* powerpc.cc (class Powerpc_relobj): Move some member functions.
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <algorithm>
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "powerpc.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "errors.h"
42 #include "gc.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 template<int size, bool big_endian>
50 class Output_data_plt_powerpc;
51
52 template<int size, bool big_endian>
53 class Output_data_brlt_powerpc;
54
55 template<int size, bool big_endian>
56 class Output_data_got_powerpc;
57
58 template<int size, bool big_endian>
59 class Output_data_glink;
60
61 template<int size, bool big_endian>
62 class Stub_table;
63
64 template<int size, bool big_endian>
65 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
66 {
67 public:
68   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
69   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
70   typedef Unordered_map<Address, Section_refs> Access_from;
71
72   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
73                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
74     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
75       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
76       opd_ent_(), access_from_map_(), has14_(), stub_table_()
77   { }
78
79   ~Powerpc_relobj()
80   { }
81
82   // The .got2 section shndx.
83   unsigned int
84   got2_shndx() const
85   {
86     if (size == 32)
87       return this->special_;
88     else
89       return 0;
90   }
91
92   // The .opd section shndx.
93   unsigned int
94   opd_shndx() const
95   {
96     if (size == 32)
97       return 0;
98     else
99       return this->special_;
100   }
101
102   // Init OPD entry arrays.
103   void
104   init_opd(size_t opd_size)
105   {
106     size_t count = this->opd_ent_ndx(opd_size);
107     this->opd_ent_.resize(count);
108   }
109
110   // Return section and offset of function entry for .opd + R_OFF.
111   unsigned int
112   get_opd_ent(Address r_off, Address* value = NULL) const
113   {
114     size_t ndx = this->opd_ent_ndx(r_off);
115     gold_assert(ndx < this->opd_ent_.size());
116     gold_assert(this->opd_ent_[ndx].shndx != 0);
117     if (value != NULL)
118       *value = this->opd_ent_[ndx].off;
119     return this->opd_ent_[ndx].shndx;
120   }
121
122   // Set section and offset of function entry for .opd + R_OFF.
123   void
124   set_opd_ent(Address r_off, unsigned int shndx, Address value)
125   {
126     size_t ndx = this->opd_ent_ndx(r_off);
127     gold_assert(ndx < this->opd_ent_.size());
128     this->opd_ent_[ndx].shndx = shndx;
129     this->opd_ent_[ndx].off = value;
130   }
131
132   // Return discard flag for .opd + R_OFF.
133   bool
134   get_opd_discard(Address r_off) const
135   {
136     size_t ndx = this->opd_ent_ndx(r_off);
137     gold_assert(ndx < this->opd_ent_.size());
138     return this->opd_ent_[ndx].discard;
139   }
140
141   // Set discard flag for .opd + R_OFF.
142   void
143   set_opd_discard(Address r_off)
144   {
145     size_t ndx = this->opd_ent_ndx(r_off);
146     gold_assert(ndx < this->opd_ent_.size());
147     this->opd_ent_[ndx].discard = true;
148   }
149
150   bool
151   opd_valid() const
152   { return this->opd_valid_; }
153
154   void
155   set_opd_valid()
156   { this->opd_valid_ = true; }
157
158   // Examine .rela.opd to build info about function entry points.
159   void
160   scan_opd_relocs(size_t reloc_count,
161                   const unsigned char* prelocs,
162                   const unsigned char* plocal_syms);
163
164   // Perform the Sized_relobj_file method, then set up opd info from
165   // .opd relocs.
166   void
167   do_read_relocs(Read_relocs_data*);
168
169   bool
170   do_find_special_sections(Read_symbols_data* sd);
171
172   // Adjust this local symbol value.  Return false if the symbol
173   // should be discarded from the output file.
174   bool
175   do_adjust_local_symbol(Symbol_value<size>* lv) const
176   {
177     if (size == 64 && this->opd_shndx() != 0)
178       {
179         bool is_ordinary;
180         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
181           return true;
182         if (this->get_opd_discard(lv->input_value()))
183           return false;
184       }
185     return true;
186   }
187
188   Access_from*
189   access_from_map()
190   { return &this->access_from_map_; }
191
192   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
193   // section at DST_OFF.
194   void
195   add_reference(Object* src_obj,
196                 unsigned int src_indx,
197                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
198   {
199     Section_id src_id(src_obj, src_indx);
200     this->access_from_map_[dst_off].insert(src_id);
201   }
202
203   // Add a reference to the code section specified by the .opd entry
204   // at DST_OFF
205   void
206   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
207   {
208     size_t ndx = this->opd_ent_ndx(dst_off);
209     if (ndx >= this->opd_ent_.size())
210       this->opd_ent_.resize(ndx + 1);
211     this->opd_ent_[ndx].gc_mark = true;
212   }
213
214   void
215   process_gc_mark(Symbol_table* symtab)
216   {
217     for (size_t i = 0; i < this->opd_ent_.size(); i++)
218       if (this->opd_ent_[i].gc_mark)
219         {
220           unsigned int shndx = this->opd_ent_[i].shndx;
221           symtab->gc()->worklist().push(Section_id(this, shndx));
222         }
223   }
224
225   // Return offset in output GOT section that this object will use
226   // as a TOC pointer.  Won't be just a constant with multi-toc support.
227   Address
228   toc_base_offset() const
229   { return 0x8000; }
230
231   void
232   set_has_small_toc_reloc()
233   { has_small_toc_reloc_ = true; }
234
235   bool
236   has_small_toc_reloc() const
237   { return has_small_toc_reloc_; }
238
239   void
240   set_has_14bit_branch(unsigned int shndx)
241   {
242     if (shndx >= this->has14_.size())
243       this->has14_.resize(shndx + 1);
244     this->has14_[shndx] = true;
245   }
246
247   bool
248   has_14bit_branch(unsigned int shndx) const
249   { return shndx < this->has14_.size() && this->has14_[shndx];  }
250
251   void
252   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
253   {
254     if (shndx >= this->stub_table_.size())
255       this->stub_table_.resize(shndx + 1);
256     this->stub_table_[shndx] = stub_table;
257   }
258
259   Stub_table<size, big_endian>*
260   stub_table(unsigned int shndx)
261   {
262     if (shndx < this->stub_table_.size())
263       return this->stub_table_[shndx];
264     return NULL;
265   }
266
267 private:
268   struct Opd_ent
269   {
270     unsigned int shndx;
271     bool discard : 1;
272     bool gc_mark : 1;
273     Address off;
274   };
275
276   // Return index into opd_ent_ array for .opd entry at OFF.
277   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
278   // apart when the language doesn't use the last 8-byte word, the
279   // environment pointer.  Thus dividing the entry section offset by
280   // 16 will give an index into opd_ent_ that works for either layout
281   // of .opd.  (It leaves some elements of the vector unused when .opd
282   // entries are spaced 24 bytes apart, but we don't know the spacing
283   // until relocations are processed, and in any case it is possible
284   // for an object to have some entries spaced 16 bytes apart and
285   // others 24 bytes apart.)
286   size_t
287   opd_ent_ndx(size_t off) const
288   { return off >> 4;}
289
290   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
291   unsigned int special_;
292
293   // For 64-bit, whether this object uses small model relocs to access
294   // the toc.
295   bool has_small_toc_reloc_;
296
297   // Set at the start of gc_process_relocs, when we know opd_ent_
298   // vector is valid.  The flag could be made atomic and set in
299   // do_read_relocs with memory_order_release and then tested with
300   // memory_order_acquire, potentially resulting in fewer entries in
301   // access_from_map_.
302   bool opd_valid_;
303
304   // The first 8-byte word of an OPD entry gives the address of the
305   // entry point of the function.  Relocatable object files have a
306   // relocation on this word.  The following vector records the
307   // section and offset specified by these relocations.
308   std::vector<Opd_ent> opd_ent_;
309
310   // References made to this object's .opd section when running
311   // gc_process_relocs for another object, before the opd_ent_ vector
312   // is valid for this object.
313   Access_from access_from_map_;
314
315   // Whether input section has a 14-bit branch reloc.
316   std::vector<bool> has14_;
317
318   // The stub table to use for a given input section.
319   std::vector<Stub_table<size, big_endian>*> stub_table_;
320 };
321
322 template<int size, bool big_endian>
323 class Target_powerpc : public Sized_target<size, big_endian>
324 {
325  public:
326   typedef
327     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
328   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
329   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
330   static const Address invalid_address = static_cast<Address>(0) - 1;
331   // Offset of tp and dtp pointers from start of TLS block.
332   static const Address tp_offset = 0x7000;
333   static const Address dtp_offset = 0x8000;
334
335   Target_powerpc()
336     : Sized_target<size, big_endian>(&powerpc_info),
337       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
338       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
339       dynbss_(NULL), tlsld_got_offset_(-1U),
340       stub_tables_(), branch_lookup_table_(), branch_info_(),
341       plt_thread_safe_(false)
342   {
343   }
344
345   // Process the relocations to determine unreferenced sections for
346   // garbage collection.
347   void
348   gc_process_relocs(Symbol_table* symtab,
349                     Layout* layout,
350                     Sized_relobj_file<size, big_endian>* object,
351                     unsigned int data_shndx,
352                     unsigned int sh_type,
353                     const unsigned char* prelocs,
354                     size_t reloc_count,
355                     Output_section* output_section,
356                     bool needs_special_offset_handling,
357                     size_t local_symbol_count,
358                     const unsigned char* plocal_symbols);
359
360   // Scan the relocations to look for symbol adjustments.
361   void
362   scan_relocs(Symbol_table* symtab,
363               Layout* layout,
364               Sized_relobj_file<size, big_endian>* object,
365               unsigned int data_shndx,
366               unsigned int sh_type,
367               const unsigned char* prelocs,
368               size_t reloc_count,
369               Output_section* output_section,
370               bool needs_special_offset_handling,
371               size_t local_symbol_count,
372               const unsigned char* plocal_symbols);
373
374   // Map input .toc section to output .got section.
375   const char*
376   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
377   {
378     if (size == 64 && strcmp(name, ".toc") == 0)
379       {
380         *plen = 4;
381         return ".got";
382       }
383     return NULL;
384   }
385
386   // Provide linker defined save/restore functions.
387   void
388   define_save_restore_funcs(Layout*, Symbol_table*);
389
390   // No stubs unless a final link.
391   bool
392   do_may_relax() const
393   { return !parameters->options().relocatable(); }
394
395   bool
396   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
397
398   void
399   do_plt_fde_location(const Output_data*, unsigned char*,
400                       uint64_t*, off_t*) const;
401
402   // Stash info about branches, for stub generation.
403   void
404   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
405               unsigned int data_shndx, Address r_offset,
406               unsigned int r_type, unsigned int r_sym, Address addend)
407   {
408     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
409     this->branch_info_.push_back(info);
410     if (r_type == elfcpp::R_POWERPC_REL14
411         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
412         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
413       ppc_object->set_has_14bit_branch(data_shndx);
414   }
415
416   Stub_table<size, big_endian>*
417   new_stub_table();
418
419   void
420   do_define_standard_symbols(Symbol_table*, Layout*);
421
422   // Finalize the sections.
423   void
424   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
425
426   // Return the value to use for a dynamic which requires special
427   // treatment.
428   uint64_t
429   do_dynsym_value(const Symbol*) const;
430
431   // Return the PLT address to use for a local symbol.
432   uint64_t
433   do_plt_address_for_local(const Relobj*, unsigned int) const;
434
435   // Return the PLT address to use for a global symbol.
436   uint64_t
437   do_plt_address_for_global(const Symbol*) const;
438
439   // Return the offset to use for the GOT_INDX'th got entry which is
440   // for a local tls symbol specified by OBJECT, SYMNDX.
441   int64_t
442   do_tls_offset_for_local(const Relobj* object,
443                           unsigned int symndx,
444                           unsigned int got_indx) const;
445
446   // Return the offset to use for the GOT_INDX'th got entry which is
447   // for global tls symbol GSYM.
448   int64_t
449   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
450
451   // Relocate a section.
452   void
453   relocate_section(const Relocate_info<size, big_endian>*,
454                    unsigned int sh_type,
455                    const unsigned char* prelocs,
456                    size_t reloc_count,
457                    Output_section* output_section,
458                    bool needs_special_offset_handling,
459                    unsigned char* view,
460                    Address view_address,
461                    section_size_type view_size,
462                    const Reloc_symbol_changes*);
463
464   // Scan the relocs during a relocatable link.
465   void
466   scan_relocatable_relocs(Symbol_table* symtab,
467                           Layout* layout,
468                           Sized_relobj_file<size, big_endian>* object,
469                           unsigned int data_shndx,
470                           unsigned int sh_type,
471                           const unsigned char* prelocs,
472                           size_t reloc_count,
473                           Output_section* output_section,
474                           bool needs_special_offset_handling,
475                           size_t local_symbol_count,
476                           const unsigned char* plocal_symbols,
477                           Relocatable_relocs*);
478
479   // Emit relocations for a section.
480   void
481   relocate_relocs(const Relocate_info<size, big_endian>*,
482                   unsigned int sh_type,
483                   const unsigned char* prelocs,
484                   size_t reloc_count,
485                   Output_section* output_section,
486                   typename elfcpp::Elf_types<size>::Elf_Off
487                     offset_in_output_section,
488                   const Relocatable_relocs*,
489                   unsigned char*,
490                   Address view_address,
491                   section_size_type,
492                   unsigned char* reloc_view,
493                   section_size_type reloc_view_size);
494
495   // Return whether SYM is defined by the ABI.
496   bool
497   do_is_defined_by_abi(const Symbol* sym) const
498   {
499     return strcmp(sym->name(), "__tls_get_addr") == 0;
500   }
501
502   // Return the size of the GOT section.
503   section_size_type
504   got_size() const
505   {
506     gold_assert(this->got_ != NULL);
507     return this->got_->data_size();
508   }
509
510   // Get the PLT section.
511   const Output_data_plt_powerpc<size, big_endian>*
512   plt_section() const
513   {
514     gold_assert(this->plt_ != NULL);
515     return this->plt_;
516   }
517
518   // Get the IPLT section.
519   const Output_data_plt_powerpc<size, big_endian>*
520   iplt_section() const
521   {
522     gold_assert(this->iplt_ != NULL);
523     return this->iplt_;
524   }
525
526   // Get the .glink section.
527   const Output_data_glink<size, big_endian>*
528   glink_section() const
529   {
530     gold_assert(this->glink_ != NULL);
531     return this->glink_;
532   }
533
534   bool has_glink() const
535   { return this->glink_ != NULL; }
536
537   // Get the GOT section.
538   const Output_data_got_powerpc<size, big_endian>*
539   got_section() const
540   {
541     gold_assert(this->got_ != NULL);
542     return this->got_;
543   }
544
545   // Get the GOT section, creating it if necessary.
546   Output_data_got_powerpc<size, big_endian>*
547   got_section(Symbol_table*, Layout*);
548
549   Object*
550   do_make_elf_object(const std::string&, Input_file*, off_t,
551                      const elfcpp::Ehdr<size, big_endian>&);
552
553   // Return the number of entries in the GOT.
554   unsigned int
555   got_entry_count() const
556   {
557     if (this->got_ == NULL)
558       return 0;
559     return this->got_size() / (size / 8);
560   }
561
562   // Return the number of entries in the PLT.
563   unsigned int
564   plt_entry_count() const;
565
566   // Return the offset of the first non-reserved PLT entry.
567   unsigned int
568   first_plt_entry_offset() const;
569
570   // Return the size of each PLT entry.
571   unsigned int
572   plt_entry_size() const;
573
574   // Add any special sections for this symbol to the gc work list.
575   // For powerpc64, this adds the code section of a function
576   // descriptor.
577   void
578   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
579
580   // Handle target specific gc actions when adding a gc reference from
581   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
582   // and DST_OFF.  For powerpc64, this adds a referenc to the code
583   // section of a function descriptor.
584   void
585   do_gc_add_reference(Symbol_table* symtab,
586                       Object* src_obj,
587                       unsigned int src_shndx,
588                       Object* dst_obj,
589                       unsigned int dst_shndx,
590                       Address dst_off) const;
591
592   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
593   const Stub_tables&
594   stub_tables() const
595   { return this->stub_tables_; }
596
597   const Output_data_brlt_powerpc<size, big_endian>*
598   brlt_section() const
599   { return this->brlt_section_; }
600
601   void
602   add_branch_lookup_table(Address to)
603   {
604     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
605     this->branch_lookup_table_.insert(std::make_pair(to, off));
606   }
607
608   Address
609   find_branch_lookup_table(Address to)
610   {
611     typename Branch_lookup_table::const_iterator p
612       = this->branch_lookup_table_.find(to);
613     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
614   }
615
616   void
617   write_branch_lookup_table(unsigned char *oview)
618   {
619     for (typename Branch_lookup_table::const_iterator p
620            = this->branch_lookup_table_.begin();
621          p != this->branch_lookup_table_.end();
622          ++p)
623       {
624         elfcpp::Swap<32, big_endian>::writeval(oview + p->second, p->first);
625       }
626   }
627
628   bool
629   plt_thread_safe() const
630   { return this->plt_thread_safe_; }
631
632  private:
633
634   class Track_tls
635   {
636   public:
637     enum Tls_get_addr
638     {
639       NOT_EXPECTED = 0,
640       EXPECTED = 1,
641       SKIP = 2,
642       NORMAL = 3
643     };
644
645     Track_tls()
646       : tls_get_addr_(NOT_EXPECTED),
647         relinfo_(NULL), relnum_(0), r_offset_(0)
648     { }
649
650     ~Track_tls()
651     {
652       if (this->tls_get_addr_ != NOT_EXPECTED)
653         this->missing();
654     }
655
656     void
657     missing(void)
658     {
659       if (this->relinfo_ != NULL)
660         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
661                                _("missing expected __tls_get_addr call"));
662     }
663
664     void
665     expect_tls_get_addr_call(
666         const Relocate_info<size, big_endian>* relinfo,
667         size_t relnum,
668         Address r_offset)
669     {
670       this->tls_get_addr_ = EXPECTED;
671       this->relinfo_ = relinfo;
672       this->relnum_ = relnum;
673       this->r_offset_ = r_offset;
674     }
675
676     void
677     expect_tls_get_addr_call()
678     { this->tls_get_addr_ = EXPECTED; }
679
680     void
681     skip_next_tls_get_addr_call()
682     {this->tls_get_addr_ = SKIP; }
683
684     Tls_get_addr
685     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
686     {
687       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
688                            || r_type == elfcpp::R_PPC_PLTREL24)
689                           && gsym != NULL
690                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
691       Tls_get_addr last_tls = this->tls_get_addr_;
692       this->tls_get_addr_ = NOT_EXPECTED;
693       if (is_tls_call && last_tls != EXPECTED)
694         return last_tls;
695       else if (!is_tls_call && last_tls != NOT_EXPECTED)
696         {
697           this->missing();
698           return EXPECTED;
699         }
700       return NORMAL;
701     }
702
703   private:
704     // What we're up to regarding calls to __tls_get_addr.
705     // On powerpc, the branch and link insn making a call to
706     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
707     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
708     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
709     // The marker relocation always comes first, and has the same
710     // symbol as the reloc on the insn setting up the __tls_get_addr
711     // argument.  This ties the arg setup insn with the call insn,
712     // allowing ld to safely optimize away the call.  We check that
713     // every call to __tls_get_addr has a marker relocation, and that
714     // every marker relocation is on a call to __tls_get_addr.
715     Tls_get_addr tls_get_addr_;
716     // Info about the last reloc for error message.
717     const Relocate_info<size, big_endian>* relinfo_;
718     size_t relnum_;
719     Address r_offset_;
720   };
721
722   // The class which scans relocations.
723   class Scan : protected Track_tls
724   {
725   public:
726     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
727
728     Scan()
729       : Track_tls(), issued_non_pic_error_(false)
730     { }
731
732     static inline int
733     get_reference_flags(unsigned int r_type);
734
735     inline void
736     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
737           Sized_relobj_file<size, big_endian>* object,
738           unsigned int data_shndx,
739           Output_section* output_section,
740           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
741           const elfcpp::Sym<size, big_endian>& lsym,
742           bool is_discarded);
743
744     inline void
745     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
746            Sized_relobj_file<size, big_endian>* object,
747            unsigned int data_shndx,
748            Output_section* output_section,
749            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
750            Symbol* gsym);
751
752     inline bool
753     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
754                                         Target_powerpc* ,
755                                         Sized_relobj_file<size, big_endian>* ,
756                                         unsigned int ,
757                                         Output_section* ,
758                                         const elfcpp::Rela<size, big_endian>& ,
759                                         unsigned int ,
760                                         const elfcpp::Sym<size, big_endian>&)
761     { return false; }
762
763     inline bool
764     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
765                                          Target_powerpc* ,
766                                          Sized_relobj_file<size, big_endian>* ,
767                                          unsigned int ,
768                                          Output_section* ,
769                                          const elfcpp::Rela<size,
770                                                             big_endian>& ,
771                                          unsigned int , Symbol*)
772     { return false; }
773
774   private:
775     static void
776     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
777                             unsigned int r_type);
778
779     static void
780     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
781                              unsigned int r_type, Symbol*);
782
783     static void
784     generate_tls_call(Symbol_table* symtab, Layout* layout,
785                       Target_powerpc* target);
786
787     void
788     check_non_pic(Relobj*, unsigned int r_type);
789
790     bool
791     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
792                               unsigned int r_type);
793
794     // Whether we have issued an error about a non-PIC compilation.
795     bool issued_non_pic_error_;
796   };
797
798   Address
799   symval_for_branch(const Symbol_table* symtab, Address value,
800                     const Sized_symbol<size>* gsym,
801                     Powerpc_relobj<size, big_endian>* object,
802                     unsigned int *dest_shndx);
803
804   // The class which implements relocation.
805   class Relocate : protected Track_tls
806   {
807    public:
808     // Use 'at' branch hints when true, 'y' when false.
809     // FIXME maybe: set this with an option.
810     static const bool is_isa_v2 = true;
811
812     Relocate()
813       : Track_tls()
814     { }
815
816     // Do a relocation.  Return false if the caller should not issue
817     // any warnings about this relocation.
818     inline bool
819     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
820              Output_section*, size_t relnum,
821              const elfcpp::Rela<size, big_endian>&,
822              unsigned int r_type, const Sized_symbol<size>*,
823              const Symbol_value<size>*,
824              unsigned char*,
825              typename elfcpp::Elf_types<size>::Elf_Addr,
826              section_size_type);
827   };
828
829   class Relocate_comdat_behavior
830   {
831    public:
832     // Decide what the linker should do for relocations that refer to
833     // discarded comdat sections.
834     inline Comdat_behavior
835     get(const char* name)
836     {
837       gold::Default_comdat_behavior default_behavior;
838       Comdat_behavior ret = default_behavior.get(name);
839       if (ret == CB_WARNING)
840         {
841           if (size == 32
842               && (strcmp(name, ".fixup") == 0
843                   || strcmp(name, ".got2") == 0))
844             ret = CB_IGNORE;
845           if (size == 64
846               && (strcmp(name, ".opd") == 0
847                   || strcmp(name, ".toc") == 0
848                   || strcmp(name, ".toc1") == 0))
849             ret = CB_IGNORE;
850         }
851       return ret;
852     }
853   };
854
855   // A class which returns the size required for a relocation type,
856   // used while scanning relocs during a relocatable link.
857   class Relocatable_size_for_reloc
858   {
859    public:
860     unsigned int
861     get_size_for_reloc(unsigned int, Relobj*)
862     {
863       gold_unreachable();
864       return 0;
865     }
866   };
867
868   // Optimize the TLS relocation type based on what we know about the
869   // symbol.  IS_FINAL is true if the final address of this symbol is
870   // known at link time.
871
872   tls::Tls_optimization
873   optimize_tls_gd(bool is_final)
874   {
875     // If we are generating a shared library, then we can't do anything
876     // in the linker.
877     if (parameters->options().shared())
878       return tls::TLSOPT_NONE;
879
880     if (!is_final)
881       return tls::TLSOPT_TO_IE;
882     return tls::TLSOPT_TO_LE;
883   }
884
885   tls::Tls_optimization
886   optimize_tls_ld()
887   {
888     if (parameters->options().shared())
889       return tls::TLSOPT_NONE;
890
891     return tls::TLSOPT_TO_LE;
892   }
893
894   tls::Tls_optimization
895   optimize_tls_ie(bool is_final)
896   {
897     if (!is_final || parameters->options().shared())
898       return tls::TLSOPT_NONE;
899
900     return tls::TLSOPT_TO_LE;
901   }
902
903   // Create glink.
904   void
905   make_glink_section(Layout*);
906
907   // Create the PLT section.
908   void
909   make_plt_section(Symbol_table*, Layout*);
910
911   void
912   make_iplt_section(Symbol_table*, Layout*);
913
914   void
915   make_brlt_section(Layout*);
916
917   // Create a PLT entry for a global symbol.
918   void
919   make_plt_entry(Symbol_table*, Layout*, Symbol*);
920
921   // Create a PLT entry for a local IFUNC symbol.
922   void
923   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
924                              Sized_relobj_file<size, big_endian>*,
925                              unsigned int);
926
927
928   // Create a GOT entry for local dynamic __tls_get_addr.
929   unsigned int
930   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
931                    Sized_relobj_file<size, big_endian>* object);
932
933   unsigned int
934   tlsld_got_offset() const
935   {
936     return this->tlsld_got_offset_;
937   }
938
939   // Get the dynamic reloc section, creating it if necessary.
940   Reloc_section*
941   rela_dyn_section(Layout*);
942
943   // Copy a relocation against a global symbol.
944   void
945   copy_reloc(Symbol_table* symtab, Layout* layout,
946              Sized_relobj_file<size, big_endian>* object,
947              unsigned int shndx, Output_section* output_section,
948              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
949   {
950     this->copy_relocs_.copy_reloc(symtab, layout,
951                                   symtab->get_sized_symbol<size>(sym),
952                                   object, shndx, output_section,
953                                   reloc, this->rela_dyn_section(layout));
954   }
955
956   // Look over all the input sections, deciding where to place stub.
957   void
958   group_sections(Layout*, const Task*);
959
960   // Sort output sections by address.
961   struct Sort_sections
962   {
963     bool
964     operator()(const Output_section* sec1, const Output_section* sec2)
965     { return sec1->address() < sec2->address(); }
966   };
967
968   class Branch_info
969   {
970    public:
971     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
972                 unsigned int data_shndx,
973                 Address r_offset,
974                 unsigned int r_type,
975                 unsigned int r_sym,
976                 Address addend)
977       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
978         r_type_(r_type), r_sym_(r_sym), addend_(addend)
979     { }
980
981     ~Branch_info()
982     { }
983
984     // If this branch needs a plt call stub, or a long branch stub, make one.
985     void
986     make_stub(Stub_table<size, big_endian>*,
987               Stub_table<size, big_endian>*,
988               Symbol_table*) const;
989
990    private:
991     // The branch location..
992     Powerpc_relobj<size, big_endian>* object_;
993     unsigned int shndx_;
994     Address offset_;
995     // ..and the branch type and destination.
996     unsigned int r_type_;
997     unsigned int r_sym_;
998     Address addend_;
999   };
1000
1001   // Information about this specific target which we pass to the
1002   // general Target structure.
1003   static Target::Target_info powerpc_info;
1004
1005   // The types of GOT entries needed for this platform.
1006   // These values are exposed to the ABI in an incremental link.
1007   // Do not renumber existing values without changing the version
1008   // number of the .gnu_incremental_inputs section.
1009   enum Got_type
1010   {
1011     GOT_TYPE_STANDARD,
1012     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1013     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1014     GOT_TYPE_TPREL      // entry for @got@tprel
1015   };
1016
1017   // The GOT section.
1018   Output_data_got_powerpc<size, big_endian>* got_;
1019   // The PLT section.
1020   Output_data_plt_powerpc<size, big_endian>* plt_;
1021   // The IPLT section.
1022   Output_data_plt_powerpc<size, big_endian>* iplt_;
1023   // Section holding long branch destinations.
1024   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1025   // The .glink section.
1026   Output_data_glink<size, big_endian>* glink_;
1027   // The dynamic reloc section.
1028   Reloc_section* rela_dyn_;
1029   // Relocs saved to avoid a COPY reloc.
1030   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1031   // Space for variables copied with a COPY reloc.
1032   Output_data_space* dynbss_;
1033   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1034   unsigned int tlsld_got_offset_;
1035
1036   Stub_tables stub_tables_;
1037   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1038   Branch_lookup_table branch_lookup_table_;
1039
1040   typedef std::vector<Branch_info> Branches;
1041   Branches branch_info_;
1042
1043   bool plt_thread_safe_;
1044 };
1045
1046 template<>
1047 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1048 {
1049   32,                   // size
1050   true,                 // is_big_endian
1051   elfcpp::EM_PPC,       // machine_code
1052   false,                // has_make_symbol
1053   false,                // has_resolve
1054   false,                // has_code_fill
1055   true,                 // is_default_stack_executable
1056   false,                // can_icf_inline_merge_sections
1057   '\0',                 // wrap_char
1058   "/usr/lib/ld.so.1",   // dynamic_linker
1059   0x10000000,           // default_text_segment_address
1060   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1061   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1062   false,                // isolate_execinstr
1063   0,                    // rosegment_gap
1064   elfcpp::SHN_UNDEF,    // small_common_shndx
1065   elfcpp::SHN_UNDEF,    // large_common_shndx
1066   0,                    // small_common_section_flags
1067   0,                    // large_common_section_flags
1068   NULL,                 // attributes_section
1069   NULL                  // attributes_vendor
1070 };
1071
1072 template<>
1073 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1074 {
1075   32,                   // size
1076   false,                // is_big_endian
1077   elfcpp::EM_PPC,       // machine_code
1078   false,                // has_make_symbol
1079   false,                // has_resolve
1080   false,                // has_code_fill
1081   true,                 // is_default_stack_executable
1082   false,                // can_icf_inline_merge_sections
1083   '\0',                 // wrap_char
1084   "/usr/lib/ld.so.1",   // dynamic_linker
1085   0x10000000,           // default_text_segment_address
1086   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1087   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1088   false,                // isolate_execinstr
1089   0,                    // rosegment_gap
1090   elfcpp::SHN_UNDEF,    // small_common_shndx
1091   elfcpp::SHN_UNDEF,    // large_common_shndx
1092   0,                    // small_common_section_flags
1093   0,                    // large_common_section_flags
1094   NULL,                 // attributes_section
1095   NULL                  // attributes_vendor
1096 };
1097
1098 template<>
1099 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1100 {
1101   64,                   // size
1102   true,                 // is_big_endian
1103   elfcpp::EM_PPC64,     // machine_code
1104   false,                // has_make_symbol
1105   false,                // has_resolve
1106   false,                // has_code_fill
1107   true,                 // is_default_stack_executable
1108   false,                // can_icf_inline_merge_sections
1109   '\0',                 // wrap_char
1110   "/usr/lib/ld.so.1",   // dynamic_linker
1111   0x10000000,           // default_text_segment_address
1112   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1113   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1114   false,                // isolate_execinstr
1115   0,                    // rosegment_gap
1116   elfcpp::SHN_UNDEF,    // small_common_shndx
1117   elfcpp::SHN_UNDEF,    // large_common_shndx
1118   0,                    // small_common_section_flags
1119   0,                    // large_common_section_flags
1120   NULL,                 // attributes_section
1121   NULL                  // attributes_vendor
1122 };
1123
1124 template<>
1125 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1126 {
1127   64,                   // size
1128   false,                // is_big_endian
1129   elfcpp::EM_PPC64,     // machine_code
1130   false,                // has_make_symbol
1131   false,                // has_resolve
1132   false,                // has_code_fill
1133   true,                 // is_default_stack_executable
1134   false,                // can_icf_inline_merge_sections
1135   '\0',                 // wrap_char
1136   "/usr/lib/ld.so.1",   // dynamic_linker
1137   0x10000000,           // default_text_segment_address
1138   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1139   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1140   false,                // isolate_execinstr
1141   0,                    // rosegment_gap
1142   elfcpp::SHN_UNDEF,    // small_common_shndx
1143   elfcpp::SHN_UNDEF,    // large_common_shndx
1144   0,                    // small_common_section_flags
1145   0,                    // large_common_section_flags
1146   NULL,                 // attributes_section
1147   NULL                  // attributes_vendor
1148 };
1149
1150 inline bool
1151 is_branch_reloc(unsigned int r_type)
1152 {
1153   return (r_type == elfcpp::R_POWERPC_REL24
1154           || r_type == elfcpp::R_PPC_PLTREL24
1155           || r_type == elfcpp::R_PPC_LOCAL24PC
1156           || r_type == elfcpp::R_POWERPC_REL14
1157           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1158           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1159           || r_type == elfcpp::R_POWERPC_ADDR24
1160           || r_type == elfcpp::R_POWERPC_ADDR14
1161           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1162           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1163 }
1164
1165 // If INSN is an opcode that may be used with an @tls operand, return
1166 // the transformed insn for TLS optimisation, otherwise return 0.  If
1167 // REG is non-zero only match an insn with RB or RA equal to REG.
1168 uint32_t
1169 at_tls_transform(uint32_t insn, unsigned int reg)
1170 {
1171   if ((insn & (0x3f << 26)) != 31 << 26)
1172     return 0;
1173
1174   unsigned int rtra;
1175   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1176     rtra = insn & ((1 << 26) - (1 << 16));
1177   else if (((insn >> 16) & 0x1f) == reg)
1178     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1179   else
1180     return 0;
1181
1182   if ((insn & (0x3ff << 1)) == 266 << 1)
1183     // add -> addi
1184     insn = 14 << 26;
1185   else if ((insn & (0x1f << 1)) == 23 << 1
1186            && ((insn & (0x1f << 6)) < 14 << 6
1187                || ((insn & (0x1f << 6)) >= 16 << 6
1188                    && (insn & (0x1f << 6)) < 24 << 6)))
1189     // load and store indexed -> dform
1190     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1191   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1192     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1193     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1194   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1195     // lwax -> lwa
1196     insn = (58 << 26) | 2;
1197   else
1198     return 0;
1199   insn |= rtra;
1200   return insn;
1201 }
1202
1203 // Modified version of symtab.h class Symbol member
1204 // Given a direct absolute or pc-relative static relocation against
1205 // the global symbol, this function returns whether a dynamic relocation
1206 // is needed.
1207
1208 template<int size>
1209 bool
1210 needs_dynamic_reloc(const Symbol* gsym, int flags)
1211 {
1212   // No dynamic relocations in a static link!
1213   if (parameters->doing_static_link())
1214     return false;
1215
1216   // A reference to an undefined symbol from an executable should be
1217   // statically resolved to 0, and does not need a dynamic relocation.
1218   // This matches gnu ld behavior.
1219   if (gsym->is_undefined() && !parameters->options().shared())
1220     return false;
1221
1222   // A reference to an absolute symbol does not need a dynamic relocation.
1223   if (gsym->is_absolute())
1224     return false;
1225
1226   // An absolute reference within a position-independent output file
1227   // will need a dynamic relocation.
1228   if ((flags & Symbol::ABSOLUTE_REF)
1229       && parameters->options().output_is_position_independent())
1230     return true;
1231
1232   // A function call that can branch to a local PLT entry does not need
1233   // a dynamic relocation.
1234   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1235     return false;
1236
1237   // A reference to any PLT entry in a non-position-independent executable
1238   // does not need a dynamic relocation.
1239   // Except due to having function descriptors on powerpc64 we don't define
1240   // functions to their plt code in an executable, so this doesn't apply.
1241   if (size == 32
1242       && !parameters->options().output_is_position_independent()
1243       && gsym->has_plt_offset())
1244     return false;
1245
1246   // A reference to a symbol defined in a dynamic object or to a
1247   // symbol that is preemptible will need a dynamic relocation.
1248   if (gsym->is_from_dynobj()
1249       || gsym->is_undefined()
1250       || gsym->is_preemptible())
1251     return true;
1252
1253   // For all other cases, return FALSE.
1254   return false;
1255 }
1256
1257 // Modified version of symtab.h class Symbol member
1258 // Whether we should use the PLT offset associated with a symbol for
1259 // a relocation.  FLAGS is a set of Reference_flags.
1260
1261 template<int size>
1262 bool
1263 use_plt_offset(const Symbol* gsym, int flags)
1264 {
1265   // If the symbol doesn't have a PLT offset, then naturally we
1266   // don't want to use it.
1267   if (!gsym->has_plt_offset())
1268     return false;
1269
1270   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1271   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1272     return true;
1273
1274   // If we are going to generate a dynamic relocation, then we will
1275   // wind up using that, so no need to use the PLT entry.
1276   if (needs_dynamic_reloc<size>(gsym, flags))
1277     return false;
1278
1279   // If the symbol is from a dynamic object, we need to use the PLT
1280   // entry.
1281   if (gsym->is_from_dynobj())
1282     return true;
1283
1284   // If we are generating a shared object, and this symbol is
1285   // undefined or preemptible, we need to use the PLT entry.
1286   if (parameters->options().shared()
1287       && (gsym->is_undefined() || gsym->is_preemptible()))
1288     return true;
1289
1290   // If this is a call to a weak undefined symbol, we need to use
1291   // the PLT entry; the symbol may be defined by a library loaded
1292   // at runtime.
1293   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1294     return true;
1295
1296   // Otherwise we can use the regular definition.
1297   return false;
1298 }
1299
1300 template<int size, bool big_endian>
1301 class Powerpc_relocate_functions
1302 {
1303 public:
1304   enum Overflow_check
1305   {
1306     CHECK_NONE,
1307     CHECK_SIGNED,
1308     CHECK_BITFIELD
1309   };
1310
1311   enum Status
1312   {
1313     STATUS_OK,
1314     STATUS_OVERFLOW
1315   };
1316
1317 private:
1318   typedef Powerpc_relocate_functions<size, big_endian> This;
1319   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1320
1321   template<int valsize>
1322   static inline bool
1323   has_overflow_signed(Address value)
1324   {
1325     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1326     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1327     limit <<= ((valsize - 1) >> 1);
1328     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1329     return value + limit > (limit << 1) - 1;
1330   }
1331
1332   template<int valsize>
1333   static inline bool
1334   has_overflow_bitfield(Address value)
1335   {
1336     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1337     limit <<= ((valsize - 1) >> 1);
1338     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1339     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1340   }
1341
1342   template<int valsize>
1343   static inline Status
1344   overflowed(Address value, Overflow_check overflow)
1345   {
1346     if (overflow == CHECK_SIGNED)
1347       {
1348         if (has_overflow_signed<valsize>(value))
1349           return STATUS_OVERFLOW;
1350       }
1351     else if (overflow == CHECK_BITFIELD)
1352       {
1353         if (has_overflow_bitfield<valsize>(value))
1354           return STATUS_OVERFLOW;
1355       }
1356     return STATUS_OK;
1357   }
1358
1359   // Do a simple RELA relocation
1360   template<int valsize>
1361   static inline Status
1362   rela(unsigned char* view, Address value, Overflow_check overflow)
1363   {
1364     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1365     Valtype* wv = reinterpret_cast<Valtype*>(view);
1366     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1367     return overflowed<valsize>(value, overflow);
1368   }
1369
1370   template<int valsize>
1371   static inline Status
1372   rela(unsigned char* view,
1373        unsigned int right_shift,
1374        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1375        Address value,
1376        Overflow_check overflow)
1377   {
1378     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1379     Valtype* wv = reinterpret_cast<Valtype*>(view);
1380     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1381     Valtype reloc = value >> right_shift;
1382     val &= ~dst_mask;
1383     reloc &= dst_mask;
1384     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1385     return overflowed<valsize>(value >> right_shift, overflow);
1386   }
1387
1388   // Do a simple RELA relocation, unaligned.
1389   template<int valsize>
1390   static inline Status
1391   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1392   {
1393     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1394     return overflowed<valsize>(value, overflow);
1395   }
1396
1397   template<int valsize>
1398   static inline Status
1399   rela_ua(unsigned char* view,
1400           unsigned int right_shift,
1401           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1402           Address value,
1403           Overflow_check overflow)
1404   {
1405     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1406       Valtype;
1407     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1408     Valtype reloc = value >> right_shift;
1409     val &= ~dst_mask;
1410     reloc &= dst_mask;
1411     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1412     return overflowed<valsize>(value >> right_shift, overflow);
1413   }
1414
1415 public:
1416   // R_PPC64_ADDR64: (Symbol + Addend)
1417   static inline void
1418   addr64(unsigned char* view, Address value)
1419   { This::template rela<64>(view, value, CHECK_NONE); }
1420
1421   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1422   static inline void
1423   addr64_u(unsigned char* view, Address value)
1424   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1425
1426   // R_POWERPC_ADDR32: (Symbol + Addend)
1427   static inline Status
1428   addr32(unsigned char* view, Address value, Overflow_check overflow)
1429   { return This::template rela<32>(view, value, overflow); }
1430
1431   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1432   static inline Status
1433   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1434   { return This::template rela_ua<32>(view, value, overflow); }
1435
1436   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1437   static inline Status
1438   addr24(unsigned char* view, Address value, Overflow_check overflow)
1439   {
1440     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1441     if (overflow != CHECK_NONE && (value & 3) != 0)
1442       stat = STATUS_OVERFLOW;
1443     return stat;
1444   }
1445
1446   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1447   static inline Status
1448   addr16(unsigned char* view, Address value, Overflow_check overflow)
1449   { return This::template rela<16>(view, value, overflow); }
1450
1451   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1452   static inline Status
1453   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1454   { return This::template rela_ua<16>(view, value, overflow); }
1455
1456   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1457   static inline Status
1458   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1459   {
1460     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1461     if (overflow != CHECK_NONE && (value & 3) != 0)
1462       stat = STATUS_OVERFLOW;
1463     return stat;
1464   }
1465
1466   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1467   static inline void
1468   addr16_hi(unsigned char* view, Address value)
1469   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1470
1471   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1472   static inline void
1473   addr16_ha(unsigned char* view, Address value)
1474   { This::addr16_hi(view, value + 0x8000); }
1475
1476   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1477   static inline void
1478   addr16_hi2(unsigned char* view, Address value)
1479   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1480
1481   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1482   static inline void
1483   addr16_ha2(unsigned char* view, Address value)
1484   { This::addr16_hi2(view, value + 0x8000); }
1485
1486   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1487   static inline void
1488   addr16_hi3(unsigned char* view, Address value)
1489   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1490
1491   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1492   static inline void
1493   addr16_ha3(unsigned char* view, Address value)
1494   { This::addr16_hi3(view, value + 0x8000); }
1495
1496   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1497   static inline Status
1498   addr14(unsigned char* view, Address value, Overflow_check overflow)
1499   {
1500     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1501     if (overflow != CHECK_NONE && (value & 3) != 0)
1502       stat = STATUS_OVERFLOW;
1503     return stat;
1504   }
1505 };
1506
1507 // Stash away the index of .got2 or .opd in a relocatable object, if
1508 // such a section exists.
1509
1510 template<int size, bool big_endian>
1511 bool
1512 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1513     Read_symbols_data* sd)
1514 {
1515   const unsigned char* const pshdrs = sd->section_headers->data();
1516   const unsigned char* namesu = sd->section_names->data();
1517   const char* names = reinterpret_cast<const char*>(namesu);
1518   section_size_type names_size = sd->section_names_size;
1519   const unsigned char* s;
1520
1521   s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1522                       names, names_size, NULL);
1523   if (s != NULL)
1524     {
1525       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1526       this->special_ = ndx;
1527     }
1528   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1529 }
1530
1531 // Examine .rela.opd to build info about function entry points.
1532
1533 template<int size, bool big_endian>
1534 void
1535 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1536     size_t reloc_count,
1537     const unsigned char* prelocs,
1538     const unsigned char* plocal_syms)
1539 {
1540   if (size == 64)
1541     {
1542       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1543         Reltype;
1544       const int reloc_size
1545         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1546       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1547       Address expected_off = 0;
1548       bool regular = true;
1549       unsigned int opd_ent_size = 0;
1550
1551       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1552         {
1553           Reltype reloc(prelocs);
1554           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1555             = reloc.get_r_info();
1556           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1557           if (r_type == elfcpp::R_PPC64_ADDR64)
1558             {
1559               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1560               typename elfcpp::Elf_types<size>::Elf_Addr value;
1561               bool is_ordinary;
1562               unsigned int shndx;
1563               if (r_sym < this->local_symbol_count())
1564                 {
1565                   typename elfcpp::Sym<size, big_endian>
1566                     lsym(plocal_syms + r_sym * sym_size);
1567                   shndx = lsym.get_st_shndx();
1568                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1569                   value = lsym.get_st_value();
1570                 }
1571               else
1572                 shndx = this->symbol_section_and_value(r_sym, &value,
1573                                                        &is_ordinary);
1574               this->set_opd_ent(reloc.get_r_offset(), shndx,
1575                                 value + reloc.get_r_addend());
1576               if (i == 2)
1577                 {
1578                   expected_off = reloc.get_r_offset();
1579                   opd_ent_size = expected_off;
1580                 }
1581               else if (expected_off != reloc.get_r_offset())
1582                 regular = false;
1583               expected_off += opd_ent_size;
1584             }
1585           else if (r_type == elfcpp::R_PPC64_TOC)
1586             {
1587               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1588                 regular = false;
1589             }
1590           else
1591             {
1592               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1593                            this->name().c_str(), r_type);
1594               regular = false;
1595             }
1596         }
1597       if (reloc_count <= 2)
1598         opd_ent_size = this->section_size(this->opd_shndx());
1599       if (opd_ent_size != 24 && opd_ent_size != 16)
1600         regular = false;
1601       if (!regular)
1602         {
1603           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1604                        this->name().c_str());
1605           opd_ent_size = 0;
1606         }
1607     }
1608 }
1609
1610 template<int size, bool big_endian>
1611 void
1612 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1613 {
1614   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1615   if (size == 64)
1616     {
1617       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1618            p != rd->relocs.end();
1619            ++p)
1620         {
1621           if (p->data_shndx == this->opd_shndx())
1622             {
1623               uint64_t opd_size = this->section_size(this->opd_shndx());
1624               gold_assert(opd_size == static_cast<size_t>(opd_size));
1625               if (opd_size != 0)
1626                 {
1627                   this->init_opd(opd_size);
1628                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1629                                         rd->local_symbols->data());
1630                 }
1631               break;
1632             }
1633         }
1634     }
1635 }
1636
1637 // Set up some symbols.
1638
1639 template<int size, bool big_endian>
1640 void
1641 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1642     Symbol_table* symtab,
1643     Layout* layout)
1644 {
1645   if (size == 32)
1646     {
1647       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1648       // undefined when scanning relocs (and thus requires
1649       // non-relative dynamic relocs).  The proper value will be
1650       // updated later.
1651       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1652       if (gotsym != NULL && gotsym->is_undefined())
1653         {
1654           Target_powerpc<size, big_endian>* target =
1655             static_cast<Target_powerpc<size, big_endian>*>(
1656                 parameters->sized_target<size, big_endian>());
1657           Output_data_got_powerpc<size, big_endian>* got
1658             = target->got_section(symtab, layout);
1659           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1660                                         Symbol_table::PREDEFINED,
1661                                         got, 0, 0,
1662                                         elfcpp::STT_OBJECT,
1663                                         elfcpp::STB_LOCAL,
1664                                         elfcpp::STV_HIDDEN, 0,
1665                                         false, false);
1666         }
1667
1668       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1669       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1670       if (sdasym != NULL && sdasym->is_undefined())
1671         {
1672           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1673           Output_section* os
1674             = layout->add_output_section_data(".sdata", 0,
1675                                               elfcpp::SHF_ALLOC
1676                                               | elfcpp::SHF_WRITE,
1677                                               sdata, ORDER_SMALL_DATA, false);
1678           symtab->define_in_output_data("_SDA_BASE_", NULL,
1679                                         Symbol_table::PREDEFINED,
1680                                         os, 32768, 0, elfcpp::STT_OBJECT,
1681                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1682                                         0, false, false);
1683         }
1684     }
1685 }
1686
1687 // Set up PowerPC target specific relobj.
1688
1689 template<int size, bool big_endian>
1690 Object*
1691 Target_powerpc<size, big_endian>::do_make_elf_object(
1692     const std::string& name,
1693     Input_file* input_file,
1694     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1695 {
1696   int et = ehdr.get_e_type();
1697   // ET_EXEC files are valid input for --just-symbols/-R,
1698   // and we treat them as relocatable objects.
1699   if (et == elfcpp::ET_REL
1700       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1701     {
1702       Powerpc_relobj<size, big_endian>* obj =
1703         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1704       obj->setup();
1705       return obj;
1706     }
1707   else if (et == elfcpp::ET_DYN)
1708     {
1709       Sized_dynobj<size, big_endian>* obj =
1710         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1711       obj->setup();
1712       return obj;
1713     }
1714   else
1715     {
1716       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1717       return NULL;
1718     }
1719 }
1720
1721 template<int size, bool big_endian>
1722 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1723 {
1724 public:
1725   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1726   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1727
1728   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1729     : Output_data_got<size, big_endian>(),
1730       symtab_(symtab), layout_(layout),
1731       header_ent_cnt_(size == 32 ? 3 : 1),
1732       header_index_(size == 32 ? 0x2000 : 0)
1733   { }
1734
1735   class Got_entry;
1736
1737   // Create a new GOT entry and return its offset.
1738   unsigned int
1739   add_got_entry(Got_entry got_entry)
1740   {
1741     this->reserve_ent();
1742     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1743   }
1744
1745   // Create a pair of new GOT entries and return the offset of the first.
1746   unsigned int
1747   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1748   {
1749     this->reserve_ent(2);
1750     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1751                                                                  got_entry_2);
1752   }
1753
1754   unsigned int
1755   add_constant_pair(Valtype c1, Valtype c2)
1756   {
1757     this->reserve_ent(2);
1758     unsigned int got_offset = this->add_constant(c1);
1759     this->add_constant(c2);
1760     return got_offset;
1761   }
1762
1763   // Offset of _GLOBAL_OFFSET_TABLE_.
1764   unsigned int
1765   g_o_t() const
1766   {
1767     return this->got_offset(this->header_index_);
1768   }
1769
1770   // Offset of base used to access the GOT/TOC.
1771   // The got/toc pointer reg will be set to this value.
1772   Valtype
1773   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1774   {
1775     if (size == 32)
1776       return this->g_o_t();
1777     else
1778       return (this->output_section()->address()
1779               + object->toc_base_offset()
1780               - this->address());
1781   }
1782
1783   // Ensure our GOT has a header.
1784   void
1785   set_final_data_size()
1786   {
1787     if (this->header_ent_cnt_ != 0)
1788       this->make_header();
1789     Output_data_got<size, big_endian>::set_final_data_size();
1790   }
1791
1792   // First word of GOT header needs some values that are not
1793   // handled by Output_data_got so poke them in here.
1794   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1795   void
1796   do_write(Output_file* of)
1797   {
1798     Valtype val = 0;
1799     if (size == 32 && this->layout_->dynamic_data() != NULL)
1800       val = this->layout_->dynamic_section()->address();
1801     if (size == 64)
1802       val = this->output_section()->address() + 0x8000;
1803     this->replace_constant(this->header_index_, val);
1804     Output_data_got<size, big_endian>::do_write(of);
1805   }
1806
1807 private:
1808   void
1809   reserve_ent(unsigned int cnt = 1)
1810   {
1811     if (this->header_ent_cnt_ == 0)
1812       return;
1813     if (this->num_entries() + cnt > this->header_index_)
1814       this->make_header();
1815   }
1816
1817   void
1818   make_header()
1819   {
1820     this->header_ent_cnt_ = 0;
1821     this->header_index_ = this->num_entries();
1822     if (size == 32)
1823       {
1824         Output_data_got<size, big_endian>::add_constant(0);
1825         Output_data_got<size, big_endian>::add_constant(0);
1826         Output_data_got<size, big_endian>::add_constant(0);
1827
1828         // Define _GLOBAL_OFFSET_TABLE_ at the header
1829         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1830         if (gotsym != NULL)
1831           {
1832             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
1833             sym->set_value(this->g_o_t());
1834           }
1835         else
1836           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1837                                                Symbol_table::PREDEFINED,
1838                                                this, this->g_o_t(), 0,
1839                                                elfcpp::STT_OBJECT,
1840                                                elfcpp::STB_LOCAL,
1841                                                elfcpp::STV_HIDDEN, 0,
1842                                                false, false);
1843       }
1844     else
1845       Output_data_got<size, big_endian>::add_constant(0);
1846   }
1847
1848   // Stashed pointers.
1849   Symbol_table* symtab_;
1850   Layout* layout_;
1851
1852   // GOT header size.
1853   unsigned int header_ent_cnt_;
1854   // GOT header index.
1855   unsigned int header_index_;
1856 };
1857
1858 // Get the GOT section, creating it if necessary.
1859
1860 template<int size, bool big_endian>
1861 Output_data_got_powerpc<size, big_endian>*
1862 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1863                                               Layout* layout)
1864 {
1865   if (this->got_ == NULL)
1866     {
1867       gold_assert(symtab != NULL && layout != NULL);
1868
1869       this->got_
1870         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1871
1872       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1873                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1874                                       this->got_, ORDER_DATA, false);
1875     }
1876
1877   return this->got_;
1878 }
1879
1880 // Get the dynamic reloc section, creating it if necessary.
1881
1882 template<int size, bool big_endian>
1883 typename Target_powerpc<size, big_endian>::Reloc_section*
1884 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1885 {
1886   if (this->rela_dyn_ == NULL)
1887     {
1888       gold_assert(layout != NULL);
1889       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1890       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1891                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1892                                       ORDER_DYNAMIC_RELOCS, false);
1893     }
1894   return this->rela_dyn_;
1895 }
1896
1897 class Stub_control
1898 {
1899  public:
1900   // Determine the stub group size.  The group size is the absolute
1901   // value of the parameter --stub-group-size.  If --stub-group-size
1902   // is passed a negative value, we restrict stubs to be always before
1903   // the stubbed branches.
1904   Stub_control(int32_t size)
1905     : state_(NO_GROUP), stub_group_size_(abs(size)),
1906       stub14_group_size_(abs(size)),
1907       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
1908       group_end_addr_(0), owner_(NULL), output_section_(NULL)
1909   {
1910     if (stub_group_size_ == 1)
1911       {
1912         // Default values.
1913         if (stubs_always_before_branch_)
1914           {
1915             stub_group_size_ = 0x1e00000;
1916             stub14_group_size_ = 0x7800;
1917           }
1918         else
1919           {
1920             stub_group_size_ = 0x1c00000;
1921             stub14_group_size_ = 0x7000;
1922           }
1923         suppress_size_errors_ = true;
1924       }
1925   }
1926
1927   // Return true iff input section can be handled by current stub
1928   // group.
1929   bool
1930   can_add_to_stub_group(Output_section* o,
1931                         const Output_section::Input_section* i,
1932                         bool has14);
1933
1934   const Output_section::Input_section*
1935   owner()
1936   { return owner_; }
1937
1938   Output_section*
1939   output_section()
1940   { return output_section_; }
1941
1942  private:
1943   typedef enum
1944   {
1945     NO_GROUP,
1946     FINDING_STUB_SECTION,
1947     HAS_STUB_SECTION
1948   } State;
1949
1950   State state_;
1951   uint32_t stub_group_size_;
1952   uint32_t stub14_group_size_;
1953   bool stubs_always_before_branch_;
1954   bool suppress_size_errors_;
1955   uint64_t group_end_addr_;
1956   const Output_section::Input_section* owner_;
1957   Output_section* output_section_;
1958 };
1959
1960 // Return true iff input section can be handled by current stub/
1961 // group.
1962
1963 bool
1964 Stub_control::can_add_to_stub_group(Output_section* o,
1965                                     const Output_section::Input_section* i,
1966                                     bool has14)
1967 {
1968   uint32_t group_size
1969     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
1970   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
1971   uint64_t this_size;
1972   uint64_t start_addr = o->address();
1973
1974   if (whole_sec)
1975     // .init and .fini sections are pasted together to form a single
1976     // function.  We can't be adding stubs in the middle of the function.
1977     this_size = o->data_size();
1978   else
1979     {
1980       start_addr += i->relobj()->output_section_offset(i->shndx());
1981       this_size = i->data_size();
1982     }
1983   uint64_t end_addr = start_addr + this_size;
1984   bool toobig = this_size > group_size;
1985
1986   if (toobig && !this->suppress_size_errors_)
1987     gold_warning(_("%s:%s exceeds group size"),
1988                  i->relobj()->name().c_str(),
1989                  i->relobj()->section_name(i->shndx()).c_str());
1990
1991   if (this->state_ != HAS_STUB_SECTION
1992       && (!whole_sec || this->output_section_ != o))
1993     {
1994       this->owner_ = i;
1995       this->output_section_ = o;
1996     }
1997
1998   if (this->state_ == NO_GROUP)
1999     {
2000       this->state_ = FINDING_STUB_SECTION;
2001       this->group_end_addr_ = end_addr;
2002     }
2003   else if (this->group_end_addr_ - start_addr < group_size)
2004     ;
2005   // Adding this section would make the group larger than GROUP_SIZE.
2006   else if (this->state_ == FINDING_STUB_SECTION
2007            && !this->stubs_always_before_branch_
2008            && !toobig)
2009     {
2010       // But wait, there's more!  Input sections up to GROUP_SIZE
2011       // bytes before the stub table can be handled by it too.
2012       this->state_ = HAS_STUB_SECTION;
2013       this->group_end_addr_ = end_addr;
2014     }
2015   else
2016     {
2017       this->state_ = NO_GROUP;
2018       return false;
2019     }
2020   return true;
2021 }
2022
2023 // Look over all the input sections, deciding where to place stubs.
2024
2025 template<int size, bool big_endian>
2026 void
2027 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2028                                                  const Task*)
2029 {
2030   Stub_control stub_control(parameters->options().stub_group_size());
2031
2032   // Group input sections and insert stub table
2033   Stub_table<size, big_endian>* stub_table = NULL;
2034   Layout::Section_list section_list;
2035   layout->get_executable_sections(&section_list);
2036   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2037   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2038        o != section_list.rend();
2039        ++o)
2040     {
2041       typedef Output_section::Input_section_list Input_section_list;
2042       for (Input_section_list::const_reverse_iterator i
2043              = (*o)->input_sections().rbegin();
2044            i != (*o)->input_sections().rend();
2045            ++i)
2046         {
2047           if (i->is_input_section())
2048             {
2049               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2050                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2051               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2052               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2053                 {
2054                   stub_table->init(stub_control.owner(),
2055                                    stub_control.output_section());
2056                   stub_table = NULL;
2057                 }
2058               if (stub_table == NULL)
2059                 stub_table = this->new_stub_table();
2060               ppcobj->set_stub_table(i->shndx(), stub_table);
2061             }
2062         }
2063     }
2064   if (stub_table != NULL)
2065     stub_table->init(stub_control.owner(), stub_control.output_section());
2066 }
2067
2068 // If this branch needs a plt call stub, or a long branch stub, make one.
2069
2070 template<int size, bool big_endian>
2071 void
2072 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2073     Stub_table<size, big_endian>* stub_table,
2074     Stub_table<size, big_endian>* ifunc_stub_table,
2075     Symbol_table* symtab) const
2076 {
2077   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2078   if (sym != NULL && sym->is_forwarder())
2079     sym = symtab->resolve_forwards(sym);
2080   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2081   if (gsym != NULL
2082       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2083       : this->object_->local_has_plt_offset(this->r_sym_))
2084     {
2085       if (stub_table == NULL)
2086         stub_table = this->object_->stub_table(this->shndx_);
2087       if (stub_table == NULL)
2088         {
2089           // This is a ref from a data section to an ifunc symbol.
2090           stub_table = ifunc_stub_table;
2091         }
2092       gold_assert(stub_table != NULL);
2093       if (gsym != NULL)
2094         stub_table->add_plt_call_entry(this->object_, gsym,
2095                                        this->r_type_, this->addend_);
2096       else
2097         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2098                                        this->r_type_, this->addend_);
2099     }
2100   else
2101     {
2102       unsigned int max_branch_offset;
2103       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2104           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2105           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2106         max_branch_offset = 1 << 15;
2107       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2108                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2109                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2110         max_branch_offset = 1 << 25;
2111       else
2112         return;
2113       Address from = this->object_->get_output_section_offset(this->shndx_);
2114       gold_assert(from != invalid_address);
2115       from += (this->object_->output_section(this->shndx_)->address()
2116                + this->offset_);
2117       Address to;
2118       if (gsym != NULL)
2119         {
2120           switch (gsym->source())
2121             {
2122             case Symbol::FROM_OBJECT:
2123               {
2124                 Object* symobj = gsym->object();
2125                 if (symobj->is_dynamic()
2126                     || symobj->pluginobj() != NULL)
2127                   return;
2128                 bool is_ordinary;
2129                 unsigned int shndx = gsym->shndx(&is_ordinary);
2130                 if (shndx == elfcpp::SHN_UNDEF)
2131                   return;
2132               }
2133               break;
2134
2135             case Symbol::IS_UNDEFINED:
2136               return;
2137
2138             default:
2139               break;
2140             }
2141           Symbol_table::Compute_final_value_status status;
2142           to = symtab->compute_final_value<size>(gsym, &status);
2143           if (status != Symbol_table::CFVS_OK)
2144             return;
2145         }
2146       else
2147         {
2148           const Symbol_value<size>* psymval
2149             = this->object_->local_symbol(this->r_sym_);
2150           Symbol_value<size> symval;
2151           typedef Sized_relobj_file<size, big_endian> ObjType;
2152           typename ObjType::Compute_final_local_value_status status
2153             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2154                                                        &symval, symtab);
2155           if (status != ObjType::CFLV_OK
2156               || !symval.has_output_value())
2157             return;
2158           to = symval.value(this->object_, 0);
2159         }
2160       to += this->addend_;
2161       if (stub_table == NULL)
2162         stub_table = this->object_->stub_table(this->shndx_);
2163       gold_assert(stub_table != NULL);
2164       if (size == 64 && is_branch_reloc(this->r_type_))
2165         {
2166           unsigned int dest_shndx;
2167           to = stub_table->targ()->symval_for_branch(symtab, to, gsym,
2168                                                      this->object_,
2169                                                      &dest_shndx);
2170         }
2171       Address delta = to - from;
2172       if (delta + max_branch_offset >= 2 * max_branch_offset)
2173         {
2174           stub_table->add_long_branch_entry(this->object_, to);
2175         }
2176     }
2177 }
2178
2179 // Relaxation hook.  This is where we do stub generation.
2180
2181 template<int size, bool big_endian>
2182 bool
2183 Target_powerpc<size, big_endian>::do_relax(int pass,
2184                                            const Input_objects*,
2185                                            Symbol_table* symtab,
2186                                            Layout* layout,
2187                                            const Task* task)
2188 {
2189   unsigned int prev_brlt_size = 0;
2190   if (pass == 1)
2191     {
2192       bool thread_safe = parameters->options().plt_thread_safe();
2193       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2194         {
2195           static const char* const thread_starter[] =
2196             {
2197               "pthread_create",
2198               /* libstdc++ */
2199               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2200               /* librt */
2201               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2202               "mq_notify", "create_timer",
2203               /* libanl */
2204               "getaddrinfo_a",
2205               /* libgomp */
2206               "GOMP_parallel_start",
2207               "GOMP_parallel_loop_static_start",
2208               "GOMP_parallel_loop_dynamic_start",
2209               "GOMP_parallel_loop_guided_start",
2210               "GOMP_parallel_loop_runtime_start",
2211               "GOMP_parallel_sections_start", 
2212             };
2213
2214           if (parameters->options().shared())
2215             thread_safe = true;
2216           else
2217             {
2218               for (unsigned int i = 0;
2219                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2220                    i++)
2221                 {
2222                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2223                   thread_safe = (sym != NULL
2224                                  && sym->in_reg()
2225                                  && sym->in_real_elf());
2226                   if (thread_safe)
2227                     break;
2228                 }
2229             }
2230         }
2231       this->plt_thread_safe_ = thread_safe;
2232       this->group_sections(layout, task);
2233     }
2234
2235   // We need address of stub tables valid for make_stub.
2236   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2237        p != this->stub_tables_.end();
2238        ++p)
2239     {
2240       const Powerpc_relobj<size, big_endian>* object
2241         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2242       Address off = object->get_output_section_offset((*p)->shndx());
2243       gold_assert(off != invalid_address);
2244       Output_section* os = (*p)->output_section();
2245       (*p)->set_address_and_size(os, off);
2246     }
2247
2248   if (pass != 1)
2249     {
2250       // Clear plt call stubs, long branch stubs and branch lookup table.
2251       prev_brlt_size = this->branch_lookup_table_.size();
2252       this->branch_lookup_table_.clear();
2253       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2254            p != this->stub_tables_.end();
2255            ++p)
2256         {
2257           (*p)->clear_stubs();
2258         }
2259     }
2260
2261   // Build all the stubs.
2262   Stub_table<size, big_endian>* ifunc_stub_table
2263     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2264   Stub_table<size, big_endian>* one_stub_table
2265     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2266   for (typename Branches::const_iterator b = this->branch_info_.begin();
2267        b != this->branch_info_.end();
2268        b++)
2269     {
2270       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2271     }
2272
2273   // Did anything change size?
2274   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2275   bool again = num_huge_branches != prev_brlt_size;
2276   if (size == 64 && num_huge_branches != 0)
2277     this->make_brlt_section(layout);
2278   if (size == 64 && again)
2279     this->brlt_section_->set_current_size(num_huge_branches);
2280
2281   typedef Unordered_set<Output_section*> Output_sections;
2282   Output_sections os_need_update;
2283   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2284        p != this->stub_tables_.end();
2285        ++p)
2286     {
2287       if ((*p)->size_update())
2288         {
2289           again = true;
2290           (*p)->add_eh_frame(layout);
2291           os_need_update.insert((*p)->output_section());
2292         }
2293     }
2294
2295   // Set output section offsets for all input sections in an output
2296   // section that just changed size.  Anything past the stubs will
2297   // need updating.
2298   for (typename Output_sections::iterator p = os_need_update.begin();
2299        p != os_need_update.end();
2300        p++)
2301     {
2302       Output_section* os = *p;
2303       Address off = 0;
2304       typedef Output_section::Input_section_list Input_section_list;
2305       for (Input_section_list::const_iterator i = os->input_sections().begin();
2306            i != os->input_sections().end();
2307            ++i)
2308         {
2309           off = align_address(off, i->addralign());
2310           if (i->is_input_section() || i->is_relaxed_input_section())
2311             i->relobj()->set_section_offset(i->shndx(), off);
2312           if (i->is_relaxed_input_section())
2313             {
2314               Stub_table<size, big_endian>* stub_table
2315                 = static_cast<Stub_table<size, big_endian>*>(
2316                     i->relaxed_input_section());
2317               off += stub_table->set_address_and_size(os, off);
2318             }
2319           else
2320             off += i->data_size();
2321         }
2322       // If .brlt is part of this output section, then we have just
2323       // done the offset adjustment.
2324       os->clear_section_offsets_need_adjustment();
2325     }
2326
2327   if (size == 64
2328       && !again
2329       && num_huge_branches != 0
2330       && parameters->options().output_is_position_independent())
2331     {
2332       // Fill in the BRLT relocs.
2333       this->brlt_section_->reset_data_size();
2334       for (typename Branch_lookup_table::const_iterator p
2335              = this->branch_lookup_table_.begin();
2336            p != this->branch_lookup_table_.end();
2337            ++p)
2338         {
2339           this->brlt_section_->add_reloc(p->first, p->second);
2340         }
2341       this->brlt_section_->finalize_data_size();
2342     }
2343   return again;
2344 }
2345
2346 template<int size, bool big_endian>
2347 void
2348 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2349                                                       unsigned char* oview,
2350                                                       uint64_t* paddress,
2351                                                       off_t* plen) const
2352 {
2353   uint64_t address = plt->address();
2354   off_t len = plt->data_size();
2355
2356   if (plt == this->glink_)
2357     {
2358       // See Output_data_glink::do_write() for glink contents.
2359       if (size == 64)
2360         {
2361           // There is one word before __glink_PLTresolve
2362           address += 8;
2363           len -= 8;
2364         }
2365       else if (parameters->options().output_is_position_independent())
2366         {
2367           // There are two FDEs for a position independent glink.
2368           // The first covers the branch table, the second
2369           // __glink_PLTresolve at the end of glink.
2370           off_t resolve_size = this->glink_->pltresolve_size;
2371           if (oview[9] == 0)
2372             len -= resolve_size;
2373           else
2374             {
2375               address += len - resolve_size;
2376               len = resolve_size;
2377             }
2378         }
2379     }
2380   else
2381     {
2382       // Must be a stub table.
2383       const Stub_table<size, big_endian>* stub_table
2384         = static_cast<const Stub_table<size, big_endian>*>(plt);
2385       uint64_t stub_address = stub_table->stub_address();
2386       len -= stub_address - address;
2387       address = stub_address;
2388     }
2389
2390   *paddress = address;
2391   *plen = len;
2392 }
2393
2394 // A class to handle the PLT data.
2395
2396 template<int size, bool big_endian>
2397 class Output_data_plt_powerpc : public Output_section_data_build
2398 {
2399  public:
2400   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2401                             size, big_endian> Reloc_section;
2402
2403   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2404                           Reloc_section* plt_rel,
2405                           unsigned int reserved_size,
2406                           const char* name)
2407     : Output_section_data_build(size == 32 ? 4 : 8),
2408       rel_(plt_rel),
2409       targ_(targ),
2410       initial_plt_entry_size_(reserved_size),
2411       name_(name)
2412   { }
2413
2414   // Add an entry to the PLT.
2415   void
2416   add_entry(Symbol*);
2417
2418   void
2419   add_ifunc_entry(Symbol*);
2420
2421   void
2422   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2423
2424   // Return the .rela.plt section data.
2425   Reloc_section*
2426   rel_plt() const
2427   {
2428     return this->rel_;
2429   }
2430
2431   // Return the number of PLT entries.
2432   unsigned int
2433   entry_count() const
2434   {
2435     return ((this->current_data_size() - this->initial_plt_entry_size_)
2436             / plt_entry_size);
2437   }
2438
2439   // Return the offset of the first non-reserved PLT entry.
2440   unsigned int
2441   first_plt_entry_offset()
2442   { return this->initial_plt_entry_size_; }
2443
2444   // Return the size of a PLT entry.
2445   static unsigned int
2446   get_plt_entry_size()
2447   { return plt_entry_size; }
2448
2449  protected:
2450   void
2451   do_adjust_output_section(Output_section* os)
2452   {
2453     os->set_entsize(0);
2454   }
2455
2456   // Write to a map file.
2457   void
2458   do_print_to_mapfile(Mapfile* mapfile) const
2459   { mapfile->print_output_data(this, this->name_); }
2460
2461  private:
2462   // The size of an entry in the PLT.
2463   static const int plt_entry_size = size == 32 ? 4 : 24;
2464
2465   // Write out the PLT data.
2466   void
2467   do_write(Output_file*);
2468
2469   // The reloc section.
2470   Reloc_section* rel_;
2471   // Allows access to .glink for do_write.
2472   Target_powerpc<size, big_endian>* targ_;
2473   // The size of the first reserved entry.
2474   int initial_plt_entry_size_;
2475   // What to report in map file.
2476   const char *name_;
2477 };
2478
2479 // Add an entry to the PLT.
2480
2481 template<int size, bool big_endian>
2482 void
2483 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2484 {
2485   if (!gsym->has_plt_offset())
2486     {
2487       section_size_type off = this->current_data_size();
2488       if (off == 0)
2489         off += this->first_plt_entry_offset();
2490       gsym->set_plt_offset(off);
2491       gsym->set_needs_dynsym_entry();
2492       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2493       this->rel_->add_global(gsym, dynrel, this, off, 0);
2494       off += plt_entry_size;
2495       this->set_current_data_size(off);
2496     }
2497 }
2498
2499 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2500
2501 template<int size, bool big_endian>
2502 void
2503 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2504 {
2505   if (!gsym->has_plt_offset())
2506     {
2507       section_size_type off = this->current_data_size();
2508       gsym->set_plt_offset(off);
2509       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2510       if (size == 64)
2511         dynrel = elfcpp::R_PPC64_JMP_IREL;
2512       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2513       off += plt_entry_size;
2514       this->set_current_data_size(off);
2515     }
2516 }
2517
2518 // Add an entry for a local ifunc symbol to the IPLT.
2519
2520 template<int size, bool big_endian>
2521 void
2522 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2523     Sized_relobj_file<size, big_endian>* relobj,
2524     unsigned int local_sym_index)
2525 {
2526   if (!relobj->local_has_plt_offset(local_sym_index))
2527     {
2528       section_size_type off = this->current_data_size();
2529       relobj->set_local_plt_offset(local_sym_index, off);
2530       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2531       if (size == 64)
2532         dynrel = elfcpp::R_PPC64_JMP_IREL;
2533       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2534                                               this, off, 0);
2535       off += plt_entry_size;
2536       this->set_current_data_size(off);
2537     }
2538 }
2539
2540 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2541 static const uint32_t add_2_2_11        = 0x7c425a14;
2542 static const uint32_t add_3_3_2         = 0x7c631214;
2543 static const uint32_t add_3_3_13        = 0x7c636a14;
2544 static const uint32_t add_11_0_11       = 0x7d605a14;
2545 static const uint32_t add_12_2_11       = 0x7d825a14;
2546 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2547 static const uint32_t addi_11_11        = 0x396b0000;
2548 static const uint32_t addi_12_12        = 0x398c0000;
2549 static const uint32_t addi_2_2          = 0x38420000;
2550 static const uint32_t addi_3_2          = 0x38620000;
2551 static const uint32_t addi_3_3          = 0x38630000;
2552 static const uint32_t addis_0_2         = 0x3c020000;
2553 static const uint32_t addis_0_13        = 0x3c0d0000;
2554 static const uint32_t addis_11_11       = 0x3d6b0000;
2555 static const uint32_t addis_11_30       = 0x3d7e0000;
2556 static const uint32_t addis_12_12       = 0x3d8c0000;
2557 static const uint32_t addis_12_2        = 0x3d820000;
2558 static const uint32_t addis_3_2         = 0x3c620000;
2559 static const uint32_t addis_3_13        = 0x3c6d0000;
2560 static const uint32_t b                 = 0x48000000;
2561 static const uint32_t bcl_20_31         = 0x429f0005;
2562 static const uint32_t bctr              = 0x4e800420;
2563 static const uint32_t blr               = 0x4e800020;
2564 static const uint32_t blrl              = 0x4e800021;
2565 static const uint32_t bnectr_p4         = 0x4ce20420;
2566 static const uint32_t cmpldi_2_0        = 0x28220000;
2567 static const uint32_t cror_15_15_15     = 0x4def7b82;
2568 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2569 static const uint32_t ld_0_1            = 0xe8010000;
2570 static const uint32_t ld_0_12           = 0xe80c0000;
2571 static const uint32_t ld_11_12          = 0xe96c0000;
2572 static const uint32_t ld_11_2           = 0xe9620000;
2573 static const uint32_t ld_2_1            = 0xe8410000;
2574 static const uint32_t ld_2_11           = 0xe84b0000;
2575 static const uint32_t ld_2_12           = 0xe84c0000;
2576 static const uint32_t ld_2_2            = 0xe8420000;
2577 static const uint32_t lfd_0_1           = 0xc8010000;
2578 static const uint32_t li_0_0            = 0x38000000;
2579 static const uint32_t li_12_0           = 0x39800000;
2580 static const uint32_t lis_0_0           = 0x3c000000;
2581 static const uint32_t lis_11            = 0x3d600000;
2582 static const uint32_t lis_12            = 0x3d800000;
2583 static const uint32_t lwz_0_12          = 0x800c0000;
2584 static const uint32_t lwz_11_11         = 0x816b0000;
2585 static const uint32_t lwz_11_30         = 0x817e0000;
2586 static const uint32_t lwz_12_12         = 0x818c0000;
2587 static const uint32_t lwzu_0_12         = 0x840c0000;
2588 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2589 static const uint32_t mflr_0            = 0x7c0802a6;
2590 static const uint32_t mflr_11           = 0x7d6802a6;
2591 static const uint32_t mflr_12           = 0x7d8802a6;
2592 static const uint32_t mtctr_0           = 0x7c0903a6;
2593 static const uint32_t mtctr_11          = 0x7d6903a6;
2594 static const uint32_t mtctr_12          = 0x7d8903a6;
2595 static const uint32_t mtlr_0            = 0x7c0803a6;
2596 static const uint32_t mtlr_12           = 0x7d8803a6;
2597 static const uint32_t nop               = 0x60000000;
2598 static const uint32_t ori_0_0_0         = 0x60000000;
2599 static const uint32_t std_0_1           = 0xf8010000;
2600 static const uint32_t std_0_12          = 0xf80c0000;
2601 static const uint32_t std_2_1           = 0xf8410000;
2602 static const uint32_t stfd_0_1          = 0xd8010000;
2603 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2604 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2605 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2606
2607 // Write out the PLT.
2608
2609 template<int size, bool big_endian>
2610 void
2611 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2612 {
2613   if (size == 32)
2614     {
2615       const section_size_type offset = this->offset();
2616       const section_size_type oview_size
2617         = convert_to_section_size_type(this->data_size());
2618       unsigned char* const oview = of->get_output_view(offset, oview_size);
2619       unsigned char* pov = oview;
2620       unsigned char* endpov = oview + oview_size;
2621
2622       // The address of the .glink branch table
2623       const Output_data_glink<size, big_endian>* glink
2624         = this->targ_->glink_section();
2625       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2626
2627       while (pov < endpov)
2628         {
2629           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2630           pov += 4;
2631           branch_tab += 4;
2632         }
2633
2634       of->write_output_view(offset, oview_size, oview);
2635     }
2636 }
2637
2638 // Create the PLT section.
2639
2640 template<int size, bool big_endian>
2641 void
2642 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2643                                                    Layout* layout)
2644 {
2645   if (this->plt_ == NULL)
2646     {
2647       if (this->got_ == NULL)
2648         this->got_section(symtab, layout);
2649
2650       if (this->glink_ == NULL)
2651         make_glink_section(layout);
2652
2653       // Ensure that .rela.dyn always appears before .rela.plt  This is
2654       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2655       // needs to include .rela.plt in it's range.
2656       this->rela_dyn_section(layout);
2657
2658       Reloc_section* plt_rel = new Reloc_section(false);
2659       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2660                                       elfcpp::SHF_ALLOC, plt_rel,
2661                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2662       this->plt_
2663         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2664                                                         size == 32 ? 0 : 24,
2665                                                         "** PLT");
2666       layout->add_output_section_data(".plt",
2667                                       (size == 32
2668                                        ? elfcpp::SHT_PROGBITS
2669                                        : elfcpp::SHT_NOBITS),
2670                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2671                                       this->plt_,
2672                                       (size == 32
2673                                        ? ORDER_SMALL_DATA
2674                                        : ORDER_SMALL_BSS),
2675                                       false);
2676     }
2677 }
2678
2679 // Create the IPLT section.
2680
2681 template<int size, bool big_endian>
2682 void
2683 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2684                                                     Layout* layout)
2685 {
2686   if (this->iplt_ == NULL)
2687     {
2688       this->make_plt_section(symtab, layout);
2689
2690       Reloc_section* iplt_rel = new Reloc_section(false);
2691       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2692       this->iplt_
2693         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2694                                                         0, "** IPLT");
2695       this->plt_->output_section()->add_output_section_data(this->iplt_);
2696     }
2697 }
2698
2699 // A section for huge long branch addresses, similar to plt section.
2700
2701 template<int size, bool big_endian>
2702 class Output_data_brlt_powerpc : public Output_section_data_build
2703 {
2704  public:
2705   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2706   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2707                             size, big_endian> Reloc_section;
2708
2709   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
2710                            Reloc_section* brlt_rel)
2711     : Output_section_data_build(size == 32 ? 4 : 8),
2712       rel_(brlt_rel),
2713       targ_(targ)
2714   { }
2715
2716   // Add a reloc for an entry in the BRLT.
2717   void
2718   add_reloc(Address to, unsigned int off)
2719   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
2720
2721   // Update section and reloc section size.
2722   void
2723   set_current_size(unsigned int num_branches)
2724   {
2725     this->reset_address_and_file_offset();
2726     this->set_current_data_size(num_branches * 16);
2727     this->finalize_data_size();
2728     Output_section* os = this->output_section();
2729     os->set_section_offsets_need_adjustment();
2730     if (this->rel_ != NULL)
2731       {
2732         unsigned int reloc_size
2733           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
2734         this->rel_->reset_address_and_file_offset();
2735         this->rel_->set_current_data_size(num_branches * reloc_size);
2736         this->rel_->finalize_data_size();
2737         Output_section* os = this->rel_->output_section();
2738         os->set_section_offsets_need_adjustment();
2739       }
2740   }
2741
2742  protected:
2743   void
2744   do_adjust_output_section(Output_section* os)
2745   {
2746     os->set_entsize(0);
2747   }
2748
2749   // Write to a map file.
2750   void
2751   do_print_to_mapfile(Mapfile* mapfile) const
2752   { mapfile->print_output_data(this, "** BRLT"); }
2753
2754  private:
2755   // Write out the BRLT data.
2756   void
2757   do_write(Output_file*);
2758
2759   // The reloc section.
2760   Reloc_section* rel_;
2761   Target_powerpc<size, big_endian>* targ_;
2762 };
2763
2764 // Make the branch lookup table section.
2765
2766 template<int size, bool big_endian>
2767 void
2768 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
2769 {
2770   if (size == 64 && this->brlt_section_ == NULL)
2771     {
2772       Reloc_section* brlt_rel = NULL;
2773       bool is_pic = parameters->options().output_is_position_independent();
2774       if (is_pic)
2775         {
2776           // When PIC we can't fill in .brlt (like .plt it can be a
2777           // bss style section) but must initialise at runtime via
2778           // dynamic relocats.
2779           this->rela_dyn_section(layout);
2780           brlt_rel = new Reloc_section(false);
2781           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
2782         }
2783       this->brlt_section_
2784         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
2785       if (this->plt_ && is_pic)
2786         this->plt_->output_section()
2787           ->add_output_section_data(this->brlt_section_);
2788       else
2789         layout->add_output_section_data(".brlt",
2790                                         (is_pic ? elfcpp::SHT_NOBITS
2791                                          : elfcpp::SHT_PROGBITS),
2792                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2793                                         this->brlt_section_,
2794                                         (is_pic ? ORDER_SMALL_BSS
2795                                          : ORDER_SMALL_DATA),
2796                                         false);
2797     }
2798 }
2799
2800 // Write out .brlt when non-PIC.
2801
2802 template<int size, bool big_endian>
2803 void
2804 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
2805 {
2806   if (size == 64 && !parameters->options().output_is_position_independent())
2807     {
2808       const section_size_type offset = this->offset();
2809       const section_size_type oview_size
2810         = convert_to_section_size_type(this->data_size());
2811       unsigned char* const oview = of->get_output_view(offset, oview_size);
2812
2813       this->targ_->write_branch_lookup_table(oview);
2814       of->write_output_view(offset, oview_size, oview);
2815     }
2816 }
2817
2818 static inline uint32_t
2819 l(uint32_t a)
2820 {
2821   return a & 0xffff;
2822 }
2823
2824 static inline uint32_t
2825 hi(uint32_t a)
2826 {
2827   return l(a >> 16);
2828 }
2829
2830 static inline uint32_t
2831 ha(uint32_t a)
2832 {
2833   return hi(a + 0x8000);
2834 }
2835
2836 template<int size>
2837 struct Eh_cie
2838 {
2839   static const unsigned char eh_frame_cie[12];
2840 };
2841
2842 template<int size>
2843 const unsigned char Eh_cie<size>::eh_frame_cie[] =
2844 {
2845   1,                                    // CIE version.
2846   'z', 'R', 0,                          // Augmentation string.
2847   4,                                    // Code alignment.
2848   0x80 - size / 8 ,                     // Data alignment.
2849   65,                                   // RA reg.
2850   1,                                    // Augmentation size.
2851   (elfcpp::DW_EH_PE_pcrel
2852    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
2853   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
2854 };
2855
2856 // Describe __glink_PLTresolve use of LR, 64-bit version.
2857 static const unsigned char glink_eh_frame_fde_64[] =
2858 {
2859   0, 0, 0, 0,                           // Replaced with offset to .glink.
2860   0, 0, 0, 0,                           // Replaced with size of .glink.
2861   0,                                    // Augmentation size.
2862   elfcpp::DW_CFA_advance_loc + 1,
2863   elfcpp::DW_CFA_register, 65, 12,
2864   elfcpp::DW_CFA_advance_loc + 4,
2865   elfcpp::DW_CFA_restore_extended, 65
2866 };
2867
2868 // Describe __glink_PLTresolve use of LR, 32-bit version.
2869 static const unsigned char glink_eh_frame_fde_32[] =
2870 {
2871   0, 0, 0, 0,                           // Replaced with offset to .glink.
2872   0, 0, 0, 0,                           // Replaced with size of .glink.
2873   0,                                    // Augmentation size.
2874   elfcpp::DW_CFA_advance_loc + 2,
2875   elfcpp::DW_CFA_register, 65, 0,
2876   elfcpp::DW_CFA_advance_loc + 4,
2877   elfcpp::DW_CFA_restore_extended, 65
2878 };
2879
2880 static const unsigned char default_fde[] =
2881 {
2882   0, 0, 0, 0,                           // Replaced with offset to stubs.
2883   0, 0, 0, 0,                           // Replaced with size of stubs.
2884   0,                                    // Augmentation size.
2885   elfcpp::DW_CFA_nop,                   // Pad.
2886   elfcpp::DW_CFA_nop,
2887   elfcpp::DW_CFA_nop
2888 };
2889
2890 template<bool big_endian>
2891 static inline void
2892 write_insn(unsigned char* p, uint32_t v)
2893 {
2894   elfcpp::Swap<32, big_endian>::writeval(p, v);
2895 }
2896
2897 // Stub_table holds information about plt and long branch stubs.
2898 // Stubs are built in an area following some input section determined
2899 // by group_sections().  This input section is converted to a relaxed
2900 // input section allowing it to be resized to accommodate the stubs
2901
2902 template<int size, bool big_endian>
2903 class Stub_table : public Output_relaxed_input_section
2904 {
2905  public:
2906   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2907   static const Address invalid_address = static_cast<Address>(0) - 1;
2908
2909   Stub_table(Target_powerpc<size, big_endian>* targ)
2910     : Output_relaxed_input_section(NULL, 0, 0),
2911       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
2912       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
2913       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
2914   { }
2915
2916   // Delayed Output_relaxed_input_section init.
2917   void
2918   init(const Output_section::Input_section*, Output_section*);
2919
2920   // Add a plt call stub.
2921   void
2922   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2923                      const Symbol*,
2924                      unsigned int,
2925                      Address);
2926
2927   void
2928   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2929                      unsigned int,
2930                      unsigned int,
2931                      Address);
2932
2933   // Find a given plt call stub.
2934   Address
2935   find_plt_call_entry(const Symbol*) const;
2936
2937   Address
2938   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2939                       unsigned int) const;
2940
2941   Address
2942   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2943                       const Symbol*,
2944                       unsigned int,
2945                       Address) const;
2946
2947   Address
2948   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2949                       unsigned int,
2950                       unsigned int,
2951                       Address) const;
2952
2953   // Add a long branch stub.
2954   void
2955   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
2956
2957   Address
2958   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
2959                          Address) const;
2960
2961   void
2962   clear_stubs()
2963   {
2964     this->plt_call_stubs_.clear();
2965     this->plt_size_ = 0;
2966     this->long_branch_stubs_.clear();
2967     this->branch_size_ = 0;
2968   }
2969
2970   Address
2971   set_address_and_size(const Output_section* os, Address off)
2972   {
2973     Address start_off = off;
2974     off += this->orig_data_size_;
2975     Address my_size = this->plt_size_ + this->branch_size_;
2976     if (my_size != 0)
2977       off = align_address(off, this->stub_align());
2978     // Include original section size and alignment padding in size
2979     my_size += off - start_off;
2980     this->reset_address_and_file_offset();
2981     this->set_current_data_size(my_size);
2982     this->set_address_and_file_offset(os->address() + start_off,
2983                                       os->offset() + start_off);
2984     return my_size;
2985   }
2986
2987   Address
2988   stub_address() const
2989   {
2990     return align_address(this->address() + this->orig_data_size_,
2991                          this->stub_align());
2992   }
2993
2994   Address
2995   stub_offset() const
2996   {
2997     return align_address(this->offset() + this->orig_data_size_,
2998                          this->stub_align());
2999   }
3000
3001   section_size_type
3002   plt_size() const
3003   { return this->plt_size_; }
3004
3005   bool
3006   size_update()
3007   {
3008     Output_section* os = this->output_section();
3009     if (os->addralign() < this->stub_align())
3010       {
3011         os->set_addralign(this->stub_align());
3012         // FIXME: get rid of the insane checkpointing.
3013         // We can't increase alignment of the input section to which
3014         // stubs are attached;  The input section may be .init which
3015         // is pasted together with other .init sections to form a
3016         // function.  Aligning might insert zero padding resulting in
3017         // sigill.  However we do need to increase alignment of the
3018         // output section so that the align_address() on offset in
3019         // set_address_and_size() adds the same padding as the
3020         // align_address() on address in stub_address().
3021         // What's more, we need this alignment for the layout done in
3022         // relaxation_loop_body() so that the output section starts at
3023         // a suitably aligned address.
3024         os->checkpoint_set_addralign(this->stub_align());
3025       }
3026     if (this->last_plt_size_ != this->plt_size_
3027         || this->last_branch_size_ != this->branch_size_)
3028       {
3029         this->last_plt_size_ = this->plt_size_;
3030         this->last_branch_size_ = this->branch_size_;
3031         return true;
3032       }
3033     return false;
3034   }
3035
3036   // Add .eh_frame info for this stub section.  Unlike other linker
3037   // generated .eh_frame this is added late in the link, because we
3038   // only want the .eh_frame info if this particular stub section is
3039   // non-empty.
3040   void
3041   add_eh_frame(Layout* layout)
3042   {
3043     if (!this->eh_frame_added_)
3044       {
3045         if (!parameters->options().ld_generated_unwind_info())
3046           return;
3047
3048         // Since we add stub .eh_frame info late, it must be placed
3049         // after all other linker generated .eh_frame info so that
3050         // merge mapping need not be updated for input sections.
3051         // There is no provision to use a different CIE to that used
3052         // by .glink.
3053         if (!this->targ_->has_glink())
3054           return;
3055
3056         layout->add_eh_frame_for_plt(this,
3057                                      Eh_cie<size>::eh_frame_cie,
3058                                      sizeof (Eh_cie<size>::eh_frame_cie),
3059                                      default_fde,
3060                                      sizeof (default_fde));
3061         this->eh_frame_added_ = true;
3062       }
3063   }
3064
3065   Target_powerpc<size, big_endian>*
3066   targ() const
3067   { return targ_; }
3068
3069  private:
3070   class Plt_stub_ent;
3071   class Plt_stub_ent_hash;
3072   typedef Unordered_map<Plt_stub_ent, unsigned int,
3073                         Plt_stub_ent_hash> Plt_stub_entries;
3074
3075   // Alignment of stub section.
3076   unsigned int
3077   stub_align() const
3078   {
3079     if (size == 32)
3080       return 16;
3081     unsigned int min_align = 32;
3082     unsigned int user_align = 1 << parameters->options().plt_align();
3083     return std::max(user_align, min_align);
3084   }
3085
3086   // Return the plt offset for the given call stub.
3087   Address
3088   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3089   {
3090     const Symbol* gsym = p->first.sym_;
3091     if (gsym != NULL)
3092       {
3093         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3094                     && gsym->can_use_relative_reloc(false));
3095         return gsym->plt_offset();
3096       }
3097     else
3098       {
3099         *is_iplt = true;
3100         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3101         unsigned int local_sym_index = p->first.locsym_;
3102         return relobj->local_plt_offset(local_sym_index);
3103       }
3104   }
3105
3106   // Size of a given plt call stub.
3107   unsigned int
3108   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3109   {
3110     if (size == 32)
3111       return 16;
3112
3113     bool is_iplt;
3114     Address plt_addr = this->plt_off(p, &is_iplt);
3115     if (is_iplt)
3116       plt_addr += this->targ_->iplt_section()->address();
3117     else
3118       plt_addr += this->targ_->plt_section()->address();
3119     Address got_addr = this->targ_->got_section()->output_section()->address();
3120     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3121       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3122     got_addr += ppcobj->toc_base_offset();
3123     Address off = plt_addr - got_addr;
3124     bool static_chain = parameters->options().plt_static_chain();
3125     bool thread_safe = this->targ_->plt_thread_safe();
3126     unsigned int bytes = (4 * 5
3127                           + 4 * static_chain
3128                           + 8 * thread_safe
3129                           + 4 * (ha(off) != 0)
3130                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3131     unsigned int align = 1 << parameters->options().plt_align();
3132     if (align > 1)
3133       bytes = (bytes + align - 1) & -align;
3134     return bytes;
3135   }
3136
3137   // Return long branch stub size.
3138   unsigned int
3139   branch_stub_size(Address to)
3140   {
3141     Address loc
3142       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3143     if (to - loc + (1 << 25) < 2 << 25)
3144       return 4;
3145     if (size == 64 || !parameters->options().output_is_position_independent())
3146       return 16;
3147     return 32;
3148   }
3149
3150   // Write out stubs.
3151   void
3152   do_write(Output_file*);
3153
3154   // Plt call stub keys.
3155   class Plt_stub_ent
3156   {
3157   public:
3158     Plt_stub_ent(const Symbol* sym)
3159       : sym_(sym), object_(0), addend_(0), locsym_(0)
3160     { }
3161
3162     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3163                  unsigned int locsym_index)
3164       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3165     { }
3166
3167     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3168                  const Symbol* sym,
3169                  unsigned int r_type,
3170                  Address addend)
3171       : sym_(sym), object_(0), addend_(0), locsym_(0)
3172     {
3173       if (size != 32)
3174         this->addend_ = addend;
3175       else if (parameters->options().output_is_position_independent()
3176                && r_type == elfcpp::R_PPC_PLTREL24)
3177         {
3178           this->addend_ = addend;
3179           if (this->addend_ >= 32768)
3180             this->object_ = object;
3181         }
3182     }
3183
3184     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3185                  unsigned int locsym_index,
3186                  unsigned int r_type,
3187                  Address addend)
3188       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3189     {
3190       if (size != 32)
3191         this->addend_ = addend;
3192       else if (parameters->options().output_is_position_independent()
3193                && r_type == elfcpp::R_PPC_PLTREL24)
3194         this->addend_ = addend;
3195     }
3196
3197     bool operator==(const Plt_stub_ent& that) const
3198     {
3199       return (this->sym_ == that.sym_
3200               && this->object_ == that.object_
3201               && this->addend_ == that.addend_
3202               && this->locsym_ == that.locsym_);
3203     }
3204
3205     const Symbol* sym_;
3206     const Sized_relobj_file<size, big_endian>* object_;
3207     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3208     unsigned int locsym_;
3209   };
3210
3211   class Plt_stub_ent_hash
3212   {
3213   public:
3214     size_t operator()(const Plt_stub_ent& ent) const
3215     {
3216       return (reinterpret_cast<uintptr_t>(ent.sym_)
3217               ^ reinterpret_cast<uintptr_t>(ent.object_)
3218               ^ ent.addend_
3219               ^ ent.locsym_);
3220     }
3221   };
3222
3223   // Long branch stub keys.
3224   class Branch_stub_ent
3225   {
3226   public:
3227     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3228       : dest_(to), toc_base_off_(0)
3229     {
3230       if (size == 64)
3231         toc_base_off_ = obj->toc_base_offset();
3232     }
3233
3234     bool operator==(const Branch_stub_ent& that) const
3235     {
3236       return (this->dest_ == that.dest_
3237               && (size == 32
3238                   || this->toc_base_off_ == that.toc_base_off_));
3239     }
3240
3241     Address dest_;
3242     unsigned int toc_base_off_;
3243   };
3244
3245   class Branch_stub_ent_hash
3246   {
3247   public:
3248     size_t operator()(const Branch_stub_ent& ent) const
3249     { return ent.dest_ ^ ent.toc_base_off_; }
3250   };
3251
3252   // In a sane world this would be a global.
3253   Target_powerpc<size, big_endian>* targ_;
3254   // Map sym/object/addend to stub offset.
3255   Plt_stub_entries plt_call_stubs_;
3256   // Map destination address to stub offset.
3257   typedef Unordered_map<Branch_stub_ent, unsigned int,
3258                         Branch_stub_ent_hash> Branch_stub_entries;
3259   Branch_stub_entries long_branch_stubs_;
3260   // size of input section
3261   section_size_type orig_data_size_;
3262   // size of stubs
3263   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3264   // Whether .eh_frame info has been created for this stub section.
3265   bool eh_frame_added_;
3266 };
3267
3268 // Make a new stub table, and record.
3269
3270 template<int size, bool big_endian>
3271 Stub_table<size, big_endian>*
3272 Target_powerpc<size, big_endian>::new_stub_table()
3273 {
3274   Stub_table<size, big_endian>* stub_table
3275     = new Stub_table<size, big_endian>(this);
3276   this->stub_tables_.push_back(stub_table);
3277   return stub_table;
3278 }
3279
3280 // Delayed stub table initialisation, because we create the stub table
3281 // before we know to which section it will be attached.
3282
3283 template<int size, bool big_endian>
3284 void
3285 Stub_table<size, big_endian>::init(
3286     const Output_section::Input_section* owner,
3287     Output_section* output_section)
3288 {
3289   this->set_relobj(owner->relobj());
3290   this->set_shndx(owner->shndx());
3291   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3292   this->set_output_section(output_section);
3293   this->orig_data_size_ = owner->current_data_size();
3294
3295   std::vector<Output_relaxed_input_section*> new_relaxed;
3296   new_relaxed.push_back(this);
3297   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3298 }
3299
3300 // Add a plt call stub, if we do not already have one for this
3301 // sym/object/addend combo.
3302
3303 template<int size, bool big_endian>
3304 void
3305 Stub_table<size, big_endian>::add_plt_call_entry(
3306     const Sized_relobj_file<size, big_endian>* object,
3307     const Symbol* gsym,
3308     unsigned int r_type,
3309     Address addend)
3310 {
3311   Plt_stub_ent ent(object, gsym, r_type, addend);
3312   Address off = this->plt_size_;
3313   std::pair<typename Plt_stub_entries::iterator, bool> p
3314     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3315   if (p.second)
3316     this->plt_size_ = off + this->plt_call_size(p.first);
3317 }
3318
3319 template<int size, bool big_endian>
3320 void
3321 Stub_table<size, big_endian>::add_plt_call_entry(
3322     const Sized_relobj_file<size, big_endian>* object,
3323     unsigned int locsym_index,
3324     unsigned int r_type,
3325     Address addend)
3326 {
3327   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3328   Address off = this->plt_size_;
3329   std::pair<typename Plt_stub_entries::iterator, bool> p
3330     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3331   if (p.second)
3332     this->plt_size_ = off + this->plt_call_size(p.first);
3333 }
3334
3335 // Find a plt call stub.
3336
3337 template<int size, bool big_endian>
3338 typename Stub_table<size, big_endian>::Address
3339 Stub_table<size, big_endian>::find_plt_call_entry(
3340     const Sized_relobj_file<size, big_endian>* object,
3341     const Symbol* gsym,
3342     unsigned int r_type,
3343     Address addend) const
3344 {
3345   Plt_stub_ent ent(object, gsym, r_type, addend);
3346   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3347   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3348 }
3349
3350 template<int size, bool big_endian>
3351 typename Stub_table<size, big_endian>::Address
3352 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3353 {
3354   Plt_stub_ent ent(gsym);
3355   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3356   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3357 }
3358
3359 template<int size, bool big_endian>
3360 typename Stub_table<size, big_endian>::Address
3361 Stub_table<size, big_endian>::find_plt_call_entry(
3362     const Sized_relobj_file<size, big_endian>* object,
3363     unsigned int locsym_index,
3364     unsigned int r_type,
3365     Address addend) const
3366 {
3367   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3368   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3369   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3370 }
3371
3372 template<int size, bool big_endian>
3373 typename Stub_table<size, big_endian>::Address
3374 Stub_table<size, big_endian>::find_plt_call_entry(
3375     const Sized_relobj_file<size, big_endian>* object,
3376     unsigned int locsym_index) const
3377 {
3378   Plt_stub_ent ent(object, locsym_index);
3379   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3380   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3381 }
3382
3383 // Add a long branch stub if we don't already have one to given
3384 // destination.
3385
3386 template<int size, bool big_endian>
3387 void
3388 Stub_table<size, big_endian>::add_long_branch_entry(
3389     const Powerpc_relobj<size, big_endian>* object,
3390     Address to)
3391 {
3392   Branch_stub_ent ent(object, to);
3393   Address off = this->branch_size_;
3394   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3395     {
3396       unsigned int stub_size = this->branch_stub_size(to);
3397       this->branch_size_ = off + stub_size;
3398       if (size == 64 && stub_size != 4)
3399         this->targ_->add_branch_lookup_table(to);
3400     }
3401 }
3402
3403 // Find long branch stub.
3404
3405 template<int size, bool big_endian>
3406 typename Stub_table<size, big_endian>::Address
3407 Stub_table<size, big_endian>::find_long_branch_entry(
3408     const Powerpc_relobj<size, big_endian>* object,
3409     Address to) const
3410 {
3411   Branch_stub_ent ent(object, to);
3412   typename Branch_stub_entries::const_iterator p
3413     = this->long_branch_stubs_.find(ent);
3414   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3415 }
3416
3417 // A class to handle .glink.
3418
3419 template<int size, bool big_endian>
3420 class Output_data_glink : public Output_section_data
3421 {
3422  public:
3423   static const int pltresolve_size = 16*4;
3424
3425   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3426     : Output_section_data(16), targ_(targ)
3427   { }
3428
3429   void
3430   add_eh_frame(Layout* layout)
3431   {
3432     if (!parameters->options().ld_generated_unwind_info())
3433       return;
3434
3435     if (size == 64)
3436       layout->add_eh_frame_for_plt(this,
3437                                    Eh_cie<64>::eh_frame_cie,
3438                                    sizeof (Eh_cie<64>::eh_frame_cie),
3439                                    glink_eh_frame_fde_64,
3440                                    sizeof (glink_eh_frame_fde_64));
3441     else
3442       {
3443         // 32-bit .glink can use the default since the CIE return
3444         // address reg, LR, is valid.
3445         layout->add_eh_frame_for_plt(this,
3446                                      Eh_cie<32>::eh_frame_cie,
3447                                      sizeof (Eh_cie<32>::eh_frame_cie),
3448                                      default_fde,
3449                                      sizeof (default_fde));
3450         // Except where LR is used in a PIC __glink_PLTresolve.
3451         if (parameters->options().output_is_position_independent())
3452           layout->add_eh_frame_for_plt(this,
3453                                        Eh_cie<32>::eh_frame_cie,
3454                                        sizeof (Eh_cie<32>::eh_frame_cie),
3455                                        glink_eh_frame_fde_32,
3456                                        sizeof (glink_eh_frame_fde_32));
3457       }
3458   }
3459
3460  protected:
3461   // Write to a map file.
3462   void
3463   do_print_to_mapfile(Mapfile* mapfile) const
3464   { mapfile->print_output_data(this, _("** glink")); }
3465
3466  private:
3467   void
3468   set_final_data_size();
3469
3470   // Write out .glink
3471   void
3472   do_write(Output_file*);
3473
3474   // Allows access to .got and .plt for do_write.
3475   Target_powerpc<size, big_endian>* targ_;
3476 };
3477
3478 template<int size, bool big_endian>
3479 void
3480 Output_data_glink<size, big_endian>::set_final_data_size()
3481 {
3482   unsigned int count = this->targ_->plt_entry_count();
3483   section_size_type total = 0;
3484
3485   if (count != 0)
3486     {
3487       if (size == 32)
3488         {
3489           // space for branch table
3490           total += 4 * (count - 1);
3491
3492           total += -total & 15;
3493           total += this->pltresolve_size;
3494         }
3495       else
3496         {
3497           total += this->pltresolve_size;
3498
3499           // space for branch table
3500           total += 8 * count;
3501           if (count > 0x8000)
3502             total += 4 * (count - 0x8000);
3503         }
3504     }
3505
3506   this->set_data_size(total);
3507 }
3508
3509 // Write out plt and long branch stub code.
3510
3511 template<int size, bool big_endian>
3512 void
3513 Stub_table<size, big_endian>::do_write(Output_file* of)
3514 {
3515   if (this->plt_call_stubs_.empty()
3516       && this->long_branch_stubs_.empty())
3517     return;
3518
3519   const section_size_type start_off = this->offset();
3520   const section_size_type off = this->stub_offset();
3521   const section_size_type oview_size =
3522     convert_to_section_size_type(this->data_size() - (off - start_off));
3523   unsigned char* const oview = of->get_output_view(off, oview_size);
3524   unsigned char* p;
3525
3526   if (size == 64)
3527     {
3528       const Output_data_got_powerpc<size, big_endian>* got
3529         = this->targ_->got_section();
3530       Address got_os_addr = got->output_section()->address();
3531
3532       if (!this->plt_call_stubs_.empty())
3533         {
3534           // The base address of the .plt section.
3535           Address plt_base = this->targ_->plt_section()->address();
3536           Address iplt_base = invalid_address;
3537
3538           // Write out plt call stubs.
3539           typename Plt_stub_entries::const_iterator cs;
3540           for (cs = this->plt_call_stubs_.begin();
3541                cs != this->plt_call_stubs_.end();
3542                ++cs)
3543             {
3544               bool is_iplt;
3545               Address pltoff = this->plt_off(cs, &is_iplt);
3546               Address plt_addr = pltoff;
3547               if (is_iplt)
3548                 {
3549                   if (iplt_base == invalid_address)
3550                     iplt_base = this->targ_->iplt_section()->address();
3551                   plt_addr += iplt_base;
3552                 }
3553               else
3554                 plt_addr += plt_base;
3555               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3556                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3557               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3558               Address off = plt_addr - got_addr;
3559
3560               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3561                 gold_error(_("%s: linkage table error against `%s'"),
3562                            cs->first.object_->name().c_str(),
3563                            cs->first.sym_->demangled_name().c_str());
3564
3565               bool static_chain = parameters->options().plt_static_chain();
3566               bool thread_safe = this->targ_->plt_thread_safe();
3567               bool use_fake_dep = false;
3568               Address cmp_branch_off = 0;
3569               if (thread_safe)
3570                 {
3571                   unsigned int pltindex
3572                     = ((pltoff - this->targ_->first_plt_entry_offset())
3573                        / this->targ_->plt_entry_size());
3574                   Address glinkoff
3575                     = (this->targ_->glink_section()->pltresolve_size
3576                        + pltindex * 8);
3577                   if (pltindex > 32768)
3578                     glinkoff += (pltindex - 32768) * 4;
3579                   Address to
3580                     = this->targ_->glink_section()->address() + glinkoff;
3581                   Address from
3582                     = (this->stub_address() + cs->second + 24
3583                        + 4 * (ha(off) != 0)
3584                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3585                        + 4 * static_chain);
3586                   cmp_branch_off = to - from;
3587                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3588                 }
3589
3590               p = oview + cs->second;
3591               if (ha(off) != 0)
3592                 {
3593                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3594                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3595                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3596                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3597                     {
3598                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3599                       off = 0;
3600                     }
3601                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3602                   if (use_fake_dep)
3603                     {
3604                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3605                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3606                     }
3607                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3608                   if (static_chain)
3609                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3610                 }
3611               else
3612                 {
3613                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3614                   write_insn<big_endian>(p, ld_11_2 + l(off)),          p += 4;
3615                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3616                     {
3617                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3618                       off = 0;
3619                     }
3620                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3621                   if (use_fake_dep)
3622                     {
3623                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3624                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3625                     }
3626                   if (static_chain)
3627                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3628                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3629                 }
3630               if (thread_safe && !use_fake_dep)
3631                 {
3632                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3633                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3634                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3635                 }
3636               else
3637                 write_insn<big_endian>(p, bctr);
3638             }
3639         }
3640
3641       // Write out long branch stubs.
3642       typename Branch_stub_entries::const_iterator bs;
3643       for (bs = this->long_branch_stubs_.begin();
3644            bs != this->long_branch_stubs_.end();
3645            ++bs)
3646         {
3647           p = oview + this->plt_size_ + bs->second;
3648           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3649           Address delta = bs->first.dest_ - loc;
3650           if (delta + (1 << 25) < 2 << 25)
3651             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3652           else
3653             {
3654               Address brlt_addr
3655                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3656               gold_assert(brlt_addr != invalid_address);
3657               brlt_addr += this->targ_->brlt_section()->address();
3658               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3659               Address brltoff = brlt_addr - got_addr;
3660               if (ha(brltoff) == 0)
3661                 {
3662                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3663                 }
3664               else
3665                 {
3666                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3667                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3668                 }
3669               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3670               write_insn<big_endian>(p, bctr);
3671             }
3672         }
3673     }
3674   else
3675     {
3676       if (!this->plt_call_stubs_.empty())
3677         {
3678           // The base address of the .plt section.
3679           Address plt_base = this->targ_->plt_section()->address();
3680           Address iplt_base = invalid_address;
3681           // The address of _GLOBAL_OFFSET_TABLE_.
3682           Address g_o_t = invalid_address;
3683
3684           // Write out plt call stubs.
3685           typename Plt_stub_entries::const_iterator cs;
3686           for (cs = this->plt_call_stubs_.begin();
3687                cs != this->plt_call_stubs_.end();
3688                ++cs)
3689             {
3690               bool is_iplt;
3691               Address plt_addr = this->plt_off(cs, &is_iplt);
3692               if (is_iplt)
3693                 {
3694                   if (iplt_base == invalid_address)
3695                     iplt_base = this->targ_->iplt_section()->address();
3696                   plt_addr += iplt_base;
3697                 }
3698               else
3699                 plt_addr += plt_base;
3700
3701               p = oview + cs->second;
3702               if (parameters->options().output_is_position_independent())
3703                 {
3704                   Address got_addr;
3705                   const Powerpc_relobj<size, big_endian>* ppcobj
3706                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
3707                        (cs->first.object_));
3708                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
3709                     {
3710                       unsigned int got2 = ppcobj->got2_shndx();
3711                       got_addr = ppcobj->get_output_section_offset(got2);
3712                       gold_assert(got_addr != invalid_address);
3713                       got_addr += (ppcobj->output_section(got2)->address()
3714                                    + cs->first.addend_);
3715                     }
3716                   else
3717                     {
3718                       if (g_o_t == invalid_address)
3719                         {
3720                           const Output_data_got_powerpc<size, big_endian>* got
3721                             = this->targ_->got_section();
3722                           g_o_t = got->address() + got->g_o_t();
3723                         }
3724                       got_addr = g_o_t;
3725                     }
3726
3727                   Address off = plt_addr - got_addr;
3728                   if (ha(off) == 0)
3729                     {
3730                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
3731                       write_insn<big_endian>(p +  4, mtctr_11);
3732                       write_insn<big_endian>(p +  8, bctr);
3733                     }
3734                   else
3735                     {
3736                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
3737                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
3738                       write_insn<big_endian>(p +  8, mtctr_11);
3739                       write_insn<big_endian>(p + 12, bctr);
3740                     }
3741                 }
3742               else
3743                 {
3744                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
3745                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
3746                   write_insn<big_endian>(p +  8, mtctr_11);
3747                   write_insn<big_endian>(p + 12, bctr);
3748                 }
3749             }
3750         }
3751
3752       // Write out long branch stubs.
3753       typename Branch_stub_entries::const_iterator bs;
3754       for (bs = this->long_branch_stubs_.begin();
3755            bs != this->long_branch_stubs_.end();
3756            ++bs)
3757         {
3758           p = oview + this->plt_size_ + bs->second;
3759           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3760           Address delta = bs->first.dest_ - loc;
3761           if (delta + (1 << 25) < 2 << 25)
3762             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3763           else if (!parameters->options().output_is_position_independent())
3764             {
3765               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
3766               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
3767               write_insn<big_endian>(p +  8, mtctr_12);
3768               write_insn<big_endian>(p + 12, bctr);
3769             }
3770           else
3771             {
3772               delta -= 8;
3773               write_insn<big_endian>(p +  0, mflr_0);
3774               write_insn<big_endian>(p +  4, bcl_20_31);
3775               write_insn<big_endian>(p +  8, mflr_12);
3776               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
3777               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
3778               write_insn<big_endian>(p + 20, mtlr_0);
3779               write_insn<big_endian>(p + 24, mtctr_12);
3780               write_insn<big_endian>(p + 28, bctr);
3781             }
3782         }
3783     }
3784 }
3785
3786 // Write out .glink.
3787
3788 template<int size, bool big_endian>
3789 void
3790 Output_data_glink<size, big_endian>::do_write(Output_file* of)
3791 {
3792   const section_size_type off = this->offset();
3793   const section_size_type oview_size =
3794     convert_to_section_size_type(this->data_size());
3795   unsigned char* const oview = of->get_output_view(off, oview_size);
3796   unsigned char* p;
3797
3798   // The base address of the .plt section.
3799   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3800   Address plt_base = this->targ_->plt_section()->address();
3801
3802   if (size == 64)
3803     {
3804       // Write pltresolve stub.
3805       p = oview;
3806       Address after_bcl = this->address() + 16;
3807       Address pltoff = plt_base - after_bcl;
3808
3809       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
3810
3811       write_insn<big_endian>(p, mflr_12),                       p += 4;
3812       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
3813       write_insn<big_endian>(p, mflr_11),                       p += 4;
3814       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
3815       write_insn<big_endian>(p, mtlr_12),                       p += 4;
3816       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
3817       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
3818       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
3819       write_insn<big_endian>(p, mtctr_11),                      p += 4;
3820       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
3821       write_insn<big_endian>(p, bctr),                          p += 4;
3822       while (p < oview + this->pltresolve_size)
3823         write_insn<big_endian>(p, nop), p += 4;
3824
3825       // Write lazy link call stubs.
3826       uint32_t indx = 0;
3827       while (p < oview + oview_size)
3828         {
3829           if (indx < 0x8000)
3830             {
3831               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
3832             }
3833           else
3834             {
3835               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
3836               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
3837             }
3838           uint32_t branch_off = 8 - (p - oview);
3839           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
3840           indx++;
3841         }
3842     }
3843   else
3844     {
3845       const Output_data_got_powerpc<size, big_endian>* got
3846         = this->targ_->got_section();
3847       // The address of _GLOBAL_OFFSET_TABLE_.
3848       Address g_o_t = got->address() + got->g_o_t();
3849
3850       // Write out pltresolve branch table.
3851       p = oview;
3852       unsigned int the_end = oview_size - this->pltresolve_size;
3853       unsigned char* end_p = oview + the_end;
3854       while (p < end_p - 8 * 4)
3855         write_insn<big_endian>(p, b + end_p - p), p += 4;
3856       while (p < end_p)
3857         write_insn<big_endian>(p, nop), p += 4;
3858
3859       // Write out pltresolve call stub.
3860       if (parameters->options().output_is_position_independent())
3861         {
3862           Address res0_off = 0;
3863           Address after_bcl_off = the_end + 12;
3864           Address bcl_res0 = after_bcl_off - res0_off;
3865
3866           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
3867           write_insn<big_endian>(p +  4, mflr_0);
3868           write_insn<big_endian>(p +  8, bcl_20_31);
3869           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
3870           write_insn<big_endian>(p + 16, mflr_12);
3871           write_insn<big_endian>(p + 20, mtlr_0);
3872           write_insn<big_endian>(p + 24, sub_11_11_12);
3873
3874           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
3875
3876           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
3877           if (ha(got_bcl) == ha(got_bcl + 4))
3878             {
3879               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
3880               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
3881             }
3882           else
3883             {
3884               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
3885               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
3886             }
3887           write_insn<big_endian>(p + 40, mtctr_0);
3888           write_insn<big_endian>(p + 44, add_0_11_11);
3889           write_insn<big_endian>(p + 48, add_11_0_11);
3890           write_insn<big_endian>(p + 52, bctr);
3891           write_insn<big_endian>(p + 56, nop);
3892           write_insn<big_endian>(p + 60, nop);
3893         }
3894       else
3895         {
3896           Address res0 = this->address();
3897
3898           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
3899           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
3900           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3901             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
3902           else
3903             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
3904           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
3905           write_insn<big_endian>(p + 16, mtctr_0);
3906           write_insn<big_endian>(p + 20, add_0_11_11);
3907           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3908             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
3909           else
3910             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
3911           write_insn<big_endian>(p + 28, add_11_0_11);
3912           write_insn<big_endian>(p + 32, bctr);
3913           write_insn<big_endian>(p + 36, nop);
3914           write_insn<big_endian>(p + 40, nop);
3915           write_insn<big_endian>(p + 44, nop);
3916           write_insn<big_endian>(p + 48, nop);
3917           write_insn<big_endian>(p + 52, nop);
3918           write_insn<big_endian>(p + 56, nop);
3919           write_insn<big_endian>(p + 60, nop);
3920         }
3921       p += 64;
3922     }
3923
3924   of->write_output_view(off, oview_size, oview);
3925 }
3926
3927
3928 // A class to handle linker generated save/restore functions.
3929
3930 template<int size, bool big_endian>
3931 class Output_data_save_res : public Output_section_data_build
3932 {
3933  public:
3934   Output_data_save_res(Symbol_table* symtab);
3935
3936  protected:
3937   // Write to a map file.
3938   void
3939   do_print_to_mapfile(Mapfile* mapfile) const
3940   { mapfile->print_output_data(this, _("** save/restore")); }
3941
3942   void
3943   do_write(Output_file*);
3944
3945  private:
3946   // The maximum size of save/restore contents.
3947   static const unsigned int savres_max = 218*4;
3948
3949   void
3950   savres_define(Symbol_table* symtab,
3951                 const char *name,
3952                 unsigned int lo, unsigned int hi,
3953                 unsigned char* write_ent(unsigned char*, int),
3954                 unsigned char* write_tail(unsigned char*, int));
3955
3956   unsigned char *contents_;
3957 };
3958
3959 template<bool big_endian>
3960 static unsigned char*
3961 savegpr0(unsigned char* p, int r)
3962 {
3963   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3964   write_insn<big_endian>(p, insn);
3965   return p + 4;
3966 }
3967
3968 template<bool big_endian>
3969 static unsigned char*
3970 savegpr0_tail(unsigned char* p, int r)
3971 {
3972   p = savegpr0<big_endian>(p, r);
3973   uint32_t insn = std_0_1 + 16;
3974   write_insn<big_endian>(p, insn);
3975   p = p + 4;
3976   write_insn<big_endian>(p, blr);
3977   return p + 4;
3978 }
3979
3980 template<bool big_endian>
3981 static unsigned char*
3982 restgpr0(unsigned char* p, int r)
3983 {
3984   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3985   write_insn<big_endian>(p, insn);
3986   return p + 4;
3987 }
3988
3989 template<bool big_endian>
3990 static unsigned char*
3991 restgpr0_tail(unsigned char* p, int r)
3992 {
3993   uint32_t insn = ld_0_1 + 16;
3994   write_insn<big_endian>(p, insn);
3995   p = p + 4;
3996   p = restgpr0<big_endian>(p, r);
3997   write_insn<big_endian>(p, mtlr_0);
3998   p = p + 4;
3999   if (r == 29)
4000     {
4001       p = restgpr0<big_endian>(p, 30);
4002       p = restgpr0<big_endian>(p, 31);
4003     }
4004   write_insn<big_endian>(p, blr);
4005   return p + 4;
4006 }
4007
4008 template<bool big_endian>
4009 static unsigned char*
4010 savegpr1(unsigned char* p, int r)
4011 {
4012   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4013   write_insn<big_endian>(p, insn);
4014   return p + 4;
4015 }
4016
4017 template<bool big_endian>
4018 static unsigned char*
4019 savegpr1_tail(unsigned char* p, int r)
4020 {
4021   p = savegpr1<big_endian>(p, r);
4022   write_insn<big_endian>(p, blr);
4023   return p + 4;
4024 }
4025
4026 template<bool big_endian>
4027 static unsigned char*
4028 restgpr1(unsigned char* p, int r)
4029 {
4030   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4031   write_insn<big_endian>(p, insn);
4032   return p + 4;
4033 }
4034
4035 template<bool big_endian>
4036 static unsigned char*
4037 restgpr1_tail(unsigned char* p, int r)
4038 {
4039   p = restgpr1<big_endian>(p, r);
4040   write_insn<big_endian>(p, blr);
4041   return p + 4;
4042 }
4043
4044 template<bool big_endian>
4045 static unsigned char*
4046 savefpr(unsigned char* p, int r)
4047 {
4048   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4049   write_insn<big_endian>(p, insn);
4050   return p + 4;
4051 }
4052
4053 template<bool big_endian>
4054 static unsigned char*
4055 savefpr0_tail(unsigned char* p, int r)
4056 {
4057   p = savefpr<big_endian>(p, r);
4058   write_insn<big_endian>(p, std_0_1 + 16);
4059   p = p + 4;
4060   write_insn<big_endian>(p, blr);
4061   return p + 4;
4062 }
4063
4064 template<bool big_endian>
4065 static unsigned char*
4066 restfpr(unsigned char* p, int r)
4067 {
4068   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4069   write_insn<big_endian>(p, insn);
4070   return p + 4;
4071 }
4072
4073 template<bool big_endian>
4074 static unsigned char*
4075 restfpr0_tail(unsigned char* p, int r)
4076 {
4077   write_insn<big_endian>(p, ld_0_1 + 16);
4078   p = p + 4;
4079   p = restfpr<big_endian>(p, r);
4080   write_insn<big_endian>(p, mtlr_0);
4081   p = p + 4;
4082   if (r == 29)
4083     {
4084       p = restfpr<big_endian>(p, 30);
4085       p = restfpr<big_endian>(p, 31);
4086     }
4087   write_insn<big_endian>(p, blr);
4088   return p + 4;
4089 }
4090
4091 template<bool big_endian>
4092 static unsigned char*
4093 savefpr1_tail(unsigned char* p, int r)
4094 {
4095   p = savefpr<big_endian>(p, r);
4096   write_insn<big_endian>(p, blr);
4097   return p + 4;
4098 }
4099
4100 template<bool big_endian>
4101 static unsigned char*
4102 restfpr1_tail(unsigned char* p, int r)
4103 {
4104   p = restfpr<big_endian>(p, r);
4105   write_insn<big_endian>(p, blr);
4106   return p + 4;
4107 }
4108
4109 template<bool big_endian>
4110 static unsigned char*
4111 savevr(unsigned char* p, int r)
4112 {
4113   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4114   write_insn<big_endian>(p, insn);
4115   p = p + 4;
4116   insn = stvx_0_12_0 + (r << 21);
4117   write_insn<big_endian>(p, insn);
4118   return p + 4;
4119 }
4120
4121 template<bool big_endian>
4122 static unsigned char*
4123 savevr_tail(unsigned char* p, int r)
4124 {
4125   p = savevr<big_endian>(p, r);
4126   write_insn<big_endian>(p, blr);
4127   return p + 4;
4128 }
4129
4130 template<bool big_endian>
4131 static unsigned char*
4132 restvr(unsigned char* p, int r)
4133 {
4134   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4135   write_insn<big_endian>(p, insn);
4136   p = p + 4;
4137   insn = lvx_0_12_0 + (r << 21);
4138   write_insn<big_endian>(p, insn);
4139   return p + 4;
4140 }
4141
4142 template<bool big_endian>
4143 static unsigned char*
4144 restvr_tail(unsigned char* p, int r)
4145 {
4146   p = restvr<big_endian>(p, r);
4147   write_insn<big_endian>(p, blr);
4148   return p + 4;
4149 }
4150
4151
4152 template<int size, bool big_endian>
4153 Output_data_save_res<size, big_endian>::Output_data_save_res(
4154     Symbol_table* symtab)
4155   : Output_section_data_build(4),
4156     contents_(NULL)
4157 {
4158   this->savres_define(symtab,
4159                       "_savegpr0_", 14, 31,
4160                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4161   this->savres_define(symtab,
4162                       "_restgpr0_", 14, 29,
4163                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4164   this->savres_define(symtab,
4165                       "_restgpr0_", 30, 31,
4166                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4167   this->savres_define(symtab,
4168                       "_savegpr1_", 14, 31,
4169                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4170   this->savres_define(symtab,
4171                       "_restgpr1_", 14, 31,
4172                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4173   this->savres_define(symtab,
4174                       "_savefpr_", 14, 31,
4175                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4176   this->savres_define(symtab,
4177                       "_restfpr_", 14, 29,
4178                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4179   this->savres_define(symtab,
4180                       "_restfpr_", 30, 31,
4181                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4182   this->savres_define(symtab,
4183                       "._savef", 14, 31,
4184                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4185   this->savres_define(symtab,
4186                       "._restf", 14, 31,
4187                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4188   this->savres_define(symtab,
4189                       "_savevr_", 20, 31,
4190                       savevr<big_endian>, savevr_tail<big_endian>);
4191   this->savres_define(symtab,
4192                       "_restvr_", 20, 31,
4193                       restvr<big_endian>, restvr_tail<big_endian>);
4194 }
4195
4196 template<int size, bool big_endian>
4197 void
4198 Output_data_save_res<size, big_endian>::savres_define(
4199     Symbol_table* symtab,
4200     const char *name,
4201     unsigned int lo, unsigned int hi,
4202     unsigned char* write_ent(unsigned char*, int),
4203     unsigned char* write_tail(unsigned char*, int))
4204 {
4205   size_t len = strlen(name);
4206   bool writing = false;
4207   char sym[16];
4208
4209   memcpy(sym, name, len);
4210   sym[len + 2] = 0;
4211
4212   for (unsigned int i = lo; i <= hi; i++)
4213     {
4214       sym[len + 0] = i / 10 + '0';
4215       sym[len + 1] = i % 10 + '0';
4216       Symbol* gsym = symtab->lookup(sym);
4217       bool refd = gsym != NULL && gsym->is_undefined();
4218       writing = writing || refd;
4219       if (writing)
4220         {
4221           if (this->contents_ == NULL)
4222             this->contents_ = new unsigned char[this->savres_max];
4223
4224           section_size_type value = this->current_data_size();
4225           unsigned char* p = this->contents_ + value;
4226           if (i != hi)
4227             p = write_ent(p, i);
4228           else
4229             p = write_tail(p, i);
4230           section_size_type cur_size = p - this->contents_;
4231           this->set_current_data_size(cur_size);
4232           if (refd)
4233             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4234                                           this, value, cur_size - value,
4235                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4236                                           elfcpp::STV_HIDDEN, 0, false, false);
4237         }
4238     }
4239 }
4240
4241 // Write out save/restore.
4242
4243 template<int size, bool big_endian>
4244 void
4245 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4246 {
4247   const section_size_type off = this->offset();
4248   const section_size_type oview_size =
4249     convert_to_section_size_type(this->data_size());
4250   unsigned char* const oview = of->get_output_view(off, oview_size);
4251   memcpy(oview, this->contents_, oview_size);
4252   of->write_output_view(off, oview_size, oview);
4253 }
4254
4255
4256 // Create the glink section.
4257
4258 template<int size, bool big_endian>
4259 void
4260 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4261 {
4262   if (this->glink_ == NULL)
4263     {
4264       this->glink_ = new Output_data_glink<size, big_endian>(this);
4265       this->glink_->add_eh_frame(layout);
4266       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4267                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4268                                       this->glink_, ORDER_TEXT, false);
4269     }
4270 }
4271
4272 // Create a PLT entry for a global symbol.
4273
4274 template<int size, bool big_endian>
4275 void
4276 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4277                                                  Layout* layout,
4278                                                  Symbol* gsym)
4279 {
4280   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4281       && gsym->can_use_relative_reloc(false))
4282     {
4283       if (this->iplt_ == NULL)
4284         this->make_iplt_section(symtab, layout);
4285       this->iplt_->add_ifunc_entry(gsym);
4286     }
4287   else
4288     {
4289       if (this->plt_ == NULL)
4290         this->make_plt_section(symtab, layout);
4291       this->plt_->add_entry(gsym);
4292     }
4293 }
4294
4295 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4296
4297 template<int size, bool big_endian>
4298 void
4299 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4300     Symbol_table* symtab,
4301     Layout* layout,
4302     Sized_relobj_file<size, big_endian>* relobj,
4303     unsigned int r_sym)
4304 {
4305   if (this->iplt_ == NULL)
4306     this->make_iplt_section(symtab, layout);
4307   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4308 }
4309
4310 // Return the number of entries in the PLT.
4311
4312 template<int size, bool big_endian>
4313 unsigned int
4314 Target_powerpc<size, big_endian>::plt_entry_count() const
4315 {
4316   if (this->plt_ == NULL)
4317     return 0;
4318   unsigned int count = this->plt_->entry_count();
4319   if (this->iplt_ != NULL)
4320     count += this->iplt_->entry_count();
4321   return count;
4322 }
4323
4324 // Return the offset of the first non-reserved PLT entry.
4325
4326 template<int size, bool big_endian>
4327 unsigned int
4328 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4329 {
4330   return this->plt_->first_plt_entry_offset();
4331 }
4332
4333 // Return the size of each PLT entry.
4334
4335 template<int size, bool big_endian>
4336 unsigned int
4337 Target_powerpc<size, big_endian>::plt_entry_size() const
4338 {
4339   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4340 }
4341
4342 // Create a GOT entry for local dynamic __tls_get_addr calls.
4343
4344 template<int size, bool big_endian>
4345 unsigned int
4346 Target_powerpc<size, big_endian>::tlsld_got_offset(
4347     Symbol_table* symtab,
4348     Layout* layout,
4349     Sized_relobj_file<size, big_endian>* object)
4350 {
4351   if (this->tlsld_got_offset_ == -1U)
4352     {
4353       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4354       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4355       Output_data_got_powerpc<size, big_endian>* got
4356         = this->got_section(symtab, layout);
4357       unsigned int got_offset = got->add_constant_pair(0, 0);
4358       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4359                           got_offset, 0);
4360       this->tlsld_got_offset_ = got_offset;
4361     }
4362   return this->tlsld_got_offset_;
4363 }
4364
4365 // Get the Reference_flags for a particular relocation.
4366
4367 template<int size, bool big_endian>
4368 int
4369 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4370 {
4371   switch (r_type)
4372     {
4373     case elfcpp::R_POWERPC_NONE:
4374     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4375     case elfcpp::R_POWERPC_GNU_VTENTRY:
4376     case elfcpp::R_PPC64_TOC:
4377       // No symbol reference.
4378       return 0;
4379
4380     case elfcpp::R_PPC64_ADDR64:
4381     case elfcpp::R_PPC64_UADDR64:
4382     case elfcpp::R_POWERPC_ADDR32:
4383     case elfcpp::R_POWERPC_UADDR32:
4384     case elfcpp::R_POWERPC_ADDR16:
4385     case elfcpp::R_POWERPC_UADDR16:
4386     case elfcpp::R_POWERPC_ADDR16_LO:
4387     case elfcpp::R_POWERPC_ADDR16_HI:
4388     case elfcpp::R_POWERPC_ADDR16_HA:
4389       return Symbol::ABSOLUTE_REF;
4390
4391     case elfcpp::R_POWERPC_ADDR24:
4392     case elfcpp::R_POWERPC_ADDR14:
4393     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4394     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4395       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4396
4397     case elfcpp::R_PPC64_REL64:
4398     case elfcpp::R_POWERPC_REL32:
4399     case elfcpp::R_PPC_LOCAL24PC:
4400     case elfcpp::R_POWERPC_REL16:
4401     case elfcpp::R_POWERPC_REL16_LO:
4402     case elfcpp::R_POWERPC_REL16_HI:
4403     case elfcpp::R_POWERPC_REL16_HA:
4404       return Symbol::RELATIVE_REF;
4405
4406     case elfcpp::R_POWERPC_REL24:
4407     case elfcpp::R_PPC_PLTREL24:
4408     case elfcpp::R_POWERPC_REL14:
4409     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4410     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4411       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4412
4413     case elfcpp::R_POWERPC_GOT16:
4414     case elfcpp::R_POWERPC_GOT16_LO:
4415     case elfcpp::R_POWERPC_GOT16_HI:
4416     case elfcpp::R_POWERPC_GOT16_HA:
4417     case elfcpp::R_PPC64_GOT16_DS:
4418     case elfcpp::R_PPC64_GOT16_LO_DS:
4419     case elfcpp::R_PPC64_TOC16:
4420     case elfcpp::R_PPC64_TOC16_LO:
4421     case elfcpp::R_PPC64_TOC16_HI:
4422     case elfcpp::R_PPC64_TOC16_HA:
4423     case elfcpp::R_PPC64_TOC16_DS:
4424     case elfcpp::R_PPC64_TOC16_LO_DS:
4425       // Absolute in GOT.
4426       return Symbol::ABSOLUTE_REF;
4427
4428     case elfcpp::R_POWERPC_GOT_TPREL16:
4429     case elfcpp::R_POWERPC_TLS:
4430       return Symbol::TLS_REF;
4431
4432     case elfcpp::R_POWERPC_COPY:
4433     case elfcpp::R_POWERPC_GLOB_DAT:
4434     case elfcpp::R_POWERPC_JMP_SLOT:
4435     case elfcpp::R_POWERPC_RELATIVE:
4436     case elfcpp::R_POWERPC_DTPMOD:
4437     default:
4438       // Not expected.  We will give an error later.
4439       return 0;
4440     }
4441 }
4442
4443 // Report an unsupported relocation against a local symbol.
4444
4445 template<int size, bool big_endian>
4446 void
4447 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4448     Sized_relobj_file<size, big_endian>* object,
4449     unsigned int r_type)
4450 {
4451   gold_error(_("%s: unsupported reloc %u against local symbol"),
4452              object->name().c_str(), r_type);
4453 }
4454
4455 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4456 // dynamic linker does not support it, issue an error.
4457
4458 template<int size, bool big_endian>
4459 void
4460 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4461                                                       unsigned int r_type)
4462 {
4463   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4464
4465   // These are the relocation types supported by glibc for both 32-bit
4466   // and 64-bit powerpc.
4467   switch (r_type)
4468     {
4469     case elfcpp::R_POWERPC_NONE:
4470     case elfcpp::R_POWERPC_RELATIVE:
4471     case elfcpp::R_POWERPC_GLOB_DAT:
4472     case elfcpp::R_POWERPC_DTPMOD:
4473     case elfcpp::R_POWERPC_DTPREL:
4474     case elfcpp::R_POWERPC_TPREL:
4475     case elfcpp::R_POWERPC_JMP_SLOT:
4476     case elfcpp::R_POWERPC_COPY:
4477     case elfcpp::R_POWERPC_IRELATIVE:
4478     case elfcpp::R_POWERPC_ADDR32:
4479     case elfcpp::R_POWERPC_UADDR32:
4480     case elfcpp::R_POWERPC_ADDR24:
4481     case elfcpp::R_POWERPC_ADDR16:
4482     case elfcpp::R_POWERPC_UADDR16:
4483     case elfcpp::R_POWERPC_ADDR16_LO:
4484     case elfcpp::R_POWERPC_ADDR16_HI:
4485     case elfcpp::R_POWERPC_ADDR16_HA:
4486     case elfcpp::R_POWERPC_ADDR14:
4487     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4488     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4489     case elfcpp::R_POWERPC_REL32:
4490     case elfcpp::R_POWERPC_REL24:
4491     case elfcpp::R_POWERPC_TPREL16:
4492     case elfcpp::R_POWERPC_TPREL16_LO:
4493     case elfcpp::R_POWERPC_TPREL16_HI:
4494     case elfcpp::R_POWERPC_TPREL16_HA:
4495       return;
4496
4497     default:
4498       break;
4499     }
4500
4501   if (size == 64)
4502     {
4503       switch (r_type)
4504         {
4505           // These are the relocation types supported only on 64-bit.
4506         case elfcpp::R_PPC64_ADDR64:
4507         case elfcpp::R_PPC64_UADDR64:
4508         case elfcpp::R_PPC64_JMP_IREL:
4509         case elfcpp::R_PPC64_ADDR16_DS:
4510         case elfcpp::R_PPC64_ADDR16_LO_DS:
4511         case elfcpp::R_PPC64_ADDR16_HIGHER:
4512         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4513         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4514         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4515         case elfcpp::R_PPC64_REL64:
4516         case elfcpp::R_POWERPC_ADDR30:
4517         case elfcpp::R_PPC64_TPREL16_DS:
4518         case elfcpp::R_PPC64_TPREL16_LO_DS:
4519         case elfcpp::R_PPC64_TPREL16_HIGHER:
4520         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4521         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4522         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4523           return;
4524
4525         default:
4526           break;
4527         }
4528     }
4529   else
4530     {
4531       switch (r_type)
4532         {
4533           // These are the relocation types supported only on 32-bit.
4534           // ??? glibc ld.so doesn't need to support these.
4535         case elfcpp::R_POWERPC_DTPREL16:
4536         case elfcpp::R_POWERPC_DTPREL16_LO:
4537         case elfcpp::R_POWERPC_DTPREL16_HI:
4538         case elfcpp::R_POWERPC_DTPREL16_HA:
4539           return;
4540
4541         default:
4542           break;
4543         }
4544     }
4545
4546   // This prevents us from issuing more than one error per reloc
4547   // section.  But we can still wind up issuing more than one
4548   // error per object file.
4549   if (this->issued_non_pic_error_)
4550     return;
4551   gold_assert(parameters->options().output_is_position_independent());
4552   object->error(_("requires unsupported dynamic reloc; "
4553                   "recompile with -fPIC"));
4554   this->issued_non_pic_error_ = true;
4555   return;
4556 }
4557
4558 // Return whether we need to make a PLT entry for a relocation of the
4559 // given type against a STT_GNU_IFUNC symbol.
4560
4561 template<int size, bool big_endian>
4562 bool
4563 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4564      Sized_relobj_file<size, big_endian>* object,
4565      unsigned int r_type)
4566 {
4567   // In non-pic code any reference will resolve to the plt call stub
4568   // for the ifunc symbol.
4569   if (size == 32 && !parameters->options().output_is_position_independent())
4570     return true;
4571
4572   switch (r_type)
4573     {
4574     // Word size refs from data sections are OK.
4575     case elfcpp::R_POWERPC_ADDR32:
4576     case elfcpp::R_POWERPC_UADDR32:
4577       if (size == 32)
4578         return true;
4579       break;
4580
4581     case elfcpp::R_PPC64_ADDR64:
4582     case elfcpp::R_PPC64_UADDR64:
4583       if (size == 64)
4584         return true;
4585       break;
4586
4587     // GOT refs are good.
4588     case elfcpp::R_POWERPC_GOT16:
4589     case elfcpp::R_POWERPC_GOT16_LO:
4590     case elfcpp::R_POWERPC_GOT16_HI:
4591     case elfcpp::R_POWERPC_GOT16_HA:
4592     case elfcpp::R_PPC64_GOT16_DS:
4593     case elfcpp::R_PPC64_GOT16_LO_DS:
4594       return true;
4595
4596     // So are function calls.
4597     case elfcpp::R_POWERPC_ADDR24:
4598     case elfcpp::R_POWERPC_ADDR14:
4599     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4600     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4601     case elfcpp::R_POWERPC_REL24:
4602     case elfcpp::R_PPC_PLTREL24:
4603     case elfcpp::R_POWERPC_REL14:
4604     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4605     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4606       return true;
4607
4608     default:
4609       break;
4610     }
4611
4612   // Anything else is a problem.
4613   // If we are building a static executable, the libc startup function
4614   // responsible for applying indirect function relocations is going
4615   // to complain about the reloc type.
4616   // If we are building a dynamic executable, we will have a text
4617   // relocation.  The dynamic loader will set the text segment
4618   // writable and non-executable to apply text relocations.  So we'll
4619   // segfault when trying to run the indirection function to resolve
4620   // the reloc.
4621   gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4622                object->name().c_str(), r_type);
4623   return false;
4624 }
4625
4626 // Scan a relocation for a local symbol.
4627
4628 template<int size, bool big_endian>
4629 inline void
4630 Target_powerpc<size, big_endian>::Scan::local(
4631     Symbol_table* symtab,
4632     Layout* layout,
4633     Target_powerpc<size, big_endian>* target,
4634     Sized_relobj_file<size, big_endian>* object,
4635     unsigned int data_shndx,
4636     Output_section* output_section,
4637     const elfcpp::Rela<size, big_endian>& reloc,
4638     unsigned int r_type,
4639     const elfcpp::Sym<size, big_endian>& lsym,
4640     bool is_discarded)
4641 {
4642   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4643
4644   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4645       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4646     {
4647       this->expect_tls_get_addr_call();
4648       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4649       if (tls_type != tls::TLSOPT_NONE)
4650         this->skip_next_tls_get_addr_call();
4651     }
4652   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4653            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4654     {
4655       this->expect_tls_get_addr_call();
4656       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4657       if (tls_type != tls::TLSOPT_NONE)
4658         this->skip_next_tls_get_addr_call();
4659     }
4660
4661   Powerpc_relobj<size, big_endian>* ppc_object
4662     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4663
4664   if (is_discarded)
4665     {
4666       if (size == 64
4667           && data_shndx == ppc_object->opd_shndx()
4668           && r_type == elfcpp::R_PPC64_ADDR64)
4669         ppc_object->set_opd_discard(reloc.get_r_offset());
4670       return;
4671     }
4672
4673   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4674   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4675   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4676     {
4677       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4678       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4679                           r_type, r_sym, reloc.get_r_addend());
4680       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4681     }
4682
4683   switch (r_type)
4684     {
4685     case elfcpp::R_POWERPC_NONE:
4686     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4687     case elfcpp::R_POWERPC_GNU_VTENTRY:
4688     case elfcpp::R_PPC64_TOCSAVE:
4689     case elfcpp::R_PPC_EMB_MRKREF:
4690     case elfcpp::R_POWERPC_TLS:
4691       break;
4692
4693     case elfcpp::R_PPC64_TOC:
4694       {
4695         Output_data_got_powerpc<size, big_endian>* got
4696           = target->got_section(symtab, layout);
4697         if (parameters->options().output_is_position_independent())
4698           {
4699             Address off = reloc.get_r_offset();
4700             if (size == 64
4701                 && data_shndx == ppc_object->opd_shndx()
4702                 && ppc_object->get_opd_discard(off - 8))
4703               break;
4704
4705             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4706             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
4707             rela_dyn->add_output_section_relative(got->output_section(),
4708                                                   elfcpp::R_POWERPC_RELATIVE,
4709                                                   output_section,
4710                                                   object, data_shndx, off,
4711                                                   symobj->toc_base_offset());
4712           }
4713       }
4714       break;
4715
4716     case elfcpp::R_PPC64_ADDR64:
4717     case elfcpp::R_PPC64_UADDR64:
4718     case elfcpp::R_POWERPC_ADDR32:
4719     case elfcpp::R_POWERPC_UADDR32:
4720     case elfcpp::R_POWERPC_ADDR24:
4721     case elfcpp::R_POWERPC_ADDR16:
4722     case elfcpp::R_POWERPC_ADDR16_LO:
4723     case elfcpp::R_POWERPC_ADDR16_HI:
4724     case elfcpp::R_POWERPC_ADDR16_HA:
4725     case elfcpp::R_POWERPC_UADDR16:
4726     case elfcpp::R_PPC64_ADDR16_HIGHER:
4727     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4728     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4729     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4730     case elfcpp::R_PPC64_ADDR16_DS:
4731     case elfcpp::R_PPC64_ADDR16_LO_DS:
4732     case elfcpp::R_POWERPC_ADDR14:
4733     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4734     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4735       // If building a shared library (or a position-independent
4736       // executable), we need to create a dynamic relocation for
4737       // this location.
4738       if (parameters->options().output_is_position_independent()
4739           || (size == 64 && is_ifunc))
4740         {
4741           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4742
4743           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
4744               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
4745             {
4746               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4747               unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4748               if (is_ifunc)
4749                 {
4750                   rela_dyn = target->iplt_section()->rel_plt();
4751                   dynrel = elfcpp::R_POWERPC_IRELATIVE;
4752                 }
4753               rela_dyn->add_local_relative(object, r_sym, dynrel,
4754                                            output_section, data_shndx,
4755                                            reloc.get_r_offset(),
4756                                            reloc.get_r_addend(), false);
4757             }
4758           else
4759             {
4760               check_non_pic(object, r_type);
4761               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4762               rela_dyn->add_local(object, r_sym, r_type, output_section,
4763                                   data_shndx, reloc.get_r_offset(),
4764                                   reloc.get_r_addend());
4765             }
4766         }
4767       break;
4768
4769     case elfcpp::R_POWERPC_REL24:
4770     case elfcpp::R_PPC_PLTREL24:
4771     case elfcpp::R_PPC_LOCAL24PC:
4772       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4773                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4774                           reloc.get_r_addend());
4775       break;
4776
4777     case elfcpp::R_POWERPC_REL14:
4778     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4779     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4780       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4781                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4782                           reloc.get_r_addend());
4783       break;
4784
4785     case elfcpp::R_PPC64_REL64:
4786     case elfcpp::R_POWERPC_REL32:
4787     case elfcpp::R_POWERPC_REL16:
4788     case elfcpp::R_POWERPC_REL16_LO:
4789     case elfcpp::R_POWERPC_REL16_HI:
4790     case elfcpp::R_POWERPC_REL16_HA:
4791     case elfcpp::R_POWERPC_SECTOFF:
4792     case elfcpp::R_POWERPC_TPREL16:
4793     case elfcpp::R_POWERPC_DTPREL16:
4794     case elfcpp::R_POWERPC_SECTOFF_LO:
4795     case elfcpp::R_POWERPC_TPREL16_LO:
4796     case elfcpp::R_POWERPC_DTPREL16_LO:
4797     case elfcpp::R_POWERPC_SECTOFF_HI:
4798     case elfcpp::R_POWERPC_TPREL16_HI:
4799     case elfcpp::R_POWERPC_DTPREL16_HI:
4800     case elfcpp::R_POWERPC_SECTOFF_HA:
4801     case elfcpp::R_POWERPC_TPREL16_HA:
4802     case elfcpp::R_POWERPC_DTPREL16_HA:
4803     case elfcpp::R_PPC64_DTPREL16_HIGHER:
4804     case elfcpp::R_PPC64_TPREL16_HIGHER:
4805     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4806     case elfcpp::R_PPC64_TPREL16_HIGHERA:
4807     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4808     case elfcpp::R_PPC64_TPREL16_HIGHEST:
4809     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4810     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4811     case elfcpp::R_PPC64_TPREL16_DS:
4812     case elfcpp::R_PPC64_TPREL16_LO_DS:
4813     case elfcpp::R_PPC64_DTPREL16_DS:
4814     case elfcpp::R_PPC64_DTPREL16_LO_DS:
4815     case elfcpp::R_PPC64_SECTOFF_DS:
4816     case elfcpp::R_PPC64_SECTOFF_LO_DS:
4817     case elfcpp::R_PPC64_TLSGD:
4818     case elfcpp::R_PPC64_TLSLD:
4819       break;
4820
4821     case elfcpp::R_POWERPC_GOT16:
4822     case elfcpp::R_POWERPC_GOT16_LO:
4823     case elfcpp::R_POWERPC_GOT16_HI:
4824     case elfcpp::R_POWERPC_GOT16_HA:
4825     case elfcpp::R_PPC64_GOT16_DS:
4826     case elfcpp::R_PPC64_GOT16_LO_DS:
4827       {
4828         // The symbol requires a GOT entry.
4829         Output_data_got_powerpc<size, big_endian>* got
4830           = target->got_section(symtab, layout);
4831         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4832
4833         if (!parameters->options().output_is_position_independent())
4834           {
4835             if (size == 32 && is_ifunc)
4836               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
4837             else
4838               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
4839           }
4840         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
4841           {
4842             // If we are generating a shared object or a pie, this
4843             // symbol's GOT entry will be set by a dynamic relocation.
4844             unsigned int off;
4845             off = got->add_constant(0);
4846             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
4847
4848             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4849             unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4850             if (is_ifunc)
4851               {
4852                 rela_dyn = target->iplt_section()->rel_plt();
4853                 dynrel = elfcpp::R_POWERPC_IRELATIVE;
4854               }
4855             rela_dyn->add_local_relative(object, r_sym, dynrel,
4856                                          got, off, 0, false);
4857           }
4858       }
4859       break;
4860
4861     case elfcpp::R_PPC64_TOC16:
4862     case elfcpp::R_PPC64_TOC16_LO:
4863     case elfcpp::R_PPC64_TOC16_HI:
4864     case elfcpp::R_PPC64_TOC16_HA:
4865     case elfcpp::R_PPC64_TOC16_DS:
4866     case elfcpp::R_PPC64_TOC16_LO_DS:
4867       // We need a GOT section.
4868       target->got_section(symtab, layout);
4869       break;
4870
4871     case elfcpp::R_POWERPC_GOT_TLSGD16:
4872     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4873     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4874     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4875       {
4876         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4877         if (tls_type == tls::TLSOPT_NONE)
4878           {
4879             Output_data_got_powerpc<size, big_endian>* got
4880               = target->got_section(symtab, layout);
4881             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4882             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4883             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
4884                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
4885           }
4886         else if (tls_type == tls::TLSOPT_TO_LE)
4887           {
4888             // no GOT relocs needed for Local Exec.
4889           }
4890         else
4891           gold_unreachable();
4892       }
4893       break;
4894
4895     case elfcpp::R_POWERPC_GOT_TLSLD16:
4896     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4897     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4898     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4899       {
4900         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4901         if (tls_type == tls::TLSOPT_NONE)
4902           target->tlsld_got_offset(symtab, layout, object);
4903         else if (tls_type == tls::TLSOPT_TO_LE)
4904           {
4905             // no GOT relocs needed for Local Exec.
4906             if (parameters->options().emit_relocs())
4907               {
4908                 Output_section* os = layout->tls_segment()->first_section();
4909                 gold_assert(os != NULL);
4910                 os->set_needs_symtab_index();
4911               }
4912           }
4913         else
4914           gold_unreachable();
4915       }
4916       break;
4917
4918     case elfcpp::R_POWERPC_GOT_DTPREL16:
4919     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4920     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4921     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4922       {
4923         Output_data_got_powerpc<size, big_endian>* got
4924           = target->got_section(symtab, layout);
4925         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4926         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
4927       }
4928       break;
4929
4930     case elfcpp::R_POWERPC_GOT_TPREL16:
4931     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4932     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4933     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4934       {
4935         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
4936         if (tls_type == tls::TLSOPT_NONE)
4937           {
4938             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4939             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
4940               {
4941                 Output_data_got_powerpc<size, big_endian>* got
4942                   = target->got_section(symtab, layout);
4943                 unsigned int off = got->add_constant(0);
4944                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
4945
4946                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4947                 rela_dyn->add_symbolless_local_addend(object, r_sym,
4948                                                       elfcpp::R_POWERPC_TPREL,
4949                                                       got, off, 0);
4950               }
4951           }
4952         else if (tls_type == tls::TLSOPT_TO_LE)
4953           {
4954             // no GOT relocs needed for Local Exec.
4955           }
4956         else
4957           gold_unreachable();
4958       }
4959       break;
4960
4961     default:
4962       unsupported_reloc_local(object, r_type);
4963       break;
4964     }
4965
4966   switch (r_type)
4967     {
4968     case elfcpp::R_POWERPC_GOT_TLSLD16:
4969     case elfcpp::R_POWERPC_GOT_TLSGD16:
4970     case elfcpp::R_POWERPC_GOT_TPREL16:
4971     case elfcpp::R_POWERPC_GOT_DTPREL16:
4972     case elfcpp::R_POWERPC_GOT16:
4973     case elfcpp::R_PPC64_GOT16_DS:
4974     case elfcpp::R_PPC64_TOC16:
4975     case elfcpp::R_PPC64_TOC16_DS:
4976       ppc_object->set_has_small_toc_reloc();
4977     default:
4978       break;
4979     }
4980 }
4981
4982 // Report an unsupported relocation against a global symbol.
4983
4984 template<int size, bool big_endian>
4985 void
4986 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
4987     Sized_relobj_file<size, big_endian>* object,
4988     unsigned int r_type,
4989     Symbol* gsym)
4990 {
4991   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4992              object->name().c_str(), r_type, gsym->demangled_name().c_str());
4993 }
4994
4995 // Scan a relocation for a global symbol.
4996
4997 template<int size, bool big_endian>
4998 inline void
4999 Target_powerpc<size, big_endian>::Scan::global(
5000     Symbol_table* symtab,
5001     Layout* layout,
5002     Target_powerpc<size, big_endian>* target,
5003     Sized_relobj_file<size, big_endian>* object,
5004     unsigned int data_shndx,
5005     Output_section* output_section,
5006     const elfcpp::Rela<size, big_endian>& reloc,
5007     unsigned int r_type,
5008     Symbol* gsym)
5009 {
5010   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5011     return;
5012
5013   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5014       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5015     {
5016       this->expect_tls_get_addr_call();
5017       const bool final = gsym->final_value_is_known();
5018       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5019       if (tls_type != tls::TLSOPT_NONE)
5020         this->skip_next_tls_get_addr_call();
5021     }
5022   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5023            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5024     {
5025       this->expect_tls_get_addr_call();
5026       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5027       if (tls_type != tls::TLSOPT_NONE)
5028         this->skip_next_tls_get_addr_call();
5029     }
5030
5031   Powerpc_relobj<size, big_endian>* ppc_object
5032     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5033
5034   // A STT_GNU_IFUNC symbol may require a PLT entry.
5035   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5036       && this->reloc_needs_plt_for_ifunc(object, r_type))
5037     {
5038       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5039                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5040                           reloc.get_r_addend());
5041       target->make_plt_entry(symtab, layout, gsym);
5042     }
5043
5044   switch (r_type)
5045     {
5046     case elfcpp::R_POWERPC_NONE:
5047     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5048     case elfcpp::R_POWERPC_GNU_VTENTRY:
5049     case elfcpp::R_PPC_LOCAL24PC:
5050     case elfcpp::R_PPC_EMB_MRKREF:
5051     case elfcpp::R_POWERPC_TLS:
5052       break;
5053
5054     case elfcpp::R_PPC64_TOC:
5055       {
5056         Output_data_got_powerpc<size, big_endian>* got
5057           = target->got_section(symtab, layout);
5058         if (parameters->options().output_is_position_independent())
5059           {
5060             Address off = reloc.get_r_offset();
5061             if (size == 64
5062                 && data_shndx == ppc_object->opd_shndx()
5063                 && ppc_object->get_opd_discard(off - 8))
5064               break;
5065
5066             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5067             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5068             if (data_shndx != ppc_object->opd_shndx())
5069               symobj = static_cast
5070                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5071             rela_dyn->add_output_section_relative(got->output_section(),
5072                                                   elfcpp::R_POWERPC_RELATIVE,
5073                                                   output_section,
5074                                                   object, data_shndx, off,
5075                                                   symobj->toc_base_offset());
5076           }
5077       }
5078       break;
5079
5080     case elfcpp::R_PPC64_ADDR64:
5081       if (size == 64
5082           && data_shndx == ppc_object->opd_shndx()
5083           && (gsym->is_defined_in_discarded_section()
5084               || gsym->object() != object))
5085         {
5086           ppc_object->set_opd_discard(reloc.get_r_offset());
5087           break;
5088         }
5089       // Fall thru
5090     case elfcpp::R_PPC64_UADDR64:
5091     case elfcpp::R_POWERPC_ADDR32:
5092     case elfcpp::R_POWERPC_UADDR32:
5093     case elfcpp::R_POWERPC_ADDR24:
5094     case elfcpp::R_POWERPC_ADDR16:
5095     case elfcpp::R_POWERPC_ADDR16_LO:
5096     case elfcpp::R_POWERPC_ADDR16_HI:
5097     case elfcpp::R_POWERPC_ADDR16_HA:
5098     case elfcpp::R_POWERPC_UADDR16:
5099     case elfcpp::R_PPC64_ADDR16_HIGHER:
5100     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5101     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5102     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5103     case elfcpp::R_PPC64_ADDR16_DS:
5104     case elfcpp::R_PPC64_ADDR16_LO_DS:
5105     case elfcpp::R_POWERPC_ADDR14:
5106     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5107     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5108       {
5109         // Make a PLT entry if necessary.
5110         if (gsym->needs_plt_entry())
5111           {
5112             target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5113                                 r_type,
5114                                 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5115                                 reloc.get_r_addend());
5116             target->make_plt_entry(symtab, layout, gsym);
5117             // Since this is not a PC-relative relocation, we may be
5118             // taking the address of a function. In that case we need to
5119             // set the entry in the dynamic symbol table to the address of
5120             // the PLT call stub.
5121             if (size == 32
5122                 && gsym->is_from_dynobj()
5123                 && !parameters->options().output_is_position_independent())
5124               gsym->set_needs_dynsym_value();
5125           }
5126         // Make a dynamic relocation if necessary.
5127         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5128             || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
5129           {
5130             if (gsym->may_need_copy_reloc())
5131               {
5132                 target->copy_reloc(symtab, layout, object,
5133                                    data_shndx, output_section, gsym, reloc);
5134               }
5135             else if ((size == 32
5136                       && r_type == elfcpp::R_POWERPC_ADDR32
5137                       && gsym->can_use_relative_reloc(false)
5138                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5139                            && parameters->options().shared()))
5140                      || (size == 64
5141                          && r_type == elfcpp::R_PPC64_ADDR64
5142                          && (gsym->can_use_relative_reloc(false)
5143                              || data_shndx == ppc_object->opd_shndx())))
5144               {
5145                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5146                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
5147                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5148                   {
5149                     rela_dyn = target->iplt_section()->rel_plt();
5150                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
5151                   }
5152                 rela_dyn->add_symbolless_global_addend(
5153                     gsym, dynrel, output_section, object, data_shndx,
5154                     reloc.get_r_offset(), reloc.get_r_addend());
5155               }
5156             else
5157               {
5158                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5159                 check_non_pic(object, r_type);
5160                 rela_dyn->add_global(gsym, r_type, output_section,
5161                                      object, data_shndx,
5162                                      reloc.get_r_offset(),
5163                                      reloc.get_r_addend());
5164               }
5165           }
5166       }
5167       break;
5168
5169     case elfcpp::R_PPC_PLTREL24:
5170     case elfcpp::R_POWERPC_REL24:
5171       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5172                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5173                           reloc.get_r_addend());
5174       if (gsym->needs_plt_entry()
5175           || (!gsym->final_value_is_known()
5176               && (gsym->is_undefined()
5177                   || gsym->is_from_dynobj()
5178                   || gsym->is_preemptible())))
5179         target->make_plt_entry(symtab, layout, gsym);
5180       // Fall thru
5181
5182     case elfcpp::R_PPC64_REL64:
5183     case elfcpp::R_POWERPC_REL32:
5184       // Make a dynamic relocation if necessary.
5185       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5186         {
5187           if (gsym->may_need_copy_reloc())
5188             {
5189               target->copy_reloc(symtab, layout, object,
5190                                  data_shndx, output_section, gsym,
5191                                  reloc);
5192             }
5193           else
5194             {
5195               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5196               check_non_pic(object, r_type);
5197               rela_dyn->add_global(gsym, r_type, output_section, object,
5198                                    data_shndx, reloc.get_r_offset(),
5199                                    reloc.get_r_addend());
5200             }
5201         }
5202       break;
5203
5204     case elfcpp::R_POWERPC_REL14:
5205     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5206     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5207       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5208                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5209                           reloc.get_r_addend());
5210       break;
5211
5212     case elfcpp::R_POWERPC_REL16:
5213     case elfcpp::R_POWERPC_REL16_LO:
5214     case elfcpp::R_POWERPC_REL16_HI:
5215     case elfcpp::R_POWERPC_REL16_HA:
5216     case elfcpp::R_POWERPC_SECTOFF:
5217     case elfcpp::R_POWERPC_TPREL16:
5218     case elfcpp::R_POWERPC_DTPREL16:
5219     case elfcpp::R_POWERPC_SECTOFF_LO:
5220     case elfcpp::R_POWERPC_TPREL16_LO:
5221     case elfcpp::R_POWERPC_DTPREL16_LO:
5222     case elfcpp::R_POWERPC_SECTOFF_HI:
5223     case elfcpp::R_POWERPC_TPREL16_HI:
5224     case elfcpp::R_POWERPC_DTPREL16_HI:
5225     case elfcpp::R_POWERPC_SECTOFF_HA:
5226     case elfcpp::R_POWERPC_TPREL16_HA:
5227     case elfcpp::R_POWERPC_DTPREL16_HA:
5228     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5229     case elfcpp::R_PPC64_TPREL16_HIGHER:
5230     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5231     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5232     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5233     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5234     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5235     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5236     case elfcpp::R_PPC64_TPREL16_DS:
5237     case elfcpp::R_PPC64_TPREL16_LO_DS:
5238     case elfcpp::R_PPC64_DTPREL16_DS:
5239     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5240     case elfcpp::R_PPC64_SECTOFF_DS:
5241     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5242     case elfcpp::R_PPC64_TLSGD:
5243     case elfcpp::R_PPC64_TLSLD:
5244       break;
5245
5246     case elfcpp::R_POWERPC_GOT16:
5247     case elfcpp::R_POWERPC_GOT16_LO:
5248     case elfcpp::R_POWERPC_GOT16_HI:
5249     case elfcpp::R_POWERPC_GOT16_HA:
5250     case elfcpp::R_PPC64_GOT16_DS:
5251     case elfcpp::R_PPC64_GOT16_LO_DS:
5252       {
5253         // The symbol requires a GOT entry.
5254         Output_data_got_powerpc<size, big_endian>* got;
5255
5256         got = target->got_section(symtab, layout);
5257         if (gsym->final_value_is_known())
5258           {
5259             if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
5260               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5261             else
5262               got->add_global(gsym, GOT_TYPE_STANDARD);
5263           }
5264         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5265           {
5266             // If we are generating a shared object or a pie, this
5267             // symbol's GOT entry will be set by a dynamic relocation.
5268             unsigned int off = got->add_constant(0);
5269             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5270
5271             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5272             if (gsym->can_use_relative_reloc(false)
5273                 && !(size == 32
5274                      && gsym->visibility() == elfcpp::STV_PROTECTED
5275                      && parameters->options().shared()))
5276               {
5277                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
5278                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5279                   {
5280                     rela_dyn = target->iplt_section()->rel_plt();
5281                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
5282                   }
5283                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5284               }
5285             else
5286               {
5287                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5288                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5289               }
5290           }
5291       }
5292       break;
5293
5294     case elfcpp::R_PPC64_TOC16:
5295     case elfcpp::R_PPC64_TOC16_LO:
5296     case elfcpp::R_PPC64_TOC16_HI:
5297     case elfcpp::R_PPC64_TOC16_HA:
5298     case elfcpp::R_PPC64_TOC16_DS:
5299     case elfcpp::R_PPC64_TOC16_LO_DS:
5300       // We need a GOT section.
5301       target->got_section(symtab, layout);
5302       break;
5303
5304     case elfcpp::R_POWERPC_GOT_TLSGD16:
5305     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5306     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5307     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5308       {
5309         const bool final = gsym->final_value_is_known();
5310         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5311         if (tls_type == tls::TLSOPT_NONE)
5312           {
5313             Output_data_got_powerpc<size, big_endian>* got
5314               = target->got_section(symtab, layout);
5315             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
5316                                           target->rela_dyn_section(layout),
5317                                           elfcpp::R_POWERPC_DTPMOD,
5318                                           elfcpp::R_POWERPC_DTPREL);
5319           }
5320         else if (tls_type == tls::TLSOPT_TO_IE)
5321           {
5322             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5323               {
5324                 Output_data_got_powerpc<size, big_endian>* got
5325                   = target->got_section(symtab, layout);
5326                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5327                 if (gsym->is_undefined()
5328                     || gsym->is_from_dynobj())
5329                   {
5330                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5331                                              elfcpp::R_POWERPC_TPREL);
5332                   }
5333                 else
5334                   {
5335                     unsigned int off = got->add_constant(0);
5336                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5337                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5338                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5339                                                            got, off, 0);
5340                   }
5341               }
5342           }
5343         else if (tls_type == tls::TLSOPT_TO_LE)
5344           {
5345             // no GOT relocs needed for Local Exec.
5346           }
5347         else
5348           gold_unreachable();
5349       }
5350       break;
5351
5352     case elfcpp::R_POWERPC_GOT_TLSLD16:
5353     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5354     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5355     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5356       {
5357         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5358         if (tls_type == tls::TLSOPT_NONE)
5359           target->tlsld_got_offset(symtab, layout, object);
5360         else if (tls_type == tls::TLSOPT_TO_LE)
5361           {
5362             // no GOT relocs needed for Local Exec.
5363             if (parameters->options().emit_relocs())
5364               {
5365                 Output_section* os = layout->tls_segment()->first_section();
5366                 gold_assert(os != NULL);
5367                 os->set_needs_symtab_index();
5368               }
5369           }
5370         else
5371           gold_unreachable();
5372       }
5373       break;
5374
5375     case elfcpp::R_POWERPC_GOT_DTPREL16:
5376     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5377     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5378     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5379       {
5380         Output_data_got_powerpc<size, big_endian>* got
5381           = target->got_section(symtab, layout);
5382         if (!gsym->final_value_is_known()
5383             && (gsym->is_from_dynobj()
5384                 || gsym->is_undefined()
5385                 || gsym->is_preemptible()))
5386           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5387                                    target->rela_dyn_section(layout),
5388                                    elfcpp::R_POWERPC_DTPREL);
5389         else
5390           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5391       }
5392       break;
5393
5394     case elfcpp::R_POWERPC_GOT_TPREL16:
5395     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5396     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5397     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5398       {
5399         const bool final = gsym->final_value_is_known();
5400         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5401         if (tls_type == tls::TLSOPT_NONE)
5402           {
5403             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5404               {
5405                 Output_data_got_powerpc<size, big_endian>* got
5406                   = target->got_section(symtab, layout);
5407                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5408                 if (gsym->is_undefined()
5409                     || gsym->is_from_dynobj())
5410                   {
5411                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5412                                              elfcpp::R_POWERPC_TPREL);
5413                   }
5414                 else
5415                   {
5416                     unsigned int off = got->add_constant(0);
5417                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5418                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5419                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5420                                                            got, off, 0);
5421                   }
5422               }
5423           }
5424         else if (tls_type == tls::TLSOPT_TO_LE)
5425           {
5426             // no GOT relocs needed for Local Exec.
5427           }
5428         else
5429           gold_unreachable();
5430       }
5431       break;
5432
5433     default:
5434       unsupported_reloc_global(object, r_type, gsym);
5435       break;
5436     }
5437
5438   switch (r_type)
5439     {
5440     case elfcpp::R_POWERPC_GOT_TLSLD16:
5441     case elfcpp::R_POWERPC_GOT_TLSGD16:
5442     case elfcpp::R_POWERPC_GOT_TPREL16:
5443     case elfcpp::R_POWERPC_GOT_DTPREL16:
5444     case elfcpp::R_POWERPC_GOT16:
5445     case elfcpp::R_PPC64_GOT16_DS:
5446     case elfcpp::R_PPC64_TOC16:
5447     case elfcpp::R_PPC64_TOC16_DS:
5448       ppc_object->set_has_small_toc_reloc();
5449     default:
5450       break;
5451     }
5452 }
5453
5454 // Process relocations for gc.
5455
5456 template<int size, bool big_endian>
5457 void
5458 Target_powerpc<size, big_endian>::gc_process_relocs(
5459     Symbol_table* symtab,
5460     Layout* layout,
5461     Sized_relobj_file<size, big_endian>* object,
5462     unsigned int data_shndx,
5463     unsigned int,
5464     const unsigned char* prelocs,
5465     size_t reloc_count,
5466     Output_section* output_section,
5467     bool needs_special_offset_handling,
5468     size_t local_symbol_count,
5469     const unsigned char* plocal_symbols)
5470 {
5471   typedef Target_powerpc<size, big_endian> Powerpc;
5472   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5473   Powerpc_relobj<size, big_endian>* ppc_object
5474     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5475   if (size == 64)
5476     ppc_object->set_opd_valid();
5477   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5478     {
5479       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5480       for (p = ppc_object->access_from_map()->begin();
5481            p != ppc_object->access_from_map()->end();
5482            ++p)
5483         {
5484           Address dst_off = p->first;
5485           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5486           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5487           for (s = p->second.begin(); s != p->second.end(); ++s)
5488             {
5489               Object* src_obj = s->first;
5490               unsigned int src_indx = s->second;
5491               symtab->gc()->add_reference(src_obj, src_indx,
5492                                           ppc_object, dst_indx);
5493             }
5494           p->second.clear();
5495         }
5496       ppc_object->access_from_map()->clear();
5497       ppc_object->process_gc_mark(symtab);
5498       // Don't look at .opd relocs as .opd will reference everything.
5499       return;
5500     }
5501
5502   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5503                           typename Target_powerpc::Relocatable_size_for_reloc>(
5504     symtab,
5505     layout,
5506     this,
5507     object,
5508     data_shndx,
5509     prelocs,
5510     reloc_count,
5511     output_section,
5512     needs_special_offset_handling,
5513     local_symbol_count,
5514     plocal_symbols);
5515 }
5516
5517 // Handle target specific gc actions when adding a gc reference from
5518 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5519 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5520 // section of a function descriptor.
5521
5522 template<int size, bool big_endian>
5523 void
5524 Target_powerpc<size, big_endian>::do_gc_add_reference(
5525     Symbol_table* symtab,
5526     Object* src_obj,
5527     unsigned int src_shndx,
5528     Object* dst_obj,
5529     unsigned int dst_shndx,
5530     Address dst_off) const
5531 {
5532   if (size != 64 || dst_obj->is_dynamic())
5533     return;
5534
5535   Powerpc_relobj<size, big_endian>* ppc_object
5536     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5537   if (dst_shndx == ppc_object->opd_shndx())
5538     {
5539       if (ppc_object->opd_valid())
5540         {
5541           dst_shndx = ppc_object->get_opd_ent(dst_off);
5542           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5543         }
5544       else
5545         {
5546           // If we haven't run scan_opd_relocs, we must delay
5547           // processing this function descriptor reference.
5548           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5549         }
5550     }
5551 }
5552
5553 // Add any special sections for this symbol to the gc work list.
5554 // For powerpc64, this adds the code section of a function
5555 // descriptor.
5556
5557 template<int size, bool big_endian>
5558 void
5559 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5560     Symbol_table* symtab,
5561     Symbol* sym) const
5562 {
5563   if (size == 64)
5564     {
5565       Powerpc_relobj<size, big_endian>* ppc_object
5566         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5567       bool is_ordinary;
5568       unsigned int shndx = sym->shndx(&is_ordinary);
5569       if (is_ordinary && shndx == ppc_object->opd_shndx())
5570         {
5571           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5572           Address dst_off = gsym->value();
5573           if (ppc_object->opd_valid())
5574             {
5575               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5576               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5577             }
5578           else
5579             ppc_object->add_gc_mark(dst_off);
5580         }
5581     }
5582 }
5583
5584 // Scan relocations for a section.
5585
5586 template<int size, bool big_endian>
5587 void
5588 Target_powerpc<size, big_endian>::scan_relocs(
5589     Symbol_table* symtab,
5590     Layout* layout,
5591     Sized_relobj_file<size, big_endian>* object,
5592     unsigned int data_shndx,
5593     unsigned int sh_type,
5594     const unsigned char* prelocs,
5595     size_t reloc_count,
5596     Output_section* output_section,
5597     bool needs_special_offset_handling,
5598     size_t local_symbol_count,
5599     const unsigned char* plocal_symbols)
5600 {
5601   typedef Target_powerpc<size, big_endian> Powerpc;
5602   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5603
5604   if (sh_type == elfcpp::SHT_REL)
5605     {
5606       gold_error(_("%s: unsupported REL reloc section"),
5607                  object->name().c_str());
5608       return;
5609     }
5610
5611   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5612     symtab,
5613     layout,
5614     this,
5615     object,
5616     data_shndx,
5617     prelocs,
5618     reloc_count,
5619     output_section,
5620     needs_special_offset_handling,
5621     local_symbol_count,
5622     plocal_symbols);
5623 }
5624
5625 // Functor class for processing the global symbol table.
5626 // Removes symbols defined on discarded opd entries.
5627
5628 template<bool big_endian>
5629 class Global_symbol_visitor_opd
5630 {
5631  public:
5632   Global_symbol_visitor_opd()
5633   { }
5634
5635   void
5636   operator()(Sized_symbol<64>* sym)
5637   {
5638     if (sym->has_symtab_index()
5639         || sym->source() != Symbol::FROM_OBJECT
5640         || !sym->in_real_elf())
5641       return;
5642
5643     if (sym->object()->is_dynamic())
5644       return;
5645
5646     Powerpc_relobj<64, big_endian>* symobj
5647       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5648     if (symobj->opd_shndx() == 0)
5649       return;
5650
5651     bool is_ordinary;
5652     unsigned int shndx = sym->shndx(&is_ordinary);
5653     if (shndx == symobj->opd_shndx()
5654         && symobj->get_opd_discard(sym->value()))
5655       sym->set_symtab_index(-1U);
5656   }
5657 };
5658
5659 template<int size, bool big_endian>
5660 void
5661 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5662     Layout* layout,
5663     Symbol_table* symtab)
5664 {
5665   if (size == 64)
5666     {
5667       Output_data_save_res<64, big_endian>* savres
5668         = new Output_data_save_res<64, big_endian>(symtab);
5669       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5670                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5671                                       savres, ORDER_TEXT, false);
5672     }
5673 }
5674
5675 // Sort linker created .got section first (for the header), then input
5676 // sections belonging to files using small model code.
5677
5678 template<bool big_endian>
5679 class Sort_toc_sections
5680 {
5681  public:
5682   bool
5683   operator()(const Output_section::Input_section& is1,
5684              const Output_section::Input_section& is2) const
5685   {
5686     if (!is1.is_input_section() && is2.is_input_section())
5687       return true;
5688     bool small1
5689       = (is1.is_input_section()
5690          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
5691              ->has_small_toc_reloc()));
5692     bool small2
5693       = (is2.is_input_section()
5694          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
5695              ->has_small_toc_reloc()));
5696     return small1 && !small2;
5697   }
5698 };
5699
5700 // Finalize the sections.
5701
5702 template<int size, bool big_endian>
5703 void
5704 Target_powerpc<size, big_endian>::do_finalize_sections(
5705     Layout* layout,
5706     const Input_objects*,
5707     Symbol_table* symtab)
5708 {
5709   if (parameters->doing_static_link())
5710     {
5711       // At least some versions of glibc elf-init.o have a strong
5712       // reference to __rela_iplt marker syms.  A weak ref would be
5713       // better..
5714       if (this->iplt_ != NULL)
5715         {
5716           Reloc_section* rel = this->iplt_->rel_plt();
5717           symtab->define_in_output_data("__rela_iplt_start", NULL,
5718                                         Symbol_table::PREDEFINED, rel, 0, 0,
5719                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5720                                         elfcpp::STV_HIDDEN, 0, false, true);
5721           symtab->define_in_output_data("__rela_iplt_end", NULL,
5722                                         Symbol_table::PREDEFINED, rel, 0, 0,
5723                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5724                                         elfcpp::STV_HIDDEN, 0, true, true);
5725         }
5726       else
5727         {
5728           symtab->define_as_constant("__rela_iplt_start", NULL,
5729                                      Symbol_table::PREDEFINED, 0, 0,
5730                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5731                                      elfcpp::STV_HIDDEN, 0, true, false);
5732           symtab->define_as_constant("__rela_iplt_end", NULL,
5733                                      Symbol_table::PREDEFINED, 0, 0,
5734                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5735                                      elfcpp::STV_HIDDEN, 0, true, false);
5736         }
5737     }
5738
5739   if (size == 64)
5740     {
5741       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
5742       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
5743
5744       if (!parameters->options().relocatable())
5745         {
5746           this->define_save_restore_funcs(layout, symtab);
5747
5748           // Annoyingly, we need to make these sections now whether or
5749           // not we need them.  If we delay until do_relax then we
5750           // need to mess with the relaxation machinery checkpointing.
5751           this->got_section(symtab, layout);
5752           this->make_brlt_section(layout);
5753
5754           if (parameters->options().toc_sort())
5755             {
5756               Output_section* os = this->got_->output_section();
5757               if (os != NULL && os->input_sections().size() > 1)
5758                 std::stable_sort(os->input_sections().begin(),
5759                                  os->input_sections().end(),
5760                                  Sort_toc_sections<big_endian>());
5761             }
5762         }
5763     }
5764
5765   // Fill in some more dynamic tags.
5766   Output_data_dynamic* odyn = layout->dynamic_data();
5767   if (odyn != NULL)
5768     {
5769       const Reloc_section* rel_plt = (this->plt_ == NULL
5770                                       ? NULL
5771                                       : this->plt_->rel_plt());
5772       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
5773                                       this->rela_dyn_, true, size == 32);
5774
5775       if (size == 32)
5776         {
5777           if (this->got_ != NULL)
5778             {
5779               this->got_->finalize_data_size();
5780               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
5781                                             this->got_, this->got_->g_o_t());
5782             }
5783         }
5784       else
5785         {
5786           if (this->glink_ != NULL)
5787             {
5788               this->glink_->finalize_data_size();
5789               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
5790                                             this->glink_,
5791                                             (this->glink_->pltresolve_size
5792                                              - 32));
5793             }
5794         }
5795     }
5796
5797   // Emit any relocs we saved in an attempt to avoid generating COPY
5798   // relocs.
5799   if (this->copy_relocs_.any_saved_relocs())
5800     this->copy_relocs_.emit(this->rela_dyn_section(layout));
5801 }
5802
5803 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5804 // reloc.
5805
5806 static bool
5807 ok_lo_toc_insn(uint32_t insn)
5808 {
5809   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
5810           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5811           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5812           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5813           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5814           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5815           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5816           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5817           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5818           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5819           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5820           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5821           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5822           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5823           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
5824               && (insn & 3) != 1)
5825           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
5826               && ((insn & 3) == 0 || (insn & 3) == 3))
5827           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
5828 }
5829
5830 // Return the value to use for a branch relocation.
5831
5832 template<int size, bool big_endian>
5833 typename Target_powerpc<size, big_endian>::Address
5834 Target_powerpc<size, big_endian>::symval_for_branch(
5835     const Symbol_table* symtab,
5836     Address value,
5837     const Sized_symbol<size>* gsym,
5838     Powerpc_relobj<size, big_endian>* object,
5839     unsigned int *dest_shndx)
5840 {
5841   *dest_shndx = 0;
5842   if (size == 32)
5843     return value;
5844
5845   // If the symbol is defined in an opd section, ie. is a function
5846   // descriptor, use the function descriptor code entry address
5847   Powerpc_relobj<size, big_endian>* symobj = object;
5848   if (gsym != NULL
5849       && gsym->source() != Symbol::FROM_OBJECT)
5850     return value;
5851   if (gsym != NULL)
5852     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
5853   unsigned int shndx = symobj->opd_shndx();
5854   if (shndx == 0)
5855     return value;
5856   Address opd_addr = symobj->get_output_section_offset(shndx);
5857   gold_assert(opd_addr != invalid_address);
5858   opd_addr += symobj->output_section(shndx)->address();
5859   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
5860     {
5861       Address sec_off;
5862       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
5863       if (symtab->is_section_folded(symobj, *dest_shndx))
5864         {
5865           Section_id folded
5866             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
5867           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
5868           *dest_shndx = folded.second;
5869         }
5870       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
5871       gold_assert(sec_addr != invalid_address);
5872       sec_addr += symobj->output_section(*dest_shndx)->address();
5873       value = sec_addr + sec_off;
5874     }
5875   return value;
5876 }
5877
5878 // Perform a relocation.
5879
5880 template<int size, bool big_endian>
5881 inline bool
5882 Target_powerpc<size, big_endian>::Relocate::relocate(
5883     const Relocate_info<size, big_endian>* relinfo,
5884     Target_powerpc* target,
5885     Output_section* os,
5886     size_t relnum,
5887     const elfcpp::Rela<size, big_endian>& rela,
5888     unsigned int r_type,
5889     const Sized_symbol<size>* gsym,
5890     const Symbol_value<size>* psymval,
5891     unsigned char* view,
5892     Address address,
5893     section_size_type view_size)
5894 {
5895   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
5896     {
5897     case Track_tls::NOT_EXPECTED:
5898       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5899                              _("__tls_get_addr call lacks marker reloc"));
5900       break;
5901     case Track_tls::EXPECTED:
5902       // We have already complained.
5903       break;
5904     case Track_tls::SKIP:
5905       return true;
5906     case Track_tls::NORMAL:
5907       break;
5908     }
5909
5910   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
5911   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
5912   Powerpc_relobj<size, big_endian>* const object
5913     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
5914   Address value = 0;
5915   bool has_plt_value = false;
5916   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5917   if (gsym != NULL
5918       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
5919       : object->local_has_plt_offset(r_sym))
5920     {
5921       Stub_table<size, big_endian>* stub_table
5922         = object->stub_table(relinfo->data_shndx);
5923       if (stub_table == NULL)
5924         {
5925           // This is a ref from a data section to an ifunc symbol.
5926           if (target->stub_tables().size() != 0)
5927             stub_table = target->stub_tables()[0];
5928         }
5929       gold_assert(stub_table != NULL);
5930       Address off;
5931       if (gsym != NULL)
5932         off = stub_table->find_plt_call_entry(object, gsym, r_type,
5933                                               rela.get_r_addend());
5934       else
5935         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
5936                                               rela.get_r_addend());
5937       gold_assert(off != invalid_address);
5938       value = stub_table->stub_address() + off;
5939       has_plt_value = true;
5940     }
5941
5942   if (r_type == elfcpp::R_POWERPC_GOT16
5943       || r_type == elfcpp::R_POWERPC_GOT16_LO
5944       || r_type == elfcpp::R_POWERPC_GOT16_HI
5945       || r_type == elfcpp::R_POWERPC_GOT16_HA
5946       || r_type == elfcpp::R_PPC64_GOT16_DS
5947       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
5948     {
5949       if (gsym != NULL)
5950         {
5951           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5952           value = gsym->got_offset(GOT_TYPE_STANDARD);
5953         }
5954       else
5955         {
5956           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5957           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5958           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
5959         }
5960       value -= target->got_section()->got_base_offset(object);
5961     }
5962   else if (r_type == elfcpp::R_PPC64_TOC)
5963     {
5964       value = (target->got_section()->output_section()->address()
5965                + object->toc_base_offset());
5966     }
5967   else if (gsym != NULL
5968            && (r_type == elfcpp::R_POWERPC_REL24
5969                || r_type == elfcpp::R_PPC_PLTREL24)
5970            && has_plt_value)
5971     {
5972       if (size == 64)
5973         {
5974           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5975           Valtype* wv = reinterpret_cast<Valtype*>(view);
5976           bool can_plt_call = false;
5977           if (rela.get_r_offset() + 8 <= view_size)
5978             {
5979               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
5980               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
5981               if ((insn & 1) != 0
5982                   && (insn2 == nop
5983                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
5984                 {
5985                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
5986                   can_plt_call = true;
5987                 }
5988             }
5989           if (!can_plt_call)
5990             {
5991               // If we don't have a branch and link followed by a nop,
5992               // we can't go via the plt because there is no place to
5993               // put a toc restoring instruction.
5994               // Unless we know we won't be returning.
5995               if (strcmp(gsym->name(), "__libc_start_main") == 0)
5996                 can_plt_call = true;
5997             }
5998           if (!can_plt_call)
5999             {
6000               // This is not an error in one special case: A self
6001               // call.  It isn't possible to cheaply verify we have
6002               // such a call so just check for a call to the same
6003               // section.
6004               bool ok = false;
6005               Address code = value;
6006               if (gsym->source() == Symbol::FROM_OBJECT
6007                   && gsym->object() == object)
6008                 {
6009                   Address addend = rela.get_r_addend();
6010                   unsigned int dest_shndx;
6011                   Address opdent = psymval->value(object, addend);
6012                   code = target->symval_for_branch(relinfo->symtab, opdent,
6013                                                    gsym, object, &dest_shndx);
6014                   bool is_ordinary;
6015                   if (dest_shndx == 0)
6016                     dest_shndx = gsym->shndx(&is_ordinary);
6017                   ok = dest_shndx == relinfo->data_shndx;
6018                 }
6019               if (!ok)
6020                 {
6021                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6022                                          _("call lacks nop, can't restore toc; "
6023                                            "recompile with -fPIC"));
6024                   value = code;
6025                 }
6026             }
6027         }
6028     }
6029   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6030            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6031            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6032            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6033     {
6034       // First instruction of a global dynamic sequence, arg setup insn.
6035       const bool final = gsym == NULL || gsym->final_value_is_known();
6036       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6037       enum Got_type got_type = GOT_TYPE_STANDARD;
6038       if (tls_type == tls::TLSOPT_NONE)
6039         got_type = GOT_TYPE_TLSGD;
6040       else if (tls_type == tls::TLSOPT_TO_IE)
6041         got_type = GOT_TYPE_TPREL;
6042       if (got_type != GOT_TYPE_STANDARD)
6043         {
6044           if (gsym != NULL)
6045             {
6046               gold_assert(gsym->has_got_offset(got_type));
6047               value = gsym->got_offset(got_type);
6048             }
6049           else
6050             {
6051               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6052               gold_assert(object->local_has_got_offset(r_sym, got_type));
6053               value = object->local_got_offset(r_sym, got_type);
6054             }
6055           value -= target->got_section()->got_base_offset(object);
6056         }
6057       if (tls_type == tls::TLSOPT_TO_IE)
6058         {
6059           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6060               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6061             {
6062               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6063               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6064               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6065               if (size == 32)
6066                 insn |= 32 << 26; // lwz
6067               else
6068                 insn |= 58 << 26; // ld
6069               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6070             }
6071           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6072                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6073         }
6074       else if (tls_type == tls::TLSOPT_TO_LE)
6075         {
6076           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6077               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6078             {
6079               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6080               Insn insn = addis_3_13;
6081               if (size == 32)
6082                 insn = addis_3_2;
6083               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6084               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6085               value = psymval->value(object, rela.get_r_addend());
6086             }
6087           else
6088             {
6089               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6090               Insn insn = nop;
6091               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6092               r_type = elfcpp::R_POWERPC_NONE;
6093             }
6094         }
6095     }
6096   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6097            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6098            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6099            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6100     {
6101       // First instruction of a local dynamic sequence, arg setup insn.
6102       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6103       if (tls_type == tls::TLSOPT_NONE)
6104         {
6105           value = target->tlsld_got_offset();
6106           value -= target->got_section()->got_base_offset(object);
6107         }
6108       else
6109         {
6110           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6111           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6112               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6113             {
6114               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6115               Insn insn = addis_3_13;
6116               if (size == 32)
6117                 insn = addis_3_2;
6118               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6119               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6120               value = dtp_offset;
6121             }
6122           else
6123             {
6124               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6125               Insn insn = nop;
6126               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6127               r_type = elfcpp::R_POWERPC_NONE;
6128             }
6129         }
6130     }
6131   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6132            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6133            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6134            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6135     {
6136       // Accesses relative to a local dynamic sequence address,
6137       // no optimisation here.
6138       if (gsym != NULL)
6139         {
6140           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6141           value = gsym->got_offset(GOT_TYPE_DTPREL);
6142         }
6143       else
6144         {
6145           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6146           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6147           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6148         }
6149       value -= target->got_section()->got_base_offset(object);
6150     }
6151   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6152            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6153            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6154            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6155     {
6156       // First instruction of initial exec sequence.
6157       const bool final = gsym == NULL || gsym->final_value_is_known();
6158       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6159       if (tls_type == tls::TLSOPT_NONE)
6160         {
6161           if (gsym != NULL)
6162             {
6163               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6164               value = gsym->got_offset(GOT_TYPE_TPREL);
6165             }
6166           else
6167             {
6168               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6169               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6170               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6171             }
6172           value -= target->got_section()->got_base_offset(object);
6173         }
6174       else
6175         {
6176           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6177           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6178               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6179             {
6180               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6181               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6182               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6183               if (size == 32)
6184                 insn |= addis_0_2;
6185               else
6186                 insn |= addis_0_13;
6187               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6188               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6189               value = psymval->value(object, rela.get_r_addend());
6190             }
6191           else
6192             {
6193               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6194               Insn insn = nop;
6195               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6196               r_type = elfcpp::R_POWERPC_NONE;
6197             }
6198         }
6199     }
6200   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6201            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6202     {
6203       // Second instruction of a global dynamic sequence,
6204       // the __tls_get_addr call
6205       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6206       const bool final = gsym == NULL || gsym->final_value_is_known();
6207       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6208       if (tls_type != tls::TLSOPT_NONE)
6209         {
6210           if (tls_type == tls::TLSOPT_TO_IE)
6211             {
6212               Insn* iview = reinterpret_cast<Insn*>(view);
6213               Insn insn = add_3_3_13;
6214               if (size == 32)
6215                 insn = add_3_3_2;
6216               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6217               r_type = elfcpp::R_POWERPC_NONE;
6218             }
6219           else
6220             {
6221               Insn* iview = reinterpret_cast<Insn*>(view);
6222               Insn insn = addi_3_3;
6223               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6224               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6225               view += 2 * big_endian;
6226               value = psymval->value(object, rela.get_r_addend());
6227             }
6228           this->skip_next_tls_get_addr_call();
6229         }
6230     }
6231   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6232            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6233     {
6234       // Second instruction of a local dynamic sequence,
6235       // the __tls_get_addr call
6236       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6237       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6238       if (tls_type == tls::TLSOPT_TO_LE)
6239         {
6240           Insn* iview = reinterpret_cast<Insn*>(view);
6241           Insn insn = addi_3_3;
6242           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6243           this->skip_next_tls_get_addr_call();
6244           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6245           view += 2 * big_endian;
6246           value = dtp_offset;
6247         }
6248     }
6249   else if (r_type == elfcpp::R_POWERPC_TLS)
6250     {
6251       // Second instruction of an initial exec sequence
6252       const bool final = gsym == NULL || gsym->final_value_is_known();
6253       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6254       if (tls_type == tls::TLSOPT_TO_LE)
6255         {
6256           Insn* iview = reinterpret_cast<Insn*>(view);
6257           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6258           unsigned int reg = size == 32 ? 2 : 13;
6259           insn = at_tls_transform(insn, reg);
6260           gold_assert(insn != 0);
6261           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6262           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6263           view += 2 * big_endian;
6264           value = psymval->value(object, rela.get_r_addend());
6265         }
6266     }
6267   else if (!has_plt_value)
6268     {
6269       Address addend = 0;
6270       unsigned int dest_shndx;
6271       if (r_type != elfcpp::R_PPC_PLTREL24)
6272         addend = rela.get_r_addend();
6273       value = psymval->value(object, addend);
6274       if (size == 64 && is_branch_reloc(r_type))
6275         value = target->symval_for_branch(relinfo->symtab, value,
6276                                           gsym, object, &dest_shndx);
6277       unsigned int max_branch_offset = 0;
6278       if (r_type == elfcpp::R_POWERPC_REL24
6279           || r_type == elfcpp::R_PPC_PLTREL24
6280           || r_type == elfcpp::R_PPC_LOCAL24PC)
6281         max_branch_offset = 1 << 25;
6282       else if (r_type == elfcpp::R_POWERPC_REL14
6283                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6284                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6285         max_branch_offset = 1 << 15;
6286       if (max_branch_offset != 0
6287           && value - address + max_branch_offset >= 2 * max_branch_offset)
6288         {
6289           Stub_table<size, big_endian>* stub_table
6290             = object->stub_table(relinfo->data_shndx);
6291           gold_assert(stub_table != NULL);
6292           Address off = stub_table->find_long_branch_entry(object, value);
6293           if (off != invalid_address)
6294             value = stub_table->stub_address() + stub_table->plt_size() + off;
6295         }
6296     }
6297
6298   switch (r_type)
6299     {
6300     case elfcpp::R_PPC64_REL64:
6301     case elfcpp::R_POWERPC_REL32:
6302     case elfcpp::R_POWERPC_REL24:
6303     case elfcpp::R_PPC_PLTREL24:
6304     case elfcpp::R_PPC_LOCAL24PC:
6305     case elfcpp::R_POWERPC_REL16:
6306     case elfcpp::R_POWERPC_REL16_LO:
6307     case elfcpp::R_POWERPC_REL16_HI:
6308     case elfcpp::R_POWERPC_REL16_HA:
6309     case elfcpp::R_POWERPC_REL14:
6310     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6311     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6312       value -= address;
6313       break;
6314
6315     case elfcpp::R_PPC64_TOC16:
6316     case elfcpp::R_PPC64_TOC16_LO:
6317     case elfcpp::R_PPC64_TOC16_HI:
6318     case elfcpp::R_PPC64_TOC16_HA:
6319     case elfcpp::R_PPC64_TOC16_DS:
6320     case elfcpp::R_PPC64_TOC16_LO_DS:
6321       // Subtract the TOC base address.
6322       value -= (target->got_section()->output_section()->address()
6323                 + object->toc_base_offset());
6324       break;
6325
6326     case elfcpp::R_POWERPC_SECTOFF:
6327     case elfcpp::R_POWERPC_SECTOFF_LO:
6328     case elfcpp::R_POWERPC_SECTOFF_HI:
6329     case elfcpp::R_POWERPC_SECTOFF_HA:
6330     case elfcpp::R_PPC64_SECTOFF_DS:
6331     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6332       if (os != NULL)
6333         value -= os->address();
6334       break;
6335
6336     case elfcpp::R_PPC64_TPREL16_DS:
6337     case elfcpp::R_PPC64_TPREL16_LO_DS:
6338       if (size != 64)
6339         // R_PPC_TLSGD and R_PPC_TLSLD
6340         break;
6341     case elfcpp::R_POWERPC_TPREL16:
6342     case elfcpp::R_POWERPC_TPREL16_LO:
6343     case elfcpp::R_POWERPC_TPREL16_HI:
6344     case elfcpp::R_POWERPC_TPREL16_HA:
6345     case elfcpp::R_POWERPC_TPREL:
6346     case elfcpp::R_PPC64_TPREL16_HIGHER:
6347     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6348     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6349     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6350       // tls symbol values are relative to tls_segment()->vaddr()
6351       value -= tp_offset;
6352       break;
6353
6354     case elfcpp::R_PPC64_DTPREL16_DS:
6355     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6356     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6357     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6358     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6359     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6360       if (size != 64)
6361         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6362         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6363         break;
6364     case elfcpp::R_POWERPC_DTPREL16:
6365     case elfcpp::R_POWERPC_DTPREL16_LO:
6366     case elfcpp::R_POWERPC_DTPREL16_HI:
6367     case elfcpp::R_POWERPC_DTPREL16_HA:
6368     case elfcpp::R_POWERPC_DTPREL:
6369       // tls symbol values are relative to tls_segment()->vaddr()
6370       value -= dtp_offset;
6371       break;
6372
6373     default:
6374       break;
6375     }
6376
6377   Insn branch_bit = 0;
6378   switch (r_type)
6379     {
6380     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6381     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6382       branch_bit = 1 << 21;
6383     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6384     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6385       {
6386         Insn* iview = reinterpret_cast<Insn*>(view);
6387         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6388         insn &= ~(1 << 21);
6389         insn |= branch_bit;
6390         if (this->is_isa_v2)
6391           {
6392             // Set 'a' bit.  This is 0b00010 in BO field for branch
6393             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6394             // for branch on CTR insns (BO == 1a00t or 1a01t).
6395             if ((insn & (0x14 << 21)) == (0x04 << 21))
6396               insn |= 0x02 << 21;
6397             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6398               insn |= 0x08 << 21;
6399             else
6400               break;
6401           }
6402         else
6403           {
6404             // Invert 'y' bit if not the default.
6405             if (static_cast<Signed_address>(value) < 0)
6406               insn ^= 1 << 21;
6407           }
6408         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6409       }
6410       break;
6411
6412     default:
6413       break;
6414     }
6415
6416   if (size == 64)
6417     {
6418       // Multi-instruction sequences that access the TOC can be
6419       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6420       // to             nop;           addi rb,r2,x;
6421       switch (r_type)
6422         {
6423         default:
6424           break;
6425
6426         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6427         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6428         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6429         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6430         case elfcpp::R_POWERPC_GOT16_HA:
6431         case elfcpp::R_PPC64_TOC16_HA:
6432           if (parameters->options().toc_optimize())
6433             {
6434               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6435               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6436               if ((insn & ((0x3f << 26) | 0x1f << 16))
6437                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6438                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6439                                        _("toc optimization is not supported "
6440                                          "for %#08x instruction"), insn);
6441               else if (value + 0x8000 < 0x10000)
6442                 {
6443                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6444                   return true;
6445                 }
6446             }
6447           break;
6448
6449         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6450         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6451         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6452         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6453         case elfcpp::R_POWERPC_GOT16_LO:
6454         case elfcpp::R_PPC64_GOT16_LO_DS:
6455         case elfcpp::R_PPC64_TOC16_LO:
6456         case elfcpp::R_PPC64_TOC16_LO_DS:
6457           if (parameters->options().toc_optimize())
6458             {
6459               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6460               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6461               if (!ok_lo_toc_insn(insn))
6462                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6463                                        _("toc optimization is not supported "
6464                                          "for %#08x instruction"), insn);
6465               else if (value + 0x8000 < 0x10000)
6466                 {
6467                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6468                     {
6469                       // Transform addic to addi when we change reg.
6470                       insn &= ~((0x3f << 26) | (0x1f << 16));
6471                       insn |= (14u << 26) | (2 << 16);
6472                     }
6473                   else
6474                     {
6475                       insn &= ~(0x1f << 16);
6476                       insn |= 2 << 16;
6477                     }
6478                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6479                 }
6480             }
6481           break;
6482         }
6483     }
6484
6485   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6486   switch (r_type)
6487     {
6488     case elfcpp::R_POWERPC_ADDR32:
6489     case elfcpp::R_POWERPC_UADDR32:
6490       if (size == 64)
6491         overflow = Reloc::CHECK_BITFIELD;
6492       break;
6493
6494     case elfcpp::R_POWERPC_REL32:
6495       if (size == 64)
6496         overflow = Reloc::CHECK_SIGNED;
6497       break;
6498
6499     case elfcpp::R_POWERPC_ADDR24:
6500     case elfcpp::R_POWERPC_ADDR16:
6501     case elfcpp::R_POWERPC_UADDR16:
6502     case elfcpp::R_PPC64_ADDR16_DS:
6503     case elfcpp::R_POWERPC_ADDR14:
6504     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6505     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6506       overflow = Reloc::CHECK_BITFIELD;
6507       break;
6508
6509     case elfcpp::R_POWERPC_REL24:
6510     case elfcpp::R_PPC_PLTREL24:
6511     case elfcpp::R_PPC_LOCAL24PC:
6512     case elfcpp::R_POWERPC_REL16:
6513     case elfcpp::R_PPC64_TOC16:
6514     case elfcpp::R_POWERPC_GOT16:
6515     case elfcpp::R_POWERPC_SECTOFF:
6516     case elfcpp::R_POWERPC_TPREL16:
6517     case elfcpp::R_POWERPC_DTPREL16:
6518     case elfcpp::R_PPC64_TPREL16_DS:
6519     case elfcpp::R_PPC64_DTPREL16_DS:
6520     case elfcpp::R_PPC64_TOC16_DS:
6521     case elfcpp::R_PPC64_GOT16_DS:
6522     case elfcpp::R_PPC64_SECTOFF_DS:
6523     case elfcpp::R_POWERPC_REL14:
6524     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6525     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6526     case elfcpp::R_POWERPC_GOT_TLSGD16:
6527     case elfcpp::R_POWERPC_GOT_TLSLD16:
6528     case elfcpp::R_POWERPC_GOT_TPREL16:
6529     case elfcpp::R_POWERPC_GOT_DTPREL16:
6530       overflow = Reloc::CHECK_SIGNED;
6531       break;
6532     }
6533
6534   typename Powerpc_relocate_functions<size, big_endian>::Status status
6535     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6536   switch (r_type)
6537     {
6538     case elfcpp::R_POWERPC_NONE:
6539     case elfcpp::R_POWERPC_TLS:
6540     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6541     case elfcpp::R_POWERPC_GNU_VTENTRY:
6542     case elfcpp::R_PPC_EMB_MRKREF:
6543       break;
6544
6545     case elfcpp::R_PPC64_ADDR64:
6546     case elfcpp::R_PPC64_REL64:
6547     case elfcpp::R_PPC64_TOC:
6548       Reloc::addr64(view, value);
6549       break;
6550
6551     case elfcpp::R_POWERPC_TPREL:
6552     case elfcpp::R_POWERPC_DTPREL:
6553       if (size == 64)
6554         Reloc::addr64(view, value);
6555       else
6556         status = Reloc::addr32(view, value, overflow);
6557       break;
6558
6559     case elfcpp::R_PPC64_UADDR64:
6560       Reloc::addr64_u(view, value);
6561       break;
6562
6563     case elfcpp::R_POWERPC_ADDR32:
6564       status = Reloc::addr32(view, value, overflow);
6565       break;
6566
6567     case elfcpp::R_POWERPC_REL32:
6568     case elfcpp::R_POWERPC_UADDR32:
6569       status = Reloc::addr32_u(view, value, overflow);
6570       break;
6571
6572     case elfcpp::R_POWERPC_ADDR24:
6573     case elfcpp::R_POWERPC_REL24:
6574     case elfcpp::R_PPC_PLTREL24:
6575     case elfcpp::R_PPC_LOCAL24PC:
6576       status = Reloc::addr24(view, value, overflow);
6577       break;
6578
6579     case elfcpp::R_POWERPC_GOT_DTPREL16:
6580     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6581       if (size == 64)
6582         {
6583           status = Reloc::addr16_ds(view, value, overflow);
6584           break;
6585         }
6586     case elfcpp::R_POWERPC_ADDR16:
6587     case elfcpp::R_POWERPC_REL16:
6588     case elfcpp::R_PPC64_TOC16:
6589     case elfcpp::R_POWERPC_GOT16:
6590     case elfcpp::R_POWERPC_SECTOFF:
6591     case elfcpp::R_POWERPC_TPREL16:
6592     case elfcpp::R_POWERPC_DTPREL16:
6593     case elfcpp::R_POWERPC_GOT_TLSGD16:
6594     case elfcpp::R_POWERPC_GOT_TLSLD16:
6595     case elfcpp::R_POWERPC_GOT_TPREL16:
6596     case elfcpp::R_POWERPC_ADDR16_LO:
6597     case elfcpp::R_POWERPC_REL16_LO:
6598     case elfcpp::R_PPC64_TOC16_LO:
6599     case elfcpp::R_POWERPC_GOT16_LO:
6600     case elfcpp::R_POWERPC_SECTOFF_LO:
6601     case elfcpp::R_POWERPC_TPREL16_LO:
6602     case elfcpp::R_POWERPC_DTPREL16_LO:
6603     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6604     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6605     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6606       status = Reloc::addr16(view, value, overflow);
6607       break;
6608
6609     case elfcpp::R_POWERPC_UADDR16:
6610       status = Reloc::addr16_u(view, value, overflow);
6611       break;
6612
6613     case elfcpp::R_POWERPC_ADDR16_HI:
6614     case elfcpp::R_POWERPC_REL16_HI:
6615     case elfcpp::R_PPC64_TOC16_HI:
6616     case elfcpp::R_POWERPC_GOT16_HI:
6617     case elfcpp::R_POWERPC_SECTOFF_HI:
6618     case elfcpp::R_POWERPC_TPREL16_HI:
6619     case elfcpp::R_POWERPC_DTPREL16_HI:
6620     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6621     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6622     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6623     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6624       Reloc::addr16_hi(view, value);
6625       break;
6626
6627     case elfcpp::R_POWERPC_ADDR16_HA:
6628     case elfcpp::R_POWERPC_REL16_HA:
6629     case elfcpp::R_PPC64_TOC16_HA:
6630     case elfcpp::R_POWERPC_GOT16_HA:
6631     case elfcpp::R_POWERPC_SECTOFF_HA:
6632     case elfcpp::R_POWERPC_TPREL16_HA:
6633     case elfcpp::R_POWERPC_DTPREL16_HA:
6634     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6635     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6636     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6637     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6638       Reloc::addr16_ha(view, value);
6639       break;
6640
6641     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6642       if (size == 32)
6643         // R_PPC_EMB_NADDR16_LO
6644         goto unsupp;
6645     case elfcpp::R_PPC64_ADDR16_HIGHER:
6646     case elfcpp::R_PPC64_TPREL16_HIGHER:
6647       Reloc::addr16_hi2(view, value);
6648       break;
6649
6650     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6651       if (size == 32)
6652         // R_PPC_EMB_NADDR16_HI
6653         goto unsupp;
6654     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6655     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6656       Reloc::addr16_ha2(view, value);
6657       break;
6658
6659     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6660       if (size == 32)
6661         // R_PPC_EMB_NADDR16_HA
6662         goto unsupp;
6663     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6664     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6665       Reloc::addr16_hi3(view, value);
6666       break;
6667
6668     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6669       if (size == 32)
6670         // R_PPC_EMB_SDAI16
6671         goto unsupp;
6672     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6673     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6674       Reloc::addr16_ha3(view, value);
6675       break;
6676
6677     case elfcpp::R_PPC64_DTPREL16_DS:
6678     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6679       if (size == 32)
6680         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
6681         goto unsupp;
6682     case elfcpp::R_PPC64_TPREL16_DS:
6683     case elfcpp::R_PPC64_TPREL16_LO_DS:
6684       if (size == 32)
6685         // R_PPC_TLSGD, R_PPC_TLSLD
6686         break;
6687     case elfcpp::R_PPC64_ADDR16_DS:
6688     case elfcpp::R_PPC64_ADDR16_LO_DS:
6689     case elfcpp::R_PPC64_TOC16_DS:
6690     case elfcpp::R_PPC64_TOC16_LO_DS:
6691     case elfcpp::R_PPC64_GOT16_DS:
6692     case elfcpp::R_PPC64_GOT16_LO_DS:
6693     case elfcpp::R_PPC64_SECTOFF_DS:
6694     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6695       status = Reloc::addr16_ds(view, value, overflow);
6696       break;
6697
6698     case elfcpp::R_POWERPC_ADDR14:
6699     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6700     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6701     case elfcpp::R_POWERPC_REL14:
6702     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6703     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6704       status = Reloc::addr14(view, value, overflow);
6705       break;
6706
6707     case elfcpp::R_POWERPC_COPY:
6708     case elfcpp::R_POWERPC_GLOB_DAT:
6709     case elfcpp::R_POWERPC_JMP_SLOT:
6710     case elfcpp::R_POWERPC_RELATIVE:
6711     case elfcpp::R_POWERPC_DTPMOD:
6712     case elfcpp::R_PPC64_JMP_IREL:
6713     case elfcpp::R_POWERPC_IRELATIVE:
6714       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6715                              _("unexpected reloc %u in object file"),
6716                              r_type);
6717       break;
6718
6719     case elfcpp::R_PPC_EMB_SDA21:
6720       if (size == 32)
6721         goto unsupp;
6722       else
6723         {
6724           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
6725         }
6726       break;
6727
6728     case elfcpp::R_PPC_EMB_SDA2I16:
6729     case elfcpp::R_PPC_EMB_SDA2REL:
6730       if (size == 32)
6731         goto unsupp;
6732       // R_PPC64_TLSGD, R_PPC64_TLSLD
6733       break;
6734
6735     case elfcpp::R_POWERPC_PLT32:
6736     case elfcpp::R_POWERPC_PLTREL32:
6737     case elfcpp::R_POWERPC_PLT16_LO:
6738     case elfcpp::R_POWERPC_PLT16_HI:
6739     case elfcpp::R_POWERPC_PLT16_HA:
6740     case elfcpp::R_PPC_SDAREL16:
6741     case elfcpp::R_POWERPC_ADDR30:
6742     case elfcpp::R_PPC64_PLT64:
6743     case elfcpp::R_PPC64_PLTREL64:
6744     case elfcpp::R_PPC64_PLTGOT16:
6745     case elfcpp::R_PPC64_PLTGOT16_LO:
6746     case elfcpp::R_PPC64_PLTGOT16_HI:
6747     case elfcpp::R_PPC64_PLTGOT16_HA:
6748     case elfcpp::R_PPC64_PLT16_LO_DS:
6749     case elfcpp::R_PPC64_PLTGOT16_DS:
6750     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
6751     case elfcpp::R_PPC_EMB_RELSEC16:
6752     case elfcpp::R_PPC_EMB_RELST_LO:
6753     case elfcpp::R_PPC_EMB_RELST_HI:
6754     case elfcpp::R_PPC_EMB_RELST_HA:
6755     case elfcpp::R_PPC_EMB_BIT_FLD:
6756     case elfcpp::R_PPC_EMB_RELSDA:
6757     case elfcpp::R_PPC_TOC16:
6758     default:
6759     unsupp:
6760       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6761                              _("unsupported reloc %u"),
6762                              r_type);
6763       break;
6764     }
6765   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
6766     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6767                            _("relocation overflow"));
6768
6769   return true;
6770 }
6771
6772 // Relocate section data.
6773
6774 template<int size, bool big_endian>
6775 void
6776 Target_powerpc<size, big_endian>::relocate_section(
6777     const Relocate_info<size, big_endian>* relinfo,
6778     unsigned int sh_type,
6779     const unsigned char* prelocs,
6780     size_t reloc_count,
6781     Output_section* output_section,
6782     bool needs_special_offset_handling,
6783     unsigned char* view,
6784     Address address,
6785     section_size_type view_size,
6786     const Reloc_symbol_changes* reloc_symbol_changes)
6787 {
6788   typedef Target_powerpc<size, big_endian> Powerpc;
6789   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
6790   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
6791     Powerpc_comdat_behavior;
6792
6793   gold_assert(sh_type == elfcpp::SHT_RELA);
6794
6795   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
6796                          Powerpc_relocate, Powerpc_comdat_behavior>(
6797     relinfo,
6798     this,
6799     prelocs,
6800     reloc_count,
6801     output_section,
6802     needs_special_offset_handling,
6803     view,
6804     address,
6805     view_size,
6806     reloc_symbol_changes);
6807 }
6808
6809 class Powerpc_scan_relocatable_reloc
6810 {
6811 public:
6812   // Return the strategy to use for a local symbol which is not a
6813   // section symbol, given the relocation type.
6814   inline Relocatable_relocs::Reloc_strategy
6815   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
6816   {
6817     if (r_type == 0 && r_sym == 0)
6818       return Relocatable_relocs::RELOC_DISCARD;
6819     return Relocatable_relocs::RELOC_COPY;
6820   }
6821
6822   // Return the strategy to use for a local symbol which is a section
6823   // symbol, given the relocation type.
6824   inline Relocatable_relocs::Reloc_strategy
6825   local_section_strategy(unsigned int, Relobj*)
6826   {
6827     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
6828   }
6829
6830   // Return the strategy to use for a global symbol, given the
6831   // relocation type, the object, and the symbol index.
6832   inline Relocatable_relocs::Reloc_strategy
6833   global_strategy(unsigned int r_type, Relobj*, unsigned int)
6834   {
6835     if (r_type == elfcpp::R_PPC_PLTREL24)
6836       return Relocatable_relocs::RELOC_SPECIAL;
6837     return Relocatable_relocs::RELOC_COPY;
6838   }
6839 };
6840
6841 // Scan the relocs during a relocatable link.
6842
6843 template<int size, bool big_endian>
6844 void
6845 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
6846     Symbol_table* symtab,
6847     Layout* layout,
6848     Sized_relobj_file<size, big_endian>* object,
6849     unsigned int data_shndx,
6850     unsigned int sh_type,
6851     const unsigned char* prelocs,
6852     size_t reloc_count,
6853     Output_section* output_section,
6854     bool needs_special_offset_handling,
6855     size_t local_symbol_count,
6856     const unsigned char* plocal_symbols,
6857     Relocatable_relocs* rr)
6858 {
6859   gold_assert(sh_type == elfcpp::SHT_RELA);
6860
6861   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6862                                 Powerpc_scan_relocatable_reloc>(
6863     symtab,
6864     layout,
6865     object,
6866     data_shndx,
6867     prelocs,
6868     reloc_count,
6869     output_section,
6870     needs_special_offset_handling,
6871     local_symbol_count,
6872     plocal_symbols,
6873     rr);
6874 }
6875
6876 // Emit relocations for a section.
6877 // This is a modified version of the function by the same name in
6878 // target-reloc.h.  Using relocate_special_relocatable for
6879 // R_PPC_PLTREL24 would require duplication of the entire body of the
6880 // loop, so we may as well duplicate the whole thing.
6881
6882 template<int size, bool big_endian>
6883 void
6884 Target_powerpc<size, big_endian>::relocate_relocs(
6885     const Relocate_info<size, big_endian>* relinfo,
6886     unsigned int sh_type,
6887     const unsigned char* prelocs,
6888     size_t reloc_count,
6889     Output_section* output_section,
6890     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6891     const Relocatable_relocs* rr,
6892     unsigned char*,
6893     Address view_address,
6894     section_size_type,
6895     unsigned char* reloc_view,
6896     section_size_type reloc_view_size)
6897 {
6898   gold_assert(sh_type == elfcpp::SHT_RELA);
6899
6900   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
6901     Reltype;
6902   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
6903     Reltype_write;
6904   const int reloc_size
6905     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
6906
6907   Powerpc_relobj<size, big_endian>* const object
6908     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6909   const unsigned int local_count = object->local_symbol_count();
6910   unsigned int got2_shndx = object->got2_shndx();
6911   Address got2_addend = 0;
6912   if (got2_shndx != 0)
6913     {
6914       got2_addend = object->get_output_section_offset(got2_shndx);
6915       gold_assert(got2_addend != invalid_address);
6916     }
6917
6918   unsigned char* pwrite = reloc_view;
6919   bool zap_next = false;
6920   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6921     {
6922       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
6923       if (strategy == Relocatable_relocs::RELOC_DISCARD)
6924         continue;
6925
6926       Reltype reloc(prelocs);
6927       Reltype_write reloc_write(pwrite);
6928
6929       Address offset = reloc.get_r_offset();
6930       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
6931       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
6932       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
6933       const unsigned int orig_r_sym = r_sym;
6934       typename elfcpp::Elf_types<size>::Elf_Swxword addend
6935         = reloc.get_r_addend();
6936       const Symbol* gsym = NULL;
6937
6938       if (zap_next)
6939         {
6940           // We could arrange to discard these and other relocs for
6941           // tls optimised sequences in the strategy methods, but for
6942           // now do as BFD ld does.
6943           r_type = elfcpp::R_POWERPC_NONE;
6944           zap_next = false;
6945         }
6946
6947       // Get the new symbol index.
6948       if (r_sym < local_count)
6949         {
6950           switch (strategy)
6951             {
6952             case Relocatable_relocs::RELOC_COPY:
6953             case Relocatable_relocs::RELOC_SPECIAL:
6954               if (r_sym != 0)
6955                 {
6956                   r_sym = object->symtab_index(r_sym);
6957                   gold_assert(r_sym != -1U);
6958                 }
6959               break;
6960
6961             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
6962               {
6963                 // We are adjusting a section symbol.  We need to find
6964                 // the symbol table index of the section symbol for
6965                 // the output section corresponding to input section
6966                 // in which this symbol is defined.
6967                 gold_assert(r_sym < local_count);
6968                 bool is_ordinary;
6969                 unsigned int shndx =
6970                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
6971                 gold_assert(is_ordinary);
6972                 Output_section* os = object->output_section(shndx);
6973                 gold_assert(os != NULL);
6974                 gold_assert(os->needs_symtab_index());
6975                 r_sym = os->symtab_index();
6976               }
6977               break;
6978
6979             default:
6980               gold_unreachable();
6981             }
6982         }
6983       else
6984         {
6985           gsym = object->global_symbol(r_sym);
6986           gold_assert(gsym != NULL);
6987           if (gsym->is_forwarder())
6988             gsym = relinfo->symtab->resolve_forwards(gsym);
6989
6990           gold_assert(gsym->has_symtab_index());
6991           r_sym = gsym->symtab_index();
6992         }
6993
6994       // Get the new offset--the location in the output section where
6995       // this relocation should be applied.
6996       if (static_cast<Address>(offset_in_output_section) != invalid_address)
6997         offset += offset_in_output_section;
6998       else
6999         {
7000           section_offset_type sot_offset =
7001             convert_types<section_offset_type, Address>(offset);
7002           section_offset_type new_sot_offset =
7003             output_section->output_offset(object, relinfo->data_shndx,
7004                                           sot_offset);
7005           gold_assert(new_sot_offset != -1);
7006           offset = new_sot_offset;
7007         }
7008
7009       // In an object file, r_offset is an offset within the section.
7010       // In an executable or dynamic object, generated by
7011       // --emit-relocs, r_offset is an absolute address.
7012       if (!parameters->options().relocatable())
7013         {
7014           offset += view_address;
7015           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7016             offset -= offset_in_output_section;
7017         }
7018
7019       // Handle the reloc addend based on the strategy.
7020       if (strategy == Relocatable_relocs::RELOC_COPY)
7021         ;
7022       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7023         {
7024           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7025           addend = psymval->value(object, addend);
7026         }
7027       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7028         {
7029           if (addend >= 32768)
7030             addend += got2_addend;
7031         }
7032       else
7033         gold_unreachable();
7034
7035       if (!parameters->options().relocatable())
7036         {
7037           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7038               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7039               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7040               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7041             {
7042               // First instruction of a global dynamic sequence,
7043               // arg setup insn.
7044               const bool final = gsym == NULL || gsym->final_value_is_known();
7045               switch (this->optimize_tls_gd(final))
7046                 {
7047                 case tls::TLSOPT_TO_IE:
7048                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7049                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7050                   break;
7051                 case tls::TLSOPT_TO_LE:
7052                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7053                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7054                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7055                   else
7056                     {
7057                       r_type = elfcpp::R_POWERPC_NONE;
7058                       offset -= 2 * big_endian;
7059                     }
7060                   break;
7061                 default:
7062                   break;
7063                 }
7064             }
7065           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7066                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7067                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7068                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7069             {
7070               // First instruction of a local dynamic sequence,
7071               // arg setup insn.
7072               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7073                 {
7074                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7075                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7076                     {
7077                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7078                       const Output_section* os = relinfo->layout->tls_segment()
7079                         ->first_section();
7080                       gold_assert(os != NULL);
7081                       gold_assert(os->needs_symtab_index());
7082                       r_sym = os->symtab_index();
7083                       addend = dtp_offset;
7084                     }
7085                   else
7086                     {
7087                       r_type = elfcpp::R_POWERPC_NONE;
7088                       offset -= 2 * big_endian;
7089                     }
7090                 }
7091             }
7092           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7093                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7094                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7095                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7096             {
7097               // First instruction of initial exec sequence.
7098               const bool final = gsym == NULL || gsym->final_value_is_known();
7099               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7100                 {
7101                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7102                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7103                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7104                   else
7105                     {
7106                       r_type = elfcpp::R_POWERPC_NONE;
7107                       offset -= 2 * big_endian;
7108                     }
7109                 }
7110             }
7111           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7112                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7113             {
7114               // Second instruction of a global dynamic sequence,
7115               // the __tls_get_addr call
7116               const bool final = gsym == NULL || gsym->final_value_is_known();
7117               switch (this->optimize_tls_gd(final))
7118                 {
7119                 case tls::TLSOPT_TO_IE:
7120                   r_type = elfcpp::R_POWERPC_NONE;
7121                   zap_next = true;
7122                   break;
7123                 case tls::TLSOPT_TO_LE:
7124                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7125                   offset += 2 * big_endian;
7126                   zap_next = true;
7127                   break;
7128                 default:
7129                   break;
7130                 }
7131             }
7132           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7133                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7134             {
7135               // Second instruction of a local dynamic sequence,
7136               // the __tls_get_addr call
7137               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7138                 {
7139                   const Output_section* os = relinfo->layout->tls_segment()
7140                     ->first_section();
7141                   gold_assert(os != NULL);
7142                   gold_assert(os->needs_symtab_index());
7143                   r_sym = os->symtab_index();
7144                   addend = dtp_offset;
7145                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7146                   offset += 2 * big_endian;
7147                   zap_next = true;
7148                 }
7149             }
7150           else if (r_type == elfcpp::R_POWERPC_TLS)
7151             {
7152               // Second instruction of an initial exec sequence
7153               const bool final = gsym == NULL || gsym->final_value_is_known();
7154               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7155                 {
7156                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7157                   offset += 2 * big_endian;
7158                 }
7159             }
7160         }
7161
7162       reloc_write.put_r_offset(offset);
7163       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7164       reloc_write.put_r_addend(addend);
7165
7166       pwrite += reloc_size;
7167     }
7168
7169   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7170               == reloc_view_size);
7171 }
7172
7173 // Return the value to use for a dynamic symbol which requires special
7174 // treatment.  This is how we support equality comparisons of function
7175 // pointers across shared library boundaries, as described in the
7176 // processor specific ABI supplement.
7177
7178 template<int size, bool big_endian>
7179 uint64_t
7180 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7181 {
7182   if (size == 32)
7183     {
7184       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7185       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7186            p != this->stub_tables_.end();
7187            ++p)
7188         {
7189           Address off = (*p)->find_plt_call_entry(gsym);
7190           if (off != invalid_address)
7191             return (*p)->stub_address() + off;
7192         }
7193     }
7194   gold_unreachable();
7195 }
7196
7197 // Return the PLT address to use for a local symbol.
7198 template<int size, bool big_endian>
7199 uint64_t
7200 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7201     const Relobj* object,
7202     unsigned int symndx) const
7203 {
7204   if (size == 32)
7205     {
7206       const Sized_relobj<size, big_endian>* relobj
7207         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7208       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7209            p != this->stub_tables_.end();
7210            ++p)
7211         {
7212           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7213                                                   symndx);
7214           if (off != invalid_address)
7215             return (*p)->stub_address() + off;
7216         }
7217     }
7218   gold_unreachable();
7219 }
7220
7221 // Return the PLT address to use for a global symbol.
7222 template<int size, bool big_endian>
7223 uint64_t
7224 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7225     const Symbol* gsym) const
7226 {
7227   if (size == 32)
7228     {
7229       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7230            p != this->stub_tables_.end();
7231            ++p)
7232         {
7233           Address off = (*p)->find_plt_call_entry(gsym);
7234           if (off != invalid_address)
7235             return (*p)->stub_address() + off;
7236         }
7237     }
7238   gold_unreachable();
7239 }
7240
7241 // Return the offset to use for the GOT_INDX'th got entry which is
7242 // for a local tls symbol specified by OBJECT, SYMNDX.
7243 template<int size, bool big_endian>
7244 int64_t
7245 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7246     const Relobj* object,
7247     unsigned int symndx,
7248     unsigned int got_indx) const
7249 {
7250   const Powerpc_relobj<size, big_endian>* ppc_object
7251     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7252   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7253     {
7254       for (Got_type got_type = GOT_TYPE_TLSGD;
7255            got_type <= GOT_TYPE_TPREL;
7256            got_type = Got_type(got_type + 1))
7257         if (ppc_object->local_has_got_offset(symndx, got_type))
7258           {
7259             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7260             if (got_type == GOT_TYPE_TLSGD)
7261               off += size / 8;
7262             if (off == got_indx * (size / 8))
7263               {
7264                 if (got_type == GOT_TYPE_TPREL)
7265                   return -tp_offset;
7266                 else
7267                   return -dtp_offset;
7268               }
7269           }
7270     }
7271   gold_unreachable();
7272 }
7273
7274 // Return the offset to use for the GOT_INDX'th got entry which is
7275 // for global tls symbol GSYM.
7276 template<int size, bool big_endian>
7277 int64_t
7278 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7279     Symbol* gsym,
7280     unsigned int got_indx) const
7281 {
7282   if (gsym->type() == elfcpp::STT_TLS)
7283     {
7284       for (Got_type got_type = GOT_TYPE_TLSGD;
7285            got_type <= GOT_TYPE_TPREL;
7286            got_type = Got_type(got_type + 1))
7287         if (gsym->has_got_offset(got_type))
7288           {
7289             unsigned int off = gsym->got_offset(got_type);
7290             if (got_type == GOT_TYPE_TLSGD)
7291               off += size / 8;
7292             if (off == got_indx * (size / 8))
7293               {
7294                 if (got_type == GOT_TYPE_TPREL)
7295                   return -tp_offset;
7296                 else
7297                   return -dtp_offset;
7298               }
7299           }
7300     }
7301   gold_unreachable();
7302 }
7303
7304 // The selector for powerpc object files.
7305
7306 template<int size, bool big_endian>
7307 class Target_selector_powerpc : public Target_selector
7308 {
7309 public:
7310   Target_selector_powerpc()
7311     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7312                       size, big_endian,
7313                       (size == 64
7314                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7315                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7316                       (size == 64
7317                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7318                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7319   { }
7320
7321   virtual Target*
7322   do_instantiate_target()
7323   { return new Target_powerpc<size, big_endian>(); }
7324 };
7325
7326 Target_selector_powerpc<32, true> target_selector_ppc32;
7327 Target_selector_powerpc<32, false> target_selector_ppc32le;
7328 Target_selector_powerpc<64, true> target_selector_ppc64;
7329 Target_selector_powerpc<64, false> target_selector_ppc64le;
7330
7331 // Instantiate these constants for -O0
7332 template<int size, bool big_endian>
7333 const int Output_data_glink<size, big_endian>::pltresolve_size;
7334 template<int size, bool big_endian>
7335 const typename Stub_table<size, big_endian>::Address
7336   Stub_table<size, big_endian>::invalid_address;
7337 template<int size, bool big_endian>
7338 const typename Target_powerpc<size, big_endian>::Address
7339   Target_powerpc<size, big_endian>::invalid_address;
7340
7341 } // End anonymous namespace.