[GOLD] Add gcc-4.9 libgomp symbols requiring --plt-thread-safe for power7
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* relobj,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         {
962           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963             <Powerpc_relobj<size, big_endian>*>(relobj);
964           if (ppcobj->abiversion() == 1)
965             return false;
966         }
967       // For 32-bit and ELFv2, conservatively assume anything but calls to
968       // function code might be taking the address of the function.
969       return !is_branch_reloc(r_type);
970     }
971
972     inline bool
973     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974                                          Target_powerpc* ,
975                                          Sized_relobj_file<size, big_endian>* relobj,
976                                          unsigned int ,
977                                          Output_section* ,
978                                          const elfcpp::Rela<size, big_endian>& ,
979                                          unsigned int r_type,
980                                          Symbol*)
981     {
982       // As above.
983       if (size == 64)
984         {
985           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986             <Powerpc_relobj<size, big_endian>*>(relobj);
987           if (ppcobj->abiversion() == 1)
988             return false;
989         }
990       return !is_branch_reloc(r_type);
991     }
992
993     static bool
994     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995                               Sized_relobj_file<size, big_endian>* object,
996                               unsigned int r_type, bool report_err);
997
998   private:
999     static void
1000     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001                             unsigned int r_type);
1002
1003     static void
1004     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005                              unsigned int r_type, Symbol*);
1006
1007     static void
1008     generate_tls_call(Symbol_table* symtab, Layout* layout,
1009                       Target_powerpc* target);
1010
1011     void
1012     check_non_pic(Relobj*, unsigned int r_type);
1013
1014     // Whether we have issued an error about a non-PIC compilation.
1015     bool issued_non_pic_error_;
1016   };
1017
1018   Address
1019   symval_for_branch(const Symbol_table* symtab, Address value,
1020                     const Sized_symbol<size>* gsym,
1021                     Powerpc_relobj<size, big_endian>* object,
1022                     unsigned int *dest_shndx);
1023
1024   // The class which implements relocation.
1025   class Relocate : protected Track_tls
1026   {
1027    public:
1028     // Use 'at' branch hints when true, 'y' when false.
1029     // FIXME maybe: set this with an option.
1030     static const bool is_isa_v2 = true;
1031
1032     Relocate()
1033       : Track_tls()
1034     { }
1035
1036     // Do a relocation.  Return false if the caller should not issue
1037     // any warnings about this relocation.
1038     inline bool
1039     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040              Output_section*, size_t relnum,
1041              const elfcpp::Rela<size, big_endian>&,
1042              unsigned int r_type, const Sized_symbol<size>*,
1043              const Symbol_value<size>*,
1044              unsigned char*,
1045              typename elfcpp::Elf_types<size>::Elf_Addr,
1046              section_size_type);
1047   };
1048
1049   class Relocate_comdat_behavior
1050   {
1051    public:
1052     // Decide what the linker should do for relocations that refer to
1053     // discarded comdat sections.
1054     inline Comdat_behavior
1055     get(const char* name)
1056     {
1057       gold::Default_comdat_behavior default_behavior;
1058       Comdat_behavior ret = default_behavior.get(name);
1059       if (ret == CB_WARNING)
1060         {
1061           if (size == 32
1062               && (strcmp(name, ".fixup") == 0
1063                   || strcmp(name, ".got2") == 0))
1064             ret = CB_IGNORE;
1065           if (size == 64
1066               && (strcmp(name, ".opd") == 0
1067                   || strcmp(name, ".toc") == 0
1068                   || strcmp(name, ".toc1") == 0))
1069             ret = CB_IGNORE;
1070         }
1071       return ret;
1072     }
1073   };
1074
1075   // A class which returns the size required for a relocation type,
1076   // used while scanning relocs during a relocatable link.
1077   class Relocatable_size_for_reloc
1078   {
1079    public:
1080     unsigned int
1081     get_size_for_reloc(unsigned int, Relobj*)
1082     {
1083       gold_unreachable();
1084       return 0;
1085     }
1086   };
1087
1088   // Optimize the TLS relocation type based on what we know about the
1089   // symbol.  IS_FINAL is true if the final address of this symbol is
1090   // known at link time.
1091
1092   tls::Tls_optimization
1093   optimize_tls_gd(bool is_final)
1094   {
1095     // If we are generating a shared library, then we can't do anything
1096     // in the linker.
1097     if (parameters->options().shared())
1098       return tls::TLSOPT_NONE;
1099
1100     if (!is_final)
1101       return tls::TLSOPT_TO_IE;
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   tls::Tls_optimization
1106   optimize_tls_ld()
1107   {
1108     if (parameters->options().shared())
1109       return tls::TLSOPT_NONE;
1110
1111     return tls::TLSOPT_TO_LE;
1112   }
1113
1114   tls::Tls_optimization
1115   optimize_tls_ie(bool is_final)
1116   {
1117     if (!is_final || parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     return tls::TLSOPT_TO_LE;
1121   }
1122
1123   // Create glink.
1124   void
1125   make_glink_section(Layout*);
1126
1127   // Create the PLT section.
1128   void
1129   make_plt_section(Symbol_table*, Layout*);
1130
1131   void
1132   make_iplt_section(Symbol_table*, Layout*);
1133
1134   void
1135   make_brlt_section(Layout*);
1136
1137   // Create a PLT entry for a global symbol.
1138   void
1139   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141   // Create a PLT entry for a local IFUNC symbol.
1142   void
1143   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144                              Sized_relobj_file<size, big_endian>*,
1145                              unsigned int);
1146
1147
1148   // Create a GOT entry for local dynamic __tls_get_addr.
1149   unsigned int
1150   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151                    Sized_relobj_file<size, big_endian>* object);
1152
1153   unsigned int
1154   tlsld_got_offset() const
1155   {
1156     return this->tlsld_got_offset_;
1157   }
1158
1159   // Get the dynamic reloc section, creating it if necessary.
1160   Reloc_section*
1161   rela_dyn_section(Layout*);
1162
1163   // Similarly, but for ifunc symbols get the one for ifunc.
1164   Reloc_section*
1165   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167   // Copy a relocation against a global symbol.
1168   void
1169   copy_reloc(Symbol_table* symtab, Layout* layout,
1170              Sized_relobj_file<size, big_endian>* object,
1171              unsigned int shndx, Output_section* output_section,
1172              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173   {
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   reloc, this->rela_dyn_section(layout));
1178   }
1179
1180   // Look over all the input sections, deciding where to place stubs.
1181   void
1182   group_sections(Layout*, const Task*);
1183
1184   // Sort output sections by address.
1185   struct Sort_sections
1186   {
1187     bool
1188     operator()(const Output_section* sec1, const Output_section* sec2)
1189     { return sec1->address() < sec2->address(); }
1190   };
1191
1192   class Branch_info
1193   {
1194    public:
1195     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196                 unsigned int data_shndx,
1197                 Address r_offset,
1198                 unsigned int r_type,
1199                 unsigned int r_sym,
1200                 Address addend)
1201       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203     { }
1204
1205     ~Branch_info()
1206     { }
1207
1208     // If this branch needs a plt call stub, or a long branch stub, make one.
1209     void
1210     make_stub(Stub_table<size, big_endian>*,
1211               Stub_table<size, big_endian>*,
1212               Symbol_table*) const;
1213
1214    private:
1215     // The branch location..
1216     Powerpc_relobj<size, big_endian>* object_;
1217     unsigned int shndx_;
1218     Address offset_;
1219     // ..and the branch type and destination.
1220     unsigned int r_type_;
1221     unsigned int r_sym_;
1222     Address addend_;
1223   };
1224
1225   // Information about this specific target which we pass to the
1226   // general Target structure.
1227   static Target::Target_info powerpc_info;
1228
1229   // The types of GOT entries needed for this platform.
1230   // These values are exposed to the ABI in an incremental link.
1231   // Do not renumber existing values without changing the version
1232   // number of the .gnu_incremental_inputs section.
1233   enum Got_type
1234   {
1235     GOT_TYPE_STANDARD,
1236     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1237     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1238     GOT_TYPE_TPREL      // entry for @got@tprel
1239   };
1240
1241   // The GOT section.
1242   Output_data_got_powerpc<size, big_endian>* got_;
1243   // The PLT section.  This is a container for a table of addresses,
1244   // and their relocations.  Each address in the PLT has a dynamic
1245   // relocation (R_*_JMP_SLOT) and each address will have a
1246   // corresponding entry in .glink for lazy resolution of the PLT.
1247   // ppc32 initialises the PLT to point at the .glink entry, while
1248   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1249   // linker adds a stub that loads the PLT entry into ctr then
1250   // branches to ctr.  There may be more than one stub for each PLT
1251   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1252   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253   Output_data_plt_powerpc<size, big_endian>* plt_;
1254   // The IPLT section.  Like plt_, this is a container for a table of
1255   // addresses and their relocations, specifically for STT_GNU_IFUNC
1256   // functions that resolve locally (STT_GNU_IFUNC functions that
1257   // don't resolve locally go in PLT).  Unlike plt_, these have no
1258   // entry in .glink for lazy resolution, and the relocation section
1259   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1260   // the relocation section may contain relocations against
1261   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1262   // relocation section will appear at the end of other dynamic
1263   // relocations, so that ld.so applies these relocations after other
1264   // dynamic relocations.  In a static executable, the relocation
1265   // section is emitted and marked with __rela_iplt_start and
1266   // __rela_iplt_end symbols.
1267   Output_data_plt_powerpc<size, big_endian>* iplt_;
1268   // Section holding long branch destinations.
1269   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270   // The .glink section.
1271   Output_data_glink<size, big_endian>* glink_;
1272   // The dynamic reloc section.
1273   Reloc_section* rela_dyn_;
1274   // Relocs saved to avoid a COPY reloc.
1275   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277   unsigned int tlsld_got_offset_;
1278
1279   Stub_tables stub_tables_;
1280   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281   Branch_lookup_table branch_lookup_table_;
1282
1283   typedef std::vector<Branch_info> Branches;
1284   Branches branch_info_;
1285
1286   bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292   32,                   // size
1293   true,                 // is_big_endian
1294   elfcpp::EM_PPC,       // machine_code
1295   false,                // has_make_symbol
1296   false,                // has_resolve
1297   false,                // has_code_fill
1298   true,                 // is_default_stack_executable
1299   false,                // can_icf_inline_merge_sections
1300   '\0',                 // wrap_char
1301   "/usr/lib/ld.so.1",   // dynamic_linker
1302   0x10000000,           // default_text_segment_address
1303   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1304   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1305   false,                // isolate_execinstr
1306   0,                    // rosegment_gap
1307   elfcpp::SHN_UNDEF,    // small_common_shndx
1308   elfcpp::SHN_UNDEF,    // large_common_shndx
1309   0,                    // small_common_section_flags
1310   0,                    // large_common_section_flags
1311   NULL,                 // attributes_section
1312   NULL,                 // attributes_vendor
1313   "_start"              // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319   32,                   // size
1320   false,                // is_big_endian
1321   elfcpp::EM_PPC,       // machine_code
1322   false,                // has_make_symbol
1323   false,                // has_resolve
1324   false,                // has_code_fill
1325   true,                 // is_default_stack_executable
1326   false,                // can_icf_inline_merge_sections
1327   '\0',                 // wrap_char
1328   "/usr/lib/ld.so.1",   // dynamic_linker
1329   0x10000000,           // default_text_segment_address
1330   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1331   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1332   false,                // isolate_execinstr
1333   0,                    // rosegment_gap
1334   elfcpp::SHN_UNDEF,    // small_common_shndx
1335   elfcpp::SHN_UNDEF,    // large_common_shndx
1336   0,                    // small_common_section_flags
1337   0,                    // large_common_section_flags
1338   NULL,                 // attributes_section
1339   NULL,                 // attributes_vendor
1340   "_start"              // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346   64,                   // size
1347   true,                 // is_big_endian
1348   elfcpp::EM_PPC64,     // machine_code
1349   false,                // has_make_symbol
1350   false,                // has_resolve
1351   false,                // has_code_fill
1352   true,                 // is_default_stack_executable
1353   false,                // can_icf_inline_merge_sections
1354   '\0',                 // wrap_char
1355   "/usr/lib/ld.so.1",   // dynamic_linker
1356   0x10000000,           // default_text_segment_address
1357   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1358   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1359   false,                // isolate_execinstr
1360   0,                    // rosegment_gap
1361   elfcpp::SHN_UNDEF,    // small_common_shndx
1362   elfcpp::SHN_UNDEF,    // large_common_shndx
1363   0,                    // small_common_section_flags
1364   0,                    // large_common_section_flags
1365   NULL,                 // attributes_section
1366   NULL,                 // attributes_vendor
1367   "_start"              // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373   64,                   // size
1374   false,                // is_big_endian
1375   elfcpp::EM_PPC64,     // machine_code
1376   false,                // has_make_symbol
1377   false,                // has_resolve
1378   false,                // has_code_fill
1379   true,                 // is_default_stack_executable
1380   false,                // can_icf_inline_merge_sections
1381   '\0',                 // wrap_char
1382   "/usr/lib/ld.so.1",   // dynamic_linker
1383   0x10000000,           // default_text_segment_address
1384   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1385   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1386   false,                // isolate_execinstr
1387   0,                    // rosegment_gap
1388   elfcpp::SHN_UNDEF,    // small_common_shndx
1389   elfcpp::SHN_UNDEF,    // large_common_shndx
1390   0,                    // small_common_section_flags
1391   0,                    // large_common_section_flags
1392   NULL,                 // attributes_section
1393   NULL,                 // attributes_vendor
1394   "_start"              // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400   return (r_type == elfcpp::R_POWERPC_REL24
1401           || r_type == elfcpp::R_PPC_PLTREL24
1402           || r_type == elfcpp::R_PPC_LOCAL24PC
1403           || r_type == elfcpp::R_POWERPC_REL14
1404           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406           || r_type == elfcpp::R_POWERPC_ADDR24
1407           || r_type == elfcpp::R_POWERPC_ADDR14
1408           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0.  If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418   if ((insn & (0x3f << 26)) != 31 << 26)
1419     return 0;
1420
1421   unsigned int rtra;
1422   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423     rtra = insn & ((1 << 26) - (1 << 16));
1424   else if (((insn >> 16) & 0x1f) == reg)
1425     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426   else
1427     return 0;
1428
1429   if ((insn & (0x3ff << 1)) == 266 << 1)
1430     // add -> addi
1431     insn = 14 << 26;
1432   else if ((insn & (0x1f << 1)) == 23 << 1
1433            && ((insn & (0x1f << 6)) < 14 << 6
1434                || ((insn & (0x1f << 6)) >= 16 << 6
1435                    && (insn & (0x1f << 6)) < 24 << 6)))
1436     // load and store indexed -> dform
1437     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442     // lwax -> lwa
1443     insn = (58 << 26) | 2;
1444   else
1445     return 0;
1446   insn |= rtra;
1447   return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455   enum Overflow_check
1456   {
1457     CHECK_NONE,
1458     CHECK_SIGNED,
1459     CHECK_UNSIGNED,
1460     CHECK_BITFIELD,
1461     CHECK_LOW_INSN,
1462     CHECK_HIGH_INSN
1463   };
1464
1465   enum Status
1466   {
1467     STATUS_OK,
1468     STATUS_OVERFLOW
1469   };
1470
1471 private:
1472   typedef Powerpc_relocate_functions<size, big_endian> This;
1473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475   template<int valsize>
1476   static inline bool
1477   has_overflow_signed(Address value)
1478   {
1479     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value + limit > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_unsigned(Address value)
1489   {
1490     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493     return value > (limit << 1) - 1;
1494   }
1495
1496   template<int valsize>
1497   static inline bool
1498   has_overflow_bitfield(Address value)
1499   {
1500     return (has_overflow_unsigned<valsize>(value)
1501             && has_overflow_signed<valsize>(value));
1502   }
1503
1504   template<int valsize>
1505   static inline Status
1506   overflowed(Address value, Overflow_check overflow)
1507   {
1508     if (overflow == CHECK_SIGNED)
1509       {
1510         if (has_overflow_signed<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     else if (overflow == CHECK_UNSIGNED)
1514       {
1515         if (has_overflow_unsigned<valsize>(value))
1516           return STATUS_OVERFLOW;
1517       }
1518     else if (overflow == CHECK_BITFIELD)
1519       {
1520         if (has_overflow_bitfield<valsize>(value))
1521           return STATUS_OVERFLOW;
1522       }
1523     return STATUS_OK;
1524   }
1525
1526   // Do a simple RELA relocation
1527   template<int valsize>
1528   static inline Status
1529   rela(unsigned char* view, Address value, Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534     return overflowed<valsize>(value, overflow);
1535   }
1536
1537   template<int valsize>
1538   static inline Status
1539   rela(unsigned char* view,
1540        unsigned int right_shift,
1541        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542        Address value,
1543        Overflow_check overflow)
1544   {
1545     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546     Valtype* wv = reinterpret_cast<Valtype*>(view);
1547     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548     Valtype reloc = value >> right_shift;
1549     val &= ~dst_mask;
1550     reloc &= dst_mask;
1551     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552     return overflowed<valsize>(value >> right_shift, overflow);
1553   }
1554
1555   // Do a simple RELA relocation, unaligned.
1556   template<int valsize>
1557   static inline Status
1558   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559   {
1560     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561     return overflowed<valsize>(value, overflow);
1562   }
1563
1564   template<int valsize>
1565   static inline Status
1566   rela_ua(unsigned char* view,
1567           unsigned int right_shift,
1568           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569           Address value,
1570           Overflow_check overflow)
1571   {
1572     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573       Valtype;
1574     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575     Valtype reloc = value >> right_shift;
1576     val &= ~dst_mask;
1577     reloc &= dst_mask;
1578     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579     return overflowed<valsize>(value >> right_shift, overflow);
1580   }
1581
1582 public:
1583   // R_PPC64_ADDR64: (Symbol + Addend)
1584   static inline void
1585   addr64(unsigned char* view, Address value)
1586   { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589   static inline void
1590   addr64_u(unsigned char* view, Address value)
1591   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593   // R_POWERPC_ADDR32: (Symbol + Addend)
1594   static inline Status
1595   addr32(unsigned char* view, Address value, Overflow_check overflow)
1596   { return This::template rela<32>(view, value, overflow); }
1597
1598   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599   static inline Status
1600   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601   { return This::template rela_ua<32>(view, value, overflow); }
1602
1603   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604   static inline Status
1605   addr24(unsigned char* view, Address value, Overflow_check overflow)
1606   {
1607     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608     if (overflow != CHECK_NONE && (value & 3) != 0)
1609       stat = STATUS_OVERFLOW;
1610     return stat;
1611   }
1612
1613   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614   static inline Status
1615   addr16(unsigned char* view, Address value, Overflow_check overflow)
1616   { return This::template rela<16>(view, value, overflow); }
1617
1618   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619   static inline Status
1620   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621   { return This::template rela_ua<16>(view, value, overflow); }
1622
1623   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624   static inline Status
1625   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626   {
1627     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628     if (overflow != CHECK_NONE && (value & 3) != 0)
1629       stat = STATUS_OVERFLOW;
1630     return stat;
1631   }
1632
1633   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634   static inline void
1635   addr16_hi(unsigned char* view, Address value)
1636   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639   static inline void
1640   addr16_ha(unsigned char* view, Address value)
1641   { This::addr16_hi(view, value + 0x8000); }
1642
1643   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644   static inline void
1645   addr16_hi2(unsigned char* view, Address value)
1646   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649   static inline void
1650   addr16_ha2(unsigned char* view, Address value)
1651   { This::addr16_hi2(view, value + 0x8000); }
1652
1653   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654   static inline void
1655   addr16_hi3(unsigned char* view, Address value)
1656   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659   static inline void
1660   addr16_ha3(unsigned char* view, Address value)
1661   { This::addr16_hi3(view, value + 0x8000); }
1662
1663   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664   static inline Status
1665   addr14(unsigned char* view, Address value, Overflow_check overflow)
1666   {
1667     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668     if (overflow != CHECK_NONE && (value & 3) != 0)
1669       stat = STATUS_OVERFLOW;
1670     return stat;
1671   }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680   this->e_flags_ |= ver;
1681   if (this->abiversion() != 0)
1682     {
1683       Target_powerpc<size, big_endian>* target =
1684         static_cast<Target_powerpc<size, big_endian>*>(
1685            parameters->sized_target<size, big_endian>());
1686       if (target->abiversion() == 0)
1687         target->set_abiversion(this->abiversion());
1688       else if (target->abiversion() != this->abiversion())
1689         gold_error(_("%s: ABI version %d is not compatible "
1690                      "with ABI version %d output"),
1691                    this->name().c_str(),
1692                    this->abiversion(), target->abiversion());
1693
1694     }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703     Read_symbols_data* sd)
1704 {
1705   const unsigned char* const pshdrs = sd->section_headers->data();
1706   const unsigned char* namesu = sd->section_names->data();
1707   const char* names = reinterpret_cast<const char*>(namesu);
1708   section_size_type names_size = sd->section_names_size;
1709   const unsigned char* s;
1710
1711   s = this->template find_shdr<size, big_endian>(pshdrs,
1712                                                  size == 32 ? ".got2" : ".opd",
1713                                                  names, names_size, NULL);
1714   if (s != NULL)
1715     {
1716       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717       this->special_ = ndx;
1718       if (size == 64)
1719         {
1720           if (this->abiversion() == 0)
1721             this->set_abiversion(1);
1722           else if (this->abiversion() > 1)
1723             gold_error(_("%s: .opd invalid in abiv%d"),
1724                        this->name().c_str(), this->abiversion());
1725         }
1726     }
1727   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735     size_t reloc_count,
1736     const unsigned char* prelocs,
1737     const unsigned char* plocal_syms)
1738 {
1739   if (size == 64)
1740     {
1741       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742         Reltype;
1743       const int reloc_size
1744         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746       Address expected_off = 0;
1747       bool regular = true;
1748       unsigned int opd_ent_size = 0;
1749
1750       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751         {
1752           Reltype reloc(prelocs);
1753           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754             = reloc.get_r_info();
1755           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756           if (r_type == elfcpp::R_PPC64_ADDR64)
1757             {
1758               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759               typename elfcpp::Elf_types<size>::Elf_Addr value;
1760               bool is_ordinary;
1761               unsigned int shndx;
1762               if (r_sym < this->local_symbol_count())
1763                 {
1764                   typename elfcpp::Sym<size, big_endian>
1765                     lsym(plocal_syms + r_sym * sym_size);
1766                   shndx = lsym.get_st_shndx();
1767                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768                   value = lsym.get_st_value();
1769                 }
1770               else
1771                 shndx = this->symbol_section_and_value(r_sym, &value,
1772                                                        &is_ordinary);
1773               this->set_opd_ent(reloc.get_r_offset(), shndx,
1774                                 value + reloc.get_r_addend());
1775               if (i == 2)
1776                 {
1777                   expected_off = reloc.get_r_offset();
1778                   opd_ent_size = expected_off;
1779                 }
1780               else if (expected_off != reloc.get_r_offset())
1781                 regular = false;
1782               expected_off += opd_ent_size;
1783             }
1784           else if (r_type == elfcpp::R_PPC64_TOC)
1785             {
1786               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787                 regular = false;
1788             }
1789           else
1790             {
1791               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792                            this->name().c_str(), r_type);
1793               regular = false;
1794             }
1795         }
1796       if (reloc_count <= 2)
1797         opd_ent_size = this->section_size(this->opd_shndx());
1798       if (opd_ent_size != 24 && opd_ent_size != 16)
1799         regular = false;
1800       if (!regular)
1801         {
1802           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803                        this->name().c_str());
1804           opd_ent_size = 0;
1805         }
1806     }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814   if (size == 64)
1815     {
1816       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817            p != rd->relocs.end();
1818            ++p)
1819         {
1820           if (p->data_shndx == this->opd_shndx())
1821             {
1822               uint64_t opd_size = this->section_size(this->opd_shndx());
1823               gold_assert(opd_size == static_cast<size_t>(opd_size));
1824               if (opd_size != 0)
1825                 {
1826                   this->init_opd(opd_size);
1827                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828                                         rd->local_symbols->data());
1829                 }
1830               break;
1831             }
1832         }
1833     }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842   this->base_read_symbols(sd);
1843   if (size == 64)
1844     {
1845       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846       const unsigned char* const pshdrs = sd->section_headers->data();
1847       const unsigned int loccount = this->do_local_symbol_count();
1848       if (loccount != 0)
1849         {
1850           this->st_other_.resize(loccount);
1851           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852           off_t locsize = loccount * sym_size;
1853           const unsigned int symtab_shndx = this->symtab_shndx();
1854           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857                                                       locsize, true, false);
1858           psyms += sym_size;
1859           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860             {
1861               elfcpp::Sym<size, big_endian> sym(psyms);
1862               unsigned char st_other = sym.get_st_other();
1863               this->st_other_[i] = st_other;
1864               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865                 {
1866                   if (this->abiversion() == 0)
1867                     this->set_abiversion(2);
1868                   else if (this->abiversion() < 2)
1869                     gold_error(_("%s: local symbol %d has invalid st_other"
1870                                  " for ABI version 1"),
1871                                this->name().c_str(), i);
1872                 }
1873             }
1874         }
1875     }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882   this->e_flags_ |= ver;
1883   if (this->abiversion() != 0)
1884     {
1885       Target_powerpc<size, big_endian>* target =
1886         static_cast<Target_powerpc<size, big_endian>*>(
1887           parameters->sized_target<size, big_endian>());
1888       if (target->abiversion() == 0)
1889         target->set_abiversion(this->abiversion());
1890       else if (target->abiversion() != this->abiversion())
1891         gold_error(_("%s: ABI version %d is not compatible "
1892                      "with ABI version %d output"),
1893                    this->name().c_str(),
1894                    this->abiversion(), target->abiversion());
1895
1896     }
1897 }
1898
1899 // Call Sized_dynobj::base_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906   this->base_read_symbols(sd);
1907   if (size == 64)
1908     {
1909       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910       const unsigned char* const pshdrs = sd->section_headers->data();
1911       const unsigned char* namesu = sd->section_names->data();
1912       const char* names = reinterpret_cast<const char*>(namesu);
1913       const unsigned char* s = NULL;
1914       const unsigned char* opd;
1915       section_size_type opd_size;
1916
1917       // Find and read .opd section.
1918       while (1)
1919         {
1920           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921                                                          sd->section_names_size,
1922                                                          s);
1923           if (s == NULL)
1924             return;
1925
1926           typename elfcpp::Shdr<size, big_endian> shdr(s);
1927           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929             {
1930               if (this->abiversion() == 0)
1931                 this->set_abiversion(1);
1932               else if (this->abiversion() > 1)
1933                 gold_error(_("%s: .opd invalid in abiv%d"),
1934                            this->name().c_str(), this->abiversion());
1935
1936               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937               this->opd_address_ = shdr.get_sh_addr();
1938               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940                                    true, false);
1941               break;
1942             }
1943         }
1944
1945       // Build set of executable sections.
1946       // Using a set is probably overkill.  There is likely to be only
1947       // a few executable sections, typically .init, .text and .fini,
1948       // and they are generally grouped together.
1949       typedef std::set<Sec_info> Exec_sections;
1950       Exec_sections exec_sections;
1951       s = pshdrs;
1952       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953         {
1954           typename elfcpp::Shdr<size, big_endian> shdr(s);
1955           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956               && ((shdr.get_sh_flags()
1957                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959               && shdr.get_sh_size() != 0)
1960             {
1961               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962                                             shdr.get_sh_size(), i));
1963             }
1964         }
1965       if (exec_sections.empty())
1966         return;
1967
1968       // Look over the OPD entries.  This is complicated by the fact
1969       // that some binaries will use two-word entries while others
1970       // will use the standard three-word entries.  In most cases
1971       // the third word (the environment pointer for languages like
1972       // Pascal) is unused and will be zero.  If the third word is
1973       // used it should not be pointing into executable sections,
1974       // I think.
1975       this->init_opd(opd_size);
1976       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977         {
1978           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981           if (val == 0)
1982             // Chances are that this is the third word of an OPD entry.
1983             continue;
1984           typename Exec_sections::const_iterator e
1985             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986           if (e != exec_sections.begin())
1987             {
1988               --e;
1989               if (e->start <= val && val < e->start + e->len)
1990                 {
1991                   // We have an address in an executable section.
1992                   // VAL ought to be the function entry, set it up.
1993                   this->set_opd_ent(p - opd, e->shndx, val);
1994                   // Skip second word of OPD entry, the TOC pointer.
1995                   p += 8;
1996                 }
1997             }
1998           // If we didn't match any executable sections, we likely
1999           // have a non-zero third word in the OPD entry.
2000         }
2001     }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009     Symbol_table* symtab,
2010     Layout* layout)
2011 {
2012   if (size == 32)
2013     {
2014       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015       // undefined when scanning relocs (and thus requires
2016       // non-relative dynamic relocs).  The proper value will be
2017       // updated later.
2018       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019       if (gotsym != NULL && gotsym->is_undefined())
2020         {
2021           Target_powerpc<size, big_endian>* target =
2022             static_cast<Target_powerpc<size, big_endian>*>(
2023                 parameters->sized_target<size, big_endian>());
2024           Output_data_got_powerpc<size, big_endian>* got
2025             = target->got_section(symtab, layout);
2026           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027                                         Symbol_table::PREDEFINED,
2028                                         got, 0, 0,
2029                                         elfcpp::STT_OBJECT,
2030                                         elfcpp::STB_LOCAL,
2031                                         elfcpp::STV_HIDDEN, 0,
2032                                         false, false);
2033         }
2034
2035       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037       if (sdasym != NULL && sdasym->is_undefined())
2038         {
2039           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040           Output_section* os
2041             = layout->add_output_section_data(".sdata", 0,
2042                                               elfcpp::SHF_ALLOC
2043                                               | elfcpp::SHF_WRITE,
2044                                               sdata, ORDER_SMALL_DATA, false);
2045           symtab->define_in_output_data("_SDA_BASE_", NULL,
2046                                         Symbol_table::PREDEFINED,
2047                                         os, 32768, 0, elfcpp::STT_OBJECT,
2048                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049                                         0, false, false);
2050         }
2051     }
2052   else
2053     {
2054       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056       if (gotsym != NULL && gotsym->is_undefined())
2057         {
2058           Target_powerpc<size, big_endian>* target =
2059             static_cast<Target_powerpc<size, big_endian>*>(
2060                 parameters->sized_target<size, big_endian>());
2061           Output_data_got_powerpc<size, big_endian>* got
2062             = target->got_section(symtab, layout);
2063           symtab->define_in_output_data(".TOC.", NULL,
2064                                         Symbol_table::PREDEFINED,
2065                                         got, 0x8000, 0,
2066                                         elfcpp::STT_OBJECT,
2067                                         elfcpp::STB_LOCAL,
2068                                         elfcpp::STV_HIDDEN, 0,
2069                                         false, false);
2070         }
2071     }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079     const std::string& name,
2080     Input_file* input_file,
2081     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083   int et = ehdr.get_e_type();
2084   // ET_EXEC files are valid input for --just-symbols/-R,
2085   // and we treat them as relocatable objects.
2086   if (et == elfcpp::ET_REL
2087       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088     {
2089       Powerpc_relobj<size, big_endian>* obj =
2090         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091       obj->setup();
2092       return obj;
2093     }
2094   else if (et == elfcpp::ET_DYN)
2095     {
2096       Powerpc_dynobj<size, big_endian>* obj =
2097         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098       obj->setup();
2099       return obj;
2100     }
2101   else
2102     {
2103       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104       return NULL;
2105     }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116     : Output_data_got<size, big_endian>(),
2117       symtab_(symtab), layout_(layout),
2118       header_ent_cnt_(size == 32 ? 3 : 1),
2119       header_index_(size == 32 ? 0x2000 : 0)
2120   { }
2121
2122   // Override all the Output_data_got methods we use so as to first call
2123   // reserve_ent().
2124   bool
2125   add_global(Symbol* gsym, unsigned int got_type)
2126   {
2127     this->reserve_ent();
2128     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129   }
2130
2131   bool
2132   add_global_plt(Symbol* gsym, unsigned int got_type)
2133   {
2134     this->reserve_ent();
2135     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136   }
2137
2138   bool
2139   add_global_tls(Symbol* gsym, unsigned int got_type)
2140   { return this->add_global_plt(gsym, got_type); }
2141
2142   void
2143   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145   {
2146     this->reserve_ent();
2147     Output_data_got<size, big_endian>::
2148       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149   }
2150
2151   void
2152   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153                            Output_data_reloc_generic* rel_dyn,
2154                            unsigned int r_type_1, unsigned int r_type_2)
2155   {
2156     this->reserve_ent(2);
2157     Output_data_got<size, big_endian>::
2158       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159   }
2160
2161   bool
2162   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163   {
2164     this->reserve_ent();
2165     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166                                                         got_type);
2167   }
2168
2169   bool
2170   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171   {
2172     this->reserve_ent();
2173     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174                                                             got_type);
2175   }
2176
2177   bool
2178   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179   { return this->add_local_plt(object, sym_index, got_type); }
2180
2181   void
2182   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183                      unsigned int got_type,
2184                      Output_data_reloc_generic* rel_dyn,
2185                      unsigned int r_type)
2186   {
2187     this->reserve_ent(2);
2188     Output_data_got<size, big_endian>::
2189       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190   }
2191
2192   unsigned int
2193   add_constant(Valtype constant)
2194   {
2195     this->reserve_ent();
2196     return Output_data_got<size, big_endian>::add_constant(constant);
2197   }
2198
2199   unsigned int
2200   add_constant_pair(Valtype c1, Valtype c2)
2201   {
2202     this->reserve_ent(2);
2203     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204   }
2205
2206   // Offset of _GLOBAL_OFFSET_TABLE_.
2207   unsigned int
2208   g_o_t() const
2209   {
2210     return this->got_offset(this->header_index_);
2211   }
2212
2213   // Offset of base used to access the GOT/TOC.
2214   // The got/toc pointer reg will be set to this value.
2215   Valtype
2216   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217   {
2218     if (size == 32)
2219       return this->g_o_t();
2220     else
2221       return (this->output_section()->address()
2222               + object->toc_base_offset()
2223               - this->address());
2224   }
2225
2226   // Ensure our GOT has a header.
2227   void
2228   set_final_data_size()
2229   {
2230     if (this->header_ent_cnt_ != 0)
2231       this->make_header();
2232     Output_data_got<size, big_endian>::set_final_data_size();
2233   }
2234
2235   // First word of GOT header needs some values that are not
2236   // handled by Output_data_got so poke them in here.
2237   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238   void
2239   do_write(Output_file* of)
2240   {
2241     Valtype val = 0;
2242     if (size == 32 && this->layout_->dynamic_data() != NULL)
2243       val = this->layout_->dynamic_section()->address();
2244     if (size == 64)
2245       val = this->output_section()->address() + 0x8000;
2246     this->replace_constant(this->header_index_, val);
2247     Output_data_got<size, big_endian>::do_write(of);
2248   }
2249
2250 private:
2251   void
2252   reserve_ent(unsigned int cnt = 1)
2253   {
2254     if (this->header_ent_cnt_ == 0)
2255       return;
2256     if (this->num_entries() + cnt > this->header_index_)
2257       this->make_header();
2258   }
2259
2260   void
2261   make_header()
2262   {
2263     this->header_ent_cnt_ = 0;
2264     this->header_index_ = this->num_entries();
2265     if (size == 32)
2266       {
2267         Output_data_got<size, big_endian>::add_constant(0);
2268         Output_data_got<size, big_endian>::add_constant(0);
2269         Output_data_got<size, big_endian>::add_constant(0);
2270
2271         // Define _GLOBAL_OFFSET_TABLE_ at the header
2272         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273         if (gotsym != NULL)
2274           {
2275             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276             sym->set_value(this->g_o_t());
2277           }
2278         else
2279           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280                                                Symbol_table::PREDEFINED,
2281                                                this, this->g_o_t(), 0,
2282                                                elfcpp::STT_OBJECT,
2283                                                elfcpp::STB_LOCAL,
2284                                                elfcpp::STV_HIDDEN, 0,
2285                                                false, false);
2286       }
2287     else
2288       Output_data_got<size, big_endian>::add_constant(0);
2289   }
2290
2291   // Stashed pointers.
2292   Symbol_table* symtab_;
2293   Layout* layout_;
2294
2295   // GOT header size.
2296   unsigned int header_ent_cnt_;
2297   // GOT header index.
2298   unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306                                               Layout* layout)
2307 {
2308   if (this->got_ == NULL)
2309     {
2310       gold_assert(symtab != NULL && layout != NULL);
2311
2312       this->got_
2313         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317                                       this->got_, ORDER_DATA, false);
2318     }
2319
2320   return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329   if (this->rela_dyn_ == NULL)
2330     {
2331       gold_assert(layout != NULL);
2332       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2335                                       ORDER_DYNAMIC_RELOCS, false);
2336     }
2337   return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345                                                    Layout* layout,
2346                                                    bool for_ifunc)
2347 {
2348   if (!for_ifunc)
2349     return this->rela_dyn_section(layout);
2350
2351   if (this->iplt_ == NULL)
2352     this->make_iplt_section(symtab, layout);
2353   return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358  public:
2359   // Determine the stub group size.  The group size is the absolute
2360   // value of the parameter --stub-group-size.  If --stub-group-size
2361   // is passed a negative value, we restrict stubs to be always before
2362   // the stubbed branches.
2363   Stub_control(int32_t size)
2364     : state_(NO_GROUP), stub_group_size_(abs(size)),
2365       stub14_group_size_(abs(size)),
2366       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368   {
2369     if (stub_group_size_ == 1)
2370       {
2371         // Default values.
2372         if (stubs_always_before_branch_)
2373           {
2374             stub_group_size_ = 0x1e00000;
2375             stub14_group_size_ = 0x7800;
2376           }
2377         else
2378           {
2379             stub_group_size_ = 0x1c00000;
2380             stub14_group_size_ = 0x7000;
2381           }
2382         suppress_size_errors_ = true;
2383       }
2384   }
2385
2386   // Return true iff input section can be handled by current stub
2387   // group.
2388   bool
2389   can_add_to_stub_group(Output_section* o,
2390                         const Output_section::Input_section* i,
2391                         bool has14);
2392
2393   const Output_section::Input_section*
2394   owner()
2395   { return owner_; }
2396
2397   Output_section*
2398   output_section()
2399   { return output_section_; }
2400
2401  private:
2402   typedef enum
2403   {
2404     NO_GROUP,
2405     FINDING_STUB_SECTION,
2406     HAS_STUB_SECTION
2407   } State;
2408
2409   State state_;
2410   uint32_t stub_group_size_;
2411   uint32_t stub14_group_size_;
2412   bool stubs_always_before_branch_;
2413   bool suppress_size_errors_;
2414   uint64_t group_end_addr_;
2415   const Output_section::Input_section* owner_;
2416   Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424                                     const Output_section::Input_section* i,
2425                                     bool has14)
2426 {
2427   uint32_t group_size
2428     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430   uint64_t this_size;
2431   uint64_t start_addr = o->address();
2432
2433   if (whole_sec)
2434     // .init and .fini sections are pasted together to form a single
2435     // function.  We can't be adding stubs in the middle of the function.
2436     this_size = o->data_size();
2437   else
2438     {
2439       start_addr += i->relobj()->output_section_offset(i->shndx());
2440       this_size = i->data_size();
2441     }
2442   uint64_t end_addr = start_addr + this_size;
2443   bool toobig = this_size > group_size;
2444
2445   if (toobig && !this->suppress_size_errors_)
2446     gold_warning(_("%s:%s exceeds group size"),
2447                  i->relobj()->name().c_str(),
2448                  i->relobj()->section_name(i->shndx()).c_str());
2449
2450   if (this->state_ != HAS_STUB_SECTION
2451       && (!whole_sec || this->output_section_ != o)
2452       && (this->state_ == NO_GROUP
2453           || this->group_end_addr_ - end_addr < group_size))
2454     {
2455       this->owner_ = i;
2456       this->output_section_ = o;
2457     }
2458
2459   if (this->state_ == NO_GROUP)
2460     {
2461       this->state_ = FINDING_STUB_SECTION;
2462       this->group_end_addr_ = end_addr;
2463     }
2464   else if (this->group_end_addr_ - start_addr < group_size)
2465     ;
2466   // Adding this section would make the group larger than GROUP_SIZE.
2467   else if (this->state_ == FINDING_STUB_SECTION
2468            && !this->stubs_always_before_branch_
2469            && !toobig)
2470     {
2471       // But wait, there's more!  Input sections up to GROUP_SIZE
2472       // bytes before the stub table can be handled by it too.
2473       this->state_ = HAS_STUB_SECTION;
2474       this->group_end_addr_ = end_addr;
2475     }
2476   else
2477     {
2478       this->state_ = NO_GROUP;
2479       return false;
2480     }
2481   return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489                                                  const Task*)
2490 {
2491   Stub_control stub_control(parameters->options().stub_group_size());
2492
2493   // Group input sections and insert stub table
2494   Stub_table<size, big_endian>* stub_table = NULL;
2495   Layout::Section_list section_list;
2496   layout->get_executable_sections(&section_list);
2497   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499        o != section_list.rend();
2500        ++o)
2501     {
2502       typedef Output_section::Input_section_list Input_section_list;
2503       for (Input_section_list::const_reverse_iterator i
2504              = (*o)->input_sections().rbegin();
2505            i != (*o)->input_sections().rend();
2506            ++i)
2507         {
2508           if (i->is_input_section())
2509             {
2510               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514                 {
2515                   stub_table->init(stub_control.owner(),
2516                                    stub_control.output_section());
2517                   stub_table = NULL;
2518                 }
2519               if (stub_table == NULL)
2520                 stub_table = this->new_stub_table();
2521               ppcobj->set_stub_table(i->shndx(), stub_table);
2522             }
2523         }
2524     }
2525   if (stub_table != NULL)
2526     {
2527       const Output_section::Input_section* i = stub_control.owner();
2528       if (!i->is_input_section())
2529         {
2530           // Corner case.  A new stub group was made for the first
2531           // section (last one looked at here) for some reason, but
2532           // the first section is already being used as the owner for
2533           // a stub table for following sections.  Force it into that
2534           // stub group.
2535           gold_assert(this->stub_tables_.size() >= 2);
2536           this->stub_tables_.pop_back();
2537           delete stub_table;
2538           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541         }
2542       else
2543         stub_table->init(i, stub_control.output_section());
2544     }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552     Stub_table<size, big_endian>* stub_table,
2553     Stub_table<size, big_endian>* ifunc_stub_table,
2554     Symbol_table* symtab) const
2555 {
2556   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557   if (sym != NULL && sym->is_forwarder())
2558     sym = symtab->resolve_forwards(sym);
2559   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560   Target_powerpc<size, big_endian>* target =
2561     static_cast<Target_powerpc<size, big_endian>*>(
2562       parameters->sized_target<size, big_endian>());
2563   if (gsym != NULL
2564       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565       : this->object_->local_has_plt_offset(this->r_sym_))
2566     {
2567       if (size == 64
2568           && gsym != NULL
2569           && target->abiversion() >= 2
2570           && !parameters->options().output_is_position_independent()
2571           && !is_branch_reloc(this->r_type_))
2572         target->glink_section()->add_global_entry(gsym);
2573       else
2574         {
2575           if (stub_table == NULL)
2576             stub_table = this->object_->stub_table(this->shndx_);
2577           if (stub_table == NULL)
2578             {
2579               // This is a ref from a data section to an ifunc symbol.
2580               stub_table = ifunc_stub_table;
2581             }
2582           gold_assert(stub_table != NULL);
2583           if (gsym != NULL)
2584             stub_table->add_plt_call_entry(this->object_, gsym,
2585                                            this->r_type_, this->addend_);
2586           else
2587             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588                                            this->r_type_, this->addend_);
2589         }
2590     }
2591   else
2592     {
2593       unsigned long max_branch_offset;
2594       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597         max_branch_offset = 1 << 15;
2598       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601         max_branch_offset = 1 << 25;
2602       else
2603         return;
2604       Address from = this->object_->get_output_section_offset(this->shndx_);
2605       gold_assert(from != invalid_address);
2606       from += (this->object_->output_section(this->shndx_)->address()
2607                + this->offset_);
2608       Address to;
2609       if (gsym != NULL)
2610         {
2611           switch (gsym->source())
2612             {
2613             case Symbol::FROM_OBJECT:
2614               {
2615                 Object* symobj = gsym->object();
2616                 if (symobj->is_dynamic()
2617                     || symobj->pluginobj() != NULL)
2618                   return;
2619                 bool is_ordinary;
2620                 unsigned int shndx = gsym->shndx(&is_ordinary);
2621                 if (shndx == elfcpp::SHN_UNDEF)
2622                   return;
2623               }
2624               break;
2625
2626             case Symbol::IS_UNDEFINED:
2627               return;
2628
2629             default:
2630               break;
2631             }
2632           Symbol_table::Compute_final_value_status status;
2633           to = symtab->compute_final_value<size>(gsym, &status);
2634           if (status != Symbol_table::CFVS_OK)
2635             return;
2636           if (size == 64)
2637             to += this->object_->ppc64_local_entry_offset(gsym);
2638         }
2639       else
2640         {
2641           const Symbol_value<size>* psymval
2642             = this->object_->local_symbol(this->r_sym_);
2643           Symbol_value<size> symval;
2644           typedef Sized_relobj_file<size, big_endian> ObjType;
2645           typename ObjType::Compute_final_local_value_status status
2646             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647                                                        &symval, symtab);
2648           if (status != ObjType::CFLV_OK
2649               || !symval.has_output_value())
2650             return;
2651           to = symval.value(this->object_, 0);
2652           if (size == 64)
2653             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654         }
2655       to += this->addend_;
2656       if (stub_table == NULL)
2657         stub_table = this->object_->stub_table(this->shndx_);
2658       if (size == 64 && target->abiversion() < 2)
2659         {
2660           unsigned int dest_shndx;
2661           to = target->symval_for_branch(symtab, to, gsym,
2662                                          this->object_, &dest_shndx);
2663         }
2664       Address delta = to - from;
2665       if (delta + max_branch_offset >= 2 * max_branch_offset)
2666         {
2667           if (stub_table == NULL)
2668             {
2669               gold_warning(_("%s:%s: branch in non-executable section,"
2670                              " no long branch stub for you"),
2671                            this->object_->name().c_str(),
2672                            this->object_->section_name(this->shndx_).c_str());
2673               return;
2674             }
2675           stub_table->add_long_branch_entry(this->object_, to);
2676         }
2677     }
2678 }
2679
2680 // Relaxation hook.  This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685                                            const Input_objects*,
2686                                            Symbol_table* symtab,
2687                                            Layout* layout,
2688                                            const Task* task)
2689 {
2690   unsigned int prev_brlt_size = 0;
2691   if (pass == 1)
2692     {
2693       bool thread_safe
2694         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695       if (size == 64
2696           && this->abiversion() < 2
2697           && !thread_safe
2698           && !parameters->options().user_set_plt_thread_safe())
2699         {
2700           static const char* const thread_starter[] =
2701             {
2702               "pthread_create",
2703               /* libstdc++ */
2704               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705               /* librt */
2706               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707               "mq_notify", "create_timer",
2708               /* libanl */
2709               "getaddrinfo_a",
2710               /* libgomp */
2711               "GOMP_parallel",
2712               "GOMP_parallel_start",
2713               "GOMP_parallel_loop_static",
2714               "GOMP_parallel_loop_static_start",
2715               "GOMP_parallel_loop_dynamic",
2716               "GOMP_parallel_loop_dynamic_start",
2717               "GOMP_parallel_loop_guided",
2718               "GOMP_parallel_loop_guided_start",
2719               "GOMP_parallel_loop_runtime",
2720               "GOMP_parallel_loop_runtime_start",
2721               "GOMP_parallel_sections",
2722               "GOMP_parallel_sections_start",
2723             };
2724
2725           if (parameters->options().shared())
2726             thread_safe = true;
2727           else
2728             {
2729               for (unsigned int i = 0;
2730                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2731                    i++)
2732                 {
2733                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2734                   thread_safe = (sym != NULL
2735                                  && sym->in_reg()
2736                                  && sym->in_real_elf());
2737                   if (thread_safe)
2738                     break;
2739                 }
2740             }
2741         }
2742       this->plt_thread_safe_ = thread_safe;
2743       this->group_sections(layout, task);
2744     }
2745
2746   // We need address of stub tables valid for make_stub.
2747   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2748        p != this->stub_tables_.end();
2749        ++p)
2750     {
2751       const Powerpc_relobj<size, big_endian>* object
2752         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2753       Address off = object->get_output_section_offset((*p)->shndx());
2754       gold_assert(off != invalid_address);
2755       Output_section* os = (*p)->output_section();
2756       (*p)->set_address_and_size(os, off);
2757     }
2758
2759   if (pass != 1)
2760     {
2761       // Clear plt call stubs, long branch stubs and branch lookup table.
2762       prev_brlt_size = this->branch_lookup_table_.size();
2763       this->branch_lookup_table_.clear();
2764       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2765            p != this->stub_tables_.end();
2766            ++p)
2767         {
2768           (*p)->clear_stubs();
2769         }
2770     }
2771
2772   // Build all the stubs.
2773   Stub_table<size, big_endian>* ifunc_stub_table
2774     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2775   Stub_table<size, big_endian>* one_stub_table
2776     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2777   for (typename Branches::const_iterator b = this->branch_info_.begin();
2778        b != this->branch_info_.end();
2779        b++)
2780     {
2781       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2782     }
2783
2784   // Did anything change size?
2785   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2786   bool again = num_huge_branches != prev_brlt_size;
2787   if (size == 64 && num_huge_branches != 0)
2788     this->make_brlt_section(layout);
2789   if (size == 64 && again)
2790     this->brlt_section_->set_current_size(num_huge_branches);
2791
2792   typedef Unordered_set<Output_section*> Output_sections;
2793   Output_sections os_need_update;
2794   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2795        p != this->stub_tables_.end();
2796        ++p)
2797     {
2798       if ((*p)->size_update())
2799         {
2800           again = true;
2801           (*p)->add_eh_frame(layout);
2802           os_need_update.insert((*p)->output_section());
2803         }
2804     }
2805
2806   // Set output section offsets for all input sections in an output
2807   // section that just changed size.  Anything past the stubs will
2808   // need updating.
2809   for (typename Output_sections::iterator p = os_need_update.begin();
2810        p != os_need_update.end();
2811        p++)
2812     {
2813       Output_section* os = *p;
2814       Address off = 0;
2815       typedef Output_section::Input_section_list Input_section_list;
2816       for (Input_section_list::const_iterator i = os->input_sections().begin();
2817            i != os->input_sections().end();
2818            ++i)
2819         {
2820           off = align_address(off, i->addralign());
2821           if (i->is_input_section() || i->is_relaxed_input_section())
2822             i->relobj()->set_section_offset(i->shndx(), off);
2823           if (i->is_relaxed_input_section())
2824             {
2825               Stub_table<size, big_endian>* stub_table
2826                 = static_cast<Stub_table<size, big_endian>*>(
2827                     i->relaxed_input_section());
2828               off += stub_table->set_address_and_size(os, off);
2829             }
2830           else
2831             off += i->data_size();
2832         }
2833       // If .branch_lt is part of this output section, then we have
2834       // just done the offset adjustment.
2835       os->clear_section_offsets_need_adjustment();
2836     }
2837
2838   if (size == 64
2839       && !again
2840       && num_huge_branches != 0
2841       && parameters->options().output_is_position_independent())
2842     {
2843       // Fill in the BRLT relocs.
2844       this->brlt_section_->reset_brlt_sizes();
2845       for (typename Branch_lookup_table::const_iterator p
2846              = this->branch_lookup_table_.begin();
2847            p != this->branch_lookup_table_.end();
2848            ++p)
2849         {
2850           this->brlt_section_->add_reloc(p->first, p->second);
2851         }
2852       this->brlt_section_->finalize_brlt_sizes();
2853     }
2854   return again;
2855 }
2856
2857 template<int size, bool big_endian>
2858 void
2859 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2860                                                       unsigned char* oview,
2861                                                       uint64_t* paddress,
2862                                                       off_t* plen) const
2863 {
2864   uint64_t address = plt->address();
2865   off_t len = plt->data_size();
2866
2867   if (plt == this->glink_)
2868     {
2869       // See Output_data_glink::do_write() for glink contents.
2870       if (len == 0)
2871         {
2872           gold_assert(parameters->doing_static_link());
2873           // Static linking may need stubs, to support ifunc and long
2874           // branches.  We need to create an output section for
2875           // .eh_frame early in the link process, to have a place to
2876           // attach stub .eh_frame info.  We also need to have
2877           // registered a CIE that matches the stub CIE.  Both of
2878           // these requirements are satisfied by creating an FDE and
2879           // CIE for .glink, even though static linking will leave
2880           // .glink zero length.
2881           // ??? Hopefully generating an FDE with a zero address range
2882           // won't confuse anything that consumes .eh_frame info.
2883         }
2884       else if (size == 64)
2885         {
2886           // There is one word before __glink_PLTresolve
2887           address += 8;
2888           len -= 8;
2889         }
2890       else if (parameters->options().output_is_position_independent())
2891         {
2892           // There are two FDEs for a position independent glink.
2893           // The first covers the branch table, the second
2894           // __glink_PLTresolve at the end of glink.
2895           off_t resolve_size = this->glink_->pltresolve_size;
2896           if (oview[9] == elfcpp::DW_CFA_nop)
2897             len -= resolve_size;
2898           else
2899             {
2900               address += len - resolve_size;
2901               len = resolve_size;
2902             }
2903         }
2904     }
2905   else
2906     {
2907       // Must be a stub table.
2908       const Stub_table<size, big_endian>* stub_table
2909         = static_cast<const Stub_table<size, big_endian>*>(plt);
2910       uint64_t stub_address = stub_table->stub_address();
2911       len -= stub_address - address;
2912       address = stub_address;
2913     }
2914
2915   *paddress = address;
2916   *plen = len;
2917 }
2918
2919 // A class to handle the PLT data.
2920
2921 template<int size, bool big_endian>
2922 class Output_data_plt_powerpc : public Output_section_data_build
2923 {
2924  public:
2925   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2926                             size, big_endian> Reloc_section;
2927
2928   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2929                           Reloc_section* plt_rel,
2930                           const char* name)
2931     : Output_section_data_build(size == 32 ? 4 : 8),
2932       rel_(plt_rel),
2933       targ_(targ),
2934       name_(name)
2935   { }
2936
2937   // Add an entry to the PLT.
2938   void
2939   add_entry(Symbol*);
2940
2941   void
2942   add_ifunc_entry(Symbol*);
2943
2944   void
2945   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2946
2947   // Return the .rela.plt section data.
2948   Reloc_section*
2949   rel_plt() const
2950   {
2951     return this->rel_;
2952   }
2953
2954   // Return the number of PLT entries.
2955   unsigned int
2956   entry_count() const
2957   {
2958     if (this->current_data_size() == 0)
2959       return 0;
2960     return ((this->current_data_size() - this->first_plt_entry_offset())
2961             / this->plt_entry_size());
2962   }
2963
2964  protected:
2965   void
2966   do_adjust_output_section(Output_section* os)
2967   {
2968     os->set_entsize(0);
2969   }
2970
2971   // Write to a map file.
2972   void
2973   do_print_to_mapfile(Mapfile* mapfile) const
2974   { mapfile->print_output_data(this, this->name_); }
2975
2976  private:
2977   // Return the offset of the first non-reserved PLT entry.
2978   unsigned int
2979   first_plt_entry_offset() const
2980   {
2981     // IPLT has no reserved entry.
2982     if (this->name_[3] == 'I')
2983       return 0;
2984     return this->targ_->first_plt_entry_offset();
2985   }
2986
2987   // Return the size of each PLT entry.
2988   unsigned int
2989   plt_entry_size() const
2990   {
2991     return this->targ_->plt_entry_size();
2992   }
2993
2994   // Write out the PLT data.
2995   void
2996   do_write(Output_file*);
2997
2998   // The reloc section.
2999   Reloc_section* rel_;
3000   // Allows access to .glink for do_write.
3001   Target_powerpc<size, big_endian>* targ_;
3002   // What to report in map file.
3003   const char *name_;
3004 };
3005
3006 // Add an entry to the PLT.
3007
3008 template<int size, bool big_endian>
3009 void
3010 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3011 {
3012   if (!gsym->has_plt_offset())
3013     {
3014       section_size_type off = this->current_data_size();
3015       if (off == 0)
3016         off += this->first_plt_entry_offset();
3017       gsym->set_plt_offset(off);
3018       gsym->set_needs_dynsym_entry();
3019       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3020       this->rel_->add_global(gsym, dynrel, this, off, 0);
3021       off += this->plt_entry_size();
3022       this->set_current_data_size(off);
3023     }
3024 }
3025
3026 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3027
3028 template<int size, bool big_endian>
3029 void
3030 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3031 {
3032   if (!gsym->has_plt_offset())
3033     {
3034       section_size_type off = this->current_data_size();
3035       gsym->set_plt_offset(off);
3036       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3037       if (size == 64 && this->targ_->abiversion() < 2)
3038         dynrel = elfcpp::R_PPC64_JMP_IREL;
3039       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3040       off += this->plt_entry_size();
3041       this->set_current_data_size(off);
3042     }
3043 }
3044
3045 // Add an entry for a local ifunc symbol to the IPLT.
3046
3047 template<int size, bool big_endian>
3048 void
3049 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3050     Sized_relobj_file<size, big_endian>* relobj,
3051     unsigned int local_sym_index)
3052 {
3053   if (!relobj->local_has_plt_offset(local_sym_index))
3054     {
3055       section_size_type off = this->current_data_size();
3056       relobj->set_local_plt_offset(local_sym_index, off);
3057       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3058       if (size == 64 && this->targ_->abiversion() < 2)
3059         dynrel = elfcpp::R_PPC64_JMP_IREL;
3060       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3061                                               this, off, 0);
3062       off += this->plt_entry_size();
3063       this->set_current_data_size(off);
3064     }
3065 }
3066
3067 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3068 static const uint32_t add_2_2_11        = 0x7c425a14;
3069 static const uint32_t add_3_3_2         = 0x7c631214;
3070 static const uint32_t add_3_3_13        = 0x7c636a14;
3071 static const uint32_t add_11_0_11       = 0x7d605a14;
3072 static const uint32_t add_11_2_11       = 0x7d625a14;
3073 static const uint32_t add_11_11_2       = 0x7d6b1214;
3074 static const uint32_t addi_0_12         = 0x380c0000;
3075 static const uint32_t addi_2_2          = 0x38420000;
3076 static const uint32_t addi_3_3          = 0x38630000;
3077 static const uint32_t addi_11_11        = 0x396b0000;
3078 static const uint32_t addi_12_12        = 0x398c0000;
3079 static const uint32_t addis_0_2         = 0x3c020000;
3080 static const uint32_t addis_0_13        = 0x3c0d0000;
3081 static const uint32_t addis_3_2         = 0x3c620000;
3082 static const uint32_t addis_3_13        = 0x3c6d0000;
3083 static const uint32_t addis_11_2        = 0x3d620000;
3084 static const uint32_t addis_11_11       = 0x3d6b0000;
3085 static const uint32_t addis_11_30       = 0x3d7e0000;
3086 static const uint32_t addis_12_2        = 0x3d820000;
3087 static const uint32_t addis_12_12       = 0x3d8c0000;
3088 static const uint32_t b                 = 0x48000000;
3089 static const uint32_t bcl_20_31         = 0x429f0005;
3090 static const uint32_t bctr              = 0x4e800420;
3091 static const uint32_t blr               = 0x4e800020;
3092 static const uint32_t bnectr_p4         = 0x4ce20420;
3093 static const uint32_t cmpldi_2_0        = 0x28220000;
3094 static const uint32_t cror_15_15_15     = 0x4def7b82;
3095 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3096 static const uint32_t ld_0_1            = 0xe8010000;
3097 static const uint32_t ld_0_12           = 0xe80c0000;
3098 static const uint32_t ld_2_1            = 0xe8410000;
3099 static const uint32_t ld_2_2            = 0xe8420000;
3100 static const uint32_t ld_2_11           = 0xe84b0000;
3101 static const uint32_t ld_11_2           = 0xe9620000;
3102 static const uint32_t ld_11_11          = 0xe96b0000;
3103 static const uint32_t ld_12_2           = 0xe9820000;
3104 static const uint32_t ld_12_11          = 0xe98b0000;
3105 static const uint32_t ld_12_12          = 0xe98c0000;
3106 static const uint32_t lfd_0_1           = 0xc8010000;
3107 static const uint32_t li_0_0            = 0x38000000;
3108 static const uint32_t li_12_0           = 0x39800000;
3109 static const uint32_t lis_0_0           = 0x3c000000;
3110 static const uint32_t lis_11            = 0x3d600000;
3111 static const uint32_t lis_12            = 0x3d800000;
3112 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3113 static const uint32_t lwz_0_12          = 0x800c0000;
3114 static const uint32_t lwz_11_11         = 0x816b0000;
3115 static const uint32_t lwz_11_30         = 0x817e0000;
3116 static const uint32_t lwz_12_12         = 0x818c0000;
3117 static const uint32_t lwzu_0_12         = 0x840c0000;
3118 static const uint32_t mflr_0            = 0x7c0802a6;
3119 static const uint32_t mflr_11           = 0x7d6802a6;
3120 static const uint32_t mflr_12           = 0x7d8802a6;
3121 static const uint32_t mtctr_0           = 0x7c0903a6;
3122 static const uint32_t mtctr_11          = 0x7d6903a6;
3123 static const uint32_t mtctr_12          = 0x7d8903a6;
3124 static const uint32_t mtlr_0            = 0x7c0803a6;
3125 static const uint32_t mtlr_12           = 0x7d8803a6;
3126 static const uint32_t nop               = 0x60000000;
3127 static const uint32_t ori_0_0_0         = 0x60000000;
3128 static const uint32_t srdi_0_0_2        = 0x7800f082;
3129 static const uint32_t std_0_1           = 0xf8010000;
3130 static const uint32_t std_0_12          = 0xf80c0000;
3131 static const uint32_t std_2_1           = 0xf8410000;
3132 static const uint32_t stfd_0_1          = 0xd8010000;
3133 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3134 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3135 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3136 static const uint32_t xor_2_12_12       = 0x7d826278;
3137 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3138
3139 // Write out the PLT.
3140
3141 template<int size, bool big_endian>
3142 void
3143 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3144 {
3145   if (size == 32 && this->name_[3] != 'I')
3146     {
3147       const section_size_type offset = this->offset();
3148       const section_size_type oview_size
3149         = convert_to_section_size_type(this->data_size());
3150       unsigned char* const oview = of->get_output_view(offset, oview_size);
3151       unsigned char* pov = oview;
3152       unsigned char* endpov = oview + oview_size;
3153
3154       // The address of the .glink branch table
3155       const Output_data_glink<size, big_endian>* glink
3156         = this->targ_->glink_section();
3157       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3158
3159       while (pov < endpov)
3160         {
3161           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3162           pov += 4;
3163           branch_tab += 4;
3164         }
3165
3166       of->write_output_view(offset, oview_size, oview);
3167     }
3168 }
3169
3170 // Create the PLT section.
3171
3172 template<int size, bool big_endian>
3173 void
3174 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3175                                                    Layout* layout)
3176 {
3177   if (this->plt_ == NULL)
3178     {
3179       if (this->got_ == NULL)
3180         this->got_section(symtab, layout);
3181
3182       if (this->glink_ == NULL)
3183         make_glink_section(layout);
3184
3185       // Ensure that .rela.dyn always appears before .rela.plt  This is
3186       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3187       // needs to include .rela.plt in its range.
3188       this->rela_dyn_section(layout);
3189
3190       Reloc_section* plt_rel = new Reloc_section(false);
3191       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3192                                       elfcpp::SHF_ALLOC, plt_rel,
3193                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3194       this->plt_
3195         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3196                                                         "** PLT");
3197       layout->add_output_section_data(".plt",
3198                                       (size == 32
3199                                        ? elfcpp::SHT_PROGBITS
3200                                        : elfcpp::SHT_NOBITS),
3201                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3202                                       this->plt_,
3203                                       (size == 32
3204                                        ? ORDER_SMALL_DATA
3205                                        : ORDER_SMALL_BSS),
3206                                       false);
3207     }
3208 }
3209
3210 // Create the IPLT section.
3211
3212 template<int size, bool big_endian>
3213 void
3214 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3215                                                     Layout* layout)
3216 {
3217   if (this->iplt_ == NULL)
3218     {
3219       this->make_plt_section(symtab, layout);
3220
3221       Reloc_section* iplt_rel = new Reloc_section(false);
3222       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3223       this->iplt_
3224         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3225                                                         "** IPLT");
3226       this->plt_->output_section()->add_output_section_data(this->iplt_);
3227     }
3228 }
3229
3230 // A section for huge long branch addresses, similar to plt section.
3231
3232 template<int size, bool big_endian>
3233 class Output_data_brlt_powerpc : public Output_section_data_build
3234 {
3235  public:
3236   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3237   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3238                             size, big_endian> Reloc_section;
3239
3240   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3241                            Reloc_section* brlt_rel)
3242     : Output_section_data_build(size == 32 ? 4 : 8),
3243       rel_(brlt_rel),
3244       targ_(targ)
3245   { }
3246
3247   void
3248   reset_brlt_sizes()
3249   {
3250     this->reset_data_size();
3251     this->rel_->reset_data_size();
3252   }
3253
3254   void
3255   finalize_brlt_sizes()
3256   {
3257     this->finalize_data_size();
3258     this->rel_->finalize_data_size();
3259   }
3260
3261   // Add a reloc for an entry in the BRLT.
3262   void
3263   add_reloc(Address to, unsigned int off)
3264   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3265
3266   // Update section and reloc section size.
3267   void
3268   set_current_size(unsigned int num_branches)
3269   {
3270     this->reset_address_and_file_offset();
3271     this->set_current_data_size(num_branches * 16);
3272     this->finalize_data_size();
3273     Output_section* os = this->output_section();
3274     os->set_section_offsets_need_adjustment();
3275     if (this->rel_ != NULL)
3276       {
3277         unsigned int reloc_size
3278           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3279         this->rel_->reset_address_and_file_offset();
3280         this->rel_->set_current_data_size(num_branches * reloc_size);
3281         this->rel_->finalize_data_size();
3282         Output_section* os = this->rel_->output_section();
3283         os->set_section_offsets_need_adjustment();
3284       }
3285   }
3286
3287  protected:
3288   void
3289   do_adjust_output_section(Output_section* os)
3290   {
3291     os->set_entsize(0);
3292   }
3293
3294   // Write to a map file.
3295   void
3296   do_print_to_mapfile(Mapfile* mapfile) const
3297   { mapfile->print_output_data(this, "** BRLT"); }
3298
3299  private:
3300   // Write out the BRLT data.
3301   void
3302   do_write(Output_file*);
3303
3304   // The reloc section.
3305   Reloc_section* rel_;
3306   Target_powerpc<size, big_endian>* targ_;
3307 };
3308
3309 // Make the branch lookup table section.
3310
3311 template<int size, bool big_endian>
3312 void
3313 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3314 {
3315   if (size == 64 && this->brlt_section_ == NULL)
3316     {
3317       Reloc_section* brlt_rel = NULL;
3318       bool is_pic = parameters->options().output_is_position_independent();
3319       if (is_pic)
3320         {
3321           // When PIC we can't fill in .branch_lt (like .plt it can be
3322           // a bss style section) but must initialise at runtime via
3323           // dynamic relocats.
3324           this->rela_dyn_section(layout);
3325           brlt_rel = new Reloc_section(false);
3326           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3327         }
3328       this->brlt_section_
3329         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3330       if (this->plt_ && is_pic)
3331         this->plt_->output_section()
3332           ->add_output_section_data(this->brlt_section_);
3333       else
3334         layout->add_output_section_data(".branch_lt",
3335                                         (is_pic ? elfcpp::SHT_NOBITS
3336                                          : elfcpp::SHT_PROGBITS),
3337                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3338                                         this->brlt_section_,
3339                                         (is_pic ? ORDER_SMALL_BSS
3340                                          : ORDER_SMALL_DATA),
3341                                         false);
3342     }
3343 }
3344
3345 // Write out .branch_lt when non-PIC.
3346
3347 template<int size, bool big_endian>
3348 void
3349 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3350 {
3351   if (size == 64 && !parameters->options().output_is_position_independent())
3352     {
3353       const section_size_type offset = this->offset();
3354       const section_size_type oview_size
3355         = convert_to_section_size_type(this->data_size());
3356       unsigned char* const oview = of->get_output_view(offset, oview_size);
3357
3358       this->targ_->write_branch_lookup_table(oview);
3359       of->write_output_view(offset, oview_size, oview);
3360     }
3361 }
3362
3363 static inline uint32_t
3364 l(uint32_t a)
3365 {
3366   return a & 0xffff;
3367 }
3368
3369 static inline uint32_t
3370 hi(uint32_t a)
3371 {
3372   return l(a >> 16);
3373 }
3374
3375 static inline uint32_t
3376 ha(uint32_t a)
3377 {
3378   return hi(a + 0x8000);
3379 }
3380
3381 template<int size>
3382 struct Eh_cie
3383 {
3384   static const unsigned char eh_frame_cie[12];
3385 };
3386
3387 template<int size>
3388 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3389 {
3390   1,                                    // CIE version.
3391   'z', 'R', 0,                          // Augmentation string.
3392   4,                                    // Code alignment.
3393   0x80 - size / 8 ,                     // Data alignment.
3394   65,                                   // RA reg.
3395   1,                                    // Augmentation size.
3396   (elfcpp::DW_EH_PE_pcrel
3397    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3398   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3399 };
3400
3401 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3402 static const unsigned char glink_eh_frame_fde_64v1[] =
3403 {
3404   0, 0, 0, 0,                           // Replaced with offset to .glink.
3405   0, 0, 0, 0,                           // Replaced with size of .glink.
3406   0,                                    // Augmentation size.
3407   elfcpp::DW_CFA_advance_loc + 1,
3408   elfcpp::DW_CFA_register, 65, 12,
3409   elfcpp::DW_CFA_advance_loc + 4,
3410   elfcpp::DW_CFA_restore_extended, 65
3411 };
3412
3413 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3414 static const unsigned char glink_eh_frame_fde_64v2[] =
3415 {
3416   0, 0, 0, 0,                           // Replaced with offset to .glink.
3417   0, 0, 0, 0,                           // Replaced with size of .glink.
3418   0,                                    // Augmentation size.
3419   elfcpp::DW_CFA_advance_loc + 1,
3420   elfcpp::DW_CFA_register, 65, 0,
3421   elfcpp::DW_CFA_advance_loc + 4,
3422   elfcpp::DW_CFA_restore_extended, 65
3423 };
3424
3425 // Describe __glink_PLTresolve use of LR, 32-bit version.
3426 static const unsigned char glink_eh_frame_fde_32[] =
3427 {
3428   0, 0, 0, 0,                           // Replaced with offset to .glink.
3429   0, 0, 0, 0,                           // Replaced with size of .glink.
3430   0,                                    // Augmentation size.
3431   elfcpp::DW_CFA_advance_loc + 2,
3432   elfcpp::DW_CFA_register, 65, 0,
3433   elfcpp::DW_CFA_advance_loc + 4,
3434   elfcpp::DW_CFA_restore_extended, 65
3435 };
3436
3437 static const unsigned char default_fde[] =
3438 {
3439   0, 0, 0, 0,                           // Replaced with offset to stubs.
3440   0, 0, 0, 0,                           // Replaced with size of stubs.
3441   0,                                    // Augmentation size.
3442   elfcpp::DW_CFA_nop,                   // Pad.
3443   elfcpp::DW_CFA_nop,
3444   elfcpp::DW_CFA_nop
3445 };
3446
3447 template<bool big_endian>
3448 static inline void
3449 write_insn(unsigned char* p, uint32_t v)
3450 {
3451   elfcpp::Swap<32, big_endian>::writeval(p, v);
3452 }
3453
3454 // Stub_table holds information about plt and long branch stubs.
3455 // Stubs are built in an area following some input section determined
3456 // by group_sections().  This input section is converted to a relaxed
3457 // input section allowing it to be resized to accommodate the stubs
3458
3459 template<int size, bool big_endian>
3460 class Stub_table : public Output_relaxed_input_section
3461 {
3462  public:
3463   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3464   static const Address invalid_address = static_cast<Address>(0) - 1;
3465
3466   Stub_table(Target_powerpc<size, big_endian>* targ)
3467     : Output_relaxed_input_section(NULL, 0, 0),
3468       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3469       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3470       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3471   { }
3472
3473   // Delayed Output_relaxed_input_section init.
3474   void
3475   init(const Output_section::Input_section*, Output_section*);
3476
3477   // Add a plt call stub.
3478   void
3479   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3480                      const Symbol*,
3481                      unsigned int,
3482                      Address);
3483
3484   void
3485   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3486                      unsigned int,
3487                      unsigned int,
3488                      Address);
3489
3490   // Find a given plt call stub.
3491   Address
3492   find_plt_call_entry(const Symbol*) const;
3493
3494   Address
3495   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3496                       unsigned int) const;
3497
3498   Address
3499   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3500                       const Symbol*,
3501                       unsigned int,
3502                       Address) const;
3503
3504   Address
3505   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3506                       unsigned int,
3507                       unsigned int,
3508                       Address) const;
3509
3510   // Add a long branch stub.
3511   void
3512   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3513
3514   Address
3515   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3516                          Address) const;
3517
3518   void
3519   clear_stubs()
3520   {
3521     this->plt_call_stubs_.clear();
3522     this->plt_size_ = 0;
3523     this->long_branch_stubs_.clear();
3524     this->branch_size_ = 0;
3525   }
3526
3527   Address
3528   set_address_and_size(const Output_section* os, Address off)
3529   {
3530     Address start_off = off;
3531     off += this->orig_data_size_;
3532     Address my_size = this->plt_size_ + this->branch_size_;
3533     if (my_size != 0)
3534       off = align_address(off, this->stub_align());
3535     // Include original section size and alignment padding in size
3536     my_size += off - start_off;
3537     this->reset_address_and_file_offset();
3538     this->set_current_data_size(my_size);
3539     this->set_address_and_file_offset(os->address() + start_off,
3540                                       os->offset() + start_off);
3541     return my_size;
3542   }
3543
3544   Address
3545   stub_address() const
3546   {
3547     return align_address(this->address() + this->orig_data_size_,
3548                          this->stub_align());
3549   }
3550
3551   Address
3552   stub_offset() const
3553   {
3554     return align_address(this->offset() + this->orig_data_size_,
3555                          this->stub_align());
3556   }
3557
3558   section_size_type
3559   plt_size() const
3560   { return this->plt_size_; }
3561
3562   bool
3563   size_update()
3564   {
3565     Output_section* os = this->output_section();
3566     if (os->addralign() < this->stub_align())
3567       {
3568         os->set_addralign(this->stub_align());
3569         // FIXME: get rid of the insane checkpointing.
3570         // We can't increase alignment of the input section to which
3571         // stubs are attached;  The input section may be .init which
3572         // is pasted together with other .init sections to form a
3573         // function.  Aligning might insert zero padding resulting in
3574         // sigill.  However we do need to increase alignment of the
3575         // output section so that the align_address() on offset in
3576         // set_address_and_size() adds the same padding as the
3577         // align_address() on address in stub_address().
3578         // What's more, we need this alignment for the layout done in
3579         // relaxation_loop_body() so that the output section starts at
3580         // a suitably aligned address.
3581         os->checkpoint_set_addralign(this->stub_align());
3582       }
3583     if (this->last_plt_size_ != this->plt_size_
3584         || this->last_branch_size_ != this->branch_size_)
3585       {
3586         this->last_plt_size_ = this->plt_size_;
3587         this->last_branch_size_ = this->branch_size_;
3588         return true;
3589       }
3590     return false;
3591   }
3592
3593   // Add .eh_frame info for this stub section.  Unlike other linker
3594   // generated .eh_frame this is added late in the link, because we
3595   // only want the .eh_frame info if this particular stub section is
3596   // non-empty.
3597   void
3598   add_eh_frame(Layout* layout)
3599   {
3600     if (!this->eh_frame_added_)
3601       {
3602         if (!parameters->options().ld_generated_unwind_info())
3603           return;
3604
3605         // Since we add stub .eh_frame info late, it must be placed
3606         // after all other linker generated .eh_frame info so that
3607         // merge mapping need not be updated for input sections.
3608         // There is no provision to use a different CIE to that used
3609         // by .glink.
3610         if (!this->targ_->has_glink())
3611           return;
3612
3613         layout->add_eh_frame_for_plt(this,
3614                                      Eh_cie<size>::eh_frame_cie,
3615                                      sizeof (Eh_cie<size>::eh_frame_cie),
3616                                      default_fde,
3617                                      sizeof (default_fde));
3618         this->eh_frame_added_ = true;
3619       }
3620   }
3621
3622   Target_powerpc<size, big_endian>*
3623   targ() const
3624   { return targ_; }
3625
3626  private:
3627   class Plt_stub_ent;
3628   class Plt_stub_ent_hash;
3629   typedef Unordered_map<Plt_stub_ent, unsigned int,
3630                         Plt_stub_ent_hash> Plt_stub_entries;
3631
3632   // Alignment of stub section.
3633   unsigned int
3634   stub_align() const
3635   {
3636     if (size == 32)
3637       return 16;
3638     unsigned int min_align = 32;
3639     unsigned int user_align = 1 << parameters->options().plt_align();
3640     return std::max(user_align, min_align);
3641   }
3642
3643   // Return the plt offset for the given call stub.
3644   Address
3645   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3646   {
3647     const Symbol* gsym = p->first.sym_;
3648     if (gsym != NULL)
3649       {
3650         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3651                     && gsym->can_use_relative_reloc(false));
3652         return gsym->plt_offset();
3653       }
3654     else
3655       {
3656         *is_iplt = true;
3657         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3658         unsigned int local_sym_index = p->first.locsym_;
3659         return relobj->local_plt_offset(local_sym_index);
3660       }
3661   }
3662
3663   // Size of a given plt call stub.
3664   unsigned int
3665   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3666   {
3667     if (size == 32)
3668       return 16;
3669
3670     bool is_iplt;
3671     Address plt_addr = this->plt_off(p, &is_iplt);
3672     if (is_iplt)
3673       plt_addr += this->targ_->iplt_section()->address();
3674     else
3675       plt_addr += this->targ_->plt_section()->address();
3676     Address got_addr = this->targ_->got_section()->output_section()->address();
3677     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3678       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3679     got_addr += ppcobj->toc_base_offset();
3680     Address off = plt_addr - got_addr;
3681     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3682     if (this->targ_->abiversion() < 2)
3683       {
3684         bool static_chain = parameters->options().plt_static_chain();
3685         bool thread_safe = this->targ_->plt_thread_safe();
3686         bytes += (4
3687                   + 4 * static_chain
3688                   + 8 * thread_safe
3689                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3690       }
3691     unsigned int align = 1 << parameters->options().plt_align();
3692     if (align > 1)
3693       bytes = (bytes + align - 1) & -align;
3694     return bytes;
3695   }
3696
3697   // Return long branch stub size.
3698   unsigned int
3699   branch_stub_size(Address to)
3700   {
3701     Address loc
3702       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3703     if (to - loc + (1 << 25) < 2 << 25)
3704       return 4;
3705     if (size == 64 || !parameters->options().output_is_position_independent())
3706       return 16;
3707     return 32;
3708   }
3709
3710   // Write out stubs.
3711   void
3712   do_write(Output_file*);
3713
3714   // Plt call stub keys.
3715   class Plt_stub_ent
3716   {
3717   public:
3718     Plt_stub_ent(const Symbol* sym)
3719       : sym_(sym), object_(0), addend_(0), locsym_(0)
3720     { }
3721
3722     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3723                  unsigned int locsym_index)
3724       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3725     { }
3726
3727     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3728                  const Symbol* sym,
3729                  unsigned int r_type,
3730                  Address addend)
3731       : sym_(sym), object_(0), addend_(0), locsym_(0)
3732     {
3733       if (size != 32)
3734         this->addend_ = addend;
3735       else if (parameters->options().output_is_position_independent()
3736                && r_type == elfcpp::R_PPC_PLTREL24)
3737         {
3738           this->addend_ = addend;
3739           if (this->addend_ >= 32768)
3740             this->object_ = object;
3741         }
3742     }
3743
3744     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3745                  unsigned int locsym_index,
3746                  unsigned int r_type,
3747                  Address addend)
3748       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3749     {
3750       if (size != 32)
3751         this->addend_ = addend;
3752       else if (parameters->options().output_is_position_independent()
3753                && r_type == elfcpp::R_PPC_PLTREL24)
3754         this->addend_ = addend;
3755     }
3756
3757     bool operator==(const Plt_stub_ent& that) const
3758     {
3759       return (this->sym_ == that.sym_
3760               && this->object_ == that.object_
3761               && this->addend_ == that.addend_
3762               && this->locsym_ == that.locsym_);
3763     }
3764
3765     const Symbol* sym_;
3766     const Sized_relobj_file<size, big_endian>* object_;
3767     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3768     unsigned int locsym_;
3769   };
3770
3771   class Plt_stub_ent_hash
3772   {
3773   public:
3774     size_t operator()(const Plt_stub_ent& ent) const
3775     {
3776       return (reinterpret_cast<uintptr_t>(ent.sym_)
3777               ^ reinterpret_cast<uintptr_t>(ent.object_)
3778               ^ ent.addend_
3779               ^ ent.locsym_);
3780     }
3781   };
3782
3783   // Long branch stub keys.
3784   class Branch_stub_ent
3785   {
3786   public:
3787     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3788       : dest_(to), toc_base_off_(0)
3789     {
3790       if (size == 64)
3791         toc_base_off_ = obj->toc_base_offset();
3792     }
3793
3794     bool operator==(const Branch_stub_ent& that) const
3795     {
3796       return (this->dest_ == that.dest_
3797               && (size == 32
3798                   || this->toc_base_off_ == that.toc_base_off_));
3799     }
3800
3801     Address dest_;
3802     unsigned int toc_base_off_;
3803   };
3804
3805   class Branch_stub_ent_hash
3806   {
3807   public:
3808     size_t operator()(const Branch_stub_ent& ent) const
3809     { return ent.dest_ ^ ent.toc_base_off_; }
3810   };
3811
3812   // In a sane world this would be a global.
3813   Target_powerpc<size, big_endian>* targ_;
3814   // Map sym/object/addend to stub offset.
3815   Plt_stub_entries plt_call_stubs_;
3816   // Map destination address to stub offset.
3817   typedef Unordered_map<Branch_stub_ent, unsigned int,
3818                         Branch_stub_ent_hash> Branch_stub_entries;
3819   Branch_stub_entries long_branch_stubs_;
3820   // size of input section
3821   section_size_type orig_data_size_;
3822   // size of stubs
3823   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3824   // Whether .eh_frame info has been created for this stub section.
3825   bool eh_frame_added_;
3826 };
3827
3828 // Make a new stub table, and record.
3829
3830 template<int size, bool big_endian>
3831 Stub_table<size, big_endian>*
3832 Target_powerpc<size, big_endian>::new_stub_table()
3833 {
3834   Stub_table<size, big_endian>* stub_table
3835     = new Stub_table<size, big_endian>(this);
3836   this->stub_tables_.push_back(stub_table);
3837   return stub_table;
3838 }
3839
3840 // Delayed stub table initialisation, because we create the stub table
3841 // before we know to which section it will be attached.
3842
3843 template<int size, bool big_endian>
3844 void
3845 Stub_table<size, big_endian>::init(
3846     const Output_section::Input_section* owner,
3847     Output_section* output_section)
3848 {
3849   this->set_relobj(owner->relobj());
3850   this->set_shndx(owner->shndx());
3851   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3852   this->set_output_section(output_section);
3853   this->orig_data_size_ = owner->current_data_size();
3854
3855   std::vector<Output_relaxed_input_section*> new_relaxed;
3856   new_relaxed.push_back(this);
3857   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3858 }
3859
3860 // Add a plt call stub, if we do not already have one for this
3861 // sym/object/addend combo.
3862
3863 template<int size, bool big_endian>
3864 void
3865 Stub_table<size, big_endian>::add_plt_call_entry(
3866     const Sized_relobj_file<size, big_endian>* object,
3867     const Symbol* gsym,
3868     unsigned int r_type,
3869     Address addend)
3870 {
3871   Plt_stub_ent ent(object, gsym, r_type, addend);
3872   unsigned int off = this->plt_size_;
3873   std::pair<typename Plt_stub_entries::iterator, bool> p
3874     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3875   if (p.second)
3876     this->plt_size_ = off + this->plt_call_size(p.first);
3877 }
3878
3879 template<int size, bool big_endian>
3880 void
3881 Stub_table<size, big_endian>::add_plt_call_entry(
3882     const Sized_relobj_file<size, big_endian>* object,
3883     unsigned int locsym_index,
3884     unsigned int r_type,
3885     Address addend)
3886 {
3887   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3888   unsigned int off = this->plt_size_;
3889   std::pair<typename Plt_stub_entries::iterator, bool> p
3890     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3891   if (p.second)
3892     this->plt_size_ = off + this->plt_call_size(p.first);
3893 }
3894
3895 // Find a plt call stub.
3896
3897 template<int size, bool big_endian>
3898 typename Stub_table<size, big_endian>::Address
3899 Stub_table<size, big_endian>::find_plt_call_entry(
3900     const Sized_relobj_file<size, big_endian>* object,
3901     const Symbol* gsym,
3902     unsigned int r_type,
3903     Address addend) const
3904 {
3905   Plt_stub_ent ent(object, gsym, r_type, addend);
3906   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3907   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3908 }
3909
3910 template<int size, bool big_endian>
3911 typename Stub_table<size, big_endian>::Address
3912 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3913 {
3914   Plt_stub_ent ent(gsym);
3915   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3916   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3917 }
3918
3919 template<int size, bool big_endian>
3920 typename Stub_table<size, big_endian>::Address
3921 Stub_table<size, big_endian>::find_plt_call_entry(
3922     const Sized_relobj_file<size, big_endian>* object,
3923     unsigned int locsym_index,
3924     unsigned int r_type,
3925     Address addend) const
3926 {
3927   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3928   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3929   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3930 }
3931
3932 template<int size, bool big_endian>
3933 typename Stub_table<size, big_endian>::Address
3934 Stub_table<size, big_endian>::find_plt_call_entry(
3935     const Sized_relobj_file<size, big_endian>* object,
3936     unsigned int locsym_index) const
3937 {
3938   Plt_stub_ent ent(object, locsym_index);
3939   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3940   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3941 }
3942
3943 // Add a long branch stub if we don't already have one to given
3944 // destination.
3945
3946 template<int size, bool big_endian>
3947 void
3948 Stub_table<size, big_endian>::add_long_branch_entry(
3949     const Powerpc_relobj<size, big_endian>* object,
3950     Address to)
3951 {
3952   Branch_stub_ent ent(object, to);
3953   Address off = this->branch_size_;
3954   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3955     {
3956       unsigned int stub_size = this->branch_stub_size(to);
3957       this->branch_size_ = off + stub_size;
3958       if (size == 64 && stub_size != 4)
3959         this->targ_->add_branch_lookup_table(to);
3960     }
3961 }
3962
3963 // Find long branch stub.
3964
3965 template<int size, bool big_endian>
3966 typename Stub_table<size, big_endian>::Address
3967 Stub_table<size, big_endian>::find_long_branch_entry(
3968     const Powerpc_relobj<size, big_endian>* object,
3969     Address to) const
3970 {
3971   Branch_stub_ent ent(object, to);
3972   typename Branch_stub_entries::const_iterator p
3973     = this->long_branch_stubs_.find(ent);
3974   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3975 }
3976
3977 // A class to handle .glink.
3978
3979 template<int size, bool big_endian>
3980 class Output_data_glink : public Output_section_data
3981 {
3982  public:
3983   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3984   static const Address invalid_address = static_cast<Address>(0) - 1;
3985   static const int pltresolve_size = 16*4;
3986
3987   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3988     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3989       end_branch_table_(), ge_size_(0)
3990   { }
3991
3992   void
3993   add_eh_frame(Layout* layout);
3994
3995   void
3996   add_global_entry(const Symbol*);
3997
3998   Address
3999   find_global_entry(const Symbol*) const;
4000
4001   Address
4002   global_entry_address() const
4003   {
4004     gold_assert(this->is_data_size_valid());
4005     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4006     return this->address() + global_entry_off;
4007   }
4008
4009  protected:
4010   // Write to a map file.
4011   void
4012   do_print_to_mapfile(Mapfile* mapfile) const
4013   { mapfile->print_output_data(this, _("** glink")); }
4014
4015  private:
4016   void
4017   set_final_data_size();
4018
4019   // Write out .glink
4020   void
4021   do_write(Output_file*);
4022
4023   // Allows access to .got and .plt for do_write.
4024   Target_powerpc<size, big_endian>* targ_;
4025
4026   // Map sym to stub offset.
4027   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4028   Global_entry_stub_entries global_entry_stubs_;
4029
4030   unsigned int end_branch_table_, ge_size_;
4031 };
4032
4033 template<int size, bool big_endian>
4034 void
4035 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4036 {
4037   if (!parameters->options().ld_generated_unwind_info())
4038     return;
4039
4040   if (size == 64)
4041     {
4042       if (this->targ_->abiversion() < 2)
4043         layout->add_eh_frame_for_plt(this,
4044                                      Eh_cie<64>::eh_frame_cie,
4045                                      sizeof (Eh_cie<64>::eh_frame_cie),
4046                                      glink_eh_frame_fde_64v1,
4047                                      sizeof (glink_eh_frame_fde_64v1));
4048       else
4049         layout->add_eh_frame_for_plt(this,
4050                                      Eh_cie<64>::eh_frame_cie,
4051                                      sizeof (Eh_cie<64>::eh_frame_cie),
4052                                      glink_eh_frame_fde_64v2,
4053                                      sizeof (glink_eh_frame_fde_64v2));
4054     }
4055   else
4056     {
4057       // 32-bit .glink can use the default since the CIE return
4058       // address reg, LR, is valid.
4059       layout->add_eh_frame_for_plt(this,
4060                                    Eh_cie<32>::eh_frame_cie,
4061                                    sizeof (Eh_cie<32>::eh_frame_cie),
4062                                    default_fde,
4063                                    sizeof (default_fde));
4064       // Except where LR is used in a PIC __glink_PLTresolve.
4065       if (parameters->options().output_is_position_independent())
4066         layout->add_eh_frame_for_plt(this,
4067                                      Eh_cie<32>::eh_frame_cie,
4068                                      sizeof (Eh_cie<32>::eh_frame_cie),
4069                                      glink_eh_frame_fde_32,
4070                                      sizeof (glink_eh_frame_fde_32));
4071     }
4072 }
4073
4074 template<int size, bool big_endian>
4075 void
4076 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4077 {
4078   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4079     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4080   if (p.second)
4081     this->ge_size_ += 16;
4082 }
4083
4084 template<int size, bool big_endian>
4085 typename Output_data_glink<size, big_endian>::Address
4086 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4087 {
4088   typename Global_entry_stub_entries::const_iterator p
4089     = this->global_entry_stubs_.find(gsym);
4090   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4091 }
4092
4093 template<int size, bool big_endian>
4094 void
4095 Output_data_glink<size, big_endian>::set_final_data_size()
4096 {
4097   unsigned int count = this->targ_->plt_entry_count();
4098   section_size_type total = 0;
4099
4100   if (count != 0)
4101     {
4102       if (size == 32)
4103         {
4104           // space for branch table
4105           total += 4 * (count - 1);
4106
4107           total += -total & 15;
4108           total += this->pltresolve_size;
4109         }
4110       else
4111         {
4112           total += this->pltresolve_size;
4113
4114           // space for branch table
4115           total += 4 * count;
4116           if (this->targ_->abiversion() < 2)
4117             {
4118               total += 4 * count;
4119               if (count > 0x8000)
4120                 total += 4 * (count - 0x8000);
4121             }
4122         }
4123     }
4124   this->end_branch_table_ = total;
4125   total = (total + 15) & -16;
4126   total += this->ge_size_;
4127
4128   this->set_data_size(total);
4129 }
4130
4131 // Write out plt and long branch stub code.
4132
4133 template<int size, bool big_endian>
4134 void
4135 Stub_table<size, big_endian>::do_write(Output_file* of)
4136 {
4137   if (this->plt_call_stubs_.empty()
4138       && this->long_branch_stubs_.empty())
4139     return;
4140
4141   const section_size_type start_off = this->offset();
4142   const section_size_type off = this->stub_offset();
4143   const section_size_type oview_size =
4144     convert_to_section_size_type(this->data_size() - (off - start_off));
4145   unsigned char* const oview = of->get_output_view(off, oview_size);
4146   unsigned char* p;
4147
4148   if (size == 64)
4149     {
4150       const Output_data_got_powerpc<size, big_endian>* got
4151         = this->targ_->got_section();
4152       Address got_os_addr = got->output_section()->address();
4153
4154       if (!this->plt_call_stubs_.empty())
4155         {
4156           // The base address of the .plt section.
4157           Address plt_base = this->targ_->plt_section()->address();
4158           Address iplt_base = invalid_address;
4159
4160           // Write out plt call stubs.
4161           typename Plt_stub_entries::const_iterator cs;
4162           for (cs = this->plt_call_stubs_.begin();
4163                cs != this->plt_call_stubs_.end();
4164                ++cs)
4165             {
4166               bool is_iplt;
4167               Address pltoff = this->plt_off(cs, &is_iplt);
4168               Address plt_addr = pltoff;
4169               if (is_iplt)
4170                 {
4171                   if (iplt_base == invalid_address)
4172                     iplt_base = this->targ_->iplt_section()->address();
4173                   plt_addr += iplt_base;
4174                 }
4175               else
4176                 plt_addr += plt_base;
4177               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4178                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4179               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4180               Address off = plt_addr - got_addr;
4181
4182               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4183                 gold_error(_("%s: linkage table error against `%s'"),
4184                            cs->first.object_->name().c_str(),
4185                            cs->first.sym_->demangled_name().c_str());
4186
4187               bool plt_load_toc = this->targ_->abiversion() < 2;
4188               bool static_chain
4189                 = plt_load_toc && parameters->options().plt_static_chain();
4190               bool thread_safe
4191                 = plt_load_toc && this->targ_->plt_thread_safe();
4192               bool use_fake_dep = false;
4193               Address cmp_branch_off = 0;
4194               if (thread_safe)
4195                 {
4196                   unsigned int pltindex
4197                     = ((pltoff - this->targ_->first_plt_entry_offset())
4198                        / this->targ_->plt_entry_size());
4199                   Address glinkoff
4200                     = (this->targ_->glink_section()->pltresolve_size
4201                        + pltindex * 8);
4202                   if (pltindex > 32768)
4203                     glinkoff += (pltindex - 32768) * 4;
4204                   Address to
4205                     = this->targ_->glink_section()->address() + glinkoff;
4206                   Address from
4207                     = (this->stub_address() + cs->second + 24
4208                        + 4 * (ha(off) != 0)
4209                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4210                        + 4 * static_chain);
4211                   cmp_branch_off = to - from;
4212                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4213                 }
4214
4215               p = oview + cs->second;
4216               if (ha(off) != 0)
4217                 {
4218                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4219                   p += 4;
4220                   if (plt_load_toc)
4221                     {
4222                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4223                       p += 4;
4224                       write_insn<big_endian>(p, ld_12_11 + l(off));
4225                       p += 4;
4226                     }
4227                   else
4228                     {
4229                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4230                       p += 4;
4231                       write_insn<big_endian>(p, ld_12_12 + l(off));
4232                       p += 4;
4233                     }
4234                   if (plt_load_toc
4235                       && ha(off + 8 + 8 * static_chain) != ha(off))
4236                     {
4237                       write_insn<big_endian>(p, addi_11_11 + l(off));
4238                       p += 4;
4239                       off = 0;
4240                     }
4241                   write_insn<big_endian>(p, mtctr_12);
4242                   p += 4;
4243                   if (plt_load_toc)
4244                     {
4245                       if (use_fake_dep)
4246                         {
4247                           write_insn<big_endian>(p, xor_2_12_12);
4248                           p += 4;
4249                           write_insn<big_endian>(p, add_11_11_2);
4250                           p += 4;
4251                         }
4252                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4253                       p += 4;
4254                       if (static_chain)
4255                         {
4256                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4257                           p += 4;
4258                         }
4259                     }
4260                 }
4261               else
4262                 {
4263                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4264                   p += 4;
4265                   write_insn<big_endian>(p, ld_12_2 + l(off));
4266                   p += 4;
4267                   if (plt_load_toc
4268                       && ha(off + 8 + 8 * static_chain) != ha(off))
4269                     {
4270                       write_insn<big_endian>(p, addi_2_2 + l(off));
4271                       p += 4;
4272                       off = 0;
4273                     }
4274                   write_insn<big_endian>(p, mtctr_12);
4275                   p += 4;
4276                   if (plt_load_toc)
4277                     {
4278                       if (use_fake_dep)
4279                         {
4280                           write_insn<big_endian>(p, xor_11_12_12);
4281                           p += 4;
4282                           write_insn<big_endian>(p, add_2_2_11);
4283                           p += 4;
4284                         }
4285                       if (static_chain)
4286                         {
4287                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4288                           p += 4;
4289                         }
4290                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4291                       p += 4;
4292                     }
4293                 }
4294               if (thread_safe && !use_fake_dep)
4295                 {
4296                   write_insn<big_endian>(p, cmpldi_2_0);
4297                   p += 4;
4298                   write_insn<big_endian>(p, bnectr_p4);
4299                   p += 4;
4300                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4301                 }
4302               else
4303                 write_insn<big_endian>(p, bctr);
4304             }
4305         }
4306
4307       // Write out long branch stubs.
4308       typename Branch_stub_entries::const_iterator bs;
4309       for (bs = this->long_branch_stubs_.begin();
4310            bs != this->long_branch_stubs_.end();
4311            ++bs)
4312         {
4313           p = oview + this->plt_size_ + bs->second;
4314           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4315           Address delta = bs->first.dest_ - loc;
4316           if (delta + (1 << 25) < 2 << 25)
4317             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4318           else
4319             {
4320               Address brlt_addr
4321                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4322               gold_assert(brlt_addr != invalid_address);
4323               brlt_addr += this->targ_->brlt_section()->address();
4324               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4325               Address brltoff = brlt_addr - got_addr;
4326               if (ha(brltoff) == 0)
4327                 {
4328                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4329                 }
4330               else
4331                 {
4332                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4333                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4334                 }
4335               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4336               write_insn<big_endian>(p, bctr);
4337             }
4338         }
4339     }
4340   else
4341     {
4342       if (!this->plt_call_stubs_.empty())
4343         {
4344           // The base address of the .plt section.
4345           Address plt_base = this->targ_->plt_section()->address();
4346           Address iplt_base = invalid_address;
4347           // The address of _GLOBAL_OFFSET_TABLE_.
4348           Address g_o_t = invalid_address;
4349
4350           // Write out plt call stubs.
4351           typename Plt_stub_entries::const_iterator cs;
4352           for (cs = this->plt_call_stubs_.begin();
4353                cs != this->plt_call_stubs_.end();
4354                ++cs)
4355             {
4356               bool is_iplt;
4357               Address plt_addr = this->plt_off(cs, &is_iplt);
4358               if (is_iplt)
4359                 {
4360                   if (iplt_base == invalid_address)
4361                     iplt_base = this->targ_->iplt_section()->address();
4362                   plt_addr += iplt_base;
4363                 }
4364               else
4365                 plt_addr += plt_base;
4366
4367               p = oview + cs->second;
4368               if (parameters->options().output_is_position_independent())
4369                 {
4370                   Address got_addr;
4371                   const Powerpc_relobj<size, big_endian>* ppcobj
4372                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4373                        (cs->first.object_));
4374                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4375                     {
4376                       unsigned int got2 = ppcobj->got2_shndx();
4377                       got_addr = ppcobj->get_output_section_offset(got2);
4378                       gold_assert(got_addr != invalid_address);
4379                       got_addr += (ppcobj->output_section(got2)->address()
4380                                    + cs->first.addend_);
4381                     }
4382                   else
4383                     {
4384                       if (g_o_t == invalid_address)
4385                         {
4386                           const Output_data_got_powerpc<size, big_endian>* got
4387                             = this->targ_->got_section();
4388                           g_o_t = got->address() + got->g_o_t();
4389                         }
4390                       got_addr = g_o_t;
4391                     }
4392
4393                   Address off = plt_addr - got_addr;
4394                   if (ha(off) == 0)
4395                     {
4396                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4397                       write_insn<big_endian>(p +  4, mtctr_11);
4398                       write_insn<big_endian>(p +  8, bctr);
4399                     }
4400                   else
4401                     {
4402                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4403                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4404                       write_insn<big_endian>(p +  8, mtctr_11);
4405                       write_insn<big_endian>(p + 12, bctr);
4406                     }
4407                 }
4408               else
4409                 {
4410                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4411                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4412                   write_insn<big_endian>(p +  8, mtctr_11);
4413                   write_insn<big_endian>(p + 12, bctr);
4414                 }
4415             }
4416         }
4417
4418       // Write out long branch stubs.
4419       typename Branch_stub_entries::const_iterator bs;
4420       for (bs = this->long_branch_stubs_.begin();
4421            bs != this->long_branch_stubs_.end();
4422            ++bs)
4423         {
4424           p = oview + this->plt_size_ + bs->second;
4425           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4426           Address delta = bs->first.dest_ - loc;
4427           if (delta + (1 << 25) < 2 << 25)
4428             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4429           else if (!parameters->options().output_is_position_independent())
4430             {
4431               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4432               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4433               write_insn<big_endian>(p +  8, mtctr_12);
4434               write_insn<big_endian>(p + 12, bctr);
4435             }
4436           else
4437             {
4438               delta -= 8;
4439               write_insn<big_endian>(p +  0, mflr_0);
4440               write_insn<big_endian>(p +  4, bcl_20_31);
4441               write_insn<big_endian>(p +  8, mflr_12);
4442               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4443               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4444               write_insn<big_endian>(p + 20, mtlr_0);
4445               write_insn<big_endian>(p + 24, mtctr_12);
4446               write_insn<big_endian>(p + 28, bctr);
4447             }
4448         }
4449     }
4450 }
4451
4452 // Write out .glink.
4453
4454 template<int size, bool big_endian>
4455 void
4456 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4457 {
4458   const section_size_type off = this->offset();
4459   const section_size_type oview_size =
4460     convert_to_section_size_type(this->data_size());
4461   unsigned char* const oview = of->get_output_view(off, oview_size);
4462   unsigned char* p;
4463
4464   // The base address of the .plt section.
4465   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4466   Address plt_base = this->targ_->plt_section()->address();
4467
4468   if (size == 64)
4469     {
4470       if (this->end_branch_table_ != 0)
4471         {
4472           // Write pltresolve stub.
4473           p = oview;
4474           Address after_bcl = this->address() + 16;
4475           Address pltoff = plt_base - after_bcl;
4476
4477           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4478
4479           if (this->targ_->abiversion() < 2)
4480             {
4481               write_insn<big_endian>(p, mflr_12),               p += 4;
4482               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4483               write_insn<big_endian>(p, mflr_11),               p += 4;
4484               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4485               write_insn<big_endian>(p, mtlr_12),               p += 4;
4486               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4487               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4488               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4489               write_insn<big_endian>(p, mtctr_12),              p += 4;
4490               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4491             }
4492           else
4493             {
4494               write_insn<big_endian>(p, mflr_0),                p += 4;
4495               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4496               write_insn<big_endian>(p, mflr_11),               p += 4;
4497               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4498               write_insn<big_endian>(p, mtlr_0),                p += 4;
4499               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4500               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4501               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4502               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4503               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4504               write_insn<big_endian>(p, mtctr_12),              p += 4;
4505               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4506             }
4507           write_insn<big_endian>(p, bctr),                      p += 4;
4508           while (p < oview + this->pltresolve_size)
4509             write_insn<big_endian>(p, nop), p += 4;
4510
4511           // Write lazy link call stubs.
4512           uint32_t indx = 0;
4513           while (p < oview + this->end_branch_table_)
4514             {
4515               if (this->targ_->abiversion() < 2)
4516                 {
4517                   if (indx < 0x8000)
4518                     {
4519                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4520                     }
4521                   else
4522                     {
4523                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4524                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4525                     }
4526                 }
4527               uint32_t branch_off = 8 - (p - oview);
4528               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4529               indx++;
4530             }
4531         }
4532
4533       Address plt_base = this->targ_->plt_section()->address();
4534       Address iplt_base = invalid_address;
4535       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4536       Address global_entry_base = this->address() + global_entry_off;
4537       typename Global_entry_stub_entries::const_iterator ge;
4538       for (ge = this->global_entry_stubs_.begin();
4539            ge != this->global_entry_stubs_.end();
4540            ++ge)
4541         {
4542           p = oview + global_entry_off + ge->second;
4543           Address plt_addr = ge->first->plt_offset();
4544           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4545               && ge->first->can_use_relative_reloc(false))
4546             {
4547               if (iplt_base == invalid_address)
4548                 iplt_base = this->targ_->iplt_section()->address();
4549               plt_addr += iplt_base;
4550             }
4551           else
4552             plt_addr += plt_base;
4553           Address my_addr = global_entry_base + ge->second;
4554           Address off = plt_addr - my_addr;
4555
4556           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4557             gold_error(_("%s: linkage table error against `%s'"),
4558                        ge->first->object()->name().c_str(),
4559                        ge->first->demangled_name().c_str());
4560
4561           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4562           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4563           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4564           write_insn<big_endian>(p, bctr);
4565         }
4566     }
4567   else
4568     {
4569       const Output_data_got_powerpc<size, big_endian>* got
4570         = this->targ_->got_section();
4571       // The address of _GLOBAL_OFFSET_TABLE_.
4572       Address g_o_t = got->address() + got->g_o_t();
4573
4574       // Write out pltresolve branch table.
4575       p = oview;
4576       unsigned int the_end = oview_size - this->pltresolve_size;
4577       unsigned char* end_p = oview + the_end;
4578       while (p < end_p - 8 * 4)
4579         write_insn<big_endian>(p, b + end_p - p), p += 4;
4580       while (p < end_p)
4581         write_insn<big_endian>(p, nop), p += 4;
4582
4583       // Write out pltresolve call stub.
4584       if (parameters->options().output_is_position_independent())
4585         {
4586           Address res0_off = 0;
4587           Address after_bcl_off = the_end + 12;
4588           Address bcl_res0 = after_bcl_off - res0_off;
4589
4590           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4591           write_insn<big_endian>(p +  4, mflr_0);
4592           write_insn<big_endian>(p +  8, bcl_20_31);
4593           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4594           write_insn<big_endian>(p + 16, mflr_12);
4595           write_insn<big_endian>(p + 20, mtlr_0);
4596           write_insn<big_endian>(p + 24, sub_11_11_12);
4597
4598           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4599
4600           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4601           if (ha(got_bcl) == ha(got_bcl + 4))
4602             {
4603               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4604               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4605             }
4606           else
4607             {
4608               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4609               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4610             }
4611           write_insn<big_endian>(p + 40, mtctr_0);
4612           write_insn<big_endian>(p + 44, add_0_11_11);
4613           write_insn<big_endian>(p + 48, add_11_0_11);
4614           write_insn<big_endian>(p + 52, bctr);
4615           write_insn<big_endian>(p + 56, nop);
4616           write_insn<big_endian>(p + 60, nop);
4617         }
4618       else
4619         {
4620           Address res0 = this->address();
4621
4622           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4623           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4624           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4625             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4626           else
4627             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4628           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4629           write_insn<big_endian>(p + 16, mtctr_0);
4630           write_insn<big_endian>(p + 20, add_0_11_11);
4631           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4632             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4633           else
4634             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4635           write_insn<big_endian>(p + 28, add_11_0_11);
4636           write_insn<big_endian>(p + 32, bctr);
4637           write_insn<big_endian>(p + 36, nop);
4638           write_insn<big_endian>(p + 40, nop);
4639           write_insn<big_endian>(p + 44, nop);
4640           write_insn<big_endian>(p + 48, nop);
4641           write_insn<big_endian>(p + 52, nop);
4642           write_insn<big_endian>(p + 56, nop);
4643           write_insn<big_endian>(p + 60, nop);
4644         }
4645       p += 64;
4646     }
4647
4648   of->write_output_view(off, oview_size, oview);
4649 }
4650
4651
4652 // A class to handle linker generated save/restore functions.
4653
4654 template<int size, bool big_endian>
4655 class Output_data_save_res : public Output_section_data_build
4656 {
4657  public:
4658   Output_data_save_res(Symbol_table* symtab);
4659
4660  protected:
4661   // Write to a map file.
4662   void
4663   do_print_to_mapfile(Mapfile* mapfile) const
4664   { mapfile->print_output_data(this, _("** save/restore")); }
4665
4666   void
4667   do_write(Output_file*);
4668
4669  private:
4670   // The maximum size of save/restore contents.
4671   static const unsigned int savres_max = 218*4;
4672
4673   void
4674   savres_define(Symbol_table* symtab,
4675                 const char *name,
4676                 unsigned int lo, unsigned int hi,
4677                 unsigned char* write_ent(unsigned char*, int),
4678                 unsigned char* write_tail(unsigned char*, int));
4679
4680   unsigned char *contents_;
4681 };
4682
4683 template<bool big_endian>
4684 static unsigned char*
4685 savegpr0(unsigned char* p, int r)
4686 {
4687   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4688   write_insn<big_endian>(p, insn);
4689   return p + 4;
4690 }
4691
4692 template<bool big_endian>
4693 static unsigned char*
4694 savegpr0_tail(unsigned char* p, int r)
4695 {
4696   p = savegpr0<big_endian>(p, r);
4697   uint32_t insn = std_0_1 + 16;
4698   write_insn<big_endian>(p, insn);
4699   p = p + 4;
4700   write_insn<big_endian>(p, blr);
4701   return p + 4;
4702 }
4703
4704 template<bool big_endian>
4705 static unsigned char*
4706 restgpr0(unsigned char* p, int r)
4707 {
4708   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4709   write_insn<big_endian>(p, insn);
4710   return p + 4;
4711 }
4712
4713 template<bool big_endian>
4714 static unsigned char*
4715 restgpr0_tail(unsigned char* p, int r)
4716 {
4717   uint32_t insn = ld_0_1 + 16;
4718   write_insn<big_endian>(p, insn);
4719   p = p + 4;
4720   p = restgpr0<big_endian>(p, r);
4721   write_insn<big_endian>(p, mtlr_0);
4722   p = p + 4;
4723   if (r == 29)
4724     {
4725       p = restgpr0<big_endian>(p, 30);
4726       p = restgpr0<big_endian>(p, 31);
4727     }
4728   write_insn<big_endian>(p, blr);
4729   return p + 4;
4730 }
4731
4732 template<bool big_endian>
4733 static unsigned char*
4734 savegpr1(unsigned char* p, int r)
4735 {
4736   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4737   write_insn<big_endian>(p, insn);
4738   return p + 4;
4739 }
4740
4741 template<bool big_endian>
4742 static unsigned char*
4743 savegpr1_tail(unsigned char* p, int r)
4744 {
4745   p = savegpr1<big_endian>(p, r);
4746   write_insn<big_endian>(p, blr);
4747   return p + 4;
4748 }
4749
4750 template<bool big_endian>
4751 static unsigned char*
4752 restgpr1(unsigned char* p, int r)
4753 {
4754   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4755   write_insn<big_endian>(p, insn);
4756   return p + 4;
4757 }
4758
4759 template<bool big_endian>
4760 static unsigned char*
4761 restgpr1_tail(unsigned char* p, int r)
4762 {
4763   p = restgpr1<big_endian>(p, r);
4764   write_insn<big_endian>(p, blr);
4765   return p + 4;
4766 }
4767
4768 template<bool big_endian>
4769 static unsigned char*
4770 savefpr(unsigned char* p, int r)
4771 {
4772   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4773   write_insn<big_endian>(p, insn);
4774   return p + 4;
4775 }
4776
4777 template<bool big_endian>
4778 static unsigned char*
4779 savefpr0_tail(unsigned char* p, int r)
4780 {
4781   p = savefpr<big_endian>(p, r);
4782   write_insn<big_endian>(p, std_0_1 + 16);
4783   p = p + 4;
4784   write_insn<big_endian>(p, blr);
4785   return p + 4;
4786 }
4787
4788 template<bool big_endian>
4789 static unsigned char*
4790 restfpr(unsigned char* p, int r)
4791 {
4792   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4793   write_insn<big_endian>(p, insn);
4794   return p + 4;
4795 }
4796
4797 template<bool big_endian>
4798 static unsigned char*
4799 restfpr0_tail(unsigned char* p, int r)
4800 {
4801   write_insn<big_endian>(p, ld_0_1 + 16);
4802   p = p + 4;
4803   p = restfpr<big_endian>(p, r);
4804   write_insn<big_endian>(p, mtlr_0);
4805   p = p + 4;
4806   if (r == 29)
4807     {
4808       p = restfpr<big_endian>(p, 30);
4809       p = restfpr<big_endian>(p, 31);
4810     }
4811   write_insn<big_endian>(p, blr);
4812   return p + 4;
4813 }
4814
4815 template<bool big_endian>
4816 static unsigned char*
4817 savefpr1_tail(unsigned char* p, int r)
4818 {
4819   p = savefpr<big_endian>(p, r);
4820   write_insn<big_endian>(p, blr);
4821   return p + 4;
4822 }
4823
4824 template<bool big_endian>
4825 static unsigned char*
4826 restfpr1_tail(unsigned char* p, int r)
4827 {
4828   p = restfpr<big_endian>(p, r);
4829   write_insn<big_endian>(p, blr);
4830   return p + 4;
4831 }
4832
4833 template<bool big_endian>
4834 static unsigned char*
4835 savevr(unsigned char* p, int r)
4836 {
4837   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4838   write_insn<big_endian>(p, insn);
4839   p = p + 4;
4840   insn = stvx_0_12_0 + (r << 21);
4841   write_insn<big_endian>(p, insn);
4842   return p + 4;
4843 }
4844
4845 template<bool big_endian>
4846 static unsigned char*
4847 savevr_tail(unsigned char* p, int r)
4848 {
4849   p = savevr<big_endian>(p, r);
4850   write_insn<big_endian>(p, blr);
4851   return p + 4;
4852 }
4853
4854 template<bool big_endian>
4855 static unsigned char*
4856 restvr(unsigned char* p, int r)
4857 {
4858   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4859   write_insn<big_endian>(p, insn);
4860   p = p + 4;
4861   insn = lvx_0_12_0 + (r << 21);
4862   write_insn<big_endian>(p, insn);
4863   return p + 4;
4864 }
4865
4866 template<bool big_endian>
4867 static unsigned char*
4868 restvr_tail(unsigned char* p, int r)
4869 {
4870   p = restvr<big_endian>(p, r);
4871   write_insn<big_endian>(p, blr);
4872   return p + 4;
4873 }
4874
4875
4876 template<int size, bool big_endian>
4877 Output_data_save_res<size, big_endian>::Output_data_save_res(
4878     Symbol_table* symtab)
4879   : Output_section_data_build(4),
4880     contents_(NULL)
4881 {
4882   this->savres_define(symtab,
4883                       "_savegpr0_", 14, 31,
4884                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4885   this->savres_define(symtab,
4886                       "_restgpr0_", 14, 29,
4887                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4888   this->savres_define(symtab,
4889                       "_restgpr0_", 30, 31,
4890                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4891   this->savres_define(symtab,
4892                       "_savegpr1_", 14, 31,
4893                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4894   this->savres_define(symtab,
4895                       "_restgpr1_", 14, 31,
4896                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4897   this->savres_define(symtab,
4898                       "_savefpr_", 14, 31,
4899                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4900   this->savres_define(symtab,
4901                       "_restfpr_", 14, 29,
4902                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4903   this->savres_define(symtab,
4904                       "_restfpr_", 30, 31,
4905                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4906   this->savres_define(symtab,
4907                       "._savef", 14, 31,
4908                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4909   this->savres_define(symtab,
4910                       "._restf", 14, 31,
4911                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4912   this->savres_define(symtab,
4913                       "_savevr_", 20, 31,
4914                       savevr<big_endian>, savevr_tail<big_endian>);
4915   this->savres_define(symtab,
4916                       "_restvr_", 20, 31,
4917                       restvr<big_endian>, restvr_tail<big_endian>);
4918 }
4919
4920 template<int size, bool big_endian>
4921 void
4922 Output_data_save_res<size, big_endian>::savres_define(
4923     Symbol_table* symtab,
4924     const char *name,
4925     unsigned int lo, unsigned int hi,
4926     unsigned char* write_ent(unsigned char*, int),
4927     unsigned char* write_tail(unsigned char*, int))
4928 {
4929   size_t len = strlen(name);
4930   bool writing = false;
4931   char sym[16];
4932
4933   memcpy(sym, name, len);
4934   sym[len + 2] = 0;
4935
4936   for (unsigned int i = lo; i <= hi; i++)
4937     {
4938       sym[len + 0] = i / 10 + '0';
4939       sym[len + 1] = i % 10 + '0';
4940       Symbol* gsym = symtab->lookup(sym);
4941       bool refd = gsym != NULL && gsym->is_undefined();
4942       writing = writing || refd;
4943       if (writing)
4944         {
4945           if (this->contents_ == NULL)
4946             this->contents_ = new unsigned char[this->savres_max];
4947
4948           section_size_type value = this->current_data_size();
4949           unsigned char* p = this->contents_ + value;
4950           if (i != hi)
4951             p = write_ent(p, i);
4952           else
4953             p = write_tail(p, i);
4954           section_size_type cur_size = p - this->contents_;
4955           this->set_current_data_size(cur_size);
4956           if (refd)
4957             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4958                                           this, value, cur_size - value,
4959                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4960                                           elfcpp::STV_HIDDEN, 0, false, false);
4961         }
4962     }
4963 }
4964
4965 // Write out save/restore.
4966
4967 template<int size, bool big_endian>
4968 void
4969 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4970 {
4971   const section_size_type off = this->offset();
4972   const section_size_type oview_size =
4973     convert_to_section_size_type(this->data_size());
4974   unsigned char* const oview = of->get_output_view(off, oview_size);
4975   memcpy(oview, this->contents_, oview_size);
4976   of->write_output_view(off, oview_size, oview);
4977 }
4978
4979
4980 // Create the glink section.
4981
4982 template<int size, bool big_endian>
4983 void
4984 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4985 {
4986   if (this->glink_ == NULL)
4987     {
4988       this->glink_ = new Output_data_glink<size, big_endian>(this);
4989       this->glink_->add_eh_frame(layout);
4990       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4991                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4992                                       this->glink_, ORDER_TEXT, false);
4993     }
4994 }
4995
4996 // Create a PLT entry for a global symbol.
4997
4998 template<int size, bool big_endian>
4999 void
5000 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5001                                                  Layout* layout,
5002                                                  Symbol* gsym)
5003 {
5004   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5005       && gsym->can_use_relative_reloc(false))
5006     {
5007       if (this->iplt_ == NULL)
5008         this->make_iplt_section(symtab, layout);
5009       this->iplt_->add_ifunc_entry(gsym);
5010     }
5011   else
5012     {
5013       if (this->plt_ == NULL)
5014         this->make_plt_section(symtab, layout);
5015       this->plt_->add_entry(gsym);
5016     }
5017 }
5018
5019 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5020
5021 template<int size, bool big_endian>
5022 void
5023 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5024     Symbol_table* symtab,
5025     Layout* layout,
5026     Sized_relobj_file<size, big_endian>* relobj,
5027     unsigned int r_sym)
5028 {
5029   if (this->iplt_ == NULL)
5030     this->make_iplt_section(symtab, layout);
5031   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5032 }
5033
5034 // Return the number of entries in the PLT.
5035
5036 template<int size, bool big_endian>
5037 unsigned int
5038 Target_powerpc<size, big_endian>::plt_entry_count() const
5039 {
5040   if (this->plt_ == NULL)
5041     return 0;
5042   return this->plt_->entry_count();
5043 }
5044
5045 // Create a GOT entry for local dynamic __tls_get_addr calls.
5046
5047 template<int size, bool big_endian>
5048 unsigned int
5049 Target_powerpc<size, big_endian>::tlsld_got_offset(
5050     Symbol_table* symtab,
5051     Layout* layout,
5052     Sized_relobj_file<size, big_endian>* object)
5053 {
5054   if (this->tlsld_got_offset_ == -1U)
5055     {
5056       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5057       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5058       Output_data_got_powerpc<size, big_endian>* got
5059         = this->got_section(symtab, layout);
5060       unsigned int got_offset = got->add_constant_pair(0, 0);
5061       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5062                           got_offset, 0);
5063       this->tlsld_got_offset_ = got_offset;
5064     }
5065   return this->tlsld_got_offset_;
5066 }
5067
5068 // Get the Reference_flags for a particular relocation.
5069
5070 template<int size, bool big_endian>
5071 int
5072 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5073     unsigned int r_type,
5074     const Target_powerpc* target)
5075 {
5076   int ref = 0;
5077
5078   switch (r_type)
5079     {
5080     case elfcpp::R_POWERPC_NONE:
5081     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5082     case elfcpp::R_POWERPC_GNU_VTENTRY:
5083     case elfcpp::R_PPC64_TOC:
5084       // No symbol reference.
5085       break;
5086
5087     case elfcpp::R_PPC64_ADDR64:
5088     case elfcpp::R_PPC64_UADDR64:
5089     case elfcpp::R_POWERPC_ADDR32:
5090     case elfcpp::R_POWERPC_UADDR32:
5091     case elfcpp::R_POWERPC_ADDR16:
5092     case elfcpp::R_POWERPC_UADDR16:
5093     case elfcpp::R_POWERPC_ADDR16_LO:
5094     case elfcpp::R_POWERPC_ADDR16_HI:
5095     case elfcpp::R_POWERPC_ADDR16_HA:
5096       ref = Symbol::ABSOLUTE_REF;
5097       break;
5098
5099     case elfcpp::R_POWERPC_ADDR24:
5100     case elfcpp::R_POWERPC_ADDR14:
5101     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5102     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5103       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5104       break;
5105
5106     case elfcpp::R_PPC64_REL64:
5107     case elfcpp::R_POWERPC_REL32:
5108     case elfcpp::R_PPC_LOCAL24PC:
5109     case elfcpp::R_POWERPC_REL16:
5110     case elfcpp::R_POWERPC_REL16_LO:
5111     case elfcpp::R_POWERPC_REL16_HI:
5112     case elfcpp::R_POWERPC_REL16_HA:
5113       ref = Symbol::RELATIVE_REF;
5114       break;
5115
5116     case elfcpp::R_POWERPC_REL24:
5117     case elfcpp::R_PPC_PLTREL24:
5118     case elfcpp::R_POWERPC_REL14:
5119     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5120     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5121       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5122       break;
5123
5124     case elfcpp::R_POWERPC_GOT16:
5125     case elfcpp::R_POWERPC_GOT16_LO:
5126     case elfcpp::R_POWERPC_GOT16_HI:
5127     case elfcpp::R_POWERPC_GOT16_HA:
5128     case elfcpp::R_PPC64_GOT16_DS:
5129     case elfcpp::R_PPC64_GOT16_LO_DS:
5130     case elfcpp::R_PPC64_TOC16:
5131     case elfcpp::R_PPC64_TOC16_LO:
5132     case elfcpp::R_PPC64_TOC16_HI:
5133     case elfcpp::R_PPC64_TOC16_HA:
5134     case elfcpp::R_PPC64_TOC16_DS:
5135     case elfcpp::R_PPC64_TOC16_LO_DS:
5136       // Absolute in GOT.
5137       ref = Symbol::ABSOLUTE_REF;
5138       break;
5139
5140     case elfcpp::R_POWERPC_GOT_TPREL16:
5141     case elfcpp::R_POWERPC_TLS:
5142       ref = Symbol::TLS_REF;
5143       break;
5144
5145     case elfcpp::R_POWERPC_COPY:
5146     case elfcpp::R_POWERPC_GLOB_DAT:
5147     case elfcpp::R_POWERPC_JMP_SLOT:
5148     case elfcpp::R_POWERPC_RELATIVE:
5149     case elfcpp::R_POWERPC_DTPMOD:
5150     default:
5151       // Not expected.  We will give an error later.
5152       break;
5153     }
5154
5155   if (size == 64 && target->abiversion() < 2)
5156     ref |= Symbol::FUNC_DESC_ABI;
5157   return ref;
5158 }
5159
5160 // Report an unsupported relocation against a local symbol.
5161
5162 template<int size, bool big_endian>
5163 void
5164 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5165     Sized_relobj_file<size, big_endian>* object,
5166     unsigned int r_type)
5167 {
5168   gold_error(_("%s: unsupported reloc %u against local symbol"),
5169              object->name().c_str(), r_type);
5170 }
5171
5172 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5173 // dynamic linker does not support it, issue an error.
5174
5175 template<int size, bool big_endian>
5176 void
5177 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5178                                                       unsigned int r_type)
5179 {
5180   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5181
5182   // These are the relocation types supported by glibc for both 32-bit
5183   // and 64-bit powerpc.
5184   switch (r_type)
5185     {
5186     case elfcpp::R_POWERPC_NONE:
5187     case elfcpp::R_POWERPC_RELATIVE:
5188     case elfcpp::R_POWERPC_GLOB_DAT:
5189     case elfcpp::R_POWERPC_DTPMOD:
5190     case elfcpp::R_POWERPC_DTPREL:
5191     case elfcpp::R_POWERPC_TPREL:
5192     case elfcpp::R_POWERPC_JMP_SLOT:
5193     case elfcpp::R_POWERPC_COPY:
5194     case elfcpp::R_POWERPC_IRELATIVE:
5195     case elfcpp::R_POWERPC_ADDR32:
5196     case elfcpp::R_POWERPC_UADDR32:
5197     case elfcpp::R_POWERPC_ADDR24:
5198     case elfcpp::R_POWERPC_ADDR16:
5199     case elfcpp::R_POWERPC_UADDR16:
5200     case elfcpp::R_POWERPC_ADDR16_LO:
5201     case elfcpp::R_POWERPC_ADDR16_HI:
5202     case elfcpp::R_POWERPC_ADDR16_HA:
5203     case elfcpp::R_POWERPC_ADDR14:
5204     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5205     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5206     case elfcpp::R_POWERPC_REL32:
5207     case elfcpp::R_POWERPC_REL24:
5208     case elfcpp::R_POWERPC_TPREL16:
5209     case elfcpp::R_POWERPC_TPREL16_LO:
5210     case elfcpp::R_POWERPC_TPREL16_HI:
5211     case elfcpp::R_POWERPC_TPREL16_HA:
5212       return;
5213
5214     default:
5215       break;
5216     }
5217
5218   if (size == 64)
5219     {
5220       switch (r_type)
5221         {
5222           // These are the relocation types supported only on 64-bit.
5223         case elfcpp::R_PPC64_ADDR64:
5224         case elfcpp::R_PPC64_UADDR64:
5225         case elfcpp::R_PPC64_JMP_IREL:
5226         case elfcpp::R_PPC64_ADDR16_DS:
5227         case elfcpp::R_PPC64_ADDR16_LO_DS:
5228         case elfcpp::R_PPC64_ADDR16_HIGH:
5229         case elfcpp::R_PPC64_ADDR16_HIGHA:
5230         case elfcpp::R_PPC64_ADDR16_HIGHER:
5231         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5232         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5233         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5234         case elfcpp::R_PPC64_REL64:
5235         case elfcpp::R_POWERPC_ADDR30:
5236         case elfcpp::R_PPC64_TPREL16_DS:
5237         case elfcpp::R_PPC64_TPREL16_LO_DS:
5238         case elfcpp::R_PPC64_TPREL16_HIGH:
5239         case elfcpp::R_PPC64_TPREL16_HIGHA:
5240         case elfcpp::R_PPC64_TPREL16_HIGHER:
5241         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5242         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5243         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5244           return;
5245
5246         default:
5247           break;
5248         }
5249     }
5250   else
5251     {
5252       switch (r_type)
5253         {
5254           // These are the relocation types supported only on 32-bit.
5255           // ??? glibc ld.so doesn't need to support these.
5256         case elfcpp::R_POWERPC_DTPREL16:
5257         case elfcpp::R_POWERPC_DTPREL16_LO:
5258         case elfcpp::R_POWERPC_DTPREL16_HI:
5259         case elfcpp::R_POWERPC_DTPREL16_HA:
5260           return;
5261
5262         default:
5263           break;
5264         }
5265     }
5266
5267   // This prevents us from issuing more than one error per reloc
5268   // section.  But we can still wind up issuing more than one
5269   // error per object file.
5270   if (this->issued_non_pic_error_)
5271     return;
5272   gold_assert(parameters->options().output_is_position_independent());
5273   object->error(_("requires unsupported dynamic reloc; "
5274                   "recompile with -fPIC"));
5275   this->issued_non_pic_error_ = true;
5276   return;
5277 }
5278
5279 // Return whether we need to make a PLT entry for a relocation of the
5280 // given type against a STT_GNU_IFUNC symbol.
5281
5282 template<int size, bool big_endian>
5283 bool
5284 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5285      Target_powerpc<size, big_endian>* target,
5286      Sized_relobj_file<size, big_endian>* object,
5287      unsigned int r_type,
5288      bool report_err)
5289 {
5290   // In non-pic code any reference will resolve to the plt call stub
5291   // for the ifunc symbol.
5292   if ((size == 32 || target->abiversion() >= 2)
5293       && !parameters->options().output_is_position_independent())
5294     return true;
5295
5296   switch (r_type)
5297     {
5298     // Word size refs from data sections are OK, but don't need a PLT entry.
5299     case elfcpp::R_POWERPC_ADDR32:
5300     case elfcpp::R_POWERPC_UADDR32:
5301       if (size == 32)
5302         return false;
5303       break;
5304
5305     case elfcpp::R_PPC64_ADDR64:
5306     case elfcpp::R_PPC64_UADDR64:
5307       if (size == 64)
5308         return false;
5309       break;
5310
5311     // GOT refs are good, but also don't need a PLT entry.
5312     case elfcpp::R_POWERPC_GOT16:
5313     case elfcpp::R_POWERPC_GOT16_LO:
5314     case elfcpp::R_POWERPC_GOT16_HI:
5315     case elfcpp::R_POWERPC_GOT16_HA:
5316     case elfcpp::R_PPC64_GOT16_DS:
5317     case elfcpp::R_PPC64_GOT16_LO_DS:
5318       return false;
5319
5320     // Function calls are good, and these do need a PLT entry.
5321     case elfcpp::R_POWERPC_ADDR24:
5322     case elfcpp::R_POWERPC_ADDR14:
5323     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5324     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5325     case elfcpp::R_POWERPC_REL24:
5326     case elfcpp::R_PPC_PLTREL24:
5327     case elfcpp::R_POWERPC_REL14:
5328     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5329     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5330       return true;
5331
5332     default:
5333       break;
5334     }
5335
5336   // Anything else is a problem.
5337   // If we are building a static executable, the libc startup function
5338   // responsible for applying indirect function relocations is going
5339   // to complain about the reloc type.
5340   // If we are building a dynamic executable, we will have a text
5341   // relocation.  The dynamic loader will set the text segment
5342   // writable and non-executable to apply text relocations.  So we'll
5343   // segfault when trying to run the indirection function to resolve
5344   // the reloc.
5345   if (report_err)
5346     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5347                object->name().c_str(), r_type);
5348   return false;
5349 }
5350
5351 // Scan a relocation for a local symbol.
5352
5353 template<int size, bool big_endian>
5354 inline void
5355 Target_powerpc<size, big_endian>::Scan::local(
5356     Symbol_table* symtab,
5357     Layout* layout,
5358     Target_powerpc<size, big_endian>* target,
5359     Sized_relobj_file<size, big_endian>* object,
5360     unsigned int data_shndx,
5361     Output_section* output_section,
5362     const elfcpp::Rela<size, big_endian>& reloc,
5363     unsigned int r_type,
5364     const elfcpp::Sym<size, big_endian>& lsym,
5365     bool is_discarded)
5366 {
5367   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5368
5369   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5370       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5371     {
5372       this->expect_tls_get_addr_call();
5373       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5374       if (tls_type != tls::TLSOPT_NONE)
5375         this->skip_next_tls_get_addr_call();
5376     }
5377   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5378            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5379     {
5380       this->expect_tls_get_addr_call();
5381       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5382       if (tls_type != tls::TLSOPT_NONE)
5383         this->skip_next_tls_get_addr_call();
5384     }
5385
5386   Powerpc_relobj<size, big_endian>* ppc_object
5387     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5388
5389   if (is_discarded)
5390     {
5391       if (size == 64
5392           && data_shndx == ppc_object->opd_shndx()
5393           && r_type == elfcpp::R_PPC64_ADDR64)
5394         ppc_object->set_opd_discard(reloc.get_r_offset());
5395       return;
5396     }
5397
5398   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5399   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5400   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5401     {
5402       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5403       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5404                           r_type, r_sym, reloc.get_r_addend());
5405       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5406     }
5407
5408   switch (r_type)
5409     {
5410     case elfcpp::R_POWERPC_NONE:
5411     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5412     case elfcpp::R_POWERPC_GNU_VTENTRY:
5413     case elfcpp::R_PPC64_TOCSAVE:
5414     case elfcpp::R_POWERPC_TLS:
5415       break;
5416
5417     case elfcpp::R_PPC64_TOC:
5418       {
5419         Output_data_got_powerpc<size, big_endian>* got
5420           = target->got_section(symtab, layout);
5421         if (parameters->options().output_is_position_independent())
5422           {
5423             Address off = reloc.get_r_offset();
5424             if (size == 64
5425                 && target->abiversion() < 2
5426                 && data_shndx == ppc_object->opd_shndx()
5427                 && ppc_object->get_opd_discard(off - 8))
5428               break;
5429
5430             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5431             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5432             rela_dyn->add_output_section_relative(got->output_section(),
5433                                                   elfcpp::R_POWERPC_RELATIVE,
5434                                                   output_section,
5435                                                   object, data_shndx, off,
5436                                                   symobj->toc_base_offset());
5437           }
5438       }
5439       break;
5440
5441     case elfcpp::R_PPC64_ADDR64:
5442     case elfcpp::R_PPC64_UADDR64:
5443     case elfcpp::R_POWERPC_ADDR32:
5444     case elfcpp::R_POWERPC_UADDR32:
5445     case elfcpp::R_POWERPC_ADDR24:
5446     case elfcpp::R_POWERPC_ADDR16:
5447     case elfcpp::R_POWERPC_ADDR16_LO:
5448     case elfcpp::R_POWERPC_ADDR16_HI:
5449     case elfcpp::R_POWERPC_ADDR16_HA:
5450     case elfcpp::R_POWERPC_UADDR16:
5451     case elfcpp::R_PPC64_ADDR16_HIGH:
5452     case elfcpp::R_PPC64_ADDR16_HIGHA:
5453     case elfcpp::R_PPC64_ADDR16_HIGHER:
5454     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5455     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5456     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5457     case elfcpp::R_PPC64_ADDR16_DS:
5458     case elfcpp::R_PPC64_ADDR16_LO_DS:
5459     case elfcpp::R_POWERPC_ADDR14:
5460     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5461     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5462       // If building a shared library (or a position-independent
5463       // executable), we need to create a dynamic relocation for
5464       // this location.
5465       if (parameters->options().output_is_position_independent()
5466           || (size == 64 && is_ifunc && target->abiversion() < 2))
5467         {
5468           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5469                                                              is_ifunc);
5470           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5471               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5472             {
5473               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5474               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5475                                      : elfcpp::R_POWERPC_RELATIVE);
5476               rela_dyn->add_local_relative(object, r_sym, dynrel,
5477                                            output_section, data_shndx,
5478                                            reloc.get_r_offset(),
5479                                            reloc.get_r_addend(), false);
5480             }
5481           else
5482             {
5483               check_non_pic(object, r_type);
5484               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5485               rela_dyn->add_local(object, r_sym, r_type, output_section,
5486                                   data_shndx, reloc.get_r_offset(),
5487                                   reloc.get_r_addend());
5488             }
5489         }
5490       break;
5491
5492     case elfcpp::R_POWERPC_REL24:
5493     case elfcpp::R_PPC_PLTREL24:
5494     case elfcpp::R_PPC_LOCAL24PC:
5495     case elfcpp::R_POWERPC_REL14:
5496     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5497     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5498       if (!is_ifunc)
5499         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5500                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5501                             reloc.get_r_addend());
5502       break;
5503
5504     case elfcpp::R_PPC64_REL64:
5505     case elfcpp::R_POWERPC_REL32:
5506     case elfcpp::R_POWERPC_REL16:
5507     case elfcpp::R_POWERPC_REL16_LO:
5508     case elfcpp::R_POWERPC_REL16_HI:
5509     case elfcpp::R_POWERPC_REL16_HA:
5510     case elfcpp::R_POWERPC_SECTOFF:
5511     case elfcpp::R_POWERPC_SECTOFF_LO:
5512     case elfcpp::R_POWERPC_SECTOFF_HI:
5513     case elfcpp::R_POWERPC_SECTOFF_HA:
5514     case elfcpp::R_PPC64_SECTOFF_DS:
5515     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5516     case elfcpp::R_POWERPC_TPREL16:
5517     case elfcpp::R_POWERPC_TPREL16_LO:
5518     case elfcpp::R_POWERPC_TPREL16_HI:
5519     case elfcpp::R_POWERPC_TPREL16_HA:
5520     case elfcpp::R_PPC64_TPREL16_DS:
5521     case elfcpp::R_PPC64_TPREL16_LO_DS:
5522     case elfcpp::R_PPC64_TPREL16_HIGH:
5523     case elfcpp::R_PPC64_TPREL16_HIGHA:
5524     case elfcpp::R_PPC64_TPREL16_HIGHER:
5525     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5526     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5527     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5528     case elfcpp::R_POWERPC_DTPREL16:
5529     case elfcpp::R_POWERPC_DTPREL16_LO:
5530     case elfcpp::R_POWERPC_DTPREL16_HI:
5531     case elfcpp::R_POWERPC_DTPREL16_HA:
5532     case elfcpp::R_PPC64_DTPREL16_DS:
5533     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5534     case elfcpp::R_PPC64_DTPREL16_HIGH:
5535     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5536     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5537     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5538     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5539     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5540     case elfcpp::R_PPC64_TLSGD:
5541     case elfcpp::R_PPC64_TLSLD:
5542     case elfcpp::R_PPC64_ADDR64_LOCAL:
5543       break;
5544
5545     case elfcpp::R_POWERPC_GOT16:
5546     case elfcpp::R_POWERPC_GOT16_LO:
5547     case elfcpp::R_POWERPC_GOT16_HI:
5548     case elfcpp::R_POWERPC_GOT16_HA:
5549     case elfcpp::R_PPC64_GOT16_DS:
5550     case elfcpp::R_PPC64_GOT16_LO_DS:
5551       {
5552         // The symbol requires a GOT entry.
5553         Output_data_got_powerpc<size, big_endian>* got
5554           = target->got_section(symtab, layout);
5555         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5556
5557         if (!parameters->options().output_is_position_independent())
5558           {
5559             if ((size == 32 && is_ifunc)
5560                 || (size == 64 && target->abiversion() >= 2))
5561               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5562             else
5563               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5564           }
5565         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5566           {
5567             // If we are generating a shared object or a pie, this
5568             // symbol's GOT entry will be set by a dynamic relocation.
5569             unsigned int off;
5570             off = got->add_constant(0);
5571             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5572
5573             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5574                                                                is_ifunc);
5575             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5576                                    : elfcpp::R_POWERPC_RELATIVE);
5577             rela_dyn->add_local_relative(object, r_sym, dynrel,
5578                                          got, off, 0, false);
5579           }
5580       }
5581       break;
5582
5583     case elfcpp::R_PPC64_TOC16:
5584     case elfcpp::R_PPC64_TOC16_LO:
5585     case elfcpp::R_PPC64_TOC16_HI:
5586     case elfcpp::R_PPC64_TOC16_HA:
5587     case elfcpp::R_PPC64_TOC16_DS:
5588     case elfcpp::R_PPC64_TOC16_LO_DS:
5589       // We need a GOT section.
5590       target->got_section(symtab, layout);
5591       break;
5592
5593     case elfcpp::R_POWERPC_GOT_TLSGD16:
5594     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5595     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5596     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5597       {
5598         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5599         if (tls_type == tls::TLSOPT_NONE)
5600           {
5601             Output_data_got_powerpc<size, big_endian>* got
5602               = target->got_section(symtab, layout);
5603             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5604             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5605             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5606                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5607           }
5608         else if (tls_type == tls::TLSOPT_TO_LE)
5609           {
5610             // no GOT relocs needed for Local Exec.
5611           }
5612         else
5613           gold_unreachable();
5614       }
5615       break;
5616
5617     case elfcpp::R_POWERPC_GOT_TLSLD16:
5618     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5619     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5620     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5621       {
5622         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5623         if (tls_type == tls::TLSOPT_NONE)
5624           target->tlsld_got_offset(symtab, layout, object);
5625         else if (tls_type == tls::TLSOPT_TO_LE)
5626           {
5627             // no GOT relocs needed for Local Exec.
5628             if (parameters->options().emit_relocs())
5629               {
5630                 Output_section* os = layout->tls_segment()->first_section();
5631                 gold_assert(os != NULL);
5632                 os->set_needs_symtab_index();
5633               }
5634           }
5635         else
5636           gold_unreachable();
5637       }
5638       break;
5639
5640     case elfcpp::R_POWERPC_GOT_DTPREL16:
5641     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5642     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5643     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5644       {
5645         Output_data_got_powerpc<size, big_endian>* got
5646           = target->got_section(symtab, layout);
5647         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5648         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5649       }
5650       break;
5651
5652     case elfcpp::R_POWERPC_GOT_TPREL16:
5653     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5654     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5655     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5656       {
5657         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5658         if (tls_type == tls::TLSOPT_NONE)
5659           {
5660             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5661             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5662               {
5663                 Output_data_got_powerpc<size, big_endian>* got
5664                   = target->got_section(symtab, layout);
5665                 unsigned int off = got->add_constant(0);
5666                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5667
5668                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5669                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5670                                                       elfcpp::R_POWERPC_TPREL,
5671                                                       got, off, 0);
5672               }
5673           }
5674         else if (tls_type == tls::TLSOPT_TO_LE)
5675           {
5676             // no GOT relocs needed for Local Exec.
5677           }
5678         else
5679           gold_unreachable();
5680       }
5681       break;
5682
5683     default:
5684       unsupported_reloc_local(object, r_type);
5685       break;
5686     }
5687
5688   switch (r_type)
5689     {
5690     case elfcpp::R_POWERPC_GOT_TLSLD16:
5691     case elfcpp::R_POWERPC_GOT_TLSGD16:
5692     case elfcpp::R_POWERPC_GOT_TPREL16:
5693     case elfcpp::R_POWERPC_GOT_DTPREL16:
5694     case elfcpp::R_POWERPC_GOT16:
5695     case elfcpp::R_PPC64_GOT16_DS:
5696     case elfcpp::R_PPC64_TOC16:
5697     case elfcpp::R_PPC64_TOC16_DS:
5698       ppc_object->set_has_small_toc_reloc();
5699     default:
5700       break;
5701     }
5702 }
5703
5704 // Report an unsupported relocation against a global symbol.
5705
5706 template<int size, bool big_endian>
5707 void
5708 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5709     Sized_relobj_file<size, big_endian>* object,
5710     unsigned int r_type,
5711     Symbol* gsym)
5712 {
5713   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5714              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5715 }
5716
5717 // Scan a relocation for a global symbol.
5718
5719 template<int size, bool big_endian>
5720 inline void
5721 Target_powerpc<size, big_endian>::Scan::global(
5722     Symbol_table* symtab,
5723     Layout* layout,
5724     Target_powerpc<size, big_endian>* target,
5725     Sized_relobj_file<size, big_endian>* object,
5726     unsigned int data_shndx,
5727     Output_section* output_section,
5728     const elfcpp::Rela<size, big_endian>& reloc,
5729     unsigned int r_type,
5730     Symbol* gsym)
5731 {
5732   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5733     return;
5734
5735   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5736       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5737     {
5738       this->expect_tls_get_addr_call();
5739       const bool final = gsym->final_value_is_known();
5740       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5741       if (tls_type != tls::TLSOPT_NONE)
5742         this->skip_next_tls_get_addr_call();
5743     }
5744   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5745            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5746     {
5747       this->expect_tls_get_addr_call();
5748       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5749       if (tls_type != tls::TLSOPT_NONE)
5750         this->skip_next_tls_get_addr_call();
5751     }
5752
5753   Powerpc_relobj<size, big_endian>* ppc_object
5754     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5755
5756   // A STT_GNU_IFUNC symbol may require a PLT entry.
5757   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5758   bool pushed_ifunc = false;
5759   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5760     {
5761       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5762                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5763                           reloc.get_r_addend());
5764       target->make_plt_entry(symtab, layout, gsym);
5765       pushed_ifunc = true;
5766     }
5767
5768   switch (r_type)
5769     {
5770     case elfcpp::R_POWERPC_NONE:
5771     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5772     case elfcpp::R_POWERPC_GNU_VTENTRY:
5773     case elfcpp::R_PPC_LOCAL24PC:
5774     case elfcpp::R_POWERPC_TLS:
5775       break;
5776
5777     case elfcpp::R_PPC64_TOC:
5778       {
5779         Output_data_got_powerpc<size, big_endian>* got
5780           = target->got_section(symtab, layout);
5781         if (parameters->options().output_is_position_independent())
5782           {
5783             Address off = reloc.get_r_offset();
5784             if (size == 64
5785                 && data_shndx == ppc_object->opd_shndx()
5786                 && ppc_object->get_opd_discard(off - 8))
5787               break;
5788
5789             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5790             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5791             if (data_shndx != ppc_object->opd_shndx())
5792               symobj = static_cast
5793                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5794             rela_dyn->add_output_section_relative(got->output_section(),
5795                                                   elfcpp::R_POWERPC_RELATIVE,
5796                                                   output_section,
5797                                                   object, data_shndx, off,
5798                                                   symobj->toc_base_offset());
5799           }
5800       }
5801       break;
5802
5803     case elfcpp::R_PPC64_ADDR64:
5804       if (size == 64
5805           && target->abiversion() < 2
5806           && data_shndx == ppc_object->opd_shndx()
5807           && (gsym->is_defined_in_discarded_section()
5808               || gsym->object() != object))
5809         {
5810           ppc_object->set_opd_discard(reloc.get_r_offset());
5811           break;
5812         }
5813       // Fall thru
5814     case elfcpp::R_PPC64_UADDR64:
5815     case elfcpp::R_POWERPC_ADDR32:
5816     case elfcpp::R_POWERPC_UADDR32:
5817     case elfcpp::R_POWERPC_ADDR24:
5818     case elfcpp::R_POWERPC_ADDR16:
5819     case elfcpp::R_POWERPC_ADDR16_LO:
5820     case elfcpp::R_POWERPC_ADDR16_HI:
5821     case elfcpp::R_POWERPC_ADDR16_HA:
5822     case elfcpp::R_POWERPC_UADDR16:
5823     case elfcpp::R_PPC64_ADDR16_HIGH:
5824     case elfcpp::R_PPC64_ADDR16_HIGHA:
5825     case elfcpp::R_PPC64_ADDR16_HIGHER:
5826     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5827     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5828     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5829     case elfcpp::R_PPC64_ADDR16_DS:
5830     case elfcpp::R_PPC64_ADDR16_LO_DS:
5831     case elfcpp::R_POWERPC_ADDR14:
5832     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5833     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5834       {
5835         // Make a PLT entry if necessary.
5836         if (gsym->needs_plt_entry())
5837           {
5838             // Since this is not a PC-relative relocation, we may be
5839             // taking the address of a function. In that case we need to
5840             // set the entry in the dynamic symbol table to the address of
5841             // the PLT call stub.
5842             bool need_ifunc_plt = false;
5843             if ((size == 32 || target->abiversion() >= 2)
5844                 && gsym->is_from_dynobj()
5845                 && !parameters->options().output_is_position_independent())
5846               {
5847                 gsym->set_needs_dynsym_value();
5848                 need_ifunc_plt = true;
5849               }
5850             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5851               {
5852                 target->push_branch(ppc_object, data_shndx,
5853                                     reloc.get_r_offset(), r_type,
5854                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5855                                     reloc.get_r_addend());
5856                 target->make_plt_entry(symtab, layout, gsym);
5857               }
5858           }
5859         // Make a dynamic relocation if necessary.
5860         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5861             || (size == 64 && is_ifunc && target->abiversion() < 2))
5862           {
5863             if (!parameters->options().output_is_position_independent()
5864                 && gsym->may_need_copy_reloc())
5865               {
5866                 target->copy_reloc(symtab, layout, object,
5867                                    data_shndx, output_section, gsym, reloc);
5868               }
5869             else if ((((size == 32
5870                         && r_type == elfcpp::R_POWERPC_ADDR32)
5871                        || (size == 64
5872                            && r_type == elfcpp::R_PPC64_ADDR64
5873                            && target->abiversion() >= 2))
5874                       && gsym->can_use_relative_reloc(false)
5875                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5876                            && parameters->options().shared()))
5877                      || (size == 64
5878                          && r_type == elfcpp::R_PPC64_ADDR64
5879                          && target->abiversion() < 2
5880                          && (gsym->can_use_relative_reloc(false)
5881                              || data_shndx == ppc_object->opd_shndx())))
5882               {
5883                 Reloc_section* rela_dyn
5884                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5885                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5886                                        : elfcpp::R_POWERPC_RELATIVE);
5887                 rela_dyn->add_symbolless_global_addend(
5888                     gsym, dynrel, output_section, object, data_shndx,
5889                     reloc.get_r_offset(), reloc.get_r_addend());
5890               }
5891             else
5892               {
5893                 Reloc_section* rela_dyn
5894                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5895                 check_non_pic(object, r_type);
5896                 rela_dyn->add_global(gsym, r_type, output_section,
5897                                      object, data_shndx,
5898                                      reloc.get_r_offset(),
5899                                      reloc.get_r_addend());
5900               }
5901           }
5902       }
5903       break;
5904
5905     case elfcpp::R_PPC_PLTREL24:
5906     case elfcpp::R_POWERPC_REL24:
5907       if (!is_ifunc)
5908         {
5909           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5910                               r_type,
5911                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5912                               reloc.get_r_addend());
5913           if (gsym->needs_plt_entry()
5914               || (!gsym->final_value_is_known()
5915                   && (gsym->is_undefined()
5916                       || gsym->is_from_dynobj()
5917                       || gsym->is_preemptible())))
5918             target->make_plt_entry(symtab, layout, gsym);
5919         }
5920       // Fall thru
5921
5922     case elfcpp::R_PPC64_REL64:
5923     case elfcpp::R_POWERPC_REL32:
5924       // Make a dynamic relocation if necessary.
5925       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5926         {
5927           if (!parameters->options().output_is_position_independent()
5928               && gsym->may_need_copy_reloc())
5929             {
5930               target->copy_reloc(symtab, layout, object,
5931                                  data_shndx, output_section, gsym,
5932                                  reloc);
5933             }
5934           else
5935             {
5936               Reloc_section* rela_dyn
5937                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5938               check_non_pic(object, r_type);
5939               rela_dyn->add_global(gsym, r_type, output_section, object,
5940                                    data_shndx, reloc.get_r_offset(),
5941                                    reloc.get_r_addend());
5942             }
5943         }
5944       break;
5945
5946     case elfcpp::R_POWERPC_REL14:
5947     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5948     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5949       if (!is_ifunc)
5950         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5951                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5952                             reloc.get_r_addend());
5953       break;
5954
5955     case elfcpp::R_POWERPC_REL16:
5956     case elfcpp::R_POWERPC_REL16_LO:
5957     case elfcpp::R_POWERPC_REL16_HI:
5958     case elfcpp::R_POWERPC_REL16_HA:
5959     case elfcpp::R_POWERPC_SECTOFF:
5960     case elfcpp::R_POWERPC_SECTOFF_LO:
5961     case elfcpp::R_POWERPC_SECTOFF_HI:
5962     case elfcpp::R_POWERPC_SECTOFF_HA:
5963     case elfcpp::R_PPC64_SECTOFF_DS:
5964     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5965     case elfcpp::R_POWERPC_TPREL16:
5966     case elfcpp::R_POWERPC_TPREL16_LO:
5967     case elfcpp::R_POWERPC_TPREL16_HI:
5968     case elfcpp::R_POWERPC_TPREL16_HA:
5969     case elfcpp::R_PPC64_TPREL16_DS:
5970     case elfcpp::R_PPC64_TPREL16_LO_DS:
5971     case elfcpp::R_PPC64_TPREL16_HIGH:
5972     case elfcpp::R_PPC64_TPREL16_HIGHA:
5973     case elfcpp::R_PPC64_TPREL16_HIGHER:
5974     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5975     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5976     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5977     case elfcpp::R_POWERPC_DTPREL16:
5978     case elfcpp::R_POWERPC_DTPREL16_LO:
5979     case elfcpp::R_POWERPC_DTPREL16_HI:
5980     case elfcpp::R_POWERPC_DTPREL16_HA:
5981     case elfcpp::R_PPC64_DTPREL16_DS:
5982     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5983     case elfcpp::R_PPC64_DTPREL16_HIGH:
5984     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5985     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5986     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5987     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5988     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5989     case elfcpp::R_PPC64_TLSGD:
5990     case elfcpp::R_PPC64_TLSLD:
5991     case elfcpp::R_PPC64_ADDR64_LOCAL:
5992       break;
5993
5994     case elfcpp::R_POWERPC_GOT16:
5995     case elfcpp::R_POWERPC_GOT16_LO:
5996     case elfcpp::R_POWERPC_GOT16_HI:
5997     case elfcpp::R_POWERPC_GOT16_HA:
5998     case elfcpp::R_PPC64_GOT16_DS:
5999     case elfcpp::R_PPC64_GOT16_LO_DS:
6000       {
6001         // The symbol requires a GOT entry.
6002         Output_data_got_powerpc<size, big_endian>* got;
6003
6004         got = target->got_section(symtab, layout);
6005         if (gsym->final_value_is_known())
6006           {
6007             if ((size == 32 && is_ifunc)
6008                 || (size == 64 && target->abiversion() >= 2))
6009               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6010             else
6011               got->add_global(gsym, GOT_TYPE_STANDARD);
6012           }
6013         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6014           {
6015             // If we are generating a shared object or a pie, this
6016             // symbol's GOT entry will be set by a dynamic relocation.
6017             unsigned int off = got->add_constant(0);
6018             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6019
6020             Reloc_section* rela_dyn
6021               = target->rela_dyn_section(symtab, layout, is_ifunc);
6022
6023             if (gsym->can_use_relative_reloc(false)
6024                 && !((size == 32
6025                       || target->abiversion() >= 2)
6026                      && gsym->visibility() == elfcpp::STV_PROTECTED
6027                      && parameters->options().shared()))
6028               {
6029                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6030                                        : elfcpp::R_POWERPC_RELATIVE);
6031                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6032               }
6033             else
6034               {
6035                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6036                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6037               }
6038           }
6039       }
6040       break;
6041
6042     case elfcpp::R_PPC64_TOC16:
6043     case elfcpp::R_PPC64_TOC16_LO:
6044     case elfcpp::R_PPC64_TOC16_HI:
6045     case elfcpp::R_PPC64_TOC16_HA:
6046     case elfcpp::R_PPC64_TOC16_DS:
6047     case elfcpp::R_PPC64_TOC16_LO_DS:
6048       // We need a GOT section.
6049       target->got_section(symtab, layout);
6050       break;
6051
6052     case elfcpp::R_POWERPC_GOT_TLSGD16:
6053     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6054     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6055     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6056       {
6057         const bool final = gsym->final_value_is_known();
6058         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6059         if (tls_type == tls::TLSOPT_NONE)
6060           {
6061             Output_data_got_powerpc<size, big_endian>* got
6062               = target->got_section(symtab, layout);
6063             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6064             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6065                                           elfcpp::R_POWERPC_DTPMOD,
6066                                           elfcpp::R_POWERPC_DTPREL);
6067           }
6068         else if (tls_type == tls::TLSOPT_TO_IE)
6069           {
6070             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6071               {
6072                 Output_data_got_powerpc<size, big_endian>* got
6073                   = target->got_section(symtab, layout);
6074                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6075                 if (gsym->is_undefined()
6076                     || gsym->is_from_dynobj())
6077                   {
6078                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6079                                              elfcpp::R_POWERPC_TPREL);
6080                   }
6081                 else
6082                   {
6083                     unsigned int off = got->add_constant(0);
6084                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6085                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6086                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6087                                                            got, off, 0);
6088                   }
6089               }
6090           }
6091         else if (tls_type == tls::TLSOPT_TO_LE)
6092           {
6093             // no GOT relocs needed for Local Exec.
6094           }
6095         else
6096           gold_unreachable();
6097       }
6098       break;
6099
6100     case elfcpp::R_POWERPC_GOT_TLSLD16:
6101     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6102     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6103     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6104       {
6105         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6106         if (tls_type == tls::TLSOPT_NONE)
6107           target->tlsld_got_offset(symtab, layout, object);
6108         else if (tls_type == tls::TLSOPT_TO_LE)
6109           {
6110             // no GOT relocs needed for Local Exec.
6111             if (parameters->options().emit_relocs())
6112               {
6113                 Output_section* os = layout->tls_segment()->first_section();
6114                 gold_assert(os != NULL);
6115                 os->set_needs_symtab_index();
6116               }
6117           }
6118         else
6119           gold_unreachable();
6120       }
6121       break;
6122
6123     case elfcpp::R_POWERPC_GOT_DTPREL16:
6124     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6125     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6126     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6127       {
6128         Output_data_got_powerpc<size, big_endian>* got
6129           = target->got_section(symtab, layout);
6130         if (!gsym->final_value_is_known()
6131             && (gsym->is_from_dynobj()
6132                 || gsym->is_undefined()
6133                 || gsym->is_preemptible()))
6134           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6135                                    target->rela_dyn_section(layout),
6136                                    elfcpp::R_POWERPC_DTPREL);
6137         else
6138           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6139       }
6140       break;
6141
6142     case elfcpp::R_POWERPC_GOT_TPREL16:
6143     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6144     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6145     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6146       {
6147         const bool final = gsym->final_value_is_known();
6148         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6149         if (tls_type == tls::TLSOPT_NONE)
6150           {
6151             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6152               {
6153                 Output_data_got_powerpc<size, big_endian>* got
6154                   = target->got_section(symtab, layout);
6155                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6156                 if (gsym->is_undefined()
6157                     || gsym->is_from_dynobj())
6158                   {
6159                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6160                                              elfcpp::R_POWERPC_TPREL);
6161                   }
6162                 else
6163                   {
6164                     unsigned int off = got->add_constant(0);
6165                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6166                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6167                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6168                                                            got, off, 0);
6169                   }
6170               }
6171           }
6172         else if (tls_type == tls::TLSOPT_TO_LE)
6173           {
6174             // no GOT relocs needed for Local Exec.
6175           }
6176         else
6177           gold_unreachable();
6178       }
6179       break;
6180
6181     default:
6182       unsupported_reloc_global(object, r_type, gsym);
6183       break;
6184     }
6185
6186   switch (r_type)
6187     {
6188     case elfcpp::R_POWERPC_GOT_TLSLD16:
6189     case elfcpp::R_POWERPC_GOT_TLSGD16:
6190     case elfcpp::R_POWERPC_GOT_TPREL16:
6191     case elfcpp::R_POWERPC_GOT_DTPREL16:
6192     case elfcpp::R_POWERPC_GOT16:
6193     case elfcpp::R_PPC64_GOT16_DS:
6194     case elfcpp::R_PPC64_TOC16:
6195     case elfcpp::R_PPC64_TOC16_DS:
6196       ppc_object->set_has_small_toc_reloc();
6197     default:
6198       break;
6199     }
6200 }
6201
6202 // Process relocations for gc.
6203
6204 template<int size, bool big_endian>
6205 void
6206 Target_powerpc<size, big_endian>::gc_process_relocs(
6207     Symbol_table* symtab,
6208     Layout* layout,
6209     Sized_relobj_file<size, big_endian>* object,
6210     unsigned int data_shndx,
6211     unsigned int,
6212     const unsigned char* prelocs,
6213     size_t reloc_count,
6214     Output_section* output_section,
6215     bool needs_special_offset_handling,
6216     size_t local_symbol_count,
6217     const unsigned char* plocal_symbols)
6218 {
6219   typedef Target_powerpc<size, big_endian> Powerpc;
6220   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6221   Powerpc_relobj<size, big_endian>* ppc_object
6222     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6223   if (size == 64)
6224     ppc_object->set_opd_valid();
6225   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6226     {
6227       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6228       for (p = ppc_object->access_from_map()->begin();
6229            p != ppc_object->access_from_map()->end();
6230            ++p)
6231         {
6232           Address dst_off = p->first;
6233           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6234           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6235           for (s = p->second.begin(); s != p->second.end(); ++s)
6236             {
6237               Object* src_obj = s->first;
6238               unsigned int src_indx = s->second;
6239               symtab->gc()->add_reference(src_obj, src_indx,
6240                                           ppc_object, dst_indx);
6241             }
6242           p->second.clear();
6243         }
6244       ppc_object->access_from_map()->clear();
6245       ppc_object->process_gc_mark(symtab);
6246       // Don't look at .opd relocs as .opd will reference everything.
6247       return;
6248     }
6249
6250   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6251                           typename Target_powerpc::Relocatable_size_for_reloc>(
6252     symtab,
6253     layout,
6254     this,
6255     object,
6256     data_shndx,
6257     prelocs,
6258     reloc_count,
6259     output_section,
6260     needs_special_offset_handling,
6261     local_symbol_count,
6262     plocal_symbols);
6263 }
6264
6265 // Handle target specific gc actions when adding a gc reference from
6266 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6267 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6268 // section of a function descriptor.
6269
6270 template<int size, bool big_endian>
6271 void
6272 Target_powerpc<size, big_endian>::do_gc_add_reference(
6273     Symbol_table* symtab,
6274     Object* src_obj,
6275     unsigned int src_shndx,
6276     Object* dst_obj,
6277     unsigned int dst_shndx,
6278     Address dst_off) const
6279 {
6280   if (size != 64 || dst_obj->is_dynamic())
6281     return;
6282
6283   Powerpc_relobj<size, big_endian>* ppc_object
6284     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6285   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6286     {
6287       if (ppc_object->opd_valid())
6288         {
6289           dst_shndx = ppc_object->get_opd_ent(dst_off);
6290           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6291         }
6292       else
6293         {
6294           // If we haven't run scan_opd_relocs, we must delay
6295           // processing this function descriptor reference.
6296           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6297         }
6298     }
6299 }
6300
6301 // Add any special sections for this symbol to the gc work list.
6302 // For powerpc64, this adds the code section of a function
6303 // descriptor.
6304
6305 template<int size, bool big_endian>
6306 void
6307 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6308     Symbol_table* symtab,
6309     Symbol* sym) const
6310 {
6311   if (size == 64)
6312     {
6313       Powerpc_relobj<size, big_endian>* ppc_object
6314         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6315       bool is_ordinary;
6316       unsigned int shndx = sym->shndx(&is_ordinary);
6317       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6318         {
6319           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6320           Address dst_off = gsym->value();
6321           if (ppc_object->opd_valid())
6322             {
6323               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6324               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6325             }
6326           else
6327             ppc_object->add_gc_mark(dst_off);
6328         }
6329     }
6330 }
6331
6332 // For a symbol location in .opd, set LOC to the location of the
6333 // function entry.
6334
6335 template<int size, bool big_endian>
6336 void
6337 Target_powerpc<size, big_endian>::do_function_location(
6338     Symbol_location* loc) const
6339 {
6340   if (size == 64 && loc->shndx != 0)
6341     {
6342       if (loc->object->is_dynamic())
6343         {
6344           Powerpc_dynobj<size, big_endian>* ppc_object
6345             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6346           if (loc->shndx == ppc_object->opd_shndx())
6347             {
6348               Address dest_off;
6349               Address off = loc->offset - ppc_object->opd_address();
6350               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6351               loc->offset = dest_off;
6352             }
6353         }
6354       else
6355         {
6356           const Powerpc_relobj<size, big_endian>* ppc_object
6357             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6358           if (loc->shndx == ppc_object->opd_shndx())
6359             {
6360               Address dest_off;
6361               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6362               loc->offset = dest_off;
6363             }
6364         }
6365     }
6366 }
6367
6368 // Scan relocations for a section.
6369
6370 template<int size, bool big_endian>
6371 void
6372 Target_powerpc<size, big_endian>::scan_relocs(
6373     Symbol_table* symtab,
6374     Layout* layout,
6375     Sized_relobj_file<size, big_endian>* object,
6376     unsigned int data_shndx,
6377     unsigned int sh_type,
6378     const unsigned char* prelocs,
6379     size_t reloc_count,
6380     Output_section* output_section,
6381     bool needs_special_offset_handling,
6382     size_t local_symbol_count,
6383     const unsigned char* plocal_symbols)
6384 {
6385   typedef Target_powerpc<size, big_endian> Powerpc;
6386   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6387
6388   if (sh_type == elfcpp::SHT_REL)
6389     {
6390       gold_error(_("%s: unsupported REL reloc section"),
6391                  object->name().c_str());
6392       return;
6393     }
6394
6395   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6396     symtab,
6397     layout,
6398     this,
6399     object,
6400     data_shndx,
6401     prelocs,
6402     reloc_count,
6403     output_section,
6404     needs_special_offset_handling,
6405     local_symbol_count,
6406     plocal_symbols);
6407 }
6408
6409 // Functor class for processing the global symbol table.
6410 // Removes symbols defined on discarded opd entries.
6411
6412 template<bool big_endian>
6413 class Global_symbol_visitor_opd
6414 {
6415  public:
6416   Global_symbol_visitor_opd()
6417   { }
6418
6419   void
6420   operator()(Sized_symbol<64>* sym)
6421   {
6422     if (sym->has_symtab_index()
6423         || sym->source() != Symbol::FROM_OBJECT
6424         || !sym->in_real_elf())
6425       return;
6426
6427     if (sym->object()->is_dynamic())
6428       return;
6429
6430     Powerpc_relobj<64, big_endian>* symobj
6431       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6432     if (symobj->opd_shndx() == 0)
6433       return;
6434
6435     bool is_ordinary;
6436     unsigned int shndx = sym->shndx(&is_ordinary);
6437     if (shndx == symobj->opd_shndx()
6438         && symobj->get_opd_discard(sym->value()))
6439       sym->set_symtab_index(-1U);
6440   }
6441 };
6442
6443 template<int size, bool big_endian>
6444 void
6445 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6446     Layout* layout,
6447     Symbol_table* symtab)
6448 {
6449   if (size == 64)
6450     {
6451       Output_data_save_res<64, big_endian>* savres
6452         = new Output_data_save_res<64, big_endian>(symtab);
6453       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6454                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6455                                       savres, ORDER_TEXT, false);
6456     }
6457 }
6458
6459 // Sort linker created .got section first (for the header), then input
6460 // sections belonging to files using small model code.
6461
6462 template<bool big_endian>
6463 class Sort_toc_sections
6464 {
6465  public:
6466   bool
6467   operator()(const Output_section::Input_section& is1,
6468              const Output_section::Input_section& is2) const
6469   {
6470     if (!is1.is_input_section() && is2.is_input_section())
6471       return true;
6472     bool small1
6473       = (is1.is_input_section()
6474          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6475              ->has_small_toc_reloc()));
6476     bool small2
6477       = (is2.is_input_section()
6478          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6479              ->has_small_toc_reloc()));
6480     return small1 && !small2;
6481   }
6482 };
6483
6484 // Finalize the sections.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_finalize_sections(
6489     Layout* layout,
6490     const Input_objects*,
6491     Symbol_table* symtab)
6492 {
6493   if (parameters->doing_static_link())
6494     {
6495       // At least some versions of glibc elf-init.o have a strong
6496       // reference to __rela_iplt marker syms.  A weak ref would be
6497       // better..
6498       if (this->iplt_ != NULL)
6499         {
6500           Reloc_section* rel = this->iplt_->rel_plt();
6501           symtab->define_in_output_data("__rela_iplt_start", NULL,
6502                                         Symbol_table::PREDEFINED, rel, 0, 0,
6503                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6504                                         elfcpp::STV_HIDDEN, 0, false, true);
6505           symtab->define_in_output_data("__rela_iplt_end", NULL,
6506                                         Symbol_table::PREDEFINED, rel, 0, 0,
6507                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6508                                         elfcpp::STV_HIDDEN, 0, true, true);
6509         }
6510       else
6511         {
6512           symtab->define_as_constant("__rela_iplt_start", NULL,
6513                                      Symbol_table::PREDEFINED, 0, 0,
6514                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6515                                      elfcpp::STV_HIDDEN, 0, true, false);
6516           symtab->define_as_constant("__rela_iplt_end", NULL,
6517                                      Symbol_table::PREDEFINED, 0, 0,
6518                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6519                                      elfcpp::STV_HIDDEN, 0, true, false);
6520         }
6521     }
6522
6523   if (size == 64)
6524     {
6525       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6526       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6527
6528       if (!parameters->options().relocatable())
6529         {
6530           this->define_save_restore_funcs(layout, symtab);
6531
6532           // Annoyingly, we need to make these sections now whether or
6533           // not we need them.  If we delay until do_relax then we
6534           // need to mess with the relaxation machinery checkpointing.
6535           this->got_section(symtab, layout);
6536           this->make_brlt_section(layout);
6537
6538           if (parameters->options().toc_sort())
6539             {
6540               Output_section* os = this->got_->output_section();
6541               if (os != NULL && os->input_sections().size() > 1)
6542                 std::stable_sort(os->input_sections().begin(),
6543                                  os->input_sections().end(),
6544                                  Sort_toc_sections<big_endian>());
6545             }
6546         }
6547     }
6548
6549   // Fill in some more dynamic tags.
6550   Output_data_dynamic* odyn = layout->dynamic_data();
6551   if (odyn != NULL)
6552     {
6553       const Reloc_section* rel_plt = (this->plt_ == NULL
6554                                       ? NULL
6555                                       : this->plt_->rel_plt());
6556       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6557                                       this->rela_dyn_, true, size == 32);
6558
6559       if (size == 32)
6560         {
6561           if (this->got_ != NULL)
6562             {
6563               this->got_->finalize_data_size();
6564               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6565                                             this->got_, this->got_->g_o_t());
6566             }
6567         }
6568       else
6569         {
6570           if (this->glink_ != NULL)
6571             {
6572               this->glink_->finalize_data_size();
6573               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6574                                             this->glink_,
6575                                             (this->glink_->pltresolve_size
6576                                              - 32));
6577             }
6578         }
6579     }
6580
6581   // Emit any relocs we saved in an attempt to avoid generating COPY
6582   // relocs.
6583   if (this->copy_relocs_.any_saved_relocs())
6584     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6585 }
6586
6587 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6588 // reloc.
6589
6590 static bool
6591 ok_lo_toc_insn(uint32_t insn)
6592 {
6593   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6594           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6595           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6596           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6597           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6598           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6599           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6600           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6601           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6602           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6603           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6604           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6605           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6606           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6607           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6608               && (insn & 3) != 1)
6609           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6610               && ((insn & 3) == 0 || (insn & 3) == 3))
6611           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6612 }
6613
6614 // Return the value to use for a branch relocation.
6615
6616 template<int size, bool big_endian>
6617 typename Target_powerpc<size, big_endian>::Address
6618 Target_powerpc<size, big_endian>::symval_for_branch(
6619     const Symbol_table* symtab,
6620     Address value,
6621     const Sized_symbol<size>* gsym,
6622     Powerpc_relobj<size, big_endian>* object,
6623     unsigned int *dest_shndx)
6624 {
6625   if (size == 32 || this->abiversion() >= 2)
6626     gold_unreachable();
6627   *dest_shndx = 0;
6628
6629   // If the symbol is defined in an opd section, ie. is a function
6630   // descriptor, use the function descriptor code entry address
6631   Powerpc_relobj<size, big_endian>* symobj = object;
6632   if (gsym != NULL
6633       && gsym->source() != Symbol::FROM_OBJECT)
6634     return value;
6635   if (gsym != NULL)
6636     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6637   unsigned int shndx = symobj->opd_shndx();
6638   if (shndx == 0)
6639     return value;
6640   Address opd_addr = symobj->get_output_section_offset(shndx);
6641   if (opd_addr == invalid_address)
6642     return value;
6643   opd_addr += symobj->output_section_address(shndx);
6644   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6645     {
6646       Address sec_off;
6647       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6648       if (symtab->is_section_folded(symobj, *dest_shndx))
6649         {
6650           Section_id folded
6651             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6652           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6653           *dest_shndx = folded.second;
6654         }
6655       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6656       gold_assert(sec_addr != invalid_address);
6657       sec_addr += symobj->output_section(*dest_shndx)->address();
6658       value = sec_addr + sec_off;
6659     }
6660   return value;
6661 }
6662
6663 // Perform a relocation.
6664
6665 template<int size, bool big_endian>
6666 inline bool
6667 Target_powerpc<size, big_endian>::Relocate::relocate(
6668     const Relocate_info<size, big_endian>* relinfo,
6669     Target_powerpc* target,
6670     Output_section* os,
6671     size_t relnum,
6672     const elfcpp::Rela<size, big_endian>& rela,
6673     unsigned int r_type,
6674     const Sized_symbol<size>* gsym,
6675     const Symbol_value<size>* psymval,
6676     unsigned char* view,
6677     Address address,
6678     section_size_type view_size)
6679 {
6680   if (view == NULL)
6681     return true;
6682
6683   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6684     {
6685     case Track_tls::NOT_EXPECTED:
6686       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6687                              _("__tls_get_addr call lacks marker reloc"));
6688       break;
6689     case Track_tls::EXPECTED:
6690       // We have already complained.
6691       break;
6692     case Track_tls::SKIP:
6693       return true;
6694     case Track_tls::NORMAL:
6695       break;
6696     }
6697
6698   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6699   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6700   Powerpc_relobj<size, big_endian>* const object
6701     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6702   Address value = 0;
6703   bool has_plt_value = false;
6704   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6705   if ((gsym != NULL
6706        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6707        : object->local_has_plt_offset(r_sym))
6708       && (!psymval->is_ifunc_symbol()
6709           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6710     {
6711       if (size == 64
6712           && gsym != NULL
6713           && target->abiversion() >= 2
6714           && !parameters->options().output_is_position_independent()
6715           && !is_branch_reloc(r_type))
6716         {
6717           unsigned int off = target->glink_section()->find_global_entry(gsym);
6718           gold_assert(off != (unsigned int)-1);
6719           value = target->glink_section()->global_entry_address() + off;
6720         }
6721       else
6722         {
6723           Stub_table<size, big_endian>* stub_table
6724             = object->stub_table(relinfo->data_shndx);
6725           if (stub_table == NULL)
6726             {
6727               // This is a ref from a data section to an ifunc symbol.
6728               if (target->stub_tables().size() != 0)
6729                 stub_table = target->stub_tables()[0];
6730             }
6731           gold_assert(stub_table != NULL);
6732           Address off;
6733           if (gsym != NULL)
6734             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6735                                                   rela.get_r_addend());
6736           else
6737             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6738                                                   rela.get_r_addend());
6739           gold_assert(off != invalid_address);
6740           value = stub_table->stub_address() + off;
6741         }
6742       has_plt_value = true;
6743     }
6744
6745   if (r_type == elfcpp::R_POWERPC_GOT16
6746       || r_type == elfcpp::R_POWERPC_GOT16_LO
6747       || r_type == elfcpp::R_POWERPC_GOT16_HI
6748       || r_type == elfcpp::R_POWERPC_GOT16_HA
6749       || r_type == elfcpp::R_PPC64_GOT16_DS
6750       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6751     {
6752       if (gsym != NULL)
6753         {
6754           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6755           value = gsym->got_offset(GOT_TYPE_STANDARD);
6756         }
6757       else
6758         {
6759           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6760           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6761           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6762         }
6763       value -= target->got_section()->got_base_offset(object);
6764     }
6765   else if (r_type == elfcpp::R_PPC64_TOC)
6766     {
6767       value = (target->got_section()->output_section()->address()
6768                + object->toc_base_offset());
6769     }
6770   else if (gsym != NULL
6771            && (r_type == elfcpp::R_POWERPC_REL24
6772                || r_type == elfcpp::R_PPC_PLTREL24)
6773            && has_plt_value)
6774     {
6775       if (size == 64)
6776         {
6777           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6778           Valtype* wv = reinterpret_cast<Valtype*>(view);
6779           bool can_plt_call = false;
6780           if (rela.get_r_offset() + 8 <= view_size)
6781             {
6782               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6783               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6784               if ((insn & 1) != 0
6785                   && (insn2 == nop
6786                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6787                 {
6788                   elfcpp::Swap<32, big_endian>::
6789                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6790                   can_plt_call = true;
6791                 }
6792             }
6793           if (!can_plt_call)
6794             {
6795               // If we don't have a branch and link followed by a nop,
6796               // we can't go via the plt because there is no place to
6797               // put a toc restoring instruction.
6798               // Unless we know we won't be returning.
6799               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6800                 can_plt_call = true;
6801             }
6802           if (!can_plt_call)
6803             {
6804               // g++ as of 20130507 emits self-calls without a
6805               // following nop.  This is arguably wrong since we have
6806               // conflicting information.  On the one hand a global
6807               // symbol and on the other a local call sequence, but
6808               // don't error for this special case.
6809               // It isn't possible to cheaply verify we have exactly
6810               // such a call.  Allow all calls to the same section.
6811               bool ok = false;
6812               Address code = value;
6813               if (gsym->source() == Symbol::FROM_OBJECT
6814                   && gsym->object() == object)
6815                 {
6816                   unsigned int dest_shndx = 0;
6817                   if (target->abiversion() < 2)
6818                     {
6819                       Address addend = rela.get_r_addend();
6820                       Address opdent = psymval->value(object, addend);
6821                       code = target->symval_for_branch(relinfo->symtab,
6822                                                        opdent, gsym, object,
6823                                                        &dest_shndx);
6824                     }
6825                   bool is_ordinary;
6826                   if (dest_shndx == 0)
6827                     dest_shndx = gsym->shndx(&is_ordinary);
6828                   ok = dest_shndx == relinfo->data_shndx;
6829                 }
6830               if (!ok)
6831                 {
6832                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6833                                          _("call lacks nop, can't restore toc; "
6834                                            "recompile with -fPIC"));
6835                   value = code;
6836                 }
6837             }
6838         }
6839     }
6840   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6841            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6842            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6843            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6844     {
6845       // First instruction of a global dynamic sequence, arg setup insn.
6846       const bool final = gsym == NULL || gsym->final_value_is_known();
6847       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6848       enum Got_type got_type = GOT_TYPE_STANDARD;
6849       if (tls_type == tls::TLSOPT_NONE)
6850         got_type = GOT_TYPE_TLSGD;
6851       else if (tls_type == tls::TLSOPT_TO_IE)
6852         got_type = GOT_TYPE_TPREL;
6853       if (got_type != GOT_TYPE_STANDARD)
6854         {
6855           if (gsym != NULL)
6856             {
6857               gold_assert(gsym->has_got_offset(got_type));
6858               value = gsym->got_offset(got_type);
6859             }
6860           else
6861             {
6862               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6863               gold_assert(object->local_has_got_offset(r_sym, got_type));
6864               value = object->local_got_offset(r_sym, got_type);
6865             }
6866           value -= target->got_section()->got_base_offset(object);
6867         }
6868       if (tls_type == tls::TLSOPT_TO_IE)
6869         {
6870           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6871               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6872             {
6873               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6875               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6876               if (size == 32)
6877                 insn |= 32 << 26; // lwz
6878               else
6879                 insn |= 58 << 26; // ld
6880               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6881             }
6882           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6883                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6884         }
6885       else if (tls_type == tls::TLSOPT_TO_LE)
6886         {
6887           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6888               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6889             {
6890               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6891               Insn insn = addis_3_13;
6892               if (size == 32)
6893                 insn = addis_3_2;
6894               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6895               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6896               value = psymval->value(object, rela.get_r_addend());
6897             }
6898           else
6899             {
6900               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6901               Insn insn = nop;
6902               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6903               r_type = elfcpp::R_POWERPC_NONE;
6904             }
6905         }
6906     }
6907   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6908            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6909            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6910            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6911     {
6912       // First instruction of a local dynamic sequence, arg setup insn.
6913       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6914       if (tls_type == tls::TLSOPT_NONE)
6915         {
6916           value = target->tlsld_got_offset();
6917           value -= target->got_section()->got_base_offset(object);
6918         }
6919       else
6920         {
6921           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6922           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6923               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6924             {
6925               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6926               Insn insn = addis_3_13;
6927               if (size == 32)
6928                 insn = addis_3_2;
6929               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6930               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6931               value = dtp_offset;
6932             }
6933           else
6934             {
6935               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6936               Insn insn = nop;
6937               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6938               r_type = elfcpp::R_POWERPC_NONE;
6939             }
6940         }
6941     }
6942   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6943            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6944            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6945            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6946     {
6947       // Accesses relative to a local dynamic sequence address,
6948       // no optimisation here.
6949       if (gsym != NULL)
6950         {
6951           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6952           value = gsym->got_offset(GOT_TYPE_DTPREL);
6953         }
6954       else
6955         {
6956           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6957           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6958           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6959         }
6960       value -= target->got_section()->got_base_offset(object);
6961     }
6962   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6963            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6964            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6965            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6966     {
6967       // First instruction of initial exec sequence.
6968       const bool final = gsym == NULL || gsym->final_value_is_known();
6969       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6970       if (tls_type == tls::TLSOPT_NONE)
6971         {
6972           if (gsym != NULL)
6973             {
6974               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6975               value = gsym->got_offset(GOT_TYPE_TPREL);
6976             }
6977           else
6978             {
6979               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6980               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6981               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6982             }
6983           value -= target->got_section()->got_base_offset(object);
6984         }
6985       else
6986         {
6987           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6988           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6989               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6990             {
6991               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6992               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6993               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6994               if (size == 32)
6995                 insn |= addis_0_2;
6996               else
6997                 insn |= addis_0_13;
6998               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6999               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7000               value = psymval->value(object, rela.get_r_addend());
7001             }
7002           else
7003             {
7004               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7005               Insn insn = nop;
7006               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7007               r_type = elfcpp::R_POWERPC_NONE;
7008             }
7009         }
7010     }
7011   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7012            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7013     {
7014       // Second instruction of a global dynamic sequence,
7015       // the __tls_get_addr call
7016       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7017       const bool final = gsym == NULL || gsym->final_value_is_known();
7018       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7019       if (tls_type != tls::TLSOPT_NONE)
7020         {
7021           if (tls_type == tls::TLSOPT_TO_IE)
7022             {
7023               Insn* iview = reinterpret_cast<Insn*>(view);
7024               Insn insn = add_3_3_13;
7025               if (size == 32)
7026                 insn = add_3_3_2;
7027               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7028               r_type = elfcpp::R_POWERPC_NONE;
7029             }
7030           else
7031             {
7032               Insn* iview = reinterpret_cast<Insn*>(view);
7033               Insn insn = addi_3_3;
7034               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7035               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7036               view += 2 * big_endian;
7037               value = psymval->value(object, rela.get_r_addend());
7038             }
7039           this->skip_next_tls_get_addr_call();
7040         }
7041     }
7042   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7043            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7044     {
7045       // Second instruction of a local dynamic sequence,
7046       // the __tls_get_addr call
7047       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7048       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7049       if (tls_type == tls::TLSOPT_TO_LE)
7050         {
7051           Insn* iview = reinterpret_cast<Insn*>(view);
7052           Insn insn = addi_3_3;
7053           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7054           this->skip_next_tls_get_addr_call();
7055           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7056           view += 2 * big_endian;
7057           value = dtp_offset;
7058         }
7059     }
7060   else if (r_type == elfcpp::R_POWERPC_TLS)
7061     {
7062       // Second instruction of an initial exec sequence
7063       const bool final = gsym == NULL || gsym->final_value_is_known();
7064       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7065       if (tls_type == tls::TLSOPT_TO_LE)
7066         {
7067           Insn* iview = reinterpret_cast<Insn*>(view);
7068           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7069           unsigned int reg = size == 32 ? 2 : 13;
7070           insn = at_tls_transform(insn, reg);
7071           gold_assert(insn != 0);
7072           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7073           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7074           view += 2 * big_endian;
7075           value = psymval->value(object, rela.get_r_addend());
7076         }
7077     }
7078   else if (!has_plt_value)
7079     {
7080       Address addend = 0;
7081       unsigned int dest_shndx;
7082       if (r_type != elfcpp::R_PPC_PLTREL24)
7083         addend = rela.get_r_addend();
7084       value = psymval->value(object, addend);
7085       if (size == 64 && is_branch_reloc(r_type))
7086         {
7087           if (target->abiversion() >= 2)
7088             {
7089               if (gsym != NULL)
7090                 value += object->ppc64_local_entry_offset(gsym);
7091               else
7092                 value += object->ppc64_local_entry_offset(r_sym);
7093             }
7094           else
7095             value = target->symval_for_branch(relinfo->symtab, value,
7096                                               gsym, object, &dest_shndx);
7097         }
7098       unsigned int max_branch_offset = 0;
7099       if (r_type == elfcpp::R_POWERPC_REL24
7100           || r_type == elfcpp::R_PPC_PLTREL24
7101           || r_type == elfcpp::R_PPC_LOCAL24PC)
7102         max_branch_offset = 1 << 25;
7103       else if (r_type == elfcpp::R_POWERPC_REL14
7104                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7105                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7106         max_branch_offset = 1 << 15;
7107       if (max_branch_offset != 0
7108           && value - address + max_branch_offset >= 2 * max_branch_offset)
7109         {
7110           Stub_table<size, big_endian>* stub_table
7111             = object->stub_table(relinfo->data_shndx);
7112           if (stub_table != NULL)
7113             {
7114               Address off = stub_table->find_long_branch_entry(object, value);
7115               if (off != invalid_address)
7116                 value = (stub_table->stub_address() + stub_table->plt_size()
7117                          + off);
7118             }
7119         }
7120     }
7121
7122   switch (r_type)
7123     {
7124     case elfcpp::R_PPC64_REL64:
7125     case elfcpp::R_POWERPC_REL32:
7126     case elfcpp::R_POWERPC_REL24:
7127     case elfcpp::R_PPC_PLTREL24:
7128     case elfcpp::R_PPC_LOCAL24PC:
7129     case elfcpp::R_POWERPC_REL16:
7130     case elfcpp::R_POWERPC_REL16_LO:
7131     case elfcpp::R_POWERPC_REL16_HI:
7132     case elfcpp::R_POWERPC_REL16_HA:
7133     case elfcpp::R_POWERPC_REL14:
7134     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7135     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7136       value -= address;
7137       break;
7138
7139     case elfcpp::R_PPC64_TOC16:
7140     case elfcpp::R_PPC64_TOC16_LO:
7141     case elfcpp::R_PPC64_TOC16_HI:
7142     case elfcpp::R_PPC64_TOC16_HA:
7143     case elfcpp::R_PPC64_TOC16_DS:
7144     case elfcpp::R_PPC64_TOC16_LO_DS:
7145       // Subtract the TOC base address.
7146       value -= (target->got_section()->output_section()->address()
7147                 + object->toc_base_offset());
7148       break;
7149
7150     case elfcpp::R_POWERPC_SECTOFF:
7151     case elfcpp::R_POWERPC_SECTOFF_LO:
7152     case elfcpp::R_POWERPC_SECTOFF_HI:
7153     case elfcpp::R_POWERPC_SECTOFF_HA:
7154     case elfcpp::R_PPC64_SECTOFF_DS:
7155     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7156       if (os != NULL)
7157         value -= os->address();
7158       break;
7159
7160     case elfcpp::R_PPC64_TPREL16_DS:
7161     case elfcpp::R_PPC64_TPREL16_LO_DS:
7162     case elfcpp::R_PPC64_TPREL16_HIGH:
7163     case elfcpp::R_PPC64_TPREL16_HIGHA:
7164       if (size != 64)
7165         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7166         break;
7167     case elfcpp::R_POWERPC_TPREL16:
7168     case elfcpp::R_POWERPC_TPREL16_LO:
7169     case elfcpp::R_POWERPC_TPREL16_HI:
7170     case elfcpp::R_POWERPC_TPREL16_HA:
7171     case elfcpp::R_POWERPC_TPREL:
7172     case elfcpp::R_PPC64_TPREL16_HIGHER:
7173     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7174     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7175     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7176       // tls symbol values are relative to tls_segment()->vaddr()
7177       value -= tp_offset;
7178       break;
7179
7180     case elfcpp::R_PPC64_DTPREL16_DS:
7181     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7182     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7183     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7184     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7185     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7186       if (size != 64)
7187         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7188         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7189         break;
7190     case elfcpp::R_POWERPC_DTPREL16:
7191     case elfcpp::R_POWERPC_DTPREL16_LO:
7192     case elfcpp::R_POWERPC_DTPREL16_HI:
7193     case elfcpp::R_POWERPC_DTPREL16_HA:
7194     case elfcpp::R_POWERPC_DTPREL:
7195     case elfcpp::R_PPC64_DTPREL16_HIGH:
7196     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7197       // tls symbol values are relative to tls_segment()->vaddr()
7198       value -= dtp_offset;
7199       break;
7200
7201     case elfcpp::R_PPC64_ADDR64_LOCAL:
7202       if (gsym != NULL)
7203         value += object->ppc64_local_entry_offset(gsym);
7204       else
7205         value += object->ppc64_local_entry_offset(r_sym);
7206       break;
7207
7208     default:
7209       break;
7210     }
7211
7212   Insn branch_bit = 0;
7213   switch (r_type)
7214     {
7215     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7216     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7217       branch_bit = 1 << 21;
7218     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7219     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7220       {
7221         Insn* iview = reinterpret_cast<Insn*>(view);
7222         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7223         insn &= ~(1 << 21);
7224         insn |= branch_bit;
7225         if (this->is_isa_v2)
7226           {
7227             // Set 'a' bit.  This is 0b00010 in BO field for branch
7228             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7229             // for branch on CTR insns (BO == 1a00t or 1a01t).
7230             if ((insn & (0x14 << 21)) == (0x04 << 21))
7231               insn |= 0x02 << 21;
7232             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7233               insn |= 0x08 << 21;
7234             else
7235               break;
7236           }
7237         else
7238           {
7239             // Invert 'y' bit if not the default.
7240             if (static_cast<Signed_address>(value) < 0)
7241               insn ^= 1 << 21;
7242           }
7243         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7244       }
7245       break;
7246
7247     default:
7248       break;
7249     }
7250
7251   if (size == 64)
7252     {
7253       // Multi-instruction sequences that access the TOC can be
7254       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7255       // to             nop;           addi rb,r2,x;
7256       switch (r_type)
7257         {
7258         default:
7259           break;
7260
7261         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7262         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7263         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7264         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7265         case elfcpp::R_POWERPC_GOT16_HA:
7266         case elfcpp::R_PPC64_TOC16_HA:
7267           if (parameters->options().toc_optimize())
7268             {
7269               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7270               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7271               if ((insn & ((0x3f << 26) | 0x1f << 16))
7272                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7273                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7274                                        _("toc optimization is not supported "
7275                                          "for %#08x instruction"), insn);
7276               else if (value + 0x8000 < 0x10000)
7277                 {
7278                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7279                   return true;
7280                 }
7281             }
7282           break;
7283
7284         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7285         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7286         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7287         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7288         case elfcpp::R_POWERPC_GOT16_LO:
7289         case elfcpp::R_PPC64_GOT16_LO_DS:
7290         case elfcpp::R_PPC64_TOC16_LO:
7291         case elfcpp::R_PPC64_TOC16_LO_DS:
7292           if (parameters->options().toc_optimize())
7293             {
7294               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7295               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7296               if (!ok_lo_toc_insn(insn))
7297                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7298                                        _("toc optimization is not supported "
7299                                          "for %#08x instruction"), insn);
7300               else if (value + 0x8000 < 0x10000)
7301                 {
7302                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7303                     {
7304                       // Transform addic to addi when we change reg.
7305                       insn &= ~((0x3f << 26) | (0x1f << 16));
7306                       insn |= (14u << 26) | (2 << 16);
7307                     }
7308                   else
7309                     {
7310                       insn &= ~(0x1f << 16);
7311                       insn |= 2 << 16;
7312                     }
7313                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7314                 }
7315             }
7316           break;
7317         }
7318     }
7319
7320   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7321   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7322   switch (r_type)
7323     {
7324     case elfcpp::R_POWERPC_ADDR32:
7325     case elfcpp::R_POWERPC_UADDR32:
7326       if (size == 64)
7327         overflow = Reloc::CHECK_BITFIELD;
7328       break;
7329
7330     case elfcpp::R_POWERPC_REL32:
7331       if (size == 64)
7332         overflow = Reloc::CHECK_SIGNED;
7333       break;
7334
7335     case elfcpp::R_POWERPC_UADDR16:
7336       overflow = Reloc::CHECK_BITFIELD;
7337       break;
7338
7339     case elfcpp::R_POWERPC_ADDR16:
7340       // We really should have three separate relocations,
7341       // one for 16-bit data, one for insns with 16-bit signed fields,
7342       // and one for insns with 16-bit unsigned fields.
7343       overflow = Reloc::CHECK_BITFIELD;
7344       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7345         overflow = Reloc::CHECK_LOW_INSN;
7346       break;
7347
7348     case elfcpp::R_POWERPC_ADDR16_HI:
7349     case elfcpp::R_POWERPC_ADDR16_HA:
7350     case elfcpp::R_POWERPC_GOT16_HI:
7351     case elfcpp::R_POWERPC_GOT16_HA:
7352     case elfcpp::R_POWERPC_PLT16_HI:
7353     case elfcpp::R_POWERPC_PLT16_HA:
7354     case elfcpp::R_POWERPC_SECTOFF_HI:
7355     case elfcpp::R_POWERPC_SECTOFF_HA:
7356     case elfcpp::R_PPC64_TOC16_HI:
7357     case elfcpp::R_PPC64_TOC16_HA:
7358     case elfcpp::R_PPC64_PLTGOT16_HI:
7359     case elfcpp::R_PPC64_PLTGOT16_HA:
7360     case elfcpp::R_POWERPC_TPREL16_HI:
7361     case elfcpp::R_POWERPC_TPREL16_HA:
7362     case elfcpp::R_POWERPC_DTPREL16_HI:
7363     case elfcpp::R_POWERPC_DTPREL16_HA:
7364     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7365     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7366     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7367     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7368     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7369     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7370     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7371     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7372     case elfcpp::R_POWERPC_REL16_HI:
7373     case elfcpp::R_POWERPC_REL16_HA:
7374       if (size != 32)
7375         overflow = Reloc::CHECK_HIGH_INSN;
7376       break;
7377
7378     case elfcpp::R_POWERPC_REL16:
7379     case elfcpp::R_PPC64_TOC16:
7380     case elfcpp::R_POWERPC_GOT16:
7381     case elfcpp::R_POWERPC_SECTOFF:
7382     case elfcpp::R_POWERPC_TPREL16:
7383     case elfcpp::R_POWERPC_DTPREL16:
7384     case elfcpp::R_POWERPC_GOT_TLSGD16:
7385     case elfcpp::R_POWERPC_GOT_TLSLD16:
7386     case elfcpp::R_POWERPC_GOT_TPREL16:
7387     case elfcpp::R_POWERPC_GOT_DTPREL16:
7388       overflow = Reloc::CHECK_LOW_INSN;
7389       break;
7390
7391     case elfcpp::R_POWERPC_ADDR24:
7392     case elfcpp::R_POWERPC_ADDR14:
7393     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7394     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7395     case elfcpp::R_PPC64_ADDR16_DS:
7396     case elfcpp::R_POWERPC_REL24:
7397     case elfcpp::R_PPC_PLTREL24:
7398     case elfcpp::R_PPC_LOCAL24PC:
7399     case elfcpp::R_PPC64_TPREL16_DS:
7400     case elfcpp::R_PPC64_DTPREL16_DS:
7401     case elfcpp::R_PPC64_TOC16_DS:
7402     case elfcpp::R_PPC64_GOT16_DS:
7403     case elfcpp::R_PPC64_SECTOFF_DS:
7404     case elfcpp::R_POWERPC_REL14:
7405     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7406     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7407       overflow = Reloc::CHECK_SIGNED;
7408       break;
7409     }
7410
7411   if (overflow == Reloc::CHECK_LOW_INSN
7412       || overflow == Reloc::CHECK_HIGH_INSN)
7413     {
7414       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7415       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7416
7417       overflow = Reloc::CHECK_SIGNED;
7418       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7419         overflow = Reloc::CHECK_BITFIELD;
7420       else if (overflow == Reloc::CHECK_LOW_INSN
7421                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7422                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7423                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7424                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7425                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7426                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7427         overflow = Reloc::CHECK_UNSIGNED;
7428     }
7429
7430   typename Powerpc_relocate_functions<size, big_endian>::Status status
7431     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7432   switch (r_type)
7433     {
7434     case elfcpp::R_POWERPC_NONE:
7435     case elfcpp::R_POWERPC_TLS:
7436     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7437     case elfcpp::R_POWERPC_GNU_VTENTRY:
7438       break;
7439
7440     case elfcpp::R_PPC64_ADDR64:
7441     case elfcpp::R_PPC64_REL64:
7442     case elfcpp::R_PPC64_TOC:
7443     case elfcpp::R_PPC64_ADDR64_LOCAL:
7444       Reloc::addr64(view, value);
7445       break;
7446
7447     case elfcpp::R_POWERPC_TPREL:
7448     case elfcpp::R_POWERPC_DTPREL:
7449       if (size == 64)
7450         Reloc::addr64(view, value);
7451       else
7452         status = Reloc::addr32(view, value, overflow);
7453       break;
7454
7455     case elfcpp::R_PPC64_UADDR64:
7456       Reloc::addr64_u(view, value);
7457       break;
7458
7459     case elfcpp::R_POWERPC_ADDR32:
7460       status = Reloc::addr32(view, value, overflow);
7461       break;
7462
7463     case elfcpp::R_POWERPC_REL32:
7464     case elfcpp::R_POWERPC_UADDR32:
7465       status = Reloc::addr32_u(view, value, overflow);
7466       break;
7467
7468     case elfcpp::R_POWERPC_ADDR24:
7469     case elfcpp::R_POWERPC_REL24:
7470     case elfcpp::R_PPC_PLTREL24:
7471     case elfcpp::R_PPC_LOCAL24PC:
7472       status = Reloc::addr24(view, value, overflow);
7473       break;
7474
7475     case elfcpp::R_POWERPC_GOT_DTPREL16:
7476     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7477       if (size == 64)
7478         {
7479           status = Reloc::addr16_ds(view, value, overflow);
7480           break;
7481         }
7482     case elfcpp::R_POWERPC_ADDR16:
7483     case elfcpp::R_POWERPC_REL16:
7484     case elfcpp::R_PPC64_TOC16:
7485     case elfcpp::R_POWERPC_GOT16:
7486     case elfcpp::R_POWERPC_SECTOFF:
7487     case elfcpp::R_POWERPC_TPREL16:
7488     case elfcpp::R_POWERPC_DTPREL16:
7489     case elfcpp::R_POWERPC_GOT_TLSGD16:
7490     case elfcpp::R_POWERPC_GOT_TLSLD16:
7491     case elfcpp::R_POWERPC_GOT_TPREL16:
7492     case elfcpp::R_POWERPC_ADDR16_LO:
7493     case elfcpp::R_POWERPC_REL16_LO:
7494     case elfcpp::R_PPC64_TOC16_LO:
7495     case elfcpp::R_POWERPC_GOT16_LO:
7496     case elfcpp::R_POWERPC_SECTOFF_LO:
7497     case elfcpp::R_POWERPC_TPREL16_LO:
7498     case elfcpp::R_POWERPC_DTPREL16_LO:
7499     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7500     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7501     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7502       status = Reloc::addr16(view, value, overflow);
7503       break;
7504
7505     case elfcpp::R_POWERPC_UADDR16:
7506       status = Reloc::addr16_u(view, value, overflow);
7507       break;
7508
7509     case elfcpp::R_PPC64_ADDR16_HIGH:
7510     case elfcpp::R_PPC64_TPREL16_HIGH:
7511     case elfcpp::R_PPC64_DTPREL16_HIGH:
7512       if (size == 32)
7513         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7514         goto unsupp;
7515     case elfcpp::R_POWERPC_ADDR16_HI:
7516     case elfcpp::R_POWERPC_REL16_HI:
7517     case elfcpp::R_PPC64_TOC16_HI:
7518     case elfcpp::R_POWERPC_GOT16_HI:
7519     case elfcpp::R_POWERPC_SECTOFF_HI:
7520     case elfcpp::R_POWERPC_TPREL16_HI:
7521     case elfcpp::R_POWERPC_DTPREL16_HI:
7522     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7523     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7524     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7525     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7526       Reloc::addr16_hi(view, value);
7527       break;
7528
7529     case elfcpp::R_PPC64_ADDR16_HIGHA:
7530     case elfcpp::R_PPC64_TPREL16_HIGHA:
7531     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7532       if (size == 32)
7533         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7534         goto unsupp;
7535     case elfcpp::R_POWERPC_ADDR16_HA:
7536     case elfcpp::R_POWERPC_REL16_HA:
7537     case elfcpp::R_PPC64_TOC16_HA:
7538     case elfcpp::R_POWERPC_GOT16_HA:
7539     case elfcpp::R_POWERPC_SECTOFF_HA:
7540     case elfcpp::R_POWERPC_TPREL16_HA:
7541     case elfcpp::R_POWERPC_DTPREL16_HA:
7542     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7543     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7544     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7545     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7546       Reloc::addr16_ha(view, value);
7547       break;
7548
7549     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7550       if (size == 32)
7551         // R_PPC_EMB_NADDR16_LO
7552         goto unsupp;
7553     case elfcpp::R_PPC64_ADDR16_HIGHER:
7554     case elfcpp::R_PPC64_TPREL16_HIGHER:
7555       Reloc::addr16_hi2(view, value);
7556       break;
7557
7558     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7559       if (size == 32)
7560         // R_PPC_EMB_NADDR16_HI
7561         goto unsupp;
7562     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7563     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7564       Reloc::addr16_ha2(view, value);
7565       break;
7566
7567     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7568       if (size == 32)
7569         // R_PPC_EMB_NADDR16_HA
7570         goto unsupp;
7571     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7572     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7573       Reloc::addr16_hi3(view, value);
7574       break;
7575
7576     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7577       if (size == 32)
7578         // R_PPC_EMB_SDAI16
7579         goto unsupp;
7580     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7581     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7582       Reloc::addr16_ha3(view, value);
7583       break;
7584
7585     case elfcpp::R_PPC64_DTPREL16_DS:
7586     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7587       if (size == 32)
7588         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7589         goto unsupp;
7590     case elfcpp::R_PPC64_TPREL16_DS:
7591     case elfcpp::R_PPC64_TPREL16_LO_DS:
7592       if (size == 32)
7593         // R_PPC_TLSGD, R_PPC_TLSLD
7594         break;
7595     case elfcpp::R_PPC64_ADDR16_DS:
7596     case elfcpp::R_PPC64_ADDR16_LO_DS:
7597     case elfcpp::R_PPC64_TOC16_DS:
7598     case elfcpp::R_PPC64_TOC16_LO_DS:
7599     case elfcpp::R_PPC64_GOT16_DS:
7600     case elfcpp::R_PPC64_GOT16_LO_DS:
7601     case elfcpp::R_PPC64_SECTOFF_DS:
7602     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7603       status = Reloc::addr16_ds(view, value, overflow);
7604       break;
7605
7606     case elfcpp::R_POWERPC_ADDR14:
7607     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7608     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7609     case elfcpp::R_POWERPC_REL14:
7610     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7611     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7612       status = Reloc::addr14(view, value, overflow);
7613       break;
7614
7615     case elfcpp::R_POWERPC_COPY:
7616     case elfcpp::R_POWERPC_GLOB_DAT:
7617     case elfcpp::R_POWERPC_JMP_SLOT:
7618     case elfcpp::R_POWERPC_RELATIVE:
7619     case elfcpp::R_POWERPC_DTPMOD:
7620     case elfcpp::R_PPC64_JMP_IREL:
7621     case elfcpp::R_POWERPC_IRELATIVE:
7622       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7623                              _("unexpected reloc %u in object file"),
7624                              r_type);
7625       break;
7626
7627     case elfcpp::R_PPC_EMB_SDA21:
7628       if (size == 32)
7629         goto unsupp;
7630       else
7631         {
7632           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7633         }
7634       break;
7635
7636     case elfcpp::R_PPC_EMB_SDA2I16:
7637     case elfcpp::R_PPC_EMB_SDA2REL:
7638       if (size == 32)
7639         goto unsupp;
7640       // R_PPC64_TLSGD, R_PPC64_TLSLD
7641       break;
7642
7643     case elfcpp::R_POWERPC_PLT32:
7644     case elfcpp::R_POWERPC_PLTREL32:
7645     case elfcpp::R_POWERPC_PLT16_LO:
7646     case elfcpp::R_POWERPC_PLT16_HI:
7647     case elfcpp::R_POWERPC_PLT16_HA:
7648     case elfcpp::R_PPC_SDAREL16:
7649     case elfcpp::R_POWERPC_ADDR30:
7650     case elfcpp::R_PPC64_PLT64:
7651     case elfcpp::R_PPC64_PLTREL64:
7652     case elfcpp::R_PPC64_PLTGOT16:
7653     case elfcpp::R_PPC64_PLTGOT16_LO:
7654     case elfcpp::R_PPC64_PLTGOT16_HI:
7655     case elfcpp::R_PPC64_PLTGOT16_HA:
7656     case elfcpp::R_PPC64_PLT16_LO_DS:
7657     case elfcpp::R_PPC64_PLTGOT16_DS:
7658     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7659     case elfcpp::R_PPC_EMB_RELSDA:
7660     case elfcpp::R_PPC_TOC16:
7661     default:
7662     unsupp:
7663       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7664                              _("unsupported reloc %u"),
7665                              r_type);
7666       break;
7667     }
7668   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7669     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7670                            _("relocation overflow"));
7671
7672   return true;
7673 }
7674
7675 // Relocate section data.
7676
7677 template<int size, bool big_endian>
7678 void
7679 Target_powerpc<size, big_endian>::relocate_section(
7680     const Relocate_info<size, big_endian>* relinfo,
7681     unsigned int sh_type,
7682     const unsigned char* prelocs,
7683     size_t reloc_count,
7684     Output_section* output_section,
7685     bool needs_special_offset_handling,
7686     unsigned char* view,
7687     Address address,
7688     section_size_type view_size,
7689     const Reloc_symbol_changes* reloc_symbol_changes)
7690 {
7691   typedef Target_powerpc<size, big_endian> Powerpc;
7692   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7693   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7694     Powerpc_comdat_behavior;
7695
7696   gold_assert(sh_type == elfcpp::SHT_RELA);
7697
7698   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7699                          Powerpc_relocate, Powerpc_comdat_behavior>(
7700     relinfo,
7701     this,
7702     prelocs,
7703     reloc_count,
7704     output_section,
7705     needs_special_offset_handling,
7706     view,
7707     address,
7708     view_size,
7709     reloc_symbol_changes);
7710 }
7711
7712 class Powerpc_scan_relocatable_reloc
7713 {
7714 public:
7715   // Return the strategy to use for a local symbol which is not a
7716   // section symbol, given the relocation type.
7717   inline Relocatable_relocs::Reloc_strategy
7718   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7719   {
7720     if (r_type == 0 && r_sym == 0)
7721       return Relocatable_relocs::RELOC_DISCARD;
7722     return Relocatable_relocs::RELOC_COPY;
7723   }
7724
7725   // Return the strategy to use for a local symbol which is a section
7726   // symbol, given the relocation type.
7727   inline Relocatable_relocs::Reloc_strategy
7728   local_section_strategy(unsigned int, Relobj*)
7729   {
7730     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7731   }
7732
7733   // Return the strategy to use for a global symbol, given the
7734   // relocation type, the object, and the symbol index.
7735   inline Relocatable_relocs::Reloc_strategy
7736   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7737   {
7738     if (r_type == elfcpp::R_PPC_PLTREL24)
7739       return Relocatable_relocs::RELOC_SPECIAL;
7740     return Relocatable_relocs::RELOC_COPY;
7741   }
7742 };
7743
7744 // Scan the relocs during a relocatable link.
7745
7746 template<int size, bool big_endian>
7747 void
7748 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7749     Symbol_table* symtab,
7750     Layout* layout,
7751     Sized_relobj_file<size, big_endian>* object,
7752     unsigned int data_shndx,
7753     unsigned int sh_type,
7754     const unsigned char* prelocs,
7755     size_t reloc_count,
7756     Output_section* output_section,
7757     bool needs_special_offset_handling,
7758     size_t local_symbol_count,
7759     const unsigned char* plocal_symbols,
7760     Relocatable_relocs* rr)
7761 {
7762   gold_assert(sh_type == elfcpp::SHT_RELA);
7763
7764   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7765                                 Powerpc_scan_relocatable_reloc>(
7766     symtab,
7767     layout,
7768     object,
7769     data_shndx,
7770     prelocs,
7771     reloc_count,
7772     output_section,
7773     needs_special_offset_handling,
7774     local_symbol_count,
7775     plocal_symbols,
7776     rr);
7777 }
7778
7779 // Emit relocations for a section.
7780 // This is a modified version of the function by the same name in
7781 // target-reloc.h.  Using relocate_special_relocatable for
7782 // R_PPC_PLTREL24 would require duplication of the entire body of the
7783 // loop, so we may as well duplicate the whole thing.
7784
7785 template<int size, bool big_endian>
7786 void
7787 Target_powerpc<size, big_endian>::relocate_relocs(
7788     const Relocate_info<size, big_endian>* relinfo,
7789     unsigned int sh_type,
7790     const unsigned char* prelocs,
7791     size_t reloc_count,
7792     Output_section* output_section,
7793     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7794     const Relocatable_relocs* rr,
7795     unsigned char*,
7796     Address view_address,
7797     section_size_type,
7798     unsigned char* reloc_view,
7799     section_size_type reloc_view_size)
7800 {
7801   gold_assert(sh_type == elfcpp::SHT_RELA);
7802
7803   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7804     Reltype;
7805   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7806     Reltype_write;
7807   const int reloc_size
7808     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7809
7810   Powerpc_relobj<size, big_endian>* const object
7811     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7812   const unsigned int local_count = object->local_symbol_count();
7813   unsigned int got2_shndx = object->got2_shndx();
7814   Address got2_addend = 0;
7815   if (got2_shndx != 0)
7816     {
7817       got2_addend = object->get_output_section_offset(got2_shndx);
7818       gold_assert(got2_addend != invalid_address);
7819     }
7820
7821   unsigned char* pwrite = reloc_view;
7822   bool zap_next = false;
7823   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7824     {
7825       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7826       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7827         continue;
7828
7829       Reltype reloc(prelocs);
7830       Reltype_write reloc_write(pwrite);
7831
7832       Address offset = reloc.get_r_offset();
7833       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7834       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7835       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7836       const unsigned int orig_r_sym = r_sym;
7837       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7838         = reloc.get_r_addend();
7839       const Symbol* gsym = NULL;
7840
7841       if (zap_next)
7842         {
7843           // We could arrange to discard these and other relocs for
7844           // tls optimised sequences in the strategy methods, but for
7845           // now do as BFD ld does.
7846           r_type = elfcpp::R_POWERPC_NONE;
7847           zap_next = false;
7848         }
7849
7850       // Get the new symbol index.
7851       if (r_sym < local_count)
7852         {
7853           switch (strategy)
7854             {
7855             case Relocatable_relocs::RELOC_COPY:
7856             case Relocatable_relocs::RELOC_SPECIAL:
7857               if (r_sym != 0)
7858                 {
7859                   r_sym = object->symtab_index(r_sym);
7860                   gold_assert(r_sym != -1U);
7861                 }
7862               break;
7863
7864             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7865               {
7866                 // We are adjusting a section symbol.  We need to find
7867                 // the symbol table index of the section symbol for
7868                 // the output section corresponding to input section
7869                 // in which this symbol is defined.
7870                 gold_assert(r_sym < local_count);
7871                 bool is_ordinary;
7872                 unsigned int shndx =
7873                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7874                 gold_assert(is_ordinary);
7875                 Output_section* os = object->output_section(shndx);
7876                 gold_assert(os != NULL);
7877                 gold_assert(os->needs_symtab_index());
7878                 r_sym = os->symtab_index();
7879               }
7880               break;
7881
7882             default:
7883               gold_unreachable();
7884             }
7885         }
7886       else
7887         {
7888           gsym = object->global_symbol(r_sym);
7889           gold_assert(gsym != NULL);
7890           if (gsym->is_forwarder())
7891             gsym = relinfo->symtab->resolve_forwards(gsym);
7892
7893           gold_assert(gsym->has_symtab_index());
7894           r_sym = gsym->symtab_index();
7895         }
7896
7897       // Get the new offset--the location in the output section where
7898       // this relocation should be applied.
7899       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7900         offset += offset_in_output_section;
7901       else
7902         {
7903           section_offset_type sot_offset =
7904             convert_types<section_offset_type, Address>(offset);
7905           section_offset_type new_sot_offset =
7906             output_section->output_offset(object, relinfo->data_shndx,
7907                                           sot_offset);
7908           gold_assert(new_sot_offset != -1);
7909           offset = new_sot_offset;
7910         }
7911
7912       // In an object file, r_offset is an offset within the section.
7913       // In an executable or dynamic object, generated by
7914       // --emit-relocs, r_offset is an absolute address.
7915       if (!parameters->options().relocatable())
7916         {
7917           offset += view_address;
7918           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7919             offset -= offset_in_output_section;
7920         }
7921
7922       // Handle the reloc addend based on the strategy.
7923       if (strategy == Relocatable_relocs::RELOC_COPY)
7924         ;
7925       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7926         {
7927           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7928           addend = psymval->value(object, addend);
7929         }
7930       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7931         {
7932           if (addend >= 32768)
7933             addend += got2_addend;
7934         }
7935       else
7936         gold_unreachable();
7937
7938       if (!parameters->options().relocatable())
7939         {
7940           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7941               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7942               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7943               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7944             {
7945               // First instruction of a global dynamic sequence,
7946               // arg setup insn.
7947               const bool final = gsym == NULL || gsym->final_value_is_known();
7948               switch (this->optimize_tls_gd(final))
7949                 {
7950                 case tls::TLSOPT_TO_IE:
7951                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7952                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7953                   break;
7954                 case tls::TLSOPT_TO_LE:
7955                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7956                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7957                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7958                   else
7959                     {
7960                       r_type = elfcpp::R_POWERPC_NONE;
7961                       offset -= 2 * big_endian;
7962                     }
7963                   break;
7964                 default:
7965                   break;
7966                 }
7967             }
7968           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7969                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7970                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7971                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7972             {
7973               // First instruction of a local dynamic sequence,
7974               // arg setup insn.
7975               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7976                 {
7977                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7978                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7979                     {
7980                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7981                       const Output_section* os = relinfo->layout->tls_segment()
7982                         ->first_section();
7983                       gold_assert(os != NULL);
7984                       gold_assert(os->needs_symtab_index());
7985                       r_sym = os->symtab_index();
7986                       addend = dtp_offset;
7987                     }
7988                   else
7989                     {
7990                       r_type = elfcpp::R_POWERPC_NONE;
7991                       offset -= 2 * big_endian;
7992                     }
7993                 }
7994             }
7995           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7996                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7997                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7998                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7999             {
8000               // First instruction of initial exec sequence.
8001               const bool final = gsym == NULL || gsym->final_value_is_known();
8002               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8003                 {
8004                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8005                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8006                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8007                   else
8008                     {
8009                       r_type = elfcpp::R_POWERPC_NONE;
8010                       offset -= 2 * big_endian;
8011                     }
8012                 }
8013             }
8014           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8015                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8016             {
8017               // Second instruction of a global dynamic sequence,
8018               // the __tls_get_addr call
8019               const bool final = gsym == NULL || gsym->final_value_is_known();
8020               switch (this->optimize_tls_gd(final))
8021                 {
8022                 case tls::TLSOPT_TO_IE:
8023                   r_type = elfcpp::R_POWERPC_NONE;
8024                   zap_next = true;
8025                   break;
8026                 case tls::TLSOPT_TO_LE:
8027                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8028                   offset += 2 * big_endian;
8029                   zap_next = true;
8030                   break;
8031                 default:
8032                   break;
8033                 }
8034             }
8035           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8036                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8037             {
8038               // Second instruction of a local dynamic sequence,
8039               // the __tls_get_addr call
8040               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8041                 {
8042                   const Output_section* os = relinfo->layout->tls_segment()
8043                     ->first_section();
8044                   gold_assert(os != NULL);
8045                   gold_assert(os->needs_symtab_index());
8046                   r_sym = os->symtab_index();
8047                   addend = dtp_offset;
8048                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8049                   offset += 2 * big_endian;
8050                   zap_next = true;
8051                 }
8052             }
8053           else if (r_type == elfcpp::R_POWERPC_TLS)
8054             {
8055               // Second instruction of an initial exec sequence
8056               const bool final = gsym == NULL || gsym->final_value_is_known();
8057               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8058                 {
8059                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8060                   offset += 2 * big_endian;
8061                 }
8062             }
8063         }
8064
8065       reloc_write.put_r_offset(offset);
8066       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8067       reloc_write.put_r_addend(addend);
8068
8069       pwrite += reloc_size;
8070     }
8071
8072   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8073               == reloc_view_size);
8074 }
8075
8076 // Return the value to use for a dynamic symbol which requires special
8077 // treatment.  This is how we support equality comparisons of function
8078 // pointers across shared library boundaries, as described in the
8079 // processor specific ABI supplement.
8080
8081 template<int size, bool big_endian>
8082 uint64_t
8083 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8084 {
8085   if (size == 32)
8086     {
8087       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8088       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8089            p != this->stub_tables_.end();
8090            ++p)
8091         {
8092           Address off = (*p)->find_plt_call_entry(gsym);
8093           if (off != invalid_address)
8094             return (*p)->stub_address() + off;
8095         }
8096     }
8097   else if (this->abiversion() >= 2)
8098     {
8099       unsigned int off = this->glink_section()->find_global_entry(gsym);
8100       if (off != (unsigned int)-1)
8101         return this->glink_section()->global_entry_address() + off;
8102     }
8103   gold_unreachable();
8104 }
8105
8106 // Return the PLT address to use for a local symbol.
8107 template<int size, bool big_endian>
8108 uint64_t
8109 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8110     const Relobj* object,
8111     unsigned int symndx) const
8112 {
8113   if (size == 32)
8114     {
8115       const Sized_relobj<size, big_endian>* relobj
8116         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8117       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8118            p != this->stub_tables_.end();
8119            ++p)
8120         {
8121           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8122                                                   symndx);
8123           if (off != invalid_address)
8124             return (*p)->stub_address() + off;
8125         }
8126     }
8127   gold_unreachable();
8128 }
8129
8130 // Return the PLT address to use for a global symbol.
8131 template<int size, bool big_endian>
8132 uint64_t
8133 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8134     const Symbol* gsym) const
8135 {
8136   if (size == 32)
8137     {
8138       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8139            p != this->stub_tables_.end();
8140            ++p)
8141         {
8142           Address off = (*p)->find_plt_call_entry(gsym);
8143           if (off != invalid_address)
8144             return (*p)->stub_address() + off;
8145         }
8146     }
8147   else if (this->abiversion() >= 2)
8148     {
8149       unsigned int off = this->glink_section()->find_global_entry(gsym);
8150       if (off != (unsigned int)-1)
8151         return this->glink_section()->global_entry_address() + off;
8152     }
8153   gold_unreachable();
8154 }
8155
8156 // Return the offset to use for the GOT_INDX'th got entry which is
8157 // for a local tls symbol specified by OBJECT, SYMNDX.
8158 template<int size, bool big_endian>
8159 int64_t
8160 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8161     const Relobj* object,
8162     unsigned int symndx,
8163     unsigned int got_indx) const
8164 {
8165   const Powerpc_relobj<size, big_endian>* ppc_object
8166     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8167   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8168     {
8169       for (Got_type got_type = GOT_TYPE_TLSGD;
8170            got_type <= GOT_TYPE_TPREL;
8171            got_type = Got_type(got_type + 1))
8172         if (ppc_object->local_has_got_offset(symndx, got_type))
8173           {
8174             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8175             if (got_type == GOT_TYPE_TLSGD)
8176               off += size / 8;
8177             if (off == got_indx * (size / 8))
8178               {
8179                 if (got_type == GOT_TYPE_TPREL)
8180                   return -tp_offset;
8181                 else
8182                   return -dtp_offset;
8183               }
8184           }
8185     }
8186   gold_unreachable();
8187 }
8188
8189 // Return the offset to use for the GOT_INDX'th got entry which is
8190 // for global tls symbol GSYM.
8191 template<int size, bool big_endian>
8192 int64_t
8193 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8194     Symbol* gsym,
8195     unsigned int got_indx) const
8196 {
8197   if (gsym->type() == elfcpp::STT_TLS)
8198     {
8199       for (Got_type got_type = GOT_TYPE_TLSGD;
8200            got_type <= GOT_TYPE_TPREL;
8201            got_type = Got_type(got_type + 1))
8202         if (gsym->has_got_offset(got_type))
8203           {
8204             unsigned int off = gsym->got_offset(got_type);
8205             if (got_type == GOT_TYPE_TLSGD)
8206               off += size / 8;
8207             if (off == got_indx * (size / 8))
8208               {
8209                 if (got_type == GOT_TYPE_TPREL)
8210                   return -tp_offset;
8211                 else
8212                   return -dtp_offset;
8213               }
8214           }
8215     }
8216   gold_unreachable();
8217 }
8218
8219 // The selector for powerpc object files.
8220
8221 template<int size, bool big_endian>
8222 class Target_selector_powerpc : public Target_selector
8223 {
8224 public:
8225   Target_selector_powerpc()
8226     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8227                       size, big_endian,
8228                       (size == 64
8229                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8230                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8231                       (size == 64
8232                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8233                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8234   { }
8235
8236   virtual Target*
8237   do_instantiate_target()
8238   { return new Target_powerpc<size, big_endian>(); }
8239 };
8240
8241 Target_selector_powerpc<32, true> target_selector_ppc32;
8242 Target_selector_powerpc<32, false> target_selector_ppc32le;
8243 Target_selector_powerpc<64, true> target_selector_ppc64;
8244 Target_selector_powerpc<64, false> target_selector_ppc64le;
8245
8246 // Instantiate these constants for -O0
8247 template<int size, bool big_endian>
8248 const int Output_data_glink<size, big_endian>::pltresolve_size;
8249 template<int size, bool big_endian>
8250 const typename Output_data_glink<size, big_endian>::Address
8251   Output_data_glink<size, big_endian>::invalid_address;
8252 template<int size, bool big_endian>
8253 const typename Stub_table<size, big_endian>::Address
8254   Stub_table<size, big_endian>::invalid_address;
8255 template<int size, bool big_endian>
8256 const typename Target_powerpc<size, big_endian>::Address
8257   Target_powerpc<size, big_endian>::invalid_address;
8258
8259 } // End anonymous namespace.