* target.h (Target::plt_fde_location, do_plt_fde_location): Declare.
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <algorithm>
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "powerpc.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "errors.h"
42 #include "gc.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 template<int size, bool big_endian>
50 class Output_data_plt_powerpc;
51
52 template<int size, bool big_endian>
53 class Output_data_brlt_powerpc;
54
55 template<int size, bool big_endian>
56 class Output_data_got_powerpc;
57
58 template<int size, bool big_endian>
59 class Output_data_glink;
60
61 template<int size, bool big_endian>
62 class Stub_table;
63
64 template<int size, bool big_endian>
65 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
66 {
67 public:
68   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
69   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
70   typedef Unordered_map<Address, Section_refs> Access_from;
71
72   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
73                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
74     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
75       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
76       opd_ent_(), access_from_map_(), has14_(), stub_table_()
77   { }
78
79   ~Powerpc_relobj()
80   { }
81
82   // The .got2 section shndx.
83   unsigned int
84   got2_shndx() const
85   {
86     if (size == 32)
87       return this->special_;
88     else
89       return 0;
90   }
91
92   // The .opd section shndx.
93   unsigned int
94   opd_shndx() const
95   {
96     if (size == 32)
97       return 0;
98     else
99       return this->special_;
100   }
101
102   // Init OPD entry arrays.
103   void
104   init_opd(size_t opd_size)
105   {
106     size_t count = this->opd_ent_ndx(opd_size);
107     this->opd_ent_.resize(count);
108   }
109
110   // Return section and offset of function entry for .opd + R_OFF.
111   unsigned int
112   get_opd_ent(Address r_off, Address* value = NULL) const
113   {
114     size_t ndx = this->opd_ent_ndx(r_off);
115     gold_assert(ndx < this->opd_ent_.size());
116     gold_assert(this->opd_ent_[ndx].shndx != 0);
117     if (value != NULL)
118       *value = this->opd_ent_[ndx].off;
119     return this->opd_ent_[ndx].shndx;
120   }
121
122   // Set section and offset of function entry for .opd + R_OFF.
123   void
124   set_opd_ent(Address r_off, unsigned int shndx, Address value)
125   {
126     size_t ndx = this->opd_ent_ndx(r_off);
127     gold_assert(ndx < this->opd_ent_.size());
128     this->opd_ent_[ndx].shndx = shndx;
129     this->opd_ent_[ndx].off = value;
130   }
131
132   // Return discard flag for .opd + R_OFF.
133   bool
134   get_opd_discard(Address r_off) const
135   {
136     size_t ndx = this->opd_ent_ndx(r_off);
137     gold_assert(ndx < this->opd_ent_.size());
138     return this->opd_ent_[ndx].discard;
139   }
140
141   // Set discard flag for .opd + R_OFF.
142   void
143   set_opd_discard(Address r_off)
144   {
145     size_t ndx = this->opd_ent_ndx(r_off);
146     gold_assert(ndx < this->opd_ent_.size());
147     this->opd_ent_[ndx].discard = true;
148   }
149
150   Access_from*
151   access_from_map()
152   { return &this->access_from_map_; }
153
154   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
155   // section at DST_OFF.
156   void
157   add_reference(Object* src_obj,
158                 unsigned int src_indx,
159                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
160   {
161     Section_id src_id(src_obj, src_indx);
162     this->access_from_map_[dst_off].insert(src_id);
163   }
164
165   // Add a reference to the code section specified by the .opd entry
166   // at DST_OFF
167   void
168   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
169   {
170     size_t ndx = this->opd_ent_ndx(dst_off);
171     if (ndx >= this->opd_ent_.size())
172       this->opd_ent_.resize(ndx + 1);
173     this->opd_ent_[ndx].gc_mark = true;
174   }
175
176   void
177   process_gc_mark(Symbol_table* symtab)
178   {
179     for (size_t i = 0; i < this->opd_ent_.size(); i++)
180       if (this->opd_ent_[i].gc_mark)
181         {
182           unsigned int shndx = this->opd_ent_[i].shndx;
183           symtab->gc()->worklist().push(Section_id(this, shndx));
184         }
185   }
186
187   bool
188   opd_valid() const
189   { return this->opd_valid_; }
190
191   void
192   set_opd_valid()
193   { this->opd_valid_ = true; }
194
195   // Examine .rela.opd to build info about function entry points.
196   void
197   scan_opd_relocs(size_t reloc_count,
198                   const unsigned char* prelocs,
199                   const unsigned char* plocal_syms);
200
201   // Perform the Sized_relobj_file method, then set up opd info from
202   // .opd relocs.
203   void
204   do_read_relocs(Read_relocs_data*);
205
206   bool
207   do_find_special_sections(Read_symbols_data* sd);
208
209   // Adjust this local symbol value.  Return false if the symbol
210   // should be discarded from the output file.
211   bool
212   do_adjust_local_symbol(Symbol_value<size>* lv) const
213   {
214     if (size == 64 && this->opd_shndx() != 0)
215       {
216         bool is_ordinary;
217         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
218           return true;
219         if (this->get_opd_discard(lv->input_value()))
220           return false;
221       }
222     return true;
223   }
224
225   // Return offset in output GOT section that this object will use
226   // as a TOC pointer.  Won't be just a constant with multi-toc support.
227   Address
228   toc_base_offset() const
229   { return 0x8000; }
230
231   void
232   set_has_small_toc_reloc()
233   { has_small_toc_reloc_ = true; }
234
235   bool
236   has_small_toc_reloc() const
237   { return has_small_toc_reloc_; }
238
239   void
240   set_has_14bit_branch(unsigned int shndx)
241   {
242     if (shndx >= this->has14_.size())
243       this->has14_.resize(shndx + 1);
244     this->has14_[shndx] = true;
245   }
246
247   bool
248   has_14bit_branch(unsigned int shndx) const
249   { return shndx < this->has14_.size() && this->has14_[shndx];  }
250
251   void
252   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
253   {
254     if (shndx >= this->stub_table_.size())
255       this->stub_table_.resize(shndx + 1);
256     this->stub_table_[shndx] = stub_table;
257   }
258
259   Stub_table<size, big_endian>*
260   stub_table(unsigned int shndx)
261   {
262     if (shndx < this->stub_table_.size())
263       return this->stub_table_[shndx];
264     return NULL;
265   }
266
267 private:
268   struct Opd_ent
269   {
270     unsigned int shndx;
271     bool discard : 1;
272     bool gc_mark : 1;
273     Address off;
274   };
275
276   // Return index into opd_ent_ array for .opd entry at OFF.
277   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
278   // apart when the language doesn't use the last 8-byte word, the
279   // environment pointer.  Thus dividing the entry section offset by
280   // 16 will give an index into opd_ent_ that works for either layout
281   // of .opd.  (It leaves some elements of the vector unused when .opd
282   // entries are spaced 24 bytes apart, but we don't know the spacing
283   // until relocations are processed, and in any case it is possible
284   // for an object to have some entries spaced 16 bytes apart and
285   // others 24 bytes apart.)
286   size_t
287   opd_ent_ndx(size_t off) const
288   { return off >> 4;}
289
290   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
291   unsigned int special_;
292
293   // For 64-bit, whether this object uses small model relocs to access
294   // the toc.
295   bool has_small_toc_reloc_;
296
297   // Set at the start of gc_process_relocs, when we know opd_ent_
298   // vector is valid.  The flag could be made atomic and set in
299   // do_read_relocs with memory_order_release and then tested with
300   // memory_order_acquire, potentially resulting in fewer entries in
301   // access_from_map_.
302   bool opd_valid_;
303
304   // The first 8-byte word of an OPD entry gives the address of the
305   // entry point of the function.  Relocatable object files have a
306   // relocation on this word.  The following vector records the
307   // section and offset specified by these relocations.
308   std::vector<Opd_ent> opd_ent_;
309
310   // References made to this object's .opd section when running
311   // gc_process_relocs for another object, before the opd_ent_ vector
312   // is valid for this object.
313   Access_from access_from_map_;
314
315   // Whether input section has a 14-bit branch reloc.
316   std::vector<bool> has14_;
317
318   // The stub table to use for a given input section.
319   std::vector<Stub_table<size, big_endian>*> stub_table_;
320 };
321
322 template<int size, bool big_endian>
323 class Target_powerpc : public Sized_target<size, big_endian>
324 {
325  public:
326   typedef
327     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
328   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
329   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
330   static const Address invalid_address = static_cast<Address>(0) - 1;
331   // Offset of tp and dtp pointers from start of TLS block.
332   static const Address tp_offset = 0x7000;
333   static const Address dtp_offset = 0x8000;
334
335   Target_powerpc()
336     : Sized_target<size, big_endian>(&powerpc_info),
337       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
338       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
339       dynbss_(NULL), tlsld_got_offset_(-1U),
340       stub_tables_(), branch_lookup_table_(), branch_info_(),
341       plt_thread_safe_(false)
342   {
343   }
344
345   // Process the relocations to determine unreferenced sections for
346   // garbage collection.
347   void
348   gc_process_relocs(Symbol_table* symtab,
349                     Layout* layout,
350                     Sized_relobj_file<size, big_endian>* object,
351                     unsigned int data_shndx,
352                     unsigned int sh_type,
353                     const unsigned char* prelocs,
354                     size_t reloc_count,
355                     Output_section* output_section,
356                     bool needs_special_offset_handling,
357                     size_t local_symbol_count,
358                     const unsigned char* plocal_symbols);
359
360   // Scan the relocations to look for symbol adjustments.
361   void
362   scan_relocs(Symbol_table* symtab,
363               Layout* layout,
364               Sized_relobj_file<size, big_endian>* object,
365               unsigned int data_shndx,
366               unsigned int sh_type,
367               const unsigned char* prelocs,
368               size_t reloc_count,
369               Output_section* output_section,
370               bool needs_special_offset_handling,
371               size_t local_symbol_count,
372               const unsigned char* plocal_symbols);
373
374   // Map input .toc section to output .got section.
375   const char*
376   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
377   {
378     if (size == 64 && strcmp(name, ".toc") == 0)
379       {
380         *plen = 4;
381         return ".got";
382       }
383     return NULL;
384   }
385
386   // Provide linker defined save/restore functions.
387   void
388   define_save_restore_funcs(Layout*, Symbol_table*);
389
390   // No stubs unless a final link.
391   bool
392   do_may_relax() const
393   { return !parameters->options().relocatable(); }
394
395   bool
396   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
397
398   void
399   do_plt_fde_location(const Output_data*, unsigned char*,
400                       uint64_t*, off_t*) const;
401
402   // Stash info about branches, for stub generation.
403   void
404   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
405               unsigned int data_shndx, Address r_offset,
406               unsigned int r_type, unsigned int r_sym, Address addend)
407   {
408     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
409     this->branch_info_.push_back(info);
410     if (r_type == elfcpp::R_POWERPC_REL14
411         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
412         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
413       ppc_object->set_has_14bit_branch(data_shndx);
414   }
415
416   Stub_table<size, big_endian>*
417   new_stub_table();
418
419   void
420   do_define_standard_symbols(Symbol_table*, Layout*);
421
422   // Finalize the sections.
423   void
424   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
425
426   // Return the value to use for a dynamic which requires special
427   // treatment.
428   uint64_t
429   do_dynsym_value(const Symbol*) const;
430
431   // Return the PLT address to use for a local symbol.
432   uint64_t
433   do_plt_address_for_local(const Relobj*, unsigned int) const;
434
435   // Return the PLT address to use for a global symbol.
436   uint64_t
437   do_plt_address_for_global(const Symbol*) const;
438
439   // Return the offset to use for the GOT_INDX'th got entry which is
440   // for a local tls symbol specified by OBJECT, SYMNDX.
441   int64_t
442   do_tls_offset_for_local(const Relobj* object,
443                           unsigned int symndx,
444                           unsigned int got_indx) const;
445
446   // Return the offset to use for the GOT_INDX'th got entry which is
447   // for global tls symbol GSYM.
448   int64_t
449   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
450
451   // Relocate a section.
452   void
453   relocate_section(const Relocate_info<size, big_endian>*,
454                    unsigned int sh_type,
455                    const unsigned char* prelocs,
456                    size_t reloc_count,
457                    Output_section* output_section,
458                    bool needs_special_offset_handling,
459                    unsigned char* view,
460                    Address view_address,
461                    section_size_type view_size,
462                    const Reloc_symbol_changes*);
463
464   // Scan the relocs during a relocatable link.
465   void
466   scan_relocatable_relocs(Symbol_table* symtab,
467                           Layout* layout,
468                           Sized_relobj_file<size, big_endian>* object,
469                           unsigned int data_shndx,
470                           unsigned int sh_type,
471                           const unsigned char* prelocs,
472                           size_t reloc_count,
473                           Output_section* output_section,
474                           bool needs_special_offset_handling,
475                           size_t local_symbol_count,
476                           const unsigned char* plocal_symbols,
477                           Relocatable_relocs*);
478
479   // Emit relocations for a section.
480   void
481   relocate_relocs(const Relocate_info<size, big_endian>*,
482                   unsigned int sh_type,
483                   const unsigned char* prelocs,
484                   size_t reloc_count,
485                   Output_section* output_section,
486                   typename elfcpp::Elf_types<size>::Elf_Off
487                     offset_in_output_section,
488                   const Relocatable_relocs*,
489                   unsigned char*,
490                   Address view_address,
491                   section_size_type,
492                   unsigned char* reloc_view,
493                   section_size_type reloc_view_size);
494
495   // Return whether SYM is defined by the ABI.
496   bool
497   do_is_defined_by_abi(const Symbol* sym) const
498   {
499     return strcmp(sym->name(), "__tls_get_addr") == 0;
500   }
501
502   // Return the size of the GOT section.
503   section_size_type
504   got_size() const
505   {
506     gold_assert(this->got_ != NULL);
507     return this->got_->data_size();
508   }
509
510   // Get the PLT section.
511   const Output_data_plt_powerpc<size, big_endian>*
512   plt_section() const
513   {
514     gold_assert(this->plt_ != NULL);
515     return this->plt_;
516   }
517
518   // Get the IPLT section.
519   const Output_data_plt_powerpc<size, big_endian>*
520   iplt_section() const
521   {
522     gold_assert(this->iplt_ != NULL);
523     return this->iplt_;
524   }
525
526   // Get the .glink section.
527   const Output_data_glink<size, big_endian>*
528   glink_section() const
529   {
530     gold_assert(this->glink_ != NULL);
531     return this->glink_;
532   }
533
534   bool has_glink() const
535   { return this->glink_ != NULL; }
536
537   // Get the GOT section.
538   const Output_data_got_powerpc<size, big_endian>*
539   got_section() const
540   {
541     gold_assert(this->got_ != NULL);
542     return this->got_;
543   }
544
545   // Get the GOT section, creating it if necessary.
546   Output_data_got_powerpc<size, big_endian>*
547   got_section(Symbol_table*, Layout*);
548
549   Object*
550   do_make_elf_object(const std::string&, Input_file*, off_t,
551                      const elfcpp::Ehdr<size, big_endian>&);
552
553   // Return the number of entries in the GOT.
554   unsigned int
555   got_entry_count() const
556   {
557     if (this->got_ == NULL)
558       return 0;
559     return this->got_size() / (size / 8);
560   }
561
562   // Return the number of entries in the PLT.
563   unsigned int
564   plt_entry_count() const;
565
566   // Return the offset of the first non-reserved PLT entry.
567   unsigned int
568   first_plt_entry_offset() const;
569
570   // Return the size of each PLT entry.
571   unsigned int
572   plt_entry_size() const;
573
574   // Add any special sections for this symbol to the gc work list.
575   // For powerpc64, this adds the code section of a function
576   // descriptor.
577   void
578   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
579
580   // Handle target specific gc actions when adding a gc reference from
581   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
582   // and DST_OFF.  For powerpc64, this adds a referenc to the code
583   // section of a function descriptor.
584   void
585   do_gc_add_reference(Symbol_table* symtab,
586                       Object* src_obj,
587                       unsigned int src_shndx,
588                       Object* dst_obj,
589                       unsigned int dst_shndx,
590                       Address dst_off) const;
591
592   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
593   const Stub_tables&
594   stub_tables() const
595   { return this->stub_tables_; }
596
597   const Output_data_brlt_powerpc<size, big_endian>*
598   brlt_section() const
599   { return this->brlt_section_; }
600
601   void
602   add_branch_lookup_table(Address to)
603   {
604     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
605     this->branch_lookup_table_.insert(std::make_pair(to, off));
606   }
607
608   Address
609   find_branch_lookup_table(Address to)
610   {
611     typename Branch_lookup_table::const_iterator p
612       = this->branch_lookup_table_.find(to);
613     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
614   }
615
616   void
617   write_branch_lookup_table(unsigned char *oview)
618   {
619     for (typename Branch_lookup_table::const_iterator p
620            = this->branch_lookup_table_.begin();
621          p != this->branch_lookup_table_.end();
622          ++p)
623       {
624         elfcpp::Swap<32, big_endian>::writeval(oview + p->second, p->first);
625       }
626   }
627
628   bool
629   plt_thread_safe() const
630   { return this->plt_thread_safe_; }
631
632  private:
633
634   class Track_tls
635   {
636   public:
637     enum Tls_get_addr
638     {
639       NOT_EXPECTED = 0,
640       EXPECTED = 1,
641       SKIP = 2,
642       NORMAL = 3
643     };
644
645     Track_tls()
646       : tls_get_addr_(NOT_EXPECTED),
647         relinfo_(NULL), relnum_(0), r_offset_(0)
648     { }
649
650     ~Track_tls()
651     {
652       if (this->tls_get_addr_ != NOT_EXPECTED)
653         this->missing();
654     }
655
656     void
657     missing(void)
658     {
659       if (this->relinfo_ != NULL)
660         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
661                                _("missing expected __tls_get_addr call"));
662     }
663
664     void
665     expect_tls_get_addr_call(
666         const Relocate_info<size, big_endian>* relinfo,
667         size_t relnum,
668         Address r_offset)
669     {
670       this->tls_get_addr_ = EXPECTED;
671       this->relinfo_ = relinfo;
672       this->relnum_ = relnum;
673       this->r_offset_ = r_offset;
674     }
675
676     void
677     expect_tls_get_addr_call()
678     { this->tls_get_addr_ = EXPECTED; }
679
680     void
681     skip_next_tls_get_addr_call()
682     {this->tls_get_addr_ = SKIP; }
683
684     Tls_get_addr
685     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
686     {
687       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
688                            || r_type == elfcpp::R_PPC_PLTREL24)
689                           && gsym != NULL
690                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
691       Tls_get_addr last_tls = this->tls_get_addr_;
692       this->tls_get_addr_ = NOT_EXPECTED;
693       if (is_tls_call && last_tls != EXPECTED)
694         return last_tls;
695       else if (!is_tls_call && last_tls != NOT_EXPECTED)
696         {
697           this->missing();
698           return EXPECTED;
699         }
700       return NORMAL;
701     }
702
703   private:
704     // What we're up to regarding calls to __tls_get_addr.
705     // On powerpc, the branch and link insn making a call to
706     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
707     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
708     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
709     // The marker relocation always comes first, and has the same
710     // symbol as the reloc on the insn setting up the __tls_get_addr
711     // argument.  This ties the arg setup insn with the call insn,
712     // allowing ld to safely optimize away the call.  We check that
713     // every call to __tls_get_addr has a marker relocation, and that
714     // every marker relocation is on a call to __tls_get_addr.
715     Tls_get_addr tls_get_addr_;
716     // Info about the last reloc for error message.
717     const Relocate_info<size, big_endian>* relinfo_;
718     size_t relnum_;
719     Address r_offset_;
720   };
721
722   // The class which scans relocations.
723   class Scan : protected Track_tls
724   {
725   public:
726     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
727
728     Scan()
729       : Track_tls(), issued_non_pic_error_(false)
730     { }
731
732     static inline int
733     get_reference_flags(unsigned int r_type);
734
735     inline void
736     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
737           Sized_relobj_file<size, big_endian>* object,
738           unsigned int data_shndx,
739           Output_section* output_section,
740           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
741           const elfcpp::Sym<size, big_endian>& lsym,
742           bool is_discarded);
743
744     inline void
745     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
746            Sized_relobj_file<size, big_endian>* object,
747            unsigned int data_shndx,
748            Output_section* output_section,
749            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
750            Symbol* gsym);
751
752     inline bool
753     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
754                                         Target_powerpc* ,
755                                         Sized_relobj_file<size, big_endian>* ,
756                                         unsigned int ,
757                                         Output_section* ,
758                                         const elfcpp::Rela<size, big_endian>& ,
759                                         unsigned int ,
760                                         const elfcpp::Sym<size, big_endian>&)
761     { return false; }
762
763     inline bool
764     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
765                                          Target_powerpc* ,
766                                          Sized_relobj_file<size, big_endian>* ,
767                                          unsigned int ,
768                                          Output_section* ,
769                                          const elfcpp::Rela<size,
770                                                             big_endian>& ,
771                                          unsigned int , Symbol*)
772     { return false; }
773
774   private:
775     static void
776     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
777                             unsigned int r_type);
778
779     static void
780     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
781                              unsigned int r_type, Symbol*);
782
783     static void
784     generate_tls_call(Symbol_table* symtab, Layout* layout,
785                       Target_powerpc* target);
786
787     void
788     check_non_pic(Relobj*, unsigned int r_type);
789
790     bool
791     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
792                               unsigned int r_type);
793
794     // Whether we have issued an error about a non-PIC compilation.
795     bool issued_non_pic_error_;
796   };
797
798   Address
799   symval_for_branch(Address value, const Sized_symbol<size>* gsym,
800                     Powerpc_relobj<size, big_endian>* object,
801                     unsigned int *dest_shndx);
802
803   // The class which implements relocation.
804   class Relocate : protected Track_tls
805   {
806    public:
807     // Use 'at' branch hints when true, 'y' when false.
808     // FIXME maybe: set this with an option.
809     static const bool is_isa_v2 = true;
810
811     Relocate()
812       : Track_tls()
813     { }
814
815     // Do a relocation.  Return false if the caller should not issue
816     // any warnings about this relocation.
817     inline bool
818     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
819              Output_section*, size_t relnum,
820              const elfcpp::Rela<size, big_endian>&,
821              unsigned int r_type, const Sized_symbol<size>*,
822              const Symbol_value<size>*,
823              unsigned char*,
824              typename elfcpp::Elf_types<size>::Elf_Addr,
825              section_size_type);
826   };
827
828   class Relocate_comdat_behavior
829   {
830    public:
831     // Decide what the linker should do for relocations that refer to
832     // discarded comdat sections.
833     inline Comdat_behavior
834     get(const char* name)
835     {
836       gold::Default_comdat_behavior default_behavior;
837       Comdat_behavior ret = default_behavior.get(name);
838       if (ret == CB_WARNING)
839         {
840           if (size == 32
841               && (strcmp(name, ".fixup") == 0
842                   || strcmp(name, ".got2") == 0))
843             ret = CB_IGNORE;
844           if (size == 64
845               && (strcmp(name, ".opd") == 0
846                   || strcmp(name, ".toc") == 0
847                   || strcmp(name, ".toc1") == 0))
848             ret = CB_IGNORE;
849         }
850       return ret;
851     }
852   };
853
854   // A class which returns the size required for a relocation type,
855   // used while scanning relocs during a relocatable link.
856   class Relocatable_size_for_reloc
857   {
858    public:
859     unsigned int
860     get_size_for_reloc(unsigned int, Relobj*)
861     {
862       gold_unreachable();
863       return 0;
864     }
865   };
866
867   // Optimize the TLS relocation type based on what we know about the
868   // symbol.  IS_FINAL is true if the final address of this symbol is
869   // known at link time.
870
871   tls::Tls_optimization
872   optimize_tls_gd(bool is_final)
873   {
874     // If we are generating a shared library, then we can't do anything
875     // in the linker.
876     if (parameters->options().shared())
877       return tls::TLSOPT_NONE;
878
879     if (!is_final)
880       return tls::TLSOPT_TO_IE;
881     return tls::TLSOPT_TO_LE;
882   }
883
884   tls::Tls_optimization
885   optimize_tls_ld()
886   {
887     if (parameters->options().shared())
888       return tls::TLSOPT_NONE;
889
890     return tls::TLSOPT_TO_LE;
891   }
892
893   tls::Tls_optimization
894   optimize_tls_ie(bool is_final)
895   {
896     if (!is_final || parameters->options().shared())
897       return tls::TLSOPT_NONE;
898
899     return tls::TLSOPT_TO_LE;
900   }
901
902   // Create glink.
903   void
904   make_glink_section(Layout*);
905
906   // Create the PLT section.
907   void
908   make_plt_section(Symbol_table*, Layout*);
909
910   void
911   make_iplt_section(Symbol_table*, Layout*);
912
913   void
914   make_brlt_section(Layout*);
915
916   // Create a PLT entry for a global symbol.
917   void
918   make_plt_entry(Symbol_table*, Layout*, Symbol*);
919
920   // Create a PLT entry for a local IFUNC symbol.
921   void
922   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
923                              Sized_relobj_file<size, big_endian>*,
924                              unsigned int);
925
926
927   // Create a GOT entry for local dynamic __tls_get_addr.
928   unsigned int
929   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
930                    Sized_relobj_file<size, big_endian>* object);
931
932   unsigned int
933   tlsld_got_offset() const
934   {
935     return this->tlsld_got_offset_;
936   }
937
938   // Get the dynamic reloc section, creating it if necessary.
939   Reloc_section*
940   rela_dyn_section(Layout*);
941
942   // Copy a relocation against a global symbol.
943   void
944   copy_reloc(Symbol_table* symtab, Layout* layout,
945              Sized_relobj_file<size, big_endian>* object,
946              unsigned int shndx, Output_section* output_section,
947              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
948   {
949     this->copy_relocs_.copy_reloc(symtab, layout,
950                                   symtab->get_sized_symbol<size>(sym),
951                                   object, shndx, output_section,
952                                   reloc, this->rela_dyn_section(layout));
953   }
954
955   // Look over all the input sections, deciding where to place stub.
956   void
957   group_sections(Layout*, const Task*);
958
959   // Sort output sections by address.
960   struct Sort_sections
961   {
962     bool
963     operator()(const Output_section* sec1, const Output_section* sec2)
964     { return sec1->address() < sec2->address(); }
965   };
966
967   class Branch_info
968   {
969    public:
970     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
971                 unsigned int data_shndx,
972                 Address r_offset,
973                 unsigned int r_type,
974                 unsigned int r_sym,
975                 Address addend)
976       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
977         r_type_(r_type), r_sym_(r_sym), addend_(addend)
978     { }
979
980     ~Branch_info()
981     { }
982
983     // If this branch needs a plt call stub, or a long branch stub, make one.
984     void
985     make_stub(Stub_table<size, big_endian>*,
986               Stub_table<size, big_endian>*,
987               Symbol_table*) const;
988
989    private:
990     // The branch location..
991     Powerpc_relobj<size, big_endian>* object_;
992     unsigned int shndx_;
993     Address offset_;
994     // ..and the branch type and destination.
995     unsigned int r_type_;
996     unsigned int r_sym_;
997     Address addend_;
998   };
999
1000   // Information about this specific target which we pass to the
1001   // general Target structure.
1002   static Target::Target_info powerpc_info;
1003
1004   // The types of GOT entries needed for this platform.
1005   // These values are exposed to the ABI in an incremental link.
1006   // Do not renumber existing values without changing the version
1007   // number of the .gnu_incremental_inputs section.
1008   enum Got_type
1009   {
1010     GOT_TYPE_STANDARD,
1011     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1012     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1013     GOT_TYPE_TPREL      // entry for @got@tprel
1014   };
1015
1016   // The GOT section.
1017   Output_data_got_powerpc<size, big_endian>* got_;
1018   // The PLT section.
1019   Output_data_plt_powerpc<size, big_endian>* plt_;
1020   // The IPLT section.
1021   Output_data_plt_powerpc<size, big_endian>* iplt_;
1022   // Section holding long branch destinations.
1023   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1024   // The .glink section.
1025   Output_data_glink<size, big_endian>* glink_;
1026   // The dynamic reloc section.
1027   Reloc_section* rela_dyn_;
1028   // Relocs saved to avoid a COPY reloc.
1029   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1030   // Space for variables copied with a COPY reloc.
1031   Output_data_space* dynbss_;
1032   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1033   unsigned int tlsld_got_offset_;
1034
1035   Stub_tables stub_tables_;
1036   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1037   Branch_lookup_table branch_lookup_table_;
1038
1039   typedef std::vector<Branch_info> Branches;
1040   Branches branch_info_;
1041
1042   bool plt_thread_safe_;
1043 };
1044
1045 template<>
1046 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1047 {
1048   32,                   // size
1049   true,                 // is_big_endian
1050   elfcpp::EM_PPC,       // machine_code
1051   false,                // has_make_symbol
1052   false,                // has_resolve
1053   false,                // has_code_fill
1054   true,                 // is_default_stack_executable
1055   false,                // can_icf_inline_merge_sections
1056   '\0',                 // wrap_char
1057   "/usr/lib/ld.so.1",   // dynamic_linker
1058   0x10000000,           // default_text_segment_address
1059   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1060   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1061   false,                // isolate_execinstr
1062   0,                    // rosegment_gap
1063   elfcpp::SHN_UNDEF,    // small_common_shndx
1064   elfcpp::SHN_UNDEF,    // large_common_shndx
1065   0,                    // small_common_section_flags
1066   0,                    // large_common_section_flags
1067   NULL,                 // attributes_section
1068   NULL                  // attributes_vendor
1069 };
1070
1071 template<>
1072 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1073 {
1074   32,                   // size
1075   false,                // is_big_endian
1076   elfcpp::EM_PPC,       // machine_code
1077   false,                // has_make_symbol
1078   false,                // has_resolve
1079   false,                // has_code_fill
1080   true,                 // is_default_stack_executable
1081   false,                // can_icf_inline_merge_sections
1082   '\0',                 // wrap_char
1083   "/usr/lib/ld.so.1",   // dynamic_linker
1084   0x10000000,           // default_text_segment_address
1085   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1086   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1087   false,                // isolate_execinstr
1088   0,                    // rosegment_gap
1089   elfcpp::SHN_UNDEF,    // small_common_shndx
1090   elfcpp::SHN_UNDEF,    // large_common_shndx
1091   0,                    // small_common_section_flags
1092   0,                    // large_common_section_flags
1093   NULL,                 // attributes_section
1094   NULL                  // attributes_vendor
1095 };
1096
1097 template<>
1098 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1099 {
1100   64,                   // size
1101   true,                 // is_big_endian
1102   elfcpp::EM_PPC64,     // machine_code
1103   false,                // has_make_symbol
1104   false,                // has_resolve
1105   false,                // has_code_fill
1106   true,                 // is_default_stack_executable
1107   false,                // can_icf_inline_merge_sections
1108   '\0',                 // wrap_char
1109   "/usr/lib/ld.so.1",   // dynamic_linker
1110   0x10000000,           // default_text_segment_address
1111   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1112   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1113   false,                // isolate_execinstr
1114   0,                    // rosegment_gap
1115   elfcpp::SHN_UNDEF,    // small_common_shndx
1116   elfcpp::SHN_UNDEF,    // large_common_shndx
1117   0,                    // small_common_section_flags
1118   0,                    // large_common_section_flags
1119   NULL,                 // attributes_section
1120   NULL                  // attributes_vendor
1121 };
1122
1123 template<>
1124 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1125 {
1126   64,                   // size
1127   false,                // is_big_endian
1128   elfcpp::EM_PPC64,     // machine_code
1129   false,                // has_make_symbol
1130   false,                // has_resolve
1131   false,                // has_code_fill
1132   true,                 // is_default_stack_executable
1133   false,                // can_icf_inline_merge_sections
1134   '\0',                 // wrap_char
1135   "/usr/lib/ld.so.1",   // dynamic_linker
1136   0x10000000,           // default_text_segment_address
1137   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1138   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1139   false,                // isolate_execinstr
1140   0,                    // rosegment_gap
1141   elfcpp::SHN_UNDEF,    // small_common_shndx
1142   elfcpp::SHN_UNDEF,    // large_common_shndx
1143   0,                    // small_common_section_flags
1144   0,                    // large_common_section_flags
1145   NULL,                 // attributes_section
1146   NULL                  // attributes_vendor
1147 };
1148
1149 inline bool
1150 is_branch_reloc(unsigned int r_type)
1151 {
1152   return (r_type == elfcpp::R_POWERPC_REL24
1153           || r_type == elfcpp::R_PPC_PLTREL24
1154           || r_type == elfcpp::R_PPC_LOCAL24PC
1155           || r_type == elfcpp::R_POWERPC_REL14
1156           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1157           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1158           || r_type == elfcpp::R_POWERPC_ADDR24
1159           || r_type == elfcpp::R_POWERPC_ADDR14
1160           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1161           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1162 }
1163
1164 // If INSN is an opcode that may be used with an @tls operand, return
1165 // the transformed insn for TLS optimisation, otherwise return 0.  If
1166 // REG is non-zero only match an insn with RB or RA equal to REG.
1167 uint32_t
1168 at_tls_transform(uint32_t insn, unsigned int reg)
1169 {
1170   if ((insn & (0x3f << 26)) != 31 << 26)
1171     return 0;
1172
1173   unsigned int rtra;
1174   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1175     rtra = insn & ((1 << 26) - (1 << 16));
1176   else if (((insn >> 16) & 0x1f) == reg)
1177     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1178   else
1179     return 0;
1180
1181   if ((insn & (0x3ff << 1)) == 266 << 1)
1182     // add -> addi
1183     insn = 14 << 26;
1184   else if ((insn & (0x1f << 1)) == 23 << 1
1185            && ((insn & (0x1f << 6)) < 14 << 6
1186                || ((insn & (0x1f << 6)) >= 16 << 6
1187                    && (insn & (0x1f << 6)) < 24 << 6)))
1188     // load and store indexed -> dform
1189     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1190   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1191     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1192     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1193   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1194     // lwax -> lwa
1195     insn = (58 << 26) | 2;
1196   else
1197     return 0;
1198   insn |= rtra;
1199   return insn;
1200 }
1201
1202 // Modified version of symtab.h class Symbol member
1203 // Given a direct absolute or pc-relative static relocation against
1204 // the global symbol, this function returns whether a dynamic relocation
1205 // is needed.
1206
1207 template<int size>
1208 bool
1209 needs_dynamic_reloc(const Symbol* gsym, int flags)
1210 {
1211   // No dynamic relocations in a static link!
1212   if (parameters->doing_static_link())
1213     return false;
1214
1215   // A reference to an undefined symbol from an executable should be
1216   // statically resolved to 0, and does not need a dynamic relocation.
1217   // This matches gnu ld behavior.
1218   if (gsym->is_undefined() && !parameters->options().shared())
1219     return false;
1220
1221   // A reference to an absolute symbol does not need a dynamic relocation.
1222   if (gsym->is_absolute())
1223     return false;
1224
1225   // An absolute reference within a position-independent output file
1226   // will need a dynamic relocation.
1227   if ((flags & Symbol::ABSOLUTE_REF)
1228       && parameters->options().output_is_position_independent())
1229     return true;
1230
1231   // A function call that can branch to a local PLT entry does not need
1232   // a dynamic relocation.
1233   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1234     return false;
1235
1236   // A reference to any PLT entry in a non-position-independent executable
1237   // does not need a dynamic relocation.
1238   // Except due to having function descriptors on powerpc64 we don't define
1239   // functions to their plt code in an executable, so this doesn't apply.
1240   if (size == 32
1241       && !parameters->options().output_is_position_independent()
1242       && gsym->has_plt_offset())
1243     return false;
1244
1245   // A reference to a symbol defined in a dynamic object or to a
1246   // symbol that is preemptible will need a dynamic relocation.
1247   if (gsym->is_from_dynobj()
1248       || gsym->is_undefined()
1249       || gsym->is_preemptible())
1250     return true;
1251
1252   // For all other cases, return FALSE.
1253   return false;
1254 }
1255
1256 // Modified version of symtab.h class Symbol member
1257 // Whether we should use the PLT offset associated with a symbol for
1258 // a relocation.  FLAGS is a set of Reference_flags.
1259
1260 template<int size>
1261 bool
1262 use_plt_offset(const Symbol* gsym, int flags)
1263 {
1264   // If the symbol doesn't have a PLT offset, then naturally we
1265   // don't want to use it.
1266   if (!gsym->has_plt_offset())
1267     return false;
1268
1269   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1270   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1271     return true;
1272
1273   // If we are going to generate a dynamic relocation, then we will
1274   // wind up using that, so no need to use the PLT entry.
1275   if (needs_dynamic_reloc<size>(gsym, flags))
1276     return false;
1277
1278   // If the symbol is from a dynamic object, we need to use the PLT
1279   // entry.
1280   if (gsym->is_from_dynobj())
1281     return true;
1282
1283   // If we are generating a shared object, and this symbol is
1284   // undefined or preemptible, we need to use the PLT entry.
1285   if (parameters->options().shared()
1286       && (gsym->is_undefined() || gsym->is_preemptible()))
1287     return true;
1288
1289   // If this is a call to a weak undefined symbol, we need to use
1290   // the PLT entry; the symbol may be defined by a library loaded
1291   // at runtime.
1292   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1293     return true;
1294
1295   // Otherwise we can use the regular definition.
1296   return false;
1297 }
1298
1299 template<int size, bool big_endian>
1300 class Powerpc_relocate_functions
1301 {
1302 public:
1303   enum Overflow_check
1304   {
1305     CHECK_NONE,
1306     CHECK_SIGNED,
1307     CHECK_BITFIELD
1308   };
1309
1310   enum Status
1311   {
1312     STATUS_OK,
1313     STATUS_OVERFLOW
1314   };
1315
1316 private:
1317   typedef Powerpc_relocate_functions<size, big_endian> This;
1318   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1319
1320   template<int valsize>
1321   static inline bool
1322   has_overflow_signed(Address value)
1323   {
1324     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1325     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1326     limit <<= ((valsize - 1) >> 1);
1327     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1328     return value + limit > (limit << 1) - 1;
1329   }
1330
1331   template<int valsize>
1332   static inline bool
1333   has_overflow_bitfield(Address value)
1334   {
1335     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1336     limit <<= ((valsize - 1) >> 1);
1337     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1338     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1339   }
1340
1341   template<int valsize>
1342   static inline Status
1343   overflowed(Address value, Overflow_check overflow)
1344   {
1345     if (overflow == CHECK_SIGNED)
1346       {
1347         if (has_overflow_signed<valsize>(value))
1348           return STATUS_OVERFLOW;
1349       }
1350     else if (overflow == CHECK_BITFIELD)
1351       {
1352         if (has_overflow_bitfield<valsize>(value))
1353           return STATUS_OVERFLOW;
1354       }
1355     return STATUS_OK;
1356   }
1357
1358   // Do a simple RELA relocation
1359   template<int valsize>
1360   static inline Status
1361   rela(unsigned char* view, Address value, Overflow_check overflow)
1362   {
1363     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1364     Valtype* wv = reinterpret_cast<Valtype*>(view);
1365     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1366     return overflowed<valsize>(value, overflow);
1367   }
1368
1369   template<int valsize>
1370   static inline Status
1371   rela(unsigned char* view,
1372        unsigned int right_shift,
1373        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1374        Address value,
1375        Overflow_check overflow)
1376   {
1377     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1378     Valtype* wv = reinterpret_cast<Valtype*>(view);
1379     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1380     Valtype reloc = value >> right_shift;
1381     val &= ~dst_mask;
1382     reloc &= dst_mask;
1383     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1384     return overflowed<valsize>(value >> right_shift, overflow);
1385   }
1386
1387   // Do a simple RELA relocation, unaligned.
1388   template<int valsize>
1389   static inline Status
1390   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1391   {
1392     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1393     return overflowed<valsize>(value, overflow);
1394   }
1395
1396   template<int valsize>
1397   static inline Status
1398   rela_ua(unsigned char* view,
1399           unsigned int right_shift,
1400           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1401           Address value,
1402           Overflow_check overflow)
1403   {
1404     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1405       Valtype;
1406     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1407     Valtype reloc = value >> right_shift;
1408     val &= ~dst_mask;
1409     reloc &= dst_mask;
1410     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1411     return overflowed<valsize>(value >> right_shift, overflow);
1412   }
1413
1414 public:
1415   // R_PPC64_ADDR64: (Symbol + Addend)
1416   static inline void
1417   addr64(unsigned char* view, Address value)
1418   { This::template rela<64>(view, value, CHECK_NONE); }
1419
1420   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1421   static inline void
1422   addr64_u(unsigned char* view, Address value)
1423   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1424
1425   // R_POWERPC_ADDR32: (Symbol + Addend)
1426   static inline Status
1427   addr32(unsigned char* view, Address value, Overflow_check overflow)
1428   { return This::template rela<32>(view, value, overflow); }
1429
1430   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1431   static inline Status
1432   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1433   { return This::template rela_ua<32>(view, value, overflow); }
1434
1435   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1436   static inline Status
1437   addr24(unsigned char* view, Address value, Overflow_check overflow)
1438   {
1439     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1440     if (overflow != CHECK_NONE && (value & 3) != 0)
1441       stat = STATUS_OVERFLOW;
1442     return stat;
1443   }
1444
1445   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1446   static inline Status
1447   addr16(unsigned char* view, Address value, Overflow_check overflow)
1448   { return This::template rela<16>(view, value, overflow); }
1449
1450   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1451   static inline Status
1452   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1453   { return This::template rela_ua<16>(view, value, overflow); }
1454
1455   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1456   static inline Status
1457   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1458   {
1459     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1460     if (overflow != CHECK_NONE && (value & 3) != 0)
1461       stat = STATUS_OVERFLOW;
1462     return stat;
1463   }
1464
1465   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1466   static inline void
1467   addr16_hi(unsigned char* view, Address value)
1468   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1469
1470   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1471   static inline void
1472   addr16_ha(unsigned char* view, Address value)
1473   { This::addr16_hi(view, value + 0x8000); }
1474
1475   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1476   static inline void
1477   addr16_hi2(unsigned char* view, Address value)
1478   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1479
1480   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1481   static inline void
1482   addr16_ha2(unsigned char* view, Address value)
1483   { This::addr16_hi2(view, value + 0x8000); }
1484
1485   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1486   static inline void
1487   addr16_hi3(unsigned char* view, Address value)
1488   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1489
1490   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1491   static inline void
1492   addr16_ha3(unsigned char* view, Address value)
1493   { This::addr16_hi3(view, value + 0x8000); }
1494
1495   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1496   static inline Status
1497   addr14(unsigned char* view, Address value, Overflow_check overflow)
1498   {
1499     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1500     if (overflow != CHECK_NONE && (value & 3) != 0)
1501       stat = STATUS_OVERFLOW;
1502     return stat;
1503   }
1504 };
1505
1506 // Stash away the index of .got2 or .opd in a relocatable object, if
1507 // such a section exists.
1508
1509 template<int size, bool big_endian>
1510 bool
1511 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1512     Read_symbols_data* sd)
1513 {
1514   const unsigned char* const pshdrs = sd->section_headers->data();
1515   const unsigned char* namesu = sd->section_names->data();
1516   const char* names = reinterpret_cast<const char*>(namesu);
1517   section_size_type names_size = sd->section_names_size;
1518   const unsigned char* s;
1519
1520   s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1521                       names, names_size, NULL);
1522   if (s != NULL)
1523     {
1524       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1525       this->special_ = ndx;
1526     }
1527   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1528 }
1529
1530 // Examine .rela.opd to build info about function entry points.
1531
1532 template<int size, bool big_endian>
1533 void
1534 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1535     size_t reloc_count,
1536     const unsigned char* prelocs,
1537     const unsigned char* plocal_syms)
1538 {
1539   if (size == 64)
1540     {
1541       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1542         Reltype;
1543       const int reloc_size
1544         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1545       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1546       Address expected_off = 0;
1547       bool regular = true;
1548       unsigned int opd_ent_size = 0;
1549
1550       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1551         {
1552           Reltype reloc(prelocs);
1553           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1554             = reloc.get_r_info();
1555           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1556           if (r_type == elfcpp::R_PPC64_ADDR64)
1557             {
1558               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1559               typename elfcpp::Elf_types<size>::Elf_Addr value;
1560               bool is_ordinary;
1561               unsigned int shndx;
1562               if (r_sym < this->local_symbol_count())
1563                 {
1564                   typename elfcpp::Sym<size, big_endian>
1565                     lsym(plocal_syms + r_sym * sym_size);
1566                   shndx = lsym.get_st_shndx();
1567                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1568                   value = lsym.get_st_value();
1569                 }
1570               else
1571                 shndx = this->symbol_section_and_value(r_sym, &value,
1572                                                        &is_ordinary);
1573               this->set_opd_ent(reloc.get_r_offset(), shndx,
1574                                 value + reloc.get_r_addend());
1575               if (i == 2)
1576                 {
1577                   expected_off = reloc.get_r_offset();
1578                   opd_ent_size = expected_off;
1579                 }
1580               else if (expected_off != reloc.get_r_offset())
1581                 regular = false;
1582               expected_off += opd_ent_size;
1583             }
1584           else if (r_type == elfcpp::R_PPC64_TOC)
1585             {
1586               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1587                 regular = false;
1588             }
1589           else
1590             {
1591               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1592                            this->name().c_str(), r_type);
1593               regular = false;
1594             }
1595         }
1596       if (reloc_count <= 2)
1597         opd_ent_size = this->section_size(this->opd_shndx());
1598       if (opd_ent_size != 24 && opd_ent_size != 16)
1599         regular = false;
1600       if (!regular)
1601         {
1602           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1603                        this->name().c_str());
1604           opd_ent_size = 0;
1605         }
1606     }
1607 }
1608
1609 template<int size, bool big_endian>
1610 void
1611 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1612 {
1613   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1614   if (size == 64)
1615     {
1616       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1617            p != rd->relocs.end();
1618            ++p)
1619         {
1620           if (p->data_shndx == this->opd_shndx())
1621             {
1622               uint64_t opd_size = this->section_size(this->opd_shndx());
1623               gold_assert(opd_size == static_cast<size_t>(opd_size));
1624               if (opd_size != 0)
1625                 {
1626                   this->init_opd(opd_size);
1627                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1628                                         rd->local_symbols->data());
1629                 }
1630               break;
1631             }
1632         }
1633     }
1634 }
1635
1636 // Set up some symbols.
1637
1638 template<int size, bool big_endian>
1639 void
1640 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1641     Symbol_table* symtab,
1642     Layout* layout)
1643 {
1644   if (size == 32)
1645     {
1646       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1647       // undefined when scanning relocs (and thus requires
1648       // non-relative dynamic relocs).  The proper value will be
1649       // updated later.
1650       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1651       if (gotsym != NULL && gotsym->is_undefined())
1652         {
1653           Target_powerpc<size, big_endian>* target =
1654             static_cast<Target_powerpc<size, big_endian>*>(
1655                 parameters->sized_target<size, big_endian>());
1656           Output_data_got_powerpc<size, big_endian>* got
1657             = target->got_section(symtab, layout);
1658           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1659                                         Symbol_table::PREDEFINED,
1660                                         got, 0, 0,
1661                                         elfcpp::STT_OBJECT,
1662                                         elfcpp::STB_LOCAL,
1663                                         elfcpp::STV_HIDDEN, 0,
1664                                         false, false);
1665         }
1666
1667       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1668       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1669       if (sdasym != NULL && sdasym->is_undefined())
1670         {
1671           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1672           Output_section* os
1673             = layout->add_output_section_data(".sdata", 0,
1674                                               elfcpp::SHF_ALLOC
1675                                               | elfcpp::SHF_WRITE,
1676                                               sdata, ORDER_SMALL_DATA, false);
1677           symtab->define_in_output_data("_SDA_BASE_", NULL,
1678                                         Symbol_table::PREDEFINED,
1679                                         os, 32768, 0, elfcpp::STT_OBJECT,
1680                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1681                                         0, false, false);
1682         }
1683     }
1684 }
1685
1686 // Set up PowerPC target specific relobj.
1687
1688 template<int size, bool big_endian>
1689 Object*
1690 Target_powerpc<size, big_endian>::do_make_elf_object(
1691     const std::string& name,
1692     Input_file* input_file,
1693     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1694 {
1695   int et = ehdr.get_e_type();
1696   // ET_EXEC files are valid input for --just-symbols/-R,
1697   // and we treat them as relocatable objects.
1698   if (et == elfcpp::ET_REL
1699       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1700     {
1701       Powerpc_relobj<size, big_endian>* obj =
1702         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1703       obj->setup();
1704       return obj;
1705     }
1706   else if (et == elfcpp::ET_DYN)
1707     {
1708       Sized_dynobj<size, big_endian>* obj =
1709         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1710       obj->setup();
1711       return obj;
1712     }
1713   else
1714     {
1715       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1716       return NULL;
1717     }
1718 }
1719
1720 template<int size, bool big_endian>
1721 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1722 {
1723 public:
1724   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1725   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1726
1727   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1728     : Output_data_got<size, big_endian>(),
1729       symtab_(symtab), layout_(layout),
1730       header_ent_cnt_(size == 32 ? 3 : 1),
1731       header_index_(size == 32 ? 0x2000 : 0)
1732   { }
1733
1734   class Got_entry;
1735
1736   // Create a new GOT entry and return its offset.
1737   unsigned int
1738   add_got_entry(Got_entry got_entry)
1739   {
1740     this->reserve_ent();
1741     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1742   }
1743
1744   // Create a pair of new GOT entries and return the offset of the first.
1745   unsigned int
1746   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1747   {
1748     this->reserve_ent(2);
1749     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1750                                                                  got_entry_2);
1751   }
1752
1753   unsigned int
1754   add_constant_pair(Valtype c1, Valtype c2)
1755   {
1756     this->reserve_ent(2);
1757     unsigned int got_offset = this->add_constant(c1);
1758     this->add_constant(c2);
1759     return got_offset;
1760   }
1761
1762   // Offset of _GLOBAL_OFFSET_TABLE_.
1763   unsigned int
1764   g_o_t() const
1765   {
1766     return this->got_offset(this->header_index_);
1767   }
1768
1769   // Offset of base used to access the GOT/TOC.
1770   // The got/toc pointer reg will be set to this value.
1771   Valtype
1772   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1773   {
1774     if (size == 32)
1775       return this->g_o_t();
1776     else
1777       return (this->output_section()->address()
1778               + object->toc_base_offset()
1779               - this->address());
1780   }
1781
1782   // Ensure our GOT has a header.
1783   void
1784   set_final_data_size()
1785   {
1786     if (this->header_ent_cnt_ != 0)
1787       this->make_header();
1788     Output_data_got<size, big_endian>::set_final_data_size();
1789   }
1790
1791   // First word of GOT header needs some values that are not
1792   // handled by Output_data_got so poke them in here.
1793   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1794   void
1795   do_write(Output_file* of)
1796   {
1797     Valtype val = 0;
1798     if (size == 32 && this->layout_->dynamic_data() != NULL)
1799       val = this->layout_->dynamic_section()->address();
1800     if (size == 64)
1801       val = this->output_section()->address() + 0x8000;
1802     this->replace_constant(this->header_index_, val);
1803     Output_data_got<size, big_endian>::do_write(of);
1804   }
1805
1806 private:
1807   void
1808   reserve_ent(unsigned int cnt = 1)
1809   {
1810     if (this->header_ent_cnt_ == 0)
1811       return;
1812     if (this->num_entries() + cnt > this->header_index_)
1813       this->make_header();
1814   }
1815
1816   void
1817   make_header()
1818   {
1819     this->header_ent_cnt_ = 0;
1820     this->header_index_ = this->num_entries();
1821     if (size == 32)
1822       {
1823         Output_data_got<size, big_endian>::add_constant(0);
1824         Output_data_got<size, big_endian>::add_constant(0);
1825         Output_data_got<size, big_endian>::add_constant(0);
1826
1827         // Define _GLOBAL_OFFSET_TABLE_ at the header
1828         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1829         if (gotsym != NULL)
1830           {
1831             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
1832             sym->set_value(this->g_o_t());
1833           }
1834         else
1835           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1836                                                Symbol_table::PREDEFINED,
1837                                                this, this->g_o_t(), 0,
1838                                                elfcpp::STT_OBJECT,
1839                                                elfcpp::STB_LOCAL,
1840                                                elfcpp::STV_HIDDEN, 0,
1841                                                false, false);
1842       }
1843     else
1844       Output_data_got<size, big_endian>::add_constant(0);
1845   }
1846
1847   // Stashed pointers.
1848   Symbol_table* symtab_;
1849   Layout* layout_;
1850
1851   // GOT header size.
1852   unsigned int header_ent_cnt_;
1853   // GOT header index.
1854   unsigned int header_index_;
1855 };
1856
1857 // Get the GOT section, creating it if necessary.
1858
1859 template<int size, bool big_endian>
1860 Output_data_got_powerpc<size, big_endian>*
1861 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1862                                               Layout* layout)
1863 {
1864   if (this->got_ == NULL)
1865     {
1866       gold_assert(symtab != NULL && layout != NULL);
1867
1868       this->got_
1869         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1870
1871       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1872                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1873                                       this->got_, ORDER_DATA, false);
1874     }
1875
1876   return this->got_;
1877 }
1878
1879 // Get the dynamic reloc section, creating it if necessary.
1880
1881 template<int size, bool big_endian>
1882 typename Target_powerpc<size, big_endian>::Reloc_section*
1883 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1884 {
1885   if (this->rela_dyn_ == NULL)
1886     {
1887       gold_assert(layout != NULL);
1888       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1889       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1890                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1891                                       ORDER_DYNAMIC_RELOCS, false);
1892     }
1893   return this->rela_dyn_;
1894 }
1895
1896 class Stub_control
1897 {
1898  public:
1899   // Determine the stub group size.  The group size is the absolute
1900   // value of the parameter --stub-group-size.  If --stub-group-size
1901   // is passed a negative value, we restrict stubs to be always before
1902   // the stubbed branches.
1903   Stub_control(int32_t size)
1904     : state_(NO_GROUP), stub_group_size_(abs(size)),
1905       stub14_group_size_(abs(size)),
1906       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
1907       group_end_addr_(0), owner_(NULL), output_section_(NULL)
1908   {
1909     if (stub_group_size_ == 1)
1910       {
1911         // Default values.
1912         if (stubs_always_before_branch_)
1913           {
1914             stub_group_size_ = 0x1e00000;
1915             stub14_group_size_ = 0x7800;
1916           }
1917         else
1918           {
1919             stub_group_size_ = 0x1c00000;
1920             stub14_group_size_ = 0x7000;
1921           }
1922         suppress_size_errors_ = true;
1923       }
1924   }
1925
1926   // Return true iff input section can be handled by current stub
1927   // group.
1928   bool
1929   can_add_to_stub_group(Output_section* o,
1930                         const Output_section::Input_section* i,
1931                         bool has14);
1932
1933   const Output_section::Input_section*
1934   owner()
1935   { return owner_; }
1936
1937   Output_section*
1938   output_section()
1939   { return output_section_; }
1940
1941  private:
1942   typedef enum
1943   {
1944     NO_GROUP,
1945     FINDING_STUB_SECTION,
1946     HAS_STUB_SECTION
1947   } State;
1948
1949   State state_;
1950   uint32_t stub_group_size_;
1951   uint32_t stub14_group_size_;
1952   bool stubs_always_before_branch_;
1953   bool suppress_size_errors_;
1954   uint64_t group_end_addr_;
1955   const Output_section::Input_section* owner_;
1956   Output_section* output_section_;
1957 };
1958
1959 // Return true iff input section can be handled by current stub/
1960 // group.
1961
1962 bool
1963 Stub_control::can_add_to_stub_group(Output_section* o,
1964                                     const Output_section::Input_section* i,
1965                                     bool has14)
1966 {
1967   uint32_t group_size
1968     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
1969   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
1970   uint64_t this_size;
1971   uint64_t start_addr = o->address();
1972
1973   if (whole_sec)
1974     // .init and .fini sections are pasted together to form a single
1975     // function.  We can't be adding stubs in the middle of the function.
1976     this_size = o->data_size();
1977   else
1978     {
1979       start_addr += i->relobj()->output_section_offset(i->shndx());
1980       this_size = i->data_size();
1981     }
1982   uint64_t end_addr = start_addr + this_size;
1983   bool toobig = this_size > group_size;
1984
1985   if (toobig && !this->suppress_size_errors_)
1986     gold_warning(_("%s:%s exceeds group size"),
1987                  i->relobj()->name().c_str(),
1988                  i->relobj()->section_name(i->shndx()).c_str());
1989
1990   if (this->state_ != HAS_STUB_SECTION
1991       && (!whole_sec || this->output_section_ != o))
1992     {
1993       this->owner_ = i;
1994       this->output_section_ = o;
1995     }
1996
1997   if (this->state_ == NO_GROUP)
1998     {
1999       this->state_ = FINDING_STUB_SECTION;
2000       this->group_end_addr_ = end_addr;
2001     }
2002   else if (this->group_end_addr_ - start_addr < group_size)
2003     ;
2004   // Adding this section would make the group larger than GROUP_SIZE.
2005   else if (this->state_ == FINDING_STUB_SECTION
2006            && !this->stubs_always_before_branch_
2007            && !toobig)
2008     {
2009       // But wait, there's more!  Input sections up to GROUP_SIZE
2010       // bytes before the stub table can be handled by it too.
2011       this->state_ = HAS_STUB_SECTION;
2012       this->group_end_addr_ = end_addr;
2013     }
2014   else
2015     {
2016       this->state_ = NO_GROUP;
2017       return false;
2018     }
2019   return true;
2020 }
2021
2022 // Look over all the input sections, deciding where to place stubs.
2023
2024 template<int size, bool big_endian>
2025 void
2026 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2027                                                  const Task*)
2028 {
2029   Stub_control stub_control(parameters->options().stub_group_size());
2030
2031   // Group input sections and insert stub table
2032   Stub_table<size, big_endian>* stub_table = NULL;
2033   Layout::Section_list section_list;
2034   layout->get_executable_sections(&section_list);
2035   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2036   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2037        o != section_list.rend();
2038        ++o)
2039     {
2040       typedef Output_section::Input_section_list Input_section_list;
2041       for (Input_section_list::const_reverse_iterator i
2042              = (*o)->input_sections().rbegin();
2043            i != (*o)->input_sections().rend();
2044            ++i)
2045         {
2046           if (i->is_input_section())
2047             {
2048               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2049                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2050               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2051               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2052                 {
2053                   stub_table->init(stub_control.owner(),
2054                                    stub_control.output_section());
2055                   stub_table = NULL;
2056                 }
2057               if (stub_table == NULL)
2058                 stub_table = this->new_stub_table();
2059               ppcobj->set_stub_table(i->shndx(), stub_table);
2060             }
2061         }
2062     }
2063   if (stub_table != NULL)
2064     stub_table->init(stub_control.owner(), stub_control.output_section());
2065 }
2066
2067 // If this branch needs a plt call stub, or a long branch stub, make one.
2068
2069 template<int size, bool big_endian>
2070 void
2071 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2072     Stub_table<size, big_endian>* stub_table,
2073     Stub_table<size, big_endian>* ifunc_stub_table,
2074     Symbol_table* symtab) const
2075 {
2076   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2077   if (sym != NULL && sym->is_forwarder())
2078     sym = symtab->resolve_forwards(sym);
2079   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2080   if (gsym != NULL
2081       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2082       : this->object_->local_has_plt_offset(this->r_sym_))
2083     {
2084       if (stub_table == NULL)
2085         stub_table = this->object_->stub_table(this->shndx_);
2086       if (stub_table == NULL)
2087         {
2088           // This is a ref from a data section to an ifunc symbol.
2089           stub_table = ifunc_stub_table;
2090         }
2091       gold_assert(stub_table != NULL);
2092       if (gsym != NULL)
2093         stub_table->add_plt_call_entry(this->object_, gsym,
2094                                        this->r_type_, this->addend_);
2095       else
2096         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2097                                        this->r_type_, this->addend_);
2098     }
2099   else
2100     {
2101       unsigned int max_branch_offset;
2102       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2103           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2104           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2105         max_branch_offset = 1 << 15;
2106       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2107                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2108                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2109         max_branch_offset = 1 << 25;
2110       else
2111         return;
2112       Address from = this->object_->get_output_section_offset(this->shndx_);
2113       gold_assert(from != invalid_address);
2114       from += (this->object_->output_section(this->shndx_)->address()
2115                + this->offset_);
2116       Address to;
2117       if (gsym != NULL)
2118         {
2119           switch (gsym->source())
2120             {
2121             case Symbol::FROM_OBJECT:
2122               {
2123                 Object* symobj = gsym->object();
2124                 if (symobj->is_dynamic()
2125                     || symobj->pluginobj() != NULL)
2126                   return;
2127                 bool is_ordinary;
2128                 unsigned int shndx = gsym->shndx(&is_ordinary);
2129                 if (shndx == elfcpp::SHN_UNDEF)
2130                   return;
2131               }
2132               break;
2133
2134             case Symbol::IS_UNDEFINED:
2135               return;
2136
2137             default:
2138               break;
2139             }
2140           Symbol_table::Compute_final_value_status status;
2141           to = symtab->compute_final_value<size>(gsym, &status);
2142           if (status != Symbol_table::CFVS_OK)
2143             return;
2144         }
2145       else
2146         {
2147           const Symbol_value<size>* psymval
2148             = this->object_->local_symbol(this->r_sym_);
2149           Symbol_value<size> symval;
2150           typedef Sized_relobj_file<size, big_endian> ObjType;
2151           typename ObjType::Compute_final_local_value_status status
2152             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2153                                                        &symval, symtab);
2154           if (status != ObjType::CFLV_OK
2155               || !symval.has_output_value())
2156             return;
2157           to = symval.value(this->object_, 0);
2158         }
2159       to += this->addend_;
2160       if (stub_table == NULL)
2161         stub_table = this->object_->stub_table(this->shndx_);
2162       gold_assert(stub_table != NULL);
2163       if (size == 64 && is_branch_reloc(this->r_type_))
2164         {
2165           unsigned int dest_shndx;
2166           to = stub_table->targ()->symval_for_branch(to, gsym, this->object_,
2167                                                      &dest_shndx);
2168         }
2169       Address delta = to - from;
2170       if (delta + max_branch_offset >= 2 * max_branch_offset)
2171         {
2172           stub_table->add_long_branch_entry(this->object_, to);
2173         }
2174     }
2175 }
2176
2177 // Relaxation hook.  This is where we do stub generation.
2178
2179 template<int size, bool big_endian>
2180 bool
2181 Target_powerpc<size, big_endian>::do_relax(int pass,
2182                                            const Input_objects*,
2183                                            Symbol_table* symtab,
2184                                            Layout* layout,
2185                                            const Task* task)
2186 {
2187   unsigned int prev_brlt_size = 0;
2188   if (pass == 1)
2189     {
2190       bool thread_safe = parameters->options().plt_thread_safe();
2191       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2192         {
2193           static const char* const thread_starter[] =
2194             {
2195               "pthread_create",
2196               /* libstdc++ */
2197               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2198               /* librt */
2199               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2200               "mq_notify", "create_timer",
2201               /* libanl */
2202               "getaddrinfo_a",
2203               /* libgomp */
2204               "GOMP_parallel_start",
2205               "GOMP_parallel_loop_static_start",
2206               "GOMP_parallel_loop_dynamic_start",
2207               "GOMP_parallel_loop_guided_start",
2208               "GOMP_parallel_loop_runtime_start",
2209               "GOMP_parallel_sections_start", 
2210             };
2211
2212           if (parameters->options().shared())
2213             thread_safe = true;
2214           else
2215             {
2216               for (unsigned int i = 0;
2217                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2218                    i++)
2219                 {
2220                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2221                   thread_safe = (sym != NULL
2222                                  && sym->in_reg()
2223                                  && sym->in_real_elf());
2224                   if (thread_safe)
2225                     break;
2226                 }
2227             }
2228         }
2229       this->plt_thread_safe_ = thread_safe;
2230       this->group_sections(layout, task);
2231     }
2232
2233   // We need address of stub tables valid for make_stub.
2234   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2235        p != this->stub_tables_.end();
2236        ++p)
2237     {
2238       const Powerpc_relobj<size, big_endian>* object
2239         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2240       Address off = object->get_output_section_offset((*p)->shndx());
2241       gold_assert(off != invalid_address);
2242       Output_section* os = (*p)->output_section();
2243       (*p)->set_address_and_size(os, off);
2244     }
2245
2246   if (pass != 1)
2247     {
2248       // Clear plt call stubs, long branch stubs and branch lookup table.
2249       prev_brlt_size = this->branch_lookup_table_.size();
2250       this->branch_lookup_table_.clear();
2251       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2252            p != this->stub_tables_.end();
2253            ++p)
2254         {
2255           (*p)->clear_stubs();
2256         }
2257     }
2258
2259   // Build all the stubs.
2260   Stub_table<size, big_endian>* ifunc_stub_table
2261     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2262   Stub_table<size, big_endian>* one_stub_table
2263     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2264   for (typename Branches::const_iterator b = this->branch_info_.begin();
2265        b != this->branch_info_.end();
2266        b++)
2267     {
2268       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2269     }
2270
2271   // Did anything change size?
2272   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2273   bool again = num_huge_branches != prev_brlt_size;
2274   if (size == 64 && num_huge_branches != 0)
2275     this->make_brlt_section(layout);
2276   if (size == 64 && again)
2277     this->brlt_section_->set_current_size(num_huge_branches);
2278
2279   typedef Unordered_set<Output_section*> Output_sections;
2280   Output_sections os_need_update;
2281   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2282        p != this->stub_tables_.end();
2283        ++p)
2284     {
2285       if ((*p)->size_update())
2286         {
2287           again = true;
2288           (*p)->add_eh_frame(layout);
2289           os_need_update.insert((*p)->output_section());
2290         }
2291     }
2292
2293   // Set output section offsets for all input sections in an output
2294   // section that just changed size.  Anything past the stubs will
2295   // need updating.
2296   for (typename Output_sections::iterator p = os_need_update.begin();
2297        p != os_need_update.end();
2298        p++)
2299     {
2300       Output_section* os = *p;
2301       Address off = 0;
2302       typedef Output_section::Input_section_list Input_section_list;
2303       for (Input_section_list::const_iterator i = os->input_sections().begin();
2304            i != os->input_sections().end();
2305            ++i)
2306         {
2307           off = align_address(off, i->addralign());
2308           if (i->is_input_section() || i->is_relaxed_input_section())
2309             i->relobj()->set_section_offset(i->shndx(), off);
2310           if (i->is_relaxed_input_section())
2311             {
2312               Stub_table<size, big_endian>* stub_table
2313                 = static_cast<Stub_table<size, big_endian>*>(
2314                     i->relaxed_input_section());
2315               off += stub_table->set_address_and_size(os, off);
2316             }
2317           else
2318             off += i->data_size();
2319         }
2320       // If .brlt is part of this output section, then we have just
2321       // done the offset adjustment.
2322       os->clear_section_offsets_need_adjustment();
2323     }
2324
2325   if (size == 64
2326       && !again
2327       && num_huge_branches != 0
2328       && parameters->options().output_is_position_independent())
2329     {
2330       // Fill in the BRLT relocs.
2331       this->brlt_section_->reset_data_size();
2332       for (typename Branch_lookup_table::const_iterator p
2333              = this->branch_lookup_table_.begin();
2334            p != this->branch_lookup_table_.end();
2335            ++p)
2336         {
2337           this->brlt_section_->add_reloc(p->first, p->second);
2338         }
2339       this->brlt_section_->finalize_data_size();
2340     }
2341   return again;
2342 }
2343
2344 template<int size, bool big_endian>
2345 void
2346 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2347                                                       unsigned char* oview,
2348                                                       uint64_t* paddress,
2349                                                       off_t* plen) const
2350 {
2351   uint64_t address = plt->address();
2352   off_t len = plt->data_size();
2353
2354   if (plt == this->glink_)
2355     {
2356       // See Output_data_glink::do_write() for glink contents.
2357       if (size == 64)
2358         {
2359           // There is one word before __glink_PLTresolve
2360           address += 8;
2361           len -= 8;
2362         }
2363       else if (parameters->options().output_is_position_independent())
2364         {
2365           // There are two FDEs for a position independent glink.
2366           // The first covers the branch table, the second
2367           // __glink_PLTresolve at the end of glink.
2368           off_t resolve_size = this->glink_->pltresolve_size;
2369           if (oview[9] == 0)
2370             len -= resolve_size;
2371           else
2372             {
2373               address += len - resolve_size;
2374               len = resolve_size;
2375             }
2376         }
2377     }
2378   else
2379     {
2380       // Must be a stub table.
2381       const Stub_table<size, big_endian>* stub_table
2382         = static_cast<const Stub_table<size, big_endian>*>(plt);
2383       uint64_t stub_address = stub_table->stub_address();
2384       len -= stub_address - address;
2385       address = stub_address;
2386     }
2387
2388   *paddress = address;
2389   *plen = len;
2390 }
2391
2392 // A class to handle the PLT data.
2393
2394 template<int size, bool big_endian>
2395 class Output_data_plt_powerpc : public Output_section_data_build
2396 {
2397  public:
2398   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2399                             size, big_endian> Reloc_section;
2400
2401   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2402                           Reloc_section* plt_rel,
2403                           unsigned int reserved_size,
2404                           const char* name)
2405     : Output_section_data_build(size == 32 ? 4 : 8),
2406       rel_(plt_rel),
2407       targ_(targ),
2408       initial_plt_entry_size_(reserved_size),
2409       name_(name)
2410   { }
2411
2412   // Add an entry to the PLT.
2413   void
2414   add_entry(Symbol*);
2415
2416   void
2417   add_ifunc_entry(Symbol*);
2418
2419   void
2420   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2421
2422   // Return the .rela.plt section data.
2423   Reloc_section*
2424   rel_plt() const
2425   {
2426     return this->rel_;
2427   }
2428
2429   // Return the number of PLT entries.
2430   unsigned int
2431   entry_count() const
2432   {
2433     return ((this->current_data_size() - this->initial_plt_entry_size_)
2434             / plt_entry_size);
2435   }
2436
2437   // Return the offset of the first non-reserved PLT entry.
2438   unsigned int
2439   first_plt_entry_offset()
2440   { return this->initial_plt_entry_size_; }
2441
2442   // Return the size of a PLT entry.
2443   static unsigned int
2444   get_plt_entry_size()
2445   { return plt_entry_size; }
2446
2447  protected:
2448   void
2449   do_adjust_output_section(Output_section* os)
2450   {
2451     os->set_entsize(0);
2452   }
2453
2454   // Write to a map file.
2455   void
2456   do_print_to_mapfile(Mapfile* mapfile) const
2457   { mapfile->print_output_data(this, this->name_); }
2458
2459  private:
2460   // The size of an entry in the PLT.
2461   static const int plt_entry_size = size == 32 ? 4 : 24;
2462
2463   // Write out the PLT data.
2464   void
2465   do_write(Output_file*);
2466
2467   // The reloc section.
2468   Reloc_section* rel_;
2469   // Allows access to .glink for do_write.
2470   Target_powerpc<size, big_endian>* targ_;
2471   // The size of the first reserved entry.
2472   int initial_plt_entry_size_;
2473   // What to report in map file.
2474   const char *name_;
2475 };
2476
2477 // Add an entry to the PLT.
2478
2479 template<int size, bool big_endian>
2480 void
2481 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2482 {
2483   if (!gsym->has_plt_offset())
2484     {
2485       section_size_type off = this->current_data_size();
2486       if (off == 0)
2487         off += this->first_plt_entry_offset();
2488       gsym->set_plt_offset(off);
2489       gsym->set_needs_dynsym_entry();
2490       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2491       this->rel_->add_global(gsym, dynrel, this, off, 0);
2492       off += plt_entry_size;
2493       this->set_current_data_size(off);
2494     }
2495 }
2496
2497 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2498
2499 template<int size, bool big_endian>
2500 void
2501 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2502 {
2503   if (!gsym->has_plt_offset())
2504     {
2505       section_size_type off = this->current_data_size();
2506       gsym->set_plt_offset(off);
2507       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2508       if (size == 64)
2509         dynrel = elfcpp::R_PPC64_JMP_IREL;
2510       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2511       off += plt_entry_size;
2512       this->set_current_data_size(off);
2513     }
2514 }
2515
2516 // Add an entry for a local ifunc symbol to the IPLT.
2517
2518 template<int size, bool big_endian>
2519 void
2520 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2521     Sized_relobj_file<size, big_endian>* relobj,
2522     unsigned int local_sym_index)
2523 {
2524   if (!relobj->local_has_plt_offset(local_sym_index))
2525     {
2526       section_size_type off = this->current_data_size();
2527       relobj->set_local_plt_offset(local_sym_index, off);
2528       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2529       if (size == 64)
2530         dynrel = elfcpp::R_PPC64_JMP_IREL;
2531       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2532                                               this, off, 0);
2533       off += plt_entry_size;
2534       this->set_current_data_size(off);
2535     }
2536 }
2537
2538 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2539 static const uint32_t add_2_2_11        = 0x7c425a14;
2540 static const uint32_t add_3_3_2         = 0x7c631214;
2541 static const uint32_t add_3_3_13        = 0x7c636a14;
2542 static const uint32_t add_11_0_11       = 0x7d605a14;
2543 static const uint32_t add_12_2_11       = 0x7d825a14;
2544 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2545 static const uint32_t addi_11_11        = 0x396b0000;
2546 static const uint32_t addi_12_12        = 0x398c0000;
2547 static const uint32_t addi_2_2          = 0x38420000;
2548 static const uint32_t addi_3_2          = 0x38620000;
2549 static const uint32_t addi_3_3          = 0x38630000;
2550 static const uint32_t addis_0_2         = 0x3c020000;
2551 static const uint32_t addis_0_13        = 0x3c0d0000;
2552 static const uint32_t addis_11_11       = 0x3d6b0000;
2553 static const uint32_t addis_11_30       = 0x3d7e0000;
2554 static const uint32_t addis_12_12       = 0x3d8c0000;
2555 static const uint32_t addis_12_2        = 0x3d820000;
2556 static const uint32_t addis_3_2         = 0x3c620000;
2557 static const uint32_t addis_3_13        = 0x3c6d0000;
2558 static const uint32_t b                 = 0x48000000;
2559 static const uint32_t bcl_20_31         = 0x429f0005;
2560 static const uint32_t bctr              = 0x4e800420;
2561 static const uint32_t blr               = 0x4e800020;
2562 static const uint32_t blrl              = 0x4e800021;
2563 static const uint32_t bnectr_p4         = 0x4ce20420;
2564 static const uint32_t cmpldi_2_0        = 0x28220000;
2565 static const uint32_t cror_15_15_15     = 0x4def7b82;
2566 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2567 static const uint32_t ld_0_1            = 0xe8010000;
2568 static const uint32_t ld_0_12           = 0xe80c0000;
2569 static const uint32_t ld_11_12          = 0xe96c0000;
2570 static const uint32_t ld_11_2           = 0xe9620000;
2571 static const uint32_t ld_2_1            = 0xe8410000;
2572 static const uint32_t ld_2_11           = 0xe84b0000;
2573 static const uint32_t ld_2_12           = 0xe84c0000;
2574 static const uint32_t ld_2_2            = 0xe8420000;
2575 static const uint32_t lfd_0_1           = 0xc8010000;
2576 static const uint32_t li_0_0            = 0x38000000;
2577 static const uint32_t li_12_0           = 0x39800000;
2578 static const uint32_t lis_0_0           = 0x3c000000;
2579 static const uint32_t lis_11            = 0x3d600000;
2580 static const uint32_t lis_12            = 0x3d800000;
2581 static const uint32_t lwz_0_12          = 0x800c0000;
2582 static const uint32_t lwz_11_11         = 0x816b0000;
2583 static const uint32_t lwz_11_30         = 0x817e0000;
2584 static const uint32_t lwz_12_12         = 0x818c0000;
2585 static const uint32_t lwzu_0_12         = 0x840c0000;
2586 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2587 static const uint32_t mflr_0            = 0x7c0802a6;
2588 static const uint32_t mflr_11           = 0x7d6802a6;
2589 static const uint32_t mflr_12           = 0x7d8802a6;
2590 static const uint32_t mtctr_0           = 0x7c0903a6;
2591 static const uint32_t mtctr_11          = 0x7d6903a6;
2592 static const uint32_t mtctr_12          = 0x7d8903a6;
2593 static const uint32_t mtlr_0            = 0x7c0803a6;
2594 static const uint32_t mtlr_12           = 0x7d8803a6;
2595 static const uint32_t nop               = 0x60000000;
2596 static const uint32_t ori_0_0_0         = 0x60000000;
2597 static const uint32_t std_0_1           = 0xf8010000;
2598 static const uint32_t std_0_12          = 0xf80c0000;
2599 static const uint32_t std_2_1           = 0xf8410000;
2600 static const uint32_t stfd_0_1          = 0xd8010000;
2601 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2602 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2603 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2604
2605 // Write out the PLT.
2606
2607 template<int size, bool big_endian>
2608 void
2609 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2610 {
2611   if (size == 32)
2612     {
2613       const section_size_type offset = this->offset();
2614       const section_size_type oview_size
2615         = convert_to_section_size_type(this->data_size());
2616       unsigned char* const oview = of->get_output_view(offset, oview_size);
2617       unsigned char* pov = oview;
2618       unsigned char* endpov = oview + oview_size;
2619
2620       // The address of the .glink branch table
2621       const Output_data_glink<size, big_endian>* glink
2622         = this->targ_->glink_section();
2623       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2624
2625       while (pov < endpov)
2626         {
2627           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2628           pov += 4;
2629           branch_tab += 4;
2630         }
2631
2632       of->write_output_view(offset, oview_size, oview);
2633     }
2634 }
2635
2636 // Create the PLT section.
2637
2638 template<int size, bool big_endian>
2639 void
2640 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2641                                                    Layout* layout)
2642 {
2643   if (this->plt_ == NULL)
2644     {
2645       if (this->got_ == NULL)
2646         this->got_section(symtab, layout);
2647
2648       if (this->glink_ == NULL)
2649         make_glink_section(layout);
2650
2651       // Ensure that .rela.dyn always appears before .rela.plt  This is
2652       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2653       // needs to include .rela.plt in it's range.
2654       this->rela_dyn_section(layout);
2655
2656       Reloc_section* plt_rel = new Reloc_section(false);
2657       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2658                                       elfcpp::SHF_ALLOC, plt_rel,
2659                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2660       this->plt_
2661         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2662                                                         size == 32 ? 0 : 24,
2663                                                         "** PLT");
2664       layout->add_output_section_data(".plt",
2665                                       (size == 32
2666                                        ? elfcpp::SHT_PROGBITS
2667                                        : elfcpp::SHT_NOBITS),
2668                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2669                                       this->plt_,
2670                                       (size == 32
2671                                        ? ORDER_SMALL_DATA
2672                                        : ORDER_SMALL_BSS),
2673                                       false);
2674     }
2675 }
2676
2677 // Create the IPLT section.
2678
2679 template<int size, bool big_endian>
2680 void
2681 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2682                                                     Layout* layout)
2683 {
2684   if (this->iplt_ == NULL)
2685     {
2686       this->make_plt_section(symtab, layout);
2687
2688       Reloc_section* iplt_rel = new Reloc_section(false);
2689       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2690       this->iplt_
2691         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2692                                                         0, "** IPLT");
2693       this->plt_->output_section()->add_output_section_data(this->iplt_);
2694     }
2695 }
2696
2697 // A section for huge long branch addresses, similar to plt section.
2698
2699 template<int size, bool big_endian>
2700 class Output_data_brlt_powerpc : public Output_section_data_build
2701 {
2702  public:
2703   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2704   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2705                             size, big_endian> Reloc_section;
2706
2707   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
2708                            Reloc_section* brlt_rel)
2709     : Output_section_data_build(size == 32 ? 4 : 8),
2710       rel_(brlt_rel),
2711       targ_(targ)
2712   { }
2713
2714   // Add a reloc for an entry in the BRLT.
2715   void
2716   add_reloc(Address to, unsigned int off)
2717   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
2718
2719   // Update section and reloc section size.
2720   void
2721   set_current_size(unsigned int num_branches)
2722   {
2723     this->reset_address_and_file_offset();
2724     this->set_current_data_size(num_branches * 16);
2725     this->finalize_data_size();
2726     Output_section* os = this->output_section();
2727     os->set_section_offsets_need_adjustment();
2728     if (this->rel_ != NULL)
2729       {
2730         unsigned int reloc_size
2731           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
2732         this->rel_->reset_address_and_file_offset();
2733         this->rel_->set_current_data_size(num_branches * reloc_size);
2734         this->rel_->finalize_data_size();
2735         Output_section* os = this->rel_->output_section();
2736         os->set_section_offsets_need_adjustment();
2737       }
2738   }
2739
2740  protected:
2741   void
2742   do_adjust_output_section(Output_section* os)
2743   {
2744     os->set_entsize(0);
2745   }
2746
2747   // Write to a map file.
2748   void
2749   do_print_to_mapfile(Mapfile* mapfile) const
2750   { mapfile->print_output_data(this, "** BRLT"); }
2751
2752  private:
2753   // Write out the BRLT data.
2754   void
2755   do_write(Output_file*);
2756
2757   // The reloc section.
2758   Reloc_section* rel_;
2759   Target_powerpc<size, big_endian>* targ_;
2760 };
2761
2762 // Make the branch lookup table section.
2763
2764 template<int size, bool big_endian>
2765 void
2766 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
2767 {
2768   if (size == 64 && this->brlt_section_ == NULL)
2769     {
2770       Reloc_section* brlt_rel = NULL;
2771       bool is_pic = parameters->options().output_is_position_independent();
2772       if (is_pic)
2773         {
2774           // When PIC we can't fill in .brlt (like .plt it can be a
2775           // bss style section) but must initialise at runtime via
2776           // dynamic relocats.
2777           this->rela_dyn_section(layout);
2778           brlt_rel = new Reloc_section(false);
2779           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
2780         }
2781       this->brlt_section_
2782         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
2783       if (this->plt_ && is_pic)
2784         this->plt_->output_section()
2785           ->add_output_section_data(this->brlt_section_);
2786       else
2787         layout->add_output_section_data(".brlt",
2788                                         (is_pic ? elfcpp::SHT_NOBITS
2789                                          : elfcpp::SHT_PROGBITS),
2790                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2791                                         this->brlt_section_,
2792                                         (is_pic ? ORDER_SMALL_BSS
2793                                          : ORDER_SMALL_DATA),
2794                                         false);
2795     }
2796 }
2797
2798 // Write out .brlt when non-PIC.
2799
2800 template<int size, bool big_endian>
2801 void
2802 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
2803 {
2804   if (size == 64 && !parameters->options().output_is_position_independent())
2805     {
2806       const section_size_type offset = this->offset();
2807       const section_size_type oview_size
2808         = convert_to_section_size_type(this->data_size());
2809       unsigned char* const oview = of->get_output_view(offset, oview_size);
2810
2811       this->targ_->write_branch_lookup_table(oview);
2812       of->write_output_view(offset, oview_size, oview);
2813     }
2814 }
2815
2816 static inline uint32_t
2817 l(uint32_t a)
2818 {
2819   return a & 0xffff;
2820 }
2821
2822 static inline uint32_t
2823 hi(uint32_t a)
2824 {
2825   return l(a >> 16);
2826 }
2827
2828 static inline uint32_t
2829 ha(uint32_t a)
2830 {
2831   return hi(a + 0x8000);
2832 }
2833
2834 template<int size>
2835 struct Eh_cie
2836 {
2837   static const unsigned char eh_frame_cie[12];
2838 };
2839
2840 template<int size>
2841 const unsigned char Eh_cie<size>::eh_frame_cie[] =
2842 {
2843   1,                                    // CIE version.
2844   'z', 'R', 0,                          // Augmentation string.
2845   4,                                    // Code alignment.
2846   0x80 - size / 8 ,                     // Data alignment.
2847   65,                                   // RA reg.
2848   1,                                    // Augmentation size.
2849   (elfcpp::DW_EH_PE_pcrel
2850    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
2851   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
2852 };
2853
2854 // Describe __glink_PLTresolve use of LR, 64-bit version.
2855 static const unsigned char glink_eh_frame_fde_64[] =
2856 {
2857   0, 0, 0, 0,                           // Replaced with offset to .glink.
2858   0, 0, 0, 0,                           // Replaced with size of .glink.
2859   0,                                    // Augmentation size.
2860   elfcpp::DW_CFA_advance_loc + 1,
2861   elfcpp::DW_CFA_register, 65, 12,
2862   elfcpp::DW_CFA_advance_loc + 4,
2863   elfcpp::DW_CFA_restore_extended, 65
2864 };
2865
2866 // Describe __glink_PLTresolve use of LR, 32-bit version.
2867 static const unsigned char glink_eh_frame_fde_32[] =
2868 {
2869   0, 0, 0, 0,                           // Replaced with offset to .glink.
2870   0, 0, 0, 0,                           // Replaced with size of .glink.
2871   0,                                    // Augmentation size.
2872   elfcpp::DW_CFA_advance_loc + 2,
2873   elfcpp::DW_CFA_register, 65, 0,
2874   elfcpp::DW_CFA_advance_loc + 4,
2875   elfcpp::DW_CFA_restore_extended, 65
2876 };
2877
2878 static const unsigned char default_fde[] =
2879 {
2880   0, 0, 0, 0,                           // Replaced with offset to stubs.
2881   0, 0, 0, 0,                           // Replaced with size of stubs.
2882   0,                                    // Augmentation size.
2883   elfcpp::DW_CFA_nop,                   // Pad.
2884   elfcpp::DW_CFA_nop,
2885   elfcpp::DW_CFA_nop
2886 };
2887
2888 template<bool big_endian>
2889 static inline void
2890 write_insn(unsigned char* p, uint32_t v)
2891 {
2892   elfcpp::Swap<32, big_endian>::writeval(p, v);
2893 }
2894
2895 // Stub_table holds information about plt and long branch stubs.
2896 // Stubs are built in an area following some input section determined
2897 // by group_sections().  This input section is converted to a relaxed
2898 // input section allowing it to be resized to accommodate the stubs
2899
2900 template<int size, bool big_endian>
2901 class Stub_table : public Output_relaxed_input_section
2902 {
2903  public:
2904   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2905   static const Address invalid_address = static_cast<Address>(0) - 1;
2906
2907   Stub_table(Target_powerpc<size, big_endian>* targ)
2908     : Output_relaxed_input_section(NULL, 0, 0),
2909       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
2910       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
2911       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
2912   { }
2913
2914   // Delayed Output_relaxed_input_section init.
2915   void
2916   init(const Output_section::Input_section*, Output_section*);
2917
2918   // Add a plt call stub.
2919   void
2920   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2921                      const Symbol*,
2922                      unsigned int,
2923                      Address);
2924
2925   void
2926   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2927                      unsigned int,
2928                      unsigned int,
2929                      Address);
2930
2931   // Find a given plt call stub.
2932   Address
2933   find_plt_call_entry(const Symbol*) const;
2934
2935   Address
2936   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2937                       unsigned int) const;
2938
2939   Address
2940   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2941                       const Symbol*,
2942                       unsigned int,
2943                       Address) const;
2944
2945   Address
2946   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2947                       unsigned int,
2948                       unsigned int,
2949                       Address) const;
2950
2951   // Add a long branch stub.
2952   void
2953   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
2954
2955   Address
2956   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
2957                          Address) const;
2958
2959   void
2960   clear_stubs()
2961   {
2962     this->plt_call_stubs_.clear();
2963     this->plt_size_ = 0;
2964     this->long_branch_stubs_.clear();
2965     this->branch_size_ = 0;
2966   }
2967
2968   Address
2969   set_address_and_size(const Output_section* os, Address off)
2970   {
2971     Address start_off = off;
2972     off += this->orig_data_size_;
2973     Address my_size = this->plt_size_ + this->branch_size_;
2974     if (my_size != 0)
2975       off = align_address(off, this->stub_align());
2976     // Include original section size and alignment padding in size
2977     my_size += off - start_off;
2978     this->reset_address_and_file_offset();
2979     this->set_current_data_size(my_size);
2980     this->set_address_and_file_offset(os->address() + start_off,
2981                                       os->offset() + start_off);
2982     return my_size;
2983   }
2984
2985   Address
2986   stub_address() const
2987   {
2988     return align_address(this->address() + this->orig_data_size_,
2989                          this->stub_align());
2990   }
2991
2992   Address
2993   stub_offset() const
2994   {
2995     return align_address(this->offset() + this->orig_data_size_,
2996                          this->stub_align());
2997   }
2998
2999   section_size_type
3000   plt_size() const
3001   { return this->plt_size_; }
3002
3003   bool
3004   size_update()
3005   {
3006     Output_section* os = this->output_section();
3007     if (os->addralign() < this->stub_align())
3008       {
3009         os->set_addralign(this->stub_align());
3010         // FIXME: get rid of the insane checkpointing.
3011         // We can't increase alignment of the input section to which
3012         // stubs are attached;  The input section may be .init which
3013         // is pasted together with other .init sections to form a
3014         // function.  Aligning might insert zero padding resulting in
3015         // sigill.  However we do need to increase alignment of the
3016         // output section so that the align_address() on offset in
3017         // set_address_and_size() adds the same padding as the
3018         // align_address() on address in stub_address().
3019         // What's more, we need this alignment for the layout done in
3020         // relaxation_loop_body() so that the output section starts at
3021         // a suitably aligned address.
3022         os->checkpoint_set_addralign(this->stub_align());
3023       }
3024     if (this->last_plt_size_ != this->plt_size_
3025         || this->last_branch_size_ != this->branch_size_)
3026       {
3027         this->last_plt_size_ = this->plt_size_;
3028         this->last_branch_size_ = this->branch_size_;
3029         return true;
3030       }
3031     return false;
3032   }
3033
3034   // Add .eh_frame info for this stub section.  Unlike other linker
3035   // generated .eh_frame this is added late in the link, because we
3036   // only want the .eh_frame info if this particular stub section is
3037   // non-empty.
3038   void
3039   add_eh_frame(Layout* layout)
3040   {
3041     if (!this->eh_frame_added_)
3042       {
3043         if (!parameters->options().ld_generated_unwind_info())
3044           return;
3045
3046         // Since we add stub .eh_frame info late, it must be placed
3047         // after all other linker generated .eh_frame info so that
3048         // merge mapping need not be updated for input sections.
3049         // There is no provision to use a different CIE to that used
3050         // by .glink.
3051         if (!this->targ_->has_glink())
3052           return;
3053
3054         layout->add_eh_frame_for_plt(this,
3055                                      Eh_cie<size>::eh_frame_cie,
3056                                      sizeof (Eh_cie<size>::eh_frame_cie),
3057                                      default_fde,
3058                                      sizeof (default_fde));
3059         this->eh_frame_added_ = true;
3060       }
3061   }
3062
3063   Target_powerpc<size, big_endian>*
3064   targ() const
3065   { return targ_; }
3066
3067  private:
3068   class Plt_stub_ent;
3069   class Plt_stub_ent_hash;
3070   typedef Unordered_map<Plt_stub_ent, unsigned int,
3071                         Plt_stub_ent_hash> Plt_stub_entries;
3072
3073   // Alignment of stub section.
3074   unsigned int
3075   stub_align() const
3076   {
3077     if (size == 32)
3078       return 16;
3079     unsigned int min_align = 32;
3080     unsigned int user_align = 1 << parameters->options().plt_align();
3081     return std::max(user_align, min_align);
3082   }
3083
3084   // Return the plt offset for the given call stub.
3085   Address
3086   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3087   {
3088     const Symbol* gsym = p->first.sym_;
3089     if (gsym != NULL)
3090       {
3091         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3092                     && gsym->can_use_relative_reloc(false));
3093         return gsym->plt_offset();
3094       }
3095     else
3096       {
3097         *is_iplt = true;
3098         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3099         unsigned int local_sym_index = p->first.locsym_;
3100         return relobj->local_plt_offset(local_sym_index);
3101       }
3102   }
3103
3104   // Size of a given plt call stub.
3105   unsigned int
3106   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3107   {
3108     if (size == 32)
3109       return 16;
3110
3111     bool is_iplt;
3112     Address plt_addr = this->plt_off(p, &is_iplt);
3113     if (is_iplt)
3114       plt_addr += this->targ_->iplt_section()->address();
3115     else
3116       plt_addr += this->targ_->plt_section()->address();
3117     Address got_addr = this->targ_->got_section()->output_section()->address();
3118     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3119       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3120     got_addr += ppcobj->toc_base_offset();
3121     Address off = plt_addr - got_addr;
3122     bool static_chain = parameters->options().plt_static_chain();
3123     bool thread_safe = this->targ_->plt_thread_safe();
3124     unsigned int bytes = (4 * 5
3125                           + 4 * static_chain
3126                           + 8 * thread_safe
3127                           + 4 * (ha(off) != 0)
3128                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3129     unsigned int align = 1 << parameters->options().plt_align();
3130     if (align > 1)
3131       bytes = (bytes + align - 1) & -align;
3132     return bytes;
3133   }
3134
3135   // Return long branch stub size.
3136   unsigned int
3137   branch_stub_size(Address to)
3138   {
3139     Address loc
3140       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3141     if (to - loc + (1 << 25) < 2 << 25)
3142       return 4;
3143     if (size == 64 || !parameters->options().output_is_position_independent())
3144       return 16;
3145     return 32;
3146   }
3147
3148   // Write out stubs.
3149   void
3150   do_write(Output_file*);
3151
3152   // Plt call stub keys.
3153   class Plt_stub_ent
3154   {
3155   public:
3156     Plt_stub_ent(const Symbol* sym)
3157       : sym_(sym), object_(0), addend_(0), locsym_(0)
3158     { }
3159
3160     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3161                  unsigned int locsym_index)
3162       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3163     { }
3164
3165     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3166                  const Symbol* sym,
3167                  unsigned int r_type,
3168                  Address addend)
3169       : sym_(sym), object_(0), addend_(0), locsym_(0)
3170     {
3171       if (size != 32)
3172         this->addend_ = addend;
3173       else if (parameters->options().output_is_position_independent()
3174                && r_type == elfcpp::R_PPC_PLTREL24)
3175         {
3176           this->addend_ = addend;
3177           if (this->addend_ >= 32768)
3178             this->object_ = object;
3179         }
3180     }
3181
3182     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3183                  unsigned int locsym_index,
3184                  unsigned int r_type,
3185                  Address addend)
3186       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3187     {
3188       if (size != 32)
3189         this->addend_ = addend;
3190       else if (parameters->options().output_is_position_independent()
3191                && r_type == elfcpp::R_PPC_PLTREL24)
3192         this->addend_ = addend;
3193     }
3194
3195     bool operator==(const Plt_stub_ent& that) const
3196     {
3197       return (this->sym_ == that.sym_
3198               && this->object_ == that.object_
3199               && this->addend_ == that.addend_
3200               && this->locsym_ == that.locsym_);
3201     }
3202
3203     const Symbol* sym_;
3204     const Sized_relobj_file<size, big_endian>* object_;
3205     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3206     unsigned int locsym_;
3207   };
3208
3209   class Plt_stub_ent_hash
3210   {
3211   public:
3212     size_t operator()(const Plt_stub_ent& ent) const
3213     {
3214       return (reinterpret_cast<uintptr_t>(ent.sym_)
3215               ^ reinterpret_cast<uintptr_t>(ent.object_)
3216               ^ ent.addend_
3217               ^ ent.locsym_);
3218     }
3219   };
3220
3221   // Long branch stub keys.
3222   class Branch_stub_ent
3223   {
3224   public:
3225     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3226       : dest_(to), toc_base_off_(0)
3227     {
3228       if (size == 64)
3229         toc_base_off_ = obj->toc_base_offset();
3230     }
3231
3232     bool operator==(const Branch_stub_ent& that) const
3233     {
3234       return (this->dest_ == that.dest_
3235               && (size == 32
3236                   || this->toc_base_off_ == that.toc_base_off_));
3237     }
3238
3239     Address dest_;
3240     unsigned int toc_base_off_;
3241   };
3242
3243   class Branch_stub_ent_hash
3244   {
3245   public:
3246     size_t operator()(const Branch_stub_ent& ent) const
3247     { return ent.dest_ ^ ent.toc_base_off_; }
3248   };
3249
3250   // In a sane world this would be a global.
3251   Target_powerpc<size, big_endian>* targ_;
3252   // Map sym/object/addend to stub offset.
3253   Plt_stub_entries plt_call_stubs_;
3254   // Map destination address to stub offset.
3255   typedef Unordered_map<Branch_stub_ent, unsigned int,
3256                         Branch_stub_ent_hash> Branch_stub_entries;
3257   Branch_stub_entries long_branch_stubs_;
3258   // size of input section
3259   section_size_type orig_data_size_;
3260   // size of stubs
3261   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3262   // Whether .eh_frame info has been created for this stub section.
3263   bool eh_frame_added_;
3264 };
3265
3266 // Make a new stub table, and record.
3267
3268 template<int size, bool big_endian>
3269 Stub_table<size, big_endian>*
3270 Target_powerpc<size, big_endian>::new_stub_table()
3271 {
3272   Stub_table<size, big_endian>* stub_table
3273     = new Stub_table<size, big_endian>(this);
3274   this->stub_tables_.push_back(stub_table);
3275   return stub_table;
3276 }
3277
3278 // Delayed stub table initialisation, because we create the stub table
3279 // before we know to which section it will be attached.
3280
3281 template<int size, bool big_endian>
3282 void
3283 Stub_table<size, big_endian>::init(
3284     const Output_section::Input_section* owner,
3285     Output_section* output_section)
3286 {
3287   this->set_relobj(owner->relobj());
3288   this->set_shndx(owner->shndx());
3289   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3290   this->set_output_section(output_section);
3291   this->orig_data_size_ = owner->current_data_size();
3292
3293   std::vector<Output_relaxed_input_section*> new_relaxed;
3294   new_relaxed.push_back(this);
3295   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3296 }
3297
3298 // Add a plt call stub, if we do not already have one for this
3299 // sym/object/addend combo.
3300
3301 template<int size, bool big_endian>
3302 void
3303 Stub_table<size, big_endian>::add_plt_call_entry(
3304     const Sized_relobj_file<size, big_endian>* object,
3305     const Symbol* gsym,
3306     unsigned int r_type,
3307     Address addend)
3308 {
3309   Plt_stub_ent ent(object, gsym, r_type, addend);
3310   Address off = this->plt_size_;
3311   std::pair<typename Plt_stub_entries::iterator, bool> p
3312     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3313   if (p.second)
3314     this->plt_size_ = off + this->plt_call_size(p.first);
3315 }
3316
3317 template<int size, bool big_endian>
3318 void
3319 Stub_table<size, big_endian>::add_plt_call_entry(
3320     const Sized_relobj_file<size, big_endian>* object,
3321     unsigned int locsym_index,
3322     unsigned int r_type,
3323     Address addend)
3324 {
3325   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3326   Address off = this->plt_size_;
3327   std::pair<typename Plt_stub_entries::iterator, bool> p
3328     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3329   if (p.second)
3330     this->plt_size_ = off + this->plt_call_size(p.first);
3331 }
3332
3333 // Find a plt call stub.
3334
3335 template<int size, bool big_endian>
3336 typename Stub_table<size, big_endian>::Address
3337 Stub_table<size, big_endian>::find_plt_call_entry(
3338     const Sized_relobj_file<size, big_endian>* object,
3339     const Symbol* gsym,
3340     unsigned int r_type,
3341     Address addend) const
3342 {
3343   Plt_stub_ent ent(object, gsym, r_type, addend);
3344   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3345   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3346 }
3347
3348 template<int size, bool big_endian>
3349 typename Stub_table<size, big_endian>::Address
3350 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3351 {
3352   Plt_stub_ent ent(gsym);
3353   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3354   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3355 }
3356
3357 template<int size, bool big_endian>
3358 typename Stub_table<size, big_endian>::Address
3359 Stub_table<size, big_endian>::find_plt_call_entry(
3360     const Sized_relobj_file<size, big_endian>* object,
3361     unsigned int locsym_index,
3362     unsigned int r_type,
3363     Address addend) const
3364 {
3365   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3366   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3367   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3368 }
3369
3370 template<int size, bool big_endian>
3371 typename Stub_table<size, big_endian>::Address
3372 Stub_table<size, big_endian>::find_plt_call_entry(
3373     const Sized_relobj_file<size, big_endian>* object,
3374     unsigned int locsym_index) const
3375 {
3376   Plt_stub_ent ent(object, locsym_index);
3377   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3378   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3379 }
3380
3381 // Add a long branch stub if we don't already have one to given
3382 // destination.
3383
3384 template<int size, bool big_endian>
3385 void
3386 Stub_table<size, big_endian>::add_long_branch_entry(
3387     const Powerpc_relobj<size, big_endian>* object,
3388     Address to)
3389 {
3390   Branch_stub_ent ent(object, to);
3391   Address off = this->branch_size_;
3392   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3393     {
3394       unsigned int stub_size = this->branch_stub_size(to);
3395       this->branch_size_ = off + stub_size;
3396       if (size == 64 && stub_size != 4)
3397         this->targ_->add_branch_lookup_table(to);
3398     }
3399 }
3400
3401 // Find long branch stub.
3402
3403 template<int size, bool big_endian>
3404 typename Stub_table<size, big_endian>::Address
3405 Stub_table<size, big_endian>::find_long_branch_entry(
3406     const Powerpc_relobj<size, big_endian>* object,
3407     Address to) const
3408 {
3409   Branch_stub_ent ent(object, to);
3410   typename Branch_stub_entries::const_iterator p
3411     = this->long_branch_stubs_.find(ent);
3412   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3413 }
3414
3415 // A class to handle .glink.
3416
3417 template<int size, bool big_endian>
3418 class Output_data_glink : public Output_section_data
3419 {
3420  public:
3421   static const int pltresolve_size = 16*4;
3422
3423   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3424     : Output_section_data(16), targ_(targ)
3425   { }
3426
3427   void
3428   add_eh_frame(Layout* layout)
3429   {
3430     if (!parameters->options().ld_generated_unwind_info())
3431       return;
3432
3433     if (size == 64)
3434       layout->add_eh_frame_for_plt(this,
3435                                    Eh_cie<64>::eh_frame_cie,
3436                                    sizeof (Eh_cie<64>::eh_frame_cie),
3437                                    glink_eh_frame_fde_64,
3438                                    sizeof (glink_eh_frame_fde_64));
3439     else
3440       {
3441         // 32-bit .glink can use the default since the CIE return
3442         // address reg, LR, is valid.
3443         layout->add_eh_frame_for_plt(this,
3444                                      Eh_cie<32>::eh_frame_cie,
3445                                      sizeof (Eh_cie<32>::eh_frame_cie),
3446                                      default_fde,
3447                                      sizeof (default_fde));
3448         // Except where LR is used in a PIC __glink_PLTresolve.
3449         if (parameters->options().output_is_position_independent())
3450           layout->add_eh_frame_for_plt(this,
3451                                        Eh_cie<32>::eh_frame_cie,
3452                                        sizeof (Eh_cie<32>::eh_frame_cie),
3453                                        glink_eh_frame_fde_32,
3454                                        sizeof (glink_eh_frame_fde_32));
3455       }
3456   }
3457
3458  protected:
3459   // Write to a map file.
3460   void
3461   do_print_to_mapfile(Mapfile* mapfile) const
3462   { mapfile->print_output_data(this, _("** glink")); }
3463
3464  private:
3465   void
3466   set_final_data_size();
3467
3468   // Write out .glink
3469   void
3470   do_write(Output_file*);
3471
3472   // Allows access to .got and .plt for do_write.
3473   Target_powerpc<size, big_endian>* targ_;
3474 };
3475
3476 template<int size, bool big_endian>
3477 void
3478 Output_data_glink<size, big_endian>::set_final_data_size()
3479 {
3480   unsigned int count = this->targ_->plt_entry_count();
3481   section_size_type total = 0;
3482
3483   if (count != 0)
3484     {
3485       if (size == 32)
3486         {
3487           // space for branch table
3488           total += 4 * (count - 1);
3489
3490           total += -total & 15;
3491           total += this->pltresolve_size;
3492         }
3493       else
3494         {
3495           total += this->pltresolve_size;
3496
3497           // space for branch table
3498           total += 8 * count;
3499           if (count > 0x8000)
3500             total += 4 * (count - 0x8000);
3501         }
3502     }
3503
3504   this->set_data_size(total);
3505 }
3506
3507 // Write out plt and long branch stub code.
3508
3509 template<int size, bool big_endian>
3510 void
3511 Stub_table<size, big_endian>::do_write(Output_file* of)
3512 {
3513   if (this->plt_call_stubs_.empty()
3514       && this->long_branch_stubs_.empty())
3515     return;
3516
3517   const section_size_type start_off = this->offset();
3518   const section_size_type off = this->stub_offset();
3519   const section_size_type oview_size =
3520     convert_to_section_size_type(this->data_size() - (off - start_off));
3521   unsigned char* const oview = of->get_output_view(off, oview_size);
3522   unsigned char* p;
3523
3524   if (size == 64)
3525     {
3526       const Output_data_got_powerpc<size, big_endian>* got
3527         = this->targ_->got_section();
3528       Address got_os_addr = got->output_section()->address();
3529
3530       if (!this->plt_call_stubs_.empty())
3531         {
3532           // The base address of the .plt section.
3533           Address plt_base = this->targ_->plt_section()->address();
3534           Address iplt_base = invalid_address;
3535
3536           // Write out plt call stubs.
3537           typename Plt_stub_entries::const_iterator cs;
3538           for (cs = this->plt_call_stubs_.begin();
3539                cs != this->plt_call_stubs_.end();
3540                ++cs)
3541             {
3542               bool is_iplt;
3543               Address pltoff = this->plt_off(cs, &is_iplt);
3544               Address plt_addr = pltoff;
3545               if (is_iplt)
3546                 {
3547                   if (iplt_base == invalid_address)
3548                     iplt_base = this->targ_->iplt_section()->address();
3549                   plt_addr += iplt_base;
3550                 }
3551               else
3552                 plt_addr += plt_base;
3553               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3554                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3555               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3556               Address off = plt_addr - got_addr;
3557
3558               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3559                 gold_error(_("%s: linkage table error against `%s'"),
3560                            cs->first.object_->name().c_str(),
3561                            cs->first.sym_->demangled_name().c_str());
3562
3563               bool static_chain = parameters->options().plt_static_chain();
3564               bool thread_safe = this->targ_->plt_thread_safe();
3565               bool use_fake_dep = false;
3566               Address cmp_branch_off = 0;
3567               if (thread_safe)
3568                 {
3569                   unsigned int pltindex
3570                     = ((pltoff - this->targ_->first_plt_entry_offset())
3571                        / this->targ_->plt_entry_size());
3572                   Address glinkoff
3573                     = (this->targ_->glink_section()->pltresolve_size
3574                        + pltindex * 8);
3575                   if (pltindex > 32768)
3576                     glinkoff += (pltindex - 32768) * 4;
3577                   Address to
3578                     = this->targ_->glink_section()->address() + glinkoff;
3579                   Address from
3580                     = (this->stub_address() + cs->second + 24
3581                        + 4 * (ha(off) != 0)
3582                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3583                        + 4 * static_chain);
3584                   cmp_branch_off = to - from;
3585                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3586                 }
3587
3588               p = oview + cs->second;
3589               if (ha(off) != 0)
3590                 {
3591                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3592                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3593                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3594                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3595                     {
3596                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3597                       off = 0;
3598                     }
3599                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3600                   if (use_fake_dep)
3601                     {
3602                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3603                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3604                     }
3605                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3606                   if (static_chain)
3607                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3608                 }
3609               else
3610                 {
3611                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3612                   write_insn<big_endian>(p, ld_11_2 + l(off)),          p += 4;
3613                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3614                     {
3615                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3616                       off = 0;
3617                     }
3618                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3619                   if (use_fake_dep)
3620                     {
3621                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3622                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3623                     }
3624                   if (static_chain)
3625                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3626                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3627                 }
3628               if (thread_safe && !use_fake_dep)
3629                 {
3630                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3631                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3632                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3633                 }
3634               else
3635                 write_insn<big_endian>(p, bctr);
3636             }
3637         }
3638
3639       // Write out long branch stubs.
3640       typename Branch_stub_entries::const_iterator bs;
3641       for (bs = this->long_branch_stubs_.begin();
3642            bs != this->long_branch_stubs_.end();
3643            ++bs)
3644         {
3645           p = oview + this->plt_size_ + bs->second;
3646           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3647           Address delta = bs->first.dest_ - loc;
3648           if (delta + (1 << 25) < 2 << 25)
3649             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3650           else
3651             {
3652               Address brlt_addr
3653                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3654               gold_assert(brlt_addr != invalid_address);
3655               brlt_addr += this->targ_->brlt_section()->address();
3656               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3657               Address brltoff = brlt_addr - got_addr;
3658               if (ha(brltoff) == 0)
3659                 {
3660                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3661                 }
3662               else
3663                 {
3664                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3665                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3666                 }
3667               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3668               write_insn<big_endian>(p, bctr);
3669             }
3670         }
3671     }
3672   else
3673     {
3674       if (!this->plt_call_stubs_.empty())
3675         {
3676           // The base address of the .plt section.
3677           Address plt_base = this->targ_->plt_section()->address();
3678           Address iplt_base = invalid_address;
3679           // The address of _GLOBAL_OFFSET_TABLE_.
3680           Address g_o_t = invalid_address;
3681
3682           // Write out plt call stubs.
3683           typename Plt_stub_entries::const_iterator cs;
3684           for (cs = this->plt_call_stubs_.begin();
3685                cs != this->plt_call_stubs_.end();
3686                ++cs)
3687             {
3688               bool is_iplt;
3689               Address plt_addr = this->plt_off(cs, &is_iplt);
3690               if (is_iplt)
3691                 {
3692                   if (iplt_base == invalid_address)
3693                     iplt_base = this->targ_->iplt_section()->address();
3694                   plt_addr += iplt_base;
3695                 }
3696               else
3697                 plt_addr += plt_base;
3698
3699               p = oview + cs->second;
3700               if (parameters->options().output_is_position_independent())
3701                 {
3702                   Address got_addr;
3703                   const Powerpc_relobj<size, big_endian>* ppcobj
3704                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
3705                        (cs->first.object_));
3706                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
3707                     {
3708                       unsigned int got2 = ppcobj->got2_shndx();
3709                       got_addr = ppcobj->get_output_section_offset(got2);
3710                       gold_assert(got_addr != invalid_address);
3711                       got_addr += (ppcobj->output_section(got2)->address()
3712                                    + cs->first.addend_);
3713                     }
3714                   else
3715                     {
3716                       if (g_o_t == invalid_address)
3717                         {
3718                           const Output_data_got_powerpc<size, big_endian>* got
3719                             = this->targ_->got_section();
3720                           g_o_t = got->address() + got->g_o_t();
3721                         }
3722                       got_addr = g_o_t;
3723                     }
3724
3725                   Address off = plt_addr - got_addr;
3726                   if (ha(off) == 0)
3727                     {
3728                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
3729                       write_insn<big_endian>(p +  4, mtctr_11);
3730                       write_insn<big_endian>(p +  8, bctr);
3731                     }
3732                   else
3733                     {
3734                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
3735                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
3736                       write_insn<big_endian>(p +  8, mtctr_11);
3737                       write_insn<big_endian>(p + 12, bctr);
3738                     }
3739                 }
3740               else
3741                 {
3742                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
3743                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
3744                   write_insn<big_endian>(p +  8, mtctr_11);
3745                   write_insn<big_endian>(p + 12, bctr);
3746                 }
3747             }
3748         }
3749
3750       // Write out long branch stubs.
3751       typename Branch_stub_entries::const_iterator bs;
3752       for (bs = this->long_branch_stubs_.begin();
3753            bs != this->long_branch_stubs_.end();
3754            ++bs)
3755         {
3756           p = oview + this->plt_size_ + bs->second;
3757           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3758           Address delta = bs->first.dest_ - loc;
3759           if (delta + (1 << 25) < 2 << 25)
3760             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3761           else if (!parameters->options().output_is_position_independent())
3762             {
3763               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
3764               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
3765               write_insn<big_endian>(p +  8, mtctr_12);
3766               write_insn<big_endian>(p + 12, bctr);
3767             }
3768           else
3769             {
3770               delta -= 8;
3771               write_insn<big_endian>(p +  0, mflr_0);
3772               write_insn<big_endian>(p +  4, bcl_20_31);
3773               write_insn<big_endian>(p +  8, mflr_12);
3774               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
3775               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
3776               write_insn<big_endian>(p + 20, mtlr_0);
3777               write_insn<big_endian>(p + 24, mtctr_12);
3778               write_insn<big_endian>(p + 28, bctr);
3779             }
3780         }
3781     }
3782 }
3783
3784 // Write out .glink.
3785
3786 template<int size, bool big_endian>
3787 void
3788 Output_data_glink<size, big_endian>::do_write(Output_file* of)
3789 {
3790   const section_size_type off = this->offset();
3791   const section_size_type oview_size =
3792     convert_to_section_size_type(this->data_size());
3793   unsigned char* const oview = of->get_output_view(off, oview_size);
3794   unsigned char* p;
3795
3796   // The base address of the .plt section.
3797   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3798   Address plt_base = this->targ_->plt_section()->address();
3799
3800   if (size == 64)
3801     {
3802       // Write pltresolve stub.
3803       p = oview;
3804       Address after_bcl = this->address() + 16;
3805       Address pltoff = plt_base - after_bcl;
3806
3807       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
3808
3809       write_insn<big_endian>(p, mflr_12),                       p += 4;
3810       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
3811       write_insn<big_endian>(p, mflr_11),                       p += 4;
3812       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
3813       write_insn<big_endian>(p, mtlr_12),                       p += 4;
3814       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
3815       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
3816       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
3817       write_insn<big_endian>(p, mtctr_11),                      p += 4;
3818       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
3819       write_insn<big_endian>(p, bctr),                          p += 4;
3820       while (p < oview + this->pltresolve_size)
3821         write_insn<big_endian>(p, nop), p += 4;
3822
3823       // Write lazy link call stubs.
3824       uint32_t indx = 0;
3825       while (p < oview + oview_size)
3826         {
3827           if (indx < 0x8000)
3828             {
3829               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
3830             }
3831           else
3832             {
3833               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
3834               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
3835             }
3836           uint32_t branch_off = 8 - (p - oview);
3837           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
3838           indx++;
3839         }
3840     }
3841   else
3842     {
3843       const Output_data_got_powerpc<size, big_endian>* got
3844         = this->targ_->got_section();
3845       // The address of _GLOBAL_OFFSET_TABLE_.
3846       Address g_o_t = got->address() + got->g_o_t();
3847
3848       // Write out pltresolve branch table.
3849       p = oview;
3850       unsigned int the_end = oview_size - this->pltresolve_size;
3851       unsigned char* end_p = oview + the_end;
3852       while (p < end_p - 8 * 4)
3853         write_insn<big_endian>(p, b + end_p - p), p += 4;
3854       while (p < end_p)
3855         write_insn<big_endian>(p, nop), p += 4;
3856
3857       // Write out pltresolve call stub.
3858       if (parameters->options().output_is_position_independent())
3859         {
3860           Address res0_off = 0;
3861           Address after_bcl_off = the_end + 12;
3862           Address bcl_res0 = after_bcl_off - res0_off;
3863
3864           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
3865           write_insn<big_endian>(p +  4, mflr_0);
3866           write_insn<big_endian>(p +  8, bcl_20_31);
3867           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
3868           write_insn<big_endian>(p + 16, mflr_12);
3869           write_insn<big_endian>(p + 20, mtlr_0);
3870           write_insn<big_endian>(p + 24, sub_11_11_12);
3871
3872           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
3873
3874           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
3875           if (ha(got_bcl) == ha(got_bcl + 4))
3876             {
3877               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
3878               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
3879             }
3880           else
3881             {
3882               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
3883               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
3884             }
3885           write_insn<big_endian>(p + 40, mtctr_0);
3886           write_insn<big_endian>(p + 44, add_0_11_11);
3887           write_insn<big_endian>(p + 48, add_11_0_11);
3888           write_insn<big_endian>(p + 52, bctr);
3889           write_insn<big_endian>(p + 56, nop);
3890           write_insn<big_endian>(p + 60, nop);
3891         }
3892       else
3893         {
3894           Address res0 = this->address();
3895
3896           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
3897           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
3898           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3899             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
3900           else
3901             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
3902           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
3903           write_insn<big_endian>(p + 16, mtctr_0);
3904           write_insn<big_endian>(p + 20, add_0_11_11);
3905           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3906             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
3907           else
3908             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
3909           write_insn<big_endian>(p + 28, add_11_0_11);
3910           write_insn<big_endian>(p + 32, bctr);
3911           write_insn<big_endian>(p + 36, nop);
3912           write_insn<big_endian>(p + 40, nop);
3913           write_insn<big_endian>(p + 44, nop);
3914           write_insn<big_endian>(p + 48, nop);
3915           write_insn<big_endian>(p + 52, nop);
3916           write_insn<big_endian>(p + 56, nop);
3917           write_insn<big_endian>(p + 60, nop);
3918         }
3919       p += 64;
3920     }
3921
3922   of->write_output_view(off, oview_size, oview);
3923 }
3924
3925
3926 // A class to handle linker generated save/restore functions.
3927
3928 template<int size, bool big_endian>
3929 class Output_data_save_res : public Output_section_data_build
3930 {
3931  public:
3932   Output_data_save_res(Symbol_table* symtab);
3933
3934  protected:
3935   // Write to a map file.
3936   void
3937   do_print_to_mapfile(Mapfile* mapfile) const
3938   { mapfile->print_output_data(this, _("** save/restore")); }
3939
3940   void
3941   do_write(Output_file*);
3942
3943  private:
3944   // The maximum size of save/restore contents.
3945   static const unsigned int savres_max = 218*4;
3946
3947   void
3948   savres_define(Symbol_table* symtab,
3949                 const char *name,
3950                 unsigned int lo, unsigned int hi,
3951                 unsigned char* write_ent(unsigned char*, int),
3952                 unsigned char* write_tail(unsigned char*, int));
3953
3954   unsigned char *contents_;
3955 };
3956
3957 template<bool big_endian>
3958 static unsigned char*
3959 savegpr0(unsigned char* p, int r)
3960 {
3961   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3962   write_insn<big_endian>(p, insn);
3963   return p + 4;
3964 }
3965
3966 template<bool big_endian>
3967 static unsigned char*
3968 savegpr0_tail(unsigned char* p, int r)
3969 {
3970   p = savegpr0<big_endian>(p, r);
3971   uint32_t insn = std_0_1 + 16;
3972   write_insn<big_endian>(p, insn);
3973   p = p + 4;
3974   write_insn<big_endian>(p, blr);
3975   return p + 4;
3976 }
3977
3978 template<bool big_endian>
3979 static unsigned char*
3980 restgpr0(unsigned char* p, int r)
3981 {
3982   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3983   write_insn<big_endian>(p, insn);
3984   return p + 4;
3985 }
3986
3987 template<bool big_endian>
3988 static unsigned char*
3989 restgpr0_tail(unsigned char* p, int r)
3990 {
3991   uint32_t insn = ld_0_1 + 16;
3992   write_insn<big_endian>(p, insn);
3993   p = p + 4;
3994   p = restgpr0<big_endian>(p, r);
3995   write_insn<big_endian>(p, mtlr_0);
3996   p = p + 4;
3997   if (r == 29)
3998     {
3999       p = restgpr0<big_endian>(p, 30);
4000       p = restgpr0<big_endian>(p, 31);
4001     }
4002   write_insn<big_endian>(p, blr);
4003   return p + 4;
4004 }
4005
4006 template<bool big_endian>
4007 static unsigned char*
4008 savegpr1(unsigned char* p, int r)
4009 {
4010   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4011   write_insn<big_endian>(p, insn);
4012   return p + 4;
4013 }
4014
4015 template<bool big_endian>
4016 static unsigned char*
4017 savegpr1_tail(unsigned char* p, int r)
4018 {
4019   p = savegpr1<big_endian>(p, r);
4020   write_insn<big_endian>(p, blr);
4021   return p + 4;
4022 }
4023
4024 template<bool big_endian>
4025 static unsigned char*
4026 restgpr1(unsigned char* p, int r)
4027 {
4028   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4029   write_insn<big_endian>(p, insn);
4030   return p + 4;
4031 }
4032
4033 template<bool big_endian>
4034 static unsigned char*
4035 restgpr1_tail(unsigned char* p, int r)
4036 {
4037   p = restgpr1<big_endian>(p, r);
4038   write_insn<big_endian>(p, blr);
4039   return p + 4;
4040 }
4041
4042 template<bool big_endian>
4043 static unsigned char*
4044 savefpr(unsigned char* p, int r)
4045 {
4046   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4047   write_insn<big_endian>(p, insn);
4048   return p + 4;
4049 }
4050
4051 template<bool big_endian>
4052 static unsigned char*
4053 savefpr0_tail(unsigned char* p, int r)
4054 {
4055   p = savefpr<big_endian>(p, r);
4056   write_insn<big_endian>(p, std_0_1 + 16);
4057   p = p + 4;
4058   write_insn<big_endian>(p, blr);
4059   return p + 4;
4060 }
4061
4062 template<bool big_endian>
4063 static unsigned char*
4064 restfpr(unsigned char* p, int r)
4065 {
4066   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4067   write_insn<big_endian>(p, insn);
4068   return p + 4;
4069 }
4070
4071 template<bool big_endian>
4072 static unsigned char*
4073 restfpr0_tail(unsigned char* p, int r)
4074 {
4075   write_insn<big_endian>(p, ld_0_1 + 16);
4076   p = p + 4;
4077   p = restfpr<big_endian>(p, r);
4078   write_insn<big_endian>(p, mtlr_0);
4079   p = p + 4;
4080   if (r == 29)
4081     {
4082       p = restfpr<big_endian>(p, 30);
4083       p = restfpr<big_endian>(p, 31);
4084     }
4085   write_insn<big_endian>(p, blr);
4086   return p + 4;
4087 }
4088
4089 template<bool big_endian>
4090 static unsigned char*
4091 savefpr1_tail(unsigned char* p, int r)
4092 {
4093   p = savefpr<big_endian>(p, r);
4094   write_insn<big_endian>(p, blr);
4095   return p + 4;
4096 }
4097
4098 template<bool big_endian>
4099 static unsigned char*
4100 restfpr1_tail(unsigned char* p, int r)
4101 {
4102   p = restfpr<big_endian>(p, r);
4103   write_insn<big_endian>(p, blr);
4104   return p + 4;
4105 }
4106
4107 template<bool big_endian>
4108 static unsigned char*
4109 savevr(unsigned char* p, int r)
4110 {
4111   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4112   write_insn<big_endian>(p, insn);
4113   p = p + 4;
4114   insn = stvx_0_12_0 + (r << 21);
4115   write_insn<big_endian>(p, insn);
4116   return p + 4;
4117 }
4118
4119 template<bool big_endian>
4120 static unsigned char*
4121 savevr_tail(unsigned char* p, int r)
4122 {
4123   p = savevr<big_endian>(p, r);
4124   write_insn<big_endian>(p, blr);
4125   return p + 4;
4126 }
4127
4128 template<bool big_endian>
4129 static unsigned char*
4130 restvr(unsigned char* p, int r)
4131 {
4132   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4133   write_insn<big_endian>(p, insn);
4134   p = p + 4;
4135   insn = lvx_0_12_0 + (r << 21);
4136   write_insn<big_endian>(p, insn);
4137   return p + 4;
4138 }
4139
4140 template<bool big_endian>
4141 static unsigned char*
4142 restvr_tail(unsigned char* p, int r)
4143 {
4144   p = restvr<big_endian>(p, r);
4145   write_insn<big_endian>(p, blr);
4146   return p + 4;
4147 }
4148
4149
4150 template<int size, bool big_endian>
4151 Output_data_save_res<size, big_endian>::Output_data_save_res(
4152     Symbol_table* symtab)
4153   : Output_section_data_build(4),
4154     contents_(NULL)
4155 {
4156   this->savres_define(symtab,
4157                       "_savegpr0_", 14, 31,
4158                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4159   this->savres_define(symtab,
4160                       "_restgpr0_", 14, 29,
4161                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4162   this->savres_define(symtab,
4163                       "_restgpr0_", 30, 31,
4164                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4165   this->savres_define(symtab,
4166                       "_savegpr1_", 14, 31,
4167                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4168   this->savres_define(symtab,
4169                       "_restgpr1_", 14, 31,
4170                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4171   this->savres_define(symtab,
4172                       "_savefpr_", 14, 31,
4173                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4174   this->savres_define(symtab,
4175                       "_restfpr_", 14, 29,
4176                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4177   this->savres_define(symtab,
4178                       "_restfpr_", 30, 31,
4179                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4180   this->savres_define(symtab,
4181                       "._savef", 14, 31,
4182                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4183   this->savres_define(symtab,
4184                       "._restf", 14, 31,
4185                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4186   this->savres_define(symtab,
4187                       "_savevr_", 20, 31,
4188                       savevr<big_endian>, savevr_tail<big_endian>);
4189   this->savres_define(symtab,
4190                       "_restvr_", 20, 31,
4191                       restvr<big_endian>, restvr_tail<big_endian>);
4192 }
4193
4194 template<int size, bool big_endian>
4195 void
4196 Output_data_save_res<size, big_endian>::savres_define(
4197     Symbol_table* symtab,
4198     const char *name,
4199     unsigned int lo, unsigned int hi,
4200     unsigned char* write_ent(unsigned char*, int),
4201     unsigned char* write_tail(unsigned char*, int))
4202 {
4203   size_t len = strlen(name);
4204   bool writing = false;
4205   char sym[16];
4206
4207   memcpy(sym, name, len);
4208   sym[len + 2] = 0;
4209
4210   for (unsigned int i = lo; i <= hi; i++)
4211     {
4212       sym[len + 0] = i / 10 + '0';
4213       sym[len + 1] = i % 10 + '0';
4214       Symbol* gsym = symtab->lookup(sym);
4215       bool refd = gsym != NULL && gsym->is_undefined();
4216       writing = writing || refd;
4217       if (writing)
4218         {
4219           if (this->contents_ == NULL)
4220             this->contents_ = new unsigned char[this->savres_max];
4221
4222           section_size_type value = this->current_data_size();
4223           unsigned char* p = this->contents_ + value;
4224           if (i != hi)
4225             p = write_ent(p, i);
4226           else
4227             p = write_tail(p, i);
4228           section_size_type cur_size = p - this->contents_;
4229           this->set_current_data_size(cur_size);
4230           if (refd)
4231             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4232                                           this, value, cur_size - value,
4233                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4234                                           elfcpp::STV_HIDDEN, 0, false, false);
4235         }
4236     }
4237 }
4238
4239 // Write out save/restore.
4240
4241 template<int size, bool big_endian>
4242 void
4243 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4244 {
4245   const section_size_type off = this->offset();
4246   const section_size_type oview_size =
4247     convert_to_section_size_type(this->data_size());
4248   unsigned char* const oview = of->get_output_view(off, oview_size);
4249   memcpy(oview, this->contents_, oview_size);
4250   of->write_output_view(off, oview_size, oview);
4251 }
4252
4253
4254 // Create the glink section.
4255
4256 template<int size, bool big_endian>
4257 void
4258 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4259 {
4260   if (this->glink_ == NULL)
4261     {
4262       this->glink_ = new Output_data_glink<size, big_endian>(this);
4263       this->glink_->add_eh_frame(layout);
4264       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4265                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4266                                       this->glink_, ORDER_TEXT, false);
4267     }
4268 }
4269
4270 // Create a PLT entry for a global symbol.
4271
4272 template<int size, bool big_endian>
4273 void
4274 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4275                                                  Layout* layout,
4276                                                  Symbol* gsym)
4277 {
4278   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4279       && gsym->can_use_relative_reloc(false))
4280     {
4281       if (this->iplt_ == NULL)
4282         this->make_iplt_section(symtab, layout);
4283       this->iplt_->add_ifunc_entry(gsym);
4284     }
4285   else
4286     {
4287       if (this->plt_ == NULL)
4288         this->make_plt_section(symtab, layout);
4289       this->plt_->add_entry(gsym);
4290     }
4291 }
4292
4293 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4294
4295 template<int size, bool big_endian>
4296 void
4297 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4298     Symbol_table* symtab,
4299     Layout* layout,
4300     Sized_relobj_file<size, big_endian>* relobj,
4301     unsigned int r_sym)
4302 {
4303   if (this->iplt_ == NULL)
4304     this->make_iplt_section(symtab, layout);
4305   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4306 }
4307
4308 // Return the number of entries in the PLT.
4309
4310 template<int size, bool big_endian>
4311 unsigned int
4312 Target_powerpc<size, big_endian>::plt_entry_count() const
4313 {
4314   if (this->plt_ == NULL)
4315     return 0;
4316   unsigned int count = this->plt_->entry_count();
4317   if (this->iplt_ != NULL)
4318     count += this->iplt_->entry_count();
4319   return count;
4320 }
4321
4322 // Return the offset of the first non-reserved PLT entry.
4323
4324 template<int size, bool big_endian>
4325 unsigned int
4326 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4327 {
4328   return this->plt_->first_plt_entry_offset();
4329 }
4330
4331 // Return the size of each PLT entry.
4332
4333 template<int size, bool big_endian>
4334 unsigned int
4335 Target_powerpc<size, big_endian>::plt_entry_size() const
4336 {
4337   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4338 }
4339
4340 // Create a GOT entry for local dynamic __tls_get_addr calls.
4341
4342 template<int size, bool big_endian>
4343 unsigned int
4344 Target_powerpc<size, big_endian>::tlsld_got_offset(
4345     Symbol_table* symtab,
4346     Layout* layout,
4347     Sized_relobj_file<size, big_endian>* object)
4348 {
4349   if (this->tlsld_got_offset_ == -1U)
4350     {
4351       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4352       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4353       Output_data_got_powerpc<size, big_endian>* got
4354         = this->got_section(symtab, layout);
4355       unsigned int got_offset = got->add_constant_pair(0, 0);
4356       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4357                           got_offset, 0);
4358       this->tlsld_got_offset_ = got_offset;
4359     }
4360   return this->tlsld_got_offset_;
4361 }
4362
4363 // Get the Reference_flags for a particular relocation.
4364
4365 template<int size, bool big_endian>
4366 int
4367 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4368 {
4369   switch (r_type)
4370     {
4371     case elfcpp::R_POWERPC_NONE:
4372     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4373     case elfcpp::R_POWERPC_GNU_VTENTRY:
4374     case elfcpp::R_PPC64_TOC:
4375       // No symbol reference.
4376       return 0;
4377
4378     case elfcpp::R_PPC64_ADDR64:
4379     case elfcpp::R_PPC64_UADDR64:
4380     case elfcpp::R_POWERPC_ADDR32:
4381     case elfcpp::R_POWERPC_UADDR32:
4382     case elfcpp::R_POWERPC_ADDR16:
4383     case elfcpp::R_POWERPC_UADDR16:
4384     case elfcpp::R_POWERPC_ADDR16_LO:
4385     case elfcpp::R_POWERPC_ADDR16_HI:
4386     case elfcpp::R_POWERPC_ADDR16_HA:
4387       return Symbol::ABSOLUTE_REF;
4388
4389     case elfcpp::R_POWERPC_ADDR24:
4390     case elfcpp::R_POWERPC_ADDR14:
4391     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4392     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4393       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4394
4395     case elfcpp::R_PPC64_REL64:
4396     case elfcpp::R_POWERPC_REL32:
4397     case elfcpp::R_PPC_LOCAL24PC:
4398     case elfcpp::R_POWERPC_REL16:
4399     case elfcpp::R_POWERPC_REL16_LO:
4400     case elfcpp::R_POWERPC_REL16_HI:
4401     case elfcpp::R_POWERPC_REL16_HA:
4402       return Symbol::RELATIVE_REF;
4403
4404     case elfcpp::R_POWERPC_REL24:
4405     case elfcpp::R_PPC_PLTREL24:
4406     case elfcpp::R_POWERPC_REL14:
4407     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4408     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4409       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4410
4411     case elfcpp::R_POWERPC_GOT16:
4412     case elfcpp::R_POWERPC_GOT16_LO:
4413     case elfcpp::R_POWERPC_GOT16_HI:
4414     case elfcpp::R_POWERPC_GOT16_HA:
4415     case elfcpp::R_PPC64_GOT16_DS:
4416     case elfcpp::R_PPC64_GOT16_LO_DS:
4417     case elfcpp::R_PPC64_TOC16:
4418     case elfcpp::R_PPC64_TOC16_LO:
4419     case elfcpp::R_PPC64_TOC16_HI:
4420     case elfcpp::R_PPC64_TOC16_HA:
4421     case elfcpp::R_PPC64_TOC16_DS:
4422     case elfcpp::R_PPC64_TOC16_LO_DS:
4423       // Absolute in GOT.
4424       return Symbol::ABSOLUTE_REF;
4425
4426     case elfcpp::R_POWERPC_GOT_TPREL16:
4427     case elfcpp::R_POWERPC_TLS:
4428       return Symbol::TLS_REF;
4429
4430     case elfcpp::R_POWERPC_COPY:
4431     case elfcpp::R_POWERPC_GLOB_DAT:
4432     case elfcpp::R_POWERPC_JMP_SLOT:
4433     case elfcpp::R_POWERPC_RELATIVE:
4434     case elfcpp::R_POWERPC_DTPMOD:
4435     default:
4436       // Not expected.  We will give an error later.
4437       return 0;
4438     }
4439 }
4440
4441 // Report an unsupported relocation against a local symbol.
4442
4443 template<int size, bool big_endian>
4444 void
4445 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4446     Sized_relobj_file<size, big_endian>* object,
4447     unsigned int r_type)
4448 {
4449   gold_error(_("%s: unsupported reloc %u against local symbol"),
4450              object->name().c_str(), r_type);
4451 }
4452
4453 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4454 // dynamic linker does not support it, issue an error.
4455
4456 template<int size, bool big_endian>
4457 void
4458 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4459                                                       unsigned int r_type)
4460 {
4461   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4462
4463   // These are the relocation types supported by glibc for both 32-bit
4464   // and 64-bit powerpc.
4465   switch (r_type)
4466     {
4467     case elfcpp::R_POWERPC_NONE:
4468     case elfcpp::R_POWERPC_RELATIVE:
4469     case elfcpp::R_POWERPC_GLOB_DAT:
4470     case elfcpp::R_POWERPC_DTPMOD:
4471     case elfcpp::R_POWERPC_DTPREL:
4472     case elfcpp::R_POWERPC_TPREL:
4473     case elfcpp::R_POWERPC_JMP_SLOT:
4474     case elfcpp::R_POWERPC_COPY:
4475     case elfcpp::R_POWERPC_IRELATIVE:
4476     case elfcpp::R_POWERPC_ADDR32:
4477     case elfcpp::R_POWERPC_UADDR32:
4478     case elfcpp::R_POWERPC_ADDR24:
4479     case elfcpp::R_POWERPC_ADDR16:
4480     case elfcpp::R_POWERPC_UADDR16:
4481     case elfcpp::R_POWERPC_ADDR16_LO:
4482     case elfcpp::R_POWERPC_ADDR16_HI:
4483     case elfcpp::R_POWERPC_ADDR16_HA:
4484     case elfcpp::R_POWERPC_ADDR14:
4485     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4486     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4487     case elfcpp::R_POWERPC_REL32:
4488     case elfcpp::R_POWERPC_REL24:
4489     case elfcpp::R_POWERPC_TPREL16:
4490     case elfcpp::R_POWERPC_TPREL16_LO:
4491     case elfcpp::R_POWERPC_TPREL16_HI:
4492     case elfcpp::R_POWERPC_TPREL16_HA:
4493       return;
4494
4495     default:
4496       break;
4497     }
4498
4499   if (size == 64)
4500     {
4501       switch (r_type)
4502         {
4503           // These are the relocation types supported only on 64-bit.
4504         case elfcpp::R_PPC64_ADDR64:
4505         case elfcpp::R_PPC64_UADDR64:
4506         case elfcpp::R_PPC64_JMP_IREL:
4507         case elfcpp::R_PPC64_ADDR16_DS:
4508         case elfcpp::R_PPC64_ADDR16_LO_DS:
4509         case elfcpp::R_PPC64_ADDR16_HIGHER:
4510         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4511         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4512         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4513         case elfcpp::R_PPC64_REL64:
4514         case elfcpp::R_POWERPC_ADDR30:
4515         case elfcpp::R_PPC64_TPREL16_DS:
4516         case elfcpp::R_PPC64_TPREL16_LO_DS:
4517         case elfcpp::R_PPC64_TPREL16_HIGHER:
4518         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4519         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4520         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4521           return;
4522
4523         default:
4524           break;
4525         }
4526     }
4527   else
4528     {
4529       switch (r_type)
4530         {
4531           // These are the relocation types supported only on 32-bit.
4532           // ??? glibc ld.so doesn't need to support these.
4533         case elfcpp::R_POWERPC_DTPREL16:
4534         case elfcpp::R_POWERPC_DTPREL16_LO:
4535         case elfcpp::R_POWERPC_DTPREL16_HI:
4536         case elfcpp::R_POWERPC_DTPREL16_HA:
4537           return;
4538
4539         default:
4540           break;
4541         }
4542     }
4543
4544   // This prevents us from issuing more than one error per reloc
4545   // section.  But we can still wind up issuing more than one
4546   // error per object file.
4547   if (this->issued_non_pic_error_)
4548     return;
4549   gold_assert(parameters->options().output_is_position_independent());
4550   object->error(_("requires unsupported dynamic reloc; "
4551                   "recompile with -fPIC"));
4552   this->issued_non_pic_error_ = true;
4553   return;
4554 }
4555
4556 // Return whether we need to make a PLT entry for a relocation of the
4557 // given type against a STT_GNU_IFUNC symbol.
4558
4559 template<int size, bool big_endian>
4560 bool
4561 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4562      Sized_relobj_file<size, big_endian>* object,
4563      unsigned int r_type)
4564 {
4565   // In non-pic code any reference will resolve to the plt call stub
4566   // for the ifunc symbol.
4567   if (size == 32 && !parameters->options().output_is_position_independent())
4568     return true;
4569
4570   switch (r_type)
4571     {
4572     // Word size refs from data sections are OK.
4573     case elfcpp::R_POWERPC_ADDR32:
4574     case elfcpp::R_POWERPC_UADDR32:
4575       if (size == 32)
4576         return true;
4577       break;
4578
4579     case elfcpp::R_PPC64_ADDR64:
4580     case elfcpp::R_PPC64_UADDR64:
4581       if (size == 64)
4582         return true;
4583       break;
4584
4585     // GOT refs are good.
4586     case elfcpp::R_POWERPC_GOT16:
4587     case elfcpp::R_POWERPC_GOT16_LO:
4588     case elfcpp::R_POWERPC_GOT16_HI:
4589     case elfcpp::R_POWERPC_GOT16_HA:
4590     case elfcpp::R_PPC64_GOT16_DS:
4591     case elfcpp::R_PPC64_GOT16_LO_DS:
4592       return true;
4593
4594     // So are function calls.
4595     case elfcpp::R_POWERPC_ADDR24:
4596     case elfcpp::R_POWERPC_ADDR14:
4597     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4598     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4599     case elfcpp::R_POWERPC_REL24:
4600     case elfcpp::R_PPC_PLTREL24:
4601     case elfcpp::R_POWERPC_REL14:
4602     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4603     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4604       return true;
4605
4606     default:
4607       break;
4608     }
4609
4610   // Anything else is a problem.
4611   // If we are building a static executable, the libc startup function
4612   // responsible for applying indirect function relocations is going
4613   // to complain about the reloc type.
4614   // If we are building a dynamic executable, we will have a text
4615   // relocation.  The dynamic loader will set the text segment
4616   // writable and non-executable to apply text relocations.  So we'll
4617   // segfault when trying to run the indirection function to resolve
4618   // the reloc.
4619   gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4620                object->name().c_str(), r_type);
4621   return false;
4622 }
4623
4624 // Scan a relocation for a local symbol.
4625
4626 template<int size, bool big_endian>
4627 inline void
4628 Target_powerpc<size, big_endian>::Scan::local(
4629     Symbol_table* symtab,
4630     Layout* layout,
4631     Target_powerpc<size, big_endian>* target,
4632     Sized_relobj_file<size, big_endian>* object,
4633     unsigned int data_shndx,
4634     Output_section* output_section,
4635     const elfcpp::Rela<size, big_endian>& reloc,
4636     unsigned int r_type,
4637     const elfcpp::Sym<size, big_endian>& lsym,
4638     bool is_discarded)
4639 {
4640   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4641
4642   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4643       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4644     {
4645       this->expect_tls_get_addr_call();
4646       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4647       if (tls_type != tls::TLSOPT_NONE)
4648         this->skip_next_tls_get_addr_call();
4649     }
4650   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4651            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4652     {
4653       this->expect_tls_get_addr_call();
4654       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4655       if (tls_type != tls::TLSOPT_NONE)
4656         this->skip_next_tls_get_addr_call();
4657     }
4658
4659   Powerpc_relobj<size, big_endian>* ppc_object
4660     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4661
4662   if (is_discarded)
4663     {
4664       if (size == 64
4665           && data_shndx == ppc_object->opd_shndx()
4666           && r_type == elfcpp::R_PPC64_ADDR64)
4667         ppc_object->set_opd_discard(reloc.get_r_offset());
4668       return;
4669     }
4670
4671   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4672   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4673   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4674     {
4675       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4676       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4677                           r_type, r_sym, reloc.get_r_addend());
4678       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4679     }
4680
4681   switch (r_type)
4682     {
4683     case elfcpp::R_POWERPC_NONE:
4684     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4685     case elfcpp::R_POWERPC_GNU_VTENTRY:
4686     case elfcpp::R_PPC64_TOCSAVE:
4687     case elfcpp::R_PPC_EMB_MRKREF:
4688     case elfcpp::R_POWERPC_TLS:
4689       break;
4690
4691     case elfcpp::R_PPC64_TOC:
4692       {
4693         Output_data_got_powerpc<size, big_endian>* got
4694           = target->got_section(symtab, layout);
4695         if (parameters->options().output_is_position_independent())
4696           {
4697             Address off = reloc.get_r_offset();
4698             if (size == 64
4699                 && data_shndx == ppc_object->opd_shndx()
4700                 && ppc_object->get_opd_discard(off - 8))
4701               break;
4702
4703             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4704             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
4705             rela_dyn->add_output_section_relative(got->output_section(),
4706                                                   elfcpp::R_POWERPC_RELATIVE,
4707                                                   output_section,
4708                                                   object, data_shndx, off,
4709                                                   symobj->toc_base_offset());
4710           }
4711       }
4712       break;
4713
4714     case elfcpp::R_PPC64_ADDR64:
4715     case elfcpp::R_PPC64_UADDR64:
4716     case elfcpp::R_POWERPC_ADDR32:
4717     case elfcpp::R_POWERPC_UADDR32:
4718     case elfcpp::R_POWERPC_ADDR24:
4719     case elfcpp::R_POWERPC_ADDR16:
4720     case elfcpp::R_POWERPC_ADDR16_LO:
4721     case elfcpp::R_POWERPC_ADDR16_HI:
4722     case elfcpp::R_POWERPC_ADDR16_HA:
4723     case elfcpp::R_POWERPC_UADDR16:
4724     case elfcpp::R_PPC64_ADDR16_HIGHER:
4725     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4726     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4727     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4728     case elfcpp::R_PPC64_ADDR16_DS:
4729     case elfcpp::R_PPC64_ADDR16_LO_DS:
4730     case elfcpp::R_POWERPC_ADDR14:
4731     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4732     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4733       // If building a shared library (or a position-independent
4734       // executable), we need to create a dynamic relocation for
4735       // this location.
4736       if (parameters->options().output_is_position_independent()
4737           || (size == 64 && is_ifunc))
4738         {
4739           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4740
4741           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
4742               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
4743             {
4744               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4745               unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4746               if (is_ifunc)
4747                 {
4748                   rela_dyn = target->iplt_section()->rel_plt();
4749                   dynrel = elfcpp::R_POWERPC_IRELATIVE;
4750                 }
4751               rela_dyn->add_local_relative(object, r_sym, dynrel,
4752                                            output_section, data_shndx,
4753                                            reloc.get_r_offset(),
4754                                            reloc.get_r_addend(), false);
4755             }
4756           else
4757             {
4758               check_non_pic(object, r_type);
4759               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4760               rela_dyn->add_local(object, r_sym, r_type, output_section,
4761                                   data_shndx, reloc.get_r_offset(),
4762                                   reloc.get_r_addend());
4763             }
4764         }
4765       break;
4766
4767     case elfcpp::R_POWERPC_REL24:
4768     case elfcpp::R_PPC_PLTREL24:
4769     case elfcpp::R_PPC_LOCAL24PC:
4770       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4771                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4772                           reloc.get_r_addend());
4773       break;
4774
4775     case elfcpp::R_POWERPC_REL14:
4776     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4777     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4778       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4779                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4780                           reloc.get_r_addend());
4781       break;
4782
4783     case elfcpp::R_PPC64_REL64:
4784     case elfcpp::R_POWERPC_REL32:
4785     case elfcpp::R_POWERPC_REL16:
4786     case elfcpp::R_POWERPC_REL16_LO:
4787     case elfcpp::R_POWERPC_REL16_HI:
4788     case elfcpp::R_POWERPC_REL16_HA:
4789     case elfcpp::R_POWERPC_SECTOFF:
4790     case elfcpp::R_POWERPC_TPREL16:
4791     case elfcpp::R_POWERPC_DTPREL16:
4792     case elfcpp::R_POWERPC_SECTOFF_LO:
4793     case elfcpp::R_POWERPC_TPREL16_LO:
4794     case elfcpp::R_POWERPC_DTPREL16_LO:
4795     case elfcpp::R_POWERPC_SECTOFF_HI:
4796     case elfcpp::R_POWERPC_TPREL16_HI:
4797     case elfcpp::R_POWERPC_DTPREL16_HI:
4798     case elfcpp::R_POWERPC_SECTOFF_HA:
4799     case elfcpp::R_POWERPC_TPREL16_HA:
4800     case elfcpp::R_POWERPC_DTPREL16_HA:
4801     case elfcpp::R_PPC64_DTPREL16_HIGHER:
4802     case elfcpp::R_PPC64_TPREL16_HIGHER:
4803     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4804     case elfcpp::R_PPC64_TPREL16_HIGHERA:
4805     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4806     case elfcpp::R_PPC64_TPREL16_HIGHEST:
4807     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4808     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4809     case elfcpp::R_PPC64_TPREL16_DS:
4810     case elfcpp::R_PPC64_TPREL16_LO_DS:
4811     case elfcpp::R_PPC64_DTPREL16_DS:
4812     case elfcpp::R_PPC64_DTPREL16_LO_DS:
4813     case elfcpp::R_PPC64_SECTOFF_DS:
4814     case elfcpp::R_PPC64_SECTOFF_LO_DS:
4815     case elfcpp::R_PPC64_TLSGD:
4816     case elfcpp::R_PPC64_TLSLD:
4817       break;
4818
4819     case elfcpp::R_POWERPC_GOT16:
4820     case elfcpp::R_POWERPC_GOT16_LO:
4821     case elfcpp::R_POWERPC_GOT16_HI:
4822     case elfcpp::R_POWERPC_GOT16_HA:
4823     case elfcpp::R_PPC64_GOT16_DS:
4824     case elfcpp::R_PPC64_GOT16_LO_DS:
4825       {
4826         // The symbol requires a GOT entry.
4827         Output_data_got_powerpc<size, big_endian>* got
4828           = target->got_section(symtab, layout);
4829         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4830
4831         if (!parameters->options().output_is_position_independent())
4832           {
4833             if (size == 32 && is_ifunc)
4834               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
4835             else
4836               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
4837           }
4838         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
4839           {
4840             // If we are generating a shared object or a pie, this
4841             // symbol's GOT entry will be set by a dynamic relocation.
4842             unsigned int off;
4843             off = got->add_constant(0);
4844             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
4845
4846             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4847             unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4848             if (is_ifunc)
4849               {
4850                 rela_dyn = target->iplt_section()->rel_plt();
4851                 dynrel = elfcpp::R_POWERPC_IRELATIVE;
4852               }
4853             rela_dyn->add_local_relative(object, r_sym, dynrel,
4854                                          got, off, 0, false);
4855           }
4856       }
4857       break;
4858
4859     case elfcpp::R_PPC64_TOC16:
4860     case elfcpp::R_PPC64_TOC16_LO:
4861     case elfcpp::R_PPC64_TOC16_HI:
4862     case elfcpp::R_PPC64_TOC16_HA:
4863     case elfcpp::R_PPC64_TOC16_DS:
4864     case elfcpp::R_PPC64_TOC16_LO_DS:
4865       // We need a GOT section.
4866       target->got_section(symtab, layout);
4867       break;
4868
4869     case elfcpp::R_POWERPC_GOT_TLSGD16:
4870     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4871     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4872     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4873       {
4874         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4875         if (tls_type == tls::TLSOPT_NONE)
4876           {
4877             Output_data_got_powerpc<size, big_endian>* got
4878               = target->got_section(symtab, layout);
4879             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4880             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4881             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
4882                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
4883           }
4884         else if (tls_type == tls::TLSOPT_TO_LE)
4885           {
4886             // no GOT relocs needed for Local Exec.
4887           }
4888         else
4889           gold_unreachable();
4890       }
4891       break;
4892
4893     case elfcpp::R_POWERPC_GOT_TLSLD16:
4894     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4895     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4896     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4897       {
4898         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4899         if (tls_type == tls::TLSOPT_NONE)
4900           target->tlsld_got_offset(symtab, layout, object);
4901         else if (tls_type == tls::TLSOPT_TO_LE)
4902           {
4903             // no GOT relocs needed for Local Exec.
4904             if (parameters->options().emit_relocs())
4905               {
4906                 Output_section* os = layout->tls_segment()->first_section();
4907                 gold_assert(os != NULL);
4908                 os->set_needs_symtab_index();
4909               }
4910           }
4911         else
4912           gold_unreachable();
4913       }
4914       break;
4915
4916     case elfcpp::R_POWERPC_GOT_DTPREL16:
4917     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4918     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4919     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4920       {
4921         Output_data_got_powerpc<size, big_endian>* got
4922           = target->got_section(symtab, layout);
4923         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4924         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
4925       }
4926       break;
4927
4928     case elfcpp::R_POWERPC_GOT_TPREL16:
4929     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4930     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4931     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4932       {
4933         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
4934         if (tls_type == tls::TLSOPT_NONE)
4935           {
4936             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4937             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
4938               {
4939                 Output_data_got_powerpc<size, big_endian>* got
4940                   = target->got_section(symtab, layout);
4941                 unsigned int off = got->add_constant(0);
4942                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
4943
4944                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4945                 rela_dyn->add_symbolless_local_addend(object, r_sym,
4946                                                       elfcpp::R_POWERPC_TPREL,
4947                                                       got, off, 0);
4948               }
4949           }
4950         else if (tls_type == tls::TLSOPT_TO_LE)
4951           {
4952             // no GOT relocs needed for Local Exec.
4953           }
4954         else
4955           gold_unreachable();
4956       }
4957       break;
4958
4959     default:
4960       unsupported_reloc_local(object, r_type);
4961       break;
4962     }
4963
4964   switch (r_type)
4965     {
4966     case elfcpp::R_POWERPC_GOT_TLSLD16:
4967     case elfcpp::R_POWERPC_GOT_TLSGD16:
4968     case elfcpp::R_POWERPC_GOT_TPREL16:
4969     case elfcpp::R_POWERPC_GOT_DTPREL16:
4970     case elfcpp::R_POWERPC_GOT16:
4971     case elfcpp::R_PPC64_GOT16_DS:
4972     case elfcpp::R_PPC64_TOC16:
4973     case elfcpp::R_PPC64_TOC16_DS:
4974       ppc_object->set_has_small_toc_reloc();
4975     default:
4976       break;
4977     }
4978 }
4979
4980 // Report an unsupported relocation against a global symbol.
4981
4982 template<int size, bool big_endian>
4983 void
4984 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
4985     Sized_relobj_file<size, big_endian>* object,
4986     unsigned int r_type,
4987     Symbol* gsym)
4988 {
4989   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4990              object->name().c_str(), r_type, gsym->demangled_name().c_str());
4991 }
4992
4993 // Scan a relocation for a global symbol.
4994
4995 template<int size, bool big_endian>
4996 inline void
4997 Target_powerpc<size, big_endian>::Scan::global(
4998     Symbol_table* symtab,
4999     Layout* layout,
5000     Target_powerpc<size, big_endian>* target,
5001     Sized_relobj_file<size, big_endian>* object,
5002     unsigned int data_shndx,
5003     Output_section* output_section,
5004     const elfcpp::Rela<size, big_endian>& reloc,
5005     unsigned int r_type,
5006     Symbol* gsym)
5007 {
5008   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5009     return;
5010
5011   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5012       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5013     {
5014       this->expect_tls_get_addr_call();
5015       const bool final = gsym->final_value_is_known();
5016       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5017       if (tls_type != tls::TLSOPT_NONE)
5018         this->skip_next_tls_get_addr_call();
5019     }
5020   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5021            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5022     {
5023       this->expect_tls_get_addr_call();
5024       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5025       if (tls_type != tls::TLSOPT_NONE)
5026         this->skip_next_tls_get_addr_call();
5027     }
5028
5029   Powerpc_relobj<size, big_endian>* ppc_object
5030     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5031
5032   // A STT_GNU_IFUNC symbol may require a PLT entry.
5033   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5034       && this->reloc_needs_plt_for_ifunc(object, r_type))
5035     {
5036       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5037                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5038                           reloc.get_r_addend());
5039       target->make_plt_entry(symtab, layout, gsym);
5040     }
5041
5042   switch (r_type)
5043     {
5044     case elfcpp::R_POWERPC_NONE:
5045     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5046     case elfcpp::R_POWERPC_GNU_VTENTRY:
5047     case elfcpp::R_PPC_LOCAL24PC:
5048     case elfcpp::R_PPC_EMB_MRKREF:
5049     case elfcpp::R_POWERPC_TLS:
5050       break;
5051
5052     case elfcpp::R_PPC64_TOC:
5053       {
5054         Output_data_got_powerpc<size, big_endian>* got
5055           = target->got_section(symtab, layout);
5056         if (parameters->options().output_is_position_independent())
5057           {
5058             Address off = reloc.get_r_offset();
5059             if (size == 64
5060                 && data_shndx == ppc_object->opd_shndx()
5061                 && ppc_object->get_opd_discard(off - 8))
5062               break;
5063
5064             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5065             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5066             if (data_shndx != ppc_object->opd_shndx())
5067               symobj = static_cast
5068                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5069             rela_dyn->add_output_section_relative(got->output_section(),
5070                                                   elfcpp::R_POWERPC_RELATIVE,
5071                                                   output_section,
5072                                                   object, data_shndx, off,
5073                                                   symobj->toc_base_offset());
5074           }
5075       }
5076       break;
5077
5078     case elfcpp::R_PPC64_ADDR64:
5079       if (size == 64
5080           && data_shndx == ppc_object->opd_shndx()
5081           && (gsym->is_defined_in_discarded_section()
5082               || gsym->object() != object))
5083         {
5084           ppc_object->set_opd_discard(reloc.get_r_offset());
5085           break;
5086         }
5087       // Fall thru
5088     case elfcpp::R_PPC64_UADDR64:
5089     case elfcpp::R_POWERPC_ADDR32:
5090     case elfcpp::R_POWERPC_UADDR32:
5091     case elfcpp::R_POWERPC_ADDR24:
5092     case elfcpp::R_POWERPC_ADDR16:
5093     case elfcpp::R_POWERPC_ADDR16_LO:
5094     case elfcpp::R_POWERPC_ADDR16_HI:
5095     case elfcpp::R_POWERPC_ADDR16_HA:
5096     case elfcpp::R_POWERPC_UADDR16:
5097     case elfcpp::R_PPC64_ADDR16_HIGHER:
5098     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5099     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5100     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5101     case elfcpp::R_PPC64_ADDR16_DS:
5102     case elfcpp::R_PPC64_ADDR16_LO_DS:
5103     case elfcpp::R_POWERPC_ADDR14:
5104     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5105     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5106       {
5107         // Make a PLT entry if necessary.
5108         if (gsym->needs_plt_entry())
5109           {
5110             target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5111                                 r_type,
5112                                 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5113                                 reloc.get_r_addend());
5114             target->make_plt_entry(symtab, layout, gsym);
5115             // Since this is not a PC-relative relocation, we may be
5116             // taking the address of a function. In that case we need to
5117             // set the entry in the dynamic symbol table to the address of
5118             // the PLT call stub.
5119             if (size == 32
5120                 && gsym->is_from_dynobj()
5121                 && !parameters->options().output_is_position_independent())
5122               gsym->set_needs_dynsym_value();
5123           }
5124         // Make a dynamic relocation if necessary.
5125         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5126             || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
5127           {
5128             if (gsym->may_need_copy_reloc())
5129               {
5130                 target->copy_reloc(symtab, layout, object,
5131                                    data_shndx, output_section, gsym, reloc);
5132               }
5133             else if ((size == 32
5134                       && r_type == elfcpp::R_POWERPC_ADDR32
5135                       && gsym->can_use_relative_reloc(false)
5136                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5137                            && parameters->options().shared()))
5138                      || (size == 64
5139                          && r_type == elfcpp::R_PPC64_ADDR64
5140                          && (gsym->can_use_relative_reloc(false)
5141                              || data_shndx == ppc_object->opd_shndx())))
5142               {
5143                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5144                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
5145                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5146                   {
5147                     rela_dyn = target->iplt_section()->rel_plt();
5148                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
5149                   }
5150                 rela_dyn->add_symbolless_global_addend(
5151                     gsym, dynrel, output_section, object, data_shndx,
5152                     reloc.get_r_offset(), reloc.get_r_addend());
5153               }
5154             else
5155               {
5156                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5157                 check_non_pic(object, r_type);
5158                 rela_dyn->add_global(gsym, r_type, output_section,
5159                                      object, data_shndx,
5160                                      reloc.get_r_offset(),
5161                                      reloc.get_r_addend());
5162               }
5163           }
5164       }
5165       break;
5166
5167     case elfcpp::R_PPC_PLTREL24:
5168     case elfcpp::R_POWERPC_REL24:
5169       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5170                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5171                           reloc.get_r_addend());
5172       if (gsym->needs_plt_entry()
5173           || (!gsym->final_value_is_known()
5174               && (gsym->is_undefined()
5175                   || gsym->is_from_dynobj()
5176                   || gsym->is_preemptible())))
5177         target->make_plt_entry(symtab, layout, gsym);
5178       // Fall thru
5179
5180     case elfcpp::R_PPC64_REL64:
5181     case elfcpp::R_POWERPC_REL32:
5182       // Make a dynamic relocation if necessary.
5183       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5184         {
5185           if (gsym->may_need_copy_reloc())
5186             {
5187               target->copy_reloc(symtab, layout, object,
5188                                  data_shndx, output_section, gsym,
5189                                  reloc);
5190             }
5191           else
5192             {
5193               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5194               check_non_pic(object, r_type);
5195               rela_dyn->add_global(gsym, r_type, output_section, object,
5196                                    data_shndx, reloc.get_r_offset(),
5197                                    reloc.get_r_addend());
5198             }
5199         }
5200       break;
5201
5202     case elfcpp::R_POWERPC_REL14:
5203     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5204     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5205       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5206                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5207                           reloc.get_r_addend());
5208       break;
5209
5210     case elfcpp::R_POWERPC_REL16:
5211     case elfcpp::R_POWERPC_REL16_LO:
5212     case elfcpp::R_POWERPC_REL16_HI:
5213     case elfcpp::R_POWERPC_REL16_HA:
5214     case elfcpp::R_POWERPC_SECTOFF:
5215     case elfcpp::R_POWERPC_TPREL16:
5216     case elfcpp::R_POWERPC_DTPREL16:
5217     case elfcpp::R_POWERPC_SECTOFF_LO:
5218     case elfcpp::R_POWERPC_TPREL16_LO:
5219     case elfcpp::R_POWERPC_DTPREL16_LO:
5220     case elfcpp::R_POWERPC_SECTOFF_HI:
5221     case elfcpp::R_POWERPC_TPREL16_HI:
5222     case elfcpp::R_POWERPC_DTPREL16_HI:
5223     case elfcpp::R_POWERPC_SECTOFF_HA:
5224     case elfcpp::R_POWERPC_TPREL16_HA:
5225     case elfcpp::R_POWERPC_DTPREL16_HA:
5226     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5227     case elfcpp::R_PPC64_TPREL16_HIGHER:
5228     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5229     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5230     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5231     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5232     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5233     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5234     case elfcpp::R_PPC64_TPREL16_DS:
5235     case elfcpp::R_PPC64_TPREL16_LO_DS:
5236     case elfcpp::R_PPC64_DTPREL16_DS:
5237     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5238     case elfcpp::R_PPC64_SECTOFF_DS:
5239     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5240     case elfcpp::R_PPC64_TLSGD:
5241     case elfcpp::R_PPC64_TLSLD:
5242       break;
5243
5244     case elfcpp::R_POWERPC_GOT16:
5245     case elfcpp::R_POWERPC_GOT16_LO:
5246     case elfcpp::R_POWERPC_GOT16_HI:
5247     case elfcpp::R_POWERPC_GOT16_HA:
5248     case elfcpp::R_PPC64_GOT16_DS:
5249     case elfcpp::R_PPC64_GOT16_LO_DS:
5250       {
5251         // The symbol requires a GOT entry.
5252         Output_data_got_powerpc<size, big_endian>* got;
5253
5254         got = target->got_section(symtab, layout);
5255         if (gsym->final_value_is_known())
5256           {
5257             if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
5258               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5259             else
5260               got->add_global(gsym, GOT_TYPE_STANDARD);
5261           }
5262         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5263           {
5264             // If we are generating a shared object or a pie, this
5265             // symbol's GOT entry will be set by a dynamic relocation.
5266             unsigned int off = got->add_constant(0);
5267             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5268
5269             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5270             if (gsym->can_use_relative_reloc(false)
5271                 && !(size == 32
5272                      && gsym->visibility() == elfcpp::STV_PROTECTED
5273                      && parameters->options().shared()))
5274               {
5275                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
5276                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5277                   {
5278                     rela_dyn = target->iplt_section()->rel_plt();
5279                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
5280                   }
5281                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5282               }
5283             else
5284               {
5285                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5286                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5287               }
5288           }
5289       }
5290       break;
5291
5292     case elfcpp::R_PPC64_TOC16:
5293     case elfcpp::R_PPC64_TOC16_LO:
5294     case elfcpp::R_PPC64_TOC16_HI:
5295     case elfcpp::R_PPC64_TOC16_HA:
5296     case elfcpp::R_PPC64_TOC16_DS:
5297     case elfcpp::R_PPC64_TOC16_LO_DS:
5298       // We need a GOT section.
5299       target->got_section(symtab, layout);
5300       break;
5301
5302     case elfcpp::R_POWERPC_GOT_TLSGD16:
5303     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5304     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5305     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5306       {
5307         const bool final = gsym->final_value_is_known();
5308         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5309         if (tls_type == tls::TLSOPT_NONE)
5310           {
5311             Output_data_got_powerpc<size, big_endian>* got
5312               = target->got_section(symtab, layout);
5313             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
5314                                           target->rela_dyn_section(layout),
5315                                           elfcpp::R_POWERPC_DTPMOD,
5316                                           elfcpp::R_POWERPC_DTPREL);
5317           }
5318         else if (tls_type == tls::TLSOPT_TO_IE)
5319           {
5320             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5321               {
5322                 Output_data_got_powerpc<size, big_endian>* got
5323                   = target->got_section(symtab, layout);
5324                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5325                 if (gsym->is_undefined()
5326                     || gsym->is_from_dynobj())
5327                   {
5328                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5329                                              elfcpp::R_POWERPC_TPREL);
5330                   }
5331                 else
5332                   {
5333                     unsigned int off = got->add_constant(0);
5334                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5335                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5336                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5337                                                            got, off, 0);
5338                   }
5339               }
5340           }
5341         else if (tls_type == tls::TLSOPT_TO_LE)
5342           {
5343             // no GOT relocs needed for Local Exec.
5344           }
5345         else
5346           gold_unreachable();
5347       }
5348       break;
5349
5350     case elfcpp::R_POWERPC_GOT_TLSLD16:
5351     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5352     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5353     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5354       {
5355         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5356         if (tls_type == tls::TLSOPT_NONE)
5357           target->tlsld_got_offset(symtab, layout, object);
5358         else if (tls_type == tls::TLSOPT_TO_LE)
5359           {
5360             // no GOT relocs needed for Local Exec.
5361             if (parameters->options().emit_relocs())
5362               {
5363                 Output_section* os = layout->tls_segment()->first_section();
5364                 gold_assert(os != NULL);
5365                 os->set_needs_symtab_index();
5366               }
5367           }
5368         else
5369           gold_unreachable();
5370       }
5371       break;
5372
5373     case elfcpp::R_POWERPC_GOT_DTPREL16:
5374     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5375     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5376     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5377       {
5378         Output_data_got_powerpc<size, big_endian>* got
5379           = target->got_section(symtab, layout);
5380         if (!gsym->final_value_is_known()
5381             && (gsym->is_from_dynobj()
5382                 || gsym->is_undefined()
5383                 || gsym->is_preemptible()))
5384           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5385                                    target->rela_dyn_section(layout),
5386                                    elfcpp::R_POWERPC_DTPREL);
5387         else
5388           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5389       }
5390       break;
5391
5392     case elfcpp::R_POWERPC_GOT_TPREL16:
5393     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5394     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5395     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5396       {
5397         const bool final = gsym->final_value_is_known();
5398         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5399         if (tls_type == tls::TLSOPT_NONE)
5400           {
5401             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5402               {
5403                 Output_data_got_powerpc<size, big_endian>* got
5404                   = target->got_section(symtab, layout);
5405                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5406                 if (gsym->is_undefined()
5407                     || gsym->is_from_dynobj())
5408                   {
5409                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5410                                              elfcpp::R_POWERPC_TPREL);
5411                   }
5412                 else
5413                   {
5414                     unsigned int off = got->add_constant(0);
5415                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5416                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5417                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5418                                                            got, off, 0);
5419                   }
5420               }
5421           }
5422         else if (tls_type == tls::TLSOPT_TO_LE)
5423           {
5424             // no GOT relocs needed for Local Exec.
5425           }
5426         else
5427           gold_unreachable();
5428       }
5429       break;
5430
5431     default:
5432       unsupported_reloc_global(object, r_type, gsym);
5433       break;
5434     }
5435
5436   switch (r_type)
5437     {
5438     case elfcpp::R_POWERPC_GOT_TLSLD16:
5439     case elfcpp::R_POWERPC_GOT_TLSGD16:
5440     case elfcpp::R_POWERPC_GOT_TPREL16:
5441     case elfcpp::R_POWERPC_GOT_DTPREL16:
5442     case elfcpp::R_POWERPC_GOT16:
5443     case elfcpp::R_PPC64_GOT16_DS:
5444     case elfcpp::R_PPC64_TOC16:
5445     case elfcpp::R_PPC64_TOC16_DS:
5446       ppc_object->set_has_small_toc_reloc();
5447     default:
5448       break;
5449     }
5450 }
5451
5452 // Process relocations for gc.
5453
5454 template<int size, bool big_endian>
5455 void
5456 Target_powerpc<size, big_endian>::gc_process_relocs(
5457     Symbol_table* symtab,
5458     Layout* layout,
5459     Sized_relobj_file<size, big_endian>* object,
5460     unsigned int data_shndx,
5461     unsigned int,
5462     const unsigned char* prelocs,
5463     size_t reloc_count,
5464     Output_section* output_section,
5465     bool needs_special_offset_handling,
5466     size_t local_symbol_count,
5467     const unsigned char* plocal_symbols)
5468 {
5469   typedef Target_powerpc<size, big_endian> Powerpc;
5470   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5471   Powerpc_relobj<size, big_endian>* ppc_object
5472     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5473   if (size == 64)
5474     ppc_object->set_opd_valid();
5475   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5476     {
5477       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5478       for (p = ppc_object->access_from_map()->begin();
5479            p != ppc_object->access_from_map()->end();
5480            ++p)
5481         {
5482           Address dst_off = p->first;
5483           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5484           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5485           for (s = p->second.begin(); s != p->second.end(); ++s)
5486             {
5487               Object* src_obj = s->first;
5488               unsigned int src_indx = s->second;
5489               symtab->gc()->add_reference(src_obj, src_indx,
5490                                           ppc_object, dst_indx);
5491             }
5492           p->second.clear();
5493         }
5494       ppc_object->access_from_map()->clear();
5495       ppc_object->process_gc_mark(symtab);
5496       // Don't look at .opd relocs as .opd will reference everything.
5497       return;
5498     }
5499
5500   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5501                           typename Target_powerpc::Relocatable_size_for_reloc>(
5502     symtab,
5503     layout,
5504     this,
5505     object,
5506     data_shndx,
5507     prelocs,
5508     reloc_count,
5509     output_section,
5510     needs_special_offset_handling,
5511     local_symbol_count,
5512     plocal_symbols);
5513 }
5514
5515 // Handle target specific gc actions when adding a gc reference from
5516 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5517 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5518 // section of a function descriptor.
5519
5520 template<int size, bool big_endian>
5521 void
5522 Target_powerpc<size, big_endian>::do_gc_add_reference(
5523     Symbol_table* symtab,
5524     Object* src_obj,
5525     unsigned int src_shndx,
5526     Object* dst_obj,
5527     unsigned int dst_shndx,
5528     Address dst_off) const
5529 {
5530   Powerpc_relobj<size, big_endian>* ppc_object
5531     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5532   if (size == 64
5533       && !ppc_object->is_dynamic()
5534       && dst_shndx == ppc_object->opd_shndx())
5535     {
5536       if (ppc_object->opd_valid())
5537         {
5538           dst_shndx = ppc_object->get_opd_ent(dst_off);
5539           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5540         }
5541       else
5542         {
5543           // If we haven't run scan_opd_relocs, we must delay
5544           // processing this function descriptor reference.
5545           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5546         }
5547     }
5548 }
5549
5550 // Add any special sections for this symbol to the gc work list.
5551 // For powerpc64, this adds the code section of a function
5552 // descriptor.
5553
5554 template<int size, bool big_endian>
5555 void
5556 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5557     Symbol_table* symtab,
5558     Symbol* sym) const
5559 {
5560   if (size == 64)
5561     {
5562       Powerpc_relobj<size, big_endian>* ppc_object
5563         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5564       bool is_ordinary;
5565       unsigned int shndx = sym->shndx(&is_ordinary);
5566       if (is_ordinary && shndx == ppc_object->opd_shndx())
5567         {
5568           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5569           Address dst_off = gsym->value();
5570           if (ppc_object->opd_valid())
5571             {
5572               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5573               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5574             }
5575           else
5576             ppc_object->add_gc_mark(dst_off);
5577         }
5578     }
5579 }
5580
5581 // Scan relocations for a section.
5582
5583 template<int size, bool big_endian>
5584 void
5585 Target_powerpc<size, big_endian>::scan_relocs(
5586     Symbol_table* symtab,
5587     Layout* layout,
5588     Sized_relobj_file<size, big_endian>* object,
5589     unsigned int data_shndx,
5590     unsigned int sh_type,
5591     const unsigned char* prelocs,
5592     size_t reloc_count,
5593     Output_section* output_section,
5594     bool needs_special_offset_handling,
5595     size_t local_symbol_count,
5596     const unsigned char* plocal_symbols)
5597 {
5598   typedef Target_powerpc<size, big_endian> Powerpc;
5599   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5600
5601   if (sh_type == elfcpp::SHT_REL)
5602     {
5603       gold_error(_("%s: unsupported REL reloc section"),
5604                  object->name().c_str());
5605       return;
5606     }
5607
5608   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5609     symtab,
5610     layout,
5611     this,
5612     object,
5613     data_shndx,
5614     prelocs,
5615     reloc_count,
5616     output_section,
5617     needs_special_offset_handling,
5618     local_symbol_count,
5619     plocal_symbols);
5620 }
5621
5622 // Functor class for processing the global symbol table.
5623 // Removes symbols defined on discarded opd entries.
5624
5625 template<bool big_endian>
5626 class Global_symbol_visitor_opd
5627 {
5628  public:
5629   Global_symbol_visitor_opd()
5630   { }
5631
5632   void
5633   operator()(Sized_symbol<64>* sym)
5634   {
5635     if (sym->has_symtab_index()
5636         || sym->source() != Symbol::FROM_OBJECT
5637         || !sym->in_real_elf())
5638       return;
5639
5640     Powerpc_relobj<64, big_endian>* symobj
5641       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5642     if (symobj->is_dynamic()
5643         || symobj->opd_shndx() == 0)
5644       return;
5645
5646     bool is_ordinary;
5647     unsigned int shndx = sym->shndx(&is_ordinary);
5648     if (shndx == symobj->opd_shndx()
5649         && symobj->get_opd_discard(sym->value()))
5650       sym->set_symtab_index(-1U);
5651   }
5652 };
5653
5654 template<int size, bool big_endian>
5655 void
5656 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5657     Layout* layout,
5658     Symbol_table* symtab)
5659 {
5660   if (size == 64)
5661     {
5662       Output_data_save_res<64, big_endian>* savres
5663         = new Output_data_save_res<64, big_endian>(symtab);
5664       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5665                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5666                                       savres, ORDER_TEXT, false);
5667     }
5668 }
5669
5670 // Sort linker created .got section first (for the header), then input
5671 // sections belonging to files using small model code.
5672
5673 template<bool big_endian>
5674 class Sort_toc_sections
5675 {
5676  public:
5677   bool
5678   operator()(const Output_section::Input_section& is1,
5679              const Output_section::Input_section& is2) const
5680   {
5681     if (!is1.is_input_section() && is2.is_input_section())
5682       return true;
5683     bool small1
5684       = (is1.is_input_section()
5685          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
5686              ->has_small_toc_reloc()));
5687     bool small2
5688       = (is2.is_input_section()
5689          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
5690              ->has_small_toc_reloc()));
5691     return small1 && !small2;
5692   }
5693 };
5694
5695 // Finalize the sections.
5696
5697 template<int size, bool big_endian>
5698 void
5699 Target_powerpc<size, big_endian>::do_finalize_sections(
5700     Layout* layout,
5701     const Input_objects*,
5702     Symbol_table* symtab)
5703 {
5704   if (parameters->doing_static_link())
5705     {
5706       // At least some versions of glibc elf-init.o have a strong
5707       // reference to __rela_iplt marker syms.  A weak ref would be
5708       // better..
5709       if (this->iplt_ != NULL)
5710         {
5711           Reloc_section* rel = this->iplt_->rel_plt();
5712           symtab->define_in_output_data("__rela_iplt_start", NULL,
5713                                         Symbol_table::PREDEFINED, rel, 0, 0,
5714                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5715                                         elfcpp::STV_HIDDEN, 0, false, true);
5716           symtab->define_in_output_data("__rela_iplt_end", NULL,
5717                                         Symbol_table::PREDEFINED, rel, 0, 0,
5718                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5719                                         elfcpp::STV_HIDDEN, 0, true, true);
5720         }
5721       else
5722         {
5723           symtab->define_as_constant("__rela_iplt_start", NULL,
5724                                      Symbol_table::PREDEFINED, 0, 0,
5725                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5726                                      elfcpp::STV_HIDDEN, 0, true, false);
5727           symtab->define_as_constant("__rela_iplt_end", NULL,
5728                                      Symbol_table::PREDEFINED, 0, 0,
5729                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5730                                      elfcpp::STV_HIDDEN, 0, true, false);
5731         }
5732     }
5733
5734   if (size == 64)
5735     {
5736       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
5737       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
5738
5739       if (!parameters->options().relocatable())
5740         {
5741           this->define_save_restore_funcs(layout, symtab);
5742
5743           // Annoyingly, we need to make these sections now whether or
5744           // not we need them.  If we delay until do_relax then we
5745           // need to mess with the relaxation machinery checkpointing.
5746           this->got_section(symtab, layout);
5747           this->make_brlt_section(layout);
5748
5749           if (parameters->options().toc_sort())
5750             {
5751               Output_section* os = this->got_->output_section();
5752               if (os != NULL && os->input_sections().size() > 1)
5753                 std::stable_sort(os->input_sections().begin(),
5754                                  os->input_sections().end(),
5755                                  Sort_toc_sections<big_endian>());
5756             }
5757         }
5758     }
5759
5760   // Fill in some more dynamic tags.
5761   Output_data_dynamic* odyn = layout->dynamic_data();
5762   if (odyn != NULL)
5763     {
5764       const Reloc_section* rel_plt = (this->plt_ == NULL
5765                                       ? NULL
5766                                       : this->plt_->rel_plt());
5767       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
5768                                       this->rela_dyn_, true, size == 32);
5769
5770       if (size == 32)
5771         {
5772           if (this->got_ != NULL)
5773             {
5774               this->got_->finalize_data_size();
5775               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
5776                                             this->got_, this->got_->g_o_t());
5777             }
5778         }
5779       else
5780         {
5781           if (this->glink_ != NULL)
5782             {
5783               this->glink_->finalize_data_size();
5784               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
5785                                             this->glink_,
5786                                             (this->glink_->pltresolve_size
5787                                              - 32));
5788             }
5789         }
5790     }
5791
5792   // Emit any relocs we saved in an attempt to avoid generating COPY
5793   // relocs.
5794   if (this->copy_relocs_.any_saved_relocs())
5795     this->copy_relocs_.emit(this->rela_dyn_section(layout));
5796 }
5797
5798 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5799 // reloc.
5800
5801 static bool
5802 ok_lo_toc_insn(uint32_t insn)
5803 {
5804   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
5805           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5806           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5807           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5808           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5809           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5810           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5811           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5812           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5813           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5814           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5815           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5816           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5817           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5818           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
5819               && (insn & 3) != 1)
5820           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
5821               && ((insn & 3) == 0 || (insn & 3) == 3))
5822           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
5823 }
5824
5825 // Return the value to use for a branch relocation.
5826
5827 template<int size, bool big_endian>
5828 typename Target_powerpc<size, big_endian>::Address
5829 Target_powerpc<size, big_endian>::symval_for_branch(
5830     Address value,
5831     const Sized_symbol<size>* gsym,
5832     Powerpc_relobj<size, big_endian>* object,
5833     unsigned int *dest_shndx)
5834 {
5835   *dest_shndx = 0;
5836   if (size == 32)
5837     return value;
5838
5839   // If the symbol is defined in an opd section, ie. is a function
5840   // descriptor, use the function descriptor code entry address
5841   Powerpc_relobj<size, big_endian>* symobj = object;
5842   if (gsym != NULL
5843       && gsym->source() != Symbol::FROM_OBJECT)
5844     return value;
5845   if (gsym != NULL)
5846     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
5847   unsigned int shndx = symobj->opd_shndx();
5848   if (shndx == 0)
5849     return value;
5850   Address opd_addr = symobj->get_output_section_offset(shndx);
5851   gold_assert(opd_addr != invalid_address);
5852   opd_addr += symobj->output_section(shndx)->address();
5853   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
5854     {
5855       Address sec_off;
5856       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
5857       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
5858       gold_assert(sec_addr != invalid_address);
5859       sec_addr += symobj->output_section(*dest_shndx)->address();
5860       value = sec_addr + sec_off;
5861     }
5862   return value;
5863 }
5864
5865 // Perform a relocation.
5866
5867 template<int size, bool big_endian>
5868 inline bool
5869 Target_powerpc<size, big_endian>::Relocate::relocate(
5870     const Relocate_info<size, big_endian>* relinfo,
5871     Target_powerpc* target,
5872     Output_section* os,
5873     size_t relnum,
5874     const elfcpp::Rela<size, big_endian>& rela,
5875     unsigned int r_type,
5876     const Sized_symbol<size>* gsym,
5877     const Symbol_value<size>* psymval,
5878     unsigned char* view,
5879     Address address,
5880     section_size_type view_size)
5881 {
5882   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
5883     {
5884     case Track_tls::NOT_EXPECTED:
5885       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5886                              _("__tls_get_addr call lacks marker reloc"));
5887       break;
5888     case Track_tls::EXPECTED:
5889       // We have already complained.
5890       break;
5891     case Track_tls::SKIP:
5892       return true;
5893     case Track_tls::NORMAL:
5894       break;
5895     }
5896
5897   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
5898   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
5899   Powerpc_relobj<size, big_endian>* const object
5900     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
5901   Address value = 0;
5902   bool has_plt_value = false;
5903   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5904   if (gsym != NULL
5905       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
5906       : object->local_has_plt_offset(r_sym))
5907     {
5908       Stub_table<size, big_endian>* stub_table
5909         = object->stub_table(relinfo->data_shndx);
5910       if (stub_table == NULL)
5911         {
5912           // This is a ref from a data section to an ifunc symbol.
5913           if (target->stub_tables().size() != 0)
5914             stub_table = target->stub_tables()[0];
5915         }
5916       gold_assert(stub_table != NULL);
5917       Address off;
5918       if (gsym != NULL)
5919         off = stub_table->find_plt_call_entry(object, gsym, r_type,
5920                                               rela.get_r_addend());
5921       else
5922         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
5923                                               rela.get_r_addend());
5924       gold_assert(off != invalid_address);
5925       value = stub_table->stub_address() + off;
5926       has_plt_value = true;
5927     }
5928
5929   if (r_type == elfcpp::R_POWERPC_GOT16
5930       || r_type == elfcpp::R_POWERPC_GOT16_LO
5931       || r_type == elfcpp::R_POWERPC_GOT16_HI
5932       || r_type == elfcpp::R_POWERPC_GOT16_HA
5933       || r_type == elfcpp::R_PPC64_GOT16_DS
5934       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
5935     {
5936       if (gsym != NULL)
5937         {
5938           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5939           value = gsym->got_offset(GOT_TYPE_STANDARD);
5940         }
5941       else
5942         {
5943           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5944           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5945           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
5946         }
5947       value -= target->got_section()->got_base_offset(object);
5948     }
5949   else if (r_type == elfcpp::R_PPC64_TOC)
5950     {
5951       value = (target->got_section()->output_section()->address()
5952                + object->toc_base_offset());
5953     }
5954   else if (gsym != NULL
5955            && (r_type == elfcpp::R_POWERPC_REL24
5956                || r_type == elfcpp::R_PPC_PLTREL24)
5957            && has_plt_value)
5958     {
5959       if (size == 64)
5960         {
5961           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5962           Valtype* wv = reinterpret_cast<Valtype*>(view);
5963           bool can_plt_call = false;
5964           if (rela.get_r_offset() + 8 <= view_size)
5965             {
5966               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
5967               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
5968               if ((insn & 1) != 0
5969                   && (insn2 == nop
5970                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
5971                 {
5972                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
5973                   can_plt_call = true;
5974                 }
5975             }
5976           if (!can_plt_call)
5977             {
5978               // If we don't have a branch and link followed by a nop,
5979               // we can't go via the plt because there is no place to
5980               // put a toc restoring instruction.
5981               // Unless we know we won't be returning.
5982               if (strcmp(gsym->name(), "__libc_start_main") == 0)
5983                 can_plt_call = true;
5984             }
5985           if (!can_plt_call)
5986             {
5987               // This is not an error in one special case: A self
5988               // call.  It isn't possible to cheaply verify we have
5989               // such a call so just check for a call to the same
5990               // section.
5991               bool ok = false;
5992               Address code = value;
5993               if (gsym->source() == Symbol::FROM_OBJECT
5994                   && gsym->object() == object)
5995                 {
5996                   Address addend = rela.get_r_addend();
5997                   unsigned int dest_shndx;
5998                   Address opdent = psymval->value(object, addend);
5999                   code = target->symval_for_branch(opdent, gsym, object,
6000                                                    &dest_shndx);
6001                   bool is_ordinary;
6002                   if (dest_shndx == 0)
6003                     dest_shndx = gsym->shndx(&is_ordinary);
6004                   ok = dest_shndx == relinfo->data_shndx;
6005                 }
6006               if (!ok)
6007                 {
6008                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6009                                          _("call lacks nop, can't restore toc; "
6010                                            "recompile with -fPIC"));
6011                   value = code;
6012                 }
6013             }
6014         }
6015     }
6016   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6017            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6018            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6019            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6020     {
6021       // First instruction of a global dynamic sequence, arg setup insn.
6022       const bool final = gsym == NULL || gsym->final_value_is_known();
6023       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6024       enum Got_type got_type = GOT_TYPE_STANDARD;
6025       if (tls_type == tls::TLSOPT_NONE)
6026         got_type = GOT_TYPE_TLSGD;
6027       else if (tls_type == tls::TLSOPT_TO_IE)
6028         got_type = GOT_TYPE_TPREL;
6029       if (got_type != GOT_TYPE_STANDARD)
6030         {
6031           if (gsym != NULL)
6032             {
6033               gold_assert(gsym->has_got_offset(got_type));
6034               value = gsym->got_offset(got_type);
6035             }
6036           else
6037             {
6038               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6039               gold_assert(object->local_has_got_offset(r_sym, got_type));
6040               value = object->local_got_offset(r_sym, got_type);
6041             }
6042           value -= target->got_section()->got_base_offset(object);
6043         }
6044       if (tls_type == tls::TLSOPT_TO_IE)
6045         {
6046           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6047               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6048             {
6049               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6050               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6051               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6052               if (size == 32)
6053                 insn |= 32 << 26; // lwz
6054               else
6055                 insn |= 58 << 26; // ld
6056               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6057             }
6058           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6059                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6060         }
6061       else if (tls_type == tls::TLSOPT_TO_LE)
6062         {
6063           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6064               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6065             {
6066               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6067               Insn insn = addis_3_13;
6068               if (size == 32)
6069                 insn = addis_3_2;
6070               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6071               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6072               value = psymval->value(object, rela.get_r_addend());
6073             }
6074           else
6075             {
6076               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6077               Insn insn = nop;
6078               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6079               r_type = elfcpp::R_POWERPC_NONE;
6080             }
6081         }
6082     }
6083   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6084            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6085            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6086            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6087     {
6088       // First instruction of a local dynamic sequence, arg setup insn.
6089       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6090       if (tls_type == tls::TLSOPT_NONE)
6091         {
6092           value = target->tlsld_got_offset();
6093           value -= target->got_section()->got_base_offset(object);
6094         }
6095       else
6096         {
6097           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6098           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6099               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6100             {
6101               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6102               Insn insn = addis_3_13;
6103               if (size == 32)
6104                 insn = addis_3_2;
6105               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6106               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6107               value = dtp_offset;
6108             }
6109           else
6110             {
6111               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6112               Insn insn = nop;
6113               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6114               r_type = elfcpp::R_POWERPC_NONE;
6115             }
6116         }
6117     }
6118   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6119            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6120            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6121            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6122     {
6123       // Accesses relative to a local dynamic sequence address,
6124       // no optimisation here.
6125       if (gsym != NULL)
6126         {
6127           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6128           value = gsym->got_offset(GOT_TYPE_DTPREL);
6129         }
6130       else
6131         {
6132           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6133           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6134           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6135         }
6136       value -= target->got_section()->got_base_offset(object);
6137     }
6138   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6139            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6140            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6141            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6142     {
6143       // First instruction of initial exec sequence.
6144       const bool final = gsym == NULL || gsym->final_value_is_known();
6145       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6146       if (tls_type == tls::TLSOPT_NONE)
6147         {
6148           if (gsym != NULL)
6149             {
6150               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6151               value = gsym->got_offset(GOT_TYPE_TPREL);
6152             }
6153           else
6154             {
6155               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6156               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6157               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6158             }
6159           value -= target->got_section()->got_base_offset(object);
6160         }
6161       else
6162         {
6163           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6164           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6165               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6166             {
6167               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6168               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6169               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6170               if (size == 32)
6171                 insn |= addis_0_2;
6172               else
6173                 insn |= addis_0_13;
6174               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6175               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6176               value = psymval->value(object, rela.get_r_addend());
6177             }
6178           else
6179             {
6180               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6181               Insn insn = nop;
6182               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6183               r_type = elfcpp::R_POWERPC_NONE;
6184             }
6185         }
6186     }
6187   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6188            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6189     {
6190       // Second instruction of a global dynamic sequence,
6191       // the __tls_get_addr call
6192       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6193       const bool final = gsym == NULL || gsym->final_value_is_known();
6194       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6195       if (tls_type != tls::TLSOPT_NONE)
6196         {
6197           if (tls_type == tls::TLSOPT_TO_IE)
6198             {
6199               Insn* iview = reinterpret_cast<Insn*>(view);
6200               Insn insn = add_3_3_13;
6201               if (size == 32)
6202                 insn = add_3_3_2;
6203               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6204               r_type = elfcpp::R_POWERPC_NONE;
6205             }
6206           else
6207             {
6208               Insn* iview = reinterpret_cast<Insn*>(view);
6209               Insn insn = addi_3_3;
6210               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6211               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6212               view += 2 * big_endian;
6213               value = psymval->value(object, rela.get_r_addend());
6214             }
6215           this->skip_next_tls_get_addr_call();
6216         }
6217     }
6218   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6219            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6220     {
6221       // Second instruction of a local dynamic sequence,
6222       // the __tls_get_addr call
6223       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6224       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6225       if (tls_type == tls::TLSOPT_TO_LE)
6226         {
6227           Insn* iview = reinterpret_cast<Insn*>(view);
6228           Insn insn = addi_3_3;
6229           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6230           this->skip_next_tls_get_addr_call();
6231           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6232           view += 2 * big_endian;
6233           value = dtp_offset;
6234         }
6235     }
6236   else if (r_type == elfcpp::R_POWERPC_TLS)
6237     {
6238       // Second instruction of an initial exec sequence
6239       const bool final = gsym == NULL || gsym->final_value_is_known();
6240       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6241       if (tls_type == tls::TLSOPT_TO_LE)
6242         {
6243           Insn* iview = reinterpret_cast<Insn*>(view);
6244           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6245           unsigned int reg = size == 32 ? 2 : 13;
6246           insn = at_tls_transform(insn, reg);
6247           gold_assert(insn != 0);
6248           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6249           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6250           view += 2 * big_endian;
6251           value = psymval->value(object, rela.get_r_addend());
6252         }
6253     }
6254   else if (!has_plt_value)
6255     {
6256       Address addend = 0;
6257       unsigned int dest_shndx;
6258       if (r_type != elfcpp::R_PPC_PLTREL24)
6259         addend = rela.get_r_addend();
6260       value = psymval->value(object, addend);
6261       if (size == 64 && is_branch_reloc(r_type))
6262         value = target->symval_for_branch(value, gsym, object, &dest_shndx);
6263       unsigned int max_branch_offset = 0;
6264       if (r_type == elfcpp::R_POWERPC_REL24
6265           || r_type == elfcpp::R_PPC_PLTREL24
6266           || r_type == elfcpp::R_PPC_LOCAL24PC)
6267         max_branch_offset = 1 << 25;
6268       else if (r_type == elfcpp::R_POWERPC_REL14
6269                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6270                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6271         max_branch_offset = 1 << 15;
6272       if (max_branch_offset != 0
6273           && value - address + max_branch_offset >= 2 * max_branch_offset)
6274         {
6275           Stub_table<size, big_endian>* stub_table
6276             = object->stub_table(relinfo->data_shndx);
6277           gold_assert(stub_table != NULL);
6278           Address off = stub_table->find_long_branch_entry(object, value);
6279           if (off != invalid_address)
6280             value = stub_table->stub_address() + stub_table->plt_size() + off;
6281         }
6282     }
6283
6284   switch (r_type)
6285     {
6286     case elfcpp::R_PPC64_REL64:
6287     case elfcpp::R_POWERPC_REL32:
6288     case elfcpp::R_POWERPC_REL24:
6289     case elfcpp::R_PPC_PLTREL24:
6290     case elfcpp::R_PPC_LOCAL24PC:
6291     case elfcpp::R_POWERPC_REL16:
6292     case elfcpp::R_POWERPC_REL16_LO:
6293     case elfcpp::R_POWERPC_REL16_HI:
6294     case elfcpp::R_POWERPC_REL16_HA:
6295     case elfcpp::R_POWERPC_REL14:
6296     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6297     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6298       value -= address;
6299       break;
6300
6301     case elfcpp::R_PPC64_TOC16:
6302     case elfcpp::R_PPC64_TOC16_LO:
6303     case elfcpp::R_PPC64_TOC16_HI:
6304     case elfcpp::R_PPC64_TOC16_HA:
6305     case elfcpp::R_PPC64_TOC16_DS:
6306     case elfcpp::R_PPC64_TOC16_LO_DS:
6307       // Subtract the TOC base address.
6308       value -= (target->got_section()->output_section()->address()
6309                 + object->toc_base_offset());
6310       break;
6311
6312     case elfcpp::R_POWERPC_SECTOFF:
6313     case elfcpp::R_POWERPC_SECTOFF_LO:
6314     case elfcpp::R_POWERPC_SECTOFF_HI:
6315     case elfcpp::R_POWERPC_SECTOFF_HA:
6316     case elfcpp::R_PPC64_SECTOFF_DS:
6317     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6318       if (os != NULL)
6319         value -= os->address();
6320       break;
6321
6322     case elfcpp::R_PPC64_TPREL16_DS:
6323     case elfcpp::R_PPC64_TPREL16_LO_DS:
6324       if (size != 64)
6325         // R_PPC_TLSGD and R_PPC_TLSLD
6326         break;
6327     case elfcpp::R_POWERPC_TPREL16:
6328     case elfcpp::R_POWERPC_TPREL16_LO:
6329     case elfcpp::R_POWERPC_TPREL16_HI:
6330     case elfcpp::R_POWERPC_TPREL16_HA:
6331     case elfcpp::R_POWERPC_TPREL:
6332     case elfcpp::R_PPC64_TPREL16_HIGHER:
6333     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6334     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6335     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6336       // tls symbol values are relative to tls_segment()->vaddr()
6337       value -= tp_offset;
6338       break;
6339
6340     case elfcpp::R_PPC64_DTPREL16_DS:
6341     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6342     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6343     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6344     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6345     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6346       if (size != 64)
6347         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6348         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6349         break;
6350     case elfcpp::R_POWERPC_DTPREL16:
6351     case elfcpp::R_POWERPC_DTPREL16_LO:
6352     case elfcpp::R_POWERPC_DTPREL16_HI:
6353     case elfcpp::R_POWERPC_DTPREL16_HA:
6354     case elfcpp::R_POWERPC_DTPREL:
6355       // tls symbol values are relative to tls_segment()->vaddr()
6356       value -= dtp_offset;
6357       break;
6358
6359     default:
6360       break;
6361     }
6362
6363   Insn branch_bit = 0;
6364   switch (r_type)
6365     {
6366     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6367     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6368       branch_bit = 1 << 21;
6369     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6370     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6371       {
6372         Insn* iview = reinterpret_cast<Insn*>(view);
6373         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6374         insn &= ~(1 << 21);
6375         insn |= branch_bit;
6376         if (this->is_isa_v2)
6377           {
6378             // Set 'a' bit.  This is 0b00010 in BO field for branch
6379             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6380             // for branch on CTR insns (BO == 1a00t or 1a01t).
6381             if ((insn & (0x14 << 21)) == (0x04 << 21))
6382               insn |= 0x02 << 21;
6383             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6384               insn |= 0x08 << 21;
6385             else
6386               break;
6387           }
6388         else
6389           {
6390             // Invert 'y' bit if not the default.
6391             if (static_cast<Signed_address>(value) < 0)
6392               insn ^= 1 << 21;
6393           }
6394         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6395       }
6396       break;
6397
6398     default:
6399       break;
6400     }
6401
6402   if (size == 64)
6403     {
6404       // Multi-instruction sequences that access the TOC can be
6405       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6406       // to             nop;           addi rb,r2,x;
6407       switch (r_type)
6408         {
6409         default:
6410           break;
6411
6412         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6413         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6414         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6415         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6416         case elfcpp::R_POWERPC_GOT16_HA:
6417         case elfcpp::R_PPC64_TOC16_HA:
6418           if (parameters->options().toc_optimize())
6419             {
6420               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6421               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6422               if ((insn & ((0x3f << 26) | 0x1f << 16))
6423                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6424                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6425                                        _("toc optimization is not supported "
6426                                          "for %#08x instruction"), insn);
6427               else if (value + 0x8000 < 0x10000)
6428                 {
6429                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6430                   return true;
6431                 }
6432             }
6433           break;
6434
6435         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6436         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6437         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6438         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6439         case elfcpp::R_POWERPC_GOT16_LO:
6440         case elfcpp::R_PPC64_GOT16_LO_DS:
6441         case elfcpp::R_PPC64_TOC16_LO:
6442         case elfcpp::R_PPC64_TOC16_LO_DS:
6443           if (parameters->options().toc_optimize())
6444             {
6445               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6446               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6447               if (!ok_lo_toc_insn(insn))
6448                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6449                                        _("toc optimization is not supported "
6450                                          "for %#08x instruction"), insn);
6451               else if (value + 0x8000 < 0x10000)
6452                 {
6453                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6454                     {
6455                       // Transform addic to addi when we change reg.
6456                       insn &= ~((0x3f << 26) | (0x1f << 16));
6457                       insn |= (14u << 26) | (2 << 16);
6458                     }
6459                   else
6460                     {
6461                       insn &= ~(0x1f << 16);
6462                       insn |= 2 << 16;
6463                     }
6464                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6465                 }
6466             }
6467           break;
6468         }
6469     }
6470
6471   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6472   switch (r_type)
6473     {
6474     case elfcpp::R_POWERPC_ADDR32:
6475     case elfcpp::R_POWERPC_UADDR32:
6476       if (size == 64)
6477         overflow = Reloc::CHECK_BITFIELD;
6478       break;
6479
6480     case elfcpp::R_POWERPC_REL32:
6481       if (size == 64)
6482         overflow = Reloc::CHECK_SIGNED;
6483       break;
6484
6485     case elfcpp::R_POWERPC_ADDR24:
6486     case elfcpp::R_POWERPC_ADDR16:
6487     case elfcpp::R_POWERPC_UADDR16:
6488     case elfcpp::R_PPC64_ADDR16_DS:
6489     case elfcpp::R_POWERPC_ADDR14:
6490     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6491     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6492       overflow = Reloc::CHECK_BITFIELD;
6493       break;
6494
6495     case elfcpp::R_POWERPC_REL24:
6496     case elfcpp::R_PPC_PLTREL24:
6497     case elfcpp::R_PPC_LOCAL24PC:
6498     case elfcpp::R_POWERPC_REL16:
6499     case elfcpp::R_PPC64_TOC16:
6500     case elfcpp::R_POWERPC_GOT16:
6501     case elfcpp::R_POWERPC_SECTOFF:
6502     case elfcpp::R_POWERPC_TPREL16:
6503     case elfcpp::R_POWERPC_DTPREL16:
6504     case elfcpp::R_PPC64_TPREL16_DS:
6505     case elfcpp::R_PPC64_DTPREL16_DS:
6506     case elfcpp::R_PPC64_TOC16_DS:
6507     case elfcpp::R_PPC64_GOT16_DS:
6508     case elfcpp::R_PPC64_SECTOFF_DS:
6509     case elfcpp::R_POWERPC_REL14:
6510     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6511     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6512     case elfcpp::R_POWERPC_GOT_TLSGD16:
6513     case elfcpp::R_POWERPC_GOT_TLSLD16:
6514     case elfcpp::R_POWERPC_GOT_TPREL16:
6515     case elfcpp::R_POWERPC_GOT_DTPREL16:
6516       overflow = Reloc::CHECK_SIGNED;
6517       break;
6518     }
6519
6520   typename Powerpc_relocate_functions<size, big_endian>::Status status
6521     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6522   switch (r_type)
6523     {
6524     case elfcpp::R_POWERPC_NONE:
6525     case elfcpp::R_POWERPC_TLS:
6526     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6527     case elfcpp::R_POWERPC_GNU_VTENTRY:
6528     case elfcpp::R_PPC_EMB_MRKREF:
6529       break;
6530
6531     case elfcpp::R_PPC64_ADDR64:
6532     case elfcpp::R_PPC64_REL64:
6533     case elfcpp::R_PPC64_TOC:
6534       Reloc::addr64(view, value);
6535       break;
6536
6537     case elfcpp::R_POWERPC_TPREL:
6538     case elfcpp::R_POWERPC_DTPREL:
6539       if (size == 64)
6540         Reloc::addr64(view, value);
6541       else
6542         status = Reloc::addr32(view, value, overflow);
6543       break;
6544
6545     case elfcpp::R_PPC64_UADDR64:
6546       Reloc::addr64_u(view, value);
6547       break;
6548
6549     case elfcpp::R_POWERPC_ADDR32:
6550       status = Reloc::addr32(view, value, overflow);
6551       break;
6552
6553     case elfcpp::R_POWERPC_REL32:
6554     case elfcpp::R_POWERPC_UADDR32:
6555       status = Reloc::addr32_u(view, value, overflow);
6556       break;
6557
6558     case elfcpp::R_POWERPC_ADDR24:
6559     case elfcpp::R_POWERPC_REL24:
6560     case elfcpp::R_PPC_PLTREL24:
6561     case elfcpp::R_PPC_LOCAL24PC:
6562       status = Reloc::addr24(view, value, overflow);
6563       break;
6564
6565     case elfcpp::R_POWERPC_GOT_DTPREL16:
6566     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6567       if (size == 64)
6568         {
6569           status = Reloc::addr16_ds(view, value, overflow);
6570           break;
6571         }
6572     case elfcpp::R_POWERPC_ADDR16:
6573     case elfcpp::R_POWERPC_REL16:
6574     case elfcpp::R_PPC64_TOC16:
6575     case elfcpp::R_POWERPC_GOT16:
6576     case elfcpp::R_POWERPC_SECTOFF:
6577     case elfcpp::R_POWERPC_TPREL16:
6578     case elfcpp::R_POWERPC_DTPREL16:
6579     case elfcpp::R_POWERPC_GOT_TLSGD16:
6580     case elfcpp::R_POWERPC_GOT_TLSLD16:
6581     case elfcpp::R_POWERPC_GOT_TPREL16:
6582     case elfcpp::R_POWERPC_ADDR16_LO:
6583     case elfcpp::R_POWERPC_REL16_LO:
6584     case elfcpp::R_PPC64_TOC16_LO:
6585     case elfcpp::R_POWERPC_GOT16_LO:
6586     case elfcpp::R_POWERPC_SECTOFF_LO:
6587     case elfcpp::R_POWERPC_TPREL16_LO:
6588     case elfcpp::R_POWERPC_DTPREL16_LO:
6589     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6590     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6591     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6592       status = Reloc::addr16(view, value, overflow);
6593       break;
6594
6595     case elfcpp::R_POWERPC_UADDR16:
6596       status = Reloc::addr16_u(view, value, overflow);
6597       break;
6598
6599     case elfcpp::R_POWERPC_ADDR16_HI:
6600     case elfcpp::R_POWERPC_REL16_HI:
6601     case elfcpp::R_PPC64_TOC16_HI:
6602     case elfcpp::R_POWERPC_GOT16_HI:
6603     case elfcpp::R_POWERPC_SECTOFF_HI:
6604     case elfcpp::R_POWERPC_TPREL16_HI:
6605     case elfcpp::R_POWERPC_DTPREL16_HI:
6606     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6607     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6608     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6609     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6610       Reloc::addr16_hi(view, value);
6611       break;
6612
6613     case elfcpp::R_POWERPC_ADDR16_HA:
6614     case elfcpp::R_POWERPC_REL16_HA:
6615     case elfcpp::R_PPC64_TOC16_HA:
6616     case elfcpp::R_POWERPC_GOT16_HA:
6617     case elfcpp::R_POWERPC_SECTOFF_HA:
6618     case elfcpp::R_POWERPC_TPREL16_HA:
6619     case elfcpp::R_POWERPC_DTPREL16_HA:
6620     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6621     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6622     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6623     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6624       Reloc::addr16_ha(view, value);
6625       break;
6626
6627     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6628       if (size == 32)
6629         // R_PPC_EMB_NADDR16_LO
6630         goto unsupp;
6631     case elfcpp::R_PPC64_ADDR16_HIGHER:
6632     case elfcpp::R_PPC64_TPREL16_HIGHER:
6633       Reloc::addr16_hi2(view, value);
6634       break;
6635
6636     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6637       if (size == 32)
6638         // R_PPC_EMB_NADDR16_HI
6639         goto unsupp;
6640     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6641     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6642       Reloc::addr16_ha2(view, value);
6643       break;
6644
6645     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6646       if (size == 32)
6647         // R_PPC_EMB_NADDR16_HA
6648         goto unsupp;
6649     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6650     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6651       Reloc::addr16_hi3(view, value);
6652       break;
6653
6654     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6655       if (size == 32)
6656         // R_PPC_EMB_SDAI16
6657         goto unsupp;
6658     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6659     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6660       Reloc::addr16_ha3(view, value);
6661       break;
6662
6663     case elfcpp::R_PPC64_DTPREL16_DS:
6664     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6665       if (size == 32)
6666         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
6667         goto unsupp;
6668     case elfcpp::R_PPC64_TPREL16_DS:
6669     case elfcpp::R_PPC64_TPREL16_LO_DS:
6670       if (size == 32)
6671         // R_PPC_TLSGD, R_PPC_TLSLD
6672         break;
6673     case elfcpp::R_PPC64_ADDR16_DS:
6674     case elfcpp::R_PPC64_ADDR16_LO_DS:
6675     case elfcpp::R_PPC64_TOC16_DS:
6676     case elfcpp::R_PPC64_TOC16_LO_DS:
6677     case elfcpp::R_PPC64_GOT16_DS:
6678     case elfcpp::R_PPC64_GOT16_LO_DS:
6679     case elfcpp::R_PPC64_SECTOFF_DS:
6680     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6681       status = Reloc::addr16_ds(view, value, overflow);
6682       break;
6683
6684     case elfcpp::R_POWERPC_ADDR14:
6685     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6686     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6687     case elfcpp::R_POWERPC_REL14:
6688     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6689     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6690       status = Reloc::addr14(view, value, overflow);
6691       break;
6692
6693     case elfcpp::R_POWERPC_COPY:
6694     case elfcpp::R_POWERPC_GLOB_DAT:
6695     case elfcpp::R_POWERPC_JMP_SLOT:
6696     case elfcpp::R_POWERPC_RELATIVE:
6697     case elfcpp::R_POWERPC_DTPMOD:
6698     case elfcpp::R_PPC64_JMP_IREL:
6699     case elfcpp::R_POWERPC_IRELATIVE:
6700       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6701                              _("unexpected reloc %u in object file"),
6702                              r_type);
6703       break;
6704
6705     case elfcpp::R_PPC_EMB_SDA21:
6706       if (size == 32)
6707         goto unsupp;
6708       else
6709         {
6710           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
6711         }
6712       break;
6713
6714     case elfcpp::R_PPC_EMB_SDA2I16:
6715     case elfcpp::R_PPC_EMB_SDA2REL:
6716       if (size == 32)
6717         goto unsupp;
6718       // R_PPC64_TLSGD, R_PPC64_TLSLD
6719       break;
6720
6721     case elfcpp::R_POWERPC_PLT32:
6722     case elfcpp::R_POWERPC_PLTREL32:
6723     case elfcpp::R_POWERPC_PLT16_LO:
6724     case elfcpp::R_POWERPC_PLT16_HI:
6725     case elfcpp::R_POWERPC_PLT16_HA:
6726     case elfcpp::R_PPC_SDAREL16:
6727     case elfcpp::R_POWERPC_ADDR30:
6728     case elfcpp::R_PPC64_PLT64:
6729     case elfcpp::R_PPC64_PLTREL64:
6730     case elfcpp::R_PPC64_PLTGOT16:
6731     case elfcpp::R_PPC64_PLTGOT16_LO:
6732     case elfcpp::R_PPC64_PLTGOT16_HI:
6733     case elfcpp::R_PPC64_PLTGOT16_HA:
6734     case elfcpp::R_PPC64_PLT16_LO_DS:
6735     case elfcpp::R_PPC64_PLTGOT16_DS:
6736     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
6737     case elfcpp::R_PPC_EMB_RELSEC16:
6738     case elfcpp::R_PPC_EMB_RELST_LO:
6739     case elfcpp::R_PPC_EMB_RELST_HI:
6740     case elfcpp::R_PPC_EMB_RELST_HA:
6741     case elfcpp::R_PPC_EMB_BIT_FLD:
6742     case elfcpp::R_PPC_EMB_RELSDA:
6743     case elfcpp::R_PPC_TOC16:
6744     default:
6745     unsupp:
6746       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6747                              _("unsupported reloc %u"),
6748                              r_type);
6749       break;
6750     }
6751   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
6752     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6753                            _("relocation overflow"));
6754
6755   return true;
6756 }
6757
6758 // Relocate section data.
6759
6760 template<int size, bool big_endian>
6761 void
6762 Target_powerpc<size, big_endian>::relocate_section(
6763     const Relocate_info<size, big_endian>* relinfo,
6764     unsigned int sh_type,
6765     const unsigned char* prelocs,
6766     size_t reloc_count,
6767     Output_section* output_section,
6768     bool needs_special_offset_handling,
6769     unsigned char* view,
6770     Address address,
6771     section_size_type view_size,
6772     const Reloc_symbol_changes* reloc_symbol_changes)
6773 {
6774   typedef Target_powerpc<size, big_endian> Powerpc;
6775   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
6776   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
6777     Powerpc_comdat_behavior;
6778
6779   gold_assert(sh_type == elfcpp::SHT_RELA);
6780
6781   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
6782                          Powerpc_relocate, Powerpc_comdat_behavior>(
6783     relinfo,
6784     this,
6785     prelocs,
6786     reloc_count,
6787     output_section,
6788     needs_special_offset_handling,
6789     view,
6790     address,
6791     view_size,
6792     reloc_symbol_changes);
6793 }
6794
6795 class Powerpc_scan_relocatable_reloc
6796 {
6797 public:
6798   // Return the strategy to use for a local symbol which is not a
6799   // section symbol, given the relocation type.
6800   inline Relocatable_relocs::Reloc_strategy
6801   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
6802   {
6803     if (r_type == 0 && r_sym == 0)
6804       return Relocatable_relocs::RELOC_DISCARD;
6805     return Relocatable_relocs::RELOC_COPY;
6806   }
6807
6808   // Return the strategy to use for a local symbol which is a section
6809   // symbol, given the relocation type.
6810   inline Relocatable_relocs::Reloc_strategy
6811   local_section_strategy(unsigned int, Relobj*)
6812   {
6813     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
6814   }
6815
6816   // Return the strategy to use for a global symbol, given the
6817   // relocation type, the object, and the symbol index.
6818   inline Relocatable_relocs::Reloc_strategy
6819   global_strategy(unsigned int r_type, Relobj*, unsigned int)
6820   {
6821     if (r_type == elfcpp::R_PPC_PLTREL24)
6822       return Relocatable_relocs::RELOC_SPECIAL;
6823     return Relocatable_relocs::RELOC_COPY;
6824   }
6825 };
6826
6827 // Scan the relocs during a relocatable link.
6828
6829 template<int size, bool big_endian>
6830 void
6831 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
6832     Symbol_table* symtab,
6833     Layout* layout,
6834     Sized_relobj_file<size, big_endian>* object,
6835     unsigned int data_shndx,
6836     unsigned int sh_type,
6837     const unsigned char* prelocs,
6838     size_t reloc_count,
6839     Output_section* output_section,
6840     bool needs_special_offset_handling,
6841     size_t local_symbol_count,
6842     const unsigned char* plocal_symbols,
6843     Relocatable_relocs* rr)
6844 {
6845   gold_assert(sh_type == elfcpp::SHT_RELA);
6846
6847   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6848                                 Powerpc_scan_relocatable_reloc>(
6849     symtab,
6850     layout,
6851     object,
6852     data_shndx,
6853     prelocs,
6854     reloc_count,
6855     output_section,
6856     needs_special_offset_handling,
6857     local_symbol_count,
6858     plocal_symbols,
6859     rr);
6860 }
6861
6862 // Emit relocations for a section.
6863 // This is a modified version of the function by the same name in
6864 // target-reloc.h.  Using relocate_special_relocatable for
6865 // R_PPC_PLTREL24 would require duplication of the entire body of the
6866 // loop, so we may as well duplicate the whole thing.
6867
6868 template<int size, bool big_endian>
6869 void
6870 Target_powerpc<size, big_endian>::relocate_relocs(
6871     const Relocate_info<size, big_endian>* relinfo,
6872     unsigned int sh_type,
6873     const unsigned char* prelocs,
6874     size_t reloc_count,
6875     Output_section* output_section,
6876     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6877     const Relocatable_relocs* rr,
6878     unsigned char*,
6879     Address view_address,
6880     section_size_type,
6881     unsigned char* reloc_view,
6882     section_size_type reloc_view_size)
6883 {
6884   gold_assert(sh_type == elfcpp::SHT_RELA);
6885
6886   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
6887     Reltype;
6888   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
6889     Reltype_write;
6890   const int reloc_size
6891     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
6892
6893   Powerpc_relobj<size, big_endian>* const object
6894     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6895   const unsigned int local_count = object->local_symbol_count();
6896   unsigned int got2_shndx = object->got2_shndx();
6897   Address got2_addend = 0;
6898   if (got2_shndx != 0)
6899     {
6900       got2_addend = object->get_output_section_offset(got2_shndx);
6901       gold_assert(got2_addend != invalid_address);
6902     }
6903
6904   unsigned char* pwrite = reloc_view;
6905   bool zap_next = false;
6906   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6907     {
6908       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
6909       if (strategy == Relocatable_relocs::RELOC_DISCARD)
6910         continue;
6911
6912       Reltype reloc(prelocs);
6913       Reltype_write reloc_write(pwrite);
6914
6915       Address offset = reloc.get_r_offset();
6916       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
6917       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
6918       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
6919       const unsigned int orig_r_sym = r_sym;
6920       typename elfcpp::Elf_types<size>::Elf_Swxword addend
6921         = reloc.get_r_addend();
6922       const Symbol* gsym = NULL;
6923
6924       if (zap_next)
6925         {
6926           // We could arrange to discard these and other relocs for
6927           // tls optimised sequences in the strategy methods, but for
6928           // now do as BFD ld does.
6929           r_type = elfcpp::R_POWERPC_NONE;
6930           zap_next = false;
6931         }
6932
6933       // Get the new symbol index.
6934       if (r_sym < local_count)
6935         {
6936           switch (strategy)
6937             {
6938             case Relocatable_relocs::RELOC_COPY:
6939             case Relocatable_relocs::RELOC_SPECIAL:
6940               if (r_sym != 0)
6941                 {
6942                   r_sym = object->symtab_index(r_sym);
6943                   gold_assert(r_sym != -1U);
6944                 }
6945               break;
6946
6947             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
6948               {
6949                 // We are adjusting a section symbol.  We need to find
6950                 // the symbol table index of the section symbol for
6951                 // the output section corresponding to input section
6952                 // in which this symbol is defined.
6953                 gold_assert(r_sym < local_count);
6954                 bool is_ordinary;
6955                 unsigned int shndx =
6956                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
6957                 gold_assert(is_ordinary);
6958                 Output_section* os = object->output_section(shndx);
6959                 gold_assert(os != NULL);
6960                 gold_assert(os->needs_symtab_index());
6961                 r_sym = os->symtab_index();
6962               }
6963               break;
6964
6965             default:
6966               gold_unreachable();
6967             }
6968         }
6969       else
6970         {
6971           gsym = object->global_symbol(r_sym);
6972           gold_assert(gsym != NULL);
6973           if (gsym->is_forwarder())
6974             gsym = relinfo->symtab->resolve_forwards(gsym);
6975
6976           gold_assert(gsym->has_symtab_index());
6977           r_sym = gsym->symtab_index();
6978         }
6979
6980       // Get the new offset--the location in the output section where
6981       // this relocation should be applied.
6982       if (static_cast<Address>(offset_in_output_section) != invalid_address)
6983         offset += offset_in_output_section;
6984       else
6985         {
6986           section_offset_type sot_offset =
6987             convert_types<section_offset_type, Address>(offset);
6988           section_offset_type new_sot_offset =
6989             output_section->output_offset(object, relinfo->data_shndx,
6990                                           sot_offset);
6991           gold_assert(new_sot_offset != -1);
6992           offset = new_sot_offset;
6993         }
6994
6995       // In an object file, r_offset is an offset within the section.
6996       // In an executable or dynamic object, generated by
6997       // --emit-relocs, r_offset is an absolute address.
6998       if (!parameters->options().relocatable())
6999         {
7000           offset += view_address;
7001           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7002             offset -= offset_in_output_section;
7003         }
7004
7005       // Handle the reloc addend based on the strategy.
7006       if (strategy == Relocatable_relocs::RELOC_COPY)
7007         ;
7008       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7009         {
7010           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7011           addend = psymval->value(object, addend);
7012         }
7013       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7014         {
7015           if (addend >= 32768)
7016             addend += got2_addend;
7017         }
7018       else
7019         gold_unreachable();
7020
7021       if (!parameters->options().relocatable())
7022         {
7023           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7024               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7025               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7026               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7027             {
7028               // First instruction of a global dynamic sequence,
7029               // arg setup insn.
7030               const bool final = gsym == NULL || gsym->final_value_is_known();
7031               switch (this->optimize_tls_gd(final))
7032                 {
7033                 case tls::TLSOPT_TO_IE:
7034                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7035                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7036                   break;
7037                 case tls::TLSOPT_TO_LE:
7038                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7039                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7040                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7041                   else
7042                     {
7043                       r_type = elfcpp::R_POWERPC_NONE;
7044                       offset -= 2 * big_endian;
7045                     }
7046                   break;
7047                 default:
7048                   break;
7049                 }
7050             }
7051           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7052                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7053                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7054                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7055             {
7056               // First instruction of a local dynamic sequence,
7057               // arg setup insn.
7058               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7059                 {
7060                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7061                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7062                     {
7063                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7064                       const Output_section* os = relinfo->layout->tls_segment()
7065                         ->first_section();
7066                       gold_assert(os != NULL);
7067                       gold_assert(os->needs_symtab_index());
7068                       r_sym = os->symtab_index();
7069                       addend = dtp_offset;
7070                     }
7071                   else
7072                     {
7073                       r_type = elfcpp::R_POWERPC_NONE;
7074                       offset -= 2 * big_endian;
7075                     }
7076                 }
7077             }
7078           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7079                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7080                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7081                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7082             {
7083               // First instruction of initial exec sequence.
7084               const bool final = gsym == NULL || gsym->final_value_is_known();
7085               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7086                 {
7087                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7088                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7089                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7090                   else
7091                     {
7092                       r_type = elfcpp::R_POWERPC_NONE;
7093                       offset -= 2 * big_endian;
7094                     }
7095                 }
7096             }
7097           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7098                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7099             {
7100               // Second instruction of a global dynamic sequence,
7101               // the __tls_get_addr call
7102               const bool final = gsym == NULL || gsym->final_value_is_known();
7103               switch (this->optimize_tls_gd(final))
7104                 {
7105                 case tls::TLSOPT_TO_IE:
7106                   r_type = elfcpp::R_POWERPC_NONE;
7107                   zap_next = true;
7108                   break;
7109                 case tls::TLSOPT_TO_LE:
7110                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7111                   offset += 2 * big_endian;
7112                   zap_next = true;
7113                   break;
7114                 default:
7115                   break;
7116                 }
7117             }
7118           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7119                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7120             {
7121               // Second instruction of a local dynamic sequence,
7122               // the __tls_get_addr call
7123               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7124                 {
7125                   const Output_section* os = relinfo->layout->tls_segment()
7126                     ->first_section();
7127                   gold_assert(os != NULL);
7128                   gold_assert(os->needs_symtab_index());
7129                   r_sym = os->symtab_index();
7130                   addend = dtp_offset;
7131                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7132                   offset += 2 * big_endian;
7133                   zap_next = true;
7134                 }
7135             }
7136           else if (r_type == elfcpp::R_POWERPC_TLS)
7137             {
7138               // Second instruction of an initial exec sequence
7139               const bool final = gsym == NULL || gsym->final_value_is_known();
7140               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7141                 {
7142                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7143                   offset += 2 * big_endian;
7144                 }
7145             }
7146         }
7147
7148       reloc_write.put_r_offset(offset);
7149       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7150       reloc_write.put_r_addend(addend);
7151
7152       pwrite += reloc_size;
7153     }
7154
7155   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7156               == reloc_view_size);
7157 }
7158
7159 // Return the value to use for a dynamic symbol which requires special
7160 // treatment.  This is how we support equality comparisons of function
7161 // pointers across shared library boundaries, as described in the
7162 // processor specific ABI supplement.
7163
7164 template<int size, bool big_endian>
7165 uint64_t
7166 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7167 {
7168   if (size == 32)
7169     {
7170       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7171       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7172            p != this->stub_tables_.end();
7173            ++p)
7174         {
7175           Address off = (*p)->find_plt_call_entry(gsym);
7176           if (off != invalid_address)
7177             return (*p)->stub_address() + off;
7178         }
7179     }
7180   gold_unreachable();
7181 }
7182
7183 // Return the PLT address to use for a local symbol.
7184 template<int size, bool big_endian>
7185 uint64_t
7186 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7187     const Relobj* object,
7188     unsigned int symndx) const
7189 {
7190   if (size == 32)
7191     {
7192       const Sized_relobj<size, big_endian>* relobj
7193         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7194       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7195            p != this->stub_tables_.end();
7196            ++p)
7197         {
7198           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7199                                                   symndx);
7200           if (off != invalid_address)
7201             return (*p)->stub_address() + off;
7202         }
7203     }
7204   gold_unreachable();
7205 }
7206
7207 // Return the PLT address to use for a global symbol.
7208 template<int size, bool big_endian>
7209 uint64_t
7210 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7211     const Symbol* gsym) const
7212 {
7213   if (size == 32)
7214     {
7215       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7216            p != this->stub_tables_.end();
7217            ++p)
7218         {
7219           Address off = (*p)->find_plt_call_entry(gsym);
7220           if (off != invalid_address)
7221             return (*p)->stub_address() + off;
7222         }
7223     }
7224   gold_unreachable();
7225 }
7226
7227 // Return the offset to use for the GOT_INDX'th got entry which is
7228 // for a local tls symbol specified by OBJECT, SYMNDX.
7229 template<int size, bool big_endian>
7230 int64_t
7231 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7232     const Relobj* object,
7233     unsigned int symndx,
7234     unsigned int got_indx) const
7235 {
7236   const Powerpc_relobj<size, big_endian>* ppc_object
7237     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7238   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7239     {
7240       for (Got_type got_type = GOT_TYPE_TLSGD;
7241            got_type <= GOT_TYPE_TPREL;
7242            got_type = Got_type(got_type + 1))
7243         if (ppc_object->local_has_got_offset(symndx, got_type))
7244           {
7245             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7246             if (got_type == GOT_TYPE_TLSGD)
7247               off += size / 8;
7248             if (off == got_indx * (size / 8))
7249               {
7250                 if (got_type == GOT_TYPE_TPREL)
7251                   return -tp_offset;
7252                 else
7253                   return -dtp_offset;
7254               }
7255           }
7256     }
7257   gold_unreachable();
7258 }
7259
7260 // Return the offset to use for the GOT_INDX'th got entry which is
7261 // for global tls symbol GSYM.
7262 template<int size, bool big_endian>
7263 int64_t
7264 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7265     Symbol* gsym,
7266     unsigned int got_indx) const
7267 {
7268   if (gsym->type() == elfcpp::STT_TLS)
7269     {
7270       for (Got_type got_type = GOT_TYPE_TLSGD;
7271            got_type <= GOT_TYPE_TPREL;
7272            got_type = Got_type(got_type + 1))
7273         if (gsym->has_got_offset(got_type))
7274           {
7275             unsigned int off = gsym->got_offset(got_type);
7276             if (got_type == GOT_TYPE_TLSGD)
7277               off += size / 8;
7278             if (off == got_indx * (size / 8))
7279               {
7280                 if (got_type == GOT_TYPE_TPREL)
7281                   return -tp_offset;
7282                 else
7283                   return -dtp_offset;
7284               }
7285           }
7286     }
7287   gold_unreachable();
7288 }
7289
7290 // The selector for powerpc object files.
7291
7292 template<int size, bool big_endian>
7293 class Target_selector_powerpc : public Target_selector
7294 {
7295 public:
7296   Target_selector_powerpc()
7297     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7298                       size, big_endian,
7299                       (size == 64
7300                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7301                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7302                       (size == 64
7303                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7304                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7305   { }
7306
7307   virtual Target*
7308   do_instantiate_target()
7309   { return new Target_powerpc<size, big_endian>(); }
7310 };
7311
7312 Target_selector_powerpc<32, true> target_selector_ppc32;
7313 Target_selector_powerpc<32, false> target_selector_ppc32le;
7314 Target_selector_powerpc<64, true> target_selector_ppc64;
7315 Target_selector_powerpc<64, false> target_selector_ppc64le;
7316
7317 // Instantiate these constants for -O0
7318 template<int size, bool big_endian>
7319 const int Output_data_glink<size, big_endian>::pltresolve_size;
7320 template<int size, bool big_endian>
7321 const typename Stub_table<size, big_endian>::Address
7322   Stub_table<size, big_endian>::invalid_address;
7323 template<int size, bool big_endian>
7324 const typename Target_powerpc<size, big_endian>::Address
7325   Target_powerpc<size, big_endian>::invalid_address;
7326
7327 } // End anonymous namespace.