* powerpc.cc (Target_powerpc::symval_for_branch): Don't assert
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_()
81   { }
82
83   ~Powerpc_relobj()
84   { }
85
86   // The .got2 section shndx.
87   unsigned int
88   got2_shndx() const
89   {
90     if (size == 32)
91       return this->special_;
92     else
93       return 0;
94   }
95
96   // The .opd section shndx.
97   unsigned int
98   opd_shndx() const
99   {
100     if (size == 32)
101       return 0;
102     else
103       return this->special_;
104   }
105
106   // Init OPD entry arrays.
107   void
108   init_opd(size_t opd_size)
109   {
110     size_t count = this->opd_ent_ndx(opd_size);
111     this->opd_ent_.resize(count);
112   }
113
114   // Return section and offset of function entry for .opd + R_OFF.
115   unsigned int
116   get_opd_ent(Address r_off, Address* value = NULL) const
117   {
118     size_t ndx = this->opd_ent_ndx(r_off);
119     gold_assert(ndx < this->opd_ent_.size());
120     gold_assert(this->opd_ent_[ndx].shndx != 0);
121     if (value != NULL)
122       *value = this->opd_ent_[ndx].off;
123     return this->opd_ent_[ndx].shndx;
124   }
125
126   // Set section and offset of function entry for .opd + R_OFF.
127   void
128   set_opd_ent(Address r_off, unsigned int shndx, Address value)
129   {
130     size_t ndx = this->opd_ent_ndx(r_off);
131     gold_assert(ndx < this->opd_ent_.size());
132     this->opd_ent_[ndx].shndx = shndx;
133     this->opd_ent_[ndx].off = value;
134   }
135
136   // Return discard flag for .opd + R_OFF.
137   bool
138   get_opd_discard(Address r_off) const
139   {
140     size_t ndx = this->opd_ent_ndx(r_off);
141     gold_assert(ndx < this->opd_ent_.size());
142     return this->opd_ent_[ndx].discard;
143   }
144
145   // Set discard flag for .opd + R_OFF.
146   void
147   set_opd_discard(Address r_off)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].discard = true;
152   }
153
154   bool
155   opd_valid() const
156   { return this->opd_valid_; }
157
158   void
159   set_opd_valid()
160   { this->opd_valid_ = true; }
161
162   // Examine .rela.opd to build info about function entry points.
163   void
164   scan_opd_relocs(size_t reloc_count,
165                   const unsigned char* prelocs,
166                   const unsigned char* plocal_syms);
167
168   // Perform the Sized_relobj_file method, then set up opd info from
169   // .opd relocs.
170   void
171   do_read_relocs(Read_relocs_data*);
172
173   bool
174   do_find_special_sections(Read_symbols_data* sd);
175
176   // Adjust this local symbol value.  Return false if the symbol
177   // should be discarded from the output file.
178   bool
179   do_adjust_local_symbol(Symbol_value<size>* lv) const
180   {
181     if (size == 64 && this->opd_shndx() != 0)
182       {
183         bool is_ordinary;
184         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
185           return true;
186         if (this->get_opd_discard(lv->input_value()))
187           return false;
188       }
189     return true;
190   }
191
192   Access_from*
193   access_from_map()
194   { return &this->access_from_map_; }
195
196   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
197   // section at DST_OFF.
198   void
199   add_reference(Object* src_obj,
200                 unsigned int src_indx,
201                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
202   {
203     Section_id src_id(src_obj, src_indx);
204     this->access_from_map_[dst_off].insert(src_id);
205   }
206
207   // Add a reference to the code section specified by the .opd entry
208   // at DST_OFF
209   void
210   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
211   {
212     size_t ndx = this->opd_ent_ndx(dst_off);
213     if (ndx >= this->opd_ent_.size())
214       this->opd_ent_.resize(ndx + 1);
215     this->opd_ent_[ndx].gc_mark = true;
216   }
217
218   void
219   process_gc_mark(Symbol_table* symtab)
220   {
221     for (size_t i = 0; i < this->opd_ent_.size(); i++)
222       if (this->opd_ent_[i].gc_mark)
223         {
224           unsigned int shndx = this->opd_ent_[i].shndx;
225           symtab->gc()->worklist().push(Section_id(this, shndx));
226         }
227   }
228
229   // Return offset in output GOT section that this object will use
230   // as a TOC pointer.  Won't be just a constant with multi-toc support.
231   Address
232   toc_base_offset() const
233   { return 0x8000; }
234
235   void
236   set_has_small_toc_reloc()
237   { has_small_toc_reloc_ = true; }
238
239   bool
240   has_small_toc_reloc() const
241   { return has_small_toc_reloc_; }
242
243   void
244   set_has_14bit_branch(unsigned int shndx)
245   {
246     if (shndx >= this->has14_.size())
247       this->has14_.resize(shndx + 1);
248     this->has14_[shndx] = true;
249   }
250
251   bool
252   has_14bit_branch(unsigned int shndx) const
253   { return shndx < this->has14_.size() && this->has14_[shndx];  }
254
255   void
256   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
257   {
258     if (shndx >= this->stub_table_.size())
259       this->stub_table_.resize(shndx + 1);
260     this->stub_table_[shndx] = stub_table;
261   }
262
263   Stub_table<size, big_endian>*
264   stub_table(unsigned int shndx)
265   {
266     if (shndx < this->stub_table_.size())
267       return this->stub_table_[shndx];
268     return NULL;
269   }
270
271 private:
272   struct Opd_ent
273   {
274     unsigned int shndx;
275     bool discard : 1;
276     bool gc_mark : 1;
277     Address off;
278   };
279
280   // Return index into opd_ent_ array for .opd entry at OFF.
281   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
282   // apart when the language doesn't use the last 8-byte word, the
283   // environment pointer.  Thus dividing the entry section offset by
284   // 16 will give an index into opd_ent_ that works for either layout
285   // of .opd.  (It leaves some elements of the vector unused when .opd
286   // entries are spaced 24 bytes apart, but we don't know the spacing
287   // until relocations are processed, and in any case it is possible
288   // for an object to have some entries spaced 16 bytes apart and
289   // others 24 bytes apart.)
290   size_t
291   opd_ent_ndx(size_t off) const
292   { return off >> 4;}
293
294   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
295   unsigned int special_;
296
297   // For 64-bit, whether this object uses small model relocs to access
298   // the toc.
299   bool has_small_toc_reloc_;
300
301   // Set at the start of gc_process_relocs, when we know opd_ent_
302   // vector is valid.  The flag could be made atomic and set in
303   // do_read_relocs with memory_order_release and then tested with
304   // memory_order_acquire, potentially resulting in fewer entries in
305   // access_from_map_.
306   bool opd_valid_;
307
308   // The first 8-byte word of an OPD entry gives the address of the
309   // entry point of the function.  Relocatable object files have a
310   // relocation on this word.  The following vector records the
311   // section and offset specified by these relocations.
312   std::vector<Opd_ent> opd_ent_;
313
314   // References made to this object's .opd section when running
315   // gc_process_relocs for another object, before the opd_ent_ vector
316   // is valid for this object.
317   Access_from access_from_map_;
318
319   // Whether input section has a 14-bit branch reloc.
320   std::vector<bool> has14_;
321
322   // The stub table to use for a given input section.
323   std::vector<Stub_table<size, big_endian>*> stub_table_;
324 };
325
326 template<int size, bool big_endian>
327 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
328 {
329 public:
330   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
331
332   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
333                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
334     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
335       opd_shndx_(0), opd_ent_()
336   { }
337
338   ~Powerpc_dynobj()
339   { }
340
341   // Call Sized_dynobj::do_read_symbols to read the symbols then
342   // read .opd from a dynamic object, filling in opd_ent_ vector,
343   void
344   do_read_symbols(Read_symbols_data*);
345
346   // The .opd section shndx.
347   unsigned int
348   opd_shndx() const
349   {
350     return this->opd_shndx_;
351   }
352
353   // The .opd section address.
354   Address
355   opd_address() const
356   {
357     return this->opd_address_;
358   }
359
360   // Init OPD entry arrays.
361   void
362   init_opd(size_t opd_size)
363   {
364     size_t count = this->opd_ent_ndx(opd_size);
365     this->opd_ent_.resize(count);
366   }
367
368   // Return section and offset of function entry for .opd + R_OFF.
369   unsigned int
370   get_opd_ent(Address r_off, Address* value = NULL) const
371   {
372     size_t ndx = this->opd_ent_ndx(r_off);
373     gold_assert(ndx < this->opd_ent_.size());
374     gold_assert(this->opd_ent_[ndx].shndx != 0);
375     if (value != NULL)
376       *value = this->opd_ent_[ndx].off;
377     return this->opd_ent_[ndx].shndx;
378   }
379
380   // Set section and offset of function entry for .opd + R_OFF.
381   void
382   set_opd_ent(Address r_off, unsigned int shndx, Address value)
383   {
384     size_t ndx = this->opd_ent_ndx(r_off);
385     gold_assert(ndx < this->opd_ent_.size());
386     this->opd_ent_[ndx].shndx = shndx;
387     this->opd_ent_[ndx].off = value;
388   }
389
390 private:
391   // Used to specify extent of executable sections.
392   struct Sec_info
393   {
394     Sec_info(Address start_, Address len_, unsigned int shndx_)
395       : start(start_), len(len_), shndx(shndx_)
396     { }
397
398     bool
399     operator<(const Sec_info& that) const
400     { return this->start < that.start; }
401
402     Address start;
403     Address len;
404     unsigned int shndx;
405   };
406
407   struct Opd_ent
408   {
409     unsigned int shndx;
410     Address off;
411   };
412
413   // Return index into opd_ent_ array for .opd entry at OFF.
414   size_t
415   opd_ent_ndx(size_t off) const
416   { return off >> 4;}
417
418   // For 64-bit the .opd section shndx and address.
419   unsigned int opd_shndx_;
420   Address opd_address_;
421
422   // The first 8-byte word of an OPD entry gives the address of the
423   // entry point of the function.  Records the section and offset
424   // corresponding to the address.  Note that in dynamic objects,
425   // offset is *not* relative to the section.
426   std::vector<Opd_ent> opd_ent_;
427 };
428
429 template<int size, bool big_endian>
430 class Target_powerpc : public Sized_target<size, big_endian>
431 {
432  public:
433   typedef
434     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
435   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
436   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
437   static const Address invalid_address = static_cast<Address>(0) - 1;
438   // Offset of tp and dtp pointers from start of TLS block.
439   static const Address tp_offset = 0x7000;
440   static const Address dtp_offset = 0x8000;
441
442   Target_powerpc()
443     : Sized_target<size, big_endian>(&powerpc_info),
444       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
445       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
446       dynbss_(NULL), tlsld_got_offset_(-1U),
447       stub_tables_(), branch_lookup_table_(), branch_info_(),
448       plt_thread_safe_(false)
449   {
450   }
451
452   // Process the relocations to determine unreferenced sections for
453   // garbage collection.
454   void
455   gc_process_relocs(Symbol_table* symtab,
456                     Layout* layout,
457                     Sized_relobj_file<size, big_endian>* object,
458                     unsigned int data_shndx,
459                     unsigned int sh_type,
460                     const unsigned char* prelocs,
461                     size_t reloc_count,
462                     Output_section* output_section,
463                     bool needs_special_offset_handling,
464                     size_t local_symbol_count,
465                     const unsigned char* plocal_symbols);
466
467   // Scan the relocations to look for symbol adjustments.
468   void
469   scan_relocs(Symbol_table* symtab,
470               Layout* layout,
471               Sized_relobj_file<size, big_endian>* object,
472               unsigned int data_shndx,
473               unsigned int sh_type,
474               const unsigned char* prelocs,
475               size_t reloc_count,
476               Output_section* output_section,
477               bool needs_special_offset_handling,
478               size_t local_symbol_count,
479               const unsigned char* plocal_symbols);
480
481   // Map input .toc section to output .got section.
482   const char*
483   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
484   {
485     if (size == 64 && strcmp(name, ".toc") == 0)
486       {
487         *plen = 4;
488         return ".got";
489       }
490     return NULL;
491   }
492
493   // Provide linker defined save/restore functions.
494   void
495   define_save_restore_funcs(Layout*, Symbol_table*);
496
497   // No stubs unless a final link.
498   bool
499   do_may_relax() const
500   { return !parameters->options().relocatable(); }
501
502   bool
503   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
504
505   void
506   do_plt_fde_location(const Output_data*, unsigned char*,
507                       uint64_t*, off_t*) const;
508
509   // Stash info about branches, for stub generation.
510   void
511   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
512               unsigned int data_shndx, Address r_offset,
513               unsigned int r_type, unsigned int r_sym, Address addend)
514   {
515     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
516     this->branch_info_.push_back(info);
517     if (r_type == elfcpp::R_POWERPC_REL14
518         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
519         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
520       ppc_object->set_has_14bit_branch(data_shndx);
521   }
522
523   Stub_table<size, big_endian>*
524   new_stub_table();
525
526   void
527   do_define_standard_symbols(Symbol_table*, Layout*);
528
529   // Finalize the sections.
530   void
531   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
532
533   // Return the value to use for a dynamic which requires special
534   // treatment.
535   uint64_t
536   do_dynsym_value(const Symbol*) const;
537
538   // Return the PLT address to use for a local symbol.
539   uint64_t
540   do_plt_address_for_local(const Relobj*, unsigned int) const;
541
542   // Return the PLT address to use for a global symbol.
543   uint64_t
544   do_plt_address_for_global(const Symbol*) const;
545
546   // Return the offset to use for the GOT_INDX'th got entry which is
547   // for a local tls symbol specified by OBJECT, SYMNDX.
548   int64_t
549   do_tls_offset_for_local(const Relobj* object,
550                           unsigned int symndx,
551                           unsigned int got_indx) const;
552
553   // Return the offset to use for the GOT_INDX'th got entry which is
554   // for global tls symbol GSYM.
555   int64_t
556   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
557
558   void
559   do_function_location(Symbol_location*) const;
560
561   bool
562   do_can_check_for_function_pointers() const
563   { return true; }
564
565   // Relocate a section.
566   void
567   relocate_section(const Relocate_info<size, big_endian>*,
568                    unsigned int sh_type,
569                    const unsigned char* prelocs,
570                    size_t reloc_count,
571                    Output_section* output_section,
572                    bool needs_special_offset_handling,
573                    unsigned char* view,
574                    Address view_address,
575                    section_size_type view_size,
576                    const Reloc_symbol_changes*);
577
578   // Scan the relocs during a relocatable link.
579   void
580   scan_relocatable_relocs(Symbol_table* symtab,
581                           Layout* layout,
582                           Sized_relobj_file<size, big_endian>* object,
583                           unsigned int data_shndx,
584                           unsigned int sh_type,
585                           const unsigned char* prelocs,
586                           size_t reloc_count,
587                           Output_section* output_section,
588                           bool needs_special_offset_handling,
589                           size_t local_symbol_count,
590                           const unsigned char* plocal_symbols,
591                           Relocatable_relocs*);
592
593   // Emit relocations for a section.
594   void
595   relocate_relocs(const Relocate_info<size, big_endian>*,
596                   unsigned int sh_type,
597                   const unsigned char* prelocs,
598                   size_t reloc_count,
599                   Output_section* output_section,
600                   typename elfcpp::Elf_types<size>::Elf_Off
601                     offset_in_output_section,
602                   const Relocatable_relocs*,
603                   unsigned char*,
604                   Address view_address,
605                   section_size_type,
606                   unsigned char* reloc_view,
607                   section_size_type reloc_view_size);
608
609   // Return whether SYM is defined by the ABI.
610   bool
611   do_is_defined_by_abi(const Symbol* sym) const
612   {
613     return strcmp(sym->name(), "__tls_get_addr") == 0;
614   }
615
616   // Return the size of the GOT section.
617   section_size_type
618   got_size() const
619   {
620     gold_assert(this->got_ != NULL);
621     return this->got_->data_size();
622   }
623
624   // Get the PLT section.
625   const Output_data_plt_powerpc<size, big_endian>*
626   plt_section() const
627   {
628     gold_assert(this->plt_ != NULL);
629     return this->plt_;
630   }
631
632   // Get the IPLT section.
633   const Output_data_plt_powerpc<size, big_endian>*
634   iplt_section() const
635   {
636     gold_assert(this->iplt_ != NULL);
637     return this->iplt_;
638   }
639
640   // Get the .glink section.
641   const Output_data_glink<size, big_endian>*
642   glink_section() const
643   {
644     gold_assert(this->glink_ != NULL);
645     return this->glink_;
646   }
647
648   bool has_glink() const
649   { return this->glink_ != NULL; }
650
651   // Get the GOT section.
652   const Output_data_got_powerpc<size, big_endian>*
653   got_section() const
654   {
655     gold_assert(this->got_ != NULL);
656     return this->got_;
657   }
658
659   // Get the GOT section, creating it if necessary.
660   Output_data_got_powerpc<size, big_endian>*
661   got_section(Symbol_table*, Layout*);
662
663   Object*
664   do_make_elf_object(const std::string&, Input_file*, off_t,
665                      const elfcpp::Ehdr<size, big_endian>&);
666
667   // Return the number of entries in the GOT.
668   unsigned int
669   got_entry_count() const
670   {
671     if (this->got_ == NULL)
672       return 0;
673     return this->got_size() / (size / 8);
674   }
675
676   // Return the number of entries in the PLT.
677   unsigned int
678   plt_entry_count() const;
679
680   // Return the offset of the first non-reserved PLT entry.
681   unsigned int
682   first_plt_entry_offset() const;
683
684   // Return the size of each PLT entry.
685   unsigned int
686   plt_entry_size() const;
687
688   // Add any special sections for this symbol to the gc work list.
689   // For powerpc64, this adds the code section of a function
690   // descriptor.
691   void
692   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
693
694   // Handle target specific gc actions when adding a gc reference from
695   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
696   // and DST_OFF.  For powerpc64, this adds a referenc to the code
697   // section of a function descriptor.
698   void
699   do_gc_add_reference(Symbol_table* symtab,
700                       Object* src_obj,
701                       unsigned int src_shndx,
702                       Object* dst_obj,
703                       unsigned int dst_shndx,
704                       Address dst_off) const;
705
706   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
707   const Stub_tables&
708   stub_tables() const
709   { return this->stub_tables_; }
710
711   const Output_data_brlt_powerpc<size, big_endian>*
712   brlt_section() const
713   { return this->brlt_section_; }
714
715   void
716   add_branch_lookup_table(Address to)
717   {
718     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
719     this->branch_lookup_table_.insert(std::make_pair(to, off));
720   }
721
722   Address
723   find_branch_lookup_table(Address to)
724   {
725     typename Branch_lookup_table::const_iterator p
726       = this->branch_lookup_table_.find(to);
727     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
728   }
729
730   void
731   write_branch_lookup_table(unsigned char *oview)
732   {
733     for (typename Branch_lookup_table::const_iterator p
734            = this->branch_lookup_table_.begin();
735          p != this->branch_lookup_table_.end();
736          ++p)
737       {
738         elfcpp::Swap<32, big_endian>::writeval(oview + p->second, p->first);
739       }
740   }
741
742   bool
743   plt_thread_safe() const
744   { return this->plt_thread_safe_; }
745
746  private:
747
748   class Track_tls
749   {
750   public:
751     enum Tls_get_addr
752     {
753       NOT_EXPECTED = 0,
754       EXPECTED = 1,
755       SKIP = 2,
756       NORMAL = 3
757     };
758
759     Track_tls()
760       : tls_get_addr_(NOT_EXPECTED),
761         relinfo_(NULL), relnum_(0), r_offset_(0)
762     { }
763
764     ~Track_tls()
765     {
766       if (this->tls_get_addr_ != NOT_EXPECTED)
767         this->missing();
768     }
769
770     void
771     missing(void)
772     {
773       if (this->relinfo_ != NULL)
774         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
775                                _("missing expected __tls_get_addr call"));
776     }
777
778     void
779     expect_tls_get_addr_call(
780         const Relocate_info<size, big_endian>* relinfo,
781         size_t relnum,
782         Address r_offset)
783     {
784       this->tls_get_addr_ = EXPECTED;
785       this->relinfo_ = relinfo;
786       this->relnum_ = relnum;
787       this->r_offset_ = r_offset;
788     }
789
790     void
791     expect_tls_get_addr_call()
792     { this->tls_get_addr_ = EXPECTED; }
793
794     void
795     skip_next_tls_get_addr_call()
796     {this->tls_get_addr_ = SKIP; }
797
798     Tls_get_addr
799     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
800     {
801       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
802                            || r_type == elfcpp::R_PPC_PLTREL24)
803                           && gsym != NULL
804                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
805       Tls_get_addr last_tls = this->tls_get_addr_;
806       this->tls_get_addr_ = NOT_EXPECTED;
807       if (is_tls_call && last_tls != EXPECTED)
808         return last_tls;
809       else if (!is_tls_call && last_tls != NOT_EXPECTED)
810         {
811           this->missing();
812           return EXPECTED;
813         }
814       return NORMAL;
815     }
816
817   private:
818     // What we're up to regarding calls to __tls_get_addr.
819     // On powerpc, the branch and link insn making a call to
820     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
821     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
822     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
823     // The marker relocation always comes first, and has the same
824     // symbol as the reloc on the insn setting up the __tls_get_addr
825     // argument.  This ties the arg setup insn with the call insn,
826     // allowing ld to safely optimize away the call.  We check that
827     // every call to __tls_get_addr has a marker relocation, and that
828     // every marker relocation is on a call to __tls_get_addr.
829     Tls_get_addr tls_get_addr_;
830     // Info about the last reloc for error message.
831     const Relocate_info<size, big_endian>* relinfo_;
832     size_t relnum_;
833     Address r_offset_;
834   };
835
836   // The class which scans relocations.
837   class Scan : protected Track_tls
838   {
839   public:
840     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
841
842     Scan()
843       : Track_tls(), issued_non_pic_error_(false)
844     { }
845
846     static inline int
847     get_reference_flags(unsigned int r_type);
848
849     inline void
850     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
851           Sized_relobj_file<size, big_endian>* object,
852           unsigned int data_shndx,
853           Output_section* output_section,
854           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
855           const elfcpp::Sym<size, big_endian>& lsym,
856           bool is_discarded);
857
858     inline void
859     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
860            Sized_relobj_file<size, big_endian>* object,
861            unsigned int data_shndx,
862            Output_section* output_section,
863            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
864            Symbol* gsym);
865
866     inline bool
867     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
868                                         Target_powerpc* ,
869                                         Sized_relobj_file<size, big_endian>* ,
870                                         unsigned int ,
871                                         Output_section* ,
872                                         const elfcpp::Rela<size, big_endian>& ,
873                                         unsigned int r_type,
874                                         const elfcpp::Sym<size, big_endian>&)
875     {
876       // PowerPC64 .opd is not folded, so any identical function text
877       // may be folded and we'll still keep function addresses distinct.
878       // That means no reloc is of concern here.
879       if (size == 64)
880         return false;
881       // For 32-bit, conservatively assume anything but calls to
882       // function code might be taking the address of the function.
883       return !is_branch_reloc(r_type);
884     }
885
886     inline bool
887     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
888                                          Target_powerpc* ,
889                                          Sized_relobj_file<size, big_endian>* ,
890                                          unsigned int ,
891                                          Output_section* ,
892                                          const elfcpp::Rela<size, big_endian>& ,
893                                          unsigned int r_type,
894                                          Symbol*)
895     {
896       // As above.
897       if (size == 64)
898         return false;
899       return !is_branch_reloc(r_type);
900     }
901
902     static bool
903     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
904                               unsigned int r_type, bool report_err);
905
906   private:
907     static void
908     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
909                             unsigned int r_type);
910
911     static void
912     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
913                              unsigned int r_type, Symbol*);
914
915     static void
916     generate_tls_call(Symbol_table* symtab, Layout* layout,
917                       Target_powerpc* target);
918
919     void
920     check_non_pic(Relobj*, unsigned int r_type);
921
922     // Whether we have issued an error about a non-PIC compilation.
923     bool issued_non_pic_error_;
924   };
925
926   Address
927   symval_for_branch(const Symbol_table* symtab, Address value,
928                     const Sized_symbol<size>* gsym,
929                     Powerpc_relobj<size, big_endian>* object,
930                     unsigned int *dest_shndx);
931
932   // The class which implements relocation.
933   class Relocate : protected Track_tls
934   {
935    public:
936     // Use 'at' branch hints when true, 'y' when false.
937     // FIXME maybe: set this with an option.
938     static const bool is_isa_v2 = true;
939
940     Relocate()
941       : Track_tls()
942     { }
943
944     // Do a relocation.  Return false if the caller should not issue
945     // any warnings about this relocation.
946     inline bool
947     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
948              Output_section*, size_t relnum,
949              const elfcpp::Rela<size, big_endian>&,
950              unsigned int r_type, const Sized_symbol<size>*,
951              const Symbol_value<size>*,
952              unsigned char*,
953              typename elfcpp::Elf_types<size>::Elf_Addr,
954              section_size_type);
955   };
956
957   class Relocate_comdat_behavior
958   {
959    public:
960     // Decide what the linker should do for relocations that refer to
961     // discarded comdat sections.
962     inline Comdat_behavior
963     get(const char* name)
964     {
965       gold::Default_comdat_behavior default_behavior;
966       Comdat_behavior ret = default_behavior.get(name);
967       if (ret == CB_WARNING)
968         {
969           if (size == 32
970               && (strcmp(name, ".fixup") == 0
971                   || strcmp(name, ".got2") == 0))
972             ret = CB_IGNORE;
973           if (size == 64
974               && (strcmp(name, ".opd") == 0
975                   || strcmp(name, ".toc") == 0
976                   || strcmp(name, ".toc1") == 0))
977             ret = CB_IGNORE;
978         }
979       return ret;
980     }
981   };
982
983   // A class which returns the size required for a relocation type,
984   // used while scanning relocs during a relocatable link.
985   class Relocatable_size_for_reloc
986   {
987    public:
988     unsigned int
989     get_size_for_reloc(unsigned int, Relobj*)
990     {
991       gold_unreachable();
992       return 0;
993     }
994   };
995
996   // Optimize the TLS relocation type based on what we know about the
997   // symbol.  IS_FINAL is true if the final address of this symbol is
998   // known at link time.
999
1000   tls::Tls_optimization
1001   optimize_tls_gd(bool is_final)
1002   {
1003     // If we are generating a shared library, then we can't do anything
1004     // in the linker.
1005     if (parameters->options().shared())
1006       return tls::TLSOPT_NONE;
1007
1008     if (!is_final)
1009       return tls::TLSOPT_TO_IE;
1010     return tls::TLSOPT_TO_LE;
1011   }
1012
1013   tls::Tls_optimization
1014   optimize_tls_ld()
1015   {
1016     if (parameters->options().shared())
1017       return tls::TLSOPT_NONE;
1018
1019     return tls::TLSOPT_TO_LE;
1020   }
1021
1022   tls::Tls_optimization
1023   optimize_tls_ie(bool is_final)
1024   {
1025     if (!is_final || parameters->options().shared())
1026       return tls::TLSOPT_NONE;
1027
1028     return tls::TLSOPT_TO_LE;
1029   }
1030
1031   // Create glink.
1032   void
1033   make_glink_section(Layout*);
1034
1035   // Create the PLT section.
1036   void
1037   make_plt_section(Symbol_table*, Layout*);
1038
1039   void
1040   make_iplt_section(Symbol_table*, Layout*);
1041
1042   void
1043   make_brlt_section(Layout*);
1044
1045   // Create a PLT entry for a global symbol.
1046   void
1047   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1048
1049   // Create a PLT entry for a local IFUNC symbol.
1050   void
1051   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1052                              Sized_relobj_file<size, big_endian>*,
1053                              unsigned int);
1054
1055
1056   // Create a GOT entry for local dynamic __tls_get_addr.
1057   unsigned int
1058   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1059                    Sized_relobj_file<size, big_endian>* object);
1060
1061   unsigned int
1062   tlsld_got_offset() const
1063   {
1064     return this->tlsld_got_offset_;
1065   }
1066
1067   // Get the dynamic reloc section, creating it if necessary.
1068   Reloc_section*
1069   rela_dyn_section(Layout*);
1070
1071   // Similarly, but for ifunc symbols get the one for ifunc.
1072   Reloc_section*
1073   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1074
1075   // Copy a relocation against a global symbol.
1076   void
1077   copy_reloc(Symbol_table* symtab, Layout* layout,
1078              Sized_relobj_file<size, big_endian>* object,
1079              unsigned int shndx, Output_section* output_section,
1080              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1081   {
1082     this->copy_relocs_.copy_reloc(symtab, layout,
1083                                   symtab->get_sized_symbol<size>(sym),
1084                                   object, shndx, output_section,
1085                                   reloc, this->rela_dyn_section(layout));
1086   }
1087
1088   // Look over all the input sections, deciding where to place stubs.
1089   void
1090   group_sections(Layout*, const Task*);
1091
1092   // Sort output sections by address.
1093   struct Sort_sections
1094   {
1095     bool
1096     operator()(const Output_section* sec1, const Output_section* sec2)
1097     { return sec1->address() < sec2->address(); }
1098   };
1099
1100   class Branch_info
1101   {
1102    public:
1103     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1104                 unsigned int data_shndx,
1105                 Address r_offset,
1106                 unsigned int r_type,
1107                 unsigned int r_sym,
1108                 Address addend)
1109       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1110         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1111     { }
1112
1113     ~Branch_info()
1114     { }
1115
1116     // If this branch needs a plt call stub, or a long branch stub, make one.
1117     void
1118     make_stub(Stub_table<size, big_endian>*,
1119               Stub_table<size, big_endian>*,
1120               Symbol_table*) const;
1121
1122    private:
1123     // The branch location..
1124     Powerpc_relobj<size, big_endian>* object_;
1125     unsigned int shndx_;
1126     Address offset_;
1127     // ..and the branch type and destination.
1128     unsigned int r_type_;
1129     unsigned int r_sym_;
1130     Address addend_;
1131   };
1132
1133   // Information about this specific target which we pass to the
1134   // general Target structure.
1135   static Target::Target_info powerpc_info;
1136
1137   // The types of GOT entries needed for this platform.
1138   // These values are exposed to the ABI in an incremental link.
1139   // Do not renumber existing values without changing the version
1140   // number of the .gnu_incremental_inputs section.
1141   enum Got_type
1142   {
1143     GOT_TYPE_STANDARD,
1144     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1145     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1146     GOT_TYPE_TPREL      // entry for @got@tprel
1147   };
1148
1149   // The GOT section.
1150   Output_data_got_powerpc<size, big_endian>* got_;
1151   // The PLT section.  This is a container for a table of addresses,
1152   // and their relocations.  Each address in the PLT has a dynamic
1153   // relocation (R_*_JMP_SLOT) and each address will have a
1154   // corresponding entry in .glink for lazy resolution of the PLT.
1155   // ppc32 initialises the PLT to point at the .glink entry, while
1156   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1157   // linker adds a stub that loads the PLT entry into ctr then
1158   // branches to ctr.  There may be more than one stub for each PLT
1159   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1160   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1161   Output_data_plt_powerpc<size, big_endian>* plt_;
1162   // The IPLT section.  Like plt_, this is a container for a table of
1163   // addresses and their relocations, specifically for STT_GNU_IFUNC
1164   // functions that resolve locally (STT_GNU_IFUNC functions that
1165   // don't resolve locally go in PLT).  Unlike plt_, these have no
1166   // entry in .glink for lazy resolution, and the relocation section
1167   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1168   // the relocation section may contain relocations against
1169   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1170   // relocation section will appear at the end of other dynamic
1171   // relocations, so that ld.so applies these relocations after other
1172   // dynamic relocations.  In a static executable, the relocation
1173   // section is emitted and marked with __rela_iplt_start and
1174   // __rela_iplt_end symbols.
1175   Output_data_plt_powerpc<size, big_endian>* iplt_;
1176   // Section holding long branch destinations.
1177   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1178   // The .glink section.
1179   Output_data_glink<size, big_endian>* glink_;
1180   // The dynamic reloc section.
1181   Reloc_section* rela_dyn_;
1182   // Relocs saved to avoid a COPY reloc.
1183   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1184   // Space for variables copied with a COPY reloc.
1185   Output_data_space* dynbss_;
1186   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1187   unsigned int tlsld_got_offset_;
1188
1189   Stub_tables stub_tables_;
1190   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1191   Branch_lookup_table branch_lookup_table_;
1192
1193   typedef std::vector<Branch_info> Branches;
1194   Branches branch_info_;
1195
1196   bool plt_thread_safe_;
1197 };
1198
1199 template<>
1200 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1201 {
1202   32,                   // size
1203   true,                 // is_big_endian
1204   elfcpp::EM_PPC,       // machine_code
1205   false,                // has_make_symbol
1206   false,                // has_resolve
1207   false,                // has_code_fill
1208   true,                 // is_default_stack_executable
1209   false,                // can_icf_inline_merge_sections
1210   '\0',                 // wrap_char
1211   "/usr/lib/ld.so.1",   // dynamic_linker
1212   0x10000000,           // default_text_segment_address
1213   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1214   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1215   false,                // isolate_execinstr
1216   0,                    // rosegment_gap
1217   elfcpp::SHN_UNDEF,    // small_common_shndx
1218   elfcpp::SHN_UNDEF,    // large_common_shndx
1219   0,                    // small_common_section_flags
1220   0,                    // large_common_section_flags
1221   NULL,                 // attributes_section
1222   NULL                  // attributes_vendor
1223 };
1224
1225 template<>
1226 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1227 {
1228   32,                   // size
1229   false,                // is_big_endian
1230   elfcpp::EM_PPC,       // machine_code
1231   false,                // has_make_symbol
1232   false,                // has_resolve
1233   false,                // has_code_fill
1234   true,                 // is_default_stack_executable
1235   false,                // can_icf_inline_merge_sections
1236   '\0',                 // wrap_char
1237   "/usr/lib/ld.so.1",   // dynamic_linker
1238   0x10000000,           // default_text_segment_address
1239   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1240   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1241   false,                // isolate_execinstr
1242   0,                    // rosegment_gap
1243   elfcpp::SHN_UNDEF,    // small_common_shndx
1244   elfcpp::SHN_UNDEF,    // large_common_shndx
1245   0,                    // small_common_section_flags
1246   0,                    // large_common_section_flags
1247   NULL,                 // attributes_section
1248   NULL                  // attributes_vendor
1249 };
1250
1251 template<>
1252 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1253 {
1254   64,                   // size
1255   true,                 // is_big_endian
1256   elfcpp::EM_PPC64,     // machine_code
1257   false,                // has_make_symbol
1258   false,                // has_resolve
1259   false,                // has_code_fill
1260   true,                 // is_default_stack_executable
1261   false,                // can_icf_inline_merge_sections
1262   '\0',                 // wrap_char
1263   "/usr/lib/ld.so.1",   // dynamic_linker
1264   0x10000000,           // default_text_segment_address
1265   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1266   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1267   false,                // isolate_execinstr
1268   0,                    // rosegment_gap
1269   elfcpp::SHN_UNDEF,    // small_common_shndx
1270   elfcpp::SHN_UNDEF,    // large_common_shndx
1271   0,                    // small_common_section_flags
1272   0,                    // large_common_section_flags
1273   NULL,                 // attributes_section
1274   NULL                  // attributes_vendor
1275 };
1276
1277 template<>
1278 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1279 {
1280   64,                   // size
1281   false,                // is_big_endian
1282   elfcpp::EM_PPC64,     // machine_code
1283   false,                // has_make_symbol
1284   false,                // has_resolve
1285   false,                // has_code_fill
1286   true,                 // is_default_stack_executable
1287   false,                // can_icf_inline_merge_sections
1288   '\0',                 // wrap_char
1289   "/usr/lib/ld.so.1",   // dynamic_linker
1290   0x10000000,           // default_text_segment_address
1291   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1292   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1293   false,                // isolate_execinstr
1294   0,                    // rosegment_gap
1295   elfcpp::SHN_UNDEF,    // small_common_shndx
1296   elfcpp::SHN_UNDEF,    // large_common_shndx
1297   0,                    // small_common_section_flags
1298   0,                    // large_common_section_flags
1299   NULL,                 // attributes_section
1300   NULL                  // attributes_vendor
1301 };
1302
1303 inline bool
1304 is_branch_reloc(unsigned int r_type)
1305 {
1306   return (r_type == elfcpp::R_POWERPC_REL24
1307           || r_type == elfcpp::R_PPC_PLTREL24
1308           || r_type == elfcpp::R_PPC_LOCAL24PC
1309           || r_type == elfcpp::R_POWERPC_REL14
1310           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1311           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1312           || r_type == elfcpp::R_POWERPC_ADDR24
1313           || r_type == elfcpp::R_POWERPC_ADDR14
1314           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1315           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1316 }
1317
1318 // If INSN is an opcode that may be used with an @tls operand, return
1319 // the transformed insn for TLS optimisation, otherwise return 0.  If
1320 // REG is non-zero only match an insn with RB or RA equal to REG.
1321 uint32_t
1322 at_tls_transform(uint32_t insn, unsigned int reg)
1323 {
1324   if ((insn & (0x3f << 26)) != 31 << 26)
1325     return 0;
1326
1327   unsigned int rtra;
1328   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1329     rtra = insn & ((1 << 26) - (1 << 16));
1330   else if (((insn >> 16) & 0x1f) == reg)
1331     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1332   else
1333     return 0;
1334
1335   if ((insn & (0x3ff << 1)) == 266 << 1)
1336     // add -> addi
1337     insn = 14 << 26;
1338   else if ((insn & (0x1f << 1)) == 23 << 1
1339            && ((insn & (0x1f << 6)) < 14 << 6
1340                || ((insn & (0x1f << 6)) >= 16 << 6
1341                    && (insn & (0x1f << 6)) < 24 << 6)))
1342     // load and store indexed -> dform
1343     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1344   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1345     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1346     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1347   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1348     // lwax -> lwa
1349     insn = (58 << 26) | 2;
1350   else
1351     return 0;
1352   insn |= rtra;
1353   return insn;
1354 }
1355
1356 // Modified version of symtab.h class Symbol member
1357 // Given a direct absolute or pc-relative static relocation against
1358 // the global symbol, this function returns whether a dynamic relocation
1359 // is needed.
1360
1361 template<int size>
1362 bool
1363 needs_dynamic_reloc(const Symbol* gsym, int flags)
1364 {
1365   // No dynamic relocations in a static link!
1366   if (parameters->doing_static_link())
1367     return false;
1368
1369   // A reference to an undefined symbol from an executable should be
1370   // statically resolved to 0, and does not need a dynamic relocation.
1371   // This matches gnu ld behavior.
1372   if (gsym->is_undefined() && !parameters->options().shared())
1373     return false;
1374
1375   // A reference to an absolute symbol does not need a dynamic relocation.
1376   if (gsym->is_absolute())
1377     return false;
1378
1379   // An absolute reference within a position-independent output file
1380   // will need a dynamic relocation.
1381   if ((flags & Symbol::ABSOLUTE_REF)
1382       && parameters->options().output_is_position_independent())
1383     return true;
1384
1385   // A function call that can branch to a local PLT entry does not need
1386   // a dynamic relocation.
1387   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1388     return false;
1389
1390   // A reference to any PLT entry in a non-position-independent executable
1391   // does not need a dynamic relocation.
1392   // Except due to having function descriptors on powerpc64 we don't define
1393   // functions to their plt code in an executable, so this doesn't apply.
1394   if (size == 32
1395       && !parameters->options().output_is_position_independent()
1396       && gsym->has_plt_offset())
1397     return false;
1398
1399   // A reference to a symbol defined in a dynamic object or to a
1400   // symbol that is preemptible will need a dynamic relocation.
1401   if (gsym->is_from_dynobj()
1402       || gsym->is_undefined()
1403       || gsym->is_preemptible())
1404     return true;
1405
1406   // For all other cases, return FALSE.
1407   return false;
1408 }
1409
1410 // Modified version of symtab.h class Symbol member
1411 // Whether we should use the PLT offset associated with a symbol for
1412 // a relocation.  FLAGS is a set of Reference_flags.
1413
1414 template<int size>
1415 bool
1416 use_plt_offset(const Symbol* gsym, int flags)
1417 {
1418   // If the symbol doesn't have a PLT offset, then naturally we
1419   // don't want to use it.
1420   if (!gsym->has_plt_offset())
1421     return false;
1422
1423   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1424   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1425     return true;
1426
1427   // If we are going to generate a dynamic relocation, then we will
1428   // wind up using that, so no need to use the PLT entry.
1429   if (needs_dynamic_reloc<size>(gsym, flags))
1430     return false;
1431
1432   // If the symbol is from a dynamic object, we need to use the PLT
1433   // entry.
1434   if (gsym->is_from_dynobj())
1435     return true;
1436
1437   // If we are generating a shared object, and this symbol is
1438   // undefined or preemptible, we need to use the PLT entry.
1439   if (parameters->options().shared()
1440       && (gsym->is_undefined() || gsym->is_preemptible()))
1441     return true;
1442
1443   // If this is a call to a weak undefined symbol, we need to use
1444   // the PLT entry; the symbol may be defined by a library loaded
1445   // at runtime.
1446   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1447     return true;
1448
1449   // Otherwise we can use the regular definition.
1450   return false;
1451 }
1452
1453 template<int size, bool big_endian>
1454 class Powerpc_relocate_functions
1455 {
1456 public:
1457   enum Overflow_check
1458   {
1459     CHECK_NONE,
1460     CHECK_SIGNED,
1461     CHECK_BITFIELD
1462   };
1463
1464   enum Status
1465   {
1466     STATUS_OK,
1467     STATUS_OVERFLOW
1468   };
1469
1470 private:
1471   typedef Powerpc_relocate_functions<size, big_endian> This;
1472   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1473
1474   template<int valsize>
1475   static inline bool
1476   has_overflow_signed(Address value)
1477   {
1478     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1479     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1480     limit <<= ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1482     return value + limit > (limit << 1) - 1;
1483   }
1484
1485   template<int valsize>
1486   static inline bool
1487   has_overflow_bitfield(Address value)
1488   {
1489     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1490     limit <<= ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1492     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1493   }
1494
1495   template<int valsize>
1496   static inline Status
1497   overflowed(Address value, Overflow_check overflow)
1498   {
1499     if (overflow == CHECK_SIGNED)
1500       {
1501         if (has_overflow_signed<valsize>(value))
1502           return STATUS_OVERFLOW;
1503       }
1504     else if (overflow == CHECK_BITFIELD)
1505       {
1506         if (has_overflow_bitfield<valsize>(value))
1507           return STATUS_OVERFLOW;
1508       }
1509     return STATUS_OK;
1510   }
1511
1512   // Do a simple RELA relocation
1513   template<int valsize>
1514   static inline Status
1515   rela(unsigned char* view, Address value, Overflow_check overflow)
1516   {
1517     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1518     Valtype* wv = reinterpret_cast<Valtype*>(view);
1519     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1520     return overflowed<valsize>(value, overflow);
1521   }
1522
1523   template<int valsize>
1524   static inline Status
1525   rela(unsigned char* view,
1526        unsigned int right_shift,
1527        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1528        Address value,
1529        Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1534     Valtype reloc = value >> right_shift;
1535     val &= ~dst_mask;
1536     reloc &= dst_mask;
1537     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1538     return overflowed<valsize>(value >> right_shift, overflow);
1539   }
1540
1541   // Do a simple RELA relocation, unaligned.
1542   template<int valsize>
1543   static inline Status
1544   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1545   {
1546     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1547     return overflowed<valsize>(value, overflow);
1548   }
1549
1550   template<int valsize>
1551   static inline Status
1552   rela_ua(unsigned char* view,
1553           unsigned int right_shift,
1554           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1555           Address value,
1556           Overflow_check overflow)
1557   {
1558     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1559       Valtype;
1560     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1561     Valtype reloc = value >> right_shift;
1562     val &= ~dst_mask;
1563     reloc &= dst_mask;
1564     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1565     return overflowed<valsize>(value >> right_shift, overflow);
1566   }
1567
1568 public:
1569   // R_PPC64_ADDR64: (Symbol + Addend)
1570   static inline void
1571   addr64(unsigned char* view, Address value)
1572   { This::template rela<64>(view, value, CHECK_NONE); }
1573
1574   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1575   static inline void
1576   addr64_u(unsigned char* view, Address value)
1577   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1578
1579   // R_POWERPC_ADDR32: (Symbol + Addend)
1580   static inline Status
1581   addr32(unsigned char* view, Address value, Overflow_check overflow)
1582   { return This::template rela<32>(view, value, overflow); }
1583
1584   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1585   static inline Status
1586   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1587   { return This::template rela_ua<32>(view, value, overflow); }
1588
1589   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1590   static inline Status
1591   addr24(unsigned char* view, Address value, Overflow_check overflow)
1592   {
1593     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1594     if (overflow != CHECK_NONE && (value & 3) != 0)
1595       stat = STATUS_OVERFLOW;
1596     return stat;
1597   }
1598
1599   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1600   static inline Status
1601   addr16(unsigned char* view, Address value, Overflow_check overflow)
1602   { return This::template rela<16>(view, value, overflow); }
1603
1604   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1605   static inline Status
1606   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1607   { return This::template rela_ua<16>(view, value, overflow); }
1608
1609   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1610   static inline Status
1611   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1612   {
1613     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1614     if (overflow != CHECK_NONE && (value & 3) != 0)
1615       stat = STATUS_OVERFLOW;
1616     return stat;
1617   }
1618
1619   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1620   static inline void
1621   addr16_hi(unsigned char* view, Address value)
1622   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1623
1624   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1625   static inline void
1626   addr16_ha(unsigned char* view, Address value)
1627   { This::addr16_hi(view, value + 0x8000); }
1628
1629   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1630   static inline void
1631   addr16_hi2(unsigned char* view, Address value)
1632   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1633
1634   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1635   static inline void
1636   addr16_ha2(unsigned char* view, Address value)
1637   { This::addr16_hi2(view, value + 0x8000); }
1638
1639   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1640   static inline void
1641   addr16_hi3(unsigned char* view, Address value)
1642   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1643
1644   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1645   static inline void
1646   addr16_ha3(unsigned char* view, Address value)
1647   { This::addr16_hi3(view, value + 0x8000); }
1648
1649   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1650   static inline Status
1651   addr14(unsigned char* view, Address value, Overflow_check overflow)
1652   {
1653     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1654     if (overflow != CHECK_NONE && (value & 3) != 0)
1655       stat = STATUS_OVERFLOW;
1656     return stat;
1657   }
1658 };
1659
1660 // Stash away the index of .got2 or .opd in a relocatable object, if
1661 // such a section exists.
1662
1663 template<int size, bool big_endian>
1664 bool
1665 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1666     Read_symbols_data* sd)
1667 {
1668   const unsigned char* const pshdrs = sd->section_headers->data();
1669   const unsigned char* namesu = sd->section_names->data();
1670   const char* names = reinterpret_cast<const char*>(namesu);
1671   section_size_type names_size = sd->section_names_size;
1672   const unsigned char* s;
1673
1674   s = this->template find_shdr<size, big_endian>(pshdrs,
1675                                                  size == 32 ? ".got2" : ".opd",
1676                                                  names, names_size, NULL);
1677   if (s != NULL)
1678     {
1679       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1680       this->special_ = ndx;
1681     }
1682   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1683 }
1684
1685 // Examine .rela.opd to build info about function entry points.
1686
1687 template<int size, bool big_endian>
1688 void
1689 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1690     size_t reloc_count,
1691     const unsigned char* prelocs,
1692     const unsigned char* plocal_syms)
1693 {
1694   if (size == 64)
1695     {
1696       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1697         Reltype;
1698       const int reloc_size
1699         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1700       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1701       Address expected_off = 0;
1702       bool regular = true;
1703       unsigned int opd_ent_size = 0;
1704
1705       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1706         {
1707           Reltype reloc(prelocs);
1708           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1709             = reloc.get_r_info();
1710           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1711           if (r_type == elfcpp::R_PPC64_ADDR64)
1712             {
1713               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1714               typename elfcpp::Elf_types<size>::Elf_Addr value;
1715               bool is_ordinary;
1716               unsigned int shndx;
1717               if (r_sym < this->local_symbol_count())
1718                 {
1719                   typename elfcpp::Sym<size, big_endian>
1720                     lsym(plocal_syms + r_sym * sym_size);
1721                   shndx = lsym.get_st_shndx();
1722                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1723                   value = lsym.get_st_value();
1724                 }
1725               else
1726                 shndx = this->symbol_section_and_value(r_sym, &value,
1727                                                        &is_ordinary);
1728               this->set_opd_ent(reloc.get_r_offset(), shndx,
1729                                 value + reloc.get_r_addend());
1730               if (i == 2)
1731                 {
1732                   expected_off = reloc.get_r_offset();
1733                   opd_ent_size = expected_off;
1734                 }
1735               else if (expected_off != reloc.get_r_offset())
1736                 regular = false;
1737               expected_off += opd_ent_size;
1738             }
1739           else if (r_type == elfcpp::R_PPC64_TOC)
1740             {
1741               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1742                 regular = false;
1743             }
1744           else
1745             {
1746               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1747                            this->name().c_str(), r_type);
1748               regular = false;
1749             }
1750         }
1751       if (reloc_count <= 2)
1752         opd_ent_size = this->section_size(this->opd_shndx());
1753       if (opd_ent_size != 24 && opd_ent_size != 16)
1754         regular = false;
1755       if (!regular)
1756         {
1757           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1758                        this->name().c_str());
1759           opd_ent_size = 0;
1760         }
1761     }
1762 }
1763
1764 template<int size, bool big_endian>
1765 void
1766 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1767 {
1768   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1769   if (size == 64)
1770     {
1771       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1772            p != rd->relocs.end();
1773            ++p)
1774         {
1775           if (p->data_shndx == this->opd_shndx())
1776             {
1777               uint64_t opd_size = this->section_size(this->opd_shndx());
1778               gold_assert(opd_size == static_cast<size_t>(opd_size));
1779               if (opd_size != 0)
1780                 {
1781                   this->init_opd(opd_size);
1782                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1783                                         rd->local_symbols->data());
1784                 }
1785               break;
1786             }
1787         }
1788     }
1789 }
1790
1791 // Call Sized_dynobj::do_read_symbols to read the symbols then
1792 // read .opd from a dynamic object, filling in opd_ent_ vector,
1793
1794 template<int size, bool big_endian>
1795 void
1796 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1797 {
1798   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1799   if (size == 64)
1800     {
1801       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1802       const unsigned char* const pshdrs = sd->section_headers->data();
1803       const unsigned char* namesu = sd->section_names->data();
1804       const char* names = reinterpret_cast<const char*>(namesu);
1805       const unsigned char* s = NULL;
1806       const unsigned char* opd;
1807       section_size_type opd_size;
1808
1809       // Find and read .opd section.
1810       while (1)
1811         {
1812           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1813                                                          sd->section_names_size,
1814                                                          s);
1815           if (s == NULL)
1816             return;
1817
1818           typename elfcpp::Shdr<size, big_endian> shdr(s);
1819           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1820               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1821             {
1822               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1823               this->opd_address_ = shdr.get_sh_addr();
1824               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1825               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1826                                    true, false);
1827               break;
1828             }
1829         }
1830
1831       // Build set of executable sections.
1832       // Using a set is probably overkill.  There is likely to be only
1833       // a few executable sections, typically .init, .text and .fini,
1834       // and they are generally grouped together.
1835       typedef std::set<Sec_info> Exec_sections;
1836       Exec_sections exec_sections;
1837       s = pshdrs;
1838       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1839         {
1840           typename elfcpp::Shdr<size, big_endian> shdr(s);
1841           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1842               && ((shdr.get_sh_flags()
1843                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1844                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1845               && shdr.get_sh_size() != 0)
1846             {
1847               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1848                                             shdr.get_sh_size(), i));
1849             }
1850         }
1851       if (exec_sections.empty())
1852         return;
1853
1854       // Look over the OPD entries.  This is complicated by the fact
1855       // that some binaries will use two-word entries while others
1856       // will use the standard three-word entries.  In most cases
1857       // the third word (the environment pointer for languages like
1858       // Pascal) is unused and will be zero.  If the third word is
1859       // used it should not be pointing into executable sections,
1860       // I think.
1861       this->init_opd(opd_size);
1862       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1863         {
1864           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1865           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1866           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1867           if (val == 0)
1868             // Chances are that this is the third word of an OPD entry.
1869             continue;
1870           typename Exec_sections::const_iterator e
1871             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1872           if (e != exec_sections.begin())
1873             {
1874               --e;
1875               if (e->start <= val && val < e->start + e->len)
1876                 {
1877                   // We have an address in an executable section.
1878                   // VAL ought to be the function entry, set it up.
1879                   this->set_opd_ent(p - opd, e->shndx, val);
1880                   // Skip second word of OPD entry, the TOC pointer.
1881                   p += 8;
1882                 }
1883             }
1884           // If we didn't match any executable sections, we likely
1885           // have a non-zero third word in the OPD entry.
1886         }
1887     }
1888 }
1889
1890 // Set up some symbols.
1891
1892 template<int size, bool big_endian>
1893 void
1894 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1895     Symbol_table* symtab,
1896     Layout* layout)
1897 {
1898   if (size == 32)
1899     {
1900       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1901       // undefined when scanning relocs (and thus requires
1902       // non-relative dynamic relocs).  The proper value will be
1903       // updated later.
1904       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1905       if (gotsym != NULL && gotsym->is_undefined())
1906         {
1907           Target_powerpc<size, big_endian>* target =
1908             static_cast<Target_powerpc<size, big_endian>*>(
1909                 parameters->sized_target<size, big_endian>());
1910           Output_data_got_powerpc<size, big_endian>* got
1911             = target->got_section(symtab, layout);
1912           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1913                                         Symbol_table::PREDEFINED,
1914                                         got, 0, 0,
1915                                         elfcpp::STT_OBJECT,
1916                                         elfcpp::STB_LOCAL,
1917                                         elfcpp::STV_HIDDEN, 0,
1918                                         false, false);
1919         }
1920
1921       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1922       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1923       if (sdasym != NULL && sdasym->is_undefined())
1924         {
1925           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1926           Output_section* os
1927             = layout->add_output_section_data(".sdata", 0,
1928                                               elfcpp::SHF_ALLOC
1929                                               | elfcpp::SHF_WRITE,
1930                                               sdata, ORDER_SMALL_DATA, false);
1931           symtab->define_in_output_data("_SDA_BASE_", NULL,
1932                                         Symbol_table::PREDEFINED,
1933                                         os, 32768, 0, elfcpp::STT_OBJECT,
1934                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1935                                         0, false, false);
1936         }
1937     }
1938 }
1939
1940 // Set up PowerPC target specific relobj.
1941
1942 template<int size, bool big_endian>
1943 Object*
1944 Target_powerpc<size, big_endian>::do_make_elf_object(
1945     const std::string& name,
1946     Input_file* input_file,
1947     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1948 {
1949   int et = ehdr.get_e_type();
1950   // ET_EXEC files are valid input for --just-symbols/-R,
1951   // and we treat them as relocatable objects.
1952   if (et == elfcpp::ET_REL
1953       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1954     {
1955       Powerpc_relobj<size, big_endian>* obj =
1956         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1957       obj->setup();
1958       return obj;
1959     }
1960   else if (et == elfcpp::ET_DYN)
1961     {
1962       Powerpc_dynobj<size, big_endian>* obj =
1963         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1964       obj->setup();
1965       return obj;
1966     }
1967   else
1968     {
1969       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1970       return NULL;
1971     }
1972 }
1973
1974 template<int size, bool big_endian>
1975 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1976 {
1977 public:
1978   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1979   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1980
1981   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1982     : Output_data_got<size, big_endian>(),
1983       symtab_(symtab), layout_(layout),
1984       header_ent_cnt_(size == 32 ? 3 : 1),
1985       header_index_(size == 32 ? 0x2000 : 0)
1986   { }
1987
1988   class Got_entry;
1989
1990   // Create a new GOT entry and return its offset.
1991   unsigned int
1992   add_got_entry(Got_entry got_entry)
1993   {
1994     this->reserve_ent();
1995     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1996   }
1997
1998   // Create a pair of new GOT entries and return the offset of the first.
1999   unsigned int
2000   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
2001   {
2002     this->reserve_ent(2);
2003     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
2004                                                                  got_entry_2);
2005   }
2006
2007   unsigned int
2008   add_constant_pair(Valtype c1, Valtype c2)
2009   {
2010     this->reserve_ent(2);
2011     unsigned int got_offset = this->add_constant(c1);
2012     this->add_constant(c2);
2013     return got_offset;
2014   }
2015
2016   // Offset of _GLOBAL_OFFSET_TABLE_.
2017   unsigned int
2018   g_o_t() const
2019   {
2020     return this->got_offset(this->header_index_);
2021   }
2022
2023   // Offset of base used to access the GOT/TOC.
2024   // The got/toc pointer reg will be set to this value.
2025   Valtype
2026   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2027   {
2028     if (size == 32)
2029       return this->g_o_t();
2030     else
2031       return (this->output_section()->address()
2032               + object->toc_base_offset()
2033               - this->address());
2034   }
2035
2036   // Ensure our GOT has a header.
2037   void
2038   set_final_data_size()
2039   {
2040     if (this->header_ent_cnt_ != 0)
2041       this->make_header();
2042     Output_data_got<size, big_endian>::set_final_data_size();
2043   }
2044
2045   // First word of GOT header needs some values that are not
2046   // handled by Output_data_got so poke them in here.
2047   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2048   void
2049   do_write(Output_file* of)
2050   {
2051     Valtype val = 0;
2052     if (size == 32 && this->layout_->dynamic_data() != NULL)
2053       val = this->layout_->dynamic_section()->address();
2054     if (size == 64)
2055       val = this->output_section()->address() + 0x8000;
2056     this->replace_constant(this->header_index_, val);
2057     Output_data_got<size, big_endian>::do_write(of);
2058   }
2059
2060 private:
2061   void
2062   reserve_ent(unsigned int cnt = 1)
2063   {
2064     if (this->header_ent_cnt_ == 0)
2065       return;
2066     if (this->num_entries() + cnt > this->header_index_)
2067       this->make_header();
2068   }
2069
2070   void
2071   make_header()
2072   {
2073     this->header_ent_cnt_ = 0;
2074     this->header_index_ = this->num_entries();
2075     if (size == 32)
2076       {
2077         Output_data_got<size, big_endian>::add_constant(0);
2078         Output_data_got<size, big_endian>::add_constant(0);
2079         Output_data_got<size, big_endian>::add_constant(0);
2080
2081         // Define _GLOBAL_OFFSET_TABLE_ at the header
2082         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2083         if (gotsym != NULL)
2084           {
2085             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2086             sym->set_value(this->g_o_t());
2087           }
2088         else
2089           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2090                                                Symbol_table::PREDEFINED,
2091                                                this, this->g_o_t(), 0,
2092                                                elfcpp::STT_OBJECT,
2093                                                elfcpp::STB_LOCAL,
2094                                                elfcpp::STV_HIDDEN, 0,
2095                                                false, false);
2096       }
2097     else
2098       Output_data_got<size, big_endian>::add_constant(0);
2099   }
2100
2101   // Stashed pointers.
2102   Symbol_table* symtab_;
2103   Layout* layout_;
2104
2105   // GOT header size.
2106   unsigned int header_ent_cnt_;
2107   // GOT header index.
2108   unsigned int header_index_;
2109 };
2110
2111 // Get the GOT section, creating it if necessary.
2112
2113 template<int size, bool big_endian>
2114 Output_data_got_powerpc<size, big_endian>*
2115 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2116                                               Layout* layout)
2117 {
2118   if (this->got_ == NULL)
2119     {
2120       gold_assert(symtab != NULL && layout != NULL);
2121
2122       this->got_
2123         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2124
2125       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2126                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2127                                       this->got_, ORDER_DATA, false);
2128     }
2129
2130   return this->got_;
2131 }
2132
2133 // Get the dynamic reloc section, creating it if necessary.
2134
2135 template<int size, bool big_endian>
2136 typename Target_powerpc<size, big_endian>::Reloc_section*
2137 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2138 {
2139   if (this->rela_dyn_ == NULL)
2140     {
2141       gold_assert(layout != NULL);
2142       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2143       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2144                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2145                                       ORDER_DYNAMIC_RELOCS, false);
2146     }
2147   return this->rela_dyn_;
2148 }
2149
2150 // Similarly, but for ifunc symbols get the one for ifunc.
2151
2152 template<int size, bool big_endian>
2153 typename Target_powerpc<size, big_endian>::Reloc_section*
2154 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2155                                                    Layout* layout,
2156                                                    bool for_ifunc)
2157 {
2158   if (!for_ifunc)
2159     return this->rela_dyn_section(layout);
2160
2161   if (this->iplt_ == NULL)
2162     this->make_iplt_section(symtab, layout);
2163   return this->iplt_->rel_plt();
2164 }
2165
2166 class Stub_control
2167 {
2168  public:
2169   // Determine the stub group size.  The group size is the absolute
2170   // value of the parameter --stub-group-size.  If --stub-group-size
2171   // is passed a negative value, we restrict stubs to be always before
2172   // the stubbed branches.
2173   Stub_control(int32_t size)
2174     : state_(NO_GROUP), stub_group_size_(abs(size)),
2175       stub14_group_size_(abs(size)),
2176       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2177       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2178   {
2179     if (stub_group_size_ == 1)
2180       {
2181         // Default values.
2182         if (stubs_always_before_branch_)
2183           {
2184             stub_group_size_ = 0x1e00000;
2185             stub14_group_size_ = 0x7800;
2186           }
2187         else
2188           {
2189             stub_group_size_ = 0x1c00000;
2190             stub14_group_size_ = 0x7000;
2191           }
2192         suppress_size_errors_ = true;
2193       }
2194   }
2195
2196   // Return true iff input section can be handled by current stub
2197   // group.
2198   bool
2199   can_add_to_stub_group(Output_section* o,
2200                         const Output_section::Input_section* i,
2201                         bool has14);
2202
2203   const Output_section::Input_section*
2204   owner()
2205   { return owner_; }
2206
2207   Output_section*
2208   output_section()
2209   { return output_section_; }
2210
2211  private:
2212   typedef enum
2213   {
2214     NO_GROUP,
2215     FINDING_STUB_SECTION,
2216     HAS_STUB_SECTION
2217   } State;
2218
2219   State state_;
2220   uint32_t stub_group_size_;
2221   uint32_t stub14_group_size_;
2222   bool stubs_always_before_branch_;
2223   bool suppress_size_errors_;
2224   uint64_t group_end_addr_;
2225   const Output_section::Input_section* owner_;
2226   Output_section* output_section_;
2227 };
2228
2229 // Return true iff input section can be handled by current stub
2230 // group.
2231
2232 bool
2233 Stub_control::can_add_to_stub_group(Output_section* o,
2234                                     const Output_section::Input_section* i,
2235                                     bool has14)
2236 {
2237   uint32_t group_size
2238     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2239   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2240   uint64_t this_size;
2241   uint64_t start_addr = o->address();
2242
2243   if (whole_sec)
2244     // .init and .fini sections are pasted together to form a single
2245     // function.  We can't be adding stubs in the middle of the function.
2246     this_size = o->data_size();
2247   else
2248     {
2249       start_addr += i->relobj()->output_section_offset(i->shndx());
2250       this_size = i->data_size();
2251     }
2252   uint64_t end_addr = start_addr + this_size;
2253   bool toobig = this_size > group_size;
2254
2255   if (toobig && !this->suppress_size_errors_)
2256     gold_warning(_("%s:%s exceeds group size"),
2257                  i->relobj()->name().c_str(),
2258                  i->relobj()->section_name(i->shndx()).c_str());
2259
2260   if (this->state_ != HAS_STUB_SECTION
2261       && (!whole_sec || this->output_section_ != o)
2262       && (this->state_ == NO_GROUP
2263           || this->group_end_addr_ - end_addr < group_size))
2264     {
2265       this->owner_ = i;
2266       this->output_section_ = o;
2267     }
2268
2269   if (this->state_ == NO_GROUP)
2270     {
2271       this->state_ = FINDING_STUB_SECTION;
2272       this->group_end_addr_ = end_addr;
2273     }
2274   else if (this->group_end_addr_ - start_addr < group_size)
2275     ;
2276   // Adding this section would make the group larger than GROUP_SIZE.
2277   else if (this->state_ == FINDING_STUB_SECTION
2278            && !this->stubs_always_before_branch_
2279            && !toobig)
2280     {
2281       // But wait, there's more!  Input sections up to GROUP_SIZE
2282       // bytes before the stub table can be handled by it too.
2283       this->state_ = HAS_STUB_SECTION;
2284       this->group_end_addr_ = end_addr;
2285     }
2286   else
2287     {
2288       this->state_ = NO_GROUP;
2289       return false;
2290     }
2291   return true;
2292 }
2293
2294 // Look over all the input sections, deciding where to place stubs.
2295
2296 template<int size, bool big_endian>
2297 void
2298 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2299                                                  const Task*)
2300 {
2301   Stub_control stub_control(parameters->options().stub_group_size());
2302
2303   // Group input sections and insert stub table
2304   Stub_table<size, big_endian>* stub_table = NULL;
2305   Layout::Section_list section_list;
2306   layout->get_executable_sections(&section_list);
2307   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2308   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2309        o != section_list.rend();
2310        ++o)
2311     {
2312       typedef Output_section::Input_section_list Input_section_list;
2313       for (Input_section_list::const_reverse_iterator i
2314              = (*o)->input_sections().rbegin();
2315            i != (*o)->input_sections().rend();
2316            ++i)
2317         {
2318           if (i->is_input_section())
2319             {
2320               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2321                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2322               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2323               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2324                 {
2325                   stub_table->init(stub_control.owner(),
2326                                    stub_control.output_section());
2327                   stub_table = NULL;
2328                 }
2329               if (stub_table == NULL)
2330                 stub_table = this->new_stub_table();
2331               ppcobj->set_stub_table(i->shndx(), stub_table);
2332             }
2333         }
2334     }
2335   if (stub_table != NULL)
2336     {
2337       const Output_section::Input_section* i = stub_control.owner();
2338       if (!i->is_input_section())
2339         {
2340           // Corner case.  A new stub group was made for the first
2341           // section (last one looked at here) for some reason, but
2342           // the first section is already being used as the owner for
2343           // a stub table for following sections.  Force it into that
2344           // stub group.
2345           gold_assert(this->stub_tables_.size() >= 2);
2346           this->stub_tables_.pop_back();
2347           delete stub_table;
2348           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2349             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2350           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2351         }
2352       else
2353         stub_table->init(i, stub_control.output_section());
2354     }
2355 }
2356
2357 // If this branch needs a plt call stub, or a long branch stub, make one.
2358
2359 template<int size, bool big_endian>
2360 void
2361 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2362     Stub_table<size, big_endian>* stub_table,
2363     Stub_table<size, big_endian>* ifunc_stub_table,
2364     Symbol_table* symtab) const
2365 {
2366   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2367   if (sym != NULL && sym->is_forwarder())
2368     sym = symtab->resolve_forwards(sym);
2369   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2370   if (gsym != NULL
2371       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2372       : this->object_->local_has_plt_offset(this->r_sym_))
2373     {
2374       if (stub_table == NULL)
2375         stub_table = this->object_->stub_table(this->shndx_);
2376       if (stub_table == NULL)
2377         {
2378           // This is a ref from a data section to an ifunc symbol.
2379           stub_table = ifunc_stub_table;
2380         }
2381       gold_assert(stub_table != NULL);
2382       if (gsym != NULL)
2383         stub_table->add_plt_call_entry(this->object_, gsym,
2384                                        this->r_type_, this->addend_);
2385       else
2386         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2387                                        this->r_type_, this->addend_);
2388     }
2389   else
2390     {
2391       unsigned int max_branch_offset;
2392       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2393           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2394           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2395         max_branch_offset = 1 << 15;
2396       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2397                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2398                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2399         max_branch_offset = 1 << 25;
2400       else
2401         return;
2402       Address from = this->object_->get_output_section_offset(this->shndx_);
2403       gold_assert(from != invalid_address);
2404       from += (this->object_->output_section(this->shndx_)->address()
2405                + this->offset_);
2406       Address to;
2407       if (gsym != NULL)
2408         {
2409           switch (gsym->source())
2410             {
2411             case Symbol::FROM_OBJECT:
2412               {
2413                 Object* symobj = gsym->object();
2414                 if (symobj->is_dynamic()
2415                     || symobj->pluginobj() != NULL)
2416                   return;
2417                 bool is_ordinary;
2418                 unsigned int shndx = gsym->shndx(&is_ordinary);
2419                 if (shndx == elfcpp::SHN_UNDEF)
2420                   return;
2421               }
2422               break;
2423
2424             case Symbol::IS_UNDEFINED:
2425               return;
2426
2427             default:
2428               break;
2429             }
2430           Symbol_table::Compute_final_value_status status;
2431           to = symtab->compute_final_value<size>(gsym, &status);
2432           if (status != Symbol_table::CFVS_OK)
2433             return;
2434         }
2435       else
2436         {
2437           const Symbol_value<size>* psymval
2438             = this->object_->local_symbol(this->r_sym_);
2439           Symbol_value<size> symval;
2440           typedef Sized_relobj_file<size, big_endian> ObjType;
2441           typename ObjType::Compute_final_local_value_status status
2442             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2443                                                        &symval, symtab);
2444           if (status != ObjType::CFLV_OK
2445               || !symval.has_output_value())
2446             return;
2447           to = symval.value(this->object_, 0);
2448         }
2449       to += this->addend_;
2450       if (stub_table == NULL)
2451         stub_table = this->object_->stub_table(this->shndx_);
2452       if (size == 64 && is_branch_reloc(this->r_type_))
2453         {
2454           unsigned int dest_shndx;
2455           Target_powerpc<size, big_endian>* target =
2456             static_cast<Target_powerpc<size, big_endian>*>(
2457                 parameters->sized_target<size, big_endian>());
2458           to = target->symval_for_branch(symtab, to, gsym,
2459                                          this->object_, &dest_shndx);
2460         }
2461       Address delta = to - from;
2462       if (delta + max_branch_offset >= 2 * max_branch_offset)
2463         {
2464           if (stub_table == NULL)
2465             {
2466               gold_warning(_("%s:%s: branch in non-executable section,"
2467                              " no long branch stub for you"),
2468                            this->object_->name().c_str(),
2469                            this->object_->section_name(this->shndx_).c_str());
2470               return;
2471             }
2472           stub_table->add_long_branch_entry(this->object_, to);
2473         }
2474     }
2475 }
2476
2477 // Relaxation hook.  This is where we do stub generation.
2478
2479 template<int size, bool big_endian>
2480 bool
2481 Target_powerpc<size, big_endian>::do_relax(int pass,
2482                                            const Input_objects*,
2483                                            Symbol_table* symtab,
2484                                            Layout* layout,
2485                                            const Task* task)
2486 {
2487   unsigned int prev_brlt_size = 0;
2488   if (pass == 1)
2489     {
2490       bool thread_safe = parameters->options().plt_thread_safe();
2491       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2492         {
2493           static const char* const thread_starter[] =
2494             {
2495               "pthread_create",
2496               /* libstdc++ */
2497               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2498               /* librt */
2499               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2500               "mq_notify", "create_timer",
2501               /* libanl */
2502               "getaddrinfo_a",
2503               /* libgomp */
2504               "GOMP_parallel_start",
2505               "GOMP_parallel_loop_static_start",
2506               "GOMP_parallel_loop_dynamic_start",
2507               "GOMP_parallel_loop_guided_start",
2508               "GOMP_parallel_loop_runtime_start",
2509               "GOMP_parallel_sections_start", 
2510             };
2511
2512           if (parameters->options().shared())
2513             thread_safe = true;
2514           else
2515             {
2516               for (unsigned int i = 0;
2517                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2518                    i++)
2519                 {
2520                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2521                   thread_safe = (sym != NULL
2522                                  && sym->in_reg()
2523                                  && sym->in_real_elf());
2524                   if (thread_safe)
2525                     break;
2526                 }
2527             }
2528         }
2529       this->plt_thread_safe_ = thread_safe;
2530       this->group_sections(layout, task);
2531     }
2532
2533   // We need address of stub tables valid for make_stub.
2534   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2535        p != this->stub_tables_.end();
2536        ++p)
2537     {
2538       const Powerpc_relobj<size, big_endian>* object
2539         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2540       Address off = object->get_output_section_offset((*p)->shndx());
2541       gold_assert(off != invalid_address);
2542       Output_section* os = (*p)->output_section();
2543       (*p)->set_address_and_size(os, off);
2544     }
2545
2546   if (pass != 1)
2547     {
2548       // Clear plt call stubs, long branch stubs and branch lookup table.
2549       prev_brlt_size = this->branch_lookup_table_.size();
2550       this->branch_lookup_table_.clear();
2551       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2552            p != this->stub_tables_.end();
2553            ++p)
2554         {
2555           (*p)->clear_stubs();
2556         }
2557     }
2558
2559   // Build all the stubs.
2560   Stub_table<size, big_endian>* ifunc_stub_table
2561     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2562   Stub_table<size, big_endian>* one_stub_table
2563     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2564   for (typename Branches::const_iterator b = this->branch_info_.begin();
2565        b != this->branch_info_.end();
2566        b++)
2567     {
2568       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2569     }
2570
2571   // Did anything change size?
2572   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2573   bool again = num_huge_branches != prev_brlt_size;
2574   if (size == 64 && num_huge_branches != 0)
2575     this->make_brlt_section(layout);
2576   if (size == 64 && again)
2577     this->brlt_section_->set_current_size(num_huge_branches);
2578
2579   typedef Unordered_set<Output_section*> Output_sections;
2580   Output_sections os_need_update;
2581   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2582        p != this->stub_tables_.end();
2583        ++p)
2584     {
2585       if ((*p)->size_update())
2586         {
2587           again = true;
2588           (*p)->add_eh_frame(layout);
2589           os_need_update.insert((*p)->output_section());
2590         }
2591     }
2592
2593   // Set output section offsets for all input sections in an output
2594   // section that just changed size.  Anything past the stubs will
2595   // need updating.
2596   for (typename Output_sections::iterator p = os_need_update.begin();
2597        p != os_need_update.end();
2598        p++)
2599     {
2600       Output_section* os = *p;
2601       Address off = 0;
2602       typedef Output_section::Input_section_list Input_section_list;
2603       for (Input_section_list::const_iterator i = os->input_sections().begin();
2604            i != os->input_sections().end();
2605            ++i)
2606         {
2607           off = align_address(off, i->addralign());
2608           if (i->is_input_section() || i->is_relaxed_input_section())
2609             i->relobj()->set_section_offset(i->shndx(), off);
2610           if (i->is_relaxed_input_section())
2611             {
2612               Stub_table<size, big_endian>* stub_table
2613                 = static_cast<Stub_table<size, big_endian>*>(
2614                     i->relaxed_input_section());
2615               off += stub_table->set_address_and_size(os, off);
2616             }
2617           else
2618             off += i->data_size();
2619         }
2620       // If .branch_lt is part of this output section, then we have
2621       // just done the offset adjustment.
2622       os->clear_section_offsets_need_adjustment();
2623     }
2624
2625   if (size == 64
2626       && !again
2627       && num_huge_branches != 0
2628       && parameters->options().output_is_position_independent())
2629     {
2630       // Fill in the BRLT relocs.
2631       this->brlt_section_->reset_data_size();
2632       for (typename Branch_lookup_table::const_iterator p
2633              = this->branch_lookup_table_.begin();
2634            p != this->branch_lookup_table_.end();
2635            ++p)
2636         {
2637           this->brlt_section_->add_reloc(p->first, p->second);
2638         }
2639       this->brlt_section_->finalize_data_size();
2640     }
2641   return again;
2642 }
2643
2644 template<int size, bool big_endian>
2645 void
2646 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2647                                                       unsigned char* oview,
2648                                                       uint64_t* paddress,
2649                                                       off_t* plen) const
2650 {
2651   uint64_t address = plt->address();
2652   off_t len = plt->data_size();
2653
2654   if (plt == this->glink_)
2655     {
2656       // See Output_data_glink::do_write() for glink contents.
2657       if (size == 64)
2658         {
2659           // There is one word before __glink_PLTresolve
2660           address += 8;
2661           len -= 8;
2662         }
2663       else if (parameters->options().output_is_position_independent())
2664         {
2665           // There are two FDEs for a position independent glink.
2666           // The first covers the branch table, the second
2667           // __glink_PLTresolve at the end of glink.
2668           off_t resolve_size = this->glink_->pltresolve_size;
2669           if (oview[9] == 0)
2670             len -= resolve_size;
2671           else
2672             {
2673               address += len - resolve_size;
2674               len = resolve_size;
2675             }
2676         }
2677     }
2678   else
2679     {
2680       // Must be a stub table.
2681       const Stub_table<size, big_endian>* stub_table
2682         = static_cast<const Stub_table<size, big_endian>*>(plt);
2683       uint64_t stub_address = stub_table->stub_address();
2684       len -= stub_address - address;
2685       address = stub_address;
2686     }
2687
2688   *paddress = address;
2689   *plen = len;
2690 }
2691
2692 // A class to handle the PLT data.
2693
2694 template<int size, bool big_endian>
2695 class Output_data_plt_powerpc : public Output_section_data_build
2696 {
2697  public:
2698   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2699                             size, big_endian> Reloc_section;
2700
2701   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2702                           Reloc_section* plt_rel,
2703                           unsigned int reserved_size,
2704                           const char* name)
2705     : Output_section_data_build(size == 32 ? 4 : 8),
2706       rel_(plt_rel),
2707       targ_(targ),
2708       initial_plt_entry_size_(reserved_size),
2709       name_(name)
2710   { }
2711
2712   // Add an entry to the PLT.
2713   void
2714   add_entry(Symbol*);
2715
2716   void
2717   add_ifunc_entry(Symbol*);
2718
2719   void
2720   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2721
2722   // Return the .rela.plt section data.
2723   Reloc_section*
2724   rel_plt() const
2725   {
2726     return this->rel_;
2727   }
2728
2729   // Return the number of PLT entries.
2730   unsigned int
2731   entry_count() const
2732   {
2733     if (this->current_data_size() == 0)
2734       return 0;
2735     return ((this->current_data_size() - this->initial_plt_entry_size_)
2736             / plt_entry_size);
2737   }
2738
2739   // Return the offset of the first non-reserved PLT entry.
2740   unsigned int
2741   first_plt_entry_offset()
2742   { return this->initial_plt_entry_size_; }
2743
2744   // Return the size of a PLT entry.
2745   static unsigned int
2746   get_plt_entry_size()
2747   { return plt_entry_size; }
2748
2749  protected:
2750   void
2751   do_adjust_output_section(Output_section* os)
2752   {
2753     os->set_entsize(0);
2754   }
2755
2756   // Write to a map file.
2757   void
2758   do_print_to_mapfile(Mapfile* mapfile) const
2759   { mapfile->print_output_data(this, this->name_); }
2760
2761  private:
2762   // The size of an entry in the PLT.
2763   static const int plt_entry_size = size == 32 ? 4 : 24;
2764
2765   // Write out the PLT data.
2766   void
2767   do_write(Output_file*);
2768
2769   // The reloc section.
2770   Reloc_section* rel_;
2771   // Allows access to .glink for do_write.
2772   Target_powerpc<size, big_endian>* targ_;
2773   // The size of the first reserved entry.
2774   int initial_plt_entry_size_;
2775   // What to report in map file.
2776   const char *name_;
2777 };
2778
2779 // Add an entry to the PLT.
2780
2781 template<int size, bool big_endian>
2782 void
2783 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2784 {
2785   if (!gsym->has_plt_offset())
2786     {
2787       section_size_type off = this->current_data_size();
2788       if (off == 0)
2789         off += this->first_plt_entry_offset();
2790       gsym->set_plt_offset(off);
2791       gsym->set_needs_dynsym_entry();
2792       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2793       this->rel_->add_global(gsym, dynrel, this, off, 0);
2794       off += plt_entry_size;
2795       this->set_current_data_size(off);
2796     }
2797 }
2798
2799 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2800
2801 template<int size, bool big_endian>
2802 void
2803 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2804 {
2805   if (!gsym->has_plt_offset())
2806     {
2807       section_size_type off = this->current_data_size();
2808       gsym->set_plt_offset(off);
2809       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2810       if (size == 64)
2811         dynrel = elfcpp::R_PPC64_JMP_IREL;
2812       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2813       off += plt_entry_size;
2814       this->set_current_data_size(off);
2815     }
2816 }
2817
2818 // Add an entry for a local ifunc symbol to the IPLT.
2819
2820 template<int size, bool big_endian>
2821 void
2822 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2823     Sized_relobj_file<size, big_endian>* relobj,
2824     unsigned int local_sym_index)
2825 {
2826   if (!relobj->local_has_plt_offset(local_sym_index))
2827     {
2828       section_size_type off = this->current_data_size();
2829       relobj->set_local_plt_offset(local_sym_index, off);
2830       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2831       if (size == 64)
2832         dynrel = elfcpp::R_PPC64_JMP_IREL;
2833       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2834                                               this, off, 0);
2835       off += plt_entry_size;
2836       this->set_current_data_size(off);
2837     }
2838 }
2839
2840 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2841 static const uint32_t add_2_2_11        = 0x7c425a14;
2842 static const uint32_t add_3_3_2         = 0x7c631214;
2843 static const uint32_t add_3_3_13        = 0x7c636a14;
2844 static const uint32_t add_11_0_11       = 0x7d605a14;
2845 static const uint32_t add_12_2_11       = 0x7d825a14;
2846 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2847 static const uint32_t addi_11_11        = 0x396b0000;
2848 static const uint32_t addi_12_12        = 0x398c0000;
2849 static const uint32_t addi_2_2          = 0x38420000;
2850 static const uint32_t addi_3_2          = 0x38620000;
2851 static const uint32_t addi_3_3          = 0x38630000;
2852 static const uint32_t addis_0_2         = 0x3c020000;
2853 static const uint32_t addis_0_13        = 0x3c0d0000;
2854 static const uint32_t addis_11_11       = 0x3d6b0000;
2855 static const uint32_t addis_11_30       = 0x3d7e0000;
2856 static const uint32_t addis_12_12       = 0x3d8c0000;
2857 static const uint32_t addis_12_2        = 0x3d820000;
2858 static const uint32_t addis_3_2         = 0x3c620000;
2859 static const uint32_t addis_3_13        = 0x3c6d0000;
2860 static const uint32_t b                 = 0x48000000;
2861 static const uint32_t bcl_20_31         = 0x429f0005;
2862 static const uint32_t bctr              = 0x4e800420;
2863 static const uint32_t blr               = 0x4e800020;
2864 static const uint32_t blrl              = 0x4e800021;
2865 static const uint32_t bnectr_p4         = 0x4ce20420;
2866 static const uint32_t cmpldi_2_0        = 0x28220000;
2867 static const uint32_t cror_15_15_15     = 0x4def7b82;
2868 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2869 static const uint32_t ld_0_1            = 0xe8010000;
2870 static const uint32_t ld_0_12           = 0xe80c0000;
2871 static const uint32_t ld_11_12          = 0xe96c0000;
2872 static const uint32_t ld_11_2           = 0xe9620000;
2873 static const uint32_t ld_2_1            = 0xe8410000;
2874 static const uint32_t ld_2_11           = 0xe84b0000;
2875 static const uint32_t ld_2_12           = 0xe84c0000;
2876 static const uint32_t ld_2_2            = 0xe8420000;
2877 static const uint32_t lfd_0_1           = 0xc8010000;
2878 static const uint32_t li_0_0            = 0x38000000;
2879 static const uint32_t li_12_0           = 0x39800000;
2880 static const uint32_t lis_0_0           = 0x3c000000;
2881 static const uint32_t lis_11            = 0x3d600000;
2882 static const uint32_t lis_12            = 0x3d800000;
2883 static const uint32_t lwz_0_12          = 0x800c0000;
2884 static const uint32_t lwz_11_11         = 0x816b0000;
2885 static const uint32_t lwz_11_30         = 0x817e0000;
2886 static const uint32_t lwz_12_12         = 0x818c0000;
2887 static const uint32_t lwzu_0_12         = 0x840c0000;
2888 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2889 static const uint32_t mflr_0            = 0x7c0802a6;
2890 static const uint32_t mflr_11           = 0x7d6802a6;
2891 static const uint32_t mflr_12           = 0x7d8802a6;
2892 static const uint32_t mtctr_0           = 0x7c0903a6;
2893 static const uint32_t mtctr_11          = 0x7d6903a6;
2894 static const uint32_t mtctr_12          = 0x7d8903a6;
2895 static const uint32_t mtlr_0            = 0x7c0803a6;
2896 static const uint32_t mtlr_12           = 0x7d8803a6;
2897 static const uint32_t nop               = 0x60000000;
2898 static const uint32_t ori_0_0_0         = 0x60000000;
2899 static const uint32_t std_0_1           = 0xf8010000;
2900 static const uint32_t std_0_12          = 0xf80c0000;
2901 static const uint32_t std_2_1           = 0xf8410000;
2902 static const uint32_t stfd_0_1          = 0xd8010000;
2903 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2904 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2905 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2906
2907 // Write out the PLT.
2908
2909 template<int size, bool big_endian>
2910 void
2911 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2912 {
2913   if (size == 32 && this->name_[3] != 'I')
2914     {
2915       const section_size_type offset = this->offset();
2916       const section_size_type oview_size
2917         = convert_to_section_size_type(this->data_size());
2918       unsigned char* const oview = of->get_output_view(offset, oview_size);
2919       unsigned char* pov = oview;
2920       unsigned char* endpov = oview + oview_size;
2921
2922       // The address of the .glink branch table
2923       const Output_data_glink<size, big_endian>* glink
2924         = this->targ_->glink_section();
2925       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2926
2927       while (pov < endpov)
2928         {
2929           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2930           pov += 4;
2931           branch_tab += 4;
2932         }
2933
2934       of->write_output_view(offset, oview_size, oview);
2935     }
2936 }
2937
2938 // Create the PLT section.
2939
2940 template<int size, bool big_endian>
2941 void
2942 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2943                                                    Layout* layout)
2944 {
2945   if (this->plt_ == NULL)
2946     {
2947       if (this->got_ == NULL)
2948         this->got_section(symtab, layout);
2949
2950       if (this->glink_ == NULL)
2951         make_glink_section(layout);
2952
2953       // Ensure that .rela.dyn always appears before .rela.plt  This is
2954       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2955       // needs to include .rela.plt in its range.
2956       this->rela_dyn_section(layout);
2957
2958       Reloc_section* plt_rel = new Reloc_section(false);
2959       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2960                                       elfcpp::SHF_ALLOC, plt_rel,
2961                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2962       this->plt_
2963         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2964                                                         size == 32 ? 0 : 24,
2965                                                         "** PLT");
2966       layout->add_output_section_data(".plt",
2967                                       (size == 32
2968                                        ? elfcpp::SHT_PROGBITS
2969                                        : elfcpp::SHT_NOBITS),
2970                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2971                                       this->plt_,
2972                                       (size == 32
2973                                        ? ORDER_SMALL_DATA
2974                                        : ORDER_SMALL_BSS),
2975                                       false);
2976     }
2977 }
2978
2979 // Create the IPLT section.
2980
2981 template<int size, bool big_endian>
2982 void
2983 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2984                                                     Layout* layout)
2985 {
2986   if (this->iplt_ == NULL)
2987     {
2988       this->make_plt_section(symtab, layout);
2989
2990       Reloc_section* iplt_rel = new Reloc_section(false);
2991       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2992       this->iplt_
2993         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2994                                                         0, "** IPLT");
2995       this->plt_->output_section()->add_output_section_data(this->iplt_);
2996     }
2997 }
2998
2999 // A section for huge long branch addresses, similar to plt section.
3000
3001 template<int size, bool big_endian>
3002 class Output_data_brlt_powerpc : public Output_section_data_build
3003 {
3004  public:
3005   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3006   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3007                             size, big_endian> Reloc_section;
3008
3009   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3010                            Reloc_section* brlt_rel)
3011     : Output_section_data_build(size == 32 ? 4 : 8),
3012       rel_(brlt_rel),
3013       targ_(targ)
3014   { }
3015
3016   // Add a reloc for an entry in the BRLT.
3017   void
3018   add_reloc(Address to, unsigned int off)
3019   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3020
3021   // Update section and reloc section size.
3022   void
3023   set_current_size(unsigned int num_branches)
3024   {
3025     this->reset_address_and_file_offset();
3026     this->set_current_data_size(num_branches * 16);
3027     this->finalize_data_size();
3028     Output_section* os = this->output_section();
3029     os->set_section_offsets_need_adjustment();
3030     if (this->rel_ != NULL)
3031       {
3032         unsigned int reloc_size
3033           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3034         this->rel_->reset_address_and_file_offset();
3035         this->rel_->set_current_data_size(num_branches * reloc_size);
3036         this->rel_->finalize_data_size();
3037         Output_section* os = this->rel_->output_section();
3038         os->set_section_offsets_need_adjustment();
3039       }
3040   }
3041
3042  protected:
3043   void
3044   do_adjust_output_section(Output_section* os)
3045   {
3046     os->set_entsize(0);
3047   }
3048
3049   // Write to a map file.
3050   void
3051   do_print_to_mapfile(Mapfile* mapfile) const
3052   { mapfile->print_output_data(this, "** BRLT"); }
3053
3054  private:
3055   // Write out the BRLT data.
3056   void
3057   do_write(Output_file*);
3058
3059   // The reloc section.
3060   Reloc_section* rel_;
3061   Target_powerpc<size, big_endian>* targ_;
3062 };
3063
3064 // Make the branch lookup table section.
3065
3066 template<int size, bool big_endian>
3067 void
3068 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3069 {
3070   if (size == 64 && this->brlt_section_ == NULL)
3071     {
3072       Reloc_section* brlt_rel = NULL;
3073       bool is_pic = parameters->options().output_is_position_independent();
3074       if (is_pic)
3075         {
3076           // When PIC we can't fill in .branch_lt (like .plt it can be
3077           // a bss style section) but must initialise at runtime via
3078           // dynamic relocats.
3079           this->rela_dyn_section(layout);
3080           brlt_rel = new Reloc_section(false);
3081           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3082         }
3083       this->brlt_section_
3084         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3085       if (this->plt_ && is_pic)
3086         this->plt_->output_section()
3087           ->add_output_section_data(this->brlt_section_);
3088       else
3089         layout->add_output_section_data(".branch_lt",
3090                                         (is_pic ? elfcpp::SHT_NOBITS
3091                                          : elfcpp::SHT_PROGBITS),
3092                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3093                                         this->brlt_section_,
3094                                         (is_pic ? ORDER_SMALL_BSS
3095                                          : ORDER_SMALL_DATA),
3096                                         false);
3097     }
3098 }
3099
3100 // Write out .branch_lt when non-PIC.
3101
3102 template<int size, bool big_endian>
3103 void
3104 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3105 {
3106   if (size == 64 && !parameters->options().output_is_position_independent())
3107     {
3108       const section_size_type offset = this->offset();
3109       const section_size_type oview_size
3110         = convert_to_section_size_type(this->data_size());
3111       unsigned char* const oview = of->get_output_view(offset, oview_size);
3112
3113       this->targ_->write_branch_lookup_table(oview);
3114       of->write_output_view(offset, oview_size, oview);
3115     }
3116 }
3117
3118 static inline uint32_t
3119 l(uint32_t a)
3120 {
3121   return a & 0xffff;
3122 }
3123
3124 static inline uint32_t
3125 hi(uint32_t a)
3126 {
3127   return l(a >> 16);
3128 }
3129
3130 static inline uint32_t
3131 ha(uint32_t a)
3132 {
3133   return hi(a + 0x8000);
3134 }
3135
3136 template<int size>
3137 struct Eh_cie
3138 {
3139   static const unsigned char eh_frame_cie[12];
3140 };
3141
3142 template<int size>
3143 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3144 {
3145   1,                                    // CIE version.
3146   'z', 'R', 0,                          // Augmentation string.
3147   4,                                    // Code alignment.
3148   0x80 - size / 8 ,                     // Data alignment.
3149   65,                                   // RA reg.
3150   1,                                    // Augmentation size.
3151   (elfcpp::DW_EH_PE_pcrel
3152    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3153   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3154 };
3155
3156 // Describe __glink_PLTresolve use of LR, 64-bit version.
3157 static const unsigned char glink_eh_frame_fde_64[] =
3158 {
3159   0, 0, 0, 0,                           // Replaced with offset to .glink.
3160   0, 0, 0, 0,                           // Replaced with size of .glink.
3161   0,                                    // Augmentation size.
3162   elfcpp::DW_CFA_advance_loc + 1,
3163   elfcpp::DW_CFA_register, 65, 12,
3164   elfcpp::DW_CFA_advance_loc + 4,
3165   elfcpp::DW_CFA_restore_extended, 65
3166 };
3167
3168 // Describe __glink_PLTresolve use of LR, 32-bit version.
3169 static const unsigned char glink_eh_frame_fde_32[] =
3170 {
3171   0, 0, 0, 0,                           // Replaced with offset to .glink.
3172   0, 0, 0, 0,                           // Replaced with size of .glink.
3173   0,                                    // Augmentation size.
3174   elfcpp::DW_CFA_advance_loc + 2,
3175   elfcpp::DW_CFA_register, 65, 0,
3176   elfcpp::DW_CFA_advance_loc + 4,
3177   elfcpp::DW_CFA_restore_extended, 65
3178 };
3179
3180 static const unsigned char default_fde[] =
3181 {
3182   0, 0, 0, 0,                           // Replaced with offset to stubs.
3183   0, 0, 0, 0,                           // Replaced with size of stubs.
3184   0,                                    // Augmentation size.
3185   elfcpp::DW_CFA_nop,                   // Pad.
3186   elfcpp::DW_CFA_nop,
3187   elfcpp::DW_CFA_nop
3188 };
3189
3190 template<bool big_endian>
3191 static inline void
3192 write_insn(unsigned char* p, uint32_t v)
3193 {
3194   elfcpp::Swap<32, big_endian>::writeval(p, v);
3195 }
3196
3197 // Stub_table holds information about plt and long branch stubs.
3198 // Stubs are built in an area following some input section determined
3199 // by group_sections().  This input section is converted to a relaxed
3200 // input section allowing it to be resized to accommodate the stubs
3201
3202 template<int size, bool big_endian>
3203 class Stub_table : public Output_relaxed_input_section
3204 {
3205  public:
3206   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3207   static const Address invalid_address = static_cast<Address>(0) - 1;
3208
3209   Stub_table(Target_powerpc<size, big_endian>* targ)
3210     : Output_relaxed_input_section(NULL, 0, 0),
3211       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3212       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3213       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3214   { }
3215
3216   // Delayed Output_relaxed_input_section init.
3217   void
3218   init(const Output_section::Input_section*, Output_section*);
3219
3220   // Add a plt call stub.
3221   void
3222   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3223                      const Symbol*,
3224                      unsigned int,
3225                      Address);
3226
3227   void
3228   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3229                      unsigned int,
3230                      unsigned int,
3231                      Address);
3232
3233   // Find a given plt call stub.
3234   Address
3235   find_plt_call_entry(const Symbol*) const;
3236
3237   Address
3238   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3239                       unsigned int) const;
3240
3241   Address
3242   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3243                       const Symbol*,
3244                       unsigned int,
3245                       Address) const;
3246
3247   Address
3248   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3249                       unsigned int,
3250                       unsigned int,
3251                       Address) const;
3252
3253   // Add a long branch stub.
3254   void
3255   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3256
3257   Address
3258   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3259                          Address) const;
3260
3261   void
3262   clear_stubs()
3263   {
3264     this->plt_call_stubs_.clear();
3265     this->plt_size_ = 0;
3266     this->long_branch_stubs_.clear();
3267     this->branch_size_ = 0;
3268   }
3269
3270   Address
3271   set_address_and_size(const Output_section* os, Address off)
3272   {
3273     Address start_off = off;
3274     off += this->orig_data_size_;
3275     Address my_size = this->plt_size_ + this->branch_size_;
3276     if (my_size != 0)
3277       off = align_address(off, this->stub_align());
3278     // Include original section size and alignment padding in size
3279     my_size += off - start_off;
3280     this->reset_address_and_file_offset();
3281     this->set_current_data_size(my_size);
3282     this->set_address_and_file_offset(os->address() + start_off,
3283                                       os->offset() + start_off);
3284     return my_size;
3285   }
3286
3287   Address
3288   stub_address() const
3289   {
3290     return align_address(this->address() + this->orig_data_size_,
3291                          this->stub_align());
3292   }
3293
3294   Address
3295   stub_offset() const
3296   {
3297     return align_address(this->offset() + this->orig_data_size_,
3298                          this->stub_align());
3299   }
3300
3301   section_size_type
3302   plt_size() const
3303   { return this->plt_size_; }
3304
3305   bool
3306   size_update()
3307   {
3308     Output_section* os = this->output_section();
3309     if (os->addralign() < this->stub_align())
3310       {
3311         os->set_addralign(this->stub_align());
3312         // FIXME: get rid of the insane checkpointing.
3313         // We can't increase alignment of the input section to which
3314         // stubs are attached;  The input section may be .init which
3315         // is pasted together with other .init sections to form a
3316         // function.  Aligning might insert zero padding resulting in
3317         // sigill.  However we do need to increase alignment of the
3318         // output section so that the align_address() on offset in
3319         // set_address_and_size() adds the same padding as the
3320         // align_address() on address in stub_address().
3321         // What's more, we need this alignment for the layout done in
3322         // relaxation_loop_body() so that the output section starts at
3323         // a suitably aligned address.
3324         os->checkpoint_set_addralign(this->stub_align());
3325       }
3326     if (this->last_plt_size_ != this->plt_size_
3327         || this->last_branch_size_ != this->branch_size_)
3328       {
3329         this->last_plt_size_ = this->plt_size_;
3330         this->last_branch_size_ = this->branch_size_;
3331         return true;
3332       }
3333     return false;
3334   }
3335
3336   // Add .eh_frame info for this stub section.  Unlike other linker
3337   // generated .eh_frame this is added late in the link, because we
3338   // only want the .eh_frame info if this particular stub section is
3339   // non-empty.
3340   void
3341   add_eh_frame(Layout* layout)
3342   {
3343     if (!this->eh_frame_added_)
3344       {
3345         if (!parameters->options().ld_generated_unwind_info())
3346           return;
3347
3348         // Since we add stub .eh_frame info late, it must be placed
3349         // after all other linker generated .eh_frame info so that
3350         // merge mapping need not be updated for input sections.
3351         // There is no provision to use a different CIE to that used
3352         // by .glink.
3353         if (!this->targ_->has_glink())
3354           return;
3355
3356         layout->add_eh_frame_for_plt(this,
3357                                      Eh_cie<size>::eh_frame_cie,
3358                                      sizeof (Eh_cie<size>::eh_frame_cie),
3359                                      default_fde,
3360                                      sizeof (default_fde));
3361         this->eh_frame_added_ = true;
3362       }
3363   }
3364
3365   Target_powerpc<size, big_endian>*
3366   targ() const
3367   { return targ_; }
3368
3369  private:
3370   class Plt_stub_ent;
3371   class Plt_stub_ent_hash;
3372   typedef Unordered_map<Plt_stub_ent, unsigned int,
3373                         Plt_stub_ent_hash> Plt_stub_entries;
3374
3375   // Alignment of stub section.
3376   unsigned int
3377   stub_align() const
3378   {
3379     if (size == 32)
3380       return 16;
3381     unsigned int min_align = 32;
3382     unsigned int user_align = 1 << parameters->options().plt_align();
3383     return std::max(user_align, min_align);
3384   }
3385
3386   // Return the plt offset for the given call stub.
3387   Address
3388   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3389   {
3390     const Symbol* gsym = p->first.sym_;
3391     if (gsym != NULL)
3392       {
3393         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3394                     && gsym->can_use_relative_reloc(false));
3395         return gsym->plt_offset();
3396       }
3397     else
3398       {
3399         *is_iplt = true;
3400         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3401         unsigned int local_sym_index = p->first.locsym_;
3402         return relobj->local_plt_offset(local_sym_index);
3403       }
3404   }
3405
3406   // Size of a given plt call stub.
3407   unsigned int
3408   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3409   {
3410     if (size == 32)
3411       return 16;
3412
3413     bool is_iplt;
3414     Address plt_addr = this->plt_off(p, &is_iplt);
3415     if (is_iplt)
3416       plt_addr += this->targ_->iplt_section()->address();
3417     else
3418       plt_addr += this->targ_->plt_section()->address();
3419     Address got_addr = this->targ_->got_section()->output_section()->address();
3420     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3421       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3422     got_addr += ppcobj->toc_base_offset();
3423     Address off = plt_addr - got_addr;
3424     bool static_chain = parameters->options().plt_static_chain();
3425     bool thread_safe = this->targ_->plt_thread_safe();
3426     unsigned int bytes = (4 * 5
3427                           + 4 * static_chain
3428                           + 8 * thread_safe
3429                           + 4 * (ha(off) != 0)
3430                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3431     unsigned int align = 1 << parameters->options().plt_align();
3432     if (align > 1)
3433       bytes = (bytes + align - 1) & -align;
3434     return bytes;
3435   }
3436
3437   // Return long branch stub size.
3438   unsigned int
3439   branch_stub_size(Address to)
3440   {
3441     Address loc
3442       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3443     if (to - loc + (1 << 25) < 2 << 25)
3444       return 4;
3445     if (size == 64 || !parameters->options().output_is_position_independent())
3446       return 16;
3447     return 32;
3448   }
3449
3450   // Write out stubs.
3451   void
3452   do_write(Output_file*);
3453
3454   // Plt call stub keys.
3455   class Plt_stub_ent
3456   {
3457   public:
3458     Plt_stub_ent(const Symbol* sym)
3459       : sym_(sym), object_(0), addend_(0), locsym_(0)
3460     { }
3461
3462     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3463                  unsigned int locsym_index)
3464       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3465     { }
3466
3467     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3468                  const Symbol* sym,
3469                  unsigned int r_type,
3470                  Address addend)
3471       : sym_(sym), object_(0), addend_(0), locsym_(0)
3472     {
3473       if (size != 32)
3474         this->addend_ = addend;
3475       else if (parameters->options().output_is_position_independent()
3476                && r_type == elfcpp::R_PPC_PLTREL24)
3477         {
3478           this->addend_ = addend;
3479           if (this->addend_ >= 32768)
3480             this->object_ = object;
3481         }
3482     }
3483
3484     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3485                  unsigned int locsym_index,
3486                  unsigned int r_type,
3487                  Address addend)
3488       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3489     {
3490       if (size != 32)
3491         this->addend_ = addend;
3492       else if (parameters->options().output_is_position_independent()
3493                && r_type == elfcpp::R_PPC_PLTREL24)
3494         this->addend_ = addend;
3495     }
3496
3497     bool operator==(const Plt_stub_ent& that) const
3498     {
3499       return (this->sym_ == that.sym_
3500               && this->object_ == that.object_
3501               && this->addend_ == that.addend_
3502               && this->locsym_ == that.locsym_);
3503     }
3504
3505     const Symbol* sym_;
3506     const Sized_relobj_file<size, big_endian>* object_;
3507     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3508     unsigned int locsym_;
3509   };
3510
3511   class Plt_stub_ent_hash
3512   {
3513   public:
3514     size_t operator()(const Plt_stub_ent& ent) const
3515     {
3516       return (reinterpret_cast<uintptr_t>(ent.sym_)
3517               ^ reinterpret_cast<uintptr_t>(ent.object_)
3518               ^ ent.addend_
3519               ^ ent.locsym_);
3520     }
3521   };
3522
3523   // Long branch stub keys.
3524   class Branch_stub_ent
3525   {
3526   public:
3527     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3528       : dest_(to), toc_base_off_(0)
3529     {
3530       if (size == 64)
3531         toc_base_off_ = obj->toc_base_offset();
3532     }
3533
3534     bool operator==(const Branch_stub_ent& that) const
3535     {
3536       return (this->dest_ == that.dest_
3537               && (size == 32
3538                   || this->toc_base_off_ == that.toc_base_off_));
3539     }
3540
3541     Address dest_;
3542     unsigned int toc_base_off_;
3543   };
3544
3545   class Branch_stub_ent_hash
3546   {
3547   public:
3548     size_t operator()(const Branch_stub_ent& ent) const
3549     { return ent.dest_ ^ ent.toc_base_off_; }
3550   };
3551
3552   // In a sane world this would be a global.
3553   Target_powerpc<size, big_endian>* targ_;
3554   // Map sym/object/addend to stub offset.
3555   Plt_stub_entries plt_call_stubs_;
3556   // Map destination address to stub offset.
3557   typedef Unordered_map<Branch_stub_ent, unsigned int,
3558                         Branch_stub_ent_hash> Branch_stub_entries;
3559   Branch_stub_entries long_branch_stubs_;
3560   // size of input section
3561   section_size_type orig_data_size_;
3562   // size of stubs
3563   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3564   // Whether .eh_frame info has been created for this stub section.
3565   bool eh_frame_added_;
3566 };
3567
3568 // Make a new stub table, and record.
3569
3570 template<int size, bool big_endian>
3571 Stub_table<size, big_endian>*
3572 Target_powerpc<size, big_endian>::new_stub_table()
3573 {
3574   Stub_table<size, big_endian>* stub_table
3575     = new Stub_table<size, big_endian>(this);
3576   this->stub_tables_.push_back(stub_table);
3577   return stub_table;
3578 }
3579
3580 // Delayed stub table initialisation, because we create the stub table
3581 // before we know to which section it will be attached.
3582
3583 template<int size, bool big_endian>
3584 void
3585 Stub_table<size, big_endian>::init(
3586     const Output_section::Input_section* owner,
3587     Output_section* output_section)
3588 {
3589   this->set_relobj(owner->relobj());
3590   this->set_shndx(owner->shndx());
3591   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3592   this->set_output_section(output_section);
3593   this->orig_data_size_ = owner->current_data_size();
3594
3595   std::vector<Output_relaxed_input_section*> new_relaxed;
3596   new_relaxed.push_back(this);
3597   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3598 }
3599
3600 // Add a plt call stub, if we do not already have one for this
3601 // sym/object/addend combo.
3602
3603 template<int size, bool big_endian>
3604 void
3605 Stub_table<size, big_endian>::add_plt_call_entry(
3606     const Sized_relobj_file<size, big_endian>* object,
3607     const Symbol* gsym,
3608     unsigned int r_type,
3609     Address addend)
3610 {
3611   Plt_stub_ent ent(object, gsym, r_type, addend);
3612   Address off = this->plt_size_;
3613   std::pair<typename Plt_stub_entries::iterator, bool> p
3614     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3615   if (p.second)
3616     this->plt_size_ = off + this->plt_call_size(p.first);
3617 }
3618
3619 template<int size, bool big_endian>
3620 void
3621 Stub_table<size, big_endian>::add_plt_call_entry(
3622     const Sized_relobj_file<size, big_endian>* object,
3623     unsigned int locsym_index,
3624     unsigned int r_type,
3625     Address addend)
3626 {
3627   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3628   Address off = this->plt_size_;
3629   std::pair<typename Plt_stub_entries::iterator, bool> p
3630     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3631   if (p.second)
3632     this->plt_size_ = off + this->plt_call_size(p.first);
3633 }
3634
3635 // Find a plt call stub.
3636
3637 template<int size, bool big_endian>
3638 typename Stub_table<size, big_endian>::Address
3639 Stub_table<size, big_endian>::find_plt_call_entry(
3640     const Sized_relobj_file<size, big_endian>* object,
3641     const Symbol* gsym,
3642     unsigned int r_type,
3643     Address addend) const
3644 {
3645   Plt_stub_ent ent(object, gsym, r_type, addend);
3646   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3647   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3648 }
3649
3650 template<int size, bool big_endian>
3651 typename Stub_table<size, big_endian>::Address
3652 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3653 {
3654   Plt_stub_ent ent(gsym);
3655   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3656   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3657 }
3658
3659 template<int size, bool big_endian>
3660 typename Stub_table<size, big_endian>::Address
3661 Stub_table<size, big_endian>::find_plt_call_entry(
3662     const Sized_relobj_file<size, big_endian>* object,
3663     unsigned int locsym_index,
3664     unsigned int r_type,
3665     Address addend) const
3666 {
3667   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3668   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3669   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3670 }
3671
3672 template<int size, bool big_endian>
3673 typename Stub_table<size, big_endian>::Address
3674 Stub_table<size, big_endian>::find_plt_call_entry(
3675     const Sized_relobj_file<size, big_endian>* object,
3676     unsigned int locsym_index) const
3677 {
3678   Plt_stub_ent ent(object, locsym_index);
3679   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3680   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3681 }
3682
3683 // Add a long branch stub if we don't already have one to given
3684 // destination.
3685
3686 template<int size, bool big_endian>
3687 void
3688 Stub_table<size, big_endian>::add_long_branch_entry(
3689     const Powerpc_relobj<size, big_endian>* object,
3690     Address to)
3691 {
3692   Branch_stub_ent ent(object, to);
3693   Address off = this->branch_size_;
3694   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3695     {
3696       unsigned int stub_size = this->branch_stub_size(to);
3697       this->branch_size_ = off + stub_size;
3698       if (size == 64 && stub_size != 4)
3699         this->targ_->add_branch_lookup_table(to);
3700     }
3701 }
3702
3703 // Find long branch stub.
3704
3705 template<int size, bool big_endian>
3706 typename Stub_table<size, big_endian>::Address
3707 Stub_table<size, big_endian>::find_long_branch_entry(
3708     const Powerpc_relobj<size, big_endian>* object,
3709     Address to) const
3710 {
3711   Branch_stub_ent ent(object, to);
3712   typename Branch_stub_entries::const_iterator p
3713     = this->long_branch_stubs_.find(ent);
3714   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3715 }
3716
3717 // A class to handle .glink.
3718
3719 template<int size, bool big_endian>
3720 class Output_data_glink : public Output_section_data
3721 {
3722  public:
3723   static const int pltresolve_size = 16*4;
3724
3725   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3726     : Output_section_data(16), targ_(targ)
3727   { }
3728
3729   void
3730   add_eh_frame(Layout* layout)
3731   {
3732     if (!parameters->options().ld_generated_unwind_info())
3733       return;
3734
3735     if (size == 64)
3736       layout->add_eh_frame_for_plt(this,
3737                                    Eh_cie<64>::eh_frame_cie,
3738                                    sizeof (Eh_cie<64>::eh_frame_cie),
3739                                    glink_eh_frame_fde_64,
3740                                    sizeof (glink_eh_frame_fde_64));
3741     else
3742       {
3743         // 32-bit .glink can use the default since the CIE return
3744         // address reg, LR, is valid.
3745         layout->add_eh_frame_for_plt(this,
3746                                      Eh_cie<32>::eh_frame_cie,
3747                                      sizeof (Eh_cie<32>::eh_frame_cie),
3748                                      default_fde,
3749                                      sizeof (default_fde));
3750         // Except where LR is used in a PIC __glink_PLTresolve.
3751         if (parameters->options().output_is_position_independent())
3752           layout->add_eh_frame_for_plt(this,
3753                                        Eh_cie<32>::eh_frame_cie,
3754                                        sizeof (Eh_cie<32>::eh_frame_cie),
3755                                        glink_eh_frame_fde_32,
3756                                        sizeof (glink_eh_frame_fde_32));
3757       }
3758   }
3759
3760  protected:
3761   // Write to a map file.
3762   void
3763   do_print_to_mapfile(Mapfile* mapfile) const
3764   { mapfile->print_output_data(this, _("** glink")); }
3765
3766  private:
3767   void
3768   set_final_data_size();
3769
3770   // Write out .glink
3771   void
3772   do_write(Output_file*);
3773
3774   // Allows access to .got and .plt for do_write.
3775   Target_powerpc<size, big_endian>* targ_;
3776 };
3777
3778 template<int size, bool big_endian>
3779 void
3780 Output_data_glink<size, big_endian>::set_final_data_size()
3781 {
3782   unsigned int count = this->targ_->plt_entry_count();
3783   section_size_type total = 0;
3784
3785   if (count != 0)
3786     {
3787       if (size == 32)
3788         {
3789           // space for branch table
3790           total += 4 * (count - 1);
3791
3792           total += -total & 15;
3793           total += this->pltresolve_size;
3794         }
3795       else
3796         {
3797           total += this->pltresolve_size;
3798
3799           // space for branch table
3800           total += 8 * count;
3801           if (count > 0x8000)
3802             total += 4 * (count - 0x8000);
3803         }
3804     }
3805
3806   this->set_data_size(total);
3807 }
3808
3809 // Write out plt and long branch stub code.
3810
3811 template<int size, bool big_endian>
3812 void
3813 Stub_table<size, big_endian>::do_write(Output_file* of)
3814 {
3815   if (this->plt_call_stubs_.empty()
3816       && this->long_branch_stubs_.empty())
3817     return;
3818
3819   const section_size_type start_off = this->offset();
3820   const section_size_type off = this->stub_offset();
3821   const section_size_type oview_size =
3822     convert_to_section_size_type(this->data_size() - (off - start_off));
3823   unsigned char* const oview = of->get_output_view(off, oview_size);
3824   unsigned char* p;
3825
3826   if (size == 64)
3827     {
3828       const Output_data_got_powerpc<size, big_endian>* got
3829         = this->targ_->got_section();
3830       Address got_os_addr = got->output_section()->address();
3831
3832       if (!this->plt_call_stubs_.empty())
3833         {
3834           // The base address of the .plt section.
3835           Address plt_base = this->targ_->plt_section()->address();
3836           Address iplt_base = invalid_address;
3837
3838           // Write out plt call stubs.
3839           typename Plt_stub_entries::const_iterator cs;
3840           for (cs = this->plt_call_stubs_.begin();
3841                cs != this->plt_call_stubs_.end();
3842                ++cs)
3843             {
3844               bool is_iplt;
3845               Address pltoff = this->plt_off(cs, &is_iplt);
3846               Address plt_addr = pltoff;
3847               if (is_iplt)
3848                 {
3849                   if (iplt_base == invalid_address)
3850                     iplt_base = this->targ_->iplt_section()->address();
3851                   plt_addr += iplt_base;
3852                 }
3853               else
3854                 plt_addr += plt_base;
3855               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3856                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3857               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3858               Address off = plt_addr - got_addr;
3859
3860               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3861                 gold_error(_("%s: linkage table error against `%s'"),
3862                            cs->first.object_->name().c_str(),
3863                            cs->first.sym_->demangled_name().c_str());
3864
3865               bool static_chain = parameters->options().plt_static_chain();
3866               bool thread_safe = this->targ_->plt_thread_safe();
3867               bool use_fake_dep = false;
3868               Address cmp_branch_off = 0;
3869               if (thread_safe)
3870                 {
3871                   unsigned int pltindex
3872                     = ((pltoff - this->targ_->first_plt_entry_offset())
3873                        / this->targ_->plt_entry_size());
3874                   Address glinkoff
3875                     = (this->targ_->glink_section()->pltresolve_size
3876                        + pltindex * 8);
3877                   if (pltindex > 32768)
3878                     glinkoff += (pltindex - 32768) * 4;
3879                   Address to
3880                     = this->targ_->glink_section()->address() + glinkoff;
3881                   Address from
3882                     = (this->stub_address() + cs->second + 24
3883                        + 4 * (ha(off) != 0)
3884                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3885                        + 4 * static_chain);
3886                   cmp_branch_off = to - from;
3887                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3888                 }
3889
3890               p = oview + cs->second;
3891               if (ha(off) != 0)
3892                 {
3893                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3894                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3895                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3896                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3897                     {
3898                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3899                       off = 0;
3900                     }
3901                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3902                   if (use_fake_dep)
3903                     {
3904                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3905                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3906                     }
3907                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3908                   if (static_chain)
3909                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3910                 }
3911               else
3912                 {
3913                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3914                   write_insn<big_endian>(p, ld_11_2 + l(off)),          p += 4;
3915                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3916                     {
3917                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3918                       off = 0;
3919                     }
3920                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3921                   if (use_fake_dep)
3922                     {
3923                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3924                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3925                     }
3926                   if (static_chain)
3927                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3928                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3929                 }
3930               if (thread_safe && !use_fake_dep)
3931                 {
3932                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3933                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3934                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3935                 }
3936               else
3937                 write_insn<big_endian>(p, bctr);
3938             }
3939         }
3940
3941       // Write out long branch stubs.
3942       typename Branch_stub_entries::const_iterator bs;
3943       for (bs = this->long_branch_stubs_.begin();
3944            bs != this->long_branch_stubs_.end();
3945            ++bs)
3946         {
3947           p = oview + this->plt_size_ + bs->second;
3948           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3949           Address delta = bs->first.dest_ - loc;
3950           if (delta + (1 << 25) < 2 << 25)
3951             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3952           else
3953             {
3954               Address brlt_addr
3955                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3956               gold_assert(brlt_addr != invalid_address);
3957               brlt_addr += this->targ_->brlt_section()->address();
3958               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3959               Address brltoff = brlt_addr - got_addr;
3960               if (ha(brltoff) == 0)
3961                 {
3962                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3963                 }
3964               else
3965                 {
3966                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3967                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3968                 }
3969               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3970               write_insn<big_endian>(p, bctr);
3971             }
3972         }
3973     }
3974   else
3975     {
3976       if (!this->plt_call_stubs_.empty())
3977         {
3978           // The base address of the .plt section.
3979           Address plt_base = this->targ_->plt_section()->address();
3980           Address iplt_base = invalid_address;
3981           // The address of _GLOBAL_OFFSET_TABLE_.
3982           Address g_o_t = invalid_address;
3983
3984           // Write out plt call stubs.
3985           typename Plt_stub_entries::const_iterator cs;
3986           for (cs = this->plt_call_stubs_.begin();
3987                cs != this->plt_call_stubs_.end();
3988                ++cs)
3989             {
3990               bool is_iplt;
3991               Address plt_addr = this->plt_off(cs, &is_iplt);
3992               if (is_iplt)
3993                 {
3994                   if (iplt_base == invalid_address)
3995                     iplt_base = this->targ_->iplt_section()->address();
3996                   plt_addr += iplt_base;
3997                 }
3998               else
3999                 plt_addr += plt_base;
4000
4001               p = oview + cs->second;
4002               if (parameters->options().output_is_position_independent())
4003                 {
4004                   Address got_addr;
4005                   const Powerpc_relobj<size, big_endian>* ppcobj
4006                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4007                        (cs->first.object_));
4008                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4009                     {
4010                       unsigned int got2 = ppcobj->got2_shndx();
4011                       got_addr = ppcobj->get_output_section_offset(got2);
4012                       gold_assert(got_addr != invalid_address);
4013                       got_addr += (ppcobj->output_section(got2)->address()
4014                                    + cs->first.addend_);
4015                     }
4016                   else
4017                     {
4018                       if (g_o_t == invalid_address)
4019                         {
4020                           const Output_data_got_powerpc<size, big_endian>* got
4021                             = this->targ_->got_section();
4022                           g_o_t = got->address() + got->g_o_t();
4023                         }
4024                       got_addr = g_o_t;
4025                     }
4026
4027                   Address off = plt_addr - got_addr;
4028                   if (ha(off) == 0)
4029                     {
4030                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4031                       write_insn<big_endian>(p +  4, mtctr_11);
4032                       write_insn<big_endian>(p +  8, bctr);
4033                     }
4034                   else
4035                     {
4036                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4037                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4038                       write_insn<big_endian>(p +  8, mtctr_11);
4039                       write_insn<big_endian>(p + 12, bctr);
4040                     }
4041                 }
4042               else
4043                 {
4044                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4045                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4046                   write_insn<big_endian>(p +  8, mtctr_11);
4047                   write_insn<big_endian>(p + 12, bctr);
4048                 }
4049             }
4050         }
4051
4052       // Write out long branch stubs.
4053       typename Branch_stub_entries::const_iterator bs;
4054       for (bs = this->long_branch_stubs_.begin();
4055            bs != this->long_branch_stubs_.end();
4056            ++bs)
4057         {
4058           p = oview + this->plt_size_ + bs->second;
4059           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4060           Address delta = bs->first.dest_ - loc;
4061           if (delta + (1 << 25) < 2 << 25)
4062             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4063           else if (!parameters->options().output_is_position_independent())
4064             {
4065               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4066               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4067               write_insn<big_endian>(p +  8, mtctr_12);
4068               write_insn<big_endian>(p + 12, bctr);
4069             }
4070           else
4071             {
4072               delta -= 8;
4073               write_insn<big_endian>(p +  0, mflr_0);
4074               write_insn<big_endian>(p +  4, bcl_20_31);
4075               write_insn<big_endian>(p +  8, mflr_12);
4076               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4077               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4078               write_insn<big_endian>(p + 20, mtlr_0);
4079               write_insn<big_endian>(p + 24, mtctr_12);
4080               write_insn<big_endian>(p + 28, bctr);
4081             }
4082         }
4083     }
4084 }
4085
4086 // Write out .glink.
4087
4088 template<int size, bool big_endian>
4089 void
4090 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4091 {
4092   const section_size_type off = this->offset();
4093   const section_size_type oview_size =
4094     convert_to_section_size_type(this->data_size());
4095   unsigned char* const oview = of->get_output_view(off, oview_size);
4096   unsigned char* p;
4097
4098   // The base address of the .plt section.
4099   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4100   Address plt_base = this->targ_->plt_section()->address();
4101
4102   if (size == 64)
4103     {
4104       // Write pltresolve stub.
4105       p = oview;
4106       Address after_bcl = this->address() + 16;
4107       Address pltoff = plt_base - after_bcl;
4108
4109       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
4110
4111       write_insn<big_endian>(p, mflr_12),                       p += 4;
4112       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
4113       write_insn<big_endian>(p, mflr_11),                       p += 4;
4114       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
4115       write_insn<big_endian>(p, mtlr_12),                       p += 4;
4116       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
4117       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
4118       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
4119       write_insn<big_endian>(p, mtctr_11),                      p += 4;
4120       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
4121       write_insn<big_endian>(p, bctr),                          p += 4;
4122       while (p < oview + this->pltresolve_size)
4123         write_insn<big_endian>(p, nop), p += 4;
4124
4125       // Write lazy link call stubs.
4126       uint32_t indx = 0;
4127       while (p < oview + oview_size)
4128         {
4129           if (indx < 0x8000)
4130             {
4131               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
4132             }
4133           else
4134             {
4135               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
4136               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
4137             }
4138           uint32_t branch_off = 8 - (p - oview);
4139           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
4140           indx++;
4141         }
4142     }
4143   else
4144     {
4145       const Output_data_got_powerpc<size, big_endian>* got
4146         = this->targ_->got_section();
4147       // The address of _GLOBAL_OFFSET_TABLE_.
4148       Address g_o_t = got->address() + got->g_o_t();
4149
4150       // Write out pltresolve branch table.
4151       p = oview;
4152       unsigned int the_end = oview_size - this->pltresolve_size;
4153       unsigned char* end_p = oview + the_end;
4154       while (p < end_p - 8 * 4)
4155         write_insn<big_endian>(p, b + end_p - p), p += 4;
4156       while (p < end_p)
4157         write_insn<big_endian>(p, nop), p += 4;
4158
4159       // Write out pltresolve call stub.
4160       if (parameters->options().output_is_position_independent())
4161         {
4162           Address res0_off = 0;
4163           Address after_bcl_off = the_end + 12;
4164           Address bcl_res0 = after_bcl_off - res0_off;
4165
4166           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4167           write_insn<big_endian>(p +  4, mflr_0);
4168           write_insn<big_endian>(p +  8, bcl_20_31);
4169           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4170           write_insn<big_endian>(p + 16, mflr_12);
4171           write_insn<big_endian>(p + 20, mtlr_0);
4172           write_insn<big_endian>(p + 24, sub_11_11_12);
4173
4174           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4175
4176           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4177           if (ha(got_bcl) == ha(got_bcl + 4))
4178             {
4179               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4180               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4181             }
4182           else
4183             {
4184               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4185               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4186             }
4187           write_insn<big_endian>(p + 40, mtctr_0);
4188           write_insn<big_endian>(p + 44, add_0_11_11);
4189           write_insn<big_endian>(p + 48, add_11_0_11);
4190           write_insn<big_endian>(p + 52, bctr);
4191           write_insn<big_endian>(p + 56, nop);
4192           write_insn<big_endian>(p + 60, nop);
4193         }
4194       else
4195         {
4196           Address res0 = this->address();
4197
4198           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4199           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4200           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4201             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4202           else
4203             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4204           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4205           write_insn<big_endian>(p + 16, mtctr_0);
4206           write_insn<big_endian>(p + 20, add_0_11_11);
4207           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4208             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4209           else
4210             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4211           write_insn<big_endian>(p + 28, add_11_0_11);
4212           write_insn<big_endian>(p + 32, bctr);
4213           write_insn<big_endian>(p + 36, nop);
4214           write_insn<big_endian>(p + 40, nop);
4215           write_insn<big_endian>(p + 44, nop);
4216           write_insn<big_endian>(p + 48, nop);
4217           write_insn<big_endian>(p + 52, nop);
4218           write_insn<big_endian>(p + 56, nop);
4219           write_insn<big_endian>(p + 60, nop);
4220         }
4221       p += 64;
4222     }
4223
4224   of->write_output_view(off, oview_size, oview);
4225 }
4226
4227
4228 // A class to handle linker generated save/restore functions.
4229
4230 template<int size, bool big_endian>
4231 class Output_data_save_res : public Output_section_data_build
4232 {
4233  public:
4234   Output_data_save_res(Symbol_table* symtab);
4235
4236  protected:
4237   // Write to a map file.
4238   void
4239   do_print_to_mapfile(Mapfile* mapfile) const
4240   { mapfile->print_output_data(this, _("** save/restore")); }
4241
4242   void
4243   do_write(Output_file*);
4244
4245  private:
4246   // The maximum size of save/restore contents.
4247   static const unsigned int savres_max = 218*4;
4248
4249   void
4250   savres_define(Symbol_table* symtab,
4251                 const char *name,
4252                 unsigned int lo, unsigned int hi,
4253                 unsigned char* write_ent(unsigned char*, int),
4254                 unsigned char* write_tail(unsigned char*, int));
4255
4256   unsigned char *contents_;
4257 };
4258
4259 template<bool big_endian>
4260 static unsigned char*
4261 savegpr0(unsigned char* p, int r)
4262 {
4263   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4264   write_insn<big_endian>(p, insn);
4265   return p + 4;
4266 }
4267
4268 template<bool big_endian>
4269 static unsigned char*
4270 savegpr0_tail(unsigned char* p, int r)
4271 {
4272   p = savegpr0<big_endian>(p, r);
4273   uint32_t insn = std_0_1 + 16;
4274   write_insn<big_endian>(p, insn);
4275   p = p + 4;
4276   write_insn<big_endian>(p, blr);
4277   return p + 4;
4278 }
4279
4280 template<bool big_endian>
4281 static unsigned char*
4282 restgpr0(unsigned char* p, int r)
4283 {
4284   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4285   write_insn<big_endian>(p, insn);
4286   return p + 4;
4287 }
4288
4289 template<bool big_endian>
4290 static unsigned char*
4291 restgpr0_tail(unsigned char* p, int r)
4292 {
4293   uint32_t insn = ld_0_1 + 16;
4294   write_insn<big_endian>(p, insn);
4295   p = p + 4;
4296   p = restgpr0<big_endian>(p, r);
4297   write_insn<big_endian>(p, mtlr_0);
4298   p = p + 4;
4299   if (r == 29)
4300     {
4301       p = restgpr0<big_endian>(p, 30);
4302       p = restgpr0<big_endian>(p, 31);
4303     }
4304   write_insn<big_endian>(p, blr);
4305   return p + 4;
4306 }
4307
4308 template<bool big_endian>
4309 static unsigned char*
4310 savegpr1(unsigned char* p, int r)
4311 {
4312   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4313   write_insn<big_endian>(p, insn);
4314   return p + 4;
4315 }
4316
4317 template<bool big_endian>
4318 static unsigned char*
4319 savegpr1_tail(unsigned char* p, int r)
4320 {
4321   p = savegpr1<big_endian>(p, r);
4322   write_insn<big_endian>(p, blr);
4323   return p + 4;
4324 }
4325
4326 template<bool big_endian>
4327 static unsigned char*
4328 restgpr1(unsigned char* p, int r)
4329 {
4330   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4331   write_insn<big_endian>(p, insn);
4332   return p + 4;
4333 }
4334
4335 template<bool big_endian>
4336 static unsigned char*
4337 restgpr1_tail(unsigned char* p, int r)
4338 {
4339   p = restgpr1<big_endian>(p, r);
4340   write_insn<big_endian>(p, blr);
4341   return p + 4;
4342 }
4343
4344 template<bool big_endian>
4345 static unsigned char*
4346 savefpr(unsigned char* p, int r)
4347 {
4348   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4349   write_insn<big_endian>(p, insn);
4350   return p + 4;
4351 }
4352
4353 template<bool big_endian>
4354 static unsigned char*
4355 savefpr0_tail(unsigned char* p, int r)
4356 {
4357   p = savefpr<big_endian>(p, r);
4358   write_insn<big_endian>(p, std_0_1 + 16);
4359   p = p + 4;
4360   write_insn<big_endian>(p, blr);
4361   return p + 4;
4362 }
4363
4364 template<bool big_endian>
4365 static unsigned char*
4366 restfpr(unsigned char* p, int r)
4367 {
4368   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4369   write_insn<big_endian>(p, insn);
4370   return p + 4;
4371 }
4372
4373 template<bool big_endian>
4374 static unsigned char*
4375 restfpr0_tail(unsigned char* p, int r)
4376 {
4377   write_insn<big_endian>(p, ld_0_1 + 16);
4378   p = p + 4;
4379   p = restfpr<big_endian>(p, r);
4380   write_insn<big_endian>(p, mtlr_0);
4381   p = p + 4;
4382   if (r == 29)
4383     {
4384       p = restfpr<big_endian>(p, 30);
4385       p = restfpr<big_endian>(p, 31);
4386     }
4387   write_insn<big_endian>(p, blr);
4388   return p + 4;
4389 }
4390
4391 template<bool big_endian>
4392 static unsigned char*
4393 savefpr1_tail(unsigned char* p, int r)
4394 {
4395   p = savefpr<big_endian>(p, r);
4396   write_insn<big_endian>(p, blr);
4397   return p + 4;
4398 }
4399
4400 template<bool big_endian>
4401 static unsigned char*
4402 restfpr1_tail(unsigned char* p, int r)
4403 {
4404   p = restfpr<big_endian>(p, r);
4405   write_insn<big_endian>(p, blr);
4406   return p + 4;
4407 }
4408
4409 template<bool big_endian>
4410 static unsigned char*
4411 savevr(unsigned char* p, int r)
4412 {
4413   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4414   write_insn<big_endian>(p, insn);
4415   p = p + 4;
4416   insn = stvx_0_12_0 + (r << 21);
4417   write_insn<big_endian>(p, insn);
4418   return p + 4;
4419 }
4420
4421 template<bool big_endian>
4422 static unsigned char*
4423 savevr_tail(unsigned char* p, int r)
4424 {
4425   p = savevr<big_endian>(p, r);
4426   write_insn<big_endian>(p, blr);
4427   return p + 4;
4428 }
4429
4430 template<bool big_endian>
4431 static unsigned char*
4432 restvr(unsigned char* p, int r)
4433 {
4434   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4435   write_insn<big_endian>(p, insn);
4436   p = p + 4;
4437   insn = lvx_0_12_0 + (r << 21);
4438   write_insn<big_endian>(p, insn);
4439   return p + 4;
4440 }
4441
4442 template<bool big_endian>
4443 static unsigned char*
4444 restvr_tail(unsigned char* p, int r)
4445 {
4446   p = restvr<big_endian>(p, r);
4447   write_insn<big_endian>(p, blr);
4448   return p + 4;
4449 }
4450
4451
4452 template<int size, bool big_endian>
4453 Output_data_save_res<size, big_endian>::Output_data_save_res(
4454     Symbol_table* symtab)
4455   : Output_section_data_build(4),
4456     contents_(NULL)
4457 {
4458   this->savres_define(symtab,
4459                       "_savegpr0_", 14, 31,
4460                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4461   this->savres_define(symtab,
4462                       "_restgpr0_", 14, 29,
4463                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4464   this->savres_define(symtab,
4465                       "_restgpr0_", 30, 31,
4466                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4467   this->savres_define(symtab,
4468                       "_savegpr1_", 14, 31,
4469                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4470   this->savres_define(symtab,
4471                       "_restgpr1_", 14, 31,
4472                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4473   this->savres_define(symtab,
4474                       "_savefpr_", 14, 31,
4475                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4476   this->savres_define(symtab,
4477                       "_restfpr_", 14, 29,
4478                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4479   this->savres_define(symtab,
4480                       "_restfpr_", 30, 31,
4481                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4482   this->savres_define(symtab,
4483                       "._savef", 14, 31,
4484                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4485   this->savres_define(symtab,
4486                       "._restf", 14, 31,
4487                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4488   this->savres_define(symtab,
4489                       "_savevr_", 20, 31,
4490                       savevr<big_endian>, savevr_tail<big_endian>);
4491   this->savres_define(symtab,
4492                       "_restvr_", 20, 31,
4493                       restvr<big_endian>, restvr_tail<big_endian>);
4494 }
4495
4496 template<int size, bool big_endian>
4497 void
4498 Output_data_save_res<size, big_endian>::savres_define(
4499     Symbol_table* symtab,
4500     const char *name,
4501     unsigned int lo, unsigned int hi,
4502     unsigned char* write_ent(unsigned char*, int),
4503     unsigned char* write_tail(unsigned char*, int))
4504 {
4505   size_t len = strlen(name);
4506   bool writing = false;
4507   char sym[16];
4508
4509   memcpy(sym, name, len);
4510   sym[len + 2] = 0;
4511
4512   for (unsigned int i = lo; i <= hi; i++)
4513     {
4514       sym[len + 0] = i / 10 + '0';
4515       sym[len + 1] = i % 10 + '0';
4516       Symbol* gsym = symtab->lookup(sym);
4517       bool refd = gsym != NULL && gsym->is_undefined();
4518       writing = writing || refd;
4519       if (writing)
4520         {
4521           if (this->contents_ == NULL)
4522             this->contents_ = new unsigned char[this->savres_max];
4523
4524           section_size_type value = this->current_data_size();
4525           unsigned char* p = this->contents_ + value;
4526           if (i != hi)
4527             p = write_ent(p, i);
4528           else
4529             p = write_tail(p, i);
4530           section_size_type cur_size = p - this->contents_;
4531           this->set_current_data_size(cur_size);
4532           if (refd)
4533             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4534                                           this, value, cur_size - value,
4535                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4536                                           elfcpp::STV_HIDDEN, 0, false, false);
4537         }
4538     }
4539 }
4540
4541 // Write out save/restore.
4542
4543 template<int size, bool big_endian>
4544 void
4545 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4546 {
4547   const section_size_type off = this->offset();
4548   const section_size_type oview_size =
4549     convert_to_section_size_type(this->data_size());
4550   unsigned char* const oview = of->get_output_view(off, oview_size);
4551   memcpy(oview, this->contents_, oview_size);
4552   of->write_output_view(off, oview_size, oview);
4553 }
4554
4555
4556 // Create the glink section.
4557
4558 template<int size, bool big_endian>
4559 void
4560 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4561 {
4562   if (this->glink_ == NULL)
4563     {
4564       this->glink_ = new Output_data_glink<size, big_endian>(this);
4565       this->glink_->add_eh_frame(layout);
4566       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4567                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4568                                       this->glink_, ORDER_TEXT, false);
4569     }
4570 }
4571
4572 // Create a PLT entry for a global symbol.
4573
4574 template<int size, bool big_endian>
4575 void
4576 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4577                                                  Layout* layout,
4578                                                  Symbol* gsym)
4579 {
4580   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4581       && gsym->can_use_relative_reloc(false))
4582     {
4583       if (this->iplt_ == NULL)
4584         this->make_iplt_section(symtab, layout);
4585       this->iplt_->add_ifunc_entry(gsym);
4586     }
4587   else
4588     {
4589       if (this->plt_ == NULL)
4590         this->make_plt_section(symtab, layout);
4591       this->plt_->add_entry(gsym);
4592     }
4593 }
4594
4595 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4596
4597 template<int size, bool big_endian>
4598 void
4599 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4600     Symbol_table* symtab,
4601     Layout* layout,
4602     Sized_relobj_file<size, big_endian>* relobj,
4603     unsigned int r_sym)
4604 {
4605   if (this->iplt_ == NULL)
4606     this->make_iplt_section(symtab, layout);
4607   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4608 }
4609
4610 // Return the number of entries in the PLT.
4611
4612 template<int size, bool big_endian>
4613 unsigned int
4614 Target_powerpc<size, big_endian>::plt_entry_count() const
4615 {
4616   if (this->plt_ == NULL)
4617     return 0;
4618   return this->plt_->entry_count();
4619 }
4620
4621 // Return the offset of the first non-reserved PLT entry.
4622
4623 template<int size, bool big_endian>
4624 unsigned int
4625 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4626 {
4627   return this->plt_->first_plt_entry_offset();
4628 }
4629
4630 // Return the size of each PLT entry.
4631
4632 template<int size, bool big_endian>
4633 unsigned int
4634 Target_powerpc<size, big_endian>::plt_entry_size() const
4635 {
4636   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4637 }
4638
4639 // Create a GOT entry for local dynamic __tls_get_addr calls.
4640
4641 template<int size, bool big_endian>
4642 unsigned int
4643 Target_powerpc<size, big_endian>::tlsld_got_offset(
4644     Symbol_table* symtab,
4645     Layout* layout,
4646     Sized_relobj_file<size, big_endian>* object)
4647 {
4648   if (this->tlsld_got_offset_ == -1U)
4649     {
4650       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4651       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4652       Output_data_got_powerpc<size, big_endian>* got
4653         = this->got_section(symtab, layout);
4654       unsigned int got_offset = got->add_constant_pair(0, 0);
4655       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4656                           got_offset, 0);
4657       this->tlsld_got_offset_ = got_offset;
4658     }
4659   return this->tlsld_got_offset_;
4660 }
4661
4662 // Get the Reference_flags for a particular relocation.
4663
4664 template<int size, bool big_endian>
4665 int
4666 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4667 {
4668   switch (r_type)
4669     {
4670     case elfcpp::R_POWERPC_NONE:
4671     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4672     case elfcpp::R_POWERPC_GNU_VTENTRY:
4673     case elfcpp::R_PPC64_TOC:
4674       // No symbol reference.
4675       return 0;
4676
4677     case elfcpp::R_PPC64_ADDR64:
4678     case elfcpp::R_PPC64_UADDR64:
4679     case elfcpp::R_POWERPC_ADDR32:
4680     case elfcpp::R_POWERPC_UADDR32:
4681     case elfcpp::R_POWERPC_ADDR16:
4682     case elfcpp::R_POWERPC_UADDR16:
4683     case elfcpp::R_POWERPC_ADDR16_LO:
4684     case elfcpp::R_POWERPC_ADDR16_HI:
4685     case elfcpp::R_POWERPC_ADDR16_HA:
4686       return Symbol::ABSOLUTE_REF;
4687
4688     case elfcpp::R_POWERPC_ADDR24:
4689     case elfcpp::R_POWERPC_ADDR14:
4690     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4691     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4692       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4693
4694     case elfcpp::R_PPC64_REL64:
4695     case elfcpp::R_POWERPC_REL32:
4696     case elfcpp::R_PPC_LOCAL24PC:
4697     case elfcpp::R_POWERPC_REL16:
4698     case elfcpp::R_POWERPC_REL16_LO:
4699     case elfcpp::R_POWERPC_REL16_HI:
4700     case elfcpp::R_POWERPC_REL16_HA:
4701       return Symbol::RELATIVE_REF;
4702
4703     case elfcpp::R_POWERPC_REL24:
4704     case elfcpp::R_PPC_PLTREL24:
4705     case elfcpp::R_POWERPC_REL14:
4706     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4707     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4708       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4709
4710     case elfcpp::R_POWERPC_GOT16:
4711     case elfcpp::R_POWERPC_GOT16_LO:
4712     case elfcpp::R_POWERPC_GOT16_HI:
4713     case elfcpp::R_POWERPC_GOT16_HA:
4714     case elfcpp::R_PPC64_GOT16_DS:
4715     case elfcpp::R_PPC64_GOT16_LO_DS:
4716     case elfcpp::R_PPC64_TOC16:
4717     case elfcpp::R_PPC64_TOC16_LO:
4718     case elfcpp::R_PPC64_TOC16_HI:
4719     case elfcpp::R_PPC64_TOC16_HA:
4720     case elfcpp::R_PPC64_TOC16_DS:
4721     case elfcpp::R_PPC64_TOC16_LO_DS:
4722       // Absolute in GOT.
4723       return Symbol::ABSOLUTE_REF;
4724
4725     case elfcpp::R_POWERPC_GOT_TPREL16:
4726     case elfcpp::R_POWERPC_TLS:
4727       return Symbol::TLS_REF;
4728
4729     case elfcpp::R_POWERPC_COPY:
4730     case elfcpp::R_POWERPC_GLOB_DAT:
4731     case elfcpp::R_POWERPC_JMP_SLOT:
4732     case elfcpp::R_POWERPC_RELATIVE:
4733     case elfcpp::R_POWERPC_DTPMOD:
4734     default:
4735       // Not expected.  We will give an error later.
4736       return 0;
4737     }
4738 }
4739
4740 // Report an unsupported relocation against a local symbol.
4741
4742 template<int size, bool big_endian>
4743 void
4744 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4745     Sized_relobj_file<size, big_endian>* object,
4746     unsigned int r_type)
4747 {
4748   gold_error(_("%s: unsupported reloc %u against local symbol"),
4749              object->name().c_str(), r_type);
4750 }
4751
4752 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4753 // dynamic linker does not support it, issue an error.
4754
4755 template<int size, bool big_endian>
4756 void
4757 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4758                                                       unsigned int r_type)
4759 {
4760   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4761
4762   // These are the relocation types supported by glibc for both 32-bit
4763   // and 64-bit powerpc.
4764   switch (r_type)
4765     {
4766     case elfcpp::R_POWERPC_NONE:
4767     case elfcpp::R_POWERPC_RELATIVE:
4768     case elfcpp::R_POWERPC_GLOB_DAT:
4769     case elfcpp::R_POWERPC_DTPMOD:
4770     case elfcpp::R_POWERPC_DTPREL:
4771     case elfcpp::R_POWERPC_TPREL:
4772     case elfcpp::R_POWERPC_JMP_SLOT:
4773     case elfcpp::R_POWERPC_COPY:
4774     case elfcpp::R_POWERPC_IRELATIVE:
4775     case elfcpp::R_POWERPC_ADDR32:
4776     case elfcpp::R_POWERPC_UADDR32:
4777     case elfcpp::R_POWERPC_ADDR24:
4778     case elfcpp::R_POWERPC_ADDR16:
4779     case elfcpp::R_POWERPC_UADDR16:
4780     case elfcpp::R_POWERPC_ADDR16_LO:
4781     case elfcpp::R_POWERPC_ADDR16_HI:
4782     case elfcpp::R_POWERPC_ADDR16_HA:
4783     case elfcpp::R_POWERPC_ADDR14:
4784     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4785     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4786     case elfcpp::R_POWERPC_REL32:
4787     case elfcpp::R_POWERPC_REL24:
4788     case elfcpp::R_POWERPC_TPREL16:
4789     case elfcpp::R_POWERPC_TPREL16_LO:
4790     case elfcpp::R_POWERPC_TPREL16_HI:
4791     case elfcpp::R_POWERPC_TPREL16_HA:
4792       return;
4793
4794     default:
4795       break;
4796     }
4797
4798   if (size == 64)
4799     {
4800       switch (r_type)
4801         {
4802           // These are the relocation types supported only on 64-bit.
4803         case elfcpp::R_PPC64_ADDR64:
4804         case elfcpp::R_PPC64_UADDR64:
4805         case elfcpp::R_PPC64_JMP_IREL:
4806         case elfcpp::R_PPC64_ADDR16_DS:
4807         case elfcpp::R_PPC64_ADDR16_LO_DS:
4808         case elfcpp::R_PPC64_ADDR16_HIGHER:
4809         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4810         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4811         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4812         case elfcpp::R_PPC64_REL64:
4813         case elfcpp::R_POWERPC_ADDR30:
4814         case elfcpp::R_PPC64_TPREL16_DS:
4815         case elfcpp::R_PPC64_TPREL16_LO_DS:
4816         case elfcpp::R_PPC64_TPREL16_HIGHER:
4817         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4818         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4819         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4820           return;
4821
4822         default:
4823           break;
4824         }
4825     }
4826   else
4827     {
4828       switch (r_type)
4829         {
4830           // These are the relocation types supported only on 32-bit.
4831           // ??? glibc ld.so doesn't need to support these.
4832         case elfcpp::R_POWERPC_DTPREL16:
4833         case elfcpp::R_POWERPC_DTPREL16_LO:
4834         case elfcpp::R_POWERPC_DTPREL16_HI:
4835         case elfcpp::R_POWERPC_DTPREL16_HA:
4836           return;
4837
4838         default:
4839           break;
4840         }
4841     }
4842
4843   // This prevents us from issuing more than one error per reloc
4844   // section.  But we can still wind up issuing more than one
4845   // error per object file.
4846   if (this->issued_non_pic_error_)
4847     return;
4848   gold_assert(parameters->options().output_is_position_independent());
4849   object->error(_("requires unsupported dynamic reloc; "
4850                   "recompile with -fPIC"));
4851   this->issued_non_pic_error_ = true;
4852   return;
4853 }
4854
4855 // Return whether we need to make a PLT entry for a relocation of the
4856 // given type against a STT_GNU_IFUNC symbol.
4857
4858 template<int size, bool big_endian>
4859 bool
4860 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4861      Sized_relobj_file<size, big_endian>* object,
4862      unsigned int r_type,
4863      bool report_err)
4864 {
4865   // In non-pic code any reference will resolve to the plt call stub
4866   // for the ifunc symbol.
4867   if (size == 32 && !parameters->options().output_is_position_independent())
4868     return true;
4869
4870   switch (r_type)
4871     {
4872     // Word size refs from data sections are OK, but don't need a PLT entry.
4873     case elfcpp::R_POWERPC_ADDR32:
4874     case elfcpp::R_POWERPC_UADDR32:
4875       if (size == 32)
4876         return false;
4877       break;
4878
4879     case elfcpp::R_PPC64_ADDR64:
4880     case elfcpp::R_PPC64_UADDR64:
4881       if (size == 64)
4882         return false;
4883       break;
4884
4885     // GOT refs are good, but also don't need a PLT entry.
4886     case elfcpp::R_POWERPC_GOT16:
4887     case elfcpp::R_POWERPC_GOT16_LO:
4888     case elfcpp::R_POWERPC_GOT16_HI:
4889     case elfcpp::R_POWERPC_GOT16_HA:
4890     case elfcpp::R_PPC64_GOT16_DS:
4891     case elfcpp::R_PPC64_GOT16_LO_DS:
4892       return false;
4893
4894     // Function calls are good, and these do need a PLT entry.
4895     case elfcpp::R_POWERPC_ADDR24:
4896     case elfcpp::R_POWERPC_ADDR14:
4897     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4898     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4899     case elfcpp::R_POWERPC_REL24:
4900     case elfcpp::R_PPC_PLTREL24:
4901     case elfcpp::R_POWERPC_REL14:
4902     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4903     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4904       return true;
4905
4906     default:
4907       break;
4908     }
4909
4910   // Anything else is a problem.
4911   // If we are building a static executable, the libc startup function
4912   // responsible for applying indirect function relocations is going
4913   // to complain about the reloc type.
4914   // If we are building a dynamic executable, we will have a text
4915   // relocation.  The dynamic loader will set the text segment
4916   // writable and non-executable to apply text relocations.  So we'll
4917   // segfault when trying to run the indirection function to resolve
4918   // the reloc.
4919   if (report_err)
4920     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4921                object->name().c_str(), r_type);
4922   return false;
4923 }
4924
4925 // Scan a relocation for a local symbol.
4926
4927 template<int size, bool big_endian>
4928 inline void
4929 Target_powerpc<size, big_endian>::Scan::local(
4930     Symbol_table* symtab,
4931     Layout* layout,
4932     Target_powerpc<size, big_endian>* target,
4933     Sized_relobj_file<size, big_endian>* object,
4934     unsigned int data_shndx,
4935     Output_section* output_section,
4936     const elfcpp::Rela<size, big_endian>& reloc,
4937     unsigned int r_type,
4938     const elfcpp::Sym<size, big_endian>& lsym,
4939     bool is_discarded)
4940 {
4941   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4942
4943   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4944       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4945     {
4946       this->expect_tls_get_addr_call();
4947       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4948       if (tls_type != tls::TLSOPT_NONE)
4949         this->skip_next_tls_get_addr_call();
4950     }
4951   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4952            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4953     {
4954       this->expect_tls_get_addr_call();
4955       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4956       if (tls_type != tls::TLSOPT_NONE)
4957         this->skip_next_tls_get_addr_call();
4958     }
4959
4960   Powerpc_relobj<size, big_endian>* ppc_object
4961     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4962
4963   if (is_discarded)
4964     {
4965       if (size == 64
4966           && data_shndx == ppc_object->opd_shndx()
4967           && r_type == elfcpp::R_PPC64_ADDR64)
4968         ppc_object->set_opd_discard(reloc.get_r_offset());
4969       return;
4970     }
4971
4972   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4973   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4974   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
4975     {
4976       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4977       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4978                           r_type, r_sym, reloc.get_r_addend());
4979       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4980     }
4981
4982   switch (r_type)
4983     {
4984     case elfcpp::R_POWERPC_NONE:
4985     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4986     case elfcpp::R_POWERPC_GNU_VTENTRY:
4987     case elfcpp::R_PPC64_TOCSAVE:
4988     case elfcpp::R_PPC_EMB_MRKREF:
4989     case elfcpp::R_POWERPC_TLS:
4990       break;
4991
4992     case elfcpp::R_PPC64_TOC:
4993       {
4994         Output_data_got_powerpc<size, big_endian>* got
4995           = target->got_section(symtab, layout);
4996         if (parameters->options().output_is_position_independent())
4997           {
4998             Address off = reloc.get_r_offset();
4999             if (size == 64
5000                 && data_shndx == ppc_object->opd_shndx()
5001                 && ppc_object->get_opd_discard(off - 8))
5002               break;
5003
5004             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5005             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5006             rela_dyn->add_output_section_relative(got->output_section(),
5007                                                   elfcpp::R_POWERPC_RELATIVE,
5008                                                   output_section,
5009                                                   object, data_shndx, off,
5010                                                   symobj->toc_base_offset());
5011           }
5012       }
5013       break;
5014
5015     case elfcpp::R_PPC64_ADDR64:
5016     case elfcpp::R_PPC64_UADDR64:
5017     case elfcpp::R_POWERPC_ADDR32:
5018     case elfcpp::R_POWERPC_UADDR32:
5019     case elfcpp::R_POWERPC_ADDR24:
5020     case elfcpp::R_POWERPC_ADDR16:
5021     case elfcpp::R_POWERPC_ADDR16_LO:
5022     case elfcpp::R_POWERPC_ADDR16_HI:
5023     case elfcpp::R_POWERPC_ADDR16_HA:
5024     case elfcpp::R_POWERPC_UADDR16:
5025     case elfcpp::R_PPC64_ADDR16_HIGHER:
5026     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5027     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5028     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5029     case elfcpp::R_PPC64_ADDR16_DS:
5030     case elfcpp::R_PPC64_ADDR16_LO_DS:
5031     case elfcpp::R_POWERPC_ADDR14:
5032     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5033     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5034       // If building a shared library (or a position-independent
5035       // executable), we need to create a dynamic relocation for
5036       // this location.
5037       if (parameters->options().output_is_position_independent()
5038           || (size == 64 && is_ifunc))
5039         {
5040           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5041                                                              is_ifunc);
5042           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5043               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5044             {
5045               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5046               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5047                                      : elfcpp::R_POWERPC_RELATIVE);
5048               rela_dyn->add_local_relative(object, r_sym, dynrel,
5049                                            output_section, data_shndx,
5050                                            reloc.get_r_offset(),
5051                                            reloc.get_r_addend(), false);
5052             }
5053           else
5054             {
5055               check_non_pic(object, r_type);
5056               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5057               rela_dyn->add_local(object, r_sym, r_type, output_section,
5058                                   data_shndx, reloc.get_r_offset(),
5059                                   reloc.get_r_addend());
5060             }
5061         }
5062       break;
5063
5064     case elfcpp::R_POWERPC_REL24:
5065     case elfcpp::R_PPC_PLTREL24:
5066     case elfcpp::R_PPC_LOCAL24PC:
5067     case elfcpp::R_POWERPC_REL14:
5068     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5069     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5070       if (!is_ifunc)
5071         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5072                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5073                             reloc.get_r_addend());
5074       break;
5075
5076     case elfcpp::R_PPC64_REL64:
5077     case elfcpp::R_POWERPC_REL32:
5078     case elfcpp::R_POWERPC_REL16:
5079     case elfcpp::R_POWERPC_REL16_LO:
5080     case elfcpp::R_POWERPC_REL16_HI:
5081     case elfcpp::R_POWERPC_REL16_HA:
5082     case elfcpp::R_POWERPC_SECTOFF:
5083     case elfcpp::R_POWERPC_TPREL16:
5084     case elfcpp::R_POWERPC_DTPREL16:
5085     case elfcpp::R_POWERPC_SECTOFF_LO:
5086     case elfcpp::R_POWERPC_TPREL16_LO:
5087     case elfcpp::R_POWERPC_DTPREL16_LO:
5088     case elfcpp::R_POWERPC_SECTOFF_HI:
5089     case elfcpp::R_POWERPC_TPREL16_HI:
5090     case elfcpp::R_POWERPC_DTPREL16_HI:
5091     case elfcpp::R_POWERPC_SECTOFF_HA:
5092     case elfcpp::R_POWERPC_TPREL16_HA:
5093     case elfcpp::R_POWERPC_DTPREL16_HA:
5094     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5095     case elfcpp::R_PPC64_TPREL16_HIGHER:
5096     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5097     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5098     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5099     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5100     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5101     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5102     case elfcpp::R_PPC64_TPREL16_DS:
5103     case elfcpp::R_PPC64_TPREL16_LO_DS:
5104     case elfcpp::R_PPC64_DTPREL16_DS:
5105     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5106     case elfcpp::R_PPC64_SECTOFF_DS:
5107     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5108     case elfcpp::R_PPC64_TLSGD:
5109     case elfcpp::R_PPC64_TLSLD:
5110       break;
5111
5112     case elfcpp::R_POWERPC_GOT16:
5113     case elfcpp::R_POWERPC_GOT16_LO:
5114     case elfcpp::R_POWERPC_GOT16_HI:
5115     case elfcpp::R_POWERPC_GOT16_HA:
5116     case elfcpp::R_PPC64_GOT16_DS:
5117     case elfcpp::R_PPC64_GOT16_LO_DS:
5118       {
5119         // The symbol requires a GOT entry.
5120         Output_data_got_powerpc<size, big_endian>* got
5121           = target->got_section(symtab, layout);
5122         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5123
5124         if (!parameters->options().output_is_position_independent())
5125           {
5126             if (size == 32 && is_ifunc)
5127               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5128             else
5129               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5130           }
5131         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5132           {
5133             // If we are generating a shared object or a pie, this
5134             // symbol's GOT entry will be set by a dynamic relocation.
5135             unsigned int off;
5136             off = got->add_constant(0);
5137             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5138
5139             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5140                                                                is_ifunc);
5141             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5142                                    : elfcpp::R_POWERPC_RELATIVE);
5143             rela_dyn->add_local_relative(object, r_sym, dynrel,
5144                                          got, off, 0, false);
5145           }
5146       }
5147       break;
5148
5149     case elfcpp::R_PPC64_TOC16:
5150     case elfcpp::R_PPC64_TOC16_LO:
5151     case elfcpp::R_PPC64_TOC16_HI:
5152     case elfcpp::R_PPC64_TOC16_HA:
5153     case elfcpp::R_PPC64_TOC16_DS:
5154     case elfcpp::R_PPC64_TOC16_LO_DS:
5155       // We need a GOT section.
5156       target->got_section(symtab, layout);
5157       break;
5158
5159     case elfcpp::R_POWERPC_GOT_TLSGD16:
5160     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5161     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5162     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5163       {
5164         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5165         if (tls_type == tls::TLSOPT_NONE)
5166           {
5167             Output_data_got_powerpc<size, big_endian>* got
5168               = target->got_section(symtab, layout);
5169             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5170             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5171             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5172                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5173           }
5174         else if (tls_type == tls::TLSOPT_TO_LE)
5175           {
5176             // no GOT relocs needed for Local Exec.
5177           }
5178         else
5179           gold_unreachable();
5180       }
5181       break;
5182
5183     case elfcpp::R_POWERPC_GOT_TLSLD16:
5184     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5185     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5186     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5187       {
5188         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5189         if (tls_type == tls::TLSOPT_NONE)
5190           target->tlsld_got_offset(symtab, layout, object);
5191         else if (tls_type == tls::TLSOPT_TO_LE)
5192           {
5193             // no GOT relocs needed for Local Exec.
5194             if (parameters->options().emit_relocs())
5195               {
5196                 Output_section* os = layout->tls_segment()->first_section();
5197                 gold_assert(os != NULL);
5198                 os->set_needs_symtab_index();
5199               }
5200           }
5201         else
5202           gold_unreachable();
5203       }
5204       break;
5205
5206     case elfcpp::R_POWERPC_GOT_DTPREL16:
5207     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5208     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5209     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5210       {
5211         Output_data_got_powerpc<size, big_endian>* got
5212           = target->got_section(symtab, layout);
5213         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5214         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5215       }
5216       break;
5217
5218     case elfcpp::R_POWERPC_GOT_TPREL16:
5219     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5220     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5221     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5222       {
5223         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5224         if (tls_type == tls::TLSOPT_NONE)
5225           {
5226             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5227             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5228               {
5229                 Output_data_got_powerpc<size, big_endian>* got
5230                   = target->got_section(symtab, layout);
5231                 unsigned int off = got->add_constant(0);
5232                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5233
5234                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5235                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5236                                                       elfcpp::R_POWERPC_TPREL,
5237                                                       got, off, 0);
5238               }
5239           }
5240         else if (tls_type == tls::TLSOPT_TO_LE)
5241           {
5242             // no GOT relocs needed for Local Exec.
5243           }
5244         else
5245           gold_unreachable();
5246       }
5247       break;
5248
5249     default:
5250       unsupported_reloc_local(object, r_type);
5251       break;
5252     }
5253
5254   switch (r_type)
5255     {
5256     case elfcpp::R_POWERPC_GOT_TLSLD16:
5257     case elfcpp::R_POWERPC_GOT_TLSGD16:
5258     case elfcpp::R_POWERPC_GOT_TPREL16:
5259     case elfcpp::R_POWERPC_GOT_DTPREL16:
5260     case elfcpp::R_POWERPC_GOT16:
5261     case elfcpp::R_PPC64_GOT16_DS:
5262     case elfcpp::R_PPC64_TOC16:
5263     case elfcpp::R_PPC64_TOC16_DS:
5264       ppc_object->set_has_small_toc_reloc();
5265     default:
5266       break;
5267     }
5268 }
5269
5270 // Report an unsupported relocation against a global symbol.
5271
5272 template<int size, bool big_endian>
5273 void
5274 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5275     Sized_relobj_file<size, big_endian>* object,
5276     unsigned int r_type,
5277     Symbol* gsym)
5278 {
5279   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5280              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5281 }
5282
5283 // Scan a relocation for a global symbol.
5284
5285 template<int size, bool big_endian>
5286 inline void
5287 Target_powerpc<size, big_endian>::Scan::global(
5288     Symbol_table* symtab,
5289     Layout* layout,
5290     Target_powerpc<size, big_endian>* target,
5291     Sized_relobj_file<size, big_endian>* object,
5292     unsigned int data_shndx,
5293     Output_section* output_section,
5294     const elfcpp::Rela<size, big_endian>& reloc,
5295     unsigned int r_type,
5296     Symbol* gsym)
5297 {
5298   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5299     return;
5300
5301   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5302       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5303     {
5304       this->expect_tls_get_addr_call();
5305       const bool final = gsym->final_value_is_known();
5306       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5307       if (tls_type != tls::TLSOPT_NONE)
5308         this->skip_next_tls_get_addr_call();
5309     }
5310   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5311            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5312     {
5313       this->expect_tls_get_addr_call();
5314       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5315       if (tls_type != tls::TLSOPT_NONE)
5316         this->skip_next_tls_get_addr_call();
5317     }
5318
5319   Powerpc_relobj<size, big_endian>* ppc_object
5320     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5321
5322   // A STT_GNU_IFUNC symbol may require a PLT entry.
5323   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5324   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5325     {
5326       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5327                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5328                           reloc.get_r_addend());
5329       target->make_plt_entry(symtab, layout, gsym);
5330     }
5331
5332   switch (r_type)
5333     {
5334     case elfcpp::R_POWERPC_NONE:
5335     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5336     case elfcpp::R_POWERPC_GNU_VTENTRY:
5337     case elfcpp::R_PPC_LOCAL24PC:
5338     case elfcpp::R_PPC_EMB_MRKREF:
5339     case elfcpp::R_POWERPC_TLS:
5340       break;
5341
5342     case elfcpp::R_PPC64_TOC:
5343       {
5344         Output_data_got_powerpc<size, big_endian>* got
5345           = target->got_section(symtab, layout);
5346         if (parameters->options().output_is_position_independent())
5347           {
5348             Address off = reloc.get_r_offset();
5349             if (size == 64
5350                 && data_shndx == ppc_object->opd_shndx()
5351                 && ppc_object->get_opd_discard(off - 8))
5352               break;
5353
5354             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5355             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5356             if (data_shndx != ppc_object->opd_shndx())
5357               symobj = static_cast
5358                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5359             rela_dyn->add_output_section_relative(got->output_section(),
5360                                                   elfcpp::R_POWERPC_RELATIVE,
5361                                                   output_section,
5362                                                   object, data_shndx, off,
5363                                                   symobj->toc_base_offset());
5364           }
5365       }
5366       break;
5367
5368     case elfcpp::R_PPC64_ADDR64:
5369       if (size == 64
5370           && data_shndx == ppc_object->opd_shndx()
5371           && (gsym->is_defined_in_discarded_section()
5372               || gsym->object() != object))
5373         {
5374           ppc_object->set_opd_discard(reloc.get_r_offset());
5375           break;
5376         }
5377       // Fall thru
5378     case elfcpp::R_PPC64_UADDR64:
5379     case elfcpp::R_POWERPC_ADDR32:
5380     case elfcpp::R_POWERPC_UADDR32:
5381     case elfcpp::R_POWERPC_ADDR24:
5382     case elfcpp::R_POWERPC_ADDR16:
5383     case elfcpp::R_POWERPC_ADDR16_LO:
5384     case elfcpp::R_POWERPC_ADDR16_HI:
5385     case elfcpp::R_POWERPC_ADDR16_HA:
5386     case elfcpp::R_POWERPC_UADDR16:
5387     case elfcpp::R_PPC64_ADDR16_HIGHER:
5388     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5389     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5390     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5391     case elfcpp::R_PPC64_ADDR16_DS:
5392     case elfcpp::R_PPC64_ADDR16_LO_DS:
5393     case elfcpp::R_POWERPC_ADDR14:
5394     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5395     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5396       {
5397         // Make a PLT entry if necessary.
5398         if (gsym->needs_plt_entry())
5399           {
5400             if (!is_ifunc)
5401               {
5402                 target->push_branch(ppc_object, data_shndx,
5403                                     reloc.get_r_offset(), r_type,
5404                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5405                                     reloc.get_r_addend());
5406                 target->make_plt_entry(symtab, layout, gsym);
5407               }
5408             // Since this is not a PC-relative relocation, we may be
5409             // taking the address of a function. In that case we need to
5410             // set the entry in the dynamic symbol table to the address of
5411             // the PLT call stub.
5412             if (size == 32
5413                 && gsym->is_from_dynobj()
5414                 && !parameters->options().output_is_position_independent())
5415               gsym->set_needs_dynsym_value();
5416           }
5417         // Make a dynamic relocation if necessary.
5418         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5419             || (size == 64 && is_ifunc))
5420           {
5421             if (gsym->may_need_copy_reloc())
5422               {
5423                 target->copy_reloc(symtab, layout, object,
5424                                    data_shndx, output_section, gsym, reloc);
5425               }
5426             else if ((size == 32
5427                       && r_type == elfcpp::R_POWERPC_ADDR32
5428                       && gsym->can_use_relative_reloc(false)
5429                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5430                            && parameters->options().shared()))
5431                      || (size == 64
5432                          && r_type == elfcpp::R_PPC64_ADDR64
5433                          && (gsym->can_use_relative_reloc(false)
5434                              || data_shndx == ppc_object->opd_shndx())))
5435               {
5436                 Reloc_section* rela_dyn
5437                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5438                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5439                                        : elfcpp::R_POWERPC_RELATIVE);
5440                 rela_dyn->add_symbolless_global_addend(
5441                     gsym, dynrel, output_section, object, data_shndx,
5442                     reloc.get_r_offset(), reloc.get_r_addend());
5443               }
5444             else
5445               {
5446                 Reloc_section* rela_dyn
5447                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5448                 check_non_pic(object, r_type);
5449                 rela_dyn->add_global(gsym, r_type, output_section,
5450                                      object, data_shndx,
5451                                      reloc.get_r_offset(),
5452                                      reloc.get_r_addend());
5453               }
5454           }
5455       }
5456       break;
5457
5458     case elfcpp::R_PPC_PLTREL24:
5459     case elfcpp::R_POWERPC_REL24:
5460       if (!is_ifunc)
5461         {
5462           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5463                               r_type,
5464                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5465                               reloc.get_r_addend());
5466           if (gsym->needs_plt_entry()
5467               || (!gsym->final_value_is_known()
5468                   && (gsym->is_undefined()
5469                       || gsym->is_from_dynobj()
5470                       || gsym->is_preemptible())))
5471             target->make_plt_entry(symtab, layout, gsym);
5472         }
5473       // Fall thru
5474
5475     case elfcpp::R_PPC64_REL64:
5476     case elfcpp::R_POWERPC_REL32:
5477       // Make a dynamic relocation if necessary.
5478       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5479         {
5480           if (gsym->may_need_copy_reloc())
5481             {
5482               target->copy_reloc(symtab, layout, object,
5483                                  data_shndx, output_section, gsym,
5484                                  reloc);
5485             }
5486           else
5487             {
5488               Reloc_section* rela_dyn
5489                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5490               check_non_pic(object, r_type);
5491               rela_dyn->add_global(gsym, r_type, output_section, object,
5492                                    data_shndx, reloc.get_r_offset(),
5493                                    reloc.get_r_addend());
5494             }
5495         }
5496       break;
5497
5498     case elfcpp::R_POWERPC_REL14:
5499     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5500     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5501       if (!is_ifunc)
5502         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5503                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5504                             reloc.get_r_addend());
5505       break;
5506
5507     case elfcpp::R_POWERPC_REL16:
5508     case elfcpp::R_POWERPC_REL16_LO:
5509     case elfcpp::R_POWERPC_REL16_HI:
5510     case elfcpp::R_POWERPC_REL16_HA:
5511     case elfcpp::R_POWERPC_SECTOFF:
5512     case elfcpp::R_POWERPC_TPREL16:
5513     case elfcpp::R_POWERPC_DTPREL16:
5514     case elfcpp::R_POWERPC_SECTOFF_LO:
5515     case elfcpp::R_POWERPC_TPREL16_LO:
5516     case elfcpp::R_POWERPC_DTPREL16_LO:
5517     case elfcpp::R_POWERPC_SECTOFF_HI:
5518     case elfcpp::R_POWERPC_TPREL16_HI:
5519     case elfcpp::R_POWERPC_DTPREL16_HI:
5520     case elfcpp::R_POWERPC_SECTOFF_HA:
5521     case elfcpp::R_POWERPC_TPREL16_HA:
5522     case elfcpp::R_POWERPC_DTPREL16_HA:
5523     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5524     case elfcpp::R_PPC64_TPREL16_HIGHER:
5525     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5526     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5527     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5528     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5529     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5530     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5531     case elfcpp::R_PPC64_TPREL16_DS:
5532     case elfcpp::R_PPC64_TPREL16_LO_DS:
5533     case elfcpp::R_PPC64_DTPREL16_DS:
5534     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5535     case elfcpp::R_PPC64_SECTOFF_DS:
5536     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5537     case elfcpp::R_PPC64_TLSGD:
5538     case elfcpp::R_PPC64_TLSLD:
5539       break;
5540
5541     case elfcpp::R_POWERPC_GOT16:
5542     case elfcpp::R_POWERPC_GOT16_LO:
5543     case elfcpp::R_POWERPC_GOT16_HI:
5544     case elfcpp::R_POWERPC_GOT16_HA:
5545     case elfcpp::R_PPC64_GOT16_DS:
5546     case elfcpp::R_PPC64_GOT16_LO_DS:
5547       {
5548         // The symbol requires a GOT entry.
5549         Output_data_got_powerpc<size, big_endian>* got;
5550
5551         got = target->got_section(symtab, layout);
5552         if (gsym->final_value_is_known())
5553           {
5554             if (size == 32 && is_ifunc)
5555               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5556             else
5557               got->add_global(gsym, GOT_TYPE_STANDARD);
5558           }
5559         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5560           {
5561             // If we are generating a shared object or a pie, this
5562             // symbol's GOT entry will be set by a dynamic relocation.
5563             unsigned int off = got->add_constant(0);
5564             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5565
5566             Reloc_section* rela_dyn
5567               = target->rela_dyn_section(symtab, layout, is_ifunc);
5568
5569             if (gsym->can_use_relative_reloc(false)
5570                 && !(size == 32
5571                      && gsym->visibility() == elfcpp::STV_PROTECTED
5572                      && parameters->options().shared()))
5573               {
5574                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5575                                        : elfcpp::R_POWERPC_RELATIVE);
5576                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5577               }
5578             else
5579               {
5580                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5581                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5582               }
5583           }
5584       }
5585       break;
5586
5587     case elfcpp::R_PPC64_TOC16:
5588     case elfcpp::R_PPC64_TOC16_LO:
5589     case elfcpp::R_PPC64_TOC16_HI:
5590     case elfcpp::R_PPC64_TOC16_HA:
5591     case elfcpp::R_PPC64_TOC16_DS:
5592     case elfcpp::R_PPC64_TOC16_LO_DS:
5593       // We need a GOT section.
5594       target->got_section(symtab, layout);
5595       break;
5596
5597     case elfcpp::R_POWERPC_GOT_TLSGD16:
5598     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5599     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5600     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5601       {
5602         const bool final = gsym->final_value_is_known();
5603         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5604         if (tls_type == tls::TLSOPT_NONE)
5605           {
5606             Output_data_got_powerpc<size, big_endian>* got
5607               = target->got_section(symtab, layout);
5608             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5609             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5610                                           elfcpp::R_POWERPC_DTPMOD,
5611                                           elfcpp::R_POWERPC_DTPREL);
5612           }
5613         else if (tls_type == tls::TLSOPT_TO_IE)
5614           {
5615             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5616               {
5617                 Output_data_got_powerpc<size, big_endian>* got
5618                   = target->got_section(symtab, layout);
5619                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5620                 if (gsym->is_undefined()
5621                     || gsym->is_from_dynobj())
5622                   {
5623                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5624                                              elfcpp::R_POWERPC_TPREL);
5625                   }
5626                 else
5627                   {
5628                     unsigned int off = got->add_constant(0);
5629                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5630                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5631                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5632                                                            got, off, 0);
5633                   }
5634               }
5635           }
5636         else if (tls_type == tls::TLSOPT_TO_LE)
5637           {
5638             // no GOT relocs needed for Local Exec.
5639           }
5640         else
5641           gold_unreachable();
5642       }
5643       break;
5644
5645     case elfcpp::R_POWERPC_GOT_TLSLD16:
5646     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5647     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5648     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5649       {
5650         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5651         if (tls_type == tls::TLSOPT_NONE)
5652           target->tlsld_got_offset(symtab, layout, object);
5653         else if (tls_type == tls::TLSOPT_TO_LE)
5654           {
5655             // no GOT relocs needed for Local Exec.
5656             if (parameters->options().emit_relocs())
5657               {
5658                 Output_section* os = layout->tls_segment()->first_section();
5659                 gold_assert(os != NULL);
5660                 os->set_needs_symtab_index();
5661               }
5662           }
5663         else
5664           gold_unreachable();
5665       }
5666       break;
5667
5668     case elfcpp::R_POWERPC_GOT_DTPREL16:
5669     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5670     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5671     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5672       {
5673         Output_data_got_powerpc<size, big_endian>* got
5674           = target->got_section(symtab, layout);
5675         if (!gsym->final_value_is_known()
5676             && (gsym->is_from_dynobj()
5677                 || gsym->is_undefined()
5678                 || gsym->is_preemptible()))
5679           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5680                                    target->rela_dyn_section(layout),
5681                                    elfcpp::R_POWERPC_DTPREL);
5682         else
5683           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5684       }
5685       break;
5686
5687     case elfcpp::R_POWERPC_GOT_TPREL16:
5688     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5689     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5690     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5691       {
5692         const bool final = gsym->final_value_is_known();
5693         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5694         if (tls_type == tls::TLSOPT_NONE)
5695           {
5696             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5697               {
5698                 Output_data_got_powerpc<size, big_endian>* got
5699                   = target->got_section(symtab, layout);
5700                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5701                 if (gsym->is_undefined()
5702                     || gsym->is_from_dynobj())
5703                   {
5704                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5705                                              elfcpp::R_POWERPC_TPREL);
5706                   }
5707                 else
5708                   {
5709                     unsigned int off = got->add_constant(0);
5710                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5711                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5712                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5713                                                            got, off, 0);
5714                   }
5715               }
5716           }
5717         else if (tls_type == tls::TLSOPT_TO_LE)
5718           {
5719             // no GOT relocs needed for Local Exec.
5720           }
5721         else
5722           gold_unreachable();
5723       }
5724       break;
5725
5726     default:
5727       unsupported_reloc_global(object, r_type, gsym);
5728       break;
5729     }
5730
5731   switch (r_type)
5732     {
5733     case elfcpp::R_POWERPC_GOT_TLSLD16:
5734     case elfcpp::R_POWERPC_GOT_TLSGD16:
5735     case elfcpp::R_POWERPC_GOT_TPREL16:
5736     case elfcpp::R_POWERPC_GOT_DTPREL16:
5737     case elfcpp::R_POWERPC_GOT16:
5738     case elfcpp::R_PPC64_GOT16_DS:
5739     case elfcpp::R_PPC64_TOC16:
5740     case elfcpp::R_PPC64_TOC16_DS:
5741       ppc_object->set_has_small_toc_reloc();
5742     default:
5743       break;
5744     }
5745 }
5746
5747 // Process relocations for gc.
5748
5749 template<int size, bool big_endian>
5750 void
5751 Target_powerpc<size, big_endian>::gc_process_relocs(
5752     Symbol_table* symtab,
5753     Layout* layout,
5754     Sized_relobj_file<size, big_endian>* object,
5755     unsigned int data_shndx,
5756     unsigned int,
5757     const unsigned char* prelocs,
5758     size_t reloc_count,
5759     Output_section* output_section,
5760     bool needs_special_offset_handling,
5761     size_t local_symbol_count,
5762     const unsigned char* plocal_symbols)
5763 {
5764   typedef Target_powerpc<size, big_endian> Powerpc;
5765   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5766   Powerpc_relobj<size, big_endian>* ppc_object
5767     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5768   if (size == 64)
5769     ppc_object->set_opd_valid();
5770   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5771     {
5772       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5773       for (p = ppc_object->access_from_map()->begin();
5774            p != ppc_object->access_from_map()->end();
5775            ++p)
5776         {
5777           Address dst_off = p->first;
5778           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5779           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5780           for (s = p->second.begin(); s != p->second.end(); ++s)
5781             {
5782               Object* src_obj = s->first;
5783               unsigned int src_indx = s->second;
5784               symtab->gc()->add_reference(src_obj, src_indx,
5785                                           ppc_object, dst_indx);
5786             }
5787           p->second.clear();
5788         }
5789       ppc_object->access_from_map()->clear();
5790       ppc_object->process_gc_mark(symtab);
5791       // Don't look at .opd relocs as .opd will reference everything.
5792       return;
5793     }
5794
5795   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5796                           typename Target_powerpc::Relocatable_size_for_reloc>(
5797     symtab,
5798     layout,
5799     this,
5800     object,
5801     data_shndx,
5802     prelocs,
5803     reloc_count,
5804     output_section,
5805     needs_special_offset_handling,
5806     local_symbol_count,
5807     plocal_symbols);
5808 }
5809
5810 // Handle target specific gc actions when adding a gc reference from
5811 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5812 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5813 // section of a function descriptor.
5814
5815 template<int size, bool big_endian>
5816 void
5817 Target_powerpc<size, big_endian>::do_gc_add_reference(
5818     Symbol_table* symtab,
5819     Object* src_obj,
5820     unsigned int src_shndx,
5821     Object* dst_obj,
5822     unsigned int dst_shndx,
5823     Address dst_off) const
5824 {
5825   if (size != 64 || dst_obj->is_dynamic())
5826     return;
5827
5828   Powerpc_relobj<size, big_endian>* ppc_object
5829     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5830   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
5831     {
5832       if (ppc_object->opd_valid())
5833         {
5834           dst_shndx = ppc_object->get_opd_ent(dst_off);
5835           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5836         }
5837       else
5838         {
5839           // If we haven't run scan_opd_relocs, we must delay
5840           // processing this function descriptor reference.
5841           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5842         }
5843     }
5844 }
5845
5846 // Add any special sections for this symbol to the gc work list.
5847 // For powerpc64, this adds the code section of a function
5848 // descriptor.
5849
5850 template<int size, bool big_endian>
5851 void
5852 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5853     Symbol_table* symtab,
5854     Symbol* sym) const
5855 {
5856   if (size == 64)
5857     {
5858       Powerpc_relobj<size, big_endian>* ppc_object
5859         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5860       bool is_ordinary;
5861       unsigned int shndx = sym->shndx(&is_ordinary);
5862       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
5863         {
5864           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5865           Address dst_off = gsym->value();
5866           if (ppc_object->opd_valid())
5867             {
5868               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5869               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5870             }
5871           else
5872             ppc_object->add_gc_mark(dst_off);
5873         }
5874     }
5875 }
5876
5877 // For a symbol location in .opd, set LOC to the location of the
5878 // function entry.
5879
5880 template<int size, bool big_endian>
5881 void
5882 Target_powerpc<size, big_endian>::do_function_location(
5883     Symbol_location* loc) const
5884 {
5885   if (size == 64 && loc->shndx != 0)
5886     {
5887       if (loc->object->is_dynamic())
5888         {
5889           Powerpc_dynobj<size, big_endian>* ppc_object
5890             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
5891           if (loc->shndx == ppc_object->opd_shndx())
5892             {
5893               Address dest_off;
5894               Address off = loc->offset - ppc_object->opd_address();
5895               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
5896               loc->offset = dest_off;
5897             }
5898         }
5899       else
5900         {
5901           const Powerpc_relobj<size, big_endian>* ppc_object
5902             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
5903           if (loc->shndx == ppc_object->opd_shndx())
5904             {
5905               Address dest_off;
5906               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
5907               loc->offset = dest_off;
5908             }
5909         }
5910     }
5911 }
5912
5913 // Scan relocations for a section.
5914
5915 template<int size, bool big_endian>
5916 void
5917 Target_powerpc<size, big_endian>::scan_relocs(
5918     Symbol_table* symtab,
5919     Layout* layout,
5920     Sized_relobj_file<size, big_endian>* object,
5921     unsigned int data_shndx,
5922     unsigned int sh_type,
5923     const unsigned char* prelocs,
5924     size_t reloc_count,
5925     Output_section* output_section,
5926     bool needs_special_offset_handling,
5927     size_t local_symbol_count,
5928     const unsigned char* plocal_symbols)
5929 {
5930   typedef Target_powerpc<size, big_endian> Powerpc;
5931   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5932
5933   if (sh_type == elfcpp::SHT_REL)
5934     {
5935       gold_error(_("%s: unsupported REL reloc section"),
5936                  object->name().c_str());
5937       return;
5938     }
5939
5940   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5941     symtab,
5942     layout,
5943     this,
5944     object,
5945     data_shndx,
5946     prelocs,
5947     reloc_count,
5948     output_section,
5949     needs_special_offset_handling,
5950     local_symbol_count,
5951     plocal_symbols);
5952 }
5953
5954 // Functor class for processing the global symbol table.
5955 // Removes symbols defined on discarded opd entries.
5956
5957 template<bool big_endian>
5958 class Global_symbol_visitor_opd
5959 {
5960  public:
5961   Global_symbol_visitor_opd()
5962   { }
5963
5964   void
5965   operator()(Sized_symbol<64>* sym)
5966   {
5967     if (sym->has_symtab_index()
5968         || sym->source() != Symbol::FROM_OBJECT
5969         || !sym->in_real_elf())
5970       return;
5971
5972     if (sym->object()->is_dynamic())
5973       return;
5974
5975     Powerpc_relobj<64, big_endian>* symobj
5976       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5977     if (symobj->opd_shndx() == 0)
5978       return;
5979
5980     bool is_ordinary;
5981     unsigned int shndx = sym->shndx(&is_ordinary);
5982     if (shndx == symobj->opd_shndx()
5983         && symobj->get_opd_discard(sym->value()))
5984       sym->set_symtab_index(-1U);
5985   }
5986 };
5987
5988 template<int size, bool big_endian>
5989 void
5990 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5991     Layout* layout,
5992     Symbol_table* symtab)
5993 {
5994   if (size == 64)
5995     {
5996       Output_data_save_res<64, big_endian>* savres
5997         = new Output_data_save_res<64, big_endian>(symtab);
5998       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5999                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6000                                       savres, ORDER_TEXT, false);
6001     }
6002 }
6003
6004 // Sort linker created .got section first (for the header), then input
6005 // sections belonging to files using small model code.
6006
6007 template<bool big_endian>
6008 class Sort_toc_sections
6009 {
6010  public:
6011   bool
6012   operator()(const Output_section::Input_section& is1,
6013              const Output_section::Input_section& is2) const
6014   {
6015     if (!is1.is_input_section() && is2.is_input_section())
6016       return true;
6017     bool small1
6018       = (is1.is_input_section()
6019          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6020              ->has_small_toc_reloc()));
6021     bool small2
6022       = (is2.is_input_section()
6023          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6024              ->has_small_toc_reloc()));
6025     return small1 && !small2;
6026   }
6027 };
6028
6029 // Finalize the sections.
6030
6031 template<int size, bool big_endian>
6032 void
6033 Target_powerpc<size, big_endian>::do_finalize_sections(
6034     Layout* layout,
6035     const Input_objects*,
6036     Symbol_table* symtab)
6037 {
6038   if (parameters->doing_static_link())
6039     {
6040       // At least some versions of glibc elf-init.o have a strong
6041       // reference to __rela_iplt marker syms.  A weak ref would be
6042       // better..
6043       if (this->iplt_ != NULL)
6044         {
6045           Reloc_section* rel = this->iplt_->rel_plt();
6046           symtab->define_in_output_data("__rela_iplt_start", NULL,
6047                                         Symbol_table::PREDEFINED, rel, 0, 0,
6048                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6049                                         elfcpp::STV_HIDDEN, 0, false, true);
6050           symtab->define_in_output_data("__rela_iplt_end", NULL,
6051                                         Symbol_table::PREDEFINED, rel, 0, 0,
6052                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6053                                         elfcpp::STV_HIDDEN, 0, true, true);
6054         }
6055       else
6056         {
6057           symtab->define_as_constant("__rela_iplt_start", NULL,
6058                                      Symbol_table::PREDEFINED, 0, 0,
6059                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6060                                      elfcpp::STV_HIDDEN, 0, true, false);
6061           symtab->define_as_constant("__rela_iplt_end", NULL,
6062                                      Symbol_table::PREDEFINED, 0, 0,
6063                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6064                                      elfcpp::STV_HIDDEN, 0, true, false);
6065         }
6066     }
6067
6068   if (size == 64)
6069     {
6070       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6071       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6072
6073       if (!parameters->options().relocatable())
6074         {
6075           this->define_save_restore_funcs(layout, symtab);
6076
6077           // Annoyingly, we need to make these sections now whether or
6078           // not we need them.  If we delay until do_relax then we
6079           // need to mess with the relaxation machinery checkpointing.
6080           this->got_section(symtab, layout);
6081           this->make_brlt_section(layout);
6082
6083           if (parameters->options().toc_sort())
6084             {
6085               Output_section* os = this->got_->output_section();
6086               if (os != NULL && os->input_sections().size() > 1)
6087                 std::stable_sort(os->input_sections().begin(),
6088                                  os->input_sections().end(),
6089                                  Sort_toc_sections<big_endian>());
6090             }
6091         }
6092     }
6093
6094   // Fill in some more dynamic tags.
6095   Output_data_dynamic* odyn = layout->dynamic_data();
6096   if (odyn != NULL)
6097     {
6098       const Reloc_section* rel_plt = (this->plt_ == NULL
6099                                       ? NULL
6100                                       : this->plt_->rel_plt());
6101       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6102                                       this->rela_dyn_, true, size == 32);
6103
6104       if (size == 32)
6105         {
6106           if (this->got_ != NULL)
6107             {
6108               this->got_->finalize_data_size();
6109               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6110                                             this->got_, this->got_->g_o_t());
6111             }
6112         }
6113       else
6114         {
6115           if (this->glink_ != NULL)
6116             {
6117               this->glink_->finalize_data_size();
6118               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6119                                             this->glink_,
6120                                             (this->glink_->pltresolve_size
6121                                              - 32));
6122             }
6123         }
6124     }
6125
6126   // Emit any relocs we saved in an attempt to avoid generating COPY
6127   // relocs.
6128   if (this->copy_relocs_.any_saved_relocs())
6129     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6130 }
6131
6132 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6133 // reloc.
6134
6135 static bool
6136 ok_lo_toc_insn(uint32_t insn)
6137 {
6138   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6139           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6140           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6141           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6142           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6143           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6144           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6145           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6146           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6147           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6148           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6149           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6150           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6151           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6152           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6153               && (insn & 3) != 1)
6154           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6155               && ((insn & 3) == 0 || (insn & 3) == 3))
6156           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6157 }
6158
6159 // Return the value to use for a branch relocation.
6160
6161 template<int size, bool big_endian>
6162 typename Target_powerpc<size, big_endian>::Address
6163 Target_powerpc<size, big_endian>::symval_for_branch(
6164     const Symbol_table* symtab,
6165     Address value,
6166     const Sized_symbol<size>* gsym,
6167     Powerpc_relobj<size, big_endian>* object,
6168     unsigned int *dest_shndx)
6169 {
6170   *dest_shndx = 0;
6171   if (size == 32)
6172     return value;
6173
6174   // If the symbol is defined in an opd section, ie. is a function
6175   // descriptor, use the function descriptor code entry address
6176   Powerpc_relobj<size, big_endian>* symobj = object;
6177   if (gsym != NULL
6178       && gsym->source() != Symbol::FROM_OBJECT)
6179     return value;
6180   if (gsym != NULL)
6181     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6182   unsigned int shndx = symobj->opd_shndx();
6183   if (shndx == 0)
6184     return value;
6185   Address opd_addr = symobj->get_output_section_offset(shndx);
6186   if (opd_addr == invalid_address)
6187     return value;
6188   opd_addr += symobj->output_section(shndx)->address();
6189   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6190     {
6191       Address sec_off;
6192       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6193       if (symtab->is_section_folded(symobj, *dest_shndx))
6194         {
6195           Section_id folded
6196             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6197           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6198           *dest_shndx = folded.second;
6199         }
6200       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6201       gold_assert(sec_addr != invalid_address);
6202       sec_addr += symobj->output_section(*dest_shndx)->address();
6203       value = sec_addr + sec_off;
6204     }
6205   return value;
6206 }
6207
6208 // Perform a relocation.
6209
6210 template<int size, bool big_endian>
6211 inline bool
6212 Target_powerpc<size, big_endian>::Relocate::relocate(
6213     const Relocate_info<size, big_endian>* relinfo,
6214     Target_powerpc* target,
6215     Output_section* os,
6216     size_t relnum,
6217     const elfcpp::Rela<size, big_endian>& rela,
6218     unsigned int r_type,
6219     const Sized_symbol<size>* gsym,
6220     const Symbol_value<size>* psymval,
6221     unsigned char* view,
6222     Address address,
6223     section_size_type view_size)
6224 {
6225   if (view == NULL)
6226     return true;
6227
6228   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6229     {
6230     case Track_tls::NOT_EXPECTED:
6231       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6232                              _("__tls_get_addr call lacks marker reloc"));
6233       break;
6234     case Track_tls::EXPECTED:
6235       // We have already complained.
6236       break;
6237     case Track_tls::SKIP:
6238       return true;
6239     case Track_tls::NORMAL:
6240       break;
6241     }
6242
6243   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6244   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6245   Powerpc_relobj<size, big_endian>* const object
6246     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6247   Address value = 0;
6248   bool has_plt_value = false;
6249   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6250   if ((gsym != NULL
6251        ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
6252        : object->local_has_plt_offset(r_sym))
6253       && (!psymval->is_ifunc_symbol()
6254           || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6255     {
6256       Stub_table<size, big_endian>* stub_table
6257         = object->stub_table(relinfo->data_shndx);
6258       if (stub_table == NULL)
6259         {
6260           // This is a ref from a data section to an ifunc symbol.
6261           if (target->stub_tables().size() != 0)
6262             stub_table = target->stub_tables()[0];
6263         }
6264       gold_assert(stub_table != NULL);
6265       Address off;
6266       if (gsym != NULL)
6267         off = stub_table->find_plt_call_entry(object, gsym, r_type,
6268                                               rela.get_r_addend());
6269       else
6270         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6271                                               rela.get_r_addend());
6272       gold_assert(off != invalid_address);
6273       value = stub_table->stub_address() + off;
6274       has_plt_value = true;
6275     }
6276
6277   if (r_type == elfcpp::R_POWERPC_GOT16
6278       || r_type == elfcpp::R_POWERPC_GOT16_LO
6279       || r_type == elfcpp::R_POWERPC_GOT16_HI
6280       || r_type == elfcpp::R_POWERPC_GOT16_HA
6281       || r_type == elfcpp::R_PPC64_GOT16_DS
6282       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6283     {
6284       if (gsym != NULL)
6285         {
6286           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6287           value = gsym->got_offset(GOT_TYPE_STANDARD);
6288         }
6289       else
6290         {
6291           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6292           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6293           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6294         }
6295       value -= target->got_section()->got_base_offset(object);
6296     }
6297   else if (r_type == elfcpp::R_PPC64_TOC)
6298     {
6299       value = (target->got_section()->output_section()->address()
6300                + object->toc_base_offset());
6301     }
6302   else if (gsym != NULL
6303            && (r_type == elfcpp::R_POWERPC_REL24
6304                || r_type == elfcpp::R_PPC_PLTREL24)
6305            && has_plt_value)
6306     {
6307       if (size == 64)
6308         {
6309           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6310           Valtype* wv = reinterpret_cast<Valtype*>(view);
6311           bool can_plt_call = false;
6312           if (rela.get_r_offset() + 8 <= view_size)
6313             {
6314               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6315               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6316               if ((insn & 1) != 0
6317                   && (insn2 == nop
6318                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6319                 {
6320                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
6321                   can_plt_call = true;
6322                 }
6323             }
6324           if (!can_plt_call)
6325             {
6326               // If we don't have a branch and link followed by a nop,
6327               // we can't go via the plt because there is no place to
6328               // put a toc restoring instruction.
6329               // Unless we know we won't be returning.
6330               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6331                 can_plt_call = true;
6332             }
6333           if (!can_plt_call)
6334             {
6335               // This is not an error in one special case: A self
6336               // call.  It isn't possible to cheaply verify we have
6337               // such a call so just check for a call to the same
6338               // section.
6339               bool ok = false;
6340               Address code = value;
6341               if (gsym->source() == Symbol::FROM_OBJECT
6342                   && gsym->object() == object)
6343                 {
6344                   Address addend = rela.get_r_addend();
6345                   unsigned int dest_shndx;
6346                   Address opdent = psymval->value(object, addend);
6347                   code = target->symval_for_branch(relinfo->symtab, opdent,
6348                                                    gsym, object, &dest_shndx);
6349                   bool is_ordinary;
6350                   if (dest_shndx == 0)
6351                     dest_shndx = gsym->shndx(&is_ordinary);
6352                   ok = dest_shndx == relinfo->data_shndx;
6353                 }
6354               if (!ok)
6355                 {
6356                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6357                                          _("call lacks nop, can't restore toc; "
6358                                            "recompile with -fPIC"));
6359                   value = code;
6360                 }
6361             }
6362         }
6363     }
6364   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6365            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6366            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6367            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6368     {
6369       // First instruction of a global dynamic sequence, arg setup insn.
6370       const bool final = gsym == NULL || gsym->final_value_is_known();
6371       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6372       enum Got_type got_type = GOT_TYPE_STANDARD;
6373       if (tls_type == tls::TLSOPT_NONE)
6374         got_type = GOT_TYPE_TLSGD;
6375       else if (tls_type == tls::TLSOPT_TO_IE)
6376         got_type = GOT_TYPE_TPREL;
6377       if (got_type != GOT_TYPE_STANDARD)
6378         {
6379           if (gsym != NULL)
6380             {
6381               gold_assert(gsym->has_got_offset(got_type));
6382               value = gsym->got_offset(got_type);
6383             }
6384           else
6385             {
6386               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6387               gold_assert(object->local_has_got_offset(r_sym, got_type));
6388               value = object->local_got_offset(r_sym, got_type);
6389             }
6390           value -= target->got_section()->got_base_offset(object);
6391         }
6392       if (tls_type == tls::TLSOPT_TO_IE)
6393         {
6394           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6395               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6396             {
6397               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6398               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6399               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6400               if (size == 32)
6401                 insn |= 32 << 26; // lwz
6402               else
6403                 insn |= 58 << 26; // ld
6404               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6405             }
6406           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6407                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6408         }
6409       else if (tls_type == tls::TLSOPT_TO_LE)
6410         {
6411           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6412               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6413             {
6414               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6415               Insn insn = addis_3_13;
6416               if (size == 32)
6417                 insn = addis_3_2;
6418               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6419               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6420               value = psymval->value(object, rela.get_r_addend());
6421             }
6422           else
6423             {
6424               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6425               Insn insn = nop;
6426               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6427               r_type = elfcpp::R_POWERPC_NONE;
6428             }
6429         }
6430     }
6431   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6432            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6433            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6434            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6435     {
6436       // First instruction of a local dynamic sequence, arg setup insn.
6437       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6438       if (tls_type == tls::TLSOPT_NONE)
6439         {
6440           value = target->tlsld_got_offset();
6441           value -= target->got_section()->got_base_offset(object);
6442         }
6443       else
6444         {
6445           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6446           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6447               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6448             {
6449               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6450               Insn insn = addis_3_13;
6451               if (size == 32)
6452                 insn = addis_3_2;
6453               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6454               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6455               value = dtp_offset;
6456             }
6457           else
6458             {
6459               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6460               Insn insn = nop;
6461               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6462               r_type = elfcpp::R_POWERPC_NONE;
6463             }
6464         }
6465     }
6466   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6467            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6468            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6469            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6470     {
6471       // Accesses relative to a local dynamic sequence address,
6472       // no optimisation here.
6473       if (gsym != NULL)
6474         {
6475           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6476           value = gsym->got_offset(GOT_TYPE_DTPREL);
6477         }
6478       else
6479         {
6480           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6481           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6482           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6483         }
6484       value -= target->got_section()->got_base_offset(object);
6485     }
6486   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6487            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6488            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6489            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6490     {
6491       // First instruction of initial exec sequence.
6492       const bool final = gsym == NULL || gsym->final_value_is_known();
6493       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6494       if (tls_type == tls::TLSOPT_NONE)
6495         {
6496           if (gsym != NULL)
6497             {
6498               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6499               value = gsym->got_offset(GOT_TYPE_TPREL);
6500             }
6501           else
6502             {
6503               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6504               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6505               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6506             }
6507           value -= target->got_section()->got_base_offset(object);
6508         }
6509       else
6510         {
6511           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6512           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6513               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6514             {
6515               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6516               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6517               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6518               if (size == 32)
6519                 insn |= addis_0_2;
6520               else
6521                 insn |= addis_0_13;
6522               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6523               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6524               value = psymval->value(object, rela.get_r_addend());
6525             }
6526           else
6527             {
6528               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6529               Insn insn = nop;
6530               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6531               r_type = elfcpp::R_POWERPC_NONE;
6532             }
6533         }
6534     }
6535   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6536            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6537     {
6538       // Second instruction of a global dynamic sequence,
6539       // the __tls_get_addr call
6540       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6541       const bool final = gsym == NULL || gsym->final_value_is_known();
6542       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6543       if (tls_type != tls::TLSOPT_NONE)
6544         {
6545           if (tls_type == tls::TLSOPT_TO_IE)
6546             {
6547               Insn* iview = reinterpret_cast<Insn*>(view);
6548               Insn insn = add_3_3_13;
6549               if (size == 32)
6550                 insn = add_3_3_2;
6551               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6552               r_type = elfcpp::R_POWERPC_NONE;
6553             }
6554           else
6555             {
6556               Insn* iview = reinterpret_cast<Insn*>(view);
6557               Insn insn = addi_3_3;
6558               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6559               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6560               view += 2 * big_endian;
6561               value = psymval->value(object, rela.get_r_addend());
6562             }
6563           this->skip_next_tls_get_addr_call();
6564         }
6565     }
6566   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6567            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6568     {
6569       // Second instruction of a local dynamic sequence,
6570       // the __tls_get_addr call
6571       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6572       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6573       if (tls_type == tls::TLSOPT_TO_LE)
6574         {
6575           Insn* iview = reinterpret_cast<Insn*>(view);
6576           Insn insn = addi_3_3;
6577           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6578           this->skip_next_tls_get_addr_call();
6579           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6580           view += 2 * big_endian;
6581           value = dtp_offset;
6582         }
6583     }
6584   else if (r_type == elfcpp::R_POWERPC_TLS)
6585     {
6586       // Second instruction of an initial exec sequence
6587       const bool final = gsym == NULL || gsym->final_value_is_known();
6588       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6589       if (tls_type == tls::TLSOPT_TO_LE)
6590         {
6591           Insn* iview = reinterpret_cast<Insn*>(view);
6592           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6593           unsigned int reg = size == 32 ? 2 : 13;
6594           insn = at_tls_transform(insn, reg);
6595           gold_assert(insn != 0);
6596           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6597           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6598           view += 2 * big_endian;
6599           value = psymval->value(object, rela.get_r_addend());
6600         }
6601     }
6602   else if (!has_plt_value)
6603     {
6604       Address addend = 0;
6605       unsigned int dest_shndx;
6606       if (r_type != elfcpp::R_PPC_PLTREL24)
6607         addend = rela.get_r_addend();
6608       value = psymval->value(object, addend);
6609       if (size == 64 && is_branch_reloc(r_type))
6610         value = target->symval_for_branch(relinfo->symtab, value,
6611                                           gsym, object, &dest_shndx);
6612       unsigned int max_branch_offset = 0;
6613       if (r_type == elfcpp::R_POWERPC_REL24
6614           || r_type == elfcpp::R_PPC_PLTREL24
6615           || r_type == elfcpp::R_PPC_LOCAL24PC)
6616         max_branch_offset = 1 << 25;
6617       else if (r_type == elfcpp::R_POWERPC_REL14
6618                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6619                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6620         max_branch_offset = 1 << 15;
6621       if (max_branch_offset != 0
6622           && value - address + max_branch_offset >= 2 * max_branch_offset)
6623         {
6624           Stub_table<size, big_endian>* stub_table
6625             = object->stub_table(relinfo->data_shndx);
6626           if (stub_table != NULL)
6627             {
6628               Address off = stub_table->find_long_branch_entry(object, value);
6629               if (off != invalid_address)
6630                 value = (stub_table->stub_address() + stub_table->plt_size()
6631                          + off);
6632             }
6633         }
6634     }
6635
6636   switch (r_type)
6637     {
6638     case elfcpp::R_PPC64_REL64:
6639     case elfcpp::R_POWERPC_REL32:
6640     case elfcpp::R_POWERPC_REL24:
6641     case elfcpp::R_PPC_PLTREL24:
6642     case elfcpp::R_PPC_LOCAL24PC:
6643     case elfcpp::R_POWERPC_REL16:
6644     case elfcpp::R_POWERPC_REL16_LO:
6645     case elfcpp::R_POWERPC_REL16_HI:
6646     case elfcpp::R_POWERPC_REL16_HA:
6647     case elfcpp::R_POWERPC_REL14:
6648     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6649     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6650       value -= address;
6651       break;
6652
6653     case elfcpp::R_PPC64_TOC16:
6654     case elfcpp::R_PPC64_TOC16_LO:
6655     case elfcpp::R_PPC64_TOC16_HI:
6656     case elfcpp::R_PPC64_TOC16_HA:
6657     case elfcpp::R_PPC64_TOC16_DS:
6658     case elfcpp::R_PPC64_TOC16_LO_DS:
6659       // Subtract the TOC base address.
6660       value -= (target->got_section()->output_section()->address()
6661                 + object->toc_base_offset());
6662       break;
6663
6664     case elfcpp::R_POWERPC_SECTOFF:
6665     case elfcpp::R_POWERPC_SECTOFF_LO:
6666     case elfcpp::R_POWERPC_SECTOFF_HI:
6667     case elfcpp::R_POWERPC_SECTOFF_HA:
6668     case elfcpp::R_PPC64_SECTOFF_DS:
6669     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6670       if (os != NULL)
6671         value -= os->address();
6672       break;
6673
6674     case elfcpp::R_PPC64_TPREL16_DS:
6675     case elfcpp::R_PPC64_TPREL16_LO_DS:
6676       if (size != 64)
6677         // R_PPC_TLSGD and R_PPC_TLSLD
6678         break;
6679     case elfcpp::R_POWERPC_TPREL16:
6680     case elfcpp::R_POWERPC_TPREL16_LO:
6681     case elfcpp::R_POWERPC_TPREL16_HI:
6682     case elfcpp::R_POWERPC_TPREL16_HA:
6683     case elfcpp::R_POWERPC_TPREL:
6684     case elfcpp::R_PPC64_TPREL16_HIGHER:
6685     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6686     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6687     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6688       // tls symbol values are relative to tls_segment()->vaddr()
6689       value -= tp_offset;
6690       break;
6691
6692     case elfcpp::R_PPC64_DTPREL16_DS:
6693     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6694     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6695     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6696     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6697     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6698       if (size != 64)
6699         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6700         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6701         break;
6702     case elfcpp::R_POWERPC_DTPREL16:
6703     case elfcpp::R_POWERPC_DTPREL16_LO:
6704     case elfcpp::R_POWERPC_DTPREL16_HI:
6705     case elfcpp::R_POWERPC_DTPREL16_HA:
6706     case elfcpp::R_POWERPC_DTPREL:
6707       // tls symbol values are relative to tls_segment()->vaddr()
6708       value -= dtp_offset;
6709       break;
6710
6711     default:
6712       break;
6713     }
6714
6715   Insn branch_bit = 0;
6716   switch (r_type)
6717     {
6718     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6719     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6720       branch_bit = 1 << 21;
6721     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6722     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6723       {
6724         Insn* iview = reinterpret_cast<Insn*>(view);
6725         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6726         insn &= ~(1 << 21);
6727         insn |= branch_bit;
6728         if (this->is_isa_v2)
6729           {
6730             // Set 'a' bit.  This is 0b00010 in BO field for branch
6731             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6732             // for branch on CTR insns (BO == 1a00t or 1a01t).
6733             if ((insn & (0x14 << 21)) == (0x04 << 21))
6734               insn |= 0x02 << 21;
6735             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6736               insn |= 0x08 << 21;
6737             else
6738               break;
6739           }
6740         else
6741           {
6742             // Invert 'y' bit if not the default.
6743             if (static_cast<Signed_address>(value) < 0)
6744               insn ^= 1 << 21;
6745           }
6746         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6747       }
6748       break;
6749
6750     default:
6751       break;
6752     }
6753
6754   if (size == 64)
6755     {
6756       // Multi-instruction sequences that access the TOC can be
6757       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6758       // to             nop;           addi rb,r2,x;
6759       switch (r_type)
6760         {
6761         default:
6762           break;
6763
6764         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6765         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6766         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6767         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6768         case elfcpp::R_POWERPC_GOT16_HA:
6769         case elfcpp::R_PPC64_TOC16_HA:
6770           if (parameters->options().toc_optimize())
6771             {
6772               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6773               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6774               if ((insn & ((0x3f << 26) | 0x1f << 16))
6775                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6776                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6777                                        _("toc optimization is not supported "
6778                                          "for %#08x instruction"), insn);
6779               else if (value + 0x8000 < 0x10000)
6780                 {
6781                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6782                   return true;
6783                 }
6784             }
6785           break;
6786
6787         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6788         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6789         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6790         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6791         case elfcpp::R_POWERPC_GOT16_LO:
6792         case elfcpp::R_PPC64_GOT16_LO_DS:
6793         case elfcpp::R_PPC64_TOC16_LO:
6794         case elfcpp::R_PPC64_TOC16_LO_DS:
6795           if (parameters->options().toc_optimize())
6796             {
6797               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6798               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6799               if (!ok_lo_toc_insn(insn))
6800                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6801                                        _("toc optimization is not supported "
6802                                          "for %#08x instruction"), insn);
6803               else if (value + 0x8000 < 0x10000)
6804                 {
6805                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6806                     {
6807                       // Transform addic to addi when we change reg.
6808                       insn &= ~((0x3f << 26) | (0x1f << 16));
6809                       insn |= (14u << 26) | (2 << 16);
6810                     }
6811                   else
6812                     {
6813                       insn &= ~(0x1f << 16);
6814                       insn |= 2 << 16;
6815                     }
6816                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6817                 }
6818             }
6819           break;
6820         }
6821     }
6822
6823   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6824   switch (r_type)
6825     {
6826     case elfcpp::R_POWERPC_ADDR32:
6827     case elfcpp::R_POWERPC_UADDR32:
6828       if (size == 64)
6829         overflow = Reloc::CHECK_BITFIELD;
6830       break;
6831
6832     case elfcpp::R_POWERPC_REL32:
6833       if (size == 64)
6834         overflow = Reloc::CHECK_SIGNED;
6835       break;
6836
6837     case elfcpp::R_POWERPC_ADDR24:
6838     case elfcpp::R_POWERPC_ADDR16:
6839     case elfcpp::R_POWERPC_UADDR16:
6840     case elfcpp::R_PPC64_ADDR16_DS:
6841     case elfcpp::R_POWERPC_ADDR14:
6842     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6843     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6844       overflow = Reloc::CHECK_BITFIELD;
6845       break;
6846
6847     case elfcpp::R_POWERPC_REL24:
6848     case elfcpp::R_PPC_PLTREL24:
6849     case elfcpp::R_PPC_LOCAL24PC:
6850     case elfcpp::R_POWERPC_REL16:
6851     case elfcpp::R_PPC64_TOC16:
6852     case elfcpp::R_POWERPC_GOT16:
6853     case elfcpp::R_POWERPC_SECTOFF:
6854     case elfcpp::R_POWERPC_TPREL16:
6855     case elfcpp::R_POWERPC_DTPREL16:
6856     case elfcpp::R_PPC64_TPREL16_DS:
6857     case elfcpp::R_PPC64_DTPREL16_DS:
6858     case elfcpp::R_PPC64_TOC16_DS:
6859     case elfcpp::R_PPC64_GOT16_DS:
6860     case elfcpp::R_PPC64_SECTOFF_DS:
6861     case elfcpp::R_POWERPC_REL14:
6862     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6863     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6864     case elfcpp::R_POWERPC_GOT_TLSGD16:
6865     case elfcpp::R_POWERPC_GOT_TLSLD16:
6866     case elfcpp::R_POWERPC_GOT_TPREL16:
6867     case elfcpp::R_POWERPC_GOT_DTPREL16:
6868       overflow = Reloc::CHECK_SIGNED;
6869       break;
6870     }
6871
6872   typename Powerpc_relocate_functions<size, big_endian>::Status status
6873     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6874   switch (r_type)
6875     {
6876     case elfcpp::R_POWERPC_NONE:
6877     case elfcpp::R_POWERPC_TLS:
6878     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6879     case elfcpp::R_POWERPC_GNU_VTENTRY:
6880     case elfcpp::R_PPC_EMB_MRKREF:
6881       break;
6882
6883     case elfcpp::R_PPC64_ADDR64:
6884     case elfcpp::R_PPC64_REL64:
6885     case elfcpp::R_PPC64_TOC:
6886       Reloc::addr64(view, value);
6887       break;
6888
6889     case elfcpp::R_POWERPC_TPREL:
6890     case elfcpp::R_POWERPC_DTPREL:
6891       if (size == 64)
6892         Reloc::addr64(view, value);
6893       else
6894         status = Reloc::addr32(view, value, overflow);
6895       break;
6896
6897     case elfcpp::R_PPC64_UADDR64:
6898       Reloc::addr64_u(view, value);
6899       break;
6900
6901     case elfcpp::R_POWERPC_ADDR32:
6902       status = Reloc::addr32(view, value, overflow);
6903       break;
6904
6905     case elfcpp::R_POWERPC_REL32:
6906     case elfcpp::R_POWERPC_UADDR32:
6907       status = Reloc::addr32_u(view, value, overflow);
6908       break;
6909
6910     case elfcpp::R_POWERPC_ADDR24:
6911     case elfcpp::R_POWERPC_REL24:
6912     case elfcpp::R_PPC_PLTREL24:
6913     case elfcpp::R_PPC_LOCAL24PC:
6914       status = Reloc::addr24(view, value, overflow);
6915       break;
6916
6917     case elfcpp::R_POWERPC_GOT_DTPREL16:
6918     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6919       if (size == 64)
6920         {
6921           status = Reloc::addr16_ds(view, value, overflow);
6922           break;
6923         }
6924     case elfcpp::R_POWERPC_ADDR16:
6925     case elfcpp::R_POWERPC_REL16:
6926     case elfcpp::R_PPC64_TOC16:
6927     case elfcpp::R_POWERPC_GOT16:
6928     case elfcpp::R_POWERPC_SECTOFF:
6929     case elfcpp::R_POWERPC_TPREL16:
6930     case elfcpp::R_POWERPC_DTPREL16:
6931     case elfcpp::R_POWERPC_GOT_TLSGD16:
6932     case elfcpp::R_POWERPC_GOT_TLSLD16:
6933     case elfcpp::R_POWERPC_GOT_TPREL16:
6934     case elfcpp::R_POWERPC_ADDR16_LO:
6935     case elfcpp::R_POWERPC_REL16_LO:
6936     case elfcpp::R_PPC64_TOC16_LO:
6937     case elfcpp::R_POWERPC_GOT16_LO:
6938     case elfcpp::R_POWERPC_SECTOFF_LO:
6939     case elfcpp::R_POWERPC_TPREL16_LO:
6940     case elfcpp::R_POWERPC_DTPREL16_LO:
6941     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6942     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6943     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6944       status = Reloc::addr16(view, value, overflow);
6945       break;
6946
6947     case elfcpp::R_POWERPC_UADDR16:
6948       status = Reloc::addr16_u(view, value, overflow);
6949       break;
6950
6951     case elfcpp::R_POWERPC_ADDR16_HI:
6952     case elfcpp::R_POWERPC_REL16_HI:
6953     case elfcpp::R_PPC64_TOC16_HI:
6954     case elfcpp::R_POWERPC_GOT16_HI:
6955     case elfcpp::R_POWERPC_SECTOFF_HI:
6956     case elfcpp::R_POWERPC_TPREL16_HI:
6957     case elfcpp::R_POWERPC_DTPREL16_HI:
6958     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6959     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6960     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6961     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6962       Reloc::addr16_hi(view, value);
6963       break;
6964
6965     case elfcpp::R_POWERPC_ADDR16_HA:
6966     case elfcpp::R_POWERPC_REL16_HA:
6967     case elfcpp::R_PPC64_TOC16_HA:
6968     case elfcpp::R_POWERPC_GOT16_HA:
6969     case elfcpp::R_POWERPC_SECTOFF_HA:
6970     case elfcpp::R_POWERPC_TPREL16_HA:
6971     case elfcpp::R_POWERPC_DTPREL16_HA:
6972     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6973     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6974     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6975     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6976       Reloc::addr16_ha(view, value);
6977       break;
6978
6979     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6980       if (size == 32)
6981         // R_PPC_EMB_NADDR16_LO
6982         goto unsupp;
6983     case elfcpp::R_PPC64_ADDR16_HIGHER:
6984     case elfcpp::R_PPC64_TPREL16_HIGHER:
6985       Reloc::addr16_hi2(view, value);
6986       break;
6987
6988     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6989       if (size == 32)
6990         // R_PPC_EMB_NADDR16_HI
6991         goto unsupp;
6992     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6993     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6994       Reloc::addr16_ha2(view, value);
6995       break;
6996
6997     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6998       if (size == 32)
6999         // R_PPC_EMB_NADDR16_HA
7000         goto unsupp;
7001     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7002     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7003       Reloc::addr16_hi3(view, value);
7004       break;
7005
7006     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7007       if (size == 32)
7008         // R_PPC_EMB_SDAI16
7009         goto unsupp;
7010     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7011     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7012       Reloc::addr16_ha3(view, value);
7013       break;
7014
7015     case elfcpp::R_PPC64_DTPREL16_DS:
7016     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7017       if (size == 32)
7018         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7019         goto unsupp;
7020     case elfcpp::R_PPC64_TPREL16_DS:
7021     case elfcpp::R_PPC64_TPREL16_LO_DS:
7022       if (size == 32)
7023         // R_PPC_TLSGD, R_PPC_TLSLD
7024         break;
7025     case elfcpp::R_PPC64_ADDR16_DS:
7026     case elfcpp::R_PPC64_ADDR16_LO_DS:
7027     case elfcpp::R_PPC64_TOC16_DS:
7028     case elfcpp::R_PPC64_TOC16_LO_DS:
7029     case elfcpp::R_PPC64_GOT16_DS:
7030     case elfcpp::R_PPC64_GOT16_LO_DS:
7031     case elfcpp::R_PPC64_SECTOFF_DS:
7032     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7033       status = Reloc::addr16_ds(view, value, overflow);
7034       break;
7035
7036     case elfcpp::R_POWERPC_ADDR14:
7037     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7038     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7039     case elfcpp::R_POWERPC_REL14:
7040     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7041     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7042       status = Reloc::addr14(view, value, overflow);
7043       break;
7044
7045     case elfcpp::R_POWERPC_COPY:
7046     case elfcpp::R_POWERPC_GLOB_DAT:
7047     case elfcpp::R_POWERPC_JMP_SLOT:
7048     case elfcpp::R_POWERPC_RELATIVE:
7049     case elfcpp::R_POWERPC_DTPMOD:
7050     case elfcpp::R_PPC64_JMP_IREL:
7051     case elfcpp::R_POWERPC_IRELATIVE:
7052       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7053                              _("unexpected reloc %u in object file"),
7054                              r_type);
7055       break;
7056
7057     case elfcpp::R_PPC_EMB_SDA21:
7058       if (size == 32)
7059         goto unsupp;
7060       else
7061         {
7062           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7063         }
7064       break;
7065
7066     case elfcpp::R_PPC_EMB_SDA2I16:
7067     case elfcpp::R_PPC_EMB_SDA2REL:
7068       if (size == 32)
7069         goto unsupp;
7070       // R_PPC64_TLSGD, R_PPC64_TLSLD
7071       break;
7072
7073     case elfcpp::R_POWERPC_PLT32:
7074     case elfcpp::R_POWERPC_PLTREL32:
7075     case elfcpp::R_POWERPC_PLT16_LO:
7076     case elfcpp::R_POWERPC_PLT16_HI:
7077     case elfcpp::R_POWERPC_PLT16_HA:
7078     case elfcpp::R_PPC_SDAREL16:
7079     case elfcpp::R_POWERPC_ADDR30:
7080     case elfcpp::R_PPC64_PLT64:
7081     case elfcpp::R_PPC64_PLTREL64:
7082     case elfcpp::R_PPC64_PLTGOT16:
7083     case elfcpp::R_PPC64_PLTGOT16_LO:
7084     case elfcpp::R_PPC64_PLTGOT16_HI:
7085     case elfcpp::R_PPC64_PLTGOT16_HA:
7086     case elfcpp::R_PPC64_PLT16_LO_DS:
7087     case elfcpp::R_PPC64_PLTGOT16_DS:
7088     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7089     case elfcpp::R_PPC_EMB_RELSEC16:
7090     case elfcpp::R_PPC_EMB_RELST_LO:
7091     case elfcpp::R_PPC_EMB_RELST_HI:
7092     case elfcpp::R_PPC_EMB_RELST_HA:
7093     case elfcpp::R_PPC_EMB_BIT_FLD:
7094     case elfcpp::R_PPC_EMB_RELSDA:
7095     case elfcpp::R_PPC_TOC16:
7096     default:
7097     unsupp:
7098       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7099                              _("unsupported reloc %u"),
7100                              r_type);
7101       break;
7102     }
7103   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7104     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7105                            _("relocation overflow"));
7106
7107   return true;
7108 }
7109
7110 // Relocate section data.
7111
7112 template<int size, bool big_endian>
7113 void
7114 Target_powerpc<size, big_endian>::relocate_section(
7115     const Relocate_info<size, big_endian>* relinfo,
7116     unsigned int sh_type,
7117     const unsigned char* prelocs,
7118     size_t reloc_count,
7119     Output_section* output_section,
7120     bool needs_special_offset_handling,
7121     unsigned char* view,
7122     Address address,
7123     section_size_type view_size,
7124     const Reloc_symbol_changes* reloc_symbol_changes)
7125 {
7126   typedef Target_powerpc<size, big_endian> Powerpc;
7127   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7128   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7129     Powerpc_comdat_behavior;
7130
7131   gold_assert(sh_type == elfcpp::SHT_RELA);
7132
7133   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7134                          Powerpc_relocate, Powerpc_comdat_behavior>(
7135     relinfo,
7136     this,
7137     prelocs,
7138     reloc_count,
7139     output_section,
7140     needs_special_offset_handling,
7141     view,
7142     address,
7143     view_size,
7144     reloc_symbol_changes);
7145 }
7146
7147 class Powerpc_scan_relocatable_reloc
7148 {
7149 public:
7150   // Return the strategy to use for a local symbol which is not a
7151   // section symbol, given the relocation type.
7152   inline Relocatable_relocs::Reloc_strategy
7153   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7154   {
7155     if (r_type == 0 && r_sym == 0)
7156       return Relocatable_relocs::RELOC_DISCARD;
7157     return Relocatable_relocs::RELOC_COPY;
7158   }
7159
7160   // Return the strategy to use for a local symbol which is a section
7161   // symbol, given the relocation type.
7162   inline Relocatable_relocs::Reloc_strategy
7163   local_section_strategy(unsigned int, Relobj*)
7164   {
7165     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7166   }
7167
7168   // Return the strategy to use for a global symbol, given the
7169   // relocation type, the object, and the symbol index.
7170   inline Relocatable_relocs::Reloc_strategy
7171   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7172   {
7173     if (r_type == elfcpp::R_PPC_PLTREL24)
7174       return Relocatable_relocs::RELOC_SPECIAL;
7175     return Relocatable_relocs::RELOC_COPY;
7176   }
7177 };
7178
7179 // Scan the relocs during a relocatable link.
7180
7181 template<int size, bool big_endian>
7182 void
7183 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7184     Symbol_table* symtab,
7185     Layout* layout,
7186     Sized_relobj_file<size, big_endian>* object,
7187     unsigned int data_shndx,
7188     unsigned int sh_type,
7189     const unsigned char* prelocs,
7190     size_t reloc_count,
7191     Output_section* output_section,
7192     bool needs_special_offset_handling,
7193     size_t local_symbol_count,
7194     const unsigned char* plocal_symbols,
7195     Relocatable_relocs* rr)
7196 {
7197   gold_assert(sh_type == elfcpp::SHT_RELA);
7198
7199   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7200                                 Powerpc_scan_relocatable_reloc>(
7201     symtab,
7202     layout,
7203     object,
7204     data_shndx,
7205     prelocs,
7206     reloc_count,
7207     output_section,
7208     needs_special_offset_handling,
7209     local_symbol_count,
7210     plocal_symbols,
7211     rr);
7212 }
7213
7214 // Emit relocations for a section.
7215 // This is a modified version of the function by the same name in
7216 // target-reloc.h.  Using relocate_special_relocatable for
7217 // R_PPC_PLTREL24 would require duplication of the entire body of the
7218 // loop, so we may as well duplicate the whole thing.
7219
7220 template<int size, bool big_endian>
7221 void
7222 Target_powerpc<size, big_endian>::relocate_relocs(
7223     const Relocate_info<size, big_endian>* relinfo,
7224     unsigned int sh_type,
7225     const unsigned char* prelocs,
7226     size_t reloc_count,
7227     Output_section* output_section,
7228     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7229     const Relocatable_relocs* rr,
7230     unsigned char*,
7231     Address view_address,
7232     section_size_type,
7233     unsigned char* reloc_view,
7234     section_size_type reloc_view_size)
7235 {
7236   gold_assert(sh_type == elfcpp::SHT_RELA);
7237
7238   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7239     Reltype;
7240   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7241     Reltype_write;
7242   const int reloc_size
7243     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7244
7245   Powerpc_relobj<size, big_endian>* const object
7246     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7247   const unsigned int local_count = object->local_symbol_count();
7248   unsigned int got2_shndx = object->got2_shndx();
7249   Address got2_addend = 0;
7250   if (got2_shndx != 0)
7251     {
7252       got2_addend = object->get_output_section_offset(got2_shndx);
7253       gold_assert(got2_addend != invalid_address);
7254     }
7255
7256   unsigned char* pwrite = reloc_view;
7257   bool zap_next = false;
7258   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7259     {
7260       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7261       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7262         continue;
7263
7264       Reltype reloc(prelocs);
7265       Reltype_write reloc_write(pwrite);
7266
7267       Address offset = reloc.get_r_offset();
7268       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7269       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7270       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7271       const unsigned int orig_r_sym = r_sym;
7272       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7273         = reloc.get_r_addend();
7274       const Symbol* gsym = NULL;
7275
7276       if (zap_next)
7277         {
7278           // We could arrange to discard these and other relocs for
7279           // tls optimised sequences in the strategy methods, but for
7280           // now do as BFD ld does.
7281           r_type = elfcpp::R_POWERPC_NONE;
7282           zap_next = false;
7283         }
7284
7285       // Get the new symbol index.
7286       if (r_sym < local_count)
7287         {
7288           switch (strategy)
7289             {
7290             case Relocatable_relocs::RELOC_COPY:
7291             case Relocatable_relocs::RELOC_SPECIAL:
7292               if (r_sym != 0)
7293                 {
7294                   r_sym = object->symtab_index(r_sym);
7295                   gold_assert(r_sym != -1U);
7296                 }
7297               break;
7298
7299             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7300               {
7301                 // We are adjusting a section symbol.  We need to find
7302                 // the symbol table index of the section symbol for
7303                 // the output section corresponding to input section
7304                 // in which this symbol is defined.
7305                 gold_assert(r_sym < local_count);
7306                 bool is_ordinary;
7307                 unsigned int shndx =
7308                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7309                 gold_assert(is_ordinary);
7310                 Output_section* os = object->output_section(shndx);
7311                 gold_assert(os != NULL);
7312                 gold_assert(os->needs_symtab_index());
7313                 r_sym = os->symtab_index();
7314               }
7315               break;
7316
7317             default:
7318               gold_unreachable();
7319             }
7320         }
7321       else
7322         {
7323           gsym = object->global_symbol(r_sym);
7324           gold_assert(gsym != NULL);
7325           if (gsym->is_forwarder())
7326             gsym = relinfo->symtab->resolve_forwards(gsym);
7327
7328           gold_assert(gsym->has_symtab_index());
7329           r_sym = gsym->symtab_index();
7330         }
7331
7332       // Get the new offset--the location in the output section where
7333       // this relocation should be applied.
7334       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7335         offset += offset_in_output_section;
7336       else
7337         {
7338           section_offset_type sot_offset =
7339             convert_types<section_offset_type, Address>(offset);
7340           section_offset_type new_sot_offset =
7341             output_section->output_offset(object, relinfo->data_shndx,
7342                                           sot_offset);
7343           gold_assert(new_sot_offset != -1);
7344           offset = new_sot_offset;
7345         }
7346
7347       // In an object file, r_offset is an offset within the section.
7348       // In an executable or dynamic object, generated by
7349       // --emit-relocs, r_offset is an absolute address.
7350       if (!parameters->options().relocatable())
7351         {
7352           offset += view_address;
7353           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7354             offset -= offset_in_output_section;
7355         }
7356
7357       // Handle the reloc addend based on the strategy.
7358       if (strategy == Relocatable_relocs::RELOC_COPY)
7359         ;
7360       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7361         {
7362           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7363           addend = psymval->value(object, addend);
7364         }
7365       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7366         {
7367           if (addend >= 32768)
7368             addend += got2_addend;
7369         }
7370       else
7371         gold_unreachable();
7372
7373       if (!parameters->options().relocatable())
7374         {
7375           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7376               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7377               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7378               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7379             {
7380               // First instruction of a global dynamic sequence,
7381               // arg setup insn.
7382               const bool final = gsym == NULL || gsym->final_value_is_known();
7383               switch (this->optimize_tls_gd(final))
7384                 {
7385                 case tls::TLSOPT_TO_IE:
7386                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7387                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7388                   break;
7389                 case tls::TLSOPT_TO_LE:
7390                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7391                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7392                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7393                   else
7394                     {
7395                       r_type = elfcpp::R_POWERPC_NONE;
7396                       offset -= 2 * big_endian;
7397                     }
7398                   break;
7399                 default:
7400                   break;
7401                 }
7402             }
7403           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7404                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7405                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7406                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7407             {
7408               // First instruction of a local dynamic sequence,
7409               // arg setup insn.
7410               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7411                 {
7412                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7413                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7414                     {
7415                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7416                       const Output_section* os = relinfo->layout->tls_segment()
7417                         ->first_section();
7418                       gold_assert(os != NULL);
7419                       gold_assert(os->needs_symtab_index());
7420                       r_sym = os->symtab_index();
7421                       addend = dtp_offset;
7422                     }
7423                   else
7424                     {
7425                       r_type = elfcpp::R_POWERPC_NONE;
7426                       offset -= 2 * big_endian;
7427                     }
7428                 }
7429             }
7430           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7431                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7432                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7433                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7434             {
7435               // First instruction of initial exec sequence.
7436               const bool final = gsym == NULL || gsym->final_value_is_known();
7437               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7438                 {
7439                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7440                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7441                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7442                   else
7443                     {
7444                       r_type = elfcpp::R_POWERPC_NONE;
7445                       offset -= 2 * big_endian;
7446                     }
7447                 }
7448             }
7449           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7450                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7451             {
7452               // Second instruction of a global dynamic sequence,
7453               // the __tls_get_addr call
7454               const bool final = gsym == NULL || gsym->final_value_is_known();
7455               switch (this->optimize_tls_gd(final))
7456                 {
7457                 case tls::TLSOPT_TO_IE:
7458                   r_type = elfcpp::R_POWERPC_NONE;
7459                   zap_next = true;
7460                   break;
7461                 case tls::TLSOPT_TO_LE:
7462                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7463                   offset += 2 * big_endian;
7464                   zap_next = true;
7465                   break;
7466                 default:
7467                   break;
7468                 }
7469             }
7470           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7471                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7472             {
7473               // Second instruction of a local dynamic sequence,
7474               // the __tls_get_addr call
7475               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7476                 {
7477                   const Output_section* os = relinfo->layout->tls_segment()
7478                     ->first_section();
7479                   gold_assert(os != NULL);
7480                   gold_assert(os->needs_symtab_index());
7481                   r_sym = os->symtab_index();
7482                   addend = dtp_offset;
7483                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7484                   offset += 2 * big_endian;
7485                   zap_next = true;
7486                 }
7487             }
7488           else if (r_type == elfcpp::R_POWERPC_TLS)
7489             {
7490               // Second instruction of an initial exec sequence
7491               const bool final = gsym == NULL || gsym->final_value_is_known();
7492               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7493                 {
7494                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7495                   offset += 2 * big_endian;
7496                 }
7497             }
7498         }
7499
7500       reloc_write.put_r_offset(offset);
7501       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7502       reloc_write.put_r_addend(addend);
7503
7504       pwrite += reloc_size;
7505     }
7506
7507   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7508               == reloc_view_size);
7509 }
7510
7511 // Return the value to use for a dynamic symbol which requires special
7512 // treatment.  This is how we support equality comparisons of function
7513 // pointers across shared library boundaries, as described in the
7514 // processor specific ABI supplement.
7515
7516 template<int size, bool big_endian>
7517 uint64_t
7518 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7519 {
7520   if (size == 32)
7521     {
7522       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7523       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7524            p != this->stub_tables_.end();
7525            ++p)
7526         {
7527           Address off = (*p)->find_plt_call_entry(gsym);
7528           if (off != invalid_address)
7529             return (*p)->stub_address() + off;
7530         }
7531     }
7532   gold_unreachable();
7533 }
7534
7535 // Return the PLT address to use for a local symbol.
7536 template<int size, bool big_endian>
7537 uint64_t
7538 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7539     const Relobj* object,
7540     unsigned int symndx) const
7541 {
7542   if (size == 32)
7543     {
7544       const Sized_relobj<size, big_endian>* relobj
7545         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7546       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7547            p != this->stub_tables_.end();
7548            ++p)
7549         {
7550           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7551                                                   symndx);
7552           if (off != invalid_address)
7553             return (*p)->stub_address() + off;
7554         }
7555     }
7556   gold_unreachable();
7557 }
7558
7559 // Return the PLT address to use for a global symbol.
7560 template<int size, bool big_endian>
7561 uint64_t
7562 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7563     const Symbol* gsym) const
7564 {
7565   if (size == 32)
7566     {
7567       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7568            p != this->stub_tables_.end();
7569            ++p)
7570         {
7571           Address off = (*p)->find_plt_call_entry(gsym);
7572           if (off != invalid_address)
7573             return (*p)->stub_address() + off;
7574         }
7575     }
7576   gold_unreachable();
7577 }
7578
7579 // Return the offset to use for the GOT_INDX'th got entry which is
7580 // for a local tls symbol specified by OBJECT, SYMNDX.
7581 template<int size, bool big_endian>
7582 int64_t
7583 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7584     const Relobj* object,
7585     unsigned int symndx,
7586     unsigned int got_indx) const
7587 {
7588   const Powerpc_relobj<size, big_endian>* ppc_object
7589     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7590   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7591     {
7592       for (Got_type got_type = GOT_TYPE_TLSGD;
7593            got_type <= GOT_TYPE_TPREL;
7594            got_type = Got_type(got_type + 1))
7595         if (ppc_object->local_has_got_offset(symndx, got_type))
7596           {
7597             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7598             if (got_type == GOT_TYPE_TLSGD)
7599               off += size / 8;
7600             if (off == got_indx * (size / 8))
7601               {
7602                 if (got_type == GOT_TYPE_TPREL)
7603                   return -tp_offset;
7604                 else
7605                   return -dtp_offset;
7606               }
7607           }
7608     }
7609   gold_unreachable();
7610 }
7611
7612 // Return the offset to use for the GOT_INDX'th got entry which is
7613 // for global tls symbol GSYM.
7614 template<int size, bool big_endian>
7615 int64_t
7616 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7617     Symbol* gsym,
7618     unsigned int got_indx) const
7619 {
7620   if (gsym->type() == elfcpp::STT_TLS)
7621     {
7622       for (Got_type got_type = GOT_TYPE_TLSGD;
7623            got_type <= GOT_TYPE_TPREL;
7624            got_type = Got_type(got_type + 1))
7625         if (gsym->has_got_offset(got_type))
7626           {
7627             unsigned int off = gsym->got_offset(got_type);
7628             if (got_type == GOT_TYPE_TLSGD)
7629               off += size / 8;
7630             if (off == got_indx * (size / 8))
7631               {
7632                 if (got_type == GOT_TYPE_TPREL)
7633                   return -tp_offset;
7634                 else
7635                   return -dtp_offset;
7636               }
7637           }
7638     }
7639   gold_unreachable();
7640 }
7641
7642 // The selector for powerpc object files.
7643
7644 template<int size, bool big_endian>
7645 class Target_selector_powerpc : public Target_selector
7646 {
7647 public:
7648   Target_selector_powerpc()
7649     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7650                       size, big_endian,
7651                       (size == 64
7652                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7653                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7654                       (size == 64
7655                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7656                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7657   { }
7658
7659   virtual Target*
7660   do_instantiate_target()
7661   { return new Target_powerpc<size, big_endian>(); }
7662 };
7663
7664 Target_selector_powerpc<32, true> target_selector_ppc32;
7665 Target_selector_powerpc<32, false> target_selector_ppc32le;
7666 Target_selector_powerpc<64, true> target_selector_ppc64;
7667 Target_selector_powerpc<64, false> target_selector_ppc64le;
7668
7669 // Instantiate these constants for -O0
7670 template<int size, bool big_endian>
7671 const int Output_data_glink<size, big_endian>::pltresolve_size;
7672 template<int size, bool big_endian>
7673 const typename Stub_table<size, big_endian>::Address
7674   Stub_table<size, big_endian>::invalid_address;
7675 template<int size, bool big_endian>
7676 const typename Target_powerpc<size, big_endian>::Address
7677   Target_powerpc<size, big_endian>::invalid_address;
7678
7679 } // End anonymous namespace.