mflr_0);
4399               write_insn<big_endian>(p +  4, bcl_20_31);
4400               write_insn<big_endian>(p +  8, mflr_12);
4401               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4402               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4403               write_insn<big_endian>(p + 20, mtlr_0);
4404               write_insn<big_endian>(p + 24, mtctr_12);
4405               write_insn<big_endian>(p + 28, bctr);
4406             }
4407         }
4408     }
4409 }
4410
4411 // Write out .glink.
4412
4413 template<int size, bool big_endian>
4414 void
4415 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4416 {
4417   const section_size_type off = this->offset();
4418   const section_size_type oview_size =
4419     convert_to_section_size_type(this->data_size());
4420   unsigned char* const oview = of->get_output_view(off, oview_size);
4421   unsigned char* p;
4422
4423   // The base address of the .plt section.
4424   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4425   Address plt_base = this->targ_->plt_section()->address();
4426
4427   if (size == 64)
4428     {
4429       if (this->end_branch_table_ != 0)
4430         {
4431           // Write pltresolve stub.
4432           p = oview;
4433           Address after_bcl = this->address() + 16;
4434           Address pltoff = plt_base - after_bcl;
4435
4436           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4437
4438           if (this->targ_->abiversion() < 2)
4439             {
4440               write_insn<big_endian>(p, mflr_12),               p += 4;
4441               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4442               write_insn<big_endian>(p, mflr_11),               p += 4;
4443               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4444               write_insn<big_endian>(p, mtlr_12),               p += 4;
4445               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4446               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4447               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4448               write_insn<big_endian>(p, mtctr_12),              p += 4;
4449               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4450             }
4451           else
4452             {
4453               write_insn<big_endian>(p, mflr_0),                p += 4;
4454               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4455               write_insn<big_endian>(p, mflr_11),               p += 4;
4456               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4457               write_insn<big_endian>(p, mtlr_0),                p += 4;
4458               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4459               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4460               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4461               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4462               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4463               write_insn<big_endian>(p, mtctr_12),              p += 4;
4464               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4465             }
4466           write_insn<big_endian>(p, bctr),                      p += 4;
4467           while (p < oview + this->pltresolve_size)
4468             write_insn<big_endian>(p, nop), p += 4;
4469
4470           // Write lazy link call stubs.
4471           uint32_t indx = 0;
4472           while (p < oview + this->end_branch_table_)
4473             {
4474               if (this->targ_->abiversion() < 2)
4475                 {
4476                   if (indx < 0x8000)
4477                     {
4478                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4479                     }
4480                   else
4481                     {
4482                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4483                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4484                     }
4485                 }
4486               uint32_t branch_off = 8 - (p - oview);
4487               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4488               indx++;
4489             }
4490         }
4491
4492       Address plt_base = this->targ_->plt_section()->address();
4493       Address iplt_base = invalid_address;
4494       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4495       Address global_entry_base = this->address() + global_entry_off;
4496       typename Global_entry_stub_entries::const_iterator ge;
4497       for (ge = this->global_entry_stubs_.begin();
4498            ge != this->global_entry_stubs_.end();
4499            ++ge)
4500         {
4501           p = oview + global_entry_off + ge->second;
4502           Address plt_addr = ge->first->plt_offset();
4503           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4504               && ge->first->can_use_relative_reloc(false))
4505             {
4506               if (iplt_base == invalid_address)
4507                 iplt_base = this->targ_->iplt_section()->address();
4508               plt_addr += iplt_base;
4509             }
4510           else
4511             plt_addr += plt_base;
4512           Address my_addr = global_entry_base + ge->second;
4513           Address off = plt_addr - my_addr;
4514
4515           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4516             gold_error(_("%s: linkage table error against `%s'"),
4517                        ge->first->object()->name().c_str(),
4518                        ge->first->demangled_name().c_str());
4519
4520           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4521           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4522           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4523           write_insn<big_endian>(p, bctr);
4524         }
4525     }
4526   else
4527     {
4528       const Output_data_got_powerpc<size, big_endian>* got
4529         = this->targ_->got_section();
4530       // The address of _GLOBAL_OFFSET_TABLE_.
4531       Address g_o_t = got->address() + got->g_o_t();
4532
4533       // Write out pltresolve branch table.
4534       p = oview;
4535       unsigned int the_end = oview_size - this->pltresolve_size;
4536       unsigned char* end_p = oview + the_end;
4537       while (p < end_p - 8 * 4)
4538         write_insn<big_endian>(p, b + end_p - p), p += 4;
4539       while (p < end_p)
4540         write_insn<big_endian>(p, nop), p += 4;
4541
4542       // Write out pltresolve call stub.
4543       if (parameters->options().output_is_position_independent())
4544         {
4545           Address res0_off = 0;
4546           Address after_bcl_off = the_end + 12;
4547           Address bcl_res0 = after_bcl_off - res0_off;
4548
4549           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4550           write_insn<big_endian>(p +  4, mflr_0);
4551           write_insn<big_endian>(p +  8, bcl_20_31);
4552           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4553           write_insn<big_endian>(p + 16, mflr_12);
4554           write_insn<big_endian>(p + 20, mtlr_0);
4555           write_insn<big_endian>(p + 24, sub_11_11_12);
4556
4557           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4558
4559           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4560           if (ha(got_bcl) == ha(got_bcl + 4))
4561             {
4562               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4563               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4564             }
4565           else
4566             {
4567               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4568               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4569             }
4570           write_insn<big_endian>(p + 40, mtctr_0);
4571           write_insn<big_endian>(p + 44, add_0_11_11);
4572           write_insn<big_endian>(p + 48, add_11_0_11);
4573           write_insn<big_endian>(p + 52, bctr);
4574           write_insn<big_endian>(p + 56, nop);
4575           write_insn<big_endian>(p + 60, nop);
4576         }
4577       else
4578         {
4579           Address res0 = this->address();
4580
4581           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4582           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4583           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4584             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4585           else
4586             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4587           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4588           write_insn<big_endian>(p + 16, mtctr_0);
4589           write_insn<big_endian>(p + 20, add_0_11_11);
4590           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4591             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4592           else
4593             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4594           write_insn<big_endian>(p + 28, add_11_0_11);
4595           write_insn<big_endian>(p + 32, bctr);
4596           write_insn<big_endian>(p + 36, nop);
4597           write_insn<big_endian>(p + 40, nop);
4598           write_insn<big_endian>(p + 44, nop);
4599           write_insn<big_endian>(p + 48, nop);
4600           write_insn<big_endian>(p + 52, nop);
4601           write_insn<big_endian>(p + 56, nop);
4602           write_insn<big_endian>(p + 60, nop);
4603         }
4604       p += 64;
4605     }
4606
4607   of->write_output_view(off, oview_size, oview);
4608 }
4609
4610
4611 // A class to handle linker generated save/restore functions.
4612
4613 template<int size, bool big_endian>
4614 class Output_data_save_res : public Output_section_data_build
4615 {
4616  public:
4617   Output_data_save_res(Symbol_table* symtab);
4618
4619  protected:
4620   // Write to a map file.
4621   void
4622   do_print_to_mapfile(Mapfile* mapfile) const
4623   { mapfile->print_output_data(this, _("** save/restore")); }
4624
4625   void
4626   do_write(Output_file*);
4627
4628  private:
4629   // The maximum size of save/restore contents.
4630   static const unsigned int savres_max = 218*4;
4631
4632   void
4633   savres_define(Symbol_table* symtab,
4634                 const char *name,
4635                 unsigned int lo, unsigned int hi,
4636                 unsigned char* write_ent(unsigned char*, int),
4637                 unsigned char* write_tail(unsigned char*, int));
4638
4639   unsigned char *contents_;
4640 };
4641
4642 template<bool big_endian>
4643 static unsigned char*
4644 savegpr0(unsigned char* p, int r)
4645 {
4646   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4647   write_insn<big_endian>(p, insn);
4648   return p + 4;
4649 }
4650
4651 template<bool big_endian>
4652 static unsigned char*
4653 savegpr0_tail(unsigned char* p, int r)
4654 {
4655   p = savegpr0<big_endian>(p, r);
4656   uint32_t insn = std_0_1 + 16;
4657   write_insn<big_endian>(p, insn);
4658   p = p + 4;
4659   write_insn<big_endian>(p, blr);
4660   return p + 4;
4661 }
4662
4663 template<bool big_endian>
4664 static unsigned char*
4665 restgpr0(unsigned char* p, int r)
4666 {
4667   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4668   write_insn<big_endian>(p, insn);
4669   return p + 4;
4670 }
4671
4672 template<bool big_endian>
4673 static unsigned char*
4674 restgpr0_tail(unsigned char* p, int r)
4675 {
4676   uint32_t insn = ld_0_1 + 16;
4677   write_insn<big_endian>(p, insn);
4678   p = p + 4;
4679   p = restgpr0<big_endian>(p, r);
4680   write_insn<big_endian>(p, mtlr_0);
4681   p = p + 4;
4682   if (r == 29)
4683     {
4684       p = restgpr0<big_endian>(p, 30);
4685       p = restgpr0<big_endian>(p, 31);
4686     }
4687   write_insn<big_endian>(p, blr);
4688   return p + 4;
4689 }
4690
4691 template<bool big_endian>
4692 static unsigned char*
4693 savegpr1(unsigned char* p, int r)
4694 {
4695   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4696   write_insn<big_endian>(p, insn);
4697   return p + 4;
4698 }
4699
4700 template<bool big_endian>
4701 static unsigned char*
4702 savegpr1_tail(unsigned char* p, int r)
4703 {
4704   p = savegpr1<big_endian>(p, r);
4705   write_insn<big_endian>(p, blr);
4706   return p + 4;
4707 }
4708
4709 template<bool big_endian>
4710 static unsigned char*
4711 restgpr1(unsigned char* p, int r)
4712 {
4713   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4714   write_insn<big_endian>(p, insn);
4715   return p + 4;
4716 }
4717
4718 template<bool big_endian>
4719 static unsigned char*
4720 restgpr1_tail(unsigned char* p, int r)
4721 {
4722   p = restgpr1<big_endian>(p, r);
4723   write_insn<big_endian>(p, blr);
4724   return p + 4;
4725 }
4726
4727 template<bool big_endian>
4728 static unsigned char*
4729 savefpr(unsigned char* p, int r)
4730 {
4731   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4732   write_insn<big_endian>(p, insn);
4733   return p + 4;
4734 }
4735
4736 template<bool big_endian>
4737 static unsigned char*
4738 savefpr0_tail(unsigned char* p, int r)
4739 {
4740   p = savefpr<big_endian>(p, r);
4741   write_insn<big_endian>(p, std_0_1 + 16);
4742   p = p + 4;
4743   write_insn<big_endian>(p, blr);
4744   return p + 4;
4745 }
4746
4747 template<bool big_endian>
4748 static unsigned char*
4749 restfpr(unsigned char* p, int r)
4750 {
4751   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4752   write_insn<big_endian>(p, insn);
4753   return p + 4;
4754 }
4755
4756 template<bool big_endian>
4757 static unsigned char*
4758 restfpr0_tail(unsigned char* p, int r)
4759 {
4760   write_insn<big_endian>(p, ld_0_1 + 16);
4761   p = p + 4;
4762   p = restfpr<big_endian>(p, r);
4763   write_insn<big_endian>(p, mtlr_0);
4764   p = p + 4;
4765   if (r == 29)
4766     {
4767       p = restfpr<big_endian>(p, 30);
4768       p = restfpr<big_endian>(p, 31);
4769     }
4770   write_insn<big_endian>(p, blr);
4771   return p + 4;
4772 }
4773
4774 template<bool big_endian>
4775 static unsigned char*
4776 savefpr1_tail(unsigned char* p, int r)
4777 {
4778   p = savefpr<big_endian>(p, r);
4779   write_insn<big_endian>(p, blr);
4780   return p + 4;
4781 }
4782
4783 template<bool big_endian>
4784 static unsigned char*
4785 restfpr1_tail(unsigned char* p, int r)
4786 {
4787   p = restfpr<big_endian>(p, r);
4788   write_insn<big_endian>(p, blr);
4789   return p + 4;
4790 }
4791
4792 template<bool big_endian>
4793 static unsigned char*
4794 savevr(unsigned char* p, int r)
4795 {
4796   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4797   write_insn<big_endian>(p, insn);
4798   p = p + 4;
4799   insn = stvx_0_12_0 + (r << 21);
4800   write_insn<big_endian>(p, insn);
4801   return p + 4;
4802 }
4803
4804 template<bool big_endian>
4805 static unsigned char*
4806 savevr_tail(unsigned char* p, int r)
4807 {
4808   p = savevr<big_endian>(p, r);
4809   write_insn<big_endian>(p, blr);
4810   return p + 4;
4811 }
4812
4813 template<bool big_endian>
4814 static unsigned char*
4815 restvr(unsigned char* p, int r)
4816 {
4817   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4818   write_insn<big_endian>(p, insn);
4819   p = p + 4;
4820   insn = lvx_0_12_0 + (r << 21);
4821   write_insn<big_endian>(p, insn);
4822   return p + 4;
4823 }
4824
4825 template<bool big_endian>
4826 static unsigned char*
4827 restvr_tail(unsigned char* p, int r)
4828 {
4829   p = restvr<big_endian>(p, r);
4830   write_insn<big_endian>(p, blr);
4831   return p + 4;
4832 }
4833
4834
4835 template<int size, bool big_endian>
4836 Output_data_save_res<size, big_endian>::Output_data_save_res(
4837     Symbol_table* symtab)
4838   : Output_section_data_build(4),
4839     contents_(NULL)
4840 {
4841   this->savres_define(symtab,
4842                       "_savegpr0_", 14, 31,
4843                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4844   this->savres_define(symtab,
4845                       "_restgpr0_", 14, 29,
4846                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4847   this->savres_define(symtab,
4848                       "_restgpr0_", 30, 31,
4849                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4850   this->savres_define(symtab,
4851                       "_savegpr1_", 14, 31,
4852                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4853   this->savres_define(symtab,
4854                       "_restgpr1_", 14, 31,
4855                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4856   this->savres_define(symtab,
4857                       "_savefpr_", 14, 31,
4858                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4859   this->savres_define(symtab,
4860                       "_restfpr_", 14, 29,
4861                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4862   this->savres_define(symtab,
4863                       "_restfpr_", 30, 31,
4864                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4865   this->savres_define(symtab,
4866                       "._savef", 14, 31,
4867                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4868   this->savres_define(symtab,
4869                       "._restf", 14, 31,
4870                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4871   this->savres_define(symtab,
4872                       "_savevr_", 20, 31,
4873                       savevr<big_endian>, savevr_tail<big_endian>);
4874   this->savres_define(symtab,
4875                       "_restvr_", 20, 31,
4876                       restvr<big_endian>, restvr_tail<big_endian>);
4877 }
4878
4879 template<int size, bool big_endian>
4880 void
4881 Output_data_save_res<size, big_endian>::savres_define(
4882     Symbol_table* symtab,
4883     const char *name,
4884     unsigned int lo, unsigned int hi,
4885     unsigned char* write_ent(unsigned char*, int),
4886     unsigned char* write_tail(unsigned char*, int))
4887 {
4888   size_t len = strlen(name);
4889   bool writing = false;
4890   char sym[16];
4891
4892   memcpy(sym, name, len);
4893   sym[len + 2] = 0;
4894
4895   for (unsigned int i = lo; i <= hi; i++)
4896     {
4897       sym[len + 0] = i / 10 + '0';
4898       sym[len + 1] = i % 10 + '0';
4899       Symbol* gsym = symtab->lookup(sym);
4900       bool refd = gsym != NULL && gsym->is_undefined();
4901       writing = writing || refd;
4902       if (writing)
4903         {
4904           if (this->contents_ == NULL)
4905             this->contents_ = new unsigned char[this->savres_max];
4906
4907           section_size_type value = this->current_data_size();
4908           unsigned char* p = this->contents_ + value;
4909           if (i != hi)
4910             p = write_ent(p, i);
4911           else
4912             p = write_tail(p, i);
4913           section_size_type cur_size = p - this->contents_;
4914           this->set_current_data_size(cur_size);
4915           if (refd)
4916             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4917                                           this, value, cur_size - value,
4918                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4919                                           elfcpp::STV_HIDDEN, 0, false, false);
4920         }
4921     }
4922 }
4923
4924 // Write out save/restore.
4925
4926 template<int size, bool big_endian>
4927 void
4928 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4929 {
4930   const section_size_type off = this->offset();
4931   const section_size_type oview_size =
4932     convert_to_section_size_type(this->data_size());
4933   unsigned char* const oview = of->get_output_view(off, oview_size);
4934   memcpy(oview, this->contents_, oview_size);
4935   of->write_output_view(off, oview_size, oview);
4936 }
4937
4938
4939 // Create the glink section.
4940
4941 template<int size, bool big_endian>
4942 void
4943 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4944 {
4945   if (this->glink_ == NULL)
4946     {
4947       this->glink_ = new Output_data_glink<size, big_endian>(this);
4948       this->glink_->add_eh_frame(layout);
4949       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4950                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4951                                       this->glink_, ORDER_TEXT, false);
4952     }
4953 }
4954
4955 // Create a PLT entry for a global symbol.
4956
4957 template<int size, bool big_endian>
4958 void
4959 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4960                                                  Layout* layout,
4961                                                  Symbol* gsym)
4962 {
4963   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4964       && gsym->can_use_relative_reloc(false))
4965     {
4966       if (this->iplt_ == NULL)
4967         this->make_iplt_section(symtab, layout);
4968       this->iplt_->add_ifunc_entry(gsym);
4969     }
4970   else
4971     {
4972       if (this->plt_ == NULL)
4973         this->make_plt_section(symtab, layout);
4974       this->plt_->add_entry(gsym);
4975     }
4976 }
4977
4978 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4979
4980 template<int size, bool big_endian>
4981 void
4982 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4983     Symbol_table* symtab,
4984     Layout* layout,
4985     Sized_relobj_file<size, big_endian>* relobj,
4986     unsigned int r_sym)
4987 {
4988   if (this->iplt_ == NULL)
4989     this->make_iplt_section(symtab, layout);
4990   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4991 }
4992
4993 // Return the number of entries in the PLT.
4994
4995 template<int size, bool big_endian>
4996 unsigned int
4997 Target_powerpc<size, big_endian>::plt_entry_count() const
4998 {
4999   if (this->plt_ == NULL)
5000     return 0;
5001   return this->plt_->entry_count();
5002 }
5003
5004 // Create a GOT entry for local dynamic __tls_get_addr calls.
5005
5006 template<int size, bool big_endian>
5007 unsigned int
5008 Target_powerpc<size, big_endian>::tlsld_got_offset(
5009     Symbol_table* symtab,
5010     Layout* layout,
5011     Sized_relobj_file<size, big_endian>* object)
5012 {
5013   if (this->tlsld_got_offset_ == -1U)
5014     {
5015       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5016       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5017       Output_data_got_powerpc<size, big_endian>* got
5018         = this->got_section(symtab, layout);
5019       unsigned int got_offset = got->add_constant_pair(0, 0);
5020       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5021                           got_offset, 0);
5022       this->tlsld_got_offset_ = got_offset;
5023     }
5024   return this->tlsld_got_offset_;
5025 }
5026
5027 // Get the Reference_flags for a particular relocation.
5028
5029 template<int size, bool big_endian>
5030 int
5031 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5032     unsigned int r_type,
5033     const Target_powerpc* target)
5034 {
5035   int ref = 0;
5036
5037   switch (r_type)
5038     {
5039     case elfcpp::R_POWERPC_NONE:
5040     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5041     case elfcpp::R_POWERPC_GNU_VTENTRY:
5042     case elfcpp::R_PPC64_TOC:
5043       // No symbol reference.
5044       break;
5045
5046     case elfcpp::R_PPC64_ADDR64:
5047     case elfcpp::R_PPC64_UADDR64:
5048     case elfcpp::R_POWERPC_ADDR32:
5049     case elfcpp::R_POWERPC_UADDR32:
5050     case elfcpp::R_POWERPC_ADDR16:
5051     case elfcpp::R_POWERPC_UADDR16:
5052     case elfcpp::R_POWERPC_ADDR16_LO:
5053     case elfcpp::R_POWERPC_ADDR16_HI:
5054     case elfcpp::R_POWERPC_ADDR16_HA:
5055       ref = Symbol::ABSOLUTE_REF;
5056       break;
5057
5058     case elfcpp::R_POWERPC_ADDR24:
5059     case elfcpp::R_POWERPC_ADDR14:
5060     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5061     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5062       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5063       break;
5064
5065     case elfcpp::R_PPC64_REL64:
5066     case elfcpp::R_POWERPC_REL32:
5067     case elfcpp::R_PPC_LOCAL24PC:
5068     case elfcpp::R_POWERPC_REL16:
5069     case elfcpp::R_POWERPC_REL16_LO:
5070     case elfcpp::R_POWERPC_REL16_HI:
5071     case elfcpp::R_POWERPC_REL16_HA:
5072       ref = Symbol::RELATIVE_REF;
5073       break;
5074
5075     case elfcpp::R_POWERPC_REL24:
5076     case elfcpp::R_PPC_PLTREL24:
5077     case elfcpp::R_POWERPC_REL14:
5078     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5079     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5080       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5081       break;
5082
5083     case elfcpp::R_POWERPC_GOT16:
5084     case elfcpp::R_POWERPC_GOT16_LO:
5085     case elfcpp::R_POWERPC_GOT16_HI:
5086     case elfcpp::R_POWERPC_GOT16_HA:
5087     case elfcpp::R_PPC64_GOT16_DS:
5088     case elfcpp::R_PPC64_GOT16_LO_DS:
5089     case elfcpp::R_PPC64_TOC16:
5090     case elfcpp::R_PPC64_TOC16_LO:
5091     case elfcpp::R_PPC64_TOC16_HI:
5092     case elfcpp::R_PPC64_TOC16_HA:
5093     case elfcpp::R_PPC64_TOC16_DS:
5094     case elfcpp::R_PPC64_TOC16_LO_DS:
5095       // Absolute in GOT.
5096       ref = Symbol::ABSOLUTE_REF;
5097       break;
5098
5099     case elfcpp::R_POWERPC_GOT_TPREL16:
5100     case elfcpp::R_POWERPC_TLS:
5101       ref = Symbol::TLS_REF;
5102       break;
5103
5104     case elfcpp::R_POWERPC_COPY:
5105     case elfcpp::R_POWERPC_GLOB_DAT:
5106     case elfcpp::R_POWERPC_JMP_SLOT:
5107     case elfcpp::R_POWERPC_RELATIVE:
5108     case elfcpp::R_POWERPC_DTPMOD:
5109     default:
5110       // Not expected.  We will give an error later.
5111       break;
5112     }
5113
5114   if (size == 64 && target->abiversion() < 2)
5115     ref |= Symbol::FUNC_DESC_ABI;
5116   return ref;
5117 }
5118
5119 // Report an unsupported relocation against a local symbol.
5120
5121 template<int size, bool big_endian>
5122 void
5123 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5124     Sized_relobj_file<size, big_endian>* object,
5125     unsigned int r_type)
5126 {
5127   gold_error(_("%s: unsupported reloc %u against local symbol"),
5128              object->name().c_str(), r_type);
5129 }
5130
5131 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5132 // dynamic linker does not support it, issue an error.
5133
5134 template<int size, bool big_endian>
5135 void
5136 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5137                                                       unsigned int r_type)
5138 {
5139   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5140
5141   // These are the relocation types supported by glibc for both 32-bit
5142   // and 64-bit powerpc.
5143   switch (r_type)
5144     {
5145     case elfcpp::R_POWERPC_NONE:
5146     case elfcpp::R_POWERPC_RELATIVE:
5147     case elfcpp::R_POWERPC_GLOB_DAT:
5148     case elfcpp::R_POWERPC_DTPMOD:
5149     case elfcpp::R_POWERPC_DTPREL:
5150     case elfcpp::R_POWERPC_TPREL:
5151     case elfcpp::R_POWERPC_JMP_SLOT:
5152     case elfcpp::R_POWERPC_COPY:
5153     case elfcpp::R_POWERPC_IRELATIVE:
5154     case elfcpp::R_POWERPC_ADDR32:
5155     case elfcpp::R_POWERPC_UADDR32:
5156     case elfcpp::R_POWERPC_ADDR24:
5157     case elfcpp::R_POWERPC_ADDR16:
5158     case elfcpp::R_POWERPC_UADDR16:
5159     case elfcpp::R_POWERPC_ADDR16_LO:
5160     case elfcpp::R_POWERPC_ADDR16_HI:
5161     case elfcpp::R_POWERPC_ADDR16_HA:
5162     case elfcpp::R_POWERPC_ADDR14:
5163     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5164     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5165     case elfcpp::R_POWERPC_REL32:
5166     case elfcpp::R_POWERPC_REL24:
5167     case elfcpp::R_POWERPC_TPREL16:
5168     case elfcpp::R_POWERPC_TPREL16_LO:
5169     case elfcpp::R_POWERPC_TPREL16_HI:
5170     case elfcpp::R_POWERPC_TPREL16_HA:
5171       return;
5172
5173     default:
5174       break;
5175     }
5176
5177   if (size == 64)
5178     {
5179       switch (r_type)
5180         {
5181           // These are the relocation types supported only on 64-bit.
5182         case elfcpp::R_PPC64_ADDR64:
5183         case elfcpp::R_PPC64_UADDR64:
5184         case elfcpp::R_PPC64_JMP_IREL:
5185         case elfcpp::R_PPC64_ADDR16_DS:
5186         case elfcpp::R_PPC64_ADDR16_LO_DS:
5187         case elfcpp::R_PPC64_ADDR16_HIGH:
5188         case elfcpp::R_PPC64_ADDR16_HIGHA:
5189         case elfcpp::R_PPC64_ADDR16_HIGHER:
5190         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5191         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5192         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5193         case elfcpp::R_PPC64_REL64:
5194         case elfcpp::R_POWERPC_ADDR30:
5195         case elfcpp::R_PPC64_TPREL16_DS:
5196         case elfcpp::R_PPC64_TPREL16_LO_DS:
5197         case elfcpp::R_PPC64_TPREL16_HIGH:
5198         case elfcpp::R_PPC64_TPREL16_HIGHA:
5199         case elfcpp::R_PPC64_TPREL16_HIGHER:
5200         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5201         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5202         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5203           return;
5204
5205         default:
5206           break;
5207         }
5208     }
5209   else
5210     {
5211       switch (r_type)
5212         {
5213           // These are the relocation types supported only on 32-bit.
5214           // ??? glibc ld.so doesn't need to support these.
5215         case elfcpp::R_POWERPC_DTPREL16:
5216         case elfcpp::R_POWERPC_DTPREL16_LO:
5217         case elfcpp::R_POWERPC_DTPREL16_HI:
5218         case elfcpp::R_POWERPC_DTPREL16_HA:
5219           return;
5220
5221         default:
5222           break;
5223         }
5224     }
5225
5226   // This prevents us from issuing more than one error per reloc
5227   // section.  But we can still wind up issuing more than one
5228   // error per object file.
5229   if (this->issued_non_pic_error_)
5230     return;
5231   gold_assert(parameters->options().output_is_position_independent());
5232   object->error(_("requires unsupported dynamic reloc; "
5233                   "recompile with -fPIC"));
5234   this->issued_non_pic_error_ = true;
5235   return;
5236 }
5237
5238 // Return whether we need to make a PLT entry for a relocation of the
5239 // given type against a STT_GNU_IFUNC symbol.
5240
5241 template<int size, bool big_endian>
5242 bool
5243 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5244      Target_powerpc<size, big_endian>* target,
5245      Sized_relobj_file<size, big_endian>* object,
5246      unsigned int r_type,
5247      bool report_err)
5248 {
5249   // In non-pic code any reference will resolve to the plt call stub
5250   // for the ifunc symbol.
5251   if ((size == 32 || target->abiversion() >= 2)
5252       && !parameters->options().output_is_position_independent())
5253     return true;
5254
5255   switch (r_type)
5256     {
5257     // Word size refs from data sections are OK, but don't need a PLT entry.
5258     case elfcpp::R_POWERPC_ADDR32:
5259     case elfcpp::R_POWERPC_UADDR32:
5260       if (size == 32)
5261         return false;
5262       break;
5263
5264     case elfcpp::R_PPC64_ADDR64:
5265     case elfcpp::R_PPC64_UADDR64:
5266       if (size == 64)
5267         return false;
5268       break;
5269
5270     // GOT refs are good, but also don't need a PLT entry.
5271     case elfcpp::R_POWERPC_GOT16:
5272     case elfcpp::R_POWERPC_GOT16_LO:
5273     case elfcpp::R_POWERPC_GOT16_HI:
5274     case elfcpp::R_POWERPC_GOT16_HA:
5275     case elfcpp::R_PPC64_GOT16_DS:
5276     case elfcpp::R_PPC64_GOT16_LO_DS:
5277       return false;
5278
5279     // Function calls are good, and these do need a PLT entry.
5280     case elfcpp::R_POWERPC_ADDR24:
5281     case elfcpp::R_POWERPC_ADDR14:
5282     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5283     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5284     case elfcpp::R_POWERPC_REL24:
5285     case elfcpp::R_PPC_PLTREL24:
5286     case elfcpp::R_POWERPC_REL14:
5287     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5288     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5289       return true;
5290
5291     default:
5292       break;
5293     }
5294
5295   // Anything else is a problem.
5296   // If we are building a static executable, the libc startup function
5297   // responsible for applying indirect function relocations is going
5298   // to complain about the reloc type.
5299   // If we are building a dynamic executable, we will have a text
5300   // relocation.  The dynamic loader will set the text segment
5301   // writable and non-executable to apply text relocations.  So we'll
5302   // segfault when trying to run the indirection function to resolve
5303   // the reloc.
5304   if (report_err)
5305     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5306                object->name().c_str(), r_type);
5307   return false;
5308 }
5309
5310 // Scan a relocation for a local symbol.
5311
5312 template<int size, bool big_endian>
5313 inline void
5314 Target_powerpc<size, big_endian>::Scan::local(
5315     Symbol_table* symtab,
5316     Layout* layout,
5317     Target_powerpc<size, big_endian>* target,
5318     Sized_relobj_file<size, big_endian>* object,
5319     unsigned int data_shndx,
5320     Output_section* output_section,
5321     const elfcpp::Rela<size, big_endian>& reloc,
5322     unsigned int r_type,
5323     const elfcpp::Sym<size, big_endian>& lsym,
5324     bool is_discarded)
5325 {
5326   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5327
5328   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5329       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5330     {
5331       this->expect_tls_get_addr_call();
5332       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5333       if (tls_type != tls::TLSOPT_NONE)
5334         this->skip_next_tls_get_addr_call();
5335     }
5336   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5337            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5338     {
5339       this->expect_tls_get_addr_call();
5340       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5341       if (tls_type != tls::TLSOPT_NONE)
5342         this->skip_next_tls_get_addr_call();
5343     }
5344
5345   Powerpc_relobj<size, big_endian>* ppc_object
5346     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5347
5348   if (is_discarded)
5349     {
5350       if (size == 64
5351           && data_shndx == ppc_object->opd_shndx()
5352           && r_type == elfcpp::R_PPC64_ADDR64)
5353         ppc_object->set_opd_discard(reloc.get_r_offset());
5354       return;
5355     }
5356
5357   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5358   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5359   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5360     {
5361       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5362       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5363                           r_type, r_sym, reloc.get_r_addend());
5364       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5365     }
5366
5367   switch (r_type)
5368     {
5369     case elfcpp::R_POWERPC_NONE:
5370     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5371     case elfcpp::R_POWERPC_GNU_VTENTRY:
5372     case elfcpp::R_PPC64_TOCSAVE:
5373     case elfcpp::R_POWERPC_TLS:
5374       break;
5375
5376     case elfcpp::R_PPC64_TOC:
5377       {
5378         Output_data_got_powerpc<size, big_endian>* got
5379           = target->got_section(symtab, layout);
5380         if (parameters->options().output_is_position_independent())
5381           {
5382             Address off = reloc.get_r_offset();
5383             if (size == 64
5384                 && target->abiversion() < 2
5385                 && data_shndx == ppc_object->opd_shndx()
5386                 && ppc_object->get_opd_discard(off - 8))
5387               break;
5388
5389             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5390             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5391             rela_dyn->add_output_section_relative(got->output_section(),
5392                                                   elfcpp::R_POWERPC_RELATIVE,
5393                                                   output_section,
5394                                                   object, data_shndx, off,
5395                                                   symobj->toc_base_offset());
5396           }
5397       }
5398       break;
5399
5400     case elfcpp::R_PPC64_ADDR64:
5401     case elfcpp::R_PPC64_UADDR64:
5402     case elfcpp::R_POWERPC_ADDR32:
5403     case elfcpp::R_POWERPC_UADDR32:
5404     case elfcpp::R_POWERPC_ADDR24:
5405     case elfcpp::R_POWERPC_ADDR16:
5406     case elfcpp::R_POWERPC_ADDR16_LO:
5407     case elfcpp::R_POWERPC_ADDR16_HI:
5408     case elfcpp::R_POWERPC_ADDR16_HA:
5409     case elfcpp::R_POWERPC_UADDR16:
5410     case elfcpp::R_PPC64_ADDR16_HIGH:
5411     case elfcpp::R_PPC64_ADDR16_HIGHA:
5412     case elfcpp::R_PPC64_ADDR16_HIGHER:
5413     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5414     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5415     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5416     case elfcpp::R_PPC64_ADDR16_DS:
5417     case elfcpp::R_PPC64_ADDR16_LO_DS:
5418     case elfcpp::R_POWERPC_ADDR14:
5419     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5420     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5421       // If building a shared library (or a position-independent
5422       // executable), we need to create a dynamic relocation for
5423       // this location.
5424       if (parameters->options().output_is_position_independent()
5425           || (size == 64 && is_ifunc && target->abiversion() < 2))
5426         {
5427           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5428                                                              is_ifunc);
5429           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5430               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5431             {
5432               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5433               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5434                                      : elfcpp::R_POWERPC_RELATIVE);
5435               rela_dyn->add_local_relative(object, r_sym, dynrel,
5436                                            output_section, data_shndx,
5437                                            reloc.get_r_offset(),
5438                                            reloc.get_r_addend(), false);
5439             }
5440           else
5441             {
5442               check_non_pic(object, r_type);
5443               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5444               rela_dyn->add_local(object, r_sym, r_type, output_section,
5445                                   data_shndx, reloc.get_r_offset(),
5446                                   reloc.get_r_addend());
5447             }
5448         }
5449       break;
5450
5451     case elfcpp::R_POWERPC_REL24:
5452     case elfcpp::R_PPC_PLTREL24:
5453     case elfcpp::R_PPC_LOCAL24PC:
5454     case elfcpp::R_POWERPC_REL14:
5455     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5456     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5457       if (!is_ifunc)
5458         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5459                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5460                             reloc.get_r_addend());
5461       break;
5462
5463     case elfcpp::R_PPC64_REL64:
5464     case elfcpp::R_POWERPC_REL32:
5465     case elfcpp::R_POWERPC_REL16:
5466     case elfcpp::R_POWERPC_REL16_LO:
5467     case elfcpp::R_POWERPC_REL16_HI:
5468     case elfcpp::R_POWERPC_REL16_HA:
5469     case elfcpp::R_POWERPC_SECTOFF:
5470     case elfcpp::R_POWERPC_SECTOFF_LO:
5471     case elfcpp::R_POWERPC_SECTOFF_HI:
5472     case elfcpp::R_POWERPC_SECTOFF_HA:
5473     case elfcpp::R_PPC64_SECTOFF_DS:
5474     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5475     case elfcpp::R_POWERPC_TPREL16:
5476     case elfcpp::R_POWERPC_TPREL16_LO:
5477     case elfcpp::R_POWERPC_TPREL16_HI:
5478     case elfcpp::R_POWERPC_TPREL16_HA:
5479     case elfcpp::R_PPC64_TPREL16_DS:
5480     case elfcpp::R_PPC64_TPREL16_LO_DS:
5481     case elfcpp::R_PPC64_TPREL16_HIGH:
5482     case elfcpp::R_PPC64_TPREL16_HIGHA:
5483     case elfcpp::R_PPC64_TPREL16_HIGHER:
5484     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5485     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5486     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5487     case elfcpp::R_POWERPC_DTPREL16:
5488     case elfcpp::R_POWERPC_DTPREL16_LO:
5489     case elfcpp::R_POWERPC_DTPREL16_HI:
5490     case elfcpp::R_POWERPC_DTPREL16_HA:
5491     case elfcpp::R_PPC64_DTPREL16_DS:
5492     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5493     case elfcpp::R_PPC64_DTPREL16_HIGH:
5494     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5495     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5496     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5497     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5498     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5499     case elfcpp::R_PPC64_TLSGD:
5500     case elfcpp::R_PPC64_TLSLD:
5501     case elfcpp::R_PPC64_ADDR64_LOCAL:
5502       break;
5503
5504     case elfcpp::R_POWERPC_GOT16:
5505     case elfcpp::R_POWERPC_GOT16_LO:
5506     case elfcpp::R_POWERPC_GOT16_HI:
5507     case elfcpp::R_POWERPC_GOT16_HA:
5508     case elfcpp::R_PPC64_GOT16_DS:
5509     case elfcpp::R_PPC64_GOT16_LO_DS:
5510       {
5511         // The symbol requires a GOT entry.
5512         Output_data_got_powerpc<size, big_endian>* got
5513           = target->got_section(symtab, layout);
5514         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5515
5516         if (!parameters->options().output_is_position_independent())
5517           {
5518             if ((size == 32 && is_ifunc)
5519                 || (size == 64 && target->abiversion() >= 2))
5520               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5521             else
5522               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5523           }
5524         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5525           {
5526             // If we are generating a shared object or a pie, this
5527             // symbol's GOT entry will be set by a dynamic relocation.
5528             unsigned int off;
5529             off = got->add_constant(0);
5530             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5531
5532             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5533                                                                is_ifunc);
5534             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5535                                    : elfcpp::R_POWERPC_RELATIVE);
5536             rela_dyn->add_local_relative(object, r_sym, dynrel,
5537                                          got, off, 0, false);
5538           }
5539       }
5540       break;
5541
5542     case elfcpp::R_PPC64_TOC16:
5543     case elfcpp::R_PPC64_TOC16_LO:
5544     case elfcpp::R_PPC64_TOC16_HI:
5545     case elfcpp::R_PPC64_TOC16_HA:
5546     case elfcpp::R_PPC64_TOC16_DS:
5547     case elfcpp::R_PPC64_TOC16_LO_DS:
5548       // We need a GOT section.
5549       target->got_section(symtab, layout);
5550       break;
5551
5552     case elfcpp::R_POWERPC_GOT_TLSGD16:
5553     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5554     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5555     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5556       {
5557         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5558         if (tls_type == tls::TLSOPT_NONE)
5559           {
5560             Output_data_got_powerpc<size, big_endian>* got
5561               = target->got_section(symtab, layout);
5562             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5563             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5564             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5565                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5566           }
5567         else if (tls_type == tls::TLSOPT_TO_LE)
5568           {
5569             // no GOT relocs needed for Local Exec.
5570           }
5571         else
5572           gold_unreachable();
5573       }
5574       break;
5575
5576     case elfcpp::R_POWERPC_GOT_TLSLD16:
5577     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5578     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5579     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5580       {
5581         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5582         if (tls_type == tls::TLSOPT_NONE)
5583           target->tlsld_got_offset(symtab, layout, object);
5584         else if (tls_type == tls::TLSOPT_TO_LE)
5585           {
5586             // no GOT relocs needed for Local Exec.
5587             if (parameters->options().emit_relocs())
5588               {
5589                 Output_section* os = layout->tls_segment()->first_section();
5590                 gold_assert(os != NULL);
5591                 os->set_needs_symtab_index();
5592               }
5593           }
5594         else
5595           gold_unreachable();
5596       }
5597       break;
5598
5599     case elfcpp::R_POWERPC_GOT_DTPREL16:
5600     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5601     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5602     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5603       {
5604         Output_data_got_powerpc<size, big_endian>* got
5605           = target->got_section(symtab, layout);
5606         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5607         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5608       }
5609       break;
5610
5611     case elfcpp::R_POWERPC_GOT_TPREL16:
5612     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5613     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5614     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5615       {
5616         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5617         if (tls_type == tls::TLSOPT_NONE)
5618           {
5619             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5620             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5621               {
5622                 Output_data_got_powerpc<size, big_endian>* got
5623                   = target->got_section(symtab, layout);
5624                 unsigned int off = got->add_constant(0);
5625                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5626
5627                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5628                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5629                                                       elfcpp::R_POWERPC_TPREL,
5630                                                       got, off, 0);
5631               }
5632           }
5633         else if (tls_type == tls::TLSOPT_TO_LE)
5634           {
5635             // no GOT relocs needed for Local Exec.
5636           }
5637         else
5638           gold_unreachable();
5639       }
5640       break;
5641
5642     default:
5643       unsupported_reloc_local(object, r_type);
5644       break;
5645     }
5646
5647   switch (r_type)
5648     {
5649     case elfcpp::R_POWERPC_GOT_TLSLD16:
5650     case elfcpp::R_POWERPC_GOT_TLSGD16:
5651     case elfcpp::R_POWERPC_GOT_TPREL16:
5652     case elfcpp::R_POWERPC_GOT_DTPREL16:
5653     case elfcpp::R_POWERPC_GOT16:
5654     case elfcpp::R_PPC64_GOT16_DS:
5655     case elfcpp::R_PPC64_TOC16:
5656     case elfcpp::R_PPC64_TOC16_DS:
5657       ppc_object->set_has_small_toc_reloc();
5658     default:
5659       break;
5660     }
5661 }
5662
5663 // Report an unsupported relocation against a global symbol.
5664
5665 template<int size, bool big_endian>
5666 void
5667 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5668     Sized_relobj_file<size, big_endian>* object,
5669     unsigned int r_type,
5670     Symbol* gsym)
5671 {
5672   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5673              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5674 }
5675
5676 // Scan a relocation for a global symbol.
5677
5678 template<int size, bool big_endian>
5679 inline void
5680 Target_powerpc<size, big_endian>::Scan::global(
5681     Symbol_table* symtab,
5682     Layout* layout,
5683     Target_powerpc<size, big_endian>* target,
5684     Sized_relobj_file<size, big_endian>* object,
5685     unsigned int data_shndx,
5686     Output_section* output_section,
5687     const elfcpp::Rela<size, big_endian>& reloc,
5688     unsigned int r_type,
5689     Symbol* gsym)
5690 {
5691   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5692     return;
5693
5694   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5695       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5696     {
5697       this->expect_tls_get_addr_call();
5698       const bool final = gsym->final_value_is_known();
5699       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5700       if (tls_type != tls::TLSOPT_NONE)
5701         this->skip_next_tls_get_addr_call();
5702     }
5703   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5704            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5705     {
5706       this->expect_tls_get_addr_call();
5707       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5708       if (tls_type != tls::TLSOPT_NONE)
5709         this->skip_next_tls_get_addr_call();
5710     }
5711
5712   Powerpc_relobj<size, big_endian>* ppc_object
5713     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5714
5715   // A STT_GNU_IFUNC symbol may require a PLT entry.
5716   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5717   bool pushed_ifunc = false;
5718   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5719     {
5720       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5721                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5722                           reloc.get_r_addend());
5723       target->make_plt_entry(symtab, layout, gsym);
5724       pushed_ifunc = true;
5725     }
5726
5727   switch (r_type)
5728     {
5729     case elfcpp::R_POWERPC_NONE:
5730     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5731     case elfcpp::R_POWERPC_GNU_VTENTRY:
5732     case elfcpp::R_PPC_LOCAL24PC:
5733     case elfcpp::R_POWERPC_TLS:
5734       break;
5735
5736     case elfcpp::R_PPC64_TOC:
5737       {
5738         Output_data_got_powerpc<size, big_endian>* got
5739           = target->got_section(symtab, layout);
5740         if (parameters->options().output_is_position_independent())
5741           {
5742             Address off = reloc.get_r_offset();
5743             if (size == 64
5744                 && data_shndx == ppc_object->opd_shndx()
5745                 && ppc_object->get_opd_discard(off - 8))
5746               break;
5747
5748             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5749             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5750             if (data_shndx != ppc_object->opd_shndx())
5751               symobj = static_cast
5752                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5753             rela_dyn->add_output_section_relative(got->output_section(),
5754                                                   elfcpp::R_POWERPC_RELATIVE,
5755                                                   output_section,
5756                                                   object, data_shndx, off,
5757                                                   symobj->toc_base_offset());
5758           }
5759       }
5760       break;
5761
5762     case elfcpp::R_PPC64_ADDR64:
5763       if (size == 64
5764           && target->abiversion() < 2
5765           && data_shndx == ppc_object->opd_shndx()
5766           && (gsym->is_defined_in_discarded_section()
5767               || gsym->object() != object))
5768         {
5769           ppc_object->set_opd_discard(reloc.get_r_offset());
5770           break;
5771         }
5772       // Fall thru
5773     case elfcpp::R_PPC64_UADDR64:
5774     case elfcpp::R_POWERPC_ADDR32:
5775     case elfcpp::R_POWERPC_UADDR32:
5776     case elfcpp::R_POWERPC_ADDR24:
5777     case elfcpp::R_POWERPC_ADDR16:
5778     case elfcpp::R_POWERPC_ADDR16_LO:
5779     case elfcpp::R_POWERPC_ADDR16_HI:
5780     case elfcpp::R_POWERPC_ADDR16_HA:
5781     case elfcpp::R_POWERPC_UADDR16:
5782     case elfcpp::R_PPC64_ADDR16_HIGH:
5783     case elfcpp::R_PPC64_ADDR16_HIGHA:
5784     case elfcpp::R_PPC64_ADDR16_HIGHER:
5785     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5786     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5787     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5788     case elfcpp::R_PPC64_ADDR16_DS:
5789     case elfcpp::R_PPC64_ADDR16_LO_DS:
5790     case elfcpp::R_POWERPC_ADDR14:
5791     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5792     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5793       {
5794         // Make a PLT entry if necessary.
5795         if (gsym->needs_plt_entry())
5796           {
5797             // Since this is not a PC-relative relocation, we may be
5798             // taking the address of a function. In that case we need to
5799             // set the entry in the dynamic symbol table to the address of
5800             // the PLT call stub.
5801             bool need_ifunc_plt = false;
5802             if ((size == 32 || target->abiversion() >= 2)
5803                 && gsym->is_from_dynobj()
5804                 && !parameters->options().output_is_position_independent())
5805               {
5806                 gsym->set_needs_dynsym_value();
5807                 need_ifunc_plt = true;
5808               }
5809             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5810               {
5811                 target->push_branch(ppc_object, data_shndx,
5812                                     reloc.get_r_offset(), r_type,
5813                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5814                                     reloc.get_r_addend());
5815                 target->make_plt_entry(symtab, layout, gsym);
5816               }
5817           }
5818         // Make a dynamic relocation if necessary.
5819         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5820             || (size == 64 && is_ifunc && target->abiversion() < 2))
5821           {
5822             if (!parameters->options().output_is_position_independent()
5823                 && gsym->may_need_copy_reloc())
5824               {
5825                 target->copy_reloc(symtab, layout, object,
5826                                    data_shndx, output_section, gsym, reloc);
5827               }
5828             else if ((((size == 32
5829                         && r_type == elfcpp::R_POWERPC_ADDR32)
5830                        || (size == 64
5831                            && r_type == elfcpp::R_PPC64_ADDR64
5832                            && target->abiversion() >= 2))
5833                       && gsym->can_use_relative_reloc(false)
5834                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5835                            && parameters->options().shared()))
5836                      || (size == 64
5837                          && r_type == elfcpp::R_PPC64_ADDR64
5838                          && target->abiversion() < 2
5839                          && (gsym->can_use_relative_reloc(false)
5840                              || data_shndx == ppc_object->opd_shndx())))
5841               {
5842                 Reloc_section* rela_dyn
5843                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5844                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5845                                        : elfcpp::R_POWERPC_RELATIVE);
5846                 rela_dyn->add_symbolless_global_addend(
5847                     gsym, dynrel, output_section, object, data_shndx,
5848                     reloc.get_r_offset(), reloc.get_r_addend());
5849               }
5850             else
5851               {
5852                 Reloc_section* rela_dyn
5853                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5854                 check_non_pic(object, r_type);
5855                 rela_dyn->add_global(gsym, r_type, output_section,
5856                                      object, data_shndx,
5857                                      reloc.get_r_offset(),
5858                                      reloc.get_r_addend());
5859               }
5860           }
5861       }
5862       break;
5863
5864     case elfcpp::R_PPC_PLTREL24:
5865     case elfcpp::R_POWERPC_REL24:
5866       if (!is_ifunc)
5867         {
5868           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5869                               r_type,
5870                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5871                               reloc.get_r_addend());
5872           if (gsym->needs_plt_entry()
5873               || (!gsym->final_value_is_known()
5874                   && (gsym->is_undefined()
5875                       || gsym->is_from_dynobj()
5876                       || gsym->is_preemptible())))
5877             target->make_plt_entry(symtab, layout, gsym);
5878         }
5879       // Fall thru
5880
5881     case elfcpp::R_PPC64_REL64:
5882     case elfcpp::R_POWERPC_REL32:
5883       // Make a dynamic relocation if necessary.
5884       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5885         {
5886           if (!parameters->options().output_is_position_independent()
5887               && gsym->may_need_copy_reloc())
5888             {
5889               target->copy_reloc(symtab, layout, object,
5890                                  data_shndx, output_section, gsym,
5891                                  reloc);
5892             }
5893           else
5894             {
5895               Reloc_section* rela_dyn
5896                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5897               check_non_pic(object, r_type);
5898               rela_dyn->add_global(gsym, r_type, output_section, object,
5899                                    data_shndx, reloc.get_r_offset(),
5900                                    reloc.get_r_addend());
5901             }
5902         }
5903       break;
5904
5905     case elfcpp::R_POWERPC_REL14:
5906     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5907     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5908       if (!is_ifunc)
5909         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5910                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5911                             reloc.get_r_addend());
5912       break;
5913
5914     case elfcpp::R_POWERPC_REL16:
5915     case elfcpp::R_POWERPC_REL16_LO:
5916     case elfcpp::R_POWERPC_REL16_HI:
5917     case elfcpp::R_POWERPC_REL16_HA:
5918     case elfcpp::R_POWERPC_SECTOFF:
5919     case elfcpp::R_POWERPC_SECTOFF_LO:
5920     case elfcpp::R_POWERPC_SECTOFF_HI:
5921     case elfcpp::R_POWERPC_SECTOFF_HA:
5922     case elfcpp::R_PPC64_SECTOFF_DS:
5923     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5924     case elfcpp::R_POWERPC_TPREL16:
5925     case elfcpp::R_POWERPC_TPREL16_LO:
5926     case elfcpp::R_POWERPC_TPREL16_HI:
5927     case elfcpp::R_POWERPC_TPREL16_HA:
5928     case elfcpp::R_PPC64_TPREL16_DS:
5929     case elfcpp::R_PPC64_TPREL16_LO_DS:
5930     case elfcpp::R_PPC64_TPREL16_HIGH:
5931     case elfcpp::R_PPC64_TPREL16_HIGHA:
5932     case elfcpp::R_PPC64_TPREL16_HIGHER:
5933     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5934     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5935     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5936     case elfcpp::R_POWERPC_DTPREL16:
5937     case elfcpp::R_POWERPC_DTPREL16_LO:
5938     case elfcpp::R_POWERPC_DTPREL16_HI:
5939     case elfcpp::R_POWERPC_DTPREL16_HA:
5940     case elfcpp::R_PPC64_DTPREL16_DS:
5941     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5942     case elfcpp::R_PPC64_DTPREL16_HIGH:
5943     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5944     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5945     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5946     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5947     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5948     case elfcpp::R_PPC64_TLSGD:
5949     case elfcpp::R_PPC64_TLSLD:
5950     case elfcpp::R_PPC64_ADDR64_LOCAL:
5951       break;
5952
5953     case elfcpp::R_POWERPC_GOT16:
5954     case elfcpp::R_POWERPC_GOT16_LO:
5955     case elfcpp::R_POWERPC_GOT16_HI:
5956     case elfcpp::R_POWERPC_GOT16_HA:
5957     case elfcpp::R_PPC64_GOT16_DS:
5958     case elfcpp::R_PPC64_GOT16_LO_DS:
5959       {
5960         // The symbol requires a GOT entry.
5961         Output_data_got_powerpc<size, big_endian>* got;
5962
5963         got = target->got_section(symtab, layout);
5964         if (gsym->final_value_is_known())
5965           {
5966             if ((size == 32 && is_ifunc)
5967                 || (size == 64 && target->abiversion() >= 2))
5968               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5969             else
5970               got->add_global(gsym, GOT_TYPE_STANDARD);
5971           }
5972         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5973           {
5974             // If we are generating a shared object or a pie, this
5975             // symbol's GOT entry will be set by a dynamic relocation.
5976             unsigned int off = got->add_constant(0);
5977             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5978
5979             Reloc_section* rela_dyn
5980               = target->rela_dyn_section(symtab, layout, is_ifunc);
5981
5982             if (gsym->can_use_relative_reloc(false)
5983                 && !((size == 32
5984                       || target->abiversion() >= 2)
5985                      && gsym->visibility() == elfcpp::STV_PROTECTED
5986                      && parameters->options().shared()))
5987               {
5988                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5989                                        : elfcpp::R_POWERPC_RELATIVE);
5990                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5991               }
5992             else
5993               {
5994                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5995                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5996               }
5997           }
5998       }
5999       break;
6000
6001     case elfcpp::R_PPC64_TOC16:
6002     case elfcpp::R_PPC64_TOC16_LO:
6003     case elfcpp::R_PPC64_TOC16_HI:
6004     case elfcpp::R_PPC64_TOC16_HA:
6005     case elfcpp::R_PPC64_TOC16_DS:
6006     case elfcpp::R_PPC64_TOC16_LO_DS:
6007       // We need a GOT section.
6008       target->got_section(symtab, layout);
6009       break;
6010
6011     case elfcpp::R_POWERPC_GOT_TLSGD16:
6012     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6013     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6014     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6015       {
6016         const bool final = gsym->final_value_is_known();
6017         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6018         if (tls_type == tls::TLSOPT_NONE)
6019           {
6020             Output_data_got_powerpc<size, big_endian>* got
6021               = target->got_section(symtab, layout);
6022             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6023             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6024                                           elfcpp::R_POWERPC_DTPMOD,
6025                                           elfcpp::R_POWERPC_DTPREL);
6026           }
6027         else if (tls_type == tls::TLSOPT_TO_IE)
6028           {
6029             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6030               {
6031                 Output_data_got_powerpc<size, big_endian>* got
6032                   = target->got_section(symtab, layout);
6033                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6034                 if (gsym->is_undefined()
6035                     || gsym->is_from_dynobj())
6036                   {
6037                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6038                                              elfcpp::R_POWERPC_TPREL);
6039                   }
6040                 else
6041                   {
6042                     unsigned int off = got->add_constant(0);
6043                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6044                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6045                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6046                                                            got, off, 0);
6047                   }
6048               }
6049           }
6050         else if (tls_type == tls::TLSOPT_TO_LE)
6051           {
6052             // no GOT relocs needed for Local Exec.
6053           }
6054         else
6055           gold_unreachable();
6056       }
6057       break;
6058
6059     case elfcpp::R_POWERPC_GOT_TLSLD16:
6060     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6061     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6062     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6063       {
6064         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6065         if (tls_type == tls::TLSOPT_NONE)
6066           target->tlsld_got_offset(symtab, layout, object);
6067         else if (tls_type == tls::TLSOPT_TO_LE)
6068           {
6069             // no GOT relocs needed for Local Exec.
6070             if (parameters->options().emit_relocs())
6071               {
6072                 Output_section* os = layout->tls_segment()->first_section();
6073                 gold_assert(os != NULL);
6074                 os->set_needs_symtab_index();
6075               }
6076           }
6077         else
6078           gold_unreachable();
6079       }
6080       break;
6081
6082     case elfcpp::R_POWERPC_GOT_DTPREL16:
6083     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6084     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6085     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6086       {
6087         Output_data_got_powerpc<size, big_endian>* got
6088           = target->got_section(symtab, layout);
6089         if (!gsym->final_value_is_known()
6090             && (gsym->is_from_dynobj()
6091                 || gsym->is_undefined()
6092                 || gsym->is_preemptible()))
6093           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6094                                    target->rela_dyn_section(layout),
6095                                    elfcpp::R_POWERPC_DTPREL);
6096         else
6097           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6098       }
6099       break;
6100
6101     case elfcpp::R_POWERPC_GOT_TPREL16:
6102     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6103     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6104     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6105       {
6106         const bool final = gsym->final_value_is_known();
6107         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6108         if (tls_type == tls::TLSOPT_NONE)
6109           {
6110             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6111               {
6112                 Output_data_got_powerpc<size, big_endian>* got
6113                   = target->got_section(symtab, layout);
6114                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6115                 if (gsym->is_undefined()
6116                     || gsym->is_from_dynobj())
6117                   {
6118                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6119                                              elfcpp::R_POWERPC_TPREL);
6120                   }
6121                 else
6122                   {
6123                     unsigned int off = got->add_constant(0);
6124                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6125                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6126                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6127                                                            got, off, 0);
6128                   }
6129               }
6130           }
6131         else if (tls_type == tls::TLSOPT_TO_LE)
6132           {
6133             // no GOT relocs needed for Local Exec.
6134           }
6135         else
6136           gold_unreachable();
6137       }
6138       break;
6139
6140     default:
6141       unsupported_reloc_global(object, r_type, gsym);
6142       break;
6143     }
6144
6145   switch (r_type)
6146     {
6147     case elfcpp::R_POWERPC_GOT_TLSLD16:
6148     case elfcpp::R_POWERPC_GOT_TLSGD16:
6149     case elfcpp::R_POWERPC_GOT_TPREL16:
6150     case elfcpp::R_POWERPC_GOT_DTPREL16:
6151     case elfcpp::R_POWERPC_GOT16:
6152     case elfcpp::R_PPC64_GOT16_DS:
6153     case elfcpp::R_PPC64_TOC16:
6154     case elfcpp::R_PPC64_TOC16_DS:
6155       ppc_object->set_has_small_toc_reloc();
6156     default:
6157       break;
6158     }
6159 }
6160
6161 // Process relocations for gc.
6162
6163 template<int size, bool big_endian>
6164 void
6165 Target_powerpc<size, big_endian>::gc_process_relocs(
6166     Symbol_table* symtab,
6167     Layout* layout,
6168     Sized_relobj_file<size, big_endian>* object,
6169     unsigned int data_shndx,
6170     unsigned int,
6171     const unsigned char* prelocs,
6172     size_t reloc_count,
6173     Output_section* output_section,
6174     bool needs_special_offset_handling,
6175     size_t local_symbol_count,
6176     const unsigned char* plocal_symbols)
6177 {
6178   typedef Target_powerpc<size, big_endian> Powerpc;
6179   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6180   Powerpc_relobj<size, big_endian>* ppc_object
6181     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6182   if (size == 64)
6183     ppc_object->set_opd_valid();
6184   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6185     {
6186       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6187       for (p = ppc_object->access_from_map()->begin();
6188            p != ppc_object->access_from_map()->end();
6189            ++p)
6190         {
6191           Address dst_off = p->first;
6192           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6193           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6194           for (s = p->second.begin(); s != p->second.end(); ++s)
6195             {
6196               Object* src_obj = s->first;
6197               unsigned int src_indx = s->second;
6198               symtab->gc()->add_reference(src_obj, src_indx,
6199                                           ppc_object, dst_indx);
6200             }
6201           p->second.clear();
6202         }
6203       ppc_object->access_from_map()->clear();
6204       ppc_object->process_gc_mark(symtab);
6205       // Don't look at .opd relocs as .opd will reference everything.
6206       return;
6207     }
6208
6209   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6210                           typename Target_powerpc::Relocatable_size_for_reloc>(
6211     symtab,
6212     layout,
6213     this,
6214     object,
6215     data_shndx,
6216     prelocs,
6217     reloc_count,
6218     output_section,
6219     needs_special_offset_handling,
6220     local_symbol_count,
6221     plocal_symbols);
6222 }
6223
6224 // Handle target specific gc actions when adding a gc reference from
6225 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6226 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6227 // section of a function descriptor.
6228
6229 template<int size, bool big_endian>
6230 void
6231 Target_powerpc<size, big_endian>::do_gc_add_reference(
6232     Symbol_table* symtab,
6233     Object* src_obj,
6234     unsigned int src_shndx,
6235     Object* dst_obj,
6236     unsigned int dst_shndx,
6237     Address dst_off) const
6238 {
6239   if (size != 64 || dst_obj->is_dynamic())
6240     return;
6241
6242   Powerpc_relobj<size, big_endian>* ppc_object
6243     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6244   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6245     {
6246       if (ppc_object->opd_valid())
6247         {
6248           dst_shndx = ppc_object->get_opd_ent(dst_off);
6249           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6250         }
6251       else
6252         {
6253           // If we haven't run scan_opd_relocs, we must delay
6254           // processing this function descriptor reference.
6255           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6256         }
6257     }
6258 }
6259
6260 // Add any special sections for this symbol to the gc work list.
6261 // For powerpc64, this adds the code section of a function
6262 // descriptor.
6263
6264 template<int size, bool big_endian>
6265 void
6266 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6267     Symbol_table* symtab,
6268     Symbol* sym) const
6269 {
6270   if (size == 64)
6271     {
6272       Powerpc_relobj<size, big_endian>* ppc_object
6273         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6274       bool is_ordinary;
6275       unsigned int shndx = sym->shndx(&is_ordinary);
6276       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6277         {
6278           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6279           Address dst_off = gsym->value();
6280           if (ppc_object->opd_valid())
6281             {
6282               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6283               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6284             }
6285           else
6286             ppc_object->add_gc_mark(dst_off);
6287         }
6288     }
6289 }
6290
6291 // For a symbol location in .opd, set LOC to the location of the
6292 // function entry.
6293
6294 template<int size, bool big_endian>
6295 void
6296 Target_powerpc<size, big_endian>::do_function_location(
6297     Symbol_location* loc) const
6298 {
6299   if (size == 64 && loc->shndx != 0)
6300     {
6301       if (loc->object->is_dynamic())
6302         {
6303           Powerpc_dynobj<size, big_endian>* ppc_object
6304             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6305           if (loc->shndx == ppc_object->opd_shndx())
6306             {
6307               Address dest_off;
6308               Address off = loc->offset - ppc_object->opd_address();
6309               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6310               loc->offset = dest_off;
6311             }
6312         }
6313       else
6314         {
6315           const Powerpc_relobj<size, big_endian>* ppc_object
6316             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6317           if (loc->shndx == ppc_object->opd_shndx())
6318             {
6319               Address dest_off;
6320               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6321               loc->offset = dest_off;
6322             }
6323         }
6324     }
6325 }
6326
6327 // Scan relocations for a section.
6328
6329 template<int size, bool big_endian>
6330 void
6331 Target_powerpc<size, big_endian>::scan_relocs(
6332     Symbol_table* symtab,
6333     Layout* layout,
6334     Sized_relobj_file<size, big_endian>* object,
6335     unsigned int data_shndx,
6336     unsigned int sh_type,
6337     const unsigned char* prelocs,
6338     size_t reloc_count,
6339     Output_section* output_section,
6340     bool needs_special_offset_handling,
6341     size_t local_symbol_count,
6342     const unsigned char* plocal_symbols)
6343 {
6344   typedef Target_powerpc<size, big_endian> Powerpc;
6345   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6346
6347   if (sh_type == elfcpp::SHT_REL)
6348     {
6349       gold_error(_("%s: unsupported REL reloc section"),
6350                  object->name().c_str());
6351       return;
6352     }
6353
6354   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6355     symtab,
6356     layout,
6357     this,
6358     object,
6359     data_shndx,
6360     prelocs,
6361     reloc_count,
6362     output_section,
6363     needs_special_offset_handling,
6364     local_symbol_count,
6365     plocal_symbols);
6366 }
6367
6368 // Functor class for processing the global symbol table.
6369 // Removes symbols defined on discarded opd entries.
6370
6371 template<bool big_endian>
6372 class Global_symbol_visitor_opd
6373 {
6374  public:
6375   Global_symbol_visitor_opd()
6376   { }
6377
6378   void
6379   operator()(Sized_symbol<64>* sym)
6380   {
6381     if (sym->has_symtab_index()
6382         || sym->source() != Symbol::FROM_OBJECT
6383         || !sym->in_real_elf())
6384       return;
6385
6386     if (sym->object()->is_dynamic())
6387       return;
6388
6389     Powerpc_relobj<64, big_endian>* symobj
6390       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6391     if (symobj->opd_shndx() == 0)
6392       return;
6393
6394     bool is_ordinary;
6395     unsigned int shndx = sym->shndx(&is_ordinary);
6396     if (shndx == symobj->opd_shndx()
6397         && symobj->get_opd_discard(sym->value()))
6398       sym->set_symtab_index(-1U);
6399   }
6400 };
6401
6402 template<int size, bool big_endian>
6403 void
6404 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6405     Layout* layout,
6406     Symbol_table* symtab)
6407 {
6408   if (size == 64)
6409     {
6410       Output_data_save_res<64, big_endian>* savres
6411         = new Output_data_save_res<64, big_endian>(symtab);
6412       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6413                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6414                                       savres, ORDER_TEXT, false);
6415     }
6416 }
6417
6418 // Sort linker created .got section first (for the header), then input
6419 // sections belonging to files using small model code.
6420
6421 template<bool big_endian>
6422 class Sort_toc_sections
6423 {
6424  public:
6425   bool
6426   operator()(const Output_section::Input_section& is1,
6427              const Output_section::Input_section& is2) const
6428   {
6429     if (!is1.is_input_section() && is2.is_input_section())
6430       return true;
6431     bool small1
6432       = (is1.is_input_section()
6433          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6434              ->has_small_toc_reloc()));
6435     bool small2
6436       = (is2.is_input_section()
6437          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6438              ->has_small_toc_reloc()));
6439     return small1 && !small2;
6440   }
6441 };
6442
6443 // Finalize the sections.
6444
6445 template<int size, bool big_endian>
6446 void
6447 Target_powerpc<size, big_endian>::do_finalize_sections(
6448     Layout* layout,
6449     const Input_objects*,
6450     Symbol_table* symtab)
6451 {
6452   if (parameters->doing_static_link())
6453     {
6454       // At least some versions of glibc elf-init.o have a strong
6455       // reference to __rela_iplt marker syms.  A weak ref would be
6456       // better..
6457       if (this->iplt_ != NULL)
6458         {
6459           Reloc_section* rel = this->iplt_->rel_plt();
6460           symtab->define_in_output_data("__rela_iplt_start", NULL,
6461                                         Symbol_table::PREDEFINED, rel, 0, 0,
6462                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6463                                         elfcpp::STV_HIDDEN, 0, false, true);
6464           symtab->define_in_output_data("__rela_iplt_end", NULL,
6465                                         Symbol_table::PREDEFINED, rel, 0, 0,
6466                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6467                                         elfcpp::STV_HIDDEN, 0, true, true);
6468         }
6469       else
6470         {
6471           symtab->define_as_constant("__rela_iplt_start", NULL,
6472                                      Symbol_table::PREDEFINED, 0, 0,
6473                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6474                                      elfcpp::STV_HIDDEN, 0, true, false);
6475           symtab->define_as_constant("__rela_iplt_end", NULL,
6476                                      Symbol_table::PREDEFINED, 0, 0,
6477                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6478                                      elfcpp::STV_HIDDEN, 0, true, false);
6479         }
6480     }
6481
6482   if (size == 64)
6483     {
6484       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6485       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6486
6487       if (!parameters->options().relocatable())
6488         {
6489           this->define_save_restore_funcs(layout, symtab);
6490
6491           // Annoyingly, we need to make these sections now whether or
6492           // not we need them.  If we delay until do_relax then we
6493           // need to mess with the relaxation machinery checkpointing.
6494           this->got_section(symtab, layout);
6495           this->make_brlt_section(layout);
6496
6497           if (parameters->options().toc_sort())
6498             {
6499               Output_section* os = this->got_->output_section();
6500               if (os != NULL && os->input_sections().size() > 1)
6501                 std::stable_sort(os->input_sections().begin(),
6502                                  os->input_sections().end(),
6503                                  Sort_toc_sections<big_endian>());
6504             }
6505         }
6506     }
6507
6508   // Fill in some more dynamic tags.
6509   Output_data_dynamic* odyn = layout->dynamic_data();
6510   if (odyn != NULL)
6511     {
6512       const Reloc_section* rel_plt = (this->plt_ == NULL
6513                                       ? NULL
6514                                       : this->plt_->rel_plt());
6515       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6516                                       this->rela_dyn_, true, size == 32);
6517
6518       if (size == 32)
6519         {
6520           if (this->got_ != NULL)
6521             {
6522               this->got_->finalize_data_size();
6523               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6524                                             this->got_, this->got_->g_o_t());
6525             }
6526         }
6527       else
6528         {
6529           if (this->glink_ != NULL)
6530             {
6531               this->glink_->finalize_data_size();
6532               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6533                                             this->glink_,
6534                                             (this->glink_->pltresolve_size
6535                                              - 32));
6536             }
6537         }
6538     }
6539
6540   // Emit any relocs we saved in an attempt to avoid generating COPY
6541   // relocs.
6542   if (this->copy_relocs_.any_saved_relocs())
6543     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6544 }
6545
6546 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6547 // reloc.
6548
6549 static bool
6550 ok_lo_toc_insn(uint32_t insn)
6551 {
6552   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6553           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6554           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6555           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6556           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6557           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6558           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6559           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6560           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6561           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6562           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6563           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6564           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6565           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6566           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6567               && (insn & 3) != 1)
6568           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6569               && ((insn & 3) == 0 || (insn & 3) == 3))
6570           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6571 }
6572
6573 // Return the value to use for a branch relocation.
6574
6575 template<int size, bool big_endian>
6576 typename Target_powerpc<size, big_endian>::Address
6577 Target_powerpc<size, big_endian>::symval_for_branch(
6578     const Symbol_table* symtab,
6579     Address value,
6580     const Sized_symbol<size>* gsym,
6581     Powerpc_relobj<size, big_endian>* object,
6582     unsigned int *dest_shndx)
6583 {
6584   if (size == 32 || this->abiversion() >= 2)
6585     gold_unreachable();
6586   *dest_shndx = 0;
6587
6588   // If the symbol is defined in an opd section, ie. is a function
6589   // descriptor, use the function descriptor code entry address
6590   Powerpc_relobj<size, big_endian>* symobj = object;
6591   if (gsym != NULL
6592       && gsym->source() != Symbol::FROM_OBJECT)
6593     return value;
6594   if (gsym != NULL)
6595     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6596   unsigned int shndx = symobj->opd_shndx();
6597   if (shndx == 0)
6598     return value;
6599   Address opd_addr = symobj->get_output_section_offset(shndx);
6600   if (opd_addr == invalid_address)
6601     return value;
6602   opd_addr += symobj->output_section_address(shndx);
6603   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6604     {
6605       Address sec_off;
6606       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6607       if (symtab->is_section_folded(symobj, *dest_shndx))
6608         {
6609           Section_id folded
6610             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6611           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6612           *dest_shndx = folded.second;
6613         }
6614       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6615       gold_assert(sec_addr != invalid_address);
6616       sec_addr += symobj->output_section(*dest_shndx)->address();
6617       value = sec_addr + sec_off;
6618     }
6619   return value;
6620 }
6621
6622 // Perform a relocation.
6623
6624 template<int size, bool big_endian>
6625 inline bool
6626 Target_powerpc<size, big_endian>::Relocate::relocate(
6627     const Relocate_info<size, big_endian>* relinfo,
6628     Target_powerpc* target,
6629     Output_section* os,
6630     size_t relnum,
6631     const elfcpp::Rela<size, big_endian>& rela,
6632     unsigned int r_type,
6633     const Sized_symbol<size>* gsym,
6634     const Symbol_value<size>* psymval,
6635     unsigned char* view,
6636     Address address,
6637     section_size_type view_size)
6638 {
6639   if (view == NULL)
6640     return true;
6641
6642   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6643     {
6644     case Track_tls::NOT_EXPECTED:
6645       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6646                              _("__tls_get_addr call lacks marker reloc"));
6647       break;
6648     case Track_tls::EXPECTED:
6649       // We have already complained.
6650       break;
6651     case Track_tls::SKIP:
6652       return true;
6653     case Track_tls::NORMAL:
6654       break;
6655     }
6656
6657   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6658   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6659   Powerpc_relobj<size, big_endian>* const object
6660     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6661   Address value = 0;
6662   bool has_plt_value = false;
6663   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6664   if ((gsym != NULL
6665        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6666        : object->local_has_plt_offset(r_sym))
6667       && (!psymval->is_ifunc_symbol()
6668           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6669     {
6670       if (size == 64
6671           && gsym != NULL
6672           && target->abiversion() >= 2
6673           && !parameters->options().output_is_position_independent()
6674           && !is_branch_reloc(r_type))
6675         {
6676           unsigned int off = target->glink_section()->find_global_entry(gsym);
6677           gold_assert(off != (unsigned int)-1);
6678           value = target->glink_section()->global_entry_address() + off;
6679         }
6680       else
6681         {
6682           Stub_table<size, big_endian>* stub_table
6683             = object->stub_table(relinfo->data_shndx);
6684           if (stub_table == NULL)
6685             {
6686               // This is a ref from a data section to an ifunc symbol.
6687               if (target->stub_tables().size() != 0)
6688                 stub_table = target->stub_tables()[0];
6689             }
6690           gold_assert(stub_table != NULL);
6691           Address off;
6692           if (gsym != NULL)
6693             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6694                                                   rela.get_r_addend());
6695           else
6696             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6697                                                   rela.get_r_addend());
6698           gold_assert(off != invalid_address);
6699           value = stub_table->stub_address() + off;
6700         }
6701       has_plt_value = true;
6702     }
6703
6704   if (r_type == elfcpp::R_POWERPC_GOT16
6705       || r_type == elfcpp::R_POWERPC_GOT16_LO
6706       || r_type == elfcpp::R_POWERPC_GOT16_HI
6707       || r_type == elfcpp::R_POWERPC_GOT16_HA
6708       || r_type == elfcpp::R_PPC64_GOT16_DS
6709       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6710     {
6711       if (gsym != NULL)
6712         {
6713           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6714           value = gsym->got_offset(GOT_TYPE_STANDARD);
6715         }
6716       else
6717         {
6718           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6719           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6720           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6721         }
6722       value -= target->got_section()->got_base_offset(object);
6723     }
6724   else if (r_type == elfcpp::R_PPC64_TOC)
6725     {
6726       value = (target->got_section()->output_section()->address()
6727                + object->toc_base_offset());
6728     }
6729   else if (gsym != NULL
6730            && (r_type == elfcpp::R_POWERPC_REL24
6731                || r_type == elfcpp::R_PPC_PLTREL24)
6732            && has_plt_value)
6733     {
6734       if (size == 64)
6735         {
6736           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6737           Valtype* wv = reinterpret_cast<Valtype*>(view);
6738           bool can_plt_call = false;
6739           if (rela.get_r_offset() + 8 <= view_size)
6740             {
6741               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6742               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6743               if ((insn & 1) != 0
6744                   && (insn2 == nop
6745                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6746                 {
6747                   elfcpp::Swap<32, big_endian>::
6748                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6749                   can_plt_call = true;
6750                 }
6751             }
6752           if (!can_plt_call)
6753             {
6754               // If we don't have a branch and link followed by a nop,
6755               // we can't go via the plt because there is no place to
6756               // put a toc restoring instruction.
6757               // Unless we know we won't be returning.
6758               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6759                 can_plt_call = true;
6760             }
6761           if (!can_plt_call)
6762             {
6763               // g++ as of 20130507 emits self-calls without a
6764               // following nop.  This is arguably wrong since we have
6765               // conflicting information.  On the one hand a global
6766               // symbol and on the other a local call sequence, but
6767               // don't error for this special case.
6768               // It isn't possible to cheaply verify we have exactly
6769               // such a call.  Allow all calls to the same section.
6770               bool ok = false;
6771               Address code = value;
6772               if (gsym->source() == Symbol::FROM_OBJECT
6773                   && gsym->object() == object)
6774                 {
6775                   unsigned int dest_shndx = 0;
6776                   if (target->abiversion() < 2)
6777                     {
6778                       Address addend = rela.get_r_addend();
6779                       Address opdent = psymval->value(object, addend);
6780                       code = target->symval_for_branch(relinfo->symtab,
6781                                                        opdent, gsym, object,
6782                                                        &dest_shndx);
6783                     }
6784                   bool is_ordinary;
6785                   if (dest_shndx == 0)
6786                     dest_shndx = gsym->shndx(&is_ordinary);
6787                   ok = dest_shndx == relinfo->data_shndx;
6788                 }
6789               if (!ok)
6790                 {
6791                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6792                                          _("call lacks nop, can't restore toc; "
6793                                            "recompile with -fPIC"));
6794                   value = code;
6795                 }
6796             }
6797         }
6798     }
6799   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6800            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6801            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6802            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6803     {
6804       // First instruction of a global dynamic sequence, arg setup insn.
6805       const bool final = gsym == NULL || gsym->final_value_is_known();
6806       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6807       enum Got_type got_type = GOT_TYPE_STANDARD;
6808       if (tls_type == tls::TLSOPT_NONE)
6809         got_type = GOT_TYPE_TLSGD;
6810       else if (tls_type == tls::TLSOPT_TO_IE)
6811         got_type = GOT_TYPE_TPREL;
6812       if (got_type != GOT_TYPE_STANDARD)
6813         {
6814           if (gsym != NULL)
6815             {
6816               gold_assert(gsym->has_got_offset(got_type));
6817               value = gsym->got_offset(got_type);
6818             }
6819           else
6820             {
6821               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6822               gold_assert(object->local_has_got_offset(r_sym, got_type));
6823               value = object->local_got_offset(r_sym, got_type);
6824             }
6825           value -= target->got_section()->got_base_offset(object);
6826         }
6827       if (tls_type == tls::TLSOPT_TO_IE)
6828         {
6829           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6830               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6831             {
6832               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6833               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6834               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6835               if (size == 32)
6836                 insn |= 32 << 26; // lwz
6837               else
6838                 insn |= 58 << 26; // ld
6839               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6840             }
6841           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6842                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6843         }
6844       else if (tls_type == tls::TLSOPT_TO_LE)
6845         {
6846           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6847               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6848             {
6849               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6850               Insn insn = addis_3_13;
6851               if (size == 32)
6852                 insn = addis_3_2;
6853               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6854               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6855               value = psymval->value(object, rela.get_r_addend());
6856             }
6857           else
6858             {
6859               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6860               Insn insn = nop;
6861               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6862               r_type = elfcpp::R_POWERPC_NONE;
6863             }
6864         }
6865     }
6866   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6867            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6868            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6869            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6870     {
6871       // First instruction of a local dynamic sequence, arg setup insn.
6872       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6873       if (tls_type == tls::TLSOPT_NONE)
6874         {
6875           value = target->tlsld_got_offset();
6876           value -= target->got_section()->got_base_offset(object);
6877         }
6878       else
6879         {
6880           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6881           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6882               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6883             {
6884               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6885               Insn insn = addis_3_13;
6886               if (size == 32)
6887                 insn = addis_3_2;
6888               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6889               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6890               value = dtp_offset;
6891             }
6892           else
6893             {
6894               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6895               Insn insn = nop;
6896               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6897               r_type = elfcpp::R_POWERPC_NONE;
6898             }
6899         }
6900     }
6901   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6902            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6903            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6904            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6905     {
6906       // Accesses relative to a local dynamic sequence address,
6907       // no optimisation here.
6908       if (gsym != NULL)
6909         {
6910           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6911           value = gsym->got_offset(GOT_TYPE_DTPREL);
6912         }
6913       else
6914         {
6915           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6916           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6917           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6918         }
6919       value -= target->got_section()->got_base_offset(object);
6920     }
6921   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6922            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6923            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6924            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6925     {
6926       // First instruction of initial exec sequence.
6927       const bool final = gsym == NULL || gsym->final_value_is_known();
6928       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6929       if (tls_type == tls::TLSOPT_NONE)
6930         {
6931           if (gsym != NULL)
6932             {
6933               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6934               value = gsym->got_offset(GOT_TYPE_TPREL);
6935             }
6936           else
6937             {
6938               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6939               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6940               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6941             }
6942           value -= target->got_section()->got_base_offset(object);
6943         }
6944       else
6945         {
6946           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6947           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6948               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6949             {
6950               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6951               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6952               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6953               if (size == 32)
6954                 insn |= addis_0_2;
6955               else
6956                 insn |= addis_0_13;
6957               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6958               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6959               value = psymval->value(object, rela.get_r_addend());
6960             }
6961           else
6962             {
6963               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6964               Insn insn = nop;
6965               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6966               r_type = elfcpp::R_POWERPC_NONE;
6967             }
6968         }
6969     }
6970   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6971            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6972     {
6973       // Second instruction of a global dynamic sequence,
6974       // the __tls_get_addr call
6975       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6976       const bool final = gsym == NULL || gsym->final_value_is_known();
6977       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6978       if (tls_type != tls::TLSOPT_NONE)
6979         {
6980           if (tls_type == tls::TLSOPT_TO_IE)
6981             {
6982               Insn* iview = reinterpret_cast<Insn*>(view);
6983               Insn insn = add_3_3_13;
6984               if (size == 32)
6985                 insn = add_3_3_2;
6986               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6987               r_type = elfcpp::R_POWERPC_NONE;
6988             }
6989           else
6990             {
6991               Insn* iview = reinterpret_cast<Insn*>(view);
6992               Insn insn = addi_3_3;
6993               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6994               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6995               view += 2 * big_endian;
6996               value = psymval->value(object, rela.get_r_addend());
6997             }
6998           this->skip_next_tls_get_addr_call();
6999         }
7000     }
7001   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7002            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7003     {
7004       // Second instruction of a local dynamic sequence,
7005       // the __tls_get_addr call
7006       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7007       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7008       if (tls_type == tls::TLSOPT_TO_LE)
7009         {
7010           Insn* iview = reinterpret_cast<Insn*>(view);
7011           Insn insn = addi_3_3;
7012           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7013           this->skip_next_tls_get_addr_call();
7014           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7015           view += 2 * big_endian;
7016           value = dtp_offset;
7017         }
7018     }
7019   else if (r_type == elfcpp::R_POWERPC_TLS)
7020     {
7021       // Second instruction of an initial exec sequence
7022       const bool final = gsym == NULL || gsym->final_value_is_known();
7023       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7024       if (tls_type == tls::TLSOPT_TO_LE)
7025         {
7026           Insn* iview = reinterpret_cast<Insn*>(view);
7027           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7028           unsigned int reg = size == 32 ? 2 : 13;
7029           insn = at_tls_transform(insn, reg);
7030           gold_assert(insn != 0);
7031           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7032           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7033           view += 2 * big_endian;
7034           value = psymval->value(object, rela.get_r_addend());
7035         }
7036     }
7037   else if (!has_plt_value)
7038     {
7039       Address addend = 0;
7040       unsigned int dest_shndx;
7041       if (r_type != elfcpp::R_PPC_PLTREL24)
7042         addend = rela.get_r_addend();
7043       value = psymval->value(object, addend);
7044       if (size == 64 && is_branch_reloc(r_type))
7045         {
7046           if (target->abiversion() >= 2)
7047             {
7048               if (gsym != NULL)
7049                 value += object->ppc64_local_entry_offset(gsym);
7050               else
7051                 value += object->ppc64_local_entry_offset(r_sym);
7052             }
7053           else
7054             value = target->symval_for_branch(relinfo->symtab, value,
7055                                               gsym, object, &dest_shndx);
7056         }
7057       unsigned int max_branch_offset = 0;
7058       if (r_type == elfcpp::R_POWERPC_REL24
7059           || r_type == elfcpp::R_PPC_PLTREL24
7060           || r_type == elfcpp::R_PPC_LOCAL24PC)
7061         max_branch_offset = 1 << 25;
7062       else if (r_type == elfcpp::R_POWERPC_REL14
7063                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7064                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7065         max_branch_offset = 1 << 15;
7066       if (max_branch_offset != 0
7067           && value - address + max_branch_offset >= 2 * max_branch_offset)
7068         {
7069           Stub_table<size, big_endian>* stub_table
7070             = object->stub_table(relinfo->data_shndx);
7071           if (stub_table != NULL)
7072             {
7073               Address off = stub_table->find_long_branch_entry(object, value);
7074               if (off != invalid_address)
7075                 value = (stub_table->stub_address() + stub_table->plt_size()
7076                          + off);
7077             }
7078         }
7079     }
7080
7081   switch (r_type)
7082     {
7083     case elfcpp::R_PPC64_REL64:
7084     case elfcpp::R_POWERPC_REL32:
7085     case elfcpp::R_POWERPC_REL24:
7086     case elfcpp::R_PPC_PLTREL24:
7087     case elfcpp::R_PPC_LOCAL24PC:
7088     case elfcpp::R_POWERPC_REL16:
7089     case elfcpp::R_POWERPC_REL16_LO:
7090     case elfcpp::R_POWERPC_REL16_HI:
7091     case elfcpp::R_POWERPC_REL16_HA:
7092     case elfcpp::R_POWERPC_REL14:
7093     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7094     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7095       value -= address;
7096       break;
7097
7098     case elfcpp::R_PPC64_TOC16:
7099     case elfcpp::R_PPC64_TOC16_LO:
7100     case elfcpp::R_PPC64_TOC16_HI:
7101     case elfcpp::R_PPC64_TOC16_HA:
7102     case elfcpp::R_PPC64_TOC16_DS:
7103     case elfcpp::R_PPC64_TOC16_LO_DS:
7104       // Subtract the TOC base address.
7105       value -= (target->got_section()->output_section()->address()
7106                 + object->toc_base_offset());
7107       break;
7108
7109     case elfcpp::R_POWERPC_SECTOFF:
7110     case elfcpp::R_POWERPC_SECTOFF_LO:
7111     case elfcpp::R_POWERPC_SECTOFF_HI:
7112     case elfcpp::R_POWERPC_SECTOFF_HA:
7113     case elfcpp::R_PPC64_SECTOFF_DS:
7114     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7115       if (os != NULL)
7116         value -= os->address();
7117       break;
7118
7119     case elfcpp::R_PPC64_TPREL16_DS:
7120     case elfcpp::R_PPC64_TPREL16_LO_DS:
7121     case elfcpp::R_PPC64_TPREL16_HIGH:
7122     case elfcpp::R_PPC64_TPREL16_HIGHA:
7123       if (size != 64)
7124         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7125         break;
7126     case elfcpp::R_POWERPC_TPREL16:
7127     case elfcpp::R_POWERPC_TPREL16_LO:
7128     case elfcpp::R_POWERPC_TPREL16_HI:
7129     case elfcpp::R_POWERPC_TPREL16_HA:
7130     case elfcpp::R_POWERPC_TPREL:
7131     case elfcpp::R_PPC64_TPREL16_HIGHER:
7132     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7133     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7134     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7135       // tls symbol values are relative to tls_segment()->vaddr()
7136       value -= tp_offset;
7137       break;
7138
7139     case elfcpp::R_PPC64_DTPREL16_DS:
7140     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7141     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7142     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7143     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7144     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7145       if (size != 64)
7146         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7147         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7148         break;
7149     case elfcpp::R_POWERPC_DTPREL16:
7150     case elfcpp::R_POWERPC_DTPREL16_LO:
7151     case elfcpp::R_POWERPC_DTPREL16_HI:
7152     case elfcpp::R_POWERPC_DTPREL16_HA:
7153     case elfcpp::R_POWERPC_DTPREL:
7154     case elfcpp::R_PPC64_DTPREL16_HIGH:
7155     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7156       // tls symbol values are relative to tls_segment()->vaddr()
7157       value -= dtp_offset;
7158       break;
7159
7160     case elfcpp::R_PPC64_ADDR64_LOCAL:
7161       if (gsym != NULL)
7162         value += object->ppc64_local_entry_offset(gsym);
7163       else
7164         value += object->ppc64_local_entry_offset(r_sym);
7165       break;
7166
7167     default:
7168       break;
7169     }
7170
7171   Insn branch_bit = 0;
7172   switch (r_type)
7173     {
7174     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7175     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7176       branch_bit = 1 << 21;
7177     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7178     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7179       {
7180         Insn* iview = reinterpret_cast<Insn*>(view);
7181         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7182         insn &= ~(1 << 21);
7183         insn |= branch_bit;
7184         if (this->is_isa_v2)
7185           {
7186             // Set 'a' bit.  This is 0b00010 in BO field for branch
7187             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7188             // for branch on CTR insns (BO == 1a00t or 1a01t).
7189             if ((insn & (0x14 << 21)) == (0x04 << 21))
7190               insn |= 0x02 << 21;
7191             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7192               insn |= 0x08 << 21;
7193             else
7194               break;
7195           }
7196         else
7197           {
7198             // Invert 'y' bit if not the default.
7199             if (static_cast<Signed_address>(value) < 0)
7200               insn ^= 1 << 21;
7201           }
7202         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7203       }
7204       break;
7205
7206     default:
7207       break;
7208     }
7209
7210   if (size == 64)
7211     {
7212       // Multi-instruction sequences that access the TOC can be
7213       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7214       // to             nop;           addi rb,r2,x;
7215       switch (r_type)
7216         {
7217         default:
7218           break;
7219
7220         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7221         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7222         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7223         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7224         case elfcpp::R_POWERPC_GOT16_HA:
7225         case elfcpp::R_PPC64_TOC16_HA:
7226           if (parameters->options().toc_optimize())
7227             {
7228               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7229               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7230               if ((insn & ((0x3f << 26) | 0x1f << 16))
7231                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7232                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7233                                        _("toc optimization is not supported "
7234                                          "for %#08x instruction"), insn);
7235               else if (value + 0x8000 < 0x10000)
7236                 {
7237                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7238                   return true;
7239                 }
7240             }
7241           break;
7242
7243         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7244         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7245         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7246         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7247         case elfcpp::R_POWERPC_GOT16_LO:
7248         case elfcpp::R_PPC64_GOT16_LO_DS:
7249         case elfcpp::R_PPC64_TOC16_LO:
7250         case elfcpp::R_PPC64_TOC16_LO_DS:
7251           if (parameters->options().toc_optimize())
7252             {
7253               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7254               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7255               if (!ok_lo_toc_insn(insn))
7256                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7257                                        _("toc optimization is not supported "
7258                                          "for %#08x instruction"), insn);
7259               else if (value + 0x8000 < 0x10000)
7260                 {
7261                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7262                     {
7263                       // Transform addic to addi when we change reg.
7264                       insn &= ~((0x3f << 26) | (0x1f << 16));
7265                       insn |= (14u << 26) | (2 << 16);
7266                     }
7267                   else
7268                     {
7269                       insn &= ~(0x1f << 16);
7270                       insn |= 2 << 16;
7271                     }
7272                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7273                 }
7274             }
7275           break;
7276         }
7277     }
7278
7279   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7280   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7281   switch (r_type)
7282     {
7283     case elfcpp::R_POWERPC_ADDR32:
7284     case elfcpp::R_POWERPC_UADDR32:
7285       if (size == 64)
7286         overflow = Reloc::CHECK_BITFIELD;
7287       break;
7288
7289     case elfcpp::R_POWERPC_REL32:
7290       if (size == 64)
7291         overflow = Reloc::CHECK_SIGNED;
7292       break;
7293
7294     case elfcpp::R_POWERPC_UADDR16:
7295       overflow = Reloc::CHECK_BITFIELD;
7296       break;
7297
7298     case elfcpp::R_POWERPC_ADDR16:
7299       // We really should have three separate relocations,
7300       // one for 16-bit data, one for insns with 16-bit signed fields,
7301       // and one for insns with 16-bit unsigned fields.
7302       overflow = Reloc::CHECK_BITFIELD;
7303       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7304         overflow = Reloc::CHECK_LOW_INSN;
7305       break;
7306
7307     case elfcpp::R_POWERPC_ADDR16_HI:
7308     case elfcpp::R_POWERPC_ADDR16_HA:
7309     case elfcpp::R_POWERPC_GOT16_HI:
7310     case elfcpp::R_POWERPC_GOT16_HA:
7311     case elfcpp::R_POWERPC_PLT16_HI:
7312     case elfcpp::R_POWERPC_PLT16_HA:
7313     case elfcpp::R_POWERPC_SECTOFF_HI:
7314     case elfcpp::R_POWERPC_SECTOFF_HA:
7315     case elfcpp::R_PPC64_TOC16_HI:
7316     case elfcpp::R_PPC64_TOC16_HA:
7317     case elfcpp::R_PPC64_PLTGOT16_HI:
7318     case elfcpp::R_PPC64_PLTGOT16_HA:
7319     case elfcpp::R_POWERPC_TPREL16_HI:
7320     case elfcpp::R_POWERPC_TPREL16_HA:
7321     case elfcpp::R_POWERPC_DTPREL16_HI:
7322     case elfcpp::R_POWERPC_DTPREL16_HA:
7323     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7324     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7325     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7326     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7327     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7328     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7329     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7330     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7331     case elfcpp::R_POWERPC_REL16_HI:
7332     case elfcpp::R_POWERPC_REL16_HA:
7333       if (size != 32)
7334         overflow = Reloc::CHECK_HIGH_INSN;
7335       break;
7336
7337     case elfcpp::R_POWERPC_REL16:
7338     case elfcpp::R_PPC64_TOC16:
7339     case elfcpp::R_POWERPC_GOT16:
7340     case elfcpp::R_POWERPC_SECTOFF:
7341     case elfcpp::R_POWERPC_TPREL16:
7342     case elfcpp::R_POWERPC_DTPREL16:
7343     case elfcpp::R_POWERPC_GOT_TLSGD16:
7344     case elfcpp::R_POWERPC_GOT_TLSLD16:
7345     case elfcpp::R_POWERPC_GOT_TPREL16:
7346     case elfcpp::R_POWERPC_GOT_DTPREL16:
7347       overflow = Reloc::CHECK_LOW_INSN;
7348       break;
7349
7350     case elfcpp::R_POWERPC_ADDR24:
7351     case elfcpp::R_POWERPC_ADDR14:
7352     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7353     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7354     case elfcpp::R_PPC64_ADDR16_DS:
7355     case elfcpp::R_POWERPC_REL24:
7356     case elfcpp::R_PPC_PLTREL24:
7357     case elfcpp::R_PPC_LOCAL24PC:
7358     case elfcpp::R_PPC64_TPREL16_DS:
7359     case elfcpp::R_PPC64_DTPREL16_DS:
7360     case elfcpp::R_PPC64_TOC16_DS:
7361     case elfcpp::R_PPC64_GOT16_DS:
7362     case elfcpp::R_PPC64_SECTOFF_DS:
7363     case elfcpp::R_POWERPC_REL14:
7364     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7365     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7366       overflow = Reloc::CHECK_SIGNED;
7367       break;
7368     }
7369
7370   if (overflow == Reloc::CHECK_LOW_INSN
7371       || overflow == Reloc::CHECK_HIGH_INSN)
7372     {
7373       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7374       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7375
7376       overflow = Reloc::CHECK_SIGNED;
7377       if (overflow == Reloc::CHECK_LOW_INSN
7378           ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7379              || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7380              || (insn & (0x3f << 26)) == 26u << 26 /* xori */
7381              || (insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7382           : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7383              || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7384              || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7385         overflow = Reloc::CHECK_UNSIGNED;
7386     }
7387
7388   typename Powerpc_relocate_functions<size, big_endian>::Status status
7389     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7390   switch (r_type)
7391     {
7392     case elfcpp::R_POWERPC_NONE:
7393     case elfcpp::R_POWERPC_TLS:
7394     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7395     case elfcpp::R_POWERPC_GNU_VTENTRY:
7396       break;
7397
7398     case elfcpp::R_PPC64_ADDR64:
7399     case elfcpp::R_PPC64_REL64:
7400     case elfcpp::R_PPC64_TOC:
7401     case elfcpp::R_PPC64_ADDR64_LOCAL:
7402       Reloc::addr64(view, value);
7403       break;
7404
7405     case elfcpp::R_POWERPC_TPREL:
7406     case elfcpp::R_POWERPC_DTPREL:
7407       if (size == 64)
7408         Reloc::addr64(view, value);
7409       else
7410         status = Reloc::addr32(view, value, overflow);
7411       break;
7412
7413     case elfcpp::R_PPC64_UADDR64:
7414       Reloc::addr64_u(view, value);
7415       break;
7416
7417     case elfcpp::R_POWERPC_ADDR32:
7418       status = Reloc::addr32(view, value, overflow);
7419       break;
7420
7421     case elfcpp::R_POWERPC_REL32:
7422     case elfcpp::R_POWERPC_UADDR32:
7423       status = Reloc::addr32_u(view, value, overflow);
7424       break;
7425
7426     case elfcpp::R_POWERPC_ADDR24:
7427     case elfcpp::R_POWERPC_REL24:
7428     case elfcpp::R_PPC_PLTREL24:
7429     case elfcpp::R_PPC_LOCAL24PC:
7430       status = Reloc::addr24(view, value, overflow);
7431       break;
7432
7433     case elfcpp::R_POWERPC_GOT_DTPREL16:
7434     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7435       if (size == 64)
7436         {
7437           status = Reloc::addr16_ds(view, value, overflow);
7438           break;
7439         }
7440     case elfcpp::R_POWERPC_ADDR16:
7441     case elfcpp::R_POWERPC_REL16:
7442     case elfcpp::R_PPC64_TOC16:
7443     case elfcpp::R_POWERPC_GOT16:
7444     case elfcpp::R_POWERPC_SECTOFF:
7445     case elfcpp::R_POWERPC_TPREL16:
7446     case elfcpp::R_POWERPC_DTPREL16:
7447     case elfcpp::R_POWERPC_GOT_TLSGD16:
7448     case elfcpp::R_POWERPC_GOT_TLSLD16:
7449     case elfcpp::R_POWERPC_GOT_TPREL16:
7450     case elfcpp::R_POWERPC_ADDR16_LO:
7451     case elfcpp::R_POWERPC_REL16_LO:
7452     case elfcpp::R_PPC64_TOC16_LO:
7453     case elfcpp::R_POWERPC_GOT16_LO:
7454     case elfcpp::R_POWERPC_SECTOFF_LO:
7455     case elfcpp::R_POWERPC_TPREL16_LO:
7456     case elfcpp::R_POWERPC_DTPREL16_LO:
7457     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7458     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7459     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7460       status = Reloc::addr16(view, value, overflow);
7461       break;
7462
7463     case elfcpp::R_POWERPC_UADDR16:
7464       status = Reloc::addr16_u(view, value, overflow);
7465       break;
7466
7467     case elfcpp::R_PPC64_ADDR16_HIGH:
7468     case elfcpp::R_PPC64_TPREL16_HIGH:
7469     case elfcpp::R_PPC64_DTPREL16_HIGH:
7470       if (size == 32)
7471         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7472         goto unsupp;
7473     case elfcpp::R_POWERPC_ADDR16_HI:
7474     case elfcpp::R_POWERPC_REL16_HI:
7475     case elfcpp::R_PPC64_TOC16_HI:
7476     case elfcpp::R_POWERPC_GOT16_HI:
7477     case elfcpp::R_POWERPC_SECTOFF_HI:
7478     case elfcpp::R_POWERPC_TPREL16_HI:
7479     case elfcpp::R_POWERPC_DTPREL16_HI:
7480     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7481     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7482     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7483     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7484       Reloc::addr16_hi(view, value);
7485       break;
7486
7487     case elfcpp::R_PPC64_ADDR16_HIGHA:
7488     case elfcpp::R_PPC64_TPREL16_HIGHA:
7489     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7490       if (size == 32)
7491         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7492         goto unsupp;
7493     case elfcpp::R_POWERPC_ADDR16_HA:
7494     case elfcpp::R_POWERPC_REL16_HA:
7495     case elfcpp::R_PPC64_TOC16_HA:
7496     case elfcpp::R_POWERPC_GOT16_HA:
7497     case elfcpp::R_POWERPC_SECTOFF_HA:
7498     case elfcpp::R_POWERPC_TPREL16_HA:
7499     case elfcpp::R_POWERPC_DTPREL16_HA:
7500     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7501     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7502     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7503     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7504       Reloc::addr16_ha(view, value);
7505       break;
7506
7507     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7508       if (size == 32)
7509         // R_PPC_EMB_NADDR16_LO
7510         goto unsupp;
7511     case elfcpp::R_PPC64_ADDR16_HIGHER:
7512     case elfcpp::R_PPC64_TPREL16_HIGHER:
7513       Reloc::addr16_hi2(view, value);
7514       break;
7515
7516     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7517       if (size == 32)
7518         // R_PPC_EMB_NADDR16_HI
7519         goto unsupp;
7520     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7521     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7522       Reloc::addr16_ha2(view, value);
7523       break;
7524
7525     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7526       if (size == 32)
7527         // R_PPC_EMB_NADDR16_HA
7528         goto unsupp;
7529     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7530     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7531       Reloc::addr16_hi3(view, value);
7532       break;
7533
7534     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7535       if (size == 32)
7536         // R_PPC_EMB_SDAI16
7537         goto unsupp;
7538     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7539     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7540       Reloc::addr16_ha3(view, value);
7541       break;
7542
7543     case elfcpp::R_PPC64_DTPREL16_DS:
7544     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7545       if (size == 32)
7546         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7547         goto unsupp;
7548     case elfcpp::R_PPC64_TPREL16_DS:
7549     case elfcpp::R_PPC64_TPREL16_LO_DS:
7550       if (size == 32)
7551         // R_PPC_TLSGD, R_PPC_TLSLD
7552         break;
7553     case elfcpp::R_PPC64_ADDR16_DS:
7554     case elfcpp::R_PPC64_ADDR16_LO_DS:
7555     case elfcpp::R_PPC64_TOC16_DS:
7556     case elfcpp::R_PPC64_TOC16_LO_DS:
7557     case elfcpp::R_PPC64_GOT16_DS:
7558     case elfcpp::R_PPC64_GOT16_LO_DS:
7559     case elfcpp::R_PPC64_SECTOFF_DS:
7560     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7561       status = Reloc::addr16_ds(view, value, overflow);
7562       break;
7563
7564     case elfcpp::R_POWERPC_ADDR14:
7565     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7566     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7567     case elfcpp::R_POWERPC_REL14:
7568     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7569     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7570       status = Reloc::addr14(view, value, overflow);
7571       break;
7572
7573     case elfcpp::R_POWERPC_COPY:
7574     case elfcpp::R_POWERPC_GLOB_DAT:
7575     case elfcpp::R_POWERPC_JMP_SLOT:
7576     case elfcpp::R_POWERPC_RELATIVE:
7577     case elfcpp::R_POWERPC_DTPMOD:
7578     case elfcpp::R_PPC64_JMP_IREL:
7579     case elfcpp::R_POWERPC_IRELATIVE:
7580       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7581                              _("unexpected reloc %u in object file"),
7582                              r_type);
7583       break;
7584
7585     case elfcpp::R_PPC_EMB_SDA21:
7586       if (size == 32)
7587         goto unsupp;
7588       else
7589         {
7590           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7591         }
7592       break;
7593
7594     case elfcpp::R_PPC_EMB_SDA2I16:
7595     case elfcpp::R_PPC_EMB_SDA2REL:
7596       if (size == 32)
7597         goto unsupp;
7598       // R_PPC64_TLSGD, R_PPC64_TLSLD
7599       break;
7600
7601     case elfcpp::R_POWERPC_PLT32:
7602     case elfcpp::R_POWERPC_PLTREL32:
7603     case elfcpp::R_POWERPC_PLT16_LO:
7604     case elfcpp::R_POWERPC_PLT16_HI:
7605     case elfcpp::R_POWERPC_PLT16_HA:
7606     case elfcpp::R_PPC_SDAREL16:
7607     case elfcpp::R_POWERPC_ADDR30:
7608     case elfcpp::R_PPC64_PLT64:
7609     case elfcpp::R_PPC64_PLTREL64:
7610     case elfcpp::R_PPC64_PLTGOT16:
7611     case elfcpp::R_PPC64_PLTGOT16_LO:
7612     case elfcpp::R_PPC64_PLTGOT16_HI:
7613     case elfcpp::R_PPC64_PLTGOT16_HA:
7614     case elfcpp::R_PPC64_PLT16_LO_DS:
7615     case elfcpp::R_PPC64_PLTGOT16_DS:
7616     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7617     case elfcpp::R_PPC_EMB_RELSDA:
7618     case elfcpp::R_PPC_TOC16:
7619     default:
7620     unsupp:
7621       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7622                              _("unsupported reloc %u"),
7623                              r_type);
7624       break;
7625     }
7626   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7627     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7628                            _("relocation overflow"));
7629
7630   return true;
7631 }
7632
7633 // Relocate section data.
7634
7635 template<int size, bool big_endian>
7636 void
7637 Target_powerpc<size, big_endian>::relocate_section(
7638     const Relocate_info<size, big_endian>* relinfo,
7639     unsigned int sh_type,
7640     const unsigned char* prelocs,
7641     size_t reloc_count,
7642     Output_section* output_section,
7643     bool needs_special_offset_handling,
7644     unsigned char* view,
7645     Address address,
7646     section_size_type view_size,
7647     const Reloc_symbol_changes* reloc_symbol_changes)
7648 {
7649   typedef Target_powerpc<size, big_endian> Powerpc;
7650   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7651   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7652     Powerpc_comdat_behavior;
7653
7654   gold_assert(sh_type == elfcpp::SHT_RELA);
7655
7656   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7657                          Powerpc_relocate, Powerpc_comdat_behavior>(
7658     relinfo,
7659     this,
7660     prelocs,
7661     reloc_count,
7662     output_section,
7663     needs_special_offset_handling,
7664     view,
7665     address,
7666     view_size,
7667     reloc_symbol_changes);
7668 }
7669
7670 class Powerpc_scan_relocatable_reloc
7671 {
7672 public:
7673   // Return the strategy to use for a local symbol which is not a
7674   // section symbol, given the relocation type.
7675   inline Relocatable_relocs::Reloc_strategy
7676   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7677   {
7678     if (r_type == 0 && r_sym == 0)
7679       return Relocatable_relocs::RELOC_DISCARD;
7680     return Relocatable_relocs::RELOC_COPY;
7681   }
7682
7683   // Return the strategy to use for a local symbol which is a section
7684   // symbol, given the relocation type.
7685   inline Relocatable_relocs::Reloc_strategy
7686   local_section_strategy(unsigned int, Relobj*)
7687   {
7688     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7689   }
7690
7691   // Return the strategy to use for a global symbol, given the
7692   // relocation type, the object, and the symbol index.
7693   inline Relocatable_relocs::Reloc_strategy
7694   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7695   {
7696     if (r_type == elfcpp::R_PPC_PLTREL24)
7697       return Relocatable_relocs::RELOC_SPECIAL;
7698     return Relocatable_relocs::RELOC_COPY;
7699   }
7700 };
7701
7702 // Scan the relocs during a relocatable link.
7703
7704 template<int size, bool big_endian>
7705 void
7706 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7707     Symbol_table* symtab,
7708     Layout* layout,
7709     Sized_relobj_file<size, big_endian>* object,
7710     unsigned int data_shndx,
7711     unsigned int sh_type,
7712     const unsigned char* prelocs,
7713     size_t reloc_count,
7714     Output_section* output_section,
7715     bool needs_special_offset_handling,
7716     size_t local_symbol_count,
7717     const unsigned char* plocal_symbols,
7718     Relocatable_relocs* rr)
7719 {
7720   gold_assert(sh_type == elfcpp::SHT_RELA);
7721
7722   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7723                                 Powerpc_scan_relocatable_reloc>(
7724     symtab,
7725     layout,
7726     object,
7727     data_shndx,
7728     prelocs,
7729     reloc_count,
7730     output_section,
7731     needs_special_offset_handling,
7732     local_symbol_count,
7733     plocal_symbols,
7734     rr);
7735 }
7736
7737 // Emit relocations for a section.
7738 // This is a modified version of the function by the same name in
7739 // target-reloc.h.  Using relocate_special_relocatable for
7740 // R_PPC_PLTREL24 would require duplication of the entire body of the
7741 // loop, so we may as well duplicate the whole thing.
7742
7743 template<int size, bool big_endian>
7744 void
7745 Target_powerpc<size, big_endian>::relocate_relocs(
7746     const Relocate_info<size, big_endian>* relinfo,
7747     unsigned int sh_type,
7748     const unsigned char* prelocs,
7749     size_t reloc_count,
7750     Output_section* output_section,
7751     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7752     const Relocatable_relocs* rr,
7753     unsigned char*,
7754     Address view_address,
7755     section_size_type,
7756     unsigned char* reloc_view,
7757     section_size_type reloc_view_size)
7758 {
7759   gold_assert(sh_type == elfcpp::SHT_RELA);
7760
7761   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7762     Reltype;
7763   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7764     Reltype_write;
7765   const int reloc_size
7766     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7767
7768   Powerpc_relobj<size, big_endian>* const object
7769     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7770   const unsigned int local_count = object->local_symbol_count();
7771   unsigned int got2_shndx = object->got2_shndx();
7772   Address got2_addend = 0;
7773   if (got2_shndx != 0)
7774     {
7775       got2_addend = object->get_output_section_offset(got2_shndx);
7776       gold_assert(got2_addend != invalid_address);
7777     }
7778
7779   unsigned char* pwrite = reloc_view;
7780   bool zap_next = false;
7781   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7782     {
7783       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7784       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7785         continue;
7786
7787       Reltype reloc(prelocs);
7788       Reltype_write reloc_write(pwrite);
7789
7790       Address offset = reloc.get_r_offset();
7791       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7792       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7793       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7794       const unsigned int orig_r_sym = r_sym;
7795       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7796         = reloc.get_r_addend();
7797       const Symbol* gsym = NULL;
7798
7799       if (zap_next)
7800         {
7801           // We could arrange to discard these and other relocs for
7802           // tls optimised sequences in the strategy methods, but for
7803           // now do as BFD ld does.
7804           r_type = elfcpp::R_POWERPC_NONE;
7805           zap_next = false;
7806         }
7807
7808       // Get the new symbol index.
7809       if (r_sym < local_count)
7810         {
7811           switch (strategy)
7812             {
7813             case Relocatable_relocs::RELOC_COPY:
7814             case Relocatable_relocs::RELOC_SPECIAL:
7815               if (r_sym != 0)
7816                 {
7817                   r_sym = object->symtab_index(r_sym);
7818                   gold_assert(r_sym != -1U);
7819                 }
7820               break;
7821
7822             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7823               {
7824                 // We are adjusting a section symbol.  We need to find
7825                 // the symbol table index of the section symbol for
7826                 // the output section corresponding to input section
7827                 // in which this symbol is defined.
7828                 gold_assert(r_sym < local_count);
7829                 bool is_ordinary;
7830                 unsigned int shndx =
7831                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7832                 gold_assert(is_ordinary);
7833                 Output_section* os = object->output_section(shndx);
7834                 gold_assert(os != NULL);
7835                 gold_assert(os->needs_symtab_index());
7836                 r_sym = os->symtab_index();
7837               }
7838               break;
7839
7840             default:
7841               gold_unreachable();
7842             }
7843         }
7844       else
7845         {
7846           gsym = object->global_symbol(r_sym);
7847           gold_assert(gsym != NULL);
7848           if (gsym->is_forwarder())
7849             gsym = relinfo->symtab->resolve_forwards(gsym);
7850
7851           gold_assert(gsym->has_symtab_index());
7852           r_sym = gsym->symtab_index();
7853         }
7854
7855       // Get the new offset--the location in the output section where
7856       // this relocation should be applied.
7857       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7858         offset += offset_in_output_section;
7859       else
7860         {
7861           section_offset_type sot_offset =
7862             convert_types<section_offset_type, Address>(offset);
7863           section_offset_type new_sot_offset =
7864             output_section->output_offset(object, relinfo->data_shndx,
7865                                           sot_offset);
7866           gold_assert(new_sot_offset != -1);
7867           offset = new_sot_offset;
7868         }
7869
7870       // In an object file, r_offset is an offset within the section.
7871       // In an executable or dynamic object, generated by
7872       // --emit-relocs, r_offset is an absolute address.
7873       if (!parameters->options().relocatable())
7874         {
7875           offset += view_address;
7876           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7877             offset -= offset_in_output_section;
7878         }
7879
7880       // Handle the reloc addend based on the strategy.
7881       if (strategy == Relocatable_relocs::RELOC_COPY)
7882         ;
7883       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7884         {
7885           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7886           addend = psymval->value(object, addend);
7887         }
7888       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7889         {
7890           if (addend >= 32768)
7891             addend += got2_addend;
7892         }
7893       else
7894         gold_unreachable();
7895
7896       if (!parameters->options().relocatable())
7897         {
7898           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7899               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7900               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7901               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7902             {
7903               // First instruction of a global dynamic sequence,
7904               // arg setup insn.
7905               const bool final = gsym == NULL || gsym->final_value_is_known();
7906               switch (this->optimize_tls_gd(final))
7907                 {
7908                 case tls::TLSOPT_TO_IE:
7909                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7910                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7911                   break;
7912                 case tls::TLSOPT_TO_LE:
7913                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7914                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7915                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7916                   else
7917                     {
7918                       r_type = elfcpp::R_POWERPC_NONE;
7919                       offset -= 2 * big_endian;
7920                     }
7921                   break;
7922                 default:
7923                   break;
7924                 }
7925             }
7926           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7927                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7928                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7929                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7930             {
7931               // First instruction of a local dynamic sequence,
7932               // arg setup insn.
7933               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7934                 {
7935                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7936                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7937                     {
7938                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7939                       const Output_section* os = relinfo->layout->tls_segment()
7940                         ->first_section();
7941                       gold_assert(os != NULL);
7942                       gold_assert(os->needs_symtab_index());
7943                       r_sym = os->symtab_index();
7944                       addend = dtp_offset;
7945                     }
7946                   else
7947                     {
7948                       r_type = elfcpp::R_POWERPC_NONE;
7949                       offset -= 2 * big_endian;
7950                     }
7951                 }
7952             }
7953           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7954                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7955                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7956                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7957             {
7958               // First instruction of initial exec sequence.
7959               const bool final = gsym == NULL || gsym->final_value_is_known();
7960               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7961                 {
7962                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7963                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7964                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7965                   else
7966                     {
7967                       r_type = elfcpp::R_POWERPC_NONE;
7968                       offset -= 2 * big_endian;
7969                     }
7970                 }
7971             }
7972           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7973                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7974             {
7975               // Second instruction of a global dynamic sequence,
7976               // the __tls_get_addr call
7977               const bool final = gsym == NULL || gsym->final_value_is_known();
7978               switch (this->optimize_tls_gd(final))
7979                 {
7980                 case tls::TLSOPT_TO_IE:
7981                   r_type = elfcpp::R_POWERPC_NONE;
7982                   zap_next = true;
7983                   break;
7984                 case tls::TLSOPT_TO_LE:
7985                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7986                   offset += 2 * big_endian;
7987                   zap_next = true;
7988                   break;
7989                 default:
7990                   break;
7991                 }
7992             }
7993           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7994                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7995             {
7996               // Second instruction of a local dynamic sequence,
7997               // the __tls_get_addr call
7998               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7999                 {
8000                   const Output_section* os = relinfo->layout->tls_segment()
8001                     ->first_section();
8002                   gold_assert(os != NULL);
8003                   gold_assert(os->needs_symtab_index());
8004                   r_sym = os->symtab_index();
8005                   addend = dtp_offset;
8006                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8007                   offset += 2 * big_endian;
8008                   zap_next = true;
8009                 }
8010             }
8011           else if (r_type == elfcpp::R_POWERPC_TLS)
8012             {
8013               // Second instruction of an initial exec sequence
8014               const bool final = gsym == NULL || gsym->final_value_is_known();
8015               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8016                 {
8017                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8018                   offset += 2 * big_endian;
8019                 }
8020             }
8021         }
8022
8023       reloc_write.put_r_offset(offset);
8024       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8025       reloc_write.put_r_addend(addend);
8026
8027       pwrite += reloc_size;
8028     }
8029
8030   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8031               == reloc_view_size);
8032 }
8033
8034 // Return the value to use for a dynamic symbol which requires special
8035 // treatment.  This is how we support equality comparisons of function
8036 // pointers across shared library boundaries, as described in the
8037 // processor specific ABI supplement.
8038
8039 template<int size, bool big_endian>
8040 uint64_t
8041 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8042 {
8043   if (size == 32)
8044     {
8045       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8046       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8047            p != this->stub_tables_.end();
8048            ++p)
8049         {
8050           Address off = (*p)->find_plt_call_entry(gsym);
8051           if (off != invalid_address)
8052             return (*p)->stub_address() + off;
8053         }
8054     }
8055   else if (this->abiversion() >= 2)
8056     {
8057       unsigned int off = this->glink_section()->find_global_entry(gsym);
8058       if (off != (unsigned int)-1)
8059         return this->glink_section()->global_entry_address() + off;
8060     }
8061   gold_unreachable();
8062 }
8063
8064 // Return the PLT address to use for a local symbol.
8065 template<int size, bool big_endian>
8066 uint64_t
8067 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8068     const Relobj* object,
8069     unsigned int symndx) const
8070 {
8071   if (size == 32)
8072     {
8073       const Sized_relobj<size, big_endian>* relobj
8074         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8075       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8076            p != this->stub_tables_.end();
8077            ++p)
8078         {
8079           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8080                                                   symndx);
8081           if (off != invalid_address)
8082             return (*p)->stub_address() + off;
8083         }
8084     }
8085   gold_unreachable();
8086 }
8087
8088 // Return the PLT address to use for a global symbol.
8089 template<int size, bool big_endian>
8090 uint64_t
8091 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8092     const Symbol* gsym) const
8093 {
8094   if (size == 32)
8095     {
8096       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8097            p != this->stub_tables_.end();
8098            ++p)
8099         {
8100           Address off = (*p)->find_plt_call_entry(gsym);
8101           if (off != invalid_address)
8102             return (*p)->stub_address() + off;
8103         }
8104     }
8105   else if (this->abiversion() >= 2)
8106     {
8107       unsigned int off = this->glink_section()->find_global_entry(gsym);
8108       if (off != (unsigned int)-1)
8109         return this->glink_section()->global_entry_address() + off;
8110     }
8111   gold_unreachable();
8112 }
8113
8114 // Return the offset to use for the GOT_INDX'th got entry which is
8115 // for a local tls symbol specified by OBJECT, SYMNDX.
8116 template<int size, bool big_endian>
8117 int64_t
8118 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8119     const Relobj* object,
8120     unsigned int symndx,
8121     unsigned int got_indx) const
8122 {
8123   const Powerpc_relobj<size, big_endian>* ppc_object
8124     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8125   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8126     {
8127       for (Got_type got_type = GOT_TYPE_TLSGD;
8128            got_type <= GOT_TYPE_TPREL;
8129            got_type = Got_type(got_type + 1))
8130         if (ppc_object->local_has_got_offset(symndx, got_type))
8131           {
8132             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8133             if (got_type == GOT_TYPE_TLSGD)
8134               off += size / 8;
8135             if (off == got_indx * (size / 8))
8136               {
8137                 if (got_type == GOT_TYPE_TPREL)
8138                   return -tp_offset;
8139                 else
8140                   return -dtp_offset;
8141               }
8142           }
8143     }
8144   gold_unreachable();
8145 }
8146
8147 // Return the offset to use for the GOT_INDX'th got entry which is
8148 // for global tls symbol GSYM.
8149 template<int size, bool big_endian>
8150 int64_t
8151 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8152     Symbol* gsym,
8153     unsigned int got_indx) const
8154 {
8155   if (gsym->type() == elfcpp::STT_TLS)
8156     {
8157       for (Got_type got_type = GOT_TYPE_TLSGD;
8158            got_type <= GOT_TYPE_TPREL;
8159            got_type = Got_type(got_type + 1))
8160         if (gsym->has_got_offset(got_type))
8161           {
8162             unsigned int off = gsym->got_offset(got_type);
8163             if (got_type == GOT_TYPE_TLSGD)
8164               off += size / 8;
8165             if (off == got_indx * (size / 8))
8166               {
8167                 if (got_type == GOT_TYPE_TPREL)
8168                   return -tp_offset;
8169                 else
8170                   return -dtp_offset;
8171               }
8172           }
8173     }
8174   gold_unreachable();
8175 }
8176
8177 // The selector for powerpc object files.
8178
8179 template<int size, bool big_endian>
8180 class Target_selector_powerpc : public Target_selector
8181 {
8182 public:
8183   Target_selector_powerpc()
8184     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8185                       size, big_endian,
8186                       (size == 64
8187                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8188                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8189                       (size == 64
8190                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8191                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8192   { }
8193
8194   virtual Target*
8195   do_instantiate_target()
8196   { return new Target_powerpc<size, big_endian>(); }
8197 };
8198
8199 Target_selector_powerpc<32, true> target_selector_ppc32;
8200 Target_selector_powerpc<32, false> target_selector_ppc32le;
8201 Target_selector_powerpc<64, true> target_selector_ppc64;
8202 Target_selector_powerpc<64, false> target_selector_ppc64le;
8203
8204 // Instantiate these constants for -O0
8205 template<int size, bool big_endian>
8206 const int Output_data_glink<size, big_endian>::pltresolve_size;
8207 template<int size, bool big_endian>
8208 const typename Output_data_glink<size, big_endian>::Address
8209   Output_data_glink<size, big_endian>::invalid_address;
8210 template<int size, bool big_endian>
8211 const typename Stub_table<size, big_endian>::Address
8212   Stub_table<size, big_endian>::invalid_address;
8213 template<int size, bool big_endian>
8214 const typename Target_powerpc<size, big_endian>::Address
8215   Target_powerpc<size, big_endian>::invalid_address;
8216
8217 } // End anonymous namespace.