Remove powerpc.cc copy of use_plt_offset
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   bool has_glink() const
691   { return this->glink_ != NULL; }
692
693   // Get the GOT section.
694   const Output_data_got_powerpc<size, big_endian>*
695   got_section() const
696   {
697     gold_assert(this->got_ != NULL);
698     return this->got_;
699   }
700
701   // Get the GOT section, creating it if necessary.
702   Output_data_got_powerpc<size, big_endian>*
703   got_section(Symbol_table*, Layout*);
704
705   Object*
706   do_make_elf_object(const std::string&, Input_file*, off_t,
707                      const elfcpp::Ehdr<size, big_endian>&);
708
709   // Return the number of entries in the GOT.
710   unsigned int
711   got_entry_count() const
712   {
713     if (this->got_ == NULL)
714       return 0;
715     return this->got_size() / (size / 8);
716   }
717
718   // Return the number of entries in the PLT.
719   unsigned int
720   plt_entry_count() const;
721
722   // Return the offset of the first non-reserved PLT entry.
723   unsigned int
724   first_plt_entry_offset() const
725   {
726     if (size == 32)
727       return 0;
728     if (this->abiversion() >= 2)
729       return 16;
730     return 24;
731   }
732
733   // Return the size of each PLT entry.
734   unsigned int
735   plt_entry_size() const
736   {
737     if (size == 32)
738       return 4;
739     if (this->abiversion() >= 2)
740       return 8;
741     return 24;
742   }
743
744   // Add any special sections for this symbol to the gc work list.
745   // For powerpc64, this adds the code section of a function
746   // descriptor.
747   void
748   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
749
750   // Handle target specific gc actions when adding a gc reference from
751   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
752   // and DST_OFF.  For powerpc64, this adds a referenc to the code
753   // section of a function descriptor.
754   void
755   do_gc_add_reference(Symbol_table* symtab,
756                       Object* src_obj,
757                       unsigned int src_shndx,
758                       Object* dst_obj,
759                       unsigned int dst_shndx,
760                       Address dst_off) const;
761
762   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
763   const Stub_tables&
764   stub_tables() const
765   { return this->stub_tables_; }
766
767   const Output_data_brlt_powerpc<size, big_endian>*
768   brlt_section() const
769   { return this->brlt_section_; }
770
771   void
772   add_branch_lookup_table(Address to)
773   {
774     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
775     this->branch_lookup_table_.insert(std::make_pair(to, off));
776   }
777
778   Address
779   find_branch_lookup_table(Address to)
780   {
781     typename Branch_lookup_table::const_iterator p
782       = this->branch_lookup_table_.find(to);
783     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
784   }
785
786   void
787   write_branch_lookup_table(unsigned char *oview)
788   {
789     for (typename Branch_lookup_table::const_iterator p
790            = this->branch_lookup_table_.begin();
791          p != this->branch_lookup_table_.end();
792          ++p)
793       {
794         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
795       }
796   }
797
798   bool
799   plt_thread_safe() const
800   { return this->plt_thread_safe_; }
801
802   int
803   abiversion () const
804   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
805
806   void
807   set_abiversion (int ver)
808   {
809     elfcpp::Elf_Word flags = this->processor_specific_flags();
810     flags &= ~elfcpp::EF_PPC64_ABI;
811     flags |= ver & elfcpp::EF_PPC64_ABI;
812     this->set_processor_specific_flags(flags);
813   }
814
815   // Offset to to save stack slot
816   int
817   stk_toc () const
818   { return this->abiversion() < 2 ? 40 : 24; }
819
820  private:
821
822   class Track_tls
823   {
824   public:
825     enum Tls_get_addr
826     {
827       NOT_EXPECTED = 0,
828       EXPECTED = 1,
829       SKIP = 2,
830       NORMAL = 3
831     };
832
833     Track_tls()
834       : tls_get_addr_(NOT_EXPECTED),
835         relinfo_(NULL), relnum_(0), r_offset_(0)
836     { }
837
838     ~Track_tls()
839     {
840       if (this->tls_get_addr_ != NOT_EXPECTED)
841         this->missing();
842     }
843
844     void
845     missing(void)
846     {
847       if (this->relinfo_ != NULL)
848         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
849                                _("missing expected __tls_get_addr call"));
850     }
851
852     void
853     expect_tls_get_addr_call(
854         const Relocate_info<size, big_endian>* relinfo,
855         size_t relnum,
856         Address r_offset)
857     {
858       this->tls_get_addr_ = EXPECTED;
859       this->relinfo_ = relinfo;
860       this->relnum_ = relnum;
861       this->r_offset_ = r_offset;
862     }
863
864     void
865     expect_tls_get_addr_call()
866     { this->tls_get_addr_ = EXPECTED; }
867
868     void
869     skip_next_tls_get_addr_call()
870     {this->tls_get_addr_ = SKIP; }
871
872     Tls_get_addr
873     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
874     {
875       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
876                            || r_type == elfcpp::R_PPC_PLTREL24)
877                           && gsym != NULL
878                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
879       Tls_get_addr last_tls = this->tls_get_addr_;
880       this->tls_get_addr_ = NOT_EXPECTED;
881       if (is_tls_call && last_tls != EXPECTED)
882         return last_tls;
883       else if (!is_tls_call && last_tls != NOT_EXPECTED)
884         {
885           this->missing();
886           return EXPECTED;
887         }
888       return NORMAL;
889     }
890
891   private:
892     // What we're up to regarding calls to __tls_get_addr.
893     // On powerpc, the branch and link insn making a call to
894     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
895     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
896     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
897     // The marker relocation always comes first, and has the same
898     // symbol as the reloc on the insn setting up the __tls_get_addr
899     // argument.  This ties the arg setup insn with the call insn,
900     // allowing ld to safely optimize away the call.  We check that
901     // every call to __tls_get_addr has a marker relocation, and that
902     // every marker relocation is on a call to __tls_get_addr.
903     Tls_get_addr tls_get_addr_;
904     // Info about the last reloc for error message.
905     const Relocate_info<size, big_endian>* relinfo_;
906     size_t relnum_;
907     Address r_offset_;
908   };
909
910   // The class which scans relocations.
911   class Scan : protected Track_tls
912   {
913   public:
914     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
915
916     Scan()
917       : Track_tls(), issued_non_pic_error_(false)
918     { }
919
920     static inline int
921     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
922
923     inline void
924     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
925           Sized_relobj_file<size, big_endian>* object,
926           unsigned int data_shndx,
927           Output_section* output_section,
928           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
929           const elfcpp::Sym<size, big_endian>& lsym,
930           bool is_discarded);
931
932     inline void
933     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
934            Sized_relobj_file<size, big_endian>* object,
935            unsigned int data_shndx,
936            Output_section* output_section,
937            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
938            Symbol* gsym);
939
940     inline bool
941     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
942                                         Target_powerpc* ,
943                                         Sized_relobj_file<size, big_endian>* ,
944                                         unsigned int ,
945                                         Output_section* ,
946                                         const elfcpp::Rela<size, big_endian>& ,
947                                         unsigned int r_type,
948                                         const elfcpp::Sym<size, big_endian>&)
949     {
950       // PowerPC64 .opd is not folded, so any identical function text
951       // may be folded and we'll still keep function addresses distinct.
952       // That means no reloc is of concern here.
953       if (size == 64)
954         return false;
955       // For 32-bit, conservatively assume anything but calls to
956       // function code might be taking the address of the function.
957       return !is_branch_reloc(r_type);
958     }
959
960     inline bool
961     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
962                                          Target_powerpc* ,
963                                          Sized_relobj_file<size, big_endian>* ,
964                                          unsigned int ,
965                                          Output_section* ,
966                                          const elfcpp::Rela<size, big_endian>& ,
967                                          unsigned int r_type,
968                                          Symbol*)
969     {
970       // As above.
971       if (size == 64)
972         return false;
973       return !is_branch_reloc(r_type);
974     }
975
976     static bool
977     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
978                               unsigned int r_type, bool report_err);
979
980   private:
981     static void
982     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
983                             unsigned int r_type);
984
985     static void
986     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
987                              unsigned int r_type, Symbol*);
988
989     static void
990     generate_tls_call(Symbol_table* symtab, Layout* layout,
991                       Target_powerpc* target);
992
993     void
994     check_non_pic(Relobj*, unsigned int r_type);
995
996     // Whether we have issued an error about a non-PIC compilation.
997     bool issued_non_pic_error_;
998   };
999
1000   Address
1001   symval_for_branch(const Symbol_table* symtab, Address value,
1002                     const Sized_symbol<size>* gsym,
1003                     Powerpc_relobj<size, big_endian>* object,
1004                     unsigned int *dest_shndx);
1005
1006   // The class which implements relocation.
1007   class Relocate : protected Track_tls
1008   {
1009    public:
1010     // Use 'at' branch hints when true, 'y' when false.
1011     // FIXME maybe: set this with an option.
1012     static const bool is_isa_v2 = true;
1013
1014     Relocate()
1015       : Track_tls()
1016     { }
1017
1018     // Do a relocation.  Return false if the caller should not issue
1019     // any warnings about this relocation.
1020     inline bool
1021     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1022              Output_section*, size_t relnum,
1023              const elfcpp::Rela<size, big_endian>&,
1024              unsigned int r_type, const Sized_symbol<size>*,
1025              const Symbol_value<size>*,
1026              unsigned char*,
1027              typename elfcpp::Elf_types<size>::Elf_Addr,
1028              section_size_type);
1029   };
1030
1031   class Relocate_comdat_behavior
1032   {
1033    public:
1034     // Decide what the linker should do for relocations that refer to
1035     // discarded comdat sections.
1036     inline Comdat_behavior
1037     get(const char* name)
1038     {
1039       gold::Default_comdat_behavior default_behavior;
1040       Comdat_behavior ret = default_behavior.get(name);
1041       if (ret == CB_WARNING)
1042         {
1043           if (size == 32
1044               && (strcmp(name, ".fixup") == 0
1045                   || strcmp(name, ".got2") == 0))
1046             ret = CB_IGNORE;
1047           if (size == 64
1048               && (strcmp(name, ".opd") == 0
1049                   || strcmp(name, ".toc") == 0
1050                   || strcmp(name, ".toc1") == 0))
1051             ret = CB_IGNORE;
1052         }
1053       return ret;
1054     }
1055   };
1056
1057   // A class which returns the size required for a relocation type,
1058   // used while scanning relocs during a relocatable link.
1059   class Relocatable_size_for_reloc
1060   {
1061    public:
1062     unsigned int
1063     get_size_for_reloc(unsigned int, Relobj*)
1064     {
1065       gold_unreachable();
1066       return 0;
1067     }
1068   };
1069
1070   // Optimize the TLS relocation type based on what we know about the
1071   // symbol.  IS_FINAL is true if the final address of this symbol is
1072   // known at link time.
1073
1074   tls::Tls_optimization
1075   optimize_tls_gd(bool is_final)
1076   {
1077     // If we are generating a shared library, then we can't do anything
1078     // in the linker.
1079     if (parameters->options().shared())
1080       return tls::TLSOPT_NONE;
1081
1082     if (!is_final)
1083       return tls::TLSOPT_TO_IE;
1084     return tls::TLSOPT_TO_LE;
1085   }
1086
1087   tls::Tls_optimization
1088   optimize_tls_ld()
1089   {
1090     if (parameters->options().shared())
1091       return tls::TLSOPT_NONE;
1092
1093     return tls::TLSOPT_TO_LE;
1094   }
1095
1096   tls::Tls_optimization
1097   optimize_tls_ie(bool is_final)
1098   {
1099     if (!is_final || parameters->options().shared())
1100       return tls::TLSOPT_NONE;
1101
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   // Create glink.
1106   void
1107   make_glink_section(Layout*);
1108
1109   // Create the PLT section.
1110   void
1111   make_plt_section(Symbol_table*, Layout*);
1112
1113   void
1114   make_iplt_section(Symbol_table*, Layout*);
1115
1116   void
1117   make_brlt_section(Layout*);
1118
1119   // Create a PLT entry for a global symbol.
1120   void
1121   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1122
1123   // Create a PLT entry for a local IFUNC symbol.
1124   void
1125   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1126                              Sized_relobj_file<size, big_endian>*,
1127                              unsigned int);
1128
1129
1130   // Create a GOT entry for local dynamic __tls_get_addr.
1131   unsigned int
1132   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1133                    Sized_relobj_file<size, big_endian>* object);
1134
1135   unsigned int
1136   tlsld_got_offset() const
1137   {
1138     return this->tlsld_got_offset_;
1139   }
1140
1141   // Get the dynamic reloc section, creating it if necessary.
1142   Reloc_section*
1143   rela_dyn_section(Layout*);
1144
1145   // Similarly, but for ifunc symbols get the one for ifunc.
1146   Reloc_section*
1147   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1148
1149   // Copy a relocation against a global symbol.
1150   void
1151   copy_reloc(Symbol_table* symtab, Layout* layout,
1152              Sized_relobj_file<size, big_endian>* object,
1153              unsigned int shndx, Output_section* output_section,
1154              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1155   {
1156     this->copy_relocs_.copy_reloc(symtab, layout,
1157                                   symtab->get_sized_symbol<size>(sym),
1158                                   object, shndx, output_section,
1159                                   reloc, this->rela_dyn_section(layout));
1160   }
1161
1162   // Look over all the input sections, deciding where to place stubs.
1163   void
1164   group_sections(Layout*, const Task*);
1165
1166   // Sort output sections by address.
1167   struct Sort_sections
1168   {
1169     bool
1170     operator()(const Output_section* sec1, const Output_section* sec2)
1171     { return sec1->address() < sec2->address(); }
1172   };
1173
1174   class Branch_info
1175   {
1176    public:
1177     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1178                 unsigned int data_shndx,
1179                 Address r_offset,
1180                 unsigned int r_type,
1181                 unsigned int r_sym,
1182                 Address addend)
1183       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1184         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1185     { }
1186
1187     ~Branch_info()
1188     { }
1189
1190     // If this branch needs a plt call stub, or a long branch stub, make one.
1191     void
1192     make_stub(Stub_table<size, big_endian>*,
1193               Stub_table<size, big_endian>*,
1194               Symbol_table*) const;
1195
1196    private:
1197     // The branch location..
1198     Powerpc_relobj<size, big_endian>* object_;
1199     unsigned int shndx_;
1200     Address offset_;
1201     // ..and the branch type and destination.
1202     unsigned int r_type_;
1203     unsigned int r_sym_;
1204     Address addend_;
1205   };
1206
1207   // Information about this specific target which we pass to the
1208   // general Target structure.
1209   static Target::Target_info powerpc_info;
1210
1211   // The types of GOT entries needed for this platform.
1212   // These values are exposed to the ABI in an incremental link.
1213   // Do not renumber existing values without changing the version
1214   // number of the .gnu_incremental_inputs section.
1215   enum Got_type
1216   {
1217     GOT_TYPE_STANDARD,
1218     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1219     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1220     GOT_TYPE_TPREL      // entry for @got@tprel
1221   };
1222
1223   // The GOT section.
1224   Output_data_got_powerpc<size, big_endian>* got_;
1225   // The PLT section.  This is a container for a table of addresses,
1226   // and their relocations.  Each address in the PLT has a dynamic
1227   // relocation (R_*_JMP_SLOT) and each address will have a
1228   // corresponding entry in .glink for lazy resolution of the PLT.
1229   // ppc32 initialises the PLT to point at the .glink entry, while
1230   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1231   // linker adds a stub that loads the PLT entry into ctr then
1232   // branches to ctr.  There may be more than one stub for each PLT
1233   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1234   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1235   Output_data_plt_powerpc<size, big_endian>* plt_;
1236   // The IPLT section.  Like plt_, this is a container for a table of
1237   // addresses and their relocations, specifically for STT_GNU_IFUNC
1238   // functions that resolve locally (STT_GNU_IFUNC functions that
1239   // don't resolve locally go in PLT).  Unlike plt_, these have no
1240   // entry in .glink for lazy resolution, and the relocation section
1241   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1242   // the relocation section may contain relocations against
1243   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1244   // relocation section will appear at the end of other dynamic
1245   // relocations, so that ld.so applies these relocations after other
1246   // dynamic relocations.  In a static executable, the relocation
1247   // section is emitted and marked with __rela_iplt_start and
1248   // __rela_iplt_end symbols.
1249   Output_data_plt_powerpc<size, big_endian>* iplt_;
1250   // Section holding long branch destinations.
1251   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1252   // The .glink section.
1253   Output_data_glink<size, big_endian>* glink_;
1254   // The dynamic reloc section.
1255   Reloc_section* rela_dyn_;
1256   // Relocs saved to avoid a COPY reloc.
1257   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1258   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1259   unsigned int tlsld_got_offset_;
1260
1261   Stub_tables stub_tables_;
1262   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1263   Branch_lookup_table branch_lookup_table_;
1264
1265   typedef std::vector<Branch_info> Branches;
1266   Branches branch_info_;
1267
1268   bool plt_thread_safe_;
1269 };
1270
1271 template<>
1272 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1273 {
1274   32,                   // size
1275   true,                 // is_big_endian
1276   elfcpp::EM_PPC,       // machine_code
1277   false,                // has_make_symbol
1278   false,                // has_resolve
1279   false,                // has_code_fill
1280   true,                 // is_default_stack_executable
1281   false,                // can_icf_inline_merge_sections
1282   '\0',                 // wrap_char
1283   "/usr/lib/ld.so.1",   // dynamic_linker
1284   0x10000000,           // default_text_segment_address
1285   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1286   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1287   false,                // isolate_execinstr
1288   0,                    // rosegment_gap
1289   elfcpp::SHN_UNDEF,    // small_common_shndx
1290   elfcpp::SHN_UNDEF,    // large_common_shndx
1291   0,                    // small_common_section_flags
1292   0,                    // large_common_section_flags
1293   NULL,                 // attributes_section
1294   NULL,                 // attributes_vendor
1295   "_start"              // entry_symbol_name
1296 };
1297
1298 template<>
1299 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1300 {
1301   32,                   // size
1302   false,                // is_big_endian
1303   elfcpp::EM_PPC,       // machine_code
1304   false,                // has_make_symbol
1305   false,                // has_resolve
1306   false,                // has_code_fill
1307   true,                 // is_default_stack_executable
1308   false,                // can_icf_inline_merge_sections
1309   '\0',                 // wrap_char
1310   "/usr/lib/ld.so.1",   // dynamic_linker
1311   0x10000000,           // default_text_segment_address
1312   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1313   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1314   false,                // isolate_execinstr
1315   0,                    // rosegment_gap
1316   elfcpp::SHN_UNDEF,    // small_common_shndx
1317   elfcpp::SHN_UNDEF,    // large_common_shndx
1318   0,                    // small_common_section_flags
1319   0,                    // large_common_section_flags
1320   NULL,                 // attributes_section
1321   NULL,                 // attributes_vendor
1322   "_start"              // entry_symbol_name
1323 };
1324
1325 template<>
1326 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1327 {
1328   64,                   // size
1329   true,                 // is_big_endian
1330   elfcpp::EM_PPC64,     // machine_code
1331   false,                // has_make_symbol
1332   false,                // has_resolve
1333   false,                // has_code_fill
1334   true,                 // is_default_stack_executable
1335   false,                // can_icf_inline_merge_sections
1336   '\0',                 // wrap_char
1337   "/usr/lib/ld.so.1",   // dynamic_linker
1338   0x10000000,           // default_text_segment_address
1339   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1340   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1341   false,                // isolate_execinstr
1342   0,                    // rosegment_gap
1343   elfcpp::SHN_UNDEF,    // small_common_shndx
1344   elfcpp::SHN_UNDEF,    // large_common_shndx
1345   0,                    // small_common_section_flags
1346   0,                    // large_common_section_flags
1347   NULL,                 // attributes_section
1348   NULL,                 // attributes_vendor
1349   "_start"              // entry_symbol_name
1350 };
1351
1352 template<>
1353 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1354 {
1355   64,                   // size
1356   false,                // is_big_endian
1357   elfcpp::EM_PPC64,     // machine_code
1358   false,                // has_make_symbol
1359   false,                // has_resolve
1360   false,                // has_code_fill
1361   true,                 // is_default_stack_executable
1362   false,                // can_icf_inline_merge_sections
1363   '\0',                 // wrap_char
1364   "/usr/lib/ld.so.1",   // dynamic_linker
1365   0x10000000,           // default_text_segment_address
1366   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1367   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1368   false,                // isolate_execinstr
1369   0,                    // rosegment_gap
1370   elfcpp::SHN_UNDEF,    // small_common_shndx
1371   elfcpp::SHN_UNDEF,    // large_common_shndx
1372   0,                    // small_common_section_flags
1373   0,                    // large_common_section_flags
1374   NULL,                 // attributes_section
1375   NULL,                 // attributes_vendor
1376   "_start"              // entry_symbol_name
1377 };
1378
1379 inline bool
1380 is_branch_reloc(unsigned int r_type)
1381 {
1382   return (r_type == elfcpp::R_POWERPC_REL24
1383           || r_type == elfcpp::R_PPC_PLTREL24
1384           || r_type == elfcpp::R_PPC_LOCAL24PC
1385           || r_type == elfcpp::R_POWERPC_REL14
1386           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1387           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1388           || r_type == elfcpp::R_POWERPC_ADDR24
1389           || r_type == elfcpp::R_POWERPC_ADDR14
1390           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1391           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1392 }
1393
1394 // If INSN is an opcode that may be used with an @tls operand, return
1395 // the transformed insn for TLS optimisation, otherwise return 0.  If
1396 // REG is non-zero only match an insn with RB or RA equal to REG.
1397 uint32_t
1398 at_tls_transform(uint32_t insn, unsigned int reg)
1399 {
1400   if ((insn & (0x3f << 26)) != 31 << 26)
1401     return 0;
1402
1403   unsigned int rtra;
1404   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1405     rtra = insn & ((1 << 26) - (1 << 16));
1406   else if (((insn >> 16) & 0x1f) == reg)
1407     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1408   else
1409     return 0;
1410
1411   if ((insn & (0x3ff << 1)) == 266 << 1)
1412     // add -> addi
1413     insn = 14 << 26;
1414   else if ((insn & (0x1f << 1)) == 23 << 1
1415            && ((insn & (0x1f << 6)) < 14 << 6
1416                || ((insn & (0x1f << 6)) >= 16 << 6
1417                    && (insn & (0x1f << 6)) < 24 << 6)))
1418     // load and store indexed -> dform
1419     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1420   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1421     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1422     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1423   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1424     // lwax -> lwa
1425     insn = (58 << 26) | 2;
1426   else
1427     return 0;
1428   insn |= rtra;
1429   return insn;
1430 }
1431
1432
1433 template<int size, bool big_endian>
1434 class Powerpc_relocate_functions
1435 {
1436 public:
1437   enum Overflow_check
1438   {
1439     CHECK_NONE,
1440     CHECK_SIGNED,
1441     CHECK_BITFIELD
1442   };
1443
1444   enum Status
1445   {
1446     STATUS_OK,
1447     STATUS_OVERFLOW
1448   };
1449
1450 private:
1451   typedef Powerpc_relocate_functions<size, big_endian> This;
1452   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1453
1454   template<int valsize>
1455   static inline bool
1456   has_overflow_signed(Address value)
1457   {
1458     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1459     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1460     limit <<= ((valsize - 1) >> 1);
1461     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1462     return value + limit > (limit << 1) - 1;
1463   }
1464
1465   template<int valsize>
1466   static inline bool
1467   has_overflow_bitfield(Address value)
1468   {
1469     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1470     limit <<= ((valsize - 1) >> 1);
1471     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1472     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1473   }
1474
1475   template<int valsize>
1476   static inline Status
1477   overflowed(Address value, Overflow_check overflow)
1478   {
1479     if (overflow == CHECK_SIGNED)
1480       {
1481         if (has_overflow_signed<valsize>(value))
1482           return STATUS_OVERFLOW;
1483       }
1484     else if (overflow == CHECK_BITFIELD)
1485       {
1486         if (has_overflow_bitfield<valsize>(value))
1487           return STATUS_OVERFLOW;
1488       }
1489     return STATUS_OK;
1490   }
1491
1492   // Do a simple RELA relocation
1493   template<int valsize>
1494   static inline Status
1495   rela(unsigned char* view, Address value, Overflow_check overflow)
1496   {
1497     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1498     Valtype* wv = reinterpret_cast<Valtype*>(view);
1499     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1500     return overflowed<valsize>(value, overflow);
1501   }
1502
1503   template<int valsize>
1504   static inline Status
1505   rela(unsigned char* view,
1506        unsigned int right_shift,
1507        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1508        Address value,
1509        Overflow_check overflow)
1510   {
1511     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1512     Valtype* wv = reinterpret_cast<Valtype*>(view);
1513     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1514     Valtype reloc = value >> right_shift;
1515     val &= ~dst_mask;
1516     reloc &= dst_mask;
1517     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1518     return overflowed<valsize>(value >> right_shift, overflow);
1519   }
1520
1521   // Do a simple RELA relocation, unaligned.
1522   template<int valsize>
1523   static inline Status
1524   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1525   {
1526     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1527     return overflowed<valsize>(value, overflow);
1528   }
1529
1530   template<int valsize>
1531   static inline Status
1532   rela_ua(unsigned char* view,
1533           unsigned int right_shift,
1534           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1535           Address value,
1536           Overflow_check overflow)
1537   {
1538     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1539       Valtype;
1540     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1541     Valtype reloc = value >> right_shift;
1542     val &= ~dst_mask;
1543     reloc &= dst_mask;
1544     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1545     return overflowed<valsize>(value >> right_shift, overflow);
1546   }
1547
1548 public:
1549   // R_PPC64_ADDR64: (Symbol + Addend)
1550   static inline void
1551   addr64(unsigned char* view, Address value)
1552   { This::template rela<64>(view, value, CHECK_NONE); }
1553
1554   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1555   static inline void
1556   addr64_u(unsigned char* view, Address value)
1557   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1558
1559   // R_POWERPC_ADDR32: (Symbol + Addend)
1560   static inline Status
1561   addr32(unsigned char* view, Address value, Overflow_check overflow)
1562   { return This::template rela<32>(view, value, overflow); }
1563
1564   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1565   static inline Status
1566   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1567   { return This::template rela_ua<32>(view, value, overflow); }
1568
1569   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1570   static inline Status
1571   addr24(unsigned char* view, Address value, Overflow_check overflow)
1572   {
1573     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1574     if (overflow != CHECK_NONE && (value & 3) != 0)
1575       stat = STATUS_OVERFLOW;
1576     return stat;
1577   }
1578
1579   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1580   static inline Status
1581   addr16(unsigned char* view, Address value, Overflow_check overflow)
1582   { return This::template rela<16>(view, value, overflow); }
1583
1584   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1585   static inline Status
1586   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1587   { return This::template rela_ua<16>(view, value, overflow); }
1588
1589   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1590   static inline Status
1591   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1592   {
1593     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1594     if (overflow != CHECK_NONE && (value & 3) != 0)
1595       stat = STATUS_OVERFLOW;
1596     return stat;
1597   }
1598
1599   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1600   static inline void
1601   addr16_hi(unsigned char* view, Address value)
1602   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1603
1604   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1605   static inline void
1606   addr16_ha(unsigned char* view, Address value)
1607   { This::addr16_hi(view, value + 0x8000); }
1608
1609   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1610   static inline void
1611   addr16_hi2(unsigned char* view, Address value)
1612   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1613
1614   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1615   static inline void
1616   addr16_ha2(unsigned char* view, Address value)
1617   { This::addr16_hi2(view, value + 0x8000); }
1618
1619   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1620   static inline void
1621   addr16_hi3(unsigned char* view, Address value)
1622   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1623
1624   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1625   static inline void
1626   addr16_ha3(unsigned char* view, Address value)
1627   { This::addr16_hi3(view, value + 0x8000); }
1628
1629   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1630   static inline Status
1631   addr14(unsigned char* view, Address value, Overflow_check overflow)
1632   {
1633     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1634     if (overflow != CHECK_NONE && (value & 3) != 0)
1635       stat = STATUS_OVERFLOW;
1636     return stat;
1637   }
1638 };
1639
1640 // Set ABI version for input and output.
1641
1642 template<int size, bool big_endian>
1643 void
1644 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1645 {
1646   this->e_flags_ |= ver;
1647   if (this->abiversion() != 0)
1648     {
1649       Target_powerpc<size, big_endian>* target =
1650         static_cast<Target_powerpc<size, big_endian>*>(
1651            parameters->sized_target<size, big_endian>());
1652       if (target->abiversion() == 0)
1653         target->set_abiversion(this->abiversion());
1654       else if (target->abiversion() != this->abiversion())
1655         gold_error(_("%s: ABI version %d is not compatible "
1656                      "with ABI version %d output"),
1657                    this->name().c_str(),
1658                    this->abiversion(), target->abiversion());
1659
1660     }
1661 }
1662
1663 // Stash away the index of .got2 or .opd in a relocatable object, if
1664 // such a section exists.
1665
1666 template<int size, bool big_endian>
1667 bool
1668 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1669     Read_symbols_data* sd)
1670 {
1671   const unsigned char* const pshdrs = sd->section_headers->data();
1672   const unsigned char* namesu = sd->section_names->data();
1673   const char* names = reinterpret_cast<const char*>(namesu);
1674   section_size_type names_size = sd->section_names_size;
1675   const unsigned char* s;
1676
1677   s = this->template find_shdr<size, big_endian>(pshdrs,
1678                                                  size == 32 ? ".got2" : ".opd",
1679                                                  names, names_size, NULL);
1680   if (s != NULL)
1681     {
1682       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1683       this->special_ = ndx;
1684       if (size == 64)
1685         {
1686           if (this->abiversion() == 0)
1687             this->set_abiversion(1);
1688           else if (this->abiversion() > 1)
1689             gold_error(_("%s: .opd invalid in abiv%d"),
1690                        this->name().c_str(), this->abiversion());
1691         }
1692     }
1693   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1694 }
1695
1696 // Examine .rela.opd to build info about function entry points.
1697
1698 template<int size, bool big_endian>
1699 void
1700 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1701     size_t reloc_count,
1702     const unsigned char* prelocs,
1703     const unsigned char* plocal_syms)
1704 {
1705   if (size == 64)
1706     {
1707       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1708         Reltype;
1709       const int reloc_size
1710         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1711       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1712       Address expected_off = 0;
1713       bool regular = true;
1714       unsigned int opd_ent_size = 0;
1715
1716       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1717         {
1718           Reltype reloc(prelocs);
1719           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1720             = reloc.get_r_info();
1721           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1722           if (r_type == elfcpp::R_PPC64_ADDR64)
1723             {
1724               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1725               typename elfcpp::Elf_types<size>::Elf_Addr value;
1726               bool is_ordinary;
1727               unsigned int shndx;
1728               if (r_sym < this->local_symbol_count())
1729                 {
1730                   typename elfcpp::Sym<size, big_endian>
1731                     lsym(plocal_syms + r_sym * sym_size);
1732                   shndx = lsym.get_st_shndx();
1733                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1734                   value = lsym.get_st_value();
1735                 }
1736               else
1737                 shndx = this->symbol_section_and_value(r_sym, &value,
1738                                                        &is_ordinary);
1739               this->set_opd_ent(reloc.get_r_offset(), shndx,
1740                                 value + reloc.get_r_addend());
1741               if (i == 2)
1742                 {
1743                   expected_off = reloc.get_r_offset();
1744                   opd_ent_size = expected_off;
1745                 }
1746               else if (expected_off != reloc.get_r_offset())
1747                 regular = false;
1748               expected_off += opd_ent_size;
1749             }
1750           else if (r_type == elfcpp::R_PPC64_TOC)
1751             {
1752               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1753                 regular = false;
1754             }
1755           else
1756             {
1757               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1758                            this->name().c_str(), r_type);
1759               regular = false;
1760             }
1761         }
1762       if (reloc_count <= 2)
1763         opd_ent_size = this->section_size(this->opd_shndx());
1764       if (opd_ent_size != 24 && opd_ent_size != 16)
1765         regular = false;
1766       if (!regular)
1767         {
1768           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1769                        this->name().c_str());
1770           opd_ent_size = 0;
1771         }
1772     }
1773 }
1774
1775 template<int size, bool big_endian>
1776 void
1777 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1778 {
1779   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1780   if (size == 64)
1781     {
1782       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1783            p != rd->relocs.end();
1784            ++p)
1785         {
1786           if (p->data_shndx == this->opd_shndx())
1787             {
1788               uint64_t opd_size = this->section_size(this->opd_shndx());
1789               gold_assert(opd_size == static_cast<size_t>(opd_size));
1790               if (opd_size != 0)
1791                 {
1792                   this->init_opd(opd_size);
1793                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1794                                         rd->local_symbols->data());
1795                 }
1796               break;
1797             }
1798         }
1799     }
1800 }
1801
1802 // Read the symbols then set up st_other vector.
1803
1804 template<int size, bool big_endian>
1805 void
1806 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1807 {
1808   Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1809   if (size == 64)
1810     {
1811       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1812       const unsigned char* const pshdrs = sd->section_headers->data();
1813       const unsigned int loccount = this->do_local_symbol_count();
1814       if (loccount != 0)
1815         {
1816           this->st_other_.resize(loccount);
1817           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1818           off_t locsize = loccount * sym_size;
1819           const unsigned int symtab_shndx = this->symtab_shndx();
1820           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1821           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1822           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1823                                                       locsize, true, false);
1824           psyms += sym_size;
1825           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1826             {
1827               elfcpp::Sym<size, big_endian> sym(psyms);
1828               unsigned char st_other = sym.get_st_other();
1829               this->st_other_[i] = st_other;
1830               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1831                 {
1832                   if (this->abiversion() == 0)
1833                     this->set_abiversion(2);
1834                   else if (this->abiversion() < 2)
1835                     gold_error(_("%s: local symbol %d has invalid st_other"
1836                                  " for ABI version 1"),
1837                                this->name().c_str(), i);
1838                 }
1839             }
1840         }
1841     }
1842 }
1843
1844 template<int size, bool big_endian>
1845 void
1846 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1847 {
1848   this->e_flags_ |= ver;
1849   if (this->abiversion() != 0)
1850     {
1851       Target_powerpc<size, big_endian>* target =
1852         static_cast<Target_powerpc<size, big_endian>*>(
1853           parameters->sized_target<size, big_endian>());
1854       if (target->abiversion() == 0)
1855         target->set_abiversion(this->abiversion());
1856       else if (target->abiversion() != this->abiversion())
1857         gold_error(_("%s: ABI version %d is not compatible "
1858                      "with ABI version %d output"),
1859                    this->name().c_str(),
1860                    this->abiversion(), target->abiversion());
1861
1862     }
1863 }
1864
1865 // Call Sized_dynobj::do_read_symbols to read the symbols then
1866 // read .opd from a dynamic object, filling in opd_ent_ vector,
1867
1868 template<int size, bool big_endian>
1869 void
1870 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1871 {
1872   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1873   if (size == 64)
1874     {
1875       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1876       const unsigned char* const pshdrs = sd->section_headers->data();
1877       const unsigned char* namesu = sd->section_names->data();
1878       const char* names = reinterpret_cast<const char*>(namesu);
1879       const unsigned char* s = NULL;
1880       const unsigned char* opd;
1881       section_size_type opd_size;
1882
1883       // Find and read .opd section.
1884       while (1)
1885         {
1886           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1887                                                          sd->section_names_size,
1888                                                          s);
1889           if (s == NULL)
1890             return;
1891
1892           typename elfcpp::Shdr<size, big_endian> shdr(s);
1893           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1894               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1895             {
1896               if (this->abiversion() == 0)
1897                 this->set_abiversion(1);
1898               else if (this->abiversion() > 1)
1899                 gold_error(_("%s: .opd invalid in abiv%d"),
1900                            this->name().c_str(), this->abiversion());
1901
1902               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1903               this->opd_address_ = shdr.get_sh_addr();
1904               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1905               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1906                                    true, false);
1907               break;
1908             }
1909         }
1910
1911       // Build set of executable sections.
1912       // Using a set is probably overkill.  There is likely to be only
1913       // a few executable sections, typically .init, .text and .fini,
1914       // and they are generally grouped together.
1915       typedef std::set<Sec_info> Exec_sections;
1916       Exec_sections exec_sections;
1917       s = pshdrs;
1918       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1919         {
1920           typename elfcpp::Shdr<size, big_endian> shdr(s);
1921           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1922               && ((shdr.get_sh_flags()
1923                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1924                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1925               && shdr.get_sh_size() != 0)
1926             {
1927               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1928                                             shdr.get_sh_size(), i));
1929             }
1930         }
1931       if (exec_sections.empty())
1932         return;
1933
1934       // Look over the OPD entries.  This is complicated by the fact
1935       // that some binaries will use two-word entries while others
1936       // will use the standard three-word entries.  In most cases
1937       // the third word (the environment pointer for languages like
1938       // Pascal) is unused and will be zero.  If the third word is
1939       // used it should not be pointing into executable sections,
1940       // I think.
1941       this->init_opd(opd_size);
1942       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1943         {
1944           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1945           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1946           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1947           if (val == 0)
1948             // Chances are that this is the third word of an OPD entry.
1949             continue;
1950           typename Exec_sections::const_iterator e
1951             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1952           if (e != exec_sections.begin())
1953             {
1954               --e;
1955               if (e->start <= val && val < e->start + e->len)
1956                 {
1957                   // We have an address in an executable section.
1958                   // VAL ought to be the function entry, set it up.
1959                   this->set_opd_ent(p - opd, e->shndx, val);
1960                   // Skip second word of OPD entry, the TOC pointer.
1961                   p += 8;
1962                 }
1963             }
1964           // If we didn't match any executable sections, we likely
1965           // have a non-zero third word in the OPD entry.
1966         }
1967     }
1968 }
1969
1970 // Set up some symbols.
1971
1972 template<int size, bool big_endian>
1973 void
1974 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1975     Symbol_table* symtab,
1976     Layout* layout)
1977 {
1978   if (size == 32)
1979     {
1980       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1981       // undefined when scanning relocs (and thus requires
1982       // non-relative dynamic relocs).  The proper value will be
1983       // updated later.
1984       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1985       if (gotsym != NULL && gotsym->is_undefined())
1986         {
1987           Target_powerpc<size, big_endian>* target =
1988             static_cast<Target_powerpc<size, big_endian>*>(
1989                 parameters->sized_target<size, big_endian>());
1990           Output_data_got_powerpc<size, big_endian>* got
1991             = target->got_section(symtab, layout);
1992           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1993                                         Symbol_table::PREDEFINED,
1994                                         got, 0, 0,
1995                                         elfcpp::STT_OBJECT,
1996                                         elfcpp::STB_LOCAL,
1997                                         elfcpp::STV_HIDDEN, 0,
1998                                         false, false);
1999         }
2000
2001       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2002       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2003       if (sdasym != NULL && sdasym->is_undefined())
2004         {
2005           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2006           Output_section* os
2007             = layout->add_output_section_data(".sdata", 0,
2008                                               elfcpp::SHF_ALLOC
2009                                               | elfcpp::SHF_WRITE,
2010                                               sdata, ORDER_SMALL_DATA, false);
2011           symtab->define_in_output_data("_SDA_BASE_", NULL,
2012                                         Symbol_table::PREDEFINED,
2013                                         os, 32768, 0, elfcpp::STT_OBJECT,
2014                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2015                                         0, false, false);
2016         }
2017     }
2018   else
2019     {
2020       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2021       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2022       if (gotsym != NULL && gotsym->is_undefined())
2023         {
2024           Target_powerpc<size, big_endian>* target =
2025             static_cast<Target_powerpc<size, big_endian>*>(
2026                 parameters->sized_target<size, big_endian>());
2027           Output_data_got_powerpc<size, big_endian>* got
2028             = target->got_section(symtab, layout);
2029           symtab->define_in_output_data(".TOC.", NULL,
2030                                         Symbol_table::PREDEFINED,
2031                                         got, 0x8000, 0,
2032                                         elfcpp::STT_OBJECT,
2033                                         elfcpp::STB_LOCAL,
2034                                         elfcpp::STV_HIDDEN, 0,
2035                                         false, false);
2036         }
2037     }
2038 }
2039
2040 // Set up PowerPC target specific relobj.
2041
2042 template<int size, bool big_endian>
2043 Object*
2044 Target_powerpc<size, big_endian>::do_make_elf_object(
2045     const std::string& name,
2046     Input_file* input_file,
2047     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2048 {
2049   int et = ehdr.get_e_type();
2050   // ET_EXEC files are valid input for --just-symbols/-R,
2051   // and we treat them as relocatable objects.
2052   if (et == elfcpp::ET_REL
2053       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2054     {
2055       Powerpc_relobj<size, big_endian>* obj =
2056         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2057       obj->setup();
2058       return obj;
2059     }
2060   else if (et == elfcpp::ET_DYN)
2061     {
2062       Powerpc_dynobj<size, big_endian>* obj =
2063         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2064       obj->setup();
2065       return obj;
2066     }
2067   else
2068     {
2069       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2070       return NULL;
2071     }
2072 }
2073
2074 template<int size, bool big_endian>
2075 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2076 {
2077 public:
2078   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2079   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2080
2081   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2082     : Output_data_got<size, big_endian>(),
2083       symtab_(symtab), layout_(layout),
2084       header_ent_cnt_(size == 32 ? 3 : 1),
2085       header_index_(size == 32 ? 0x2000 : 0)
2086   { }
2087
2088   // Override all the Output_data_got methods we use so as to first call
2089   // reserve_ent().
2090   bool
2091   add_global(Symbol* gsym, unsigned int got_type)
2092   {
2093     this->reserve_ent();
2094     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2095   }
2096
2097   bool
2098   add_global_plt(Symbol* gsym, unsigned int got_type)
2099   {
2100     this->reserve_ent();
2101     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2102   }
2103
2104   bool
2105   add_global_tls(Symbol* gsym, unsigned int got_type)
2106   { return this->add_global_plt(gsym, got_type); }
2107
2108   void
2109   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2110                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2111   {
2112     this->reserve_ent();
2113     Output_data_got<size, big_endian>::
2114       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2115   }
2116
2117   void
2118   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2119                            Output_data_reloc_generic* rel_dyn,
2120                            unsigned int r_type_1, unsigned int r_type_2)
2121   {
2122     this->reserve_ent(2);
2123     Output_data_got<size, big_endian>::
2124       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2125   }
2126
2127   bool
2128   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2129   {
2130     this->reserve_ent();
2131     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2132                                                         got_type);
2133   }
2134
2135   bool
2136   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2137   {
2138     this->reserve_ent();
2139     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2140                                                             got_type);
2141   }
2142
2143   bool
2144   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2145   { return this->add_local_plt(object, sym_index, got_type); }
2146
2147   void
2148   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2149                      unsigned int got_type,
2150                      Output_data_reloc_generic* rel_dyn,
2151                      unsigned int r_type)
2152   {
2153     this->reserve_ent(2);
2154     Output_data_got<size, big_endian>::
2155       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2156   }
2157
2158   unsigned int
2159   add_constant(Valtype constant)
2160   {
2161     this->reserve_ent();
2162     return Output_data_got<size, big_endian>::add_constant(constant);
2163   }
2164
2165   unsigned int
2166   add_constant_pair(Valtype c1, Valtype c2)
2167   {
2168     this->reserve_ent(2);
2169     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2170   }
2171
2172   // Offset of _GLOBAL_OFFSET_TABLE_.
2173   unsigned int
2174   g_o_t() const
2175   {
2176     return this->got_offset(this->header_index_);
2177   }
2178
2179   // Offset of base used to access the GOT/TOC.
2180   // The got/toc pointer reg will be set to this value.
2181   Valtype
2182   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2183   {
2184     if (size == 32)
2185       return this->g_o_t();
2186     else
2187       return (this->output_section()->address()
2188               + object->toc_base_offset()
2189               - this->address());
2190   }
2191
2192   // Ensure our GOT has a header.
2193   void
2194   set_final_data_size()
2195   {
2196     if (this->header_ent_cnt_ != 0)
2197       this->make_header();
2198     Output_data_got<size, big_endian>::set_final_data_size();
2199   }
2200
2201   // First word of GOT header needs some values that are not
2202   // handled by Output_data_got so poke them in here.
2203   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2204   void
2205   do_write(Output_file* of)
2206   {
2207     Valtype val = 0;
2208     if (size == 32 && this->layout_->dynamic_data() != NULL)
2209       val = this->layout_->dynamic_section()->address();
2210     if (size == 64)
2211       val = this->output_section()->address() + 0x8000;
2212     this->replace_constant(this->header_index_, val);
2213     Output_data_got<size, big_endian>::do_write(of);
2214   }
2215
2216 private:
2217   void
2218   reserve_ent(unsigned int cnt = 1)
2219   {
2220     if (this->header_ent_cnt_ == 0)
2221       return;
2222     if (this->num_entries() + cnt > this->header_index_)
2223       this->make_header();
2224   }
2225
2226   void
2227   make_header()
2228   {
2229     this->header_ent_cnt_ = 0;
2230     this->header_index_ = this->num_entries();
2231     if (size == 32)
2232       {
2233         Output_data_got<size, big_endian>::add_constant(0);
2234         Output_data_got<size, big_endian>::add_constant(0);
2235         Output_data_got<size, big_endian>::add_constant(0);
2236
2237         // Define _GLOBAL_OFFSET_TABLE_ at the header
2238         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2239         if (gotsym != NULL)
2240           {
2241             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2242             sym->set_value(this->g_o_t());
2243           }
2244         else
2245           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2246                                                Symbol_table::PREDEFINED,
2247                                                this, this->g_o_t(), 0,
2248                                                elfcpp::STT_OBJECT,
2249                                                elfcpp::STB_LOCAL,
2250                                                elfcpp::STV_HIDDEN, 0,
2251                                                false, false);
2252       }
2253     else
2254       Output_data_got<size, big_endian>::add_constant(0);
2255   }
2256
2257   // Stashed pointers.
2258   Symbol_table* symtab_;
2259   Layout* layout_;
2260
2261   // GOT header size.
2262   unsigned int header_ent_cnt_;
2263   // GOT header index.
2264   unsigned int header_index_;
2265 };
2266
2267 // Get the GOT section, creating it if necessary.
2268
2269 template<int size, bool big_endian>
2270 Output_data_got_powerpc<size, big_endian>*
2271 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2272                                               Layout* layout)
2273 {
2274   if (this->got_ == NULL)
2275     {
2276       gold_assert(symtab != NULL && layout != NULL);
2277
2278       this->got_
2279         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2280
2281       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2282                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2283                                       this->got_, ORDER_DATA, false);
2284     }
2285
2286   return this->got_;
2287 }
2288
2289 // Get the dynamic reloc section, creating it if necessary.
2290
2291 template<int size, bool big_endian>
2292 typename Target_powerpc<size, big_endian>::Reloc_section*
2293 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2294 {
2295   if (this->rela_dyn_ == NULL)
2296     {
2297       gold_assert(layout != NULL);
2298       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2299       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2300                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2301                                       ORDER_DYNAMIC_RELOCS, false);
2302     }
2303   return this->rela_dyn_;
2304 }
2305
2306 // Similarly, but for ifunc symbols get the one for ifunc.
2307
2308 template<int size, bool big_endian>
2309 typename Target_powerpc<size, big_endian>::Reloc_section*
2310 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2311                                                    Layout* layout,
2312                                                    bool for_ifunc)
2313 {
2314   if (!for_ifunc)
2315     return this->rela_dyn_section(layout);
2316
2317   if (this->iplt_ == NULL)
2318     this->make_iplt_section(symtab, layout);
2319   return this->iplt_->rel_plt();
2320 }
2321
2322 class Stub_control
2323 {
2324  public:
2325   // Determine the stub group size.  The group size is the absolute
2326   // value of the parameter --stub-group-size.  If --stub-group-size
2327   // is passed a negative value, we restrict stubs to be always before
2328   // the stubbed branches.
2329   Stub_control(int32_t size)
2330     : state_(NO_GROUP), stub_group_size_(abs(size)),
2331       stub14_group_size_(abs(size)),
2332       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2333       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2334   {
2335     if (stub_group_size_ == 1)
2336       {
2337         // Default values.
2338         if (stubs_always_before_branch_)
2339           {
2340             stub_group_size_ = 0x1e00000;
2341             stub14_group_size_ = 0x7800;
2342           }
2343         else
2344           {
2345             stub_group_size_ = 0x1c00000;
2346             stub14_group_size_ = 0x7000;
2347           }
2348         suppress_size_errors_ = true;
2349       }
2350   }
2351
2352   // Return true iff input section can be handled by current stub
2353   // group.
2354   bool
2355   can_add_to_stub_group(Output_section* o,
2356                         const Output_section::Input_section* i,
2357                         bool has14);
2358
2359   const Output_section::Input_section*
2360   owner()
2361   { return owner_; }
2362
2363   Output_section*
2364   output_section()
2365   { return output_section_; }
2366
2367  private:
2368   typedef enum
2369   {
2370     NO_GROUP,
2371     FINDING_STUB_SECTION,
2372     HAS_STUB_SECTION
2373   } State;
2374
2375   State state_;
2376   uint32_t stub_group_size_;
2377   uint32_t stub14_group_size_;
2378   bool stubs_always_before_branch_;
2379   bool suppress_size_errors_;
2380   uint64_t group_end_addr_;
2381   const Output_section::Input_section* owner_;
2382   Output_section* output_section_;
2383 };
2384
2385 // Return true iff input section can be handled by current stub
2386 // group.
2387
2388 bool
2389 Stub_control::can_add_to_stub_group(Output_section* o,
2390                                     const Output_section::Input_section* i,
2391                                     bool has14)
2392 {
2393   uint32_t group_size
2394     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2395   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2396   uint64_t this_size;
2397   uint64_t start_addr = o->address();
2398
2399   if (whole_sec)
2400     // .init and .fini sections are pasted together to form a single
2401     // function.  We can't be adding stubs in the middle of the function.
2402     this_size = o->data_size();
2403   else
2404     {
2405       start_addr += i->relobj()->output_section_offset(i->shndx());
2406       this_size = i->data_size();
2407     }
2408   uint64_t end_addr = start_addr + this_size;
2409   bool toobig = this_size > group_size;
2410
2411   if (toobig && !this->suppress_size_errors_)
2412     gold_warning(_("%s:%s exceeds group size"),
2413                  i->relobj()->name().c_str(),
2414                  i->relobj()->section_name(i->shndx()).c_str());
2415
2416   if (this->state_ != HAS_STUB_SECTION
2417       && (!whole_sec || this->output_section_ != o)
2418       && (this->state_ == NO_GROUP
2419           || this->group_end_addr_ - end_addr < group_size))
2420     {
2421       this->owner_ = i;
2422       this->output_section_ = o;
2423     }
2424
2425   if (this->state_ == NO_GROUP)
2426     {
2427       this->state_ = FINDING_STUB_SECTION;
2428       this->group_end_addr_ = end_addr;
2429     }
2430   else if (this->group_end_addr_ - start_addr < group_size)
2431     ;
2432   // Adding this section would make the group larger than GROUP_SIZE.
2433   else if (this->state_ == FINDING_STUB_SECTION
2434            && !this->stubs_always_before_branch_
2435            && !toobig)
2436     {
2437       // But wait, there's more!  Input sections up to GROUP_SIZE
2438       // bytes before the stub table can be handled by it too.
2439       this->state_ = HAS_STUB_SECTION;
2440       this->group_end_addr_ = end_addr;
2441     }
2442   else
2443     {
2444       this->state_ = NO_GROUP;
2445       return false;
2446     }
2447   return true;
2448 }
2449
2450 // Look over all the input sections, deciding where to place stubs.
2451
2452 template<int size, bool big_endian>
2453 void
2454 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2455                                                  const Task*)
2456 {
2457   Stub_control stub_control(parameters->options().stub_group_size());
2458
2459   // Group input sections and insert stub table
2460   Stub_table<size, big_endian>* stub_table = NULL;
2461   Layout::Section_list section_list;
2462   layout->get_executable_sections(&section_list);
2463   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2464   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2465        o != section_list.rend();
2466        ++o)
2467     {
2468       typedef Output_section::Input_section_list Input_section_list;
2469       for (Input_section_list::const_reverse_iterator i
2470              = (*o)->input_sections().rbegin();
2471            i != (*o)->input_sections().rend();
2472            ++i)
2473         {
2474           if (i->is_input_section())
2475             {
2476               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2477                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2478               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2479               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2480                 {
2481                   stub_table->init(stub_control.owner(),
2482                                    stub_control.output_section());
2483                   stub_table = NULL;
2484                 }
2485               if (stub_table == NULL)
2486                 stub_table = this->new_stub_table();
2487               ppcobj->set_stub_table(i->shndx(), stub_table);
2488             }
2489         }
2490     }
2491   if (stub_table != NULL)
2492     {
2493       const Output_section::Input_section* i = stub_control.owner();
2494       if (!i->is_input_section())
2495         {
2496           // Corner case.  A new stub group was made for the first
2497           // section (last one looked at here) for some reason, but
2498           // the first section is already being used as the owner for
2499           // a stub table for following sections.  Force it into that
2500           // stub group.
2501           gold_assert(this->stub_tables_.size() >= 2);
2502           this->stub_tables_.pop_back();
2503           delete stub_table;
2504           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2505             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2506           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2507         }
2508       else
2509         stub_table->init(i, stub_control.output_section());
2510     }
2511 }
2512
2513 // If this branch needs a plt call stub, or a long branch stub, make one.
2514
2515 template<int size, bool big_endian>
2516 void
2517 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2518     Stub_table<size, big_endian>* stub_table,
2519     Stub_table<size, big_endian>* ifunc_stub_table,
2520     Symbol_table* symtab) const
2521 {
2522   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2523   if (sym != NULL && sym->is_forwarder())
2524     sym = symtab->resolve_forwards(sym);
2525   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2526   Target_powerpc<size, big_endian>* target =
2527     static_cast<Target_powerpc<size, big_endian>*>(
2528       parameters->sized_target<size, big_endian>());
2529   if (gsym != NULL
2530       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2531       : this->object_->local_has_plt_offset(this->r_sym_))
2532     {
2533       if (stub_table == NULL)
2534         stub_table = this->object_->stub_table(this->shndx_);
2535       if (stub_table == NULL)
2536         {
2537           // This is a ref from a data section to an ifunc symbol.
2538           stub_table = ifunc_stub_table;
2539         }
2540       gold_assert(stub_table != NULL);
2541       if (gsym != NULL)
2542         stub_table->add_plt_call_entry(this->object_, gsym,
2543                                        this->r_type_, this->addend_);
2544       else
2545         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2546                                        this->r_type_, this->addend_);
2547     }
2548   else
2549     {
2550       unsigned long max_branch_offset;
2551       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2552           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2553           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2554         max_branch_offset = 1 << 15;
2555       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2556                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2557                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2558         max_branch_offset = 1 << 25;
2559       else
2560         return;
2561       Address from = this->object_->get_output_section_offset(this->shndx_);
2562       gold_assert(from != invalid_address);
2563       from += (this->object_->output_section(this->shndx_)->address()
2564                + this->offset_);
2565       Address to;
2566       if (gsym != NULL)
2567         {
2568           switch (gsym->source())
2569             {
2570             case Symbol::FROM_OBJECT:
2571               {
2572                 Object* symobj = gsym->object();
2573                 if (symobj->is_dynamic()
2574                     || symobj->pluginobj() != NULL)
2575                   return;
2576                 bool is_ordinary;
2577                 unsigned int shndx = gsym->shndx(&is_ordinary);
2578                 if (shndx == elfcpp::SHN_UNDEF)
2579                   return;
2580               }
2581               break;
2582
2583             case Symbol::IS_UNDEFINED:
2584               return;
2585
2586             default:
2587               break;
2588             }
2589           Symbol_table::Compute_final_value_status status;
2590           to = symtab->compute_final_value<size>(gsym, &status);
2591           if (status != Symbol_table::CFVS_OK)
2592             return;
2593           to += this->object_->ppc64_local_entry_offset(gsym);
2594         }
2595       else
2596         {
2597           const Symbol_value<size>* psymval
2598             = this->object_->local_symbol(this->r_sym_);
2599           Symbol_value<size> symval;
2600           typedef Sized_relobj_file<size, big_endian> ObjType;
2601           typename ObjType::Compute_final_local_value_status status
2602             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2603                                                        &symval, symtab);
2604           if (status != ObjType::CFLV_OK
2605               || !symval.has_output_value())
2606             return;
2607           to = symval.value(this->object_, 0);
2608           to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2609         }
2610       to += this->addend_;
2611       if (stub_table == NULL)
2612         stub_table = this->object_->stub_table(this->shndx_);
2613       if (size == 64 && is_branch_reloc(this->r_type_))
2614         {
2615           unsigned int dest_shndx;
2616           to = target->symval_for_branch(symtab, to, gsym,
2617                                          this->object_, &dest_shndx);
2618         }
2619       Address delta = to - from;
2620       if (delta + max_branch_offset >= 2 * max_branch_offset)
2621         {
2622           if (stub_table == NULL)
2623             {
2624               gold_warning(_("%s:%s: branch in non-executable section,"
2625                              " no long branch stub for you"),
2626                            this->object_->name().c_str(),
2627                            this->object_->section_name(this->shndx_).c_str());
2628               return;
2629             }
2630           stub_table->add_long_branch_entry(this->object_, to);
2631         }
2632     }
2633 }
2634
2635 // Relaxation hook.  This is where we do stub generation.
2636
2637 template<int size, bool big_endian>
2638 bool
2639 Target_powerpc<size, big_endian>::do_relax(int pass,
2640                                            const Input_objects*,
2641                                            Symbol_table* symtab,
2642                                            Layout* layout,
2643                                            const Task* task)
2644 {
2645   unsigned int prev_brlt_size = 0;
2646   if (pass == 1)
2647     {
2648       bool thread_safe
2649         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2650       if (size == 64
2651           && this->abiversion() < 2
2652           && !thread_safe
2653           && !parameters->options().user_set_plt_thread_safe())
2654         {
2655           static const char* const thread_starter[] =
2656             {
2657               "pthread_create",
2658               /* libstdc++ */
2659               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2660               /* librt */
2661               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2662               "mq_notify", "create_timer",
2663               /* libanl */
2664               "getaddrinfo_a",
2665               /* libgomp */
2666               "GOMP_parallel_start",
2667               "GOMP_parallel_loop_static_start",
2668               "GOMP_parallel_loop_dynamic_start",
2669               "GOMP_parallel_loop_guided_start",
2670               "GOMP_parallel_loop_runtime_start",
2671               "GOMP_parallel_sections_start",
2672             };
2673
2674           if (parameters->options().shared())
2675             thread_safe = true;
2676           else
2677             {
2678               for (unsigned int i = 0;
2679                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2680                    i++)
2681                 {
2682                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2683                   thread_safe = (sym != NULL
2684                                  && sym->in_reg()
2685                                  && sym->in_real_elf());
2686                   if (thread_safe)
2687                     break;
2688                 }
2689             }
2690         }
2691       this->plt_thread_safe_ = thread_safe;
2692       this->group_sections(layout, task);
2693     }
2694
2695   // We need address of stub tables valid for make_stub.
2696   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2697        p != this->stub_tables_.end();
2698        ++p)
2699     {
2700       const Powerpc_relobj<size, big_endian>* object
2701         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2702       Address off = object->get_output_section_offset((*p)->shndx());
2703       gold_assert(off != invalid_address);
2704       Output_section* os = (*p)->output_section();
2705       (*p)->set_address_and_size(os, off);
2706     }
2707
2708   if (pass != 1)
2709     {
2710       // Clear plt call stubs, long branch stubs and branch lookup table.
2711       prev_brlt_size = this->branch_lookup_table_.size();
2712       this->branch_lookup_table_.clear();
2713       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2714            p != this->stub_tables_.end();
2715            ++p)
2716         {
2717           (*p)->clear_stubs();
2718         }
2719     }
2720
2721   // Build all the stubs.
2722   Stub_table<size, big_endian>* ifunc_stub_table
2723     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2724   Stub_table<size, big_endian>* one_stub_table
2725     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2726   for (typename Branches::const_iterator b = this->branch_info_.begin();
2727        b != this->branch_info_.end();
2728        b++)
2729     {
2730       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2731     }
2732
2733   // Did anything change size?
2734   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2735   bool again = num_huge_branches != prev_brlt_size;
2736   if (size == 64 && num_huge_branches != 0)
2737     this->make_brlt_section(layout);
2738   if (size == 64 && again)
2739     this->brlt_section_->set_current_size(num_huge_branches);
2740
2741   typedef Unordered_set<Output_section*> Output_sections;
2742   Output_sections os_need_update;
2743   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2744        p != this->stub_tables_.end();
2745        ++p)
2746     {
2747       if ((*p)->size_update())
2748         {
2749           again = true;
2750           (*p)->add_eh_frame(layout);
2751           os_need_update.insert((*p)->output_section());
2752         }
2753     }
2754
2755   // Set output section offsets for all input sections in an output
2756   // section that just changed size.  Anything past the stubs will
2757   // need updating.
2758   for (typename Output_sections::iterator p = os_need_update.begin();
2759        p != os_need_update.end();
2760        p++)
2761     {
2762       Output_section* os = *p;
2763       Address off = 0;
2764       typedef Output_section::Input_section_list Input_section_list;
2765       for (Input_section_list::const_iterator i = os->input_sections().begin();
2766            i != os->input_sections().end();
2767            ++i)
2768         {
2769           off = align_address(off, i->addralign());
2770           if (i->is_input_section() || i->is_relaxed_input_section())
2771             i->relobj()->set_section_offset(i->shndx(), off);
2772           if (i->is_relaxed_input_section())
2773             {
2774               Stub_table<size, big_endian>* stub_table
2775                 = static_cast<Stub_table<size, big_endian>*>(
2776                     i->relaxed_input_section());
2777               off += stub_table->set_address_and_size(os, off);
2778             }
2779           else
2780             off += i->data_size();
2781         }
2782       // If .branch_lt is part of this output section, then we have
2783       // just done the offset adjustment.
2784       os->clear_section_offsets_need_adjustment();
2785     }
2786
2787   if (size == 64
2788       && !again
2789       && num_huge_branches != 0
2790       && parameters->options().output_is_position_independent())
2791     {
2792       // Fill in the BRLT relocs.
2793       this->brlt_section_->reset_brlt_sizes();
2794       for (typename Branch_lookup_table::const_iterator p
2795              = this->branch_lookup_table_.begin();
2796            p != this->branch_lookup_table_.end();
2797            ++p)
2798         {
2799           this->brlt_section_->add_reloc(p->first, p->second);
2800         }
2801       this->brlt_section_->finalize_brlt_sizes();
2802     }
2803   return again;
2804 }
2805
2806 template<int size, bool big_endian>
2807 void
2808 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2809                                                       unsigned char* oview,
2810                                                       uint64_t* paddress,
2811                                                       off_t* plen) const
2812 {
2813   uint64_t address = plt->address();
2814   off_t len = plt->data_size();
2815
2816   if (plt == this->glink_)
2817     {
2818       // See Output_data_glink::do_write() for glink contents.
2819       if (size == 64)
2820         {
2821           // There is one word before __glink_PLTresolve
2822           address += 8;
2823           len -= 8;
2824         }
2825       else if (parameters->options().output_is_position_independent())
2826         {
2827           // There are two FDEs for a position independent glink.
2828           // The first covers the branch table, the second
2829           // __glink_PLTresolve at the end of glink.
2830           off_t resolve_size = this->glink_->pltresolve_size;
2831           if (oview[9] == 0)
2832             len -= resolve_size;
2833           else
2834             {
2835               address += len - resolve_size;
2836               len = resolve_size;
2837             }
2838         }
2839     }
2840   else
2841     {
2842       // Must be a stub table.
2843       const Stub_table<size, big_endian>* stub_table
2844         = static_cast<const Stub_table<size, big_endian>*>(plt);
2845       uint64_t stub_address = stub_table->stub_address();
2846       len -= stub_address - address;
2847       address = stub_address;
2848     }
2849
2850   *paddress = address;
2851   *plen = len;
2852 }
2853
2854 // A class to handle the PLT data.
2855
2856 template<int size, bool big_endian>
2857 class Output_data_plt_powerpc : public Output_section_data_build
2858 {
2859  public:
2860   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2861                             size, big_endian> Reloc_section;
2862
2863   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2864                           Reloc_section* plt_rel,
2865                           const char* name)
2866     : Output_section_data_build(size == 32 ? 4 : 8),
2867       rel_(plt_rel),
2868       targ_(targ),
2869       name_(name)
2870   { }
2871
2872   // Add an entry to the PLT.
2873   void
2874   add_entry(Symbol*);
2875
2876   void
2877   add_ifunc_entry(Symbol*);
2878
2879   void
2880   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2881
2882   // Return the .rela.plt section data.
2883   Reloc_section*
2884   rel_plt() const
2885   {
2886     return this->rel_;
2887   }
2888
2889   // Return the number of PLT entries.
2890   unsigned int
2891   entry_count() const
2892   {
2893     if (this->current_data_size() == 0)
2894       return 0;
2895     return ((this->current_data_size() - this->first_plt_entry_offset())
2896             / this->plt_entry_size());
2897   }
2898
2899  protected:
2900   void
2901   do_adjust_output_section(Output_section* os)
2902   {
2903     os->set_entsize(0);
2904   }
2905
2906   // Write to a map file.
2907   void
2908   do_print_to_mapfile(Mapfile* mapfile) const
2909   { mapfile->print_output_data(this, this->name_); }
2910
2911  private:
2912   // Return the offset of the first non-reserved PLT entry.
2913   unsigned int
2914   first_plt_entry_offset() const
2915   {
2916     // IPLT has no reserved entry.
2917     if (this->name_[3] == 'I')
2918       return 0;
2919     return this->targ_->first_plt_entry_offset();
2920   }
2921
2922   // Return the size of each PLT entry.
2923   unsigned int
2924   plt_entry_size() const
2925   {
2926     return this->targ_->plt_entry_size();
2927   }
2928
2929   // Write out the PLT data.
2930   void
2931   do_write(Output_file*);
2932
2933   // The reloc section.
2934   Reloc_section* rel_;
2935   // Allows access to .glink for do_write.
2936   Target_powerpc<size, big_endian>* targ_;
2937   // What to report in map file.
2938   const char *name_;
2939 };
2940
2941 // Add an entry to the PLT.
2942
2943 template<int size, bool big_endian>
2944 void
2945 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2946 {
2947   if (!gsym->has_plt_offset())
2948     {
2949       section_size_type off = this->current_data_size();
2950       if (off == 0)
2951         off += this->first_plt_entry_offset();
2952       gsym->set_plt_offset(off);
2953       gsym->set_needs_dynsym_entry();
2954       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2955       this->rel_->add_global(gsym, dynrel, this, off, 0);
2956       off += this->plt_entry_size();
2957       this->set_current_data_size(off);
2958     }
2959 }
2960
2961 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2962
2963 template<int size, bool big_endian>
2964 void
2965 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2966 {
2967   if (!gsym->has_plt_offset())
2968     {
2969       section_size_type off = this->current_data_size();
2970       gsym->set_plt_offset(off);
2971       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2972       if (size == 64 && this->targ_->abiversion() < 2)
2973         dynrel = elfcpp::R_PPC64_JMP_IREL;
2974       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2975       off += this->plt_entry_size();
2976       this->set_current_data_size(off);
2977     }
2978 }
2979
2980 // Add an entry for a local ifunc symbol to the IPLT.
2981
2982 template<int size, bool big_endian>
2983 void
2984 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2985     Sized_relobj_file<size, big_endian>* relobj,
2986     unsigned int local_sym_index)
2987 {
2988   if (!relobj->local_has_plt_offset(local_sym_index))
2989     {
2990       section_size_type off = this->current_data_size();
2991       relobj->set_local_plt_offset(local_sym_index, off);
2992       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2993       if (size == 64 && this->targ_->abiversion() < 2)
2994         dynrel = elfcpp::R_PPC64_JMP_IREL;
2995       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2996                                               this, off, 0);
2997       off += this->plt_entry_size();
2998       this->set_current_data_size(off);
2999     }
3000 }
3001
3002 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3003 static const uint32_t add_2_2_11        = 0x7c425a14;
3004 static const uint32_t add_3_3_2         = 0x7c631214;
3005 static const uint32_t add_3_3_13        = 0x7c636a14;
3006 static const uint32_t add_11_0_11       = 0x7d605a14;
3007 static const uint32_t add_11_2_11       = 0x7d625a14;
3008 static const uint32_t add_11_11_2       = 0x7d6b1214;
3009 static const uint32_t addi_0_12         = 0x380c0000;
3010 static const uint32_t addi_2_2          = 0x38420000;
3011 static const uint32_t addi_3_3          = 0x38630000;
3012 static const uint32_t addi_11_11        = 0x396b0000;
3013 static const uint32_t addi_12_12        = 0x398c0000;
3014 static const uint32_t addis_0_2         = 0x3c020000;
3015 static const uint32_t addis_0_13        = 0x3c0d0000;
3016 static const uint32_t addis_3_2         = 0x3c620000;
3017 static const uint32_t addis_3_13        = 0x3c6d0000;
3018 static const uint32_t addis_11_2        = 0x3d620000;
3019 static const uint32_t addis_11_11       = 0x3d6b0000;
3020 static const uint32_t addis_11_30       = 0x3d7e0000;
3021 static const uint32_t addis_12_12       = 0x3d8c0000;
3022 static const uint32_t b                 = 0x48000000;
3023 static const uint32_t bcl_20_31         = 0x429f0005;
3024 static const uint32_t bctr              = 0x4e800420;
3025 static const uint32_t blr               = 0x4e800020;
3026 static const uint32_t bnectr_p4         = 0x4ce20420;
3027 static const uint32_t cmpldi_2_0        = 0x28220000;
3028 static const uint32_t cror_15_15_15     = 0x4def7b82;
3029 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3030 static const uint32_t ld_0_1            = 0xe8010000;
3031 static const uint32_t ld_0_12           = 0xe80c0000;
3032 static const uint32_t ld_2_1            = 0xe8410000;
3033 static const uint32_t ld_2_2            = 0xe8420000;
3034 static const uint32_t ld_2_11           = 0xe84b0000;
3035 static const uint32_t ld_11_2           = 0xe9620000;
3036 static const uint32_t ld_11_11          = 0xe96b0000;
3037 static const uint32_t ld_12_2           = 0xe9820000;
3038 static const uint32_t ld_12_11          = 0xe98b0000;
3039 static const uint32_t lfd_0_1           = 0xc8010000;
3040 static const uint32_t li_0_0            = 0x38000000;
3041 static const uint32_t li_12_0           = 0x39800000;
3042 static const uint32_t lis_0_0           = 0x3c000000;
3043 static const uint32_t lis_11            = 0x3d600000;
3044 static const uint32_t lis_12            = 0x3d800000;
3045 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3046 static const uint32_t lwz_0_12          = 0x800c0000;
3047 static const uint32_t lwz_11_11         = 0x816b0000;
3048 static const uint32_t lwz_11_30         = 0x817e0000;
3049 static const uint32_t lwz_12_12         = 0x818c0000;
3050 static const uint32_t lwzu_0_12         = 0x840c0000;
3051 static const uint32_t mflr_0            = 0x7c0802a6;
3052 static const uint32_t mflr_11           = 0x7d6802a6;
3053 static const uint32_t mflr_12           = 0x7d8802a6;
3054 static const uint32_t mtctr_0           = 0x7c0903a6;
3055 static const uint32_t mtctr_11          = 0x7d6903a6;
3056 static const uint32_t mtctr_12          = 0x7d8903a6;
3057 static const uint32_t mtlr_0            = 0x7c0803a6;
3058 static const uint32_t mtlr_12           = 0x7d8803a6;
3059 static const uint32_t nop               = 0x60000000;
3060 static const uint32_t ori_0_0_0         = 0x60000000;
3061 static const uint32_t srdi_0_0_2        = 0x7800f082;
3062 static const uint32_t std_0_1           = 0xf8010000;
3063 static const uint32_t std_0_12          = 0xf80c0000;
3064 static const uint32_t std_2_1           = 0xf8410000;
3065 static const uint32_t stfd_0_1          = 0xd8010000;
3066 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3067 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3068 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3069 static const uint32_t xor_2_12_12       = 0x7d826278;
3070 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3071
3072 // Write out the PLT.
3073
3074 template<int size, bool big_endian>
3075 void
3076 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3077 {
3078   if (size == 32 && this->name_[3] != 'I')
3079     {
3080       const section_size_type offset = this->offset();
3081       const section_size_type oview_size
3082         = convert_to_section_size_type(this->data_size());
3083       unsigned char* const oview = of->get_output_view(offset, oview_size);
3084       unsigned char* pov = oview;
3085       unsigned char* endpov = oview + oview_size;
3086
3087       // The address of the .glink branch table
3088       const Output_data_glink<size, big_endian>* glink
3089         = this->targ_->glink_section();
3090       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3091
3092       while (pov < endpov)
3093         {
3094           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3095           pov += 4;
3096           branch_tab += 4;
3097         }
3098
3099       of->write_output_view(offset, oview_size, oview);
3100     }
3101 }
3102
3103 // Create the PLT section.
3104
3105 template<int size, bool big_endian>
3106 void
3107 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3108                                                    Layout* layout)
3109 {
3110   if (this->plt_ == NULL)
3111     {
3112       if (this->got_ == NULL)
3113         this->got_section(symtab, layout);
3114
3115       if (this->glink_ == NULL)
3116         make_glink_section(layout);
3117
3118       // Ensure that .rela.dyn always appears before .rela.plt  This is
3119       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3120       // needs to include .rela.plt in its range.
3121       this->rela_dyn_section(layout);
3122
3123       Reloc_section* plt_rel = new Reloc_section(false);
3124       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3125                                       elfcpp::SHF_ALLOC, plt_rel,
3126                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3127       this->plt_
3128         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3129                                                         "** PLT");
3130       layout->add_output_section_data(".plt",
3131                                       (size == 32
3132                                        ? elfcpp::SHT_PROGBITS
3133                                        : elfcpp::SHT_NOBITS),
3134                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3135                                       this->plt_,
3136                                       (size == 32
3137                                        ? ORDER_SMALL_DATA
3138                                        : ORDER_SMALL_BSS),
3139                                       false);
3140     }
3141 }
3142
3143 // Create the IPLT section.
3144
3145 template<int size, bool big_endian>
3146 void
3147 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3148                                                     Layout* layout)
3149 {
3150   if (this->iplt_ == NULL)
3151     {
3152       this->make_plt_section(symtab, layout);
3153
3154       Reloc_section* iplt_rel = new Reloc_section(false);
3155       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3156       this->iplt_
3157         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3158                                                         "** IPLT");
3159       this->plt_->output_section()->add_output_section_data(this->iplt_);
3160     }
3161 }
3162
3163 // A section for huge long branch addresses, similar to plt section.
3164
3165 template<int size, bool big_endian>
3166 class Output_data_brlt_powerpc : public Output_section_data_build
3167 {
3168  public:
3169   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3170   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3171                             size, big_endian> Reloc_section;
3172
3173   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3174                            Reloc_section* brlt_rel)
3175     : Output_section_data_build(size == 32 ? 4 : 8),
3176       rel_(brlt_rel),
3177       targ_(targ)
3178   { }
3179
3180   void
3181   reset_brlt_sizes()
3182   {
3183     this->reset_data_size();
3184     this->rel_->reset_data_size();
3185   }
3186
3187   void
3188   finalize_brlt_sizes()
3189   {
3190     this->finalize_data_size();
3191     this->rel_->finalize_data_size();
3192   }
3193
3194   // Add a reloc for an entry in the BRLT.
3195   void
3196   add_reloc(Address to, unsigned int off)
3197   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3198
3199   // Update section and reloc section size.
3200   void
3201   set_current_size(unsigned int num_branches)
3202   {
3203     this->reset_address_and_file_offset();
3204     this->set_current_data_size(num_branches * 16);
3205     this->finalize_data_size();
3206     Output_section* os = this->output_section();
3207     os->set_section_offsets_need_adjustment();
3208     if (this->rel_ != NULL)
3209       {
3210         unsigned int reloc_size
3211           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3212         this->rel_->reset_address_and_file_offset();
3213         this->rel_->set_current_data_size(num_branches * reloc_size);
3214         this->rel_->finalize_data_size();
3215         Output_section* os = this->rel_->output_section();
3216         os->set_section_offsets_need_adjustment();
3217       }
3218   }
3219
3220  protected:
3221   void
3222   do_adjust_output_section(Output_section* os)
3223   {
3224     os->set_entsize(0);
3225   }
3226
3227   // Write to a map file.
3228   void
3229   do_print_to_mapfile(Mapfile* mapfile) const
3230   { mapfile->print_output_data(this, "** BRLT"); }
3231
3232  private:
3233   // Write out the BRLT data.
3234   void
3235   do_write(Output_file*);
3236
3237   // The reloc section.
3238   Reloc_section* rel_;
3239   Target_powerpc<size, big_endian>* targ_;
3240 };
3241
3242 // Make the branch lookup table section.
3243
3244 template<int size, bool big_endian>
3245 void
3246 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3247 {
3248   if (size == 64 && this->brlt_section_ == NULL)
3249     {
3250       Reloc_section* brlt_rel = NULL;
3251       bool is_pic = parameters->options().output_is_position_independent();
3252       if (is_pic)
3253         {
3254           // When PIC we can't fill in .branch_lt (like .plt it can be
3255           // a bss style section) but must initialise at runtime via
3256           // dynamic relocats.
3257           this->rela_dyn_section(layout);
3258           brlt_rel = new Reloc_section(false);
3259           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3260         }
3261       this->brlt_section_
3262         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3263       if (this->plt_ && is_pic)
3264         this->plt_->output_section()
3265           ->add_output_section_data(this->brlt_section_);
3266       else
3267         layout->add_output_section_data(".branch_lt",
3268                                         (is_pic ? elfcpp::SHT_NOBITS
3269                                          : elfcpp::SHT_PROGBITS),
3270                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3271                                         this->brlt_section_,
3272                                         (is_pic ? ORDER_SMALL_BSS
3273                                          : ORDER_SMALL_DATA),
3274                                         false);
3275     }
3276 }
3277
3278 // Write out .branch_lt when non-PIC.
3279
3280 template<int size, bool big_endian>
3281 void
3282 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3283 {
3284   if (size == 64 && !parameters->options().output_is_position_independent())
3285     {
3286       const section_size_type offset = this->offset();
3287       const section_size_type oview_size
3288         = convert_to_section_size_type(this->data_size());
3289       unsigned char* const oview = of->get_output_view(offset, oview_size);
3290
3291       this->targ_->write_branch_lookup_table(oview);
3292       of->write_output_view(offset, oview_size, oview);
3293     }
3294 }
3295
3296 static inline uint32_t
3297 l(uint32_t a)
3298 {
3299   return a & 0xffff;
3300 }
3301
3302 static inline uint32_t
3303 hi(uint32_t a)
3304 {
3305   return l(a >> 16);
3306 }
3307
3308 static inline uint32_t
3309 ha(uint32_t a)
3310 {
3311   return hi(a + 0x8000);
3312 }
3313
3314 template<int size>
3315 struct Eh_cie
3316 {
3317   static const unsigned char eh_frame_cie[12];
3318 };
3319
3320 template<int size>
3321 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3322 {
3323   1,                                    // CIE version.
3324   'z', 'R', 0,                          // Augmentation string.
3325   4,                                    // Code alignment.
3326   0x80 - size / 8 ,                     // Data alignment.
3327   65,                                   // RA reg.
3328   1,                                    // Augmentation size.
3329   (elfcpp::DW_EH_PE_pcrel
3330    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3331   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3332 };
3333
3334 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3335 static const unsigned char glink_eh_frame_fde_64v1[] =
3336 {
3337   0, 0, 0, 0,                           // Replaced with offset to .glink.
3338   0, 0, 0, 0,                           // Replaced with size of .glink.
3339   0,                                    // Augmentation size.
3340   elfcpp::DW_CFA_advance_loc + 1,
3341   elfcpp::DW_CFA_register, 65, 12,
3342   elfcpp::DW_CFA_advance_loc + 4,
3343   elfcpp::DW_CFA_restore_extended, 65
3344 };
3345
3346 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3347 static const unsigned char glink_eh_frame_fde_64v2[] =
3348 {
3349   0, 0, 0, 0,                           // Replaced with offset to .glink.
3350   0, 0, 0, 0,                           // Replaced with size of .glink.
3351   0,                                    // Augmentation size.
3352   elfcpp::DW_CFA_advance_loc + 1,
3353   elfcpp::DW_CFA_register, 65, 0,
3354   elfcpp::DW_CFA_advance_loc + 4,
3355   elfcpp::DW_CFA_restore_extended, 65
3356 };
3357
3358 // Describe __glink_PLTresolve use of LR, 32-bit version.
3359 static const unsigned char glink_eh_frame_fde_32[] =
3360 {
3361   0, 0, 0, 0,                           // Replaced with offset to .glink.
3362   0, 0, 0, 0,                           // Replaced with size of .glink.
3363   0,                                    // Augmentation size.
3364   elfcpp::DW_CFA_advance_loc + 2,
3365   elfcpp::DW_CFA_register, 65, 0,
3366   elfcpp::DW_CFA_advance_loc + 4,
3367   elfcpp::DW_CFA_restore_extended, 65
3368 };
3369
3370 static const unsigned char default_fde[] =
3371 {
3372   0, 0, 0, 0,                           // Replaced with offset to stubs.
3373   0, 0, 0, 0,                           // Replaced with size of stubs.
3374   0,                                    // Augmentation size.
3375   elfcpp::DW_CFA_nop,                   // Pad.
3376   elfcpp::DW_CFA_nop,
3377   elfcpp::DW_CFA_nop
3378 };
3379
3380 template<bool big_endian>
3381 static inline void
3382 write_insn(unsigned char* p, uint32_t v)
3383 {
3384   elfcpp::Swap<32, big_endian>::writeval(p, v);
3385 }
3386
3387 // Stub_table holds information about plt and long branch stubs.
3388 // Stubs are built in an area following some input section determined
3389 // by group_sections().  This input section is converted to a relaxed
3390 // input section allowing it to be resized to accommodate the stubs
3391
3392 template<int size, bool big_endian>
3393 class Stub_table : public Output_relaxed_input_section
3394 {
3395  public:
3396   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3397   static const Address invalid_address = static_cast<Address>(0) - 1;
3398
3399   Stub_table(Target_powerpc<size, big_endian>* targ)
3400     : Output_relaxed_input_section(NULL, 0, 0),
3401       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3402       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3403       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3404   { }
3405
3406   // Delayed Output_relaxed_input_section init.
3407   void
3408   init(const Output_section::Input_section*, Output_section*);
3409
3410   // Add a plt call stub.
3411   void
3412   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3413                      const Symbol*,
3414                      unsigned int,
3415                      Address);
3416
3417   void
3418   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3419                      unsigned int,
3420                      unsigned int,
3421                      Address);
3422
3423   // Find a given plt call stub.
3424   Address
3425   find_plt_call_entry(const Symbol*) const;
3426
3427   Address
3428   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3429                       unsigned int) const;
3430
3431   Address
3432   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3433                       const Symbol*,
3434                       unsigned int,
3435                       Address) const;
3436
3437   Address
3438   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3439                       unsigned int,
3440                       unsigned int,
3441                       Address) const;
3442
3443   // Add a long branch stub.
3444   void
3445   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3446
3447   Address
3448   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3449                          Address) const;
3450
3451   void
3452   clear_stubs()
3453   {
3454     this->plt_call_stubs_.clear();
3455     this->plt_size_ = 0;
3456     this->long_branch_stubs_.clear();
3457     this->branch_size_ = 0;
3458   }
3459
3460   Address
3461   set_address_and_size(const Output_section* os, Address off)
3462   {
3463     Address start_off = off;
3464     off += this->orig_data_size_;
3465     Address my_size = this->plt_size_ + this->branch_size_;
3466     if (my_size != 0)
3467       off = align_address(off, this->stub_align());
3468     // Include original section size and alignment padding in size
3469     my_size += off - start_off;
3470     this->reset_address_and_file_offset();
3471     this->set_current_data_size(my_size);
3472     this->set_address_and_file_offset(os->address() + start_off,
3473                                       os->offset() + start_off);
3474     return my_size;
3475   }
3476
3477   Address
3478   stub_address() const
3479   {
3480     return align_address(this->address() + this->orig_data_size_,
3481                          this->stub_align());
3482   }
3483
3484   Address
3485   stub_offset() const
3486   {
3487     return align_address(this->offset() + this->orig_data_size_,
3488                          this->stub_align());
3489   }
3490
3491   section_size_type
3492   plt_size() const
3493   { return this->plt_size_; }
3494
3495   bool
3496   size_update()
3497   {
3498     Output_section* os = this->output_section();
3499     if (os->addralign() < this->stub_align())
3500       {
3501         os->set_addralign(this->stub_align());
3502         // FIXME: get rid of the insane checkpointing.
3503         // We can't increase alignment of the input section to which
3504         // stubs are attached;  The input section may be .init which
3505         // is pasted together with other .init sections to form a
3506         // function.  Aligning might insert zero padding resulting in
3507         // sigill.  However we do need to increase alignment of the
3508         // output section so that the align_address() on offset in
3509         // set_address_and_size() adds the same padding as the
3510         // align_address() on address in stub_address().
3511         // What's more, we need this alignment for the layout done in
3512         // relaxation_loop_body() so that the output section starts at
3513         // a suitably aligned address.
3514         os->checkpoint_set_addralign(this->stub_align());
3515       }
3516     if (this->last_plt_size_ != this->plt_size_
3517         || this->last_branch_size_ != this->branch_size_)
3518       {
3519         this->last_plt_size_ = this->plt_size_;
3520         this->last_branch_size_ = this->branch_size_;
3521         return true;
3522       }
3523     return false;
3524   }
3525
3526   // Add .eh_frame info for this stub section.  Unlike other linker
3527   // generated .eh_frame this is added late in the link, because we
3528   // only want the .eh_frame info if this particular stub section is
3529   // non-empty.
3530   void
3531   add_eh_frame(Layout* layout)
3532   {
3533     if (!this->eh_frame_added_)
3534       {
3535         if (!parameters->options().ld_generated_unwind_info())
3536           return;
3537
3538         // Since we add stub .eh_frame info late, it must be placed
3539         // after all other linker generated .eh_frame info so that
3540         // merge mapping need not be updated for input sections.
3541         // There is no provision to use a different CIE to that used
3542         // by .glink.
3543         if (!this->targ_->has_glink())
3544           return;
3545
3546         layout->add_eh_frame_for_plt(this,
3547                                      Eh_cie<size>::eh_frame_cie,
3548                                      sizeof (Eh_cie<size>::eh_frame_cie),
3549                                      default_fde,
3550                                      sizeof (default_fde));
3551         this->eh_frame_added_ = true;
3552       }
3553   }
3554
3555   Target_powerpc<size, big_endian>*
3556   targ() const
3557   { return targ_; }
3558
3559  private:
3560   class Plt_stub_ent;
3561   class Plt_stub_ent_hash;
3562   typedef Unordered_map<Plt_stub_ent, unsigned int,
3563                         Plt_stub_ent_hash> Plt_stub_entries;
3564
3565   // Alignment of stub section.
3566   unsigned int
3567   stub_align() const
3568   {
3569     if (size == 32)
3570       return 16;
3571     unsigned int min_align = 32;
3572     unsigned int user_align = 1 << parameters->options().plt_align();
3573     return std::max(user_align, min_align);
3574   }
3575
3576   // Return the plt offset for the given call stub.
3577   Address
3578   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3579   {
3580     const Symbol* gsym = p->first.sym_;
3581     if (gsym != NULL)
3582       {
3583         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3584                     && gsym->can_use_relative_reloc(false));
3585         return gsym->plt_offset();
3586       }
3587     else
3588       {
3589         *is_iplt = true;
3590         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3591         unsigned int local_sym_index = p->first.locsym_;
3592         return relobj->local_plt_offset(local_sym_index);
3593       }
3594   }
3595
3596   // Size of a given plt call stub.
3597   unsigned int
3598   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3599   {
3600     if (size == 32)
3601       return 16;
3602
3603     bool is_iplt;
3604     Address plt_addr = this->plt_off(p, &is_iplt);
3605     if (is_iplt)
3606       plt_addr += this->targ_->iplt_section()->address();
3607     else
3608       plt_addr += this->targ_->plt_section()->address();
3609     Address got_addr = this->targ_->got_section()->output_section()->address();
3610     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3611       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3612     got_addr += ppcobj->toc_base_offset();
3613     Address off = plt_addr - got_addr;
3614     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3615     if (this->targ_->abiversion() < 2)
3616       {
3617         bool static_chain = parameters->options().plt_static_chain();
3618         bool thread_safe = this->targ_->plt_thread_safe();
3619         bytes += (4
3620                   + 4 * static_chain
3621                   + 8 * thread_safe
3622                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3623       }
3624     unsigned int align = 1 << parameters->options().plt_align();
3625     if (align > 1)
3626       bytes = (bytes + align - 1) & -align;
3627     return bytes;
3628   }
3629
3630   // Return long branch stub size.
3631   unsigned int
3632   branch_stub_size(Address to)
3633   {
3634     Address loc
3635       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3636     if (to - loc + (1 << 25) < 2 << 25)
3637       return 4;
3638     if (size == 64 || !parameters->options().output_is_position_independent())
3639       return 16;
3640     return 32;
3641   }
3642
3643   // Write out stubs.
3644   void
3645   do_write(Output_file*);
3646
3647   // Plt call stub keys.
3648   class Plt_stub_ent
3649   {
3650   public:
3651     Plt_stub_ent(const Symbol* sym)
3652       : sym_(sym), object_(0), addend_(0), locsym_(0)
3653     { }
3654
3655     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3656                  unsigned int locsym_index)
3657       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3658     { }
3659
3660     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3661                  const Symbol* sym,
3662                  unsigned int r_type,
3663                  Address addend)
3664       : sym_(sym), object_(0), addend_(0), locsym_(0)
3665     {
3666       if (size != 32)
3667         this->addend_ = addend;
3668       else if (parameters->options().output_is_position_independent()
3669                && r_type == elfcpp::R_PPC_PLTREL24)
3670         {
3671           this->addend_ = addend;
3672           if (this->addend_ >= 32768)
3673             this->object_ = object;
3674         }
3675     }
3676
3677     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3678                  unsigned int locsym_index,
3679                  unsigned int r_type,
3680                  Address addend)
3681       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3682     {
3683       if (size != 32)
3684         this->addend_ = addend;
3685       else if (parameters->options().output_is_position_independent()
3686                && r_type == elfcpp::R_PPC_PLTREL24)
3687         this->addend_ = addend;
3688     }
3689
3690     bool operator==(const Plt_stub_ent& that) const
3691     {
3692       return (this->sym_ == that.sym_
3693               && this->object_ == that.object_
3694               && this->addend_ == that.addend_
3695               && this->locsym_ == that.locsym_);
3696     }
3697
3698     const Symbol* sym_;
3699     const Sized_relobj_file<size, big_endian>* object_;
3700     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3701     unsigned int locsym_;
3702   };
3703
3704   class Plt_stub_ent_hash
3705   {
3706   public:
3707     size_t operator()(const Plt_stub_ent& ent) const
3708     {
3709       return (reinterpret_cast<uintptr_t>(ent.sym_)
3710               ^ reinterpret_cast<uintptr_t>(ent.object_)
3711               ^ ent.addend_
3712               ^ ent.locsym_);
3713     }
3714   };
3715
3716   // Long branch stub keys.
3717   class Branch_stub_ent
3718   {
3719   public:
3720     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3721       : dest_(to), toc_base_off_(0)
3722     {
3723       if (size == 64)
3724         toc_base_off_ = obj->toc_base_offset();
3725     }
3726
3727     bool operator==(const Branch_stub_ent& that) const
3728     {
3729       return (this->dest_ == that.dest_
3730               && (size == 32
3731                   || this->toc_base_off_ == that.toc_base_off_));
3732     }
3733
3734     Address dest_;
3735     unsigned int toc_base_off_;
3736   };
3737
3738   class Branch_stub_ent_hash
3739   {
3740   public:
3741     size_t operator()(const Branch_stub_ent& ent) const
3742     { return ent.dest_ ^ ent.toc_base_off_; }
3743   };
3744
3745   // In a sane world this would be a global.
3746   Target_powerpc<size, big_endian>* targ_;
3747   // Map sym/object/addend to stub offset.
3748   Plt_stub_entries plt_call_stubs_;
3749   // Map destination address to stub offset.
3750   typedef Unordered_map<Branch_stub_ent, unsigned int,
3751                         Branch_stub_ent_hash> Branch_stub_entries;
3752   Branch_stub_entries long_branch_stubs_;
3753   // size of input section
3754   section_size_type orig_data_size_;
3755   // size of stubs
3756   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3757   // Whether .eh_frame info has been created for this stub section.
3758   bool eh_frame_added_;
3759 };
3760
3761 // Make a new stub table, and record.
3762
3763 template<int size, bool big_endian>
3764 Stub_table<size, big_endian>*
3765 Target_powerpc<size, big_endian>::new_stub_table()
3766 {
3767   Stub_table<size, big_endian>* stub_table
3768     = new Stub_table<size, big_endian>(this);
3769   this->stub_tables_.push_back(stub_table);
3770   return stub_table;
3771 }
3772
3773 // Delayed stub table initialisation, because we create the stub table
3774 // before we know to which section it will be attached.
3775
3776 template<int size, bool big_endian>
3777 void
3778 Stub_table<size, big_endian>::init(
3779     const Output_section::Input_section* owner,
3780     Output_section* output_section)
3781 {
3782   this->set_relobj(owner->relobj());
3783   this->set_shndx(owner->shndx());
3784   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3785   this->set_output_section(output_section);
3786   this->orig_data_size_ = owner->current_data_size();
3787
3788   std::vector<Output_relaxed_input_section*> new_relaxed;
3789   new_relaxed.push_back(this);
3790   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3791 }
3792
3793 // Add a plt call stub, if we do not already have one for this
3794 // sym/object/addend combo.
3795
3796 template<int size, bool big_endian>
3797 void
3798 Stub_table<size, big_endian>::add_plt_call_entry(
3799     const Sized_relobj_file<size, big_endian>* object,
3800     const Symbol* gsym,
3801     unsigned int r_type,
3802     Address addend)
3803 {
3804   Plt_stub_ent ent(object, gsym, r_type, addend);
3805   Address off = this->plt_size_;
3806   std::pair<typename Plt_stub_entries::iterator, bool> p
3807     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3808   if (p.second)
3809     this->plt_size_ = off + this->plt_call_size(p.first);
3810 }
3811
3812 template<int size, bool big_endian>
3813 void
3814 Stub_table<size, big_endian>::add_plt_call_entry(
3815     const Sized_relobj_file<size, big_endian>* object,
3816     unsigned int locsym_index,
3817     unsigned int r_type,
3818     Address addend)
3819 {
3820   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3821   Address off = this->plt_size_;
3822   std::pair<typename Plt_stub_entries::iterator, bool> p
3823     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3824   if (p.second)
3825     this->plt_size_ = off + this->plt_call_size(p.first);
3826 }
3827
3828 // Find a plt call stub.
3829
3830 template<int size, bool big_endian>
3831 typename Stub_table<size, big_endian>::Address
3832 Stub_table<size, big_endian>::find_plt_call_entry(
3833     const Sized_relobj_file<size, big_endian>* object,
3834     const Symbol* gsym,
3835     unsigned int r_type,
3836     Address addend) const
3837 {
3838   Plt_stub_ent ent(object, gsym, r_type, addend);
3839   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3840   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3841 }
3842
3843 template<int size, bool big_endian>
3844 typename Stub_table<size, big_endian>::Address
3845 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3846 {
3847   Plt_stub_ent ent(gsym);
3848   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3849   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3850 }
3851
3852 template<int size, bool big_endian>
3853 typename Stub_table<size, big_endian>::Address
3854 Stub_table<size, big_endian>::find_plt_call_entry(
3855     const Sized_relobj_file<size, big_endian>* object,
3856     unsigned int locsym_index,
3857     unsigned int r_type,
3858     Address addend) const
3859 {
3860   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3861   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3862   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3863 }
3864
3865 template<int size, bool big_endian>
3866 typename Stub_table<size, big_endian>::Address
3867 Stub_table<size, big_endian>::find_plt_call_entry(
3868     const Sized_relobj_file<size, big_endian>* object,
3869     unsigned int locsym_index) const
3870 {
3871   Plt_stub_ent ent(object, locsym_index);
3872   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3873   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3874 }
3875
3876 // Add a long branch stub if we don't already have one to given
3877 // destination.
3878
3879 template<int size, bool big_endian>
3880 void
3881 Stub_table<size, big_endian>::add_long_branch_entry(
3882     const Powerpc_relobj<size, big_endian>* object,
3883     Address to)
3884 {
3885   Branch_stub_ent ent(object, to);
3886   Address off = this->branch_size_;
3887   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3888     {
3889       unsigned int stub_size = this->branch_stub_size(to);
3890       this->branch_size_ = off + stub_size;
3891       if (size == 64 && stub_size != 4)
3892         this->targ_->add_branch_lookup_table(to);
3893     }
3894 }
3895
3896 // Find long branch stub.
3897
3898 template<int size, bool big_endian>
3899 typename Stub_table<size, big_endian>::Address
3900 Stub_table<size, big_endian>::find_long_branch_entry(
3901     const Powerpc_relobj<size, big_endian>* object,
3902     Address to) const
3903 {
3904   Branch_stub_ent ent(object, to);
3905   typename Branch_stub_entries::const_iterator p
3906     = this->long_branch_stubs_.find(ent);
3907   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3908 }
3909
3910 // A class to handle .glink.
3911
3912 template<int size, bool big_endian>
3913 class Output_data_glink : public Output_section_data
3914 {
3915  public:
3916   static const int pltresolve_size = 16*4;
3917
3918   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3919     : Output_section_data(16), targ_(targ)
3920   { }
3921
3922   void
3923   add_eh_frame(Layout* layout)
3924   {
3925     if (!parameters->options().ld_generated_unwind_info())
3926       return;
3927
3928     if (size == 64)
3929       {
3930         if (this->targ_->abiversion() < 2)
3931           layout->add_eh_frame_for_plt(this,
3932                                        Eh_cie<64>::eh_frame_cie,
3933                                        sizeof (Eh_cie<64>::eh_frame_cie),
3934                                        glink_eh_frame_fde_64v1,
3935                                        sizeof (glink_eh_frame_fde_64v1));
3936         else
3937           layout->add_eh_frame_for_plt(this,
3938                                        Eh_cie<64>::eh_frame_cie,
3939                                        sizeof (Eh_cie<64>::eh_frame_cie),
3940                                        glink_eh_frame_fde_64v2,
3941                                        sizeof (glink_eh_frame_fde_64v2));
3942       }
3943     else
3944       {
3945         // 32-bit .glink can use the default since the CIE return
3946         // address reg, LR, is valid.
3947         layout->add_eh_frame_for_plt(this,
3948                                      Eh_cie<32>::eh_frame_cie,
3949                                      sizeof (Eh_cie<32>::eh_frame_cie),
3950                                      default_fde,
3951                                      sizeof (default_fde));
3952         // Except where LR is used in a PIC __glink_PLTresolve.
3953         if (parameters->options().output_is_position_independent())
3954           layout->add_eh_frame_for_plt(this,
3955                                        Eh_cie<32>::eh_frame_cie,
3956                                        sizeof (Eh_cie<32>::eh_frame_cie),
3957                                        glink_eh_frame_fde_32,
3958                                        sizeof (glink_eh_frame_fde_32));
3959       }
3960   }
3961
3962  protected:
3963   // Write to a map file.
3964   void
3965   do_print_to_mapfile(Mapfile* mapfile) const
3966   { mapfile->print_output_data(this, _("** glink")); }
3967
3968  private:
3969   void
3970   set_final_data_size();
3971
3972   // Write out .glink
3973   void
3974   do_write(Output_file*);
3975
3976   // Allows access to .got and .plt for do_write.
3977   Target_powerpc<size, big_endian>* targ_;
3978 };
3979
3980 template<int size, bool big_endian>
3981 void
3982 Output_data_glink<size, big_endian>::set_final_data_size()
3983 {
3984   unsigned int count = this->targ_->plt_entry_count();
3985   section_size_type total = 0;
3986
3987   if (count != 0)
3988     {
3989       if (size == 32)
3990         {
3991           // space for branch table
3992           total += 4 * (count - 1);
3993
3994           total += -total & 15;
3995           total += this->pltresolve_size;
3996         }
3997       else
3998         {
3999           total += this->pltresolve_size;
4000
4001           // space for branch table
4002           total += 4 * count;
4003           if (this->targ_->abiversion() < 2)
4004             {
4005               total += 4 * count;
4006               if (count > 0x8000)
4007                 total += 4 * (count - 0x8000);
4008             }
4009         }
4010     }
4011
4012   this->set_data_size(total);
4013 }
4014
4015 // Write out plt and long branch stub code.
4016
4017 template<int size, bool big_endian>
4018 void
4019 Stub_table<size, big_endian>::do_write(Output_file* of)
4020 {
4021   if (this->plt_call_stubs_.empty()
4022       && this->long_branch_stubs_.empty())
4023     return;
4024
4025   const section_size_type start_off = this->offset();
4026   const section_size_type off = this->stub_offset();
4027   const section_size_type oview_size =
4028     convert_to_section_size_type(this->data_size() - (off - start_off));
4029   unsigned char* const oview = of->get_output_view(off, oview_size);
4030   unsigned char* p;
4031
4032   if (size == 64)
4033     {
4034       const Output_data_got_powerpc<size, big_endian>* got
4035         = this->targ_->got_section();
4036       Address got_os_addr = got->output_section()->address();
4037
4038       if (!this->plt_call_stubs_.empty())
4039         {
4040           // The base address of the .plt section.
4041           Address plt_base = this->targ_->plt_section()->address();
4042           Address iplt_base = invalid_address;
4043
4044           // Write out plt call stubs.
4045           typename Plt_stub_entries::const_iterator cs;
4046           for (cs = this->plt_call_stubs_.begin();
4047                cs != this->plt_call_stubs_.end();
4048                ++cs)
4049             {
4050               bool is_iplt;
4051               Address pltoff = this->plt_off(cs, &is_iplt);
4052               Address plt_addr = pltoff;
4053               if (is_iplt)
4054                 {
4055                   if (iplt_base == invalid_address)
4056                     iplt_base = this->targ_->iplt_section()->address();
4057                   plt_addr += iplt_base;
4058                 }
4059               else
4060                 plt_addr += plt_base;
4061               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4062                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4063               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4064               Address off = plt_addr - got_addr;
4065
4066               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4067                 gold_error(_("%s: linkage table error against `%s'"),
4068                            cs->first.object_->name().c_str(),
4069                            cs->first.sym_->demangled_name().c_str());
4070
4071               bool plt_load_toc = this->targ_->abiversion() < 2;
4072               bool static_chain
4073                 = plt_load_toc && parameters->options().plt_static_chain();
4074               bool thread_safe
4075                 = plt_load_toc && this->targ_->plt_thread_safe();
4076               bool use_fake_dep = false;
4077               Address cmp_branch_off = 0;
4078               if (thread_safe)
4079                 {
4080                   unsigned int pltindex
4081                     = ((pltoff - this->targ_->first_plt_entry_offset())
4082                        / this->targ_->plt_entry_size());
4083                   Address glinkoff
4084                     = (this->targ_->glink_section()->pltresolve_size
4085                        + pltindex * 8);
4086                   if (pltindex > 32768)
4087                     glinkoff += (pltindex - 32768) * 4;
4088                   Address to
4089                     = this->targ_->glink_section()->address() + glinkoff;
4090                   Address from
4091                     = (this->stub_address() + cs->second + 24
4092                        + 4 * (ha(off) != 0)
4093                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4094                        + 4 * static_chain);
4095                   cmp_branch_off = to - from;
4096                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4097                 }
4098
4099               p = oview + cs->second;
4100               if (ha(off) != 0)
4101                 {
4102                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4103                   p += 4;
4104                   write_insn<big_endian>(p, addis_11_2 + ha(off));
4105                   p += 4;
4106                   write_insn<big_endian>(p, ld_12_11 + l(off));
4107                   p += 4;
4108                   if (plt_load_toc
4109                       && ha(off + 8 + 8 * static_chain) != ha(off))
4110                     {
4111                       write_insn<big_endian>(p, addi_11_11 + l(off));
4112                       p += 4;
4113                       off = 0;
4114                     }
4115                   write_insn<big_endian>(p, mtctr_12);
4116                   p += 4;
4117                   if (plt_load_toc)
4118                     {
4119                       if (use_fake_dep)
4120                         {
4121                           write_insn<big_endian>(p, xor_2_12_12);
4122                           p += 4;
4123                           write_insn<big_endian>(p, add_11_11_2);
4124                           p += 4;
4125                         }
4126                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4127                       p += 4;
4128                       if (static_chain)
4129                         {
4130                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4131                           p += 4;
4132                         }
4133                     }
4134                 }
4135               else
4136                 {
4137                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4138                   p += 4;
4139                   write_insn<big_endian>(p, ld_12_2 + l(off));
4140                   p += 4;
4141                   if (plt_load_toc
4142                       && ha(off + 8 + 8 * static_chain) != ha(off))
4143                     {
4144                       write_insn<big_endian>(p, addi_2_2 + l(off));
4145                       p += 4;
4146                       off = 0;
4147                     }
4148                   write_insn<big_endian>(p, mtctr_12);
4149                   p += 4;
4150                   if (plt_load_toc)
4151                     {
4152                       if (use_fake_dep)
4153                         {
4154                           write_insn<big_endian>(p, xor_11_12_12);
4155                           p += 4;
4156                           write_insn<big_endian>(p, add_2_2_11);
4157                           p += 4;
4158                         }
4159                       if (static_chain)
4160                         {
4161                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4162                           p += 4;
4163                         }
4164                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4165                       p += 4;
4166                     }
4167                 }
4168               if (thread_safe && !use_fake_dep)
4169                 {
4170                   write_insn<big_endian>(p, cmpldi_2_0);
4171                   p += 4;
4172                   write_insn<big_endian>(p, bnectr_p4);
4173                   p += 4;
4174                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4175                 }
4176               else
4177                 write_insn<big_endian>(p, bctr);
4178             }
4179         }
4180
4181       // Write out long branch stubs.
4182       typename Branch_stub_entries::const_iterator bs;
4183       for (bs = this->long_branch_stubs_.begin();
4184            bs != this->long_branch_stubs_.end();
4185            ++bs)
4186         {
4187           p = oview + this->plt_size_ + bs->second;
4188           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4189           Address delta = bs->first.dest_ - loc;
4190           if (delta + (1 << 25) < 2 << 25)
4191             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4192           else
4193             {
4194               Address brlt_addr
4195                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4196               gold_assert(brlt_addr != invalid_address);
4197               brlt_addr += this->targ_->brlt_section()->address();
4198               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4199               Address brltoff = brlt_addr - got_addr;
4200               if (ha(brltoff) == 0)
4201                 {
4202                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4203                 }
4204               else
4205                 {
4206                   write_insn<big_endian>(p, addis_11_2 + ha(brltoff)),  p += 4;
4207                   write_insn<big_endian>(p, ld_12_11 + l(brltoff)),     p += 4;
4208                 }
4209               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4210               write_insn<big_endian>(p, bctr);
4211             }
4212         }
4213     }
4214   else
4215     {
4216       if (!this->plt_call_stubs_.empty())
4217         {
4218           // The base address of the .plt section.
4219           Address plt_base = this->targ_->plt_section()->address();
4220           Address iplt_base = invalid_address;
4221           // The address of _GLOBAL_OFFSET_TABLE_.
4222           Address g_o_t = invalid_address;
4223
4224           // Write out plt call stubs.
4225           typename Plt_stub_entries::const_iterator cs;
4226           for (cs = this->plt_call_stubs_.begin();
4227                cs != this->plt_call_stubs_.end();
4228                ++cs)
4229             {
4230               bool is_iplt;
4231               Address plt_addr = this->plt_off(cs, &is_iplt);
4232               if (is_iplt)
4233                 {
4234                   if (iplt_base == invalid_address)
4235                     iplt_base = this->targ_->iplt_section()->address();
4236                   plt_addr += iplt_base;
4237                 }
4238               else
4239                 plt_addr += plt_base;
4240
4241               p = oview + cs->second;
4242               if (parameters->options().output_is_position_independent())
4243                 {
4244                   Address got_addr;
4245                   const Powerpc_relobj<size, big_endian>* ppcobj
4246                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4247                        (cs->first.object_));
4248                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4249                     {
4250                       unsigned int got2 = ppcobj->got2_shndx();
4251                       got_addr = ppcobj->get_output_section_offset(got2);
4252                       gold_assert(got_addr != invalid_address);
4253                       got_addr += (ppcobj->output_section(got2)->address()
4254                                    + cs->first.addend_);
4255                     }
4256                   else
4257                     {
4258                       if (g_o_t == invalid_address)
4259                         {
4260                           const Output_data_got_powerpc<size, big_endian>* got
4261                             = this->targ_->got_section();
4262                           g_o_t = got->address() + got->g_o_t();
4263                         }
4264                       got_addr = g_o_t;
4265                     }
4266
4267                   Address off = plt_addr - got_addr;
4268                   if (ha(off) == 0)
4269                     {
4270                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4271                       write_insn<big_endian>(p +  4, mtctr_11);
4272                       write_insn<big_endian>(p +  8, bctr);
4273                     }
4274                   else
4275                     {
4276                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4277                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4278                       write_insn<big_endian>(p +  8, mtctr_11);
4279                       write_insn<big_endian>(p + 12, bctr);
4280                     }
4281                 }
4282               else
4283                 {
4284                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4285                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4286                   write_insn<big_endian>(p +  8, mtctr_11);
4287                   write_insn<big_endian>(p + 12, bctr);
4288                 }
4289             }
4290         }
4291
4292       // Write out long branch stubs.
4293       typename Branch_stub_entries::const_iterator bs;
4294       for (bs = this->long_branch_stubs_.begin();
4295            bs != this->long_branch_stubs_.end();
4296            ++bs)
4297         {
4298           p = oview + this->plt_size_ + bs->second;
4299           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4300           Address delta = bs->first.dest_ - loc;
4301           if (delta + (1 << 25) < 2 << 25)
4302             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4303           else if (!parameters->options().output_is_position_independent())
4304             {
4305               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4306               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4307               write_insn<big_endian>(p +  8, mtctr_12);
4308               write_insn<big_endian>(p + 12, bctr);
4309             }
4310           else
4311             {
4312               delta -= 8;
4313               write_insn<big_endian>(p +  0, mflr_0);
4314               write_insn<big_endian>(p +  4, bcl_20_31);
4315               write_insn<big_endian>(p +  8, mflr_12);
4316               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4317               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4318               write_insn<big_endian>(p + 20, mtlr_0);
4319               write_insn<big_endian>(p + 24, mtctr_12);
4320               write_insn<big_endian>(p + 28, bctr);
4321             }
4322         }
4323     }
4324 }
4325
4326 // Write out .glink.
4327
4328 template<int size, bool big_endian>
4329 void
4330 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4331 {
4332   const section_size_type off = this->offset();
4333   const section_size_type oview_size =
4334     convert_to_section_size_type(this->data_size());
4335   unsigned char* const oview = of->get_output_view(off, oview_size);
4336   unsigned char* p;
4337
4338   // The base address of the .plt section.
4339   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4340   Address plt_base = this->targ_->plt_section()->address();
4341
4342   if (size == 64)
4343     {
4344       // Write pltresolve stub.
4345       p = oview;
4346       Address after_bcl = this->address() + 16;
4347       Address pltoff = plt_base - after_bcl;
4348
4349       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
4350
4351       if (this->targ_->abiversion() < 2)
4352         {
4353           write_insn<big_endian>(p, mflr_12),                   p += 4;
4354           write_insn<big_endian>(p, bcl_20_31),                 p += 4;
4355           write_insn<big_endian>(p, mflr_11),                   p += 4;
4356           write_insn<big_endian>(p, ld_2_11 + l(-16)),          p += 4;
4357           write_insn<big_endian>(p, mtlr_12),                   p += 4;
4358           write_insn<big_endian>(p, add_11_2_11),               p += 4;
4359           write_insn<big_endian>(p, ld_12_11 + 0),              p += 4;
4360           write_insn<big_endian>(p, ld_2_11 + 8),               p += 4;
4361           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4362           write_insn<big_endian>(p, ld_11_11 + 16),             p += 4;
4363         }
4364       else
4365         {
4366           write_insn<big_endian>(p, mflr_0),                    p += 4;
4367           write_insn<big_endian>(p, bcl_20_31),                 p += 4;
4368           write_insn<big_endian>(p, mflr_11),                   p += 4;
4369           write_insn<big_endian>(p, ld_2_11 + l(-16)),          p += 4;
4370           write_insn<big_endian>(p, mtlr_0),                    p += 4;
4371           write_insn<big_endian>(p, sub_12_12_11),              p += 4;
4372           write_insn<big_endian>(p, add_11_2_11),               p += 4;
4373           write_insn<big_endian>(p, addi_0_12 + l(-48)),        p += 4;
4374           write_insn<big_endian>(p, ld_12_11 + 0),              p += 4;
4375           write_insn<big_endian>(p, srdi_0_0_2),                p += 4;
4376           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4377           write_insn<big_endian>(p, ld_11_11 + 8),              p += 4;
4378         }
4379       write_insn<big_endian>(p, bctr),                          p += 4;
4380       while (p < oview + this->pltresolve_size)
4381         write_insn<big_endian>(p, nop), p += 4;
4382
4383       // Write lazy link call stubs.
4384       uint32_t indx = 0;
4385       while (p < oview + oview_size)
4386         {
4387           if (this->targ_->abiversion() < 2)
4388             {
4389               if (indx < 0x8000)
4390                 {
4391                   write_insn<big_endian>(p, li_0_0 + indx),             p += 4;
4392                 }
4393               else
4394                 {
4395                   write_insn<big_endian>(p, lis_0_0 + hi(indx)),        p += 4;
4396                   write_insn<big_endian>(p, ori_0_0_0 + l(indx)),       p += 4;
4397                 }
4398             }
4399           uint32_t branch_off = 8 - (p - oview);
4400           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
4401           indx++;
4402         }
4403     }
4404   else
4405     {
4406       const Output_data_got_powerpc<size, big_endian>* got
4407         = this->targ_->got_section();
4408       // The address of _GLOBAL_OFFSET_TABLE_.
4409       Address g_o_t = got->address() + got->g_o_t();
4410
4411       // Write out pltresolve branch table.
4412       p = oview;
4413       unsigned int the_end = oview_size - this->pltresolve_size;
4414       unsigned char* end_p = oview + the_end;
4415       while (p < end_p - 8 * 4)
4416         write_insn<big_endian>(p, b + end_p - p), p += 4;
4417       while (p < end_p)
4418         write_insn<big_endian>(p, nop), p += 4;
4419
4420       // Write out pltresolve call stub.
4421       if (parameters->options().output_is_position_independent())
4422         {
4423           Address res0_off = 0;
4424           Address after_bcl_off = the_end + 12;
4425           Address bcl_res0 = after_bcl_off - res0_off;
4426
4427           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4428           write_insn<big_endian>(p +  4, mflr_0);
4429           write_insn<big_endian>(p +  8, bcl_20_31);
4430           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4431           write_insn<big_endian>(p + 16, mflr_12);
4432           write_insn<big_endian>(p + 20, mtlr_0);
4433           write_insn<big_endian>(p + 24, sub_11_11_12);
4434
4435           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4436
4437           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4438           if (ha(got_bcl) == ha(got_bcl + 4))
4439             {
4440               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4441               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4442             }
4443           else
4444             {
4445               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4446               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4447             }
4448           write_insn<big_endian>(p + 40, mtctr_0);
4449           write_insn<big_endian>(p + 44, add_0_11_11);
4450           write_insn<big_endian>(p + 48, add_11_0_11);
4451           write_insn<big_endian>(p + 52, bctr);
4452           write_insn<big_endian>(p + 56, nop);
4453           write_insn<big_endian>(p + 60, nop);
4454         }
4455       else
4456         {
4457           Address res0 = this->address();
4458
4459           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4460           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4461           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4462             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4463           else
4464             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4465           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4466           write_insn<big_endian>(p + 16, mtctr_0);
4467           write_insn<big_endian>(p + 20, add_0_11_11);
4468           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4469             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4470           else
4471             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4472           write_insn<big_endian>(p + 28, add_11_0_11);
4473           write_insn<big_endian>(p + 32, bctr);
4474           write_insn<big_endian>(p + 36, nop);
4475           write_insn<big_endian>(p + 40, nop);
4476           write_insn<big_endian>(p + 44, nop);
4477           write_insn<big_endian>(p + 48, nop);
4478           write_insn<big_endian>(p + 52, nop);
4479           write_insn<big_endian>(p + 56, nop);
4480           write_insn<big_endian>(p + 60, nop);
4481         }
4482       p += 64;
4483     }
4484
4485   of->write_output_view(off, oview_size, oview);
4486 }
4487
4488
4489 // A class to handle linker generated save/restore functions.
4490
4491 template<int size, bool big_endian>
4492 class Output_data_save_res : public Output_section_data_build
4493 {
4494  public:
4495   Output_data_save_res(Symbol_table* symtab);
4496
4497  protected:
4498   // Write to a map file.
4499   void
4500   do_print_to_mapfile(Mapfile* mapfile) const
4501   { mapfile->print_output_data(this, _("** save/restore")); }
4502
4503   void
4504   do_write(Output_file*);
4505
4506  private:
4507   // The maximum size of save/restore contents.
4508   static const unsigned int savres_max = 218*4;
4509
4510   void
4511   savres_define(Symbol_table* symtab,
4512                 const char *name,
4513                 unsigned int lo, unsigned int hi,
4514                 unsigned char* write_ent(unsigned char*, int),
4515                 unsigned char* write_tail(unsigned char*, int));
4516
4517   unsigned char *contents_;
4518 };
4519
4520 template<bool big_endian>
4521 static unsigned char*
4522 savegpr0(unsigned char* p, int r)
4523 {
4524   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4525   write_insn<big_endian>(p, insn);
4526   return p + 4;
4527 }
4528
4529 template<bool big_endian>
4530 static unsigned char*
4531 savegpr0_tail(unsigned char* p, int r)
4532 {
4533   p = savegpr0<big_endian>(p, r);
4534   uint32_t insn = std_0_1 + 16;
4535   write_insn<big_endian>(p, insn);
4536   p = p + 4;
4537   write_insn<big_endian>(p, blr);
4538   return p + 4;
4539 }
4540
4541 template<bool big_endian>
4542 static unsigned char*
4543 restgpr0(unsigned char* p, int r)
4544 {
4545   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4546   write_insn<big_endian>(p, insn);
4547   return p + 4;
4548 }
4549
4550 template<bool big_endian>
4551 static unsigned char*
4552 restgpr0_tail(unsigned char* p, int r)
4553 {
4554   uint32_t insn = ld_0_1 + 16;
4555   write_insn<big_endian>(p, insn);
4556   p = p + 4;
4557   p = restgpr0<big_endian>(p, r);
4558   write_insn<big_endian>(p, mtlr_0);
4559   p = p + 4;
4560   if (r == 29)
4561     {
4562       p = restgpr0<big_endian>(p, 30);
4563       p = restgpr0<big_endian>(p, 31);
4564     }
4565   write_insn<big_endian>(p, blr);
4566   return p + 4;
4567 }
4568
4569 template<bool big_endian>
4570 static unsigned char*
4571 savegpr1(unsigned char* p, int r)
4572 {
4573   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4574   write_insn<big_endian>(p, insn);
4575   return p + 4;
4576 }
4577
4578 template<bool big_endian>
4579 static unsigned char*
4580 savegpr1_tail(unsigned char* p, int r)
4581 {
4582   p = savegpr1<big_endian>(p, r);
4583   write_insn<big_endian>(p, blr);
4584   return p + 4;
4585 }
4586
4587 template<bool big_endian>
4588 static unsigned char*
4589 restgpr1(unsigned char* p, int r)
4590 {
4591   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4592   write_insn<big_endian>(p, insn);
4593   return p + 4;
4594 }
4595
4596 template<bool big_endian>
4597 static unsigned char*
4598 restgpr1_tail(unsigned char* p, int r)
4599 {
4600   p = restgpr1<big_endian>(p, r);
4601   write_insn<big_endian>(p, blr);
4602   return p + 4;
4603 }
4604
4605 template<bool big_endian>
4606 static unsigned char*
4607 savefpr(unsigned char* p, int r)
4608 {
4609   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4610   write_insn<big_endian>(p, insn);
4611   return p + 4;
4612 }
4613
4614 template<bool big_endian>
4615 static unsigned char*
4616 savefpr0_tail(unsigned char* p, int r)
4617 {
4618   p = savefpr<big_endian>(p, r);
4619   write_insn<big_endian>(p, std_0_1 + 16);
4620   p = p + 4;
4621   write_insn<big_endian>(p, blr);
4622   return p + 4;
4623 }
4624
4625 template<bool big_endian>
4626 static unsigned char*
4627 restfpr(unsigned char* p, int r)
4628 {
4629   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4630   write_insn<big_endian>(p, insn);
4631   return p + 4;
4632 }
4633
4634 template<bool big_endian>
4635 static unsigned char*
4636 restfpr0_tail(unsigned char* p, int r)
4637 {
4638   write_insn<big_endian>(p, ld_0_1 + 16);
4639   p = p + 4;
4640   p = restfpr<big_endian>(p, r);
4641   write_insn<big_endian>(p, mtlr_0);
4642   p = p + 4;
4643   if (r == 29)
4644     {
4645       p = restfpr<big_endian>(p, 30);
4646       p = restfpr<big_endian>(p, 31);
4647     }
4648   write_insn<big_endian>(p, blr);
4649   return p + 4;
4650 }
4651
4652 template<bool big_endian>
4653 static unsigned char*
4654 savefpr1_tail(unsigned char* p, int r)
4655 {
4656   p = savefpr<big_endian>(p, r);
4657   write_insn<big_endian>(p, blr);
4658   return p + 4;
4659 }
4660
4661 template<bool big_endian>
4662 static unsigned char*
4663 restfpr1_tail(unsigned char* p, int r)
4664 {
4665   p = restfpr<big_endian>(p, r);
4666   write_insn<big_endian>(p, blr);
4667   return p + 4;
4668 }
4669
4670 template<bool big_endian>
4671 static unsigned char*
4672 savevr(unsigned char* p, int r)
4673 {
4674   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4675   write_insn<big_endian>(p, insn);
4676   p = p + 4;
4677   insn = stvx_0_12_0 + (r << 21);
4678   write_insn<big_endian>(p, insn);
4679   return p + 4;
4680 }
4681
4682 template<bool big_endian>
4683 static unsigned char*
4684 savevr_tail(unsigned char* p, int r)
4685 {
4686   p = savevr<big_endian>(p, r);
4687   write_insn<big_endian>(p, blr);
4688   return p + 4;
4689 }
4690
4691 template<bool big_endian>
4692 static unsigned char*
4693 restvr(unsigned char* p, int r)
4694 {
4695   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4696   write_insn<big_endian>(p, insn);
4697   p = p + 4;
4698   insn = lvx_0_12_0 + (r << 21);
4699   write_insn<big_endian>(p, insn);
4700   return p + 4;
4701 }
4702
4703 template<bool big_endian>
4704 static unsigned char*
4705 restvr_tail(unsigned char* p, int r)
4706 {
4707   p = restvr<big_endian>(p, r);
4708   write_insn<big_endian>(p, blr);
4709   return p + 4;
4710 }
4711
4712
4713 template<int size, bool big_endian>
4714 Output_data_save_res<size, big_endian>::Output_data_save_res(
4715     Symbol_table* symtab)
4716   : Output_section_data_build(4),
4717     contents_(NULL)
4718 {
4719   this->savres_define(symtab,
4720                       "_savegpr0_", 14, 31,
4721                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4722   this->savres_define(symtab,
4723                       "_restgpr0_", 14, 29,
4724                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4725   this->savres_define(symtab,
4726                       "_restgpr0_", 30, 31,
4727                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4728   this->savres_define(symtab,
4729                       "_savegpr1_", 14, 31,
4730                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4731   this->savres_define(symtab,
4732                       "_restgpr1_", 14, 31,
4733                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4734   this->savres_define(symtab,
4735                       "_savefpr_", 14, 31,
4736                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4737   this->savres_define(symtab,
4738                       "_restfpr_", 14, 29,
4739                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4740   this->savres_define(symtab,
4741                       "_restfpr_", 30, 31,
4742                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4743   this->savres_define(symtab,
4744                       "._savef", 14, 31,
4745                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4746   this->savres_define(symtab,
4747                       "._restf", 14, 31,
4748                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4749   this->savres_define(symtab,
4750                       "_savevr_", 20, 31,
4751                       savevr<big_endian>, savevr_tail<big_endian>);
4752   this->savres_define(symtab,
4753                       "_restvr_", 20, 31,
4754                       restvr<big_endian>, restvr_tail<big_endian>);
4755 }
4756
4757 template<int size, bool big_endian>
4758 void
4759 Output_data_save_res<size, big_endian>::savres_define(
4760     Symbol_table* symtab,
4761     const char *name,
4762     unsigned int lo, unsigned int hi,
4763     unsigned char* write_ent(unsigned char*, int),
4764     unsigned char* write_tail(unsigned char*, int))
4765 {
4766   size_t len = strlen(name);
4767   bool writing = false;
4768   char sym[16];
4769
4770   memcpy(sym, name, len);
4771   sym[len + 2] = 0;
4772
4773   for (unsigned int i = lo; i <= hi; i++)
4774     {
4775       sym[len + 0] = i / 10 + '0';
4776       sym[len + 1] = i % 10 + '0';
4777       Symbol* gsym = symtab->lookup(sym);
4778       bool refd = gsym != NULL && gsym->is_undefined();
4779       writing = writing || refd;
4780       if (writing)
4781         {
4782           if (this->contents_ == NULL)
4783             this->contents_ = new unsigned char[this->savres_max];
4784
4785           section_size_type value = this->current_data_size();
4786           unsigned char* p = this->contents_ + value;
4787           if (i != hi)
4788             p = write_ent(p, i);
4789           else
4790             p = write_tail(p, i);
4791           section_size_type cur_size = p - this->contents_;
4792           this->set_current_data_size(cur_size);
4793           if (refd)
4794             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4795                                           this, value, cur_size - value,
4796                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4797                                           elfcpp::STV_HIDDEN, 0, false, false);
4798         }
4799     }
4800 }
4801
4802 // Write out save/restore.
4803
4804 template<int size, bool big_endian>
4805 void
4806 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4807 {
4808   const section_size_type off = this->offset();
4809   const section_size_type oview_size =
4810     convert_to_section_size_type(this->data_size());
4811   unsigned char* const oview = of->get_output_view(off, oview_size);
4812   memcpy(oview, this->contents_, oview_size);
4813   of->write_output_view(off, oview_size, oview);
4814 }
4815
4816
4817 // Create the glink section.
4818
4819 template<int size, bool big_endian>
4820 void
4821 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4822 {
4823   if (this->glink_ == NULL)
4824     {
4825       this->glink_ = new Output_data_glink<size, big_endian>(this);
4826       this->glink_->add_eh_frame(layout);
4827       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4828                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4829                                       this->glink_, ORDER_TEXT, false);
4830     }
4831 }
4832
4833 // Create a PLT entry for a global symbol.
4834
4835 template<int size, bool big_endian>
4836 void
4837 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4838                                                  Layout* layout,
4839                                                  Symbol* gsym)
4840 {
4841   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4842       && gsym->can_use_relative_reloc(false))
4843     {
4844       if (this->iplt_ == NULL)
4845         this->make_iplt_section(symtab, layout);
4846       this->iplt_->add_ifunc_entry(gsym);
4847     }
4848   else
4849     {
4850       if (this->plt_ == NULL)
4851         this->make_plt_section(symtab, layout);
4852       this->plt_->add_entry(gsym);
4853     }
4854 }
4855
4856 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4857
4858 template<int size, bool big_endian>
4859 void
4860 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4861     Symbol_table* symtab,
4862     Layout* layout,
4863     Sized_relobj_file<size, big_endian>* relobj,
4864     unsigned int r_sym)
4865 {
4866   if (this->iplt_ == NULL)
4867     this->make_iplt_section(symtab, layout);
4868   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4869 }
4870
4871 // Return the number of entries in the PLT.
4872
4873 template<int size, bool big_endian>
4874 unsigned int
4875 Target_powerpc<size, big_endian>::plt_entry_count() const
4876 {
4877   if (this->plt_ == NULL)
4878     return 0;
4879   return this->plt_->entry_count();
4880 }
4881
4882 // Create a GOT entry for local dynamic __tls_get_addr calls.
4883
4884 template<int size, bool big_endian>
4885 unsigned int
4886 Target_powerpc<size, big_endian>::tlsld_got_offset(
4887     Symbol_table* symtab,
4888     Layout* layout,
4889     Sized_relobj_file<size, big_endian>* object)
4890 {
4891   if (this->tlsld_got_offset_ == -1U)
4892     {
4893       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4894       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4895       Output_data_got_powerpc<size, big_endian>* got
4896         = this->got_section(symtab, layout);
4897       unsigned int got_offset = got->add_constant_pair(0, 0);
4898       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4899                           got_offset, 0);
4900       this->tlsld_got_offset_ = got_offset;
4901     }
4902   return this->tlsld_got_offset_;
4903 }
4904
4905 // Get the Reference_flags for a particular relocation.
4906
4907 template<int size, bool big_endian>
4908 int
4909 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
4910     unsigned int r_type,
4911     const Target_powerpc* target)
4912 {
4913   int ref = 0;
4914
4915   switch (r_type)
4916     {
4917     case elfcpp::R_POWERPC_NONE:
4918     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4919     case elfcpp::R_POWERPC_GNU_VTENTRY:
4920     case elfcpp::R_PPC64_TOC:
4921       // No symbol reference.
4922       break;
4923
4924     case elfcpp::R_PPC64_ADDR64:
4925     case elfcpp::R_PPC64_UADDR64:
4926     case elfcpp::R_POWERPC_ADDR32:
4927     case elfcpp::R_POWERPC_UADDR32:
4928     case elfcpp::R_POWERPC_ADDR16:
4929     case elfcpp::R_POWERPC_UADDR16:
4930     case elfcpp::R_POWERPC_ADDR16_LO:
4931     case elfcpp::R_POWERPC_ADDR16_HI:
4932     case elfcpp::R_POWERPC_ADDR16_HA:
4933       ref = Symbol::ABSOLUTE_REF;
4934       break;
4935
4936     case elfcpp::R_POWERPC_ADDR24:
4937     case elfcpp::R_POWERPC_ADDR14:
4938     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4939     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4940       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4941       break;
4942
4943     case elfcpp::R_PPC64_REL64:
4944     case elfcpp::R_POWERPC_REL32:
4945     case elfcpp::R_PPC_LOCAL24PC:
4946     case elfcpp::R_POWERPC_REL16:
4947     case elfcpp::R_POWERPC_REL16_LO:
4948     case elfcpp::R_POWERPC_REL16_HI:
4949     case elfcpp::R_POWERPC_REL16_HA:
4950       ref = Symbol::RELATIVE_REF;
4951       break;
4952
4953     case elfcpp::R_POWERPC_REL24:
4954     case elfcpp::R_PPC_PLTREL24:
4955     case elfcpp::R_POWERPC_REL14:
4956     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4957     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4958       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4959       break;
4960
4961     case elfcpp::R_POWERPC_GOT16:
4962     case elfcpp::R_POWERPC_GOT16_LO:
4963     case elfcpp::R_POWERPC_GOT16_HI:
4964     case elfcpp::R_POWERPC_GOT16_HA:
4965     case elfcpp::R_PPC64_GOT16_DS:
4966     case elfcpp::R_PPC64_GOT16_LO_DS:
4967     case elfcpp::R_PPC64_TOC16:
4968     case elfcpp::R_PPC64_TOC16_LO:
4969     case elfcpp::R_PPC64_TOC16_HI:
4970     case elfcpp::R_PPC64_TOC16_HA:
4971     case elfcpp::R_PPC64_TOC16_DS:
4972     case elfcpp::R_PPC64_TOC16_LO_DS:
4973       // Absolute in GOT.
4974       ref = Symbol::ABSOLUTE_REF;
4975       break;
4976
4977     case elfcpp::R_POWERPC_GOT_TPREL16:
4978     case elfcpp::R_POWERPC_TLS:
4979       ref = Symbol::TLS_REF;
4980       break;
4981
4982     case elfcpp::R_POWERPC_COPY:
4983     case elfcpp::R_POWERPC_GLOB_DAT:
4984     case elfcpp::R_POWERPC_JMP_SLOT:
4985     case elfcpp::R_POWERPC_RELATIVE:
4986     case elfcpp::R_POWERPC_DTPMOD:
4987     default:
4988       // Not expected.  We will give an error later.
4989       break;
4990     }
4991
4992   if (size == 64 && target->abiversion() < 2)
4993     ref |= Symbol::FUNC_DESC_ABI;
4994   return ref;
4995 }
4996
4997 // Report an unsupported relocation against a local symbol.
4998
4999 template<int size, bool big_endian>
5000 void
5001 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5002     Sized_relobj_file<size, big_endian>* object,
5003     unsigned int r_type)
5004 {
5005   gold_error(_("%s: unsupported reloc %u against local symbol"),
5006              object->name().c_str(), r_type);
5007 }
5008
5009 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5010 // dynamic linker does not support it, issue an error.
5011
5012 template<int size, bool big_endian>
5013 void
5014 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5015                                                       unsigned int r_type)
5016 {
5017   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5018
5019   // These are the relocation types supported by glibc for both 32-bit
5020   // and 64-bit powerpc.
5021   switch (r_type)
5022     {
5023     case elfcpp::R_POWERPC_NONE:
5024     case elfcpp::R_POWERPC_RELATIVE:
5025     case elfcpp::R_POWERPC_GLOB_DAT:
5026     case elfcpp::R_POWERPC_DTPMOD:
5027     case elfcpp::R_POWERPC_DTPREL:
5028     case elfcpp::R_POWERPC_TPREL:
5029     case elfcpp::R_POWERPC_JMP_SLOT:
5030     case elfcpp::R_POWERPC_COPY:
5031     case elfcpp::R_POWERPC_IRELATIVE:
5032     case elfcpp::R_POWERPC_ADDR32:
5033     case elfcpp::R_POWERPC_UADDR32:
5034     case elfcpp::R_POWERPC_ADDR24:
5035     case elfcpp::R_POWERPC_ADDR16:
5036     case elfcpp::R_POWERPC_UADDR16:
5037     case elfcpp::R_POWERPC_ADDR16_LO:
5038     case elfcpp::R_POWERPC_ADDR16_HI:
5039     case elfcpp::R_POWERPC_ADDR16_HA:
5040     case elfcpp::R_POWERPC_ADDR14:
5041     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5042     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5043     case elfcpp::R_POWERPC_REL32:
5044     case elfcpp::R_POWERPC_REL24:
5045     case elfcpp::R_POWERPC_TPREL16:
5046     case elfcpp::R_POWERPC_TPREL16_LO:
5047     case elfcpp::R_POWERPC_TPREL16_HI:
5048     case elfcpp::R_POWERPC_TPREL16_HA:
5049       return;
5050
5051     default:
5052       break;
5053     }
5054
5055   if (size == 64)
5056     {
5057       switch (r_type)
5058         {
5059           // These are the relocation types supported only on 64-bit.
5060         case elfcpp::R_PPC64_ADDR64:
5061         case elfcpp::R_PPC64_UADDR64:
5062         case elfcpp::R_PPC64_JMP_IREL:
5063         case elfcpp::R_PPC64_ADDR16_DS:
5064         case elfcpp::R_PPC64_ADDR16_LO_DS:
5065         case elfcpp::R_PPC64_ADDR16_HIGH:
5066         case elfcpp::R_PPC64_ADDR16_HIGHA:
5067         case elfcpp::R_PPC64_ADDR16_HIGHER:
5068         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5069         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5070         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5071         case elfcpp::R_PPC64_REL64:
5072         case elfcpp::R_POWERPC_ADDR30:
5073         case elfcpp::R_PPC64_TPREL16_DS:
5074         case elfcpp::R_PPC64_TPREL16_LO_DS:
5075         case elfcpp::R_PPC64_TPREL16_HIGH:
5076         case elfcpp::R_PPC64_TPREL16_HIGHA:
5077         case elfcpp::R_PPC64_TPREL16_HIGHER:
5078         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5079         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5080         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5081           return;
5082
5083         default:
5084           break;
5085         }
5086     }
5087   else
5088     {
5089       switch (r_type)
5090         {
5091           // These are the relocation types supported only on 32-bit.
5092           // ??? glibc ld.so doesn't need to support these.
5093         case elfcpp::R_POWERPC_DTPREL16:
5094         case elfcpp::R_POWERPC_DTPREL16_LO:
5095         case elfcpp::R_POWERPC_DTPREL16_HI:
5096         case elfcpp::R_POWERPC_DTPREL16_HA:
5097           return;
5098
5099         default:
5100           break;
5101         }
5102     }
5103
5104   // This prevents us from issuing more than one error per reloc
5105   // section.  But we can still wind up issuing more than one
5106   // error per object file.
5107   if (this->issued_non_pic_error_)
5108     return;
5109   gold_assert(parameters->options().output_is_position_independent());
5110   object->error(_("requires unsupported dynamic reloc; "
5111                   "recompile with -fPIC"));
5112   this->issued_non_pic_error_ = true;
5113   return;
5114 }
5115
5116 // Return whether we need to make a PLT entry for a relocation of the
5117 // given type against a STT_GNU_IFUNC symbol.
5118
5119 template<int size, bool big_endian>
5120 bool
5121 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5122      Sized_relobj_file<size, big_endian>* object,
5123      unsigned int r_type,
5124      bool report_err)
5125 {
5126   // In non-pic code any reference will resolve to the plt call stub
5127   // for the ifunc symbol.
5128   if (size == 32 && !parameters->options().output_is_position_independent())
5129     return true;
5130
5131   switch (r_type)
5132     {
5133     // Word size refs from data sections are OK, but don't need a PLT entry.
5134     case elfcpp::R_POWERPC_ADDR32:
5135     case elfcpp::R_POWERPC_UADDR32:
5136       if (size == 32)
5137         return false;
5138       break;
5139
5140     case elfcpp::R_PPC64_ADDR64:
5141     case elfcpp::R_PPC64_UADDR64:
5142       if (size == 64)
5143         return false;
5144       break;
5145
5146     // GOT refs are good, but also don't need a PLT entry.
5147     case elfcpp::R_POWERPC_GOT16:
5148     case elfcpp::R_POWERPC_GOT16_LO:
5149     case elfcpp::R_POWERPC_GOT16_HI:
5150     case elfcpp::R_POWERPC_GOT16_HA:
5151     case elfcpp::R_PPC64_GOT16_DS:
5152     case elfcpp::R_PPC64_GOT16_LO_DS:
5153       return false;
5154
5155     // Function calls are good, and these do need a PLT entry.
5156     case elfcpp::R_POWERPC_ADDR24:
5157     case elfcpp::R_POWERPC_ADDR14:
5158     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5159     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5160     case elfcpp::R_POWERPC_REL24:
5161     case elfcpp::R_PPC_PLTREL24:
5162     case elfcpp::R_POWERPC_REL14:
5163     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5164     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5165       return true;
5166
5167     default:
5168       break;
5169     }
5170
5171   // Anything else is a problem.
5172   // If we are building a static executable, the libc startup function
5173   // responsible for applying indirect function relocations is going
5174   // to complain about the reloc type.
5175   // If we are building a dynamic executable, we will have a text
5176   // relocation.  The dynamic loader will set the text segment
5177   // writable and non-executable to apply text relocations.  So we'll
5178   // segfault when trying to run the indirection function to resolve
5179   // the reloc.
5180   if (report_err)
5181     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5182                object->name().c_str(), r_type);
5183   return false;
5184 }
5185
5186 // Scan a relocation for a local symbol.
5187
5188 template<int size, bool big_endian>
5189 inline void
5190 Target_powerpc<size, big_endian>::Scan::local(
5191     Symbol_table* symtab,
5192     Layout* layout,
5193     Target_powerpc<size, big_endian>* target,
5194     Sized_relobj_file<size, big_endian>* object,
5195     unsigned int data_shndx,
5196     Output_section* output_section,
5197     const elfcpp::Rela<size, big_endian>& reloc,
5198     unsigned int r_type,
5199     const elfcpp::Sym<size, big_endian>& lsym,
5200     bool is_discarded)
5201 {
5202   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5203
5204   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5205       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5206     {
5207       this->expect_tls_get_addr_call();
5208       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5209       if (tls_type != tls::TLSOPT_NONE)
5210         this->skip_next_tls_get_addr_call();
5211     }
5212   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5213            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5214     {
5215       this->expect_tls_get_addr_call();
5216       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5217       if (tls_type != tls::TLSOPT_NONE)
5218         this->skip_next_tls_get_addr_call();
5219     }
5220
5221   Powerpc_relobj<size, big_endian>* ppc_object
5222     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5223
5224   if (is_discarded)
5225     {
5226       if (size == 64
5227           && data_shndx == ppc_object->opd_shndx()
5228           && r_type == elfcpp::R_PPC64_ADDR64)
5229         ppc_object->set_opd_discard(reloc.get_r_offset());
5230       return;
5231     }
5232
5233   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5234   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5235   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5236     {
5237       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5238       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5239                           r_type, r_sym, reloc.get_r_addend());
5240       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5241     }
5242
5243   switch (r_type)
5244     {
5245     case elfcpp::R_POWERPC_NONE:
5246     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5247     case elfcpp::R_POWERPC_GNU_VTENTRY:
5248     case elfcpp::R_PPC64_TOCSAVE:
5249     case elfcpp::R_POWERPC_TLS:
5250       break;
5251
5252     case elfcpp::R_PPC64_TOC:
5253       {
5254         Output_data_got_powerpc<size, big_endian>* got
5255           = target->got_section(symtab, layout);
5256         if (parameters->options().output_is_position_independent())
5257           {
5258             Address off = reloc.get_r_offset();
5259             if (size == 64
5260                 && data_shndx == ppc_object->opd_shndx()
5261                 && ppc_object->get_opd_discard(off - 8))
5262               break;
5263
5264             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5265             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5266             rela_dyn->add_output_section_relative(got->output_section(),
5267                                                   elfcpp::R_POWERPC_RELATIVE,
5268                                                   output_section,
5269                                                   object, data_shndx, off,
5270                                                   symobj->toc_base_offset());
5271           }
5272       }
5273       break;
5274
5275     case elfcpp::R_PPC64_ADDR64:
5276     case elfcpp::R_PPC64_UADDR64:
5277     case elfcpp::R_POWERPC_ADDR32:
5278     case elfcpp::R_POWERPC_UADDR32:
5279     case elfcpp::R_POWERPC_ADDR24:
5280     case elfcpp::R_POWERPC_ADDR16:
5281     case elfcpp::R_POWERPC_ADDR16_LO:
5282     case elfcpp::R_POWERPC_ADDR16_HI:
5283     case elfcpp::R_POWERPC_ADDR16_HA:
5284     case elfcpp::R_POWERPC_UADDR16:
5285     case elfcpp::R_PPC64_ADDR16_HIGH:
5286     case elfcpp::R_PPC64_ADDR16_HIGHA:
5287     case elfcpp::R_PPC64_ADDR16_HIGHER:
5288     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5289     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5290     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5291     case elfcpp::R_PPC64_ADDR16_DS:
5292     case elfcpp::R_PPC64_ADDR16_LO_DS:
5293     case elfcpp::R_POWERPC_ADDR14:
5294     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5295     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5296       // If building a shared library (or a position-independent
5297       // executable), we need to create a dynamic relocation for
5298       // this location.
5299       if (parameters->options().output_is_position_independent()
5300           || (size == 64 && is_ifunc))
5301         {
5302           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5303                                                              is_ifunc);
5304           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5305               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5306             {
5307               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5308               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5309                                      : elfcpp::R_POWERPC_RELATIVE);
5310               rela_dyn->add_local_relative(object, r_sym, dynrel,
5311                                            output_section, data_shndx,
5312                                            reloc.get_r_offset(),
5313                                            reloc.get_r_addend(), false);
5314             }
5315           else
5316             {
5317               check_non_pic(object, r_type);
5318               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5319               rela_dyn->add_local(object, r_sym, r_type, output_section,
5320                                   data_shndx, reloc.get_r_offset(),
5321                                   reloc.get_r_addend());
5322             }
5323         }
5324       break;
5325
5326     case elfcpp::R_POWERPC_REL24:
5327     case elfcpp::R_PPC_PLTREL24:
5328     case elfcpp::R_PPC_LOCAL24PC:
5329     case elfcpp::R_POWERPC_REL14:
5330     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5331     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5332       if (!is_ifunc)
5333         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5334                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5335                             reloc.get_r_addend());
5336       break;
5337
5338     case elfcpp::R_PPC64_REL64:
5339     case elfcpp::R_POWERPC_REL32:
5340     case elfcpp::R_POWERPC_REL16:
5341     case elfcpp::R_POWERPC_REL16_LO:
5342     case elfcpp::R_POWERPC_REL16_HI:
5343     case elfcpp::R_POWERPC_REL16_HA:
5344     case elfcpp::R_POWERPC_SECTOFF:
5345     case elfcpp::R_POWERPC_SECTOFF_LO:
5346     case elfcpp::R_POWERPC_SECTOFF_HI:
5347     case elfcpp::R_POWERPC_SECTOFF_HA:
5348     case elfcpp::R_PPC64_SECTOFF_DS:
5349     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5350     case elfcpp::R_POWERPC_TPREL16:
5351     case elfcpp::R_POWERPC_TPREL16_LO:
5352     case elfcpp::R_POWERPC_TPREL16_HI:
5353     case elfcpp::R_POWERPC_TPREL16_HA:
5354     case elfcpp::R_PPC64_TPREL16_DS:
5355     case elfcpp::R_PPC64_TPREL16_LO_DS:
5356     case elfcpp::R_PPC64_TPREL16_HIGH:
5357     case elfcpp::R_PPC64_TPREL16_HIGHA:
5358     case elfcpp::R_PPC64_TPREL16_HIGHER:
5359     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5360     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5361     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5362     case elfcpp::R_POWERPC_DTPREL16:
5363     case elfcpp::R_POWERPC_DTPREL16_LO:
5364     case elfcpp::R_POWERPC_DTPREL16_HI:
5365     case elfcpp::R_POWERPC_DTPREL16_HA:
5366     case elfcpp::R_PPC64_DTPREL16_DS:
5367     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5368     case elfcpp::R_PPC64_DTPREL16_HIGH:
5369     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5370     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5371     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5372     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5373     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5374     case elfcpp::R_PPC64_TLSGD:
5375     case elfcpp::R_PPC64_TLSLD:
5376       break;
5377
5378     case elfcpp::R_POWERPC_GOT16:
5379     case elfcpp::R_POWERPC_GOT16_LO:
5380     case elfcpp::R_POWERPC_GOT16_HI:
5381     case elfcpp::R_POWERPC_GOT16_HA:
5382     case elfcpp::R_PPC64_GOT16_DS:
5383     case elfcpp::R_PPC64_GOT16_LO_DS:
5384       {
5385         // The symbol requires a GOT entry.
5386         Output_data_got_powerpc<size, big_endian>* got
5387           = target->got_section(symtab, layout);
5388         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5389
5390         if (!parameters->options().output_is_position_independent())
5391           {
5392             if (size == 32 && is_ifunc)
5393               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5394             else
5395               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5396           }
5397         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5398           {
5399             // If we are generating a shared object or a pie, this
5400             // symbol's GOT entry will be set by a dynamic relocation.
5401             unsigned int off;
5402             off = got->add_constant(0);
5403             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5404
5405             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5406                                                                is_ifunc);
5407             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5408                                    : elfcpp::R_POWERPC_RELATIVE);
5409             rela_dyn->add_local_relative(object, r_sym, dynrel,
5410                                          got, off, 0, false);
5411           }
5412       }
5413       break;
5414
5415     case elfcpp::R_PPC64_TOC16:
5416     case elfcpp::R_PPC64_TOC16_LO:
5417     case elfcpp::R_PPC64_TOC16_HI:
5418     case elfcpp::R_PPC64_TOC16_HA:
5419     case elfcpp::R_PPC64_TOC16_DS:
5420     case elfcpp::R_PPC64_TOC16_LO_DS:
5421       // We need a GOT section.
5422       target->got_section(symtab, layout);
5423       break;
5424
5425     case elfcpp::R_POWERPC_GOT_TLSGD16:
5426     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5427     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5428     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5429       {
5430         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5431         if (tls_type == tls::TLSOPT_NONE)
5432           {
5433             Output_data_got_powerpc<size, big_endian>* got
5434               = target->got_section(symtab, layout);
5435             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5436             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5437             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5438                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5439           }
5440         else if (tls_type == tls::TLSOPT_TO_LE)
5441           {
5442             // no GOT relocs needed for Local Exec.
5443           }
5444         else
5445           gold_unreachable();
5446       }
5447       break;
5448
5449     case elfcpp::R_POWERPC_GOT_TLSLD16:
5450     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5451     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5452     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5453       {
5454         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5455         if (tls_type == tls::TLSOPT_NONE)
5456           target->tlsld_got_offset(symtab, layout, object);
5457         else if (tls_type == tls::TLSOPT_TO_LE)
5458           {
5459             // no GOT relocs needed for Local Exec.
5460             if (parameters->options().emit_relocs())
5461               {
5462                 Output_section* os = layout->tls_segment()->first_section();
5463                 gold_assert(os != NULL);
5464                 os->set_needs_symtab_index();
5465               }
5466           }
5467         else
5468           gold_unreachable();
5469       }
5470       break;
5471
5472     case elfcpp::R_POWERPC_GOT_DTPREL16:
5473     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5474     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5475     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5476       {
5477         Output_data_got_powerpc<size, big_endian>* got
5478           = target->got_section(symtab, layout);
5479         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5480         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5481       }
5482       break;
5483
5484     case elfcpp::R_POWERPC_GOT_TPREL16:
5485     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5486     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5487     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5488       {
5489         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5490         if (tls_type == tls::TLSOPT_NONE)
5491           {
5492             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5493             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5494               {
5495                 Output_data_got_powerpc<size, big_endian>* got
5496                   = target->got_section(symtab, layout);
5497                 unsigned int off = got->add_constant(0);
5498                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5499
5500                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5501                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5502                                                       elfcpp::R_POWERPC_TPREL,
5503                                                       got, off, 0);
5504               }
5505           }
5506         else if (tls_type == tls::TLSOPT_TO_LE)
5507           {
5508             // no GOT relocs needed for Local Exec.
5509           }
5510         else
5511           gold_unreachable();
5512       }
5513       break;
5514
5515     default:
5516       unsupported_reloc_local(object, r_type);
5517       break;
5518     }
5519
5520   switch (r_type)
5521     {
5522     case elfcpp::R_POWERPC_GOT_TLSLD16:
5523     case elfcpp::R_POWERPC_GOT_TLSGD16:
5524     case elfcpp::R_POWERPC_GOT_TPREL16:
5525     case elfcpp::R_POWERPC_GOT_DTPREL16:
5526     case elfcpp::R_POWERPC_GOT16:
5527     case elfcpp::R_PPC64_GOT16_DS:
5528     case elfcpp::R_PPC64_TOC16:
5529     case elfcpp::R_PPC64_TOC16_DS:
5530       ppc_object->set_has_small_toc_reloc();
5531     default:
5532       break;
5533     }
5534 }
5535
5536 // Report an unsupported relocation against a global symbol.
5537
5538 template<int size, bool big_endian>
5539 void
5540 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5541     Sized_relobj_file<size, big_endian>* object,
5542     unsigned int r_type,
5543     Symbol* gsym)
5544 {
5545   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5546              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5547 }
5548
5549 // Scan a relocation for a global symbol.
5550
5551 template<int size, bool big_endian>
5552 inline void
5553 Target_powerpc<size, big_endian>::Scan::global(
5554     Symbol_table* symtab,
5555     Layout* layout,
5556     Target_powerpc<size, big_endian>* target,
5557     Sized_relobj_file<size, big_endian>* object,
5558     unsigned int data_shndx,
5559     Output_section* output_section,
5560     const elfcpp::Rela<size, big_endian>& reloc,
5561     unsigned int r_type,
5562     Symbol* gsym)
5563 {
5564   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5565     return;
5566
5567   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5568       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5569     {
5570       this->expect_tls_get_addr_call();
5571       const bool final = gsym->final_value_is_known();
5572       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5573       if (tls_type != tls::TLSOPT_NONE)
5574         this->skip_next_tls_get_addr_call();
5575     }
5576   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5577            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5578     {
5579       this->expect_tls_get_addr_call();
5580       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5581       if (tls_type != tls::TLSOPT_NONE)
5582         this->skip_next_tls_get_addr_call();
5583     }
5584
5585   Powerpc_relobj<size, big_endian>* ppc_object
5586     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5587
5588   // A STT_GNU_IFUNC symbol may require a PLT entry.
5589   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5590   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5591     {
5592       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5593                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5594                           reloc.get_r_addend());
5595       target->make_plt_entry(symtab, layout, gsym);
5596     }
5597
5598   switch (r_type)
5599     {
5600     case elfcpp::R_POWERPC_NONE:
5601     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5602     case elfcpp::R_POWERPC_GNU_VTENTRY:
5603     case elfcpp::R_PPC_LOCAL24PC:
5604     case elfcpp::R_POWERPC_TLS:
5605       break;
5606
5607     case elfcpp::R_PPC64_TOC:
5608       {
5609         Output_data_got_powerpc<size, big_endian>* got
5610           = target->got_section(symtab, layout);
5611         if (parameters->options().output_is_position_independent())
5612           {
5613             Address off = reloc.get_r_offset();
5614             if (size == 64
5615                 && data_shndx == ppc_object->opd_shndx()
5616                 && ppc_object->get_opd_discard(off - 8))
5617               break;
5618
5619             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5620             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5621             if (data_shndx != ppc_object->opd_shndx())
5622               symobj = static_cast
5623                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5624             rela_dyn->add_output_section_relative(got->output_section(),
5625                                                   elfcpp::R_POWERPC_RELATIVE,
5626                                                   output_section,
5627                                                   object, data_shndx, off,
5628                                                   symobj->toc_base_offset());
5629           }
5630       }
5631       break;
5632
5633     case elfcpp::R_PPC64_ADDR64:
5634       if (size == 64
5635           && data_shndx == ppc_object->opd_shndx()
5636           && (gsym->is_defined_in_discarded_section()
5637               || gsym->object() != object))
5638         {
5639           ppc_object->set_opd_discard(reloc.get_r_offset());
5640           break;
5641         }
5642       // Fall thru
5643     case elfcpp::R_PPC64_UADDR64:
5644     case elfcpp::R_POWERPC_ADDR32:
5645     case elfcpp::R_POWERPC_UADDR32:
5646     case elfcpp::R_POWERPC_ADDR24:
5647     case elfcpp::R_POWERPC_ADDR16:
5648     case elfcpp::R_POWERPC_ADDR16_LO:
5649     case elfcpp::R_POWERPC_ADDR16_HI:
5650     case elfcpp::R_POWERPC_ADDR16_HA:
5651     case elfcpp::R_POWERPC_UADDR16:
5652     case elfcpp::R_PPC64_ADDR16_HIGH:
5653     case elfcpp::R_PPC64_ADDR16_HIGHA:
5654     case elfcpp::R_PPC64_ADDR16_HIGHER:
5655     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5656     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5657     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5658     case elfcpp::R_PPC64_ADDR16_DS:
5659     case elfcpp::R_PPC64_ADDR16_LO_DS:
5660     case elfcpp::R_POWERPC_ADDR14:
5661     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5662     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5663       {
5664         // Make a PLT entry if necessary.
5665         if (gsym->needs_plt_entry())
5666           {
5667             if (!is_ifunc)
5668               {
5669                 target->push_branch(ppc_object, data_shndx,
5670                                     reloc.get_r_offset(), r_type,
5671                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5672                                     reloc.get_r_addend());
5673                 target->make_plt_entry(symtab, layout, gsym);
5674               }
5675             // Since this is not a PC-relative relocation, we may be
5676             // taking the address of a function. In that case we need to
5677             // set the entry in the dynamic symbol table to the address of
5678             // the PLT call stub.
5679             if (size == 32
5680                 && gsym->is_from_dynobj()
5681                 && !parameters->options().output_is_position_independent())
5682               gsym->set_needs_dynsym_value();
5683           }
5684         // Make a dynamic relocation if necessary.
5685         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5686             || (size == 64 && is_ifunc))
5687           {
5688             if (gsym->may_need_copy_reloc())
5689               {
5690                 target->copy_reloc(symtab, layout, object,
5691                                    data_shndx, output_section, gsym, reloc);
5692               }
5693             else if ((size == 32
5694                       && r_type == elfcpp::R_POWERPC_ADDR32
5695                       && gsym->can_use_relative_reloc(false)
5696                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5697                            && parameters->options().shared()))
5698                      || (size == 64
5699                          && r_type == elfcpp::R_PPC64_ADDR64
5700                          && (gsym->can_use_relative_reloc(false)
5701                              || data_shndx == ppc_object->opd_shndx())))
5702               {
5703                 Reloc_section* rela_dyn
5704                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5705                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5706                                        : elfcpp::R_POWERPC_RELATIVE);
5707                 rela_dyn->add_symbolless_global_addend(
5708                     gsym, dynrel, output_section, object, data_shndx,
5709                     reloc.get_r_offset(), reloc.get_r_addend());
5710               }
5711             else
5712               {
5713                 Reloc_section* rela_dyn
5714                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5715                 check_non_pic(object, r_type);
5716                 rela_dyn->add_global(gsym, r_type, output_section,
5717                                      object, data_shndx,
5718                                      reloc.get_r_offset(),
5719                                      reloc.get_r_addend());
5720               }
5721           }
5722       }
5723       break;
5724
5725     case elfcpp::R_PPC_PLTREL24:
5726     case elfcpp::R_POWERPC_REL24:
5727       if (!is_ifunc)
5728         {
5729           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5730                               r_type,
5731                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5732                               reloc.get_r_addend());
5733           if (gsym->needs_plt_entry()
5734               || (!gsym->final_value_is_known()
5735                   && (gsym->is_undefined()
5736                       || gsym->is_from_dynobj()
5737                       || gsym->is_preemptible())))
5738             target->make_plt_entry(symtab, layout, gsym);
5739         }
5740       // Fall thru
5741
5742     case elfcpp::R_PPC64_REL64:
5743     case elfcpp::R_POWERPC_REL32:
5744       // Make a dynamic relocation if necessary.
5745       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5746         {
5747           if (gsym->may_need_copy_reloc())
5748             {
5749               target->copy_reloc(symtab, layout, object,
5750                                  data_shndx, output_section, gsym,
5751                                  reloc);
5752             }
5753           else
5754             {
5755               Reloc_section* rela_dyn
5756                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5757               check_non_pic(object, r_type);
5758               rela_dyn->add_global(gsym, r_type, output_section, object,
5759                                    data_shndx, reloc.get_r_offset(),
5760                                    reloc.get_r_addend());
5761             }
5762         }
5763       break;
5764
5765     case elfcpp::R_POWERPC_REL14:
5766     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5767     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5768       if (!is_ifunc)
5769         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5770                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5771                             reloc.get_r_addend());
5772       break;
5773
5774     case elfcpp::R_POWERPC_REL16:
5775     case elfcpp::R_POWERPC_REL16_LO:
5776     case elfcpp::R_POWERPC_REL16_HI:
5777     case elfcpp::R_POWERPC_REL16_HA:
5778     case elfcpp::R_POWERPC_SECTOFF:
5779     case elfcpp::R_POWERPC_SECTOFF_LO:
5780     case elfcpp::R_POWERPC_SECTOFF_HI:
5781     case elfcpp::R_POWERPC_SECTOFF_HA:
5782     case elfcpp::R_PPC64_SECTOFF_DS:
5783     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5784     case elfcpp::R_POWERPC_TPREL16:
5785     case elfcpp::R_POWERPC_TPREL16_LO:
5786     case elfcpp::R_POWERPC_TPREL16_HI:
5787     case elfcpp::R_POWERPC_TPREL16_HA:
5788     case elfcpp::R_PPC64_TPREL16_DS:
5789     case elfcpp::R_PPC64_TPREL16_LO_DS:
5790     case elfcpp::R_PPC64_TPREL16_HIGH:
5791     case elfcpp::R_PPC64_TPREL16_HIGHA:
5792     case elfcpp::R_PPC64_TPREL16_HIGHER:
5793     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5794     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5795     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5796     case elfcpp::R_POWERPC_DTPREL16:
5797     case elfcpp::R_POWERPC_DTPREL16_LO:
5798     case elfcpp::R_POWERPC_DTPREL16_HI:
5799     case elfcpp::R_POWERPC_DTPREL16_HA:
5800     case elfcpp::R_PPC64_DTPREL16_DS:
5801     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5802     case elfcpp::R_PPC64_DTPREL16_HIGH:
5803     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5804     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5805     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5806     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5807     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5808     case elfcpp::R_PPC64_TLSGD:
5809     case elfcpp::R_PPC64_TLSLD:
5810       break;
5811
5812     case elfcpp::R_POWERPC_GOT16:
5813     case elfcpp::R_POWERPC_GOT16_LO:
5814     case elfcpp::R_POWERPC_GOT16_HI:
5815     case elfcpp::R_POWERPC_GOT16_HA:
5816     case elfcpp::R_PPC64_GOT16_DS:
5817     case elfcpp::R_PPC64_GOT16_LO_DS:
5818       {
5819         // The symbol requires a GOT entry.
5820         Output_data_got_powerpc<size, big_endian>* got;
5821
5822         got = target->got_section(symtab, layout);
5823         if (gsym->final_value_is_known())
5824           {
5825             if (size == 32 && is_ifunc)
5826               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5827             else
5828               got->add_global(gsym, GOT_TYPE_STANDARD);
5829           }
5830         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5831           {
5832             // If we are generating a shared object or a pie, this
5833             // symbol's GOT entry will be set by a dynamic relocation.
5834             unsigned int off = got->add_constant(0);
5835             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5836
5837             Reloc_section* rela_dyn
5838               = target->rela_dyn_section(symtab, layout, is_ifunc);
5839
5840             if (gsym->can_use_relative_reloc(false)
5841                 && !(size == 32
5842                      && gsym->visibility() == elfcpp::STV_PROTECTED
5843                      && parameters->options().shared()))
5844               {
5845                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5846                                        : elfcpp::R_POWERPC_RELATIVE);
5847                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5848               }
5849             else
5850               {
5851                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5852                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5853               }
5854           }
5855       }
5856       break;
5857
5858     case elfcpp::R_PPC64_TOC16:
5859     case elfcpp::R_PPC64_TOC16_LO:
5860     case elfcpp::R_PPC64_TOC16_HI:
5861     case elfcpp::R_PPC64_TOC16_HA:
5862     case elfcpp::R_PPC64_TOC16_DS:
5863     case elfcpp::R_PPC64_TOC16_LO_DS:
5864       // We need a GOT section.
5865       target->got_section(symtab, layout);
5866       break;
5867
5868     case elfcpp::R_POWERPC_GOT_TLSGD16:
5869     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5870     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5871     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5872       {
5873         const bool final = gsym->final_value_is_known();
5874         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5875         if (tls_type == tls::TLSOPT_NONE)
5876           {
5877             Output_data_got_powerpc<size, big_endian>* got
5878               = target->got_section(symtab, layout);
5879             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5880             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5881                                           elfcpp::R_POWERPC_DTPMOD,
5882                                           elfcpp::R_POWERPC_DTPREL);
5883           }
5884         else if (tls_type == tls::TLSOPT_TO_IE)
5885           {
5886             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5887               {
5888                 Output_data_got_powerpc<size, big_endian>* got
5889                   = target->got_section(symtab, layout);
5890                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5891                 if (gsym->is_undefined()
5892                     || gsym->is_from_dynobj())
5893                   {
5894                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5895                                              elfcpp::R_POWERPC_TPREL);
5896                   }
5897                 else
5898                   {
5899                     unsigned int off = got->add_constant(0);
5900                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5901                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5902                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5903                                                            got, off, 0);
5904                   }
5905               }
5906           }
5907         else if (tls_type == tls::TLSOPT_TO_LE)
5908           {
5909             // no GOT relocs needed for Local Exec.
5910           }
5911         else
5912           gold_unreachable();
5913       }
5914       break;
5915
5916     case elfcpp::R_POWERPC_GOT_TLSLD16:
5917     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5918     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5919     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5920       {
5921         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5922         if (tls_type == tls::TLSOPT_NONE)
5923           target->tlsld_got_offset(symtab, layout, object);
5924         else if (tls_type == tls::TLSOPT_TO_LE)
5925           {
5926             // no GOT relocs needed for Local Exec.
5927             if (parameters->options().emit_relocs())
5928               {
5929                 Output_section* os = layout->tls_segment()->first_section();
5930                 gold_assert(os != NULL);
5931                 os->set_needs_symtab_index();
5932               }
5933           }
5934         else
5935           gold_unreachable();
5936       }
5937       break;
5938
5939     case elfcpp::R_POWERPC_GOT_DTPREL16:
5940     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5941     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5942     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5943       {
5944         Output_data_got_powerpc<size, big_endian>* got
5945           = target->got_section(symtab, layout);
5946         if (!gsym->final_value_is_known()
5947             && (gsym->is_from_dynobj()
5948                 || gsym->is_undefined()
5949                 || gsym->is_preemptible()))
5950           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5951                                    target->rela_dyn_section(layout),
5952                                    elfcpp::R_POWERPC_DTPREL);
5953         else
5954           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5955       }
5956       break;
5957
5958     case elfcpp::R_POWERPC_GOT_TPREL16:
5959     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5960     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5961     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5962       {
5963         const bool final = gsym->final_value_is_known();
5964         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5965         if (tls_type == tls::TLSOPT_NONE)
5966           {
5967             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5968               {
5969                 Output_data_got_powerpc<size, big_endian>* got
5970                   = target->got_section(symtab, layout);
5971                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5972                 if (gsym->is_undefined()
5973                     || gsym->is_from_dynobj())
5974                   {
5975                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5976                                              elfcpp::R_POWERPC_TPREL);
5977                   }
5978                 else
5979                   {
5980                     unsigned int off = got->add_constant(0);
5981                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5982                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5983                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5984                                                            got, off, 0);
5985                   }
5986               }
5987           }
5988         else if (tls_type == tls::TLSOPT_TO_LE)
5989           {
5990             // no GOT relocs needed for Local Exec.
5991           }
5992         else
5993           gold_unreachable();
5994       }
5995       break;
5996
5997     default:
5998       unsupported_reloc_global(object, r_type, gsym);
5999       break;
6000     }
6001
6002   switch (r_type)
6003     {
6004     case elfcpp::R_POWERPC_GOT_TLSLD16:
6005     case elfcpp::R_POWERPC_GOT_TLSGD16:
6006     case elfcpp::R_POWERPC_GOT_TPREL16:
6007     case elfcpp::R_POWERPC_GOT_DTPREL16:
6008     case elfcpp::R_POWERPC_GOT16:
6009     case elfcpp::R_PPC64_GOT16_DS:
6010     case elfcpp::R_PPC64_TOC16:
6011     case elfcpp::R_PPC64_TOC16_DS:
6012       ppc_object->set_has_small_toc_reloc();
6013     default:
6014       break;
6015     }
6016 }
6017
6018 // Process relocations for gc.
6019
6020 template<int size, bool big_endian>
6021 void
6022 Target_powerpc<size, big_endian>::gc_process_relocs(
6023     Symbol_table* symtab,
6024     Layout* layout,
6025     Sized_relobj_file<size, big_endian>* object,
6026     unsigned int data_shndx,
6027     unsigned int,
6028     const unsigned char* prelocs,
6029     size_t reloc_count,
6030     Output_section* output_section,
6031     bool needs_special_offset_handling,
6032     size_t local_symbol_count,
6033     const unsigned char* plocal_symbols)
6034 {
6035   typedef Target_powerpc<size, big_endian> Powerpc;
6036   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6037   Powerpc_relobj<size, big_endian>* ppc_object
6038     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6039   if (size == 64)
6040     ppc_object->set_opd_valid();
6041   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6042     {
6043       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6044       for (p = ppc_object->access_from_map()->begin();
6045            p != ppc_object->access_from_map()->end();
6046            ++p)
6047         {
6048           Address dst_off = p->first;
6049           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6050           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6051           for (s = p->second.begin(); s != p->second.end(); ++s)
6052             {
6053               Object* src_obj = s->first;
6054               unsigned int src_indx = s->second;
6055               symtab->gc()->add_reference(src_obj, src_indx,
6056                                           ppc_object, dst_indx);
6057             }
6058           p->second.clear();
6059         }
6060       ppc_object->access_from_map()->clear();
6061       ppc_object->process_gc_mark(symtab);
6062       // Don't look at .opd relocs as .opd will reference everything.
6063       return;
6064     }
6065
6066   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6067                           typename Target_powerpc::Relocatable_size_for_reloc>(
6068     symtab,
6069     layout,
6070     this,
6071     object,
6072     data_shndx,
6073     prelocs,
6074     reloc_count,
6075     output_section,
6076     needs_special_offset_handling,
6077     local_symbol_count,
6078     plocal_symbols);
6079 }
6080
6081 // Handle target specific gc actions when adding a gc reference from
6082 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6083 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6084 // section of a function descriptor.
6085
6086 template<int size, bool big_endian>
6087 void
6088 Target_powerpc<size, big_endian>::do_gc_add_reference(
6089     Symbol_table* symtab,
6090     Object* src_obj,
6091     unsigned int src_shndx,
6092     Object* dst_obj,
6093     unsigned int dst_shndx,
6094     Address dst_off) const
6095 {
6096   if (size != 64 || dst_obj->is_dynamic())
6097     return;
6098
6099   Powerpc_relobj<size, big_endian>* ppc_object
6100     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6101   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6102     {
6103       if (ppc_object->opd_valid())
6104         {
6105           dst_shndx = ppc_object->get_opd_ent(dst_off);
6106           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6107         }
6108       else
6109         {
6110           // If we haven't run scan_opd_relocs, we must delay
6111           // processing this function descriptor reference.
6112           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6113         }
6114     }
6115 }
6116
6117 // Add any special sections for this symbol to the gc work list.
6118 // For powerpc64, this adds the code section of a function
6119 // descriptor.
6120
6121 template<int size, bool big_endian>
6122 void
6123 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6124     Symbol_table* symtab,
6125     Symbol* sym) const
6126 {
6127   if (size == 64)
6128     {
6129       Powerpc_relobj<size, big_endian>* ppc_object
6130         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6131       bool is_ordinary;
6132       unsigned int shndx = sym->shndx(&is_ordinary);
6133       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6134         {
6135           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6136           Address dst_off = gsym->value();
6137           if (ppc_object->opd_valid())
6138             {
6139               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6140               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6141             }
6142           else
6143             ppc_object->add_gc_mark(dst_off);
6144         }
6145     }
6146 }
6147
6148 // For a symbol location in .opd, set LOC to the location of the
6149 // function entry.
6150
6151 template<int size, bool big_endian>
6152 void
6153 Target_powerpc<size, big_endian>::do_function_location(
6154     Symbol_location* loc) const
6155 {
6156   if (size == 64 && loc->shndx != 0)
6157     {
6158       if (loc->object->is_dynamic())
6159         {
6160           Powerpc_dynobj<size, big_endian>* ppc_object
6161             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6162           if (loc->shndx == ppc_object->opd_shndx())
6163             {
6164               Address dest_off;
6165               Address off = loc->offset - ppc_object->opd_address();
6166               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6167               loc->offset = dest_off;
6168             }
6169         }
6170       else
6171         {
6172           const Powerpc_relobj<size, big_endian>* ppc_object
6173             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6174           if (loc->shndx == ppc_object->opd_shndx())
6175             {
6176               Address dest_off;
6177               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6178               loc->offset = dest_off;
6179             }
6180         }
6181     }
6182 }
6183
6184 // Scan relocations for a section.
6185
6186 template<int size, bool big_endian>
6187 void
6188 Target_powerpc<size, big_endian>::scan_relocs(
6189     Symbol_table* symtab,
6190     Layout* layout,
6191     Sized_relobj_file<size, big_endian>* object,
6192     unsigned int data_shndx,
6193     unsigned int sh_type,
6194     const unsigned char* prelocs,
6195     size_t reloc_count,
6196     Output_section* output_section,
6197     bool needs_special_offset_handling,
6198     size_t local_symbol_count,
6199     const unsigned char* plocal_symbols)
6200 {
6201   typedef Target_powerpc<size, big_endian> Powerpc;
6202   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6203
6204   if (sh_type == elfcpp::SHT_REL)
6205     {
6206       gold_error(_("%s: unsupported REL reloc section"),
6207                  object->name().c_str());
6208       return;
6209     }
6210
6211   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6212     symtab,
6213     layout,
6214     this,
6215     object,
6216     data_shndx,
6217     prelocs,
6218     reloc_count,
6219     output_section,
6220     needs_special_offset_handling,
6221     local_symbol_count,
6222     plocal_symbols);
6223 }
6224
6225 // Functor class for processing the global symbol table.
6226 // Removes symbols defined on discarded opd entries.
6227
6228 template<bool big_endian>
6229 class Global_symbol_visitor_opd
6230 {
6231  public:
6232   Global_symbol_visitor_opd()
6233   { }
6234
6235   void
6236   operator()(Sized_symbol<64>* sym)
6237   {
6238     if (sym->has_symtab_index()
6239         || sym->source() != Symbol::FROM_OBJECT
6240         || !sym->in_real_elf())
6241       return;
6242
6243     if (sym->object()->is_dynamic())
6244       return;
6245
6246     Powerpc_relobj<64, big_endian>* symobj
6247       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6248     if (symobj->opd_shndx() == 0)
6249       return;
6250
6251     bool is_ordinary;
6252     unsigned int shndx = sym->shndx(&is_ordinary);
6253     if (shndx == symobj->opd_shndx()
6254         && symobj->get_opd_discard(sym->value()))
6255       sym->set_symtab_index(-1U);
6256   }
6257 };
6258
6259 template<int size, bool big_endian>
6260 void
6261 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6262     Layout* layout,
6263     Symbol_table* symtab)
6264 {
6265   if (size == 64)
6266     {
6267       Output_data_save_res<64, big_endian>* savres
6268         = new Output_data_save_res<64, big_endian>(symtab);
6269       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6270                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6271                                       savres, ORDER_TEXT, false);
6272     }
6273 }
6274
6275 // Sort linker created .got section first (for the header), then input
6276 // sections belonging to files using small model code.
6277
6278 template<bool big_endian>
6279 class Sort_toc_sections
6280 {
6281  public:
6282   bool
6283   operator()(const Output_section::Input_section& is1,
6284              const Output_section::Input_section& is2) const
6285   {
6286     if (!is1.is_input_section() && is2.is_input_section())
6287       return true;
6288     bool small1
6289       = (is1.is_input_section()
6290          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6291              ->has_small_toc_reloc()));
6292     bool small2
6293       = (is2.is_input_section()
6294          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6295              ->has_small_toc_reloc()));
6296     return small1 && !small2;
6297   }
6298 };
6299
6300 // Finalize the sections.
6301
6302 template<int size, bool big_endian>
6303 void
6304 Target_powerpc<size, big_endian>::do_finalize_sections(
6305     Layout* layout,
6306     const Input_objects*,
6307     Symbol_table* symtab)
6308 {
6309   if (parameters->doing_static_link())
6310     {
6311       // At least some versions of glibc elf-init.o have a strong
6312       // reference to __rela_iplt marker syms.  A weak ref would be
6313       // better..
6314       if (this->iplt_ != NULL)
6315         {
6316           Reloc_section* rel = this->iplt_->rel_plt();
6317           symtab->define_in_output_data("__rela_iplt_start", NULL,
6318                                         Symbol_table::PREDEFINED, rel, 0, 0,
6319                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6320                                         elfcpp::STV_HIDDEN, 0, false, true);
6321           symtab->define_in_output_data("__rela_iplt_end", NULL,
6322                                         Symbol_table::PREDEFINED, rel, 0, 0,
6323                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6324                                         elfcpp::STV_HIDDEN, 0, true, true);
6325         }
6326       else
6327         {
6328           symtab->define_as_constant("__rela_iplt_start", NULL,
6329                                      Symbol_table::PREDEFINED, 0, 0,
6330                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6331                                      elfcpp::STV_HIDDEN, 0, true, false);
6332           symtab->define_as_constant("__rela_iplt_end", NULL,
6333                                      Symbol_table::PREDEFINED, 0, 0,
6334                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6335                                      elfcpp::STV_HIDDEN, 0, true, false);
6336         }
6337     }
6338
6339   if (size == 64)
6340     {
6341       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6342       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6343
6344       if (!parameters->options().relocatable())
6345         {
6346           this->define_save_restore_funcs(layout, symtab);
6347
6348           // Annoyingly, we need to make these sections now whether or
6349           // not we need them.  If we delay until do_relax then we
6350           // need to mess with the relaxation machinery checkpointing.
6351           this->got_section(symtab, layout);
6352           this->make_brlt_section(layout);
6353
6354           if (parameters->options().toc_sort())
6355             {
6356               Output_section* os = this->got_->output_section();
6357               if (os != NULL && os->input_sections().size() > 1)
6358                 std::stable_sort(os->input_sections().begin(),
6359                                  os->input_sections().end(),
6360                                  Sort_toc_sections<big_endian>());
6361             }
6362         }
6363     }
6364
6365   // Fill in some more dynamic tags.
6366   Output_data_dynamic* odyn = layout->dynamic_data();
6367   if (odyn != NULL)
6368     {
6369       const Reloc_section* rel_plt = (this->plt_ == NULL
6370                                       ? NULL
6371                                       : this->plt_->rel_plt());
6372       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6373                                       this->rela_dyn_, true, size == 32);
6374
6375       if (size == 32)
6376         {
6377           if (this->got_ != NULL)
6378             {
6379               this->got_->finalize_data_size();
6380               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6381                                             this->got_, this->got_->g_o_t());
6382             }
6383         }
6384       else
6385         {
6386           if (this->glink_ != NULL)
6387             {
6388               this->glink_->finalize_data_size();
6389               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6390                                             this->glink_,
6391                                             (this->glink_->pltresolve_size
6392                                              - 32));
6393             }
6394         }
6395     }
6396
6397   // Emit any relocs we saved in an attempt to avoid generating COPY
6398   // relocs.
6399   if (this->copy_relocs_.any_saved_relocs())
6400     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6401 }
6402
6403 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6404 // reloc.
6405
6406 static bool
6407 ok_lo_toc_insn(uint32_t insn)
6408 {
6409   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6410           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6411           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6412           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6413           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6414           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6415           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6416           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6417           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6418           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6419           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6420           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6421           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6422           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6423           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6424               && (insn & 3) != 1)
6425           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6426               && ((insn & 3) == 0 || (insn & 3) == 3))
6427           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6428 }
6429
6430 // Return the value to use for a branch relocation.
6431
6432 template<int size, bool big_endian>
6433 typename Target_powerpc<size, big_endian>::Address
6434 Target_powerpc<size, big_endian>::symval_for_branch(
6435     const Symbol_table* symtab,
6436     Address value,
6437     const Sized_symbol<size>* gsym,
6438     Powerpc_relobj<size, big_endian>* object,
6439     unsigned int *dest_shndx)
6440 {
6441   *dest_shndx = 0;
6442   if (size == 32)
6443     return value;
6444
6445   // If the symbol is defined in an opd section, ie. is a function
6446   // descriptor, use the function descriptor code entry address
6447   Powerpc_relobj<size, big_endian>* symobj = object;
6448   if (gsym != NULL
6449       && gsym->source() != Symbol::FROM_OBJECT)
6450     return value;
6451   if (gsym != NULL)
6452     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6453   unsigned int shndx = symobj->opd_shndx();
6454   if (shndx == 0)
6455     return value;
6456   Address opd_addr = symobj->get_output_section_offset(shndx);
6457   if (opd_addr == invalid_address)
6458     return value;
6459   opd_addr += symobj->output_section_address(shndx);
6460   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6461     {
6462       Address sec_off;
6463       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6464       if (symtab->is_section_folded(symobj, *dest_shndx))
6465         {
6466           Section_id folded
6467             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6468           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6469           *dest_shndx = folded.second;
6470         }
6471       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6472       gold_assert(sec_addr != invalid_address);
6473       sec_addr += symobj->output_section(*dest_shndx)->address();
6474       value = sec_addr + sec_off;
6475     }
6476   return value;
6477 }
6478
6479 // Perform a relocation.
6480
6481 template<int size, bool big_endian>
6482 inline bool
6483 Target_powerpc<size, big_endian>::Relocate::relocate(
6484     const Relocate_info<size, big_endian>* relinfo,
6485     Target_powerpc* target,
6486     Output_section* os,
6487     size_t relnum,
6488     const elfcpp::Rela<size, big_endian>& rela,
6489     unsigned int r_type,
6490     const Sized_symbol<size>* gsym,
6491     const Symbol_value<size>* psymval,
6492     unsigned char* view,
6493     Address address,
6494     section_size_type view_size)
6495 {
6496   if (view == NULL)
6497     return true;
6498
6499   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6500     {
6501     case Track_tls::NOT_EXPECTED:
6502       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6503                              _("__tls_get_addr call lacks marker reloc"));
6504       break;
6505     case Track_tls::EXPECTED:
6506       // We have already complained.
6507       break;
6508     case Track_tls::SKIP:
6509       return true;
6510     case Track_tls::NORMAL:
6511       break;
6512     }
6513
6514   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6515   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6516   Powerpc_relobj<size, big_endian>* const object
6517     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6518   Address value = 0;
6519   bool has_plt_value = false;
6520   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6521   if ((gsym != NULL
6522        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6523        : object->local_has_plt_offset(r_sym))
6524       && (!psymval->is_ifunc_symbol()
6525           || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6526     {
6527       Stub_table<size, big_endian>* stub_table
6528         = object->stub_table(relinfo->data_shndx);
6529       if (stub_table == NULL)
6530         {
6531           // This is a ref from a data section to an ifunc symbol.
6532           if (target->stub_tables().size() != 0)
6533             stub_table = target->stub_tables()[0];
6534         }
6535       gold_assert(stub_table != NULL);
6536       Address off;
6537       if (gsym != NULL)
6538         off = stub_table->find_plt_call_entry(object, gsym, r_type,
6539                                               rela.get_r_addend());
6540       else
6541         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6542                                               rela.get_r_addend());
6543       gold_assert(off != invalid_address);
6544       value = stub_table->stub_address() + off;
6545       has_plt_value = true;
6546     }
6547
6548   if (r_type == elfcpp::R_POWERPC_GOT16
6549       || r_type == elfcpp::R_POWERPC_GOT16_LO
6550       || r_type == elfcpp::R_POWERPC_GOT16_HI
6551       || r_type == elfcpp::R_POWERPC_GOT16_HA
6552       || r_type == elfcpp::R_PPC64_GOT16_DS
6553       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6554     {
6555       if (gsym != NULL)
6556         {
6557           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6558           value = gsym->got_offset(GOT_TYPE_STANDARD);
6559         }
6560       else
6561         {
6562           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6563           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6564           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6565         }
6566       value -= target->got_section()->got_base_offset(object);
6567     }
6568   else if (r_type == elfcpp::R_PPC64_TOC)
6569     {
6570       value = (target->got_section()->output_section()->address()
6571                + object->toc_base_offset());
6572     }
6573   else if (gsym != NULL
6574            && (r_type == elfcpp::R_POWERPC_REL24
6575                || r_type == elfcpp::R_PPC_PLTREL24)
6576            && has_plt_value)
6577     {
6578       if (size == 64)
6579         {
6580           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6581           Valtype* wv = reinterpret_cast<Valtype*>(view);
6582           bool can_plt_call = false;
6583           if (rela.get_r_offset() + 8 <= view_size)
6584             {
6585               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6586               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6587               if ((insn & 1) != 0
6588                   && (insn2 == nop
6589                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6590                 {
6591                   elfcpp::Swap<32, big_endian>::
6592                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6593                   can_plt_call = true;
6594                 }
6595             }
6596           if (!can_plt_call)
6597             {
6598               // If we don't have a branch and link followed by a nop,
6599               // we can't go via the plt because there is no place to
6600               // put a toc restoring instruction.
6601               // Unless we know we won't be returning.
6602               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6603                 can_plt_call = true;
6604             }
6605           if (!can_plt_call)
6606             {
6607               // g++ as of 20130507 emits self-calls without a
6608               // following nop.  This is arguably wrong since we have
6609               // conflicting information.  On the one hand a global
6610               // symbol and on the other a local call sequence, but
6611               // don't error for this special case.
6612               // It isn't possible to cheaply verify we have exactly
6613               // such a call.  Allow all calls to the same section.
6614               bool ok = false;
6615               Address code = value;
6616               if (gsym->source() == Symbol::FROM_OBJECT
6617                   && gsym->object() == object)
6618                 {
6619                   Address addend = rela.get_r_addend();
6620                   unsigned int dest_shndx;
6621                   Address opdent = psymval->value(object, addend);
6622                   code = target->symval_for_branch(relinfo->symtab, opdent,
6623                                                    gsym, object, &dest_shndx);
6624                   bool is_ordinary;
6625                   if (dest_shndx == 0)
6626                     dest_shndx = gsym->shndx(&is_ordinary);
6627                   ok = dest_shndx == relinfo->data_shndx;
6628                 }
6629               if (!ok)
6630                 {
6631                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6632                                          _("call lacks nop, can't restore toc; "
6633                                            "recompile with -fPIC"));
6634                   value = code;
6635                 }
6636             }
6637         }
6638     }
6639   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6640            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6641            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6642            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6643     {
6644       // First instruction of a global dynamic sequence, arg setup insn.
6645       const bool final = gsym == NULL || gsym->final_value_is_known();
6646       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6647       enum Got_type got_type = GOT_TYPE_STANDARD;
6648       if (tls_type == tls::TLSOPT_NONE)
6649         got_type = GOT_TYPE_TLSGD;
6650       else if (tls_type == tls::TLSOPT_TO_IE)
6651         got_type = GOT_TYPE_TPREL;
6652       if (got_type != GOT_TYPE_STANDARD)
6653         {
6654           if (gsym != NULL)
6655             {
6656               gold_assert(gsym->has_got_offset(got_type));
6657               value = gsym->got_offset(got_type);
6658             }
6659           else
6660             {
6661               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6662               gold_assert(object->local_has_got_offset(r_sym, got_type));
6663               value = object->local_got_offset(r_sym, got_type);
6664             }
6665           value -= target->got_section()->got_base_offset(object);
6666         }
6667       if (tls_type == tls::TLSOPT_TO_IE)
6668         {
6669           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6670               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6671             {
6672               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6673               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6674               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6675               if (size == 32)
6676                 insn |= 32 << 26; // lwz
6677               else
6678                 insn |= 58 << 26; // ld
6679               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6680             }
6681           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6682                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6683         }
6684       else if (tls_type == tls::TLSOPT_TO_LE)
6685         {
6686           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6687               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6688             {
6689               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6690               Insn insn = addis_3_13;
6691               if (size == 32)
6692                 insn = addis_3_2;
6693               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6694               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6695               value = psymval->value(object, rela.get_r_addend());
6696             }
6697           else
6698             {
6699               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6700               Insn insn = nop;
6701               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6702               r_type = elfcpp::R_POWERPC_NONE;
6703             }
6704         }
6705     }
6706   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6707            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6708            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6709            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6710     {
6711       // First instruction of a local dynamic sequence, arg setup insn.
6712       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6713       if (tls_type == tls::TLSOPT_NONE)
6714         {
6715           value = target->tlsld_got_offset();
6716           value -= target->got_section()->got_base_offset(object);
6717         }
6718       else
6719         {
6720           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6721           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6722               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6723             {
6724               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6725               Insn insn = addis_3_13;
6726               if (size == 32)
6727                 insn = addis_3_2;
6728               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6729               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6730               value = dtp_offset;
6731             }
6732           else
6733             {
6734               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6735               Insn insn = nop;
6736               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6737               r_type = elfcpp::R_POWERPC_NONE;
6738             }
6739         }
6740     }
6741   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6742            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6743            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6744            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6745     {
6746       // Accesses relative to a local dynamic sequence address,
6747       // no optimisation here.
6748       if (gsym != NULL)
6749         {
6750           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6751           value = gsym->got_offset(GOT_TYPE_DTPREL);
6752         }
6753       else
6754         {
6755           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6756           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6757           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6758         }
6759       value -= target->got_section()->got_base_offset(object);
6760     }
6761   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6762            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6763            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6764            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6765     {
6766       // First instruction of initial exec sequence.
6767       const bool final = gsym == NULL || gsym->final_value_is_known();
6768       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6769       if (tls_type == tls::TLSOPT_NONE)
6770         {
6771           if (gsym != NULL)
6772             {
6773               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6774               value = gsym->got_offset(GOT_TYPE_TPREL);
6775             }
6776           else
6777             {
6778               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6779               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6780               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6781             }
6782           value -= target->got_section()->got_base_offset(object);
6783         }
6784       else
6785         {
6786           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6787           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6788               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6789             {
6790               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6791               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6792               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6793               if (size == 32)
6794                 insn |= addis_0_2;
6795               else
6796                 insn |= addis_0_13;
6797               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6798               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6799               value = psymval->value(object, rela.get_r_addend());
6800             }
6801           else
6802             {
6803               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6804               Insn insn = nop;
6805               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6806               r_type = elfcpp::R_POWERPC_NONE;
6807             }
6808         }
6809     }
6810   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6811            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6812     {
6813       // Second instruction of a global dynamic sequence,
6814       // the __tls_get_addr call
6815       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6816       const bool final = gsym == NULL || gsym->final_value_is_known();
6817       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6818       if (tls_type != tls::TLSOPT_NONE)
6819         {
6820           if (tls_type == tls::TLSOPT_TO_IE)
6821             {
6822               Insn* iview = reinterpret_cast<Insn*>(view);
6823               Insn insn = add_3_3_13;
6824               if (size == 32)
6825                 insn = add_3_3_2;
6826               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6827               r_type = elfcpp::R_POWERPC_NONE;
6828             }
6829           else
6830             {
6831               Insn* iview = reinterpret_cast<Insn*>(view);
6832               Insn insn = addi_3_3;
6833               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6834               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6835               view += 2 * big_endian;
6836               value = psymval->value(object, rela.get_r_addend());
6837             }
6838           this->skip_next_tls_get_addr_call();
6839         }
6840     }
6841   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6842            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6843     {
6844       // Second instruction of a local dynamic sequence,
6845       // the __tls_get_addr call
6846       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6847       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6848       if (tls_type == tls::TLSOPT_TO_LE)
6849         {
6850           Insn* iview = reinterpret_cast<Insn*>(view);
6851           Insn insn = addi_3_3;
6852           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6853           this->skip_next_tls_get_addr_call();
6854           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6855           view += 2 * big_endian;
6856           value = dtp_offset;
6857         }
6858     }
6859   else if (r_type == elfcpp::R_POWERPC_TLS)
6860     {
6861       // Second instruction of an initial exec sequence
6862       const bool final = gsym == NULL || gsym->final_value_is_known();
6863       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6864       if (tls_type == tls::TLSOPT_TO_LE)
6865         {
6866           Insn* iview = reinterpret_cast<Insn*>(view);
6867           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6868           unsigned int reg = size == 32 ? 2 : 13;
6869           insn = at_tls_transform(insn, reg);
6870           gold_assert(insn != 0);
6871           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6872           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6873           view += 2 * big_endian;
6874           value = psymval->value(object, rela.get_r_addend());
6875         }
6876     }
6877   else if (!has_plt_value)
6878     {
6879       Address addend = 0;
6880       unsigned int dest_shndx;
6881       if (r_type != elfcpp::R_PPC_PLTREL24)
6882         addend = rela.get_r_addend();
6883       value = psymval->value(object, addend);
6884       if (gsym != NULL)
6885         value += object->ppc64_local_entry_offset(gsym);
6886       else
6887         value += object->ppc64_local_entry_offset(r_sym);
6888       if (size == 64 && is_branch_reloc(r_type))
6889         value = target->symval_for_branch(relinfo->symtab, value,
6890                                           gsym, object, &dest_shndx);
6891       unsigned int max_branch_offset = 0;
6892       if (r_type == elfcpp::R_POWERPC_REL24
6893           || r_type == elfcpp::R_PPC_PLTREL24
6894           || r_type == elfcpp::R_PPC_LOCAL24PC)
6895         max_branch_offset = 1 << 25;
6896       else if (r_type == elfcpp::R_POWERPC_REL14
6897                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6898                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6899         max_branch_offset = 1 << 15;
6900       if (max_branch_offset != 0
6901           && value - address + max_branch_offset >= 2 * max_branch_offset)
6902         {
6903           Stub_table<size, big_endian>* stub_table
6904             = object->stub_table(relinfo->data_shndx);
6905           if (stub_table != NULL)
6906             {
6907               Address off = stub_table->find_long_branch_entry(object, value);
6908               if (off != invalid_address)
6909                 value = (stub_table->stub_address() + stub_table->plt_size()
6910                          + off);
6911             }
6912         }
6913     }
6914
6915   switch (r_type)
6916     {
6917     case elfcpp::R_PPC64_REL64:
6918     case elfcpp::R_POWERPC_REL32:
6919     case elfcpp::R_POWERPC_REL24:
6920     case elfcpp::R_PPC_PLTREL24:
6921     case elfcpp::R_PPC_LOCAL24PC:
6922     case elfcpp::R_POWERPC_REL16:
6923     case elfcpp::R_POWERPC_REL16_LO:
6924     case elfcpp::R_POWERPC_REL16_HI:
6925     case elfcpp::R_POWERPC_REL16_HA:
6926     case elfcpp::R_POWERPC_REL14:
6927     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6928     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6929       value -= address;
6930       break;
6931
6932     case elfcpp::R_PPC64_TOC16:
6933     case elfcpp::R_PPC64_TOC16_LO:
6934     case elfcpp::R_PPC64_TOC16_HI:
6935     case elfcpp::R_PPC64_TOC16_HA:
6936     case elfcpp::R_PPC64_TOC16_DS:
6937     case elfcpp::R_PPC64_TOC16_LO_DS:
6938       // Subtract the TOC base address.
6939       value -= (target->got_section()->output_section()->address()
6940                 + object->toc_base_offset());
6941       break;
6942
6943     case elfcpp::R_POWERPC_SECTOFF:
6944     case elfcpp::R_POWERPC_SECTOFF_LO:
6945     case elfcpp::R_POWERPC_SECTOFF_HI:
6946     case elfcpp::R_POWERPC_SECTOFF_HA:
6947     case elfcpp::R_PPC64_SECTOFF_DS:
6948     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6949       if (os != NULL)
6950         value -= os->address();
6951       break;
6952
6953     case elfcpp::R_PPC64_TPREL16_DS:
6954     case elfcpp::R_PPC64_TPREL16_LO_DS:
6955     case elfcpp::R_PPC64_TPREL16_HIGH:
6956     case elfcpp::R_PPC64_TPREL16_HIGHA:
6957       if (size != 64)
6958         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
6959         break;
6960     case elfcpp::R_POWERPC_TPREL16:
6961     case elfcpp::R_POWERPC_TPREL16_LO:
6962     case elfcpp::R_POWERPC_TPREL16_HI:
6963     case elfcpp::R_POWERPC_TPREL16_HA:
6964     case elfcpp::R_POWERPC_TPREL:
6965     case elfcpp::R_PPC64_TPREL16_HIGHER:
6966     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6967     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6968     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6969       // tls symbol values are relative to tls_segment()->vaddr()
6970       value -= tp_offset;
6971       break;
6972
6973     case elfcpp::R_PPC64_DTPREL16_DS:
6974     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6975     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6976     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6977     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6978     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6979       if (size != 64)
6980         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6981         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6982         break;
6983     case elfcpp::R_POWERPC_DTPREL16:
6984     case elfcpp::R_POWERPC_DTPREL16_LO:
6985     case elfcpp::R_POWERPC_DTPREL16_HI:
6986     case elfcpp::R_POWERPC_DTPREL16_HA:
6987     case elfcpp::R_POWERPC_DTPREL:
6988     case elfcpp::R_PPC64_DTPREL16_HIGH:
6989     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6990       // tls symbol values are relative to tls_segment()->vaddr()
6991       value -= dtp_offset;
6992       break;
6993
6994     default:
6995       break;
6996     }
6997
6998   Insn branch_bit = 0;
6999   switch (r_type)
7000     {
7001     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7002     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7003       branch_bit = 1 << 21;
7004     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7005     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7006       {
7007         Insn* iview = reinterpret_cast<Insn*>(view);
7008         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7009         insn &= ~(1 << 21);
7010         insn |= branch_bit;
7011         if (this->is_isa_v2)
7012           {
7013             // Set 'a' bit.  This is 0b00010 in BO field for branch
7014             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7015             // for branch on CTR insns (BO == 1a00t or 1a01t).
7016             if ((insn & (0x14 << 21)) == (0x04 << 21))
7017               insn |= 0x02 << 21;
7018             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7019               insn |= 0x08 << 21;
7020             else
7021               break;
7022           }
7023         else
7024           {
7025             // Invert 'y' bit if not the default.
7026             if (static_cast<Signed_address>(value) < 0)
7027               insn ^= 1 << 21;
7028           }
7029         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7030       }
7031       break;
7032
7033     default:
7034       break;
7035     }
7036
7037   if (size == 64)
7038     {
7039       // Multi-instruction sequences that access the TOC can be
7040       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7041       // to             nop;           addi rb,r2,x;
7042       switch (r_type)
7043         {
7044         default:
7045           break;
7046
7047         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7048         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7049         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7050         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7051         case elfcpp::R_POWERPC_GOT16_HA:
7052         case elfcpp::R_PPC64_TOC16_HA:
7053           if (parameters->options().toc_optimize())
7054             {
7055               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7056               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7057               if ((insn & ((0x3f << 26) | 0x1f << 16))
7058                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7059                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7060                                        _("toc optimization is not supported "
7061                                          "for %#08x instruction"), insn);
7062               else if (value + 0x8000 < 0x10000)
7063                 {
7064                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7065                   return true;
7066                 }
7067             }
7068           break;
7069
7070         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7071         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7072         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7073         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7074         case elfcpp::R_POWERPC_GOT16_LO:
7075         case elfcpp::R_PPC64_GOT16_LO_DS:
7076         case elfcpp::R_PPC64_TOC16_LO:
7077         case elfcpp::R_PPC64_TOC16_LO_DS:
7078           if (parameters->options().toc_optimize())
7079             {
7080               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7081               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7082               if (!ok_lo_toc_insn(insn))
7083                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7084                                        _("toc optimization is not supported "
7085                                          "for %#08x instruction"), insn);
7086               else if (value + 0x8000 < 0x10000)
7087                 {
7088                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7089                     {
7090                       // Transform addic to addi when we change reg.
7091                       insn &= ~((0x3f << 26) | (0x1f << 16));
7092                       insn |= (14u << 26) | (2 << 16);
7093                     }
7094                   else
7095                     {
7096                       insn &= ~(0x1f << 16);
7097                       insn |= 2 << 16;
7098                     }
7099                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7100                 }
7101             }
7102           break;
7103         }
7104     }
7105
7106   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7107   switch (r_type)
7108     {
7109     case elfcpp::R_POWERPC_ADDR32:
7110     case elfcpp::R_POWERPC_UADDR32:
7111       if (size == 64)
7112         overflow = Reloc::CHECK_BITFIELD;
7113       break;
7114
7115     case elfcpp::R_POWERPC_REL32:
7116       if (size == 64)
7117         overflow = Reloc::CHECK_SIGNED;
7118       break;
7119
7120     case elfcpp::R_POWERPC_ADDR24:
7121     case elfcpp::R_POWERPC_ADDR16:
7122     case elfcpp::R_POWERPC_UADDR16:
7123     case elfcpp::R_PPC64_ADDR16_DS:
7124     case elfcpp::R_POWERPC_ADDR14:
7125     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7126     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7127       overflow = Reloc::CHECK_BITFIELD;
7128       break;
7129
7130     case elfcpp::R_POWERPC_ADDR16_HI:
7131     case elfcpp::R_POWERPC_ADDR16_HA:
7132     case elfcpp::R_POWERPC_GOT16_HI:
7133     case elfcpp::R_POWERPC_GOT16_HA:
7134     case elfcpp::R_POWERPC_PLT16_HI:
7135     case elfcpp::R_POWERPC_PLT16_HA:
7136     case elfcpp::R_POWERPC_SECTOFF_HI:
7137     case elfcpp::R_POWERPC_SECTOFF_HA:
7138     case elfcpp::R_PPC64_TOC16_HI:
7139     case elfcpp::R_PPC64_TOC16_HA:
7140     case elfcpp::R_PPC64_PLTGOT16_HI:
7141     case elfcpp::R_PPC64_PLTGOT16_HA:
7142     case elfcpp::R_POWERPC_TPREL16_HI:
7143     case elfcpp::R_POWERPC_TPREL16_HA:
7144     case elfcpp::R_POWERPC_DTPREL16_HI:
7145     case elfcpp::R_POWERPC_DTPREL16_HA:
7146     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7147     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7148     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7149     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7150     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7151     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7152     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7153     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7154     case elfcpp::R_POWERPC_REL16_HI:
7155     case elfcpp::R_POWERPC_REL16_HA:
7156       if (size == 32)
7157         break;
7158     case elfcpp::R_POWERPC_REL24:
7159     case elfcpp::R_PPC_PLTREL24:
7160     case elfcpp::R_PPC_LOCAL24PC:
7161     case elfcpp::R_POWERPC_REL16:
7162     case elfcpp::R_PPC64_TOC16:
7163     case elfcpp::R_POWERPC_GOT16:
7164     case elfcpp::R_POWERPC_SECTOFF:
7165     case elfcpp::R_POWERPC_TPREL16:
7166     case elfcpp::R_POWERPC_DTPREL16:
7167     case elfcpp::R_PPC64_TPREL16_DS:
7168     case elfcpp::R_PPC64_DTPREL16_DS:
7169     case elfcpp::R_PPC64_TOC16_DS:
7170     case elfcpp::R_PPC64_GOT16_DS:
7171     case elfcpp::R_PPC64_SECTOFF_DS:
7172     case elfcpp::R_POWERPC_REL14:
7173     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7174     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7175     case elfcpp::R_POWERPC_GOT_TLSGD16:
7176     case elfcpp::R_POWERPC_GOT_TLSLD16:
7177     case elfcpp::R_POWERPC_GOT_TPREL16:
7178     case elfcpp::R_POWERPC_GOT_DTPREL16:
7179       overflow = Reloc::CHECK_SIGNED;
7180       break;
7181     }
7182
7183   typename Powerpc_relocate_functions<size, big_endian>::Status status
7184     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7185   switch (r_type)
7186     {
7187     case elfcpp::R_POWERPC_NONE:
7188     case elfcpp::R_POWERPC_TLS:
7189     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7190     case elfcpp::R_POWERPC_GNU_VTENTRY:
7191       break;
7192
7193     case elfcpp::R_PPC64_ADDR64:
7194     case elfcpp::R_PPC64_REL64:
7195     case elfcpp::R_PPC64_TOC:
7196       Reloc::addr64(view, value);
7197       break;
7198
7199     case elfcpp::R_POWERPC_TPREL:
7200     case elfcpp::R_POWERPC_DTPREL:
7201       if (size == 64)
7202         Reloc::addr64(view, value);
7203       else
7204         status = Reloc::addr32(view, value, overflow);
7205       break;
7206
7207     case elfcpp::R_PPC64_UADDR64:
7208       Reloc::addr64_u(view, value);
7209       break;
7210
7211     case elfcpp::R_POWERPC_ADDR32:
7212       status = Reloc::addr32(view, value, overflow);
7213       break;
7214
7215     case elfcpp::R_POWERPC_REL32:
7216     case elfcpp::R_POWERPC_UADDR32:
7217       status = Reloc::addr32_u(view, value, overflow);
7218       break;
7219
7220     case elfcpp::R_POWERPC_ADDR24:
7221     case elfcpp::R_POWERPC_REL24:
7222     case elfcpp::R_PPC_PLTREL24:
7223     case elfcpp::R_PPC_LOCAL24PC:
7224       status = Reloc::addr24(view, value, overflow);
7225       break;
7226
7227     case elfcpp::R_POWERPC_GOT_DTPREL16:
7228     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7229       if (size == 64)
7230         {
7231           status = Reloc::addr16_ds(view, value, overflow);
7232           break;
7233         }
7234     case elfcpp::R_POWERPC_ADDR16:
7235     case elfcpp::R_POWERPC_REL16:
7236     case elfcpp::R_PPC64_TOC16:
7237     case elfcpp::R_POWERPC_GOT16:
7238     case elfcpp::R_POWERPC_SECTOFF:
7239     case elfcpp::R_POWERPC_TPREL16:
7240     case elfcpp::R_POWERPC_DTPREL16:
7241     case elfcpp::R_POWERPC_GOT_TLSGD16:
7242     case elfcpp::R_POWERPC_GOT_TLSLD16:
7243     case elfcpp::R_POWERPC_GOT_TPREL16:
7244     case elfcpp::R_POWERPC_ADDR16_LO:
7245     case elfcpp::R_POWERPC_REL16_LO:
7246     case elfcpp::R_PPC64_TOC16_LO:
7247     case elfcpp::R_POWERPC_GOT16_LO:
7248     case elfcpp::R_POWERPC_SECTOFF_LO:
7249     case elfcpp::R_POWERPC_TPREL16_LO:
7250     case elfcpp::R_POWERPC_DTPREL16_LO:
7251     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7252     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7253     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7254       status = Reloc::addr16(view, value, overflow);
7255       break;
7256
7257     case elfcpp::R_POWERPC_UADDR16:
7258       status = Reloc::addr16_u(view, value, overflow);
7259       break;
7260
7261     case elfcpp::R_PPC64_ADDR16_HIGH:
7262     case elfcpp::R_PPC64_TPREL16_HIGH:
7263     case elfcpp::R_PPC64_DTPREL16_HIGH:
7264       if (size == 32)
7265         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7266         goto unsupp;
7267     case elfcpp::R_POWERPC_ADDR16_HI:
7268     case elfcpp::R_POWERPC_REL16_HI:
7269     case elfcpp::R_PPC64_TOC16_HI:
7270     case elfcpp::R_POWERPC_GOT16_HI:
7271     case elfcpp::R_POWERPC_SECTOFF_HI:
7272     case elfcpp::R_POWERPC_TPREL16_HI:
7273     case elfcpp::R_POWERPC_DTPREL16_HI:
7274     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7275     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7276     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7277     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7278       Reloc::addr16_hi(view, value);
7279       break;
7280
7281     case elfcpp::R_PPC64_ADDR16_HIGHA:
7282     case elfcpp::R_PPC64_TPREL16_HIGHA:
7283     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7284       if (size == 32)
7285         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7286         goto unsupp;
7287     case elfcpp::R_POWERPC_ADDR16_HA:
7288     case elfcpp::R_POWERPC_REL16_HA:
7289     case elfcpp::R_PPC64_TOC16_HA:
7290     case elfcpp::R_POWERPC_GOT16_HA:
7291     case elfcpp::R_POWERPC_SECTOFF_HA:
7292     case elfcpp::R_POWERPC_TPREL16_HA:
7293     case elfcpp::R_POWERPC_DTPREL16_HA:
7294     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7295     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7296     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7297     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7298       Reloc::addr16_ha(view, value);
7299       break;
7300
7301     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7302       if (size == 32)
7303         // R_PPC_EMB_NADDR16_LO
7304         goto unsupp;
7305     case elfcpp::R_PPC64_ADDR16_HIGHER:
7306     case elfcpp::R_PPC64_TPREL16_HIGHER:
7307       Reloc::addr16_hi2(view, value);
7308       break;
7309
7310     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7311       if (size == 32)
7312         // R_PPC_EMB_NADDR16_HI
7313         goto unsupp;
7314     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7315     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7316       Reloc::addr16_ha2(view, value);
7317       break;
7318
7319     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7320       if (size == 32)
7321         // R_PPC_EMB_NADDR16_HA
7322         goto unsupp;
7323     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7324     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7325       Reloc::addr16_hi3(view, value);
7326       break;
7327
7328     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7329       if (size == 32)
7330         // R_PPC_EMB_SDAI16
7331         goto unsupp;
7332     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7333     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7334       Reloc::addr16_ha3(view, value);
7335       break;
7336
7337     case elfcpp::R_PPC64_DTPREL16_DS:
7338     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7339       if (size == 32)
7340         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7341         goto unsupp;
7342     case elfcpp::R_PPC64_TPREL16_DS:
7343     case elfcpp::R_PPC64_TPREL16_LO_DS:
7344       if (size == 32)
7345         // R_PPC_TLSGD, R_PPC_TLSLD
7346         break;
7347     case elfcpp::R_PPC64_ADDR16_DS:
7348     case elfcpp::R_PPC64_ADDR16_LO_DS:
7349     case elfcpp::R_PPC64_TOC16_DS:
7350     case elfcpp::R_PPC64_TOC16_LO_DS:
7351     case elfcpp::R_PPC64_GOT16_DS:
7352     case elfcpp::R_PPC64_GOT16_LO_DS:
7353     case elfcpp::R_PPC64_SECTOFF_DS:
7354     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7355       status = Reloc::addr16_ds(view, value, overflow);
7356       break;
7357
7358     case elfcpp::R_POWERPC_ADDR14:
7359     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7360     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7361     case elfcpp::R_POWERPC_REL14:
7362     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7363     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7364       status = Reloc::addr14(view, value, overflow);
7365       break;
7366
7367     case elfcpp::R_POWERPC_COPY:
7368     case elfcpp::R_POWERPC_GLOB_DAT:
7369     case elfcpp::R_POWERPC_JMP_SLOT:
7370     case elfcpp::R_POWERPC_RELATIVE:
7371     case elfcpp::R_POWERPC_DTPMOD:
7372     case elfcpp::R_PPC64_JMP_IREL:
7373     case elfcpp::R_POWERPC_IRELATIVE:
7374       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7375                              _("unexpected reloc %u in object file"),
7376                              r_type);
7377       break;
7378
7379     case elfcpp::R_PPC_EMB_SDA21:
7380       if (size == 32)
7381         goto unsupp;
7382       else
7383         {
7384           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7385         }
7386       break;
7387
7388     case elfcpp::R_PPC_EMB_SDA2I16:
7389     case elfcpp::R_PPC_EMB_SDA2REL:
7390       if (size == 32)
7391         goto unsupp;
7392       // R_PPC64_TLSGD, R_PPC64_TLSLD
7393       break;
7394
7395     case elfcpp::R_POWERPC_PLT32:
7396     case elfcpp::R_POWERPC_PLTREL32:
7397     case elfcpp::R_POWERPC_PLT16_LO:
7398     case elfcpp::R_POWERPC_PLT16_HI:
7399     case elfcpp::R_POWERPC_PLT16_HA:
7400     case elfcpp::R_PPC_SDAREL16:
7401     case elfcpp::R_POWERPC_ADDR30:
7402     case elfcpp::R_PPC64_PLT64:
7403     case elfcpp::R_PPC64_PLTREL64:
7404     case elfcpp::R_PPC64_PLTGOT16:
7405     case elfcpp::R_PPC64_PLTGOT16_LO:
7406     case elfcpp::R_PPC64_PLTGOT16_HI:
7407     case elfcpp::R_PPC64_PLTGOT16_HA:
7408     case elfcpp::R_PPC64_PLT16_LO_DS:
7409     case elfcpp::R_PPC64_PLTGOT16_DS:
7410     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7411     case elfcpp::R_PPC_EMB_RELSDA:
7412     case elfcpp::R_PPC_TOC16:
7413     default:
7414     unsupp:
7415       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7416                              _("unsupported reloc %u"),
7417                              r_type);
7418       break;
7419     }
7420   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7421     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7422                            _("relocation overflow"));
7423
7424   return true;
7425 }
7426
7427 // Relocate section data.
7428
7429 template<int size, bool big_endian>
7430 void
7431 Target_powerpc<size, big_endian>::relocate_section(
7432     const Relocate_info<size, big_endian>* relinfo,
7433     unsigned int sh_type,
7434     const unsigned char* prelocs,
7435     size_t reloc_count,
7436     Output_section* output_section,
7437     bool needs_special_offset_handling,
7438     unsigned char* view,
7439     Address address,
7440     section_size_type view_size,
7441     const Reloc_symbol_changes* reloc_symbol_changes)
7442 {
7443   typedef Target_powerpc<size, big_endian> Powerpc;
7444   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7445   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7446     Powerpc_comdat_behavior;
7447
7448   gold_assert(sh_type == elfcpp::SHT_RELA);
7449
7450   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7451                          Powerpc_relocate, Powerpc_comdat_behavior>(
7452     relinfo,
7453     this,
7454     prelocs,
7455     reloc_count,
7456     output_section,
7457     needs_special_offset_handling,
7458     view,
7459     address,
7460     view_size,
7461     reloc_symbol_changes);
7462 }
7463
7464 class Powerpc_scan_relocatable_reloc
7465 {
7466 public:
7467   // Return the strategy to use for a local symbol which is not a
7468   // section symbol, given the relocation type.
7469   inline Relocatable_relocs::Reloc_strategy
7470   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7471   {
7472     if (r_type == 0 && r_sym == 0)
7473       return Relocatable_relocs::RELOC_DISCARD;
7474     return Relocatable_relocs::RELOC_COPY;
7475   }
7476
7477   // Return the strategy to use for a local symbol which is a section
7478   // symbol, given the relocation type.
7479   inline Relocatable_relocs::Reloc_strategy
7480   local_section_strategy(unsigned int, Relobj*)
7481   {
7482     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7483   }
7484
7485   // Return the strategy to use for a global symbol, given the
7486   // relocation type, the object, and the symbol index.
7487   inline Relocatable_relocs::Reloc_strategy
7488   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7489   {
7490     if (r_type == elfcpp::R_PPC_PLTREL24)
7491       return Relocatable_relocs::RELOC_SPECIAL;
7492     return Relocatable_relocs::RELOC_COPY;
7493   }
7494 };
7495
7496 // Scan the relocs during a relocatable link.
7497
7498 template<int size, bool big_endian>
7499 void
7500 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7501     Symbol_table* symtab,
7502     Layout* layout,
7503     Sized_relobj_file<size, big_endian>* object,
7504     unsigned int data_shndx,
7505     unsigned int sh_type,
7506     const unsigned char* prelocs,
7507     size_t reloc_count,
7508     Output_section* output_section,
7509     bool needs_special_offset_handling,
7510     size_t local_symbol_count,
7511     const unsigned char* plocal_symbols,
7512     Relocatable_relocs* rr)
7513 {
7514   gold_assert(sh_type == elfcpp::SHT_RELA);
7515
7516   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7517                                 Powerpc_scan_relocatable_reloc>(
7518     symtab,
7519     layout,
7520     object,
7521     data_shndx,
7522     prelocs,
7523     reloc_count,
7524     output_section,
7525     needs_special_offset_handling,
7526     local_symbol_count,
7527     plocal_symbols,
7528     rr);
7529 }
7530
7531 // Emit relocations for a section.
7532 // This is a modified version of the function by the same name in
7533 // target-reloc.h.  Using relocate_special_relocatable for
7534 // R_PPC_PLTREL24 would require duplication of the entire body of the
7535 // loop, so we may as well duplicate the whole thing.
7536
7537 template<int size, bool big_endian>
7538 void
7539 Target_powerpc<size, big_endian>::relocate_relocs(
7540     const Relocate_info<size, big_endian>* relinfo,
7541     unsigned int sh_type,
7542     const unsigned char* prelocs,
7543     size_t reloc_count,
7544     Output_section* output_section,
7545     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7546     const Relocatable_relocs* rr,
7547     unsigned char*,
7548     Address view_address,
7549     section_size_type,
7550     unsigned char* reloc_view,
7551     section_size_type reloc_view_size)
7552 {
7553   gold_assert(sh_type == elfcpp::SHT_RELA);
7554
7555   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7556     Reltype;
7557   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7558     Reltype_write;
7559   const int reloc_size
7560     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7561
7562   Powerpc_relobj<size, big_endian>* const object
7563     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7564   const unsigned int local_count = object->local_symbol_count();
7565   unsigned int got2_shndx = object->got2_shndx();
7566   Address got2_addend = 0;
7567   if (got2_shndx != 0)
7568     {
7569       got2_addend = object->get_output_section_offset(got2_shndx);
7570       gold_assert(got2_addend != invalid_address);
7571     }
7572
7573   unsigned char* pwrite = reloc_view;
7574   bool zap_next = false;
7575   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7576     {
7577       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7578       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7579         continue;
7580
7581       Reltype reloc(prelocs);
7582       Reltype_write reloc_write(pwrite);
7583
7584       Address offset = reloc.get_r_offset();
7585       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7586       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7587       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7588       const unsigned int orig_r_sym = r_sym;
7589       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7590         = reloc.get_r_addend();
7591       const Symbol* gsym = NULL;
7592
7593       if (zap_next)
7594         {
7595           // We could arrange to discard these and other relocs for
7596           // tls optimised sequences in the strategy methods, but for
7597           // now do as BFD ld does.
7598           r_type = elfcpp::R_POWERPC_NONE;
7599           zap_next = false;
7600         }
7601
7602       // Get the new symbol index.
7603       if (r_sym < local_count)
7604         {
7605           switch (strategy)
7606             {
7607             case Relocatable_relocs::RELOC_COPY:
7608             case Relocatable_relocs::RELOC_SPECIAL:
7609               if (r_sym != 0)
7610                 {
7611                   r_sym = object->symtab_index(r_sym);
7612                   gold_assert(r_sym != -1U);
7613                 }
7614               break;
7615
7616             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7617               {
7618                 // We are adjusting a section symbol.  We need to find
7619                 // the symbol table index of the section symbol for
7620                 // the output section corresponding to input section
7621                 // in which this symbol is defined.
7622                 gold_assert(r_sym < local_count);
7623                 bool is_ordinary;
7624                 unsigned int shndx =
7625                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7626                 gold_assert(is_ordinary);
7627                 Output_section* os = object->output_section(shndx);
7628                 gold_assert(os != NULL);
7629                 gold_assert(os->needs_symtab_index());
7630                 r_sym = os->symtab_index();
7631               }
7632               break;
7633
7634             default:
7635               gold_unreachable();
7636             }
7637         }
7638       else
7639         {
7640           gsym = object->global_symbol(r_sym);
7641           gold_assert(gsym != NULL);
7642           if (gsym->is_forwarder())
7643             gsym = relinfo->symtab->resolve_forwards(gsym);
7644
7645           gold_assert(gsym->has_symtab_index());
7646           r_sym = gsym->symtab_index();
7647         }
7648
7649       // Get the new offset--the location in the output section where
7650       // this relocation should be applied.
7651       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7652         offset += offset_in_output_section;
7653       else
7654         {
7655           section_offset_type sot_offset =
7656             convert_types<section_offset_type, Address>(offset);
7657           section_offset_type new_sot_offset =
7658             output_section->output_offset(object, relinfo->data_shndx,
7659                                           sot_offset);
7660           gold_assert(new_sot_offset != -1);
7661           offset = new_sot_offset;
7662         }
7663
7664       // In an object file, r_offset is an offset within the section.
7665       // In an executable or dynamic object, generated by
7666       // --emit-relocs, r_offset is an absolute address.
7667       if (!parameters->options().relocatable())
7668         {
7669           offset += view_address;
7670           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7671             offset -= offset_in_output_section;
7672         }
7673
7674       // Handle the reloc addend based on the strategy.
7675       if (strategy == Relocatable_relocs::RELOC_COPY)
7676         ;
7677       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7678         {
7679           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7680           addend = psymval->value(object, addend);
7681         }
7682       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7683         {
7684           if (addend >= 32768)
7685             addend += got2_addend;
7686         }
7687       else
7688         gold_unreachable();
7689
7690       if (!parameters->options().relocatable())
7691         {
7692           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7693               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7694               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7695               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7696             {
7697               // First instruction of a global dynamic sequence,
7698               // arg setup insn.
7699               const bool final = gsym == NULL || gsym->final_value_is_known();
7700               switch (this->optimize_tls_gd(final))
7701                 {
7702                 case tls::TLSOPT_TO_IE:
7703                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7704                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7705                   break;
7706                 case tls::TLSOPT_TO_LE:
7707                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7708                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7709                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7710                   else
7711                     {
7712                       r_type = elfcpp::R_POWERPC_NONE;
7713                       offset -= 2 * big_endian;
7714                     }
7715                   break;
7716                 default:
7717                   break;
7718                 }
7719             }
7720           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7721                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7722                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7723                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7724             {
7725               // First instruction of a local dynamic sequence,
7726               // arg setup insn.
7727               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7728                 {
7729                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7730                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7731                     {
7732                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7733                       const Output_section* os = relinfo->layout->tls_segment()
7734                         ->first_section();
7735                       gold_assert(os != NULL);
7736                       gold_assert(os->needs_symtab_index());
7737                       r_sym = os->symtab_index();
7738                       addend = dtp_offset;
7739                     }
7740                   else
7741                     {
7742                       r_type = elfcpp::R_POWERPC_NONE;
7743                       offset -= 2 * big_endian;
7744                     }
7745                 }
7746             }
7747           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7748                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7749                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7750                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7751             {
7752               // First instruction of initial exec sequence.
7753               const bool final = gsym == NULL || gsym->final_value_is_known();
7754               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7755                 {
7756                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7757                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7758                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7759                   else
7760                     {
7761                       r_type = elfcpp::R_POWERPC_NONE;
7762                       offset -= 2 * big_endian;
7763                     }
7764                 }
7765             }
7766           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7767                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7768             {
7769               // Second instruction of a global dynamic sequence,
7770               // the __tls_get_addr call
7771               const bool final = gsym == NULL || gsym->final_value_is_known();
7772               switch (this->optimize_tls_gd(final))
7773                 {
7774                 case tls::TLSOPT_TO_IE:
7775                   r_type = elfcpp::R_POWERPC_NONE;
7776                   zap_next = true;
7777                   break;
7778                 case tls::TLSOPT_TO_LE:
7779                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7780                   offset += 2 * big_endian;
7781                   zap_next = true;
7782                   break;
7783                 default:
7784                   break;
7785                 }
7786             }
7787           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7788                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7789             {
7790               // Second instruction of a local dynamic sequence,
7791               // the __tls_get_addr call
7792               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7793                 {
7794                   const Output_section* os = relinfo->layout->tls_segment()
7795                     ->first_section();
7796                   gold_assert(os != NULL);
7797                   gold_assert(os->needs_symtab_index());
7798                   r_sym = os->symtab_index();
7799                   addend = dtp_offset;
7800                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7801                   offset += 2 * big_endian;
7802                   zap_next = true;
7803                 }
7804             }
7805           else if (r_type == elfcpp::R_POWERPC_TLS)
7806             {
7807               // Second instruction of an initial exec sequence
7808               const bool final = gsym == NULL || gsym->final_value_is_known();
7809               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7810                 {
7811                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7812                   offset += 2 * big_endian;
7813                 }
7814             }
7815         }
7816
7817       reloc_write.put_r_offset(offset);
7818       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7819       reloc_write.put_r_addend(addend);
7820
7821       pwrite += reloc_size;
7822     }
7823
7824   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7825               == reloc_view_size);
7826 }
7827
7828 // Return the value to use for a dynamic symbol which requires special
7829 // treatment.  This is how we support equality comparisons of function
7830 // pointers across shared library boundaries, as described in the
7831 // processor specific ABI supplement.
7832
7833 template<int size, bool big_endian>
7834 uint64_t
7835 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7836 {
7837   if (size == 32)
7838     {
7839       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7840       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7841            p != this->stub_tables_.end();
7842            ++p)
7843         {
7844           Address off = (*p)->find_plt_call_entry(gsym);
7845           if (off != invalid_address)
7846             return (*p)->stub_address() + off;
7847         }
7848     }
7849   gold_unreachable();
7850 }
7851
7852 // Return the PLT address to use for a local symbol.
7853 template<int size, bool big_endian>
7854 uint64_t
7855 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7856     const Relobj* object,
7857     unsigned int symndx) const
7858 {
7859   if (size == 32)
7860     {
7861       const Sized_relobj<size, big_endian>* relobj
7862         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7863       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7864            p != this->stub_tables_.end();
7865            ++p)
7866         {
7867           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7868                                                   symndx);
7869           if (off != invalid_address)
7870             return (*p)->stub_address() + off;
7871         }
7872     }
7873   gold_unreachable();
7874 }
7875
7876 // Return the PLT address to use for a global symbol.
7877 template<int size, bool big_endian>
7878 uint64_t
7879 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7880     const Symbol* gsym) const
7881 {
7882   if (size == 32)
7883     {
7884       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7885            p != this->stub_tables_.end();
7886            ++p)
7887         {
7888           Address off = (*p)->find_plt_call_entry(gsym);
7889           if (off != invalid_address)
7890             return (*p)->stub_address() + off;
7891         }
7892     }
7893   gold_unreachable();
7894 }
7895
7896 // Return the offset to use for the GOT_INDX'th got entry which is
7897 // for a local tls symbol specified by OBJECT, SYMNDX.
7898 template<int size, bool big_endian>
7899 int64_t
7900 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7901     const Relobj* object,
7902     unsigned int symndx,
7903     unsigned int got_indx) const
7904 {
7905   const Powerpc_relobj<size, big_endian>* ppc_object
7906     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7907   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7908     {
7909       for (Got_type got_type = GOT_TYPE_TLSGD;
7910            got_type <= GOT_TYPE_TPREL;
7911            got_type = Got_type(got_type + 1))
7912         if (ppc_object->local_has_got_offset(symndx, got_type))
7913           {
7914             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7915             if (got_type == GOT_TYPE_TLSGD)
7916               off += size / 8;
7917             if (off == got_indx * (size / 8))
7918               {
7919                 if (got_type == GOT_TYPE_TPREL)
7920                   return -tp_offset;
7921                 else
7922                   return -dtp_offset;
7923               }
7924           }
7925     }
7926   gold_unreachable();
7927 }
7928
7929 // Return the offset to use for the GOT_INDX'th got entry which is
7930 // for global tls symbol GSYM.
7931 template<int size, bool big_endian>
7932 int64_t
7933 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7934     Symbol* gsym,
7935     unsigned int got_indx) const
7936 {
7937   if (gsym->type() == elfcpp::STT_TLS)
7938     {
7939       for (Got_type got_type = GOT_TYPE_TLSGD;
7940            got_type <= GOT_TYPE_TPREL;
7941            got_type = Got_type(got_type + 1))
7942         if (gsym->has_got_offset(got_type))
7943           {
7944             unsigned int off = gsym->got_offset(got_type);
7945             if (got_type == GOT_TYPE_TLSGD)
7946               off += size / 8;
7947             if (off == got_indx * (size / 8))
7948               {
7949                 if (got_type == GOT_TYPE_TPREL)
7950                   return -tp_offset;
7951                 else
7952                   return -dtp_offset;
7953               }
7954           }
7955     }
7956   gold_unreachable();
7957 }
7958
7959 // The selector for powerpc object files.
7960
7961 template<int size, bool big_endian>
7962 class Target_selector_powerpc : public Target_selector
7963 {
7964 public:
7965   Target_selector_powerpc()
7966     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7967                       size, big_endian,
7968                       (size == 64
7969                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7970                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7971                       (size == 64
7972                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7973                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7974   { }
7975
7976   virtual Target*
7977   do_instantiate_target()
7978   { return new Target_powerpc<size, big_endian>(); }
7979 };
7980
7981 Target_selector_powerpc<32, true> target_selector_ppc32;
7982 Target_selector_powerpc<32, false> target_selector_ppc32le;
7983 Target_selector_powerpc<64, true> target_selector_ppc64;
7984 Target_selector_powerpc<64, false> target_selector_ppc64le;
7985
7986 // Instantiate these constants for -O0
7987 template<int size, bool big_endian>
7988 const int Output_data_glink<size, big_endian>::pltresolve_size;
7989 template<int size, bool big_endian>
7990 const typename Stub_table<size, big_endian>::Address
7991   Stub_table<size, big_endian>::invalid_address;
7992 template<int size, bool big_endian>
7993 const typename Target_powerpc<size, big_endian>::Address
7994   Target_powerpc<size, big_endian>::invalid_address;
7995
7996 } // End anonymous namespace.