PowerPC PLT stub alignment fixes
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2018 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Stub_table_owner()
74     : output_section(NULL), owner(NULL)
75   { }
76
77   Output_section* output_section;
78   const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93   typedef Unordered_map<Address, Section_refs> Access_from;
94
95   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98       uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99       has_small_toc_reloc_(false), opd_valid_(false),
100       e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101       access_from_map_(), has14_(), stub_table_index_(), st_other_()
102   {
103     this->set_abiversion(0);
104   }
105
106   ~Powerpc_relobj()
107   { }
108
109   // Read the symbols then set up st_other vector.
110   void
111   do_read_symbols(Read_symbols_data*);
112
113   // Arrange to always relocate .toc first.
114   virtual void
115   do_relocate_sections(
116       const Symbol_table* symtab, const Layout* layout,
117       const unsigned char* pshdrs, Output_file* of,
118       typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120   // The .toc section index.
121   unsigned int
122   toc_shndx() const
123   {
124     return this->toc_;
125   }
126
127   // Mark .toc entry at OFF as not optimizable.
128   void
129   set_no_toc_opt(Address off)
130   {
131     if (this->no_toc_opt_.empty())
132       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133                                / (size / 8));
134     off /= size / 8;
135     if (off < this->no_toc_opt_.size())
136       this->no_toc_opt_[off] = true;
137   }
138
139   // Mark the entire .toc as not optimizable.
140   void
141   set_no_toc_opt()
142   {
143     this->no_toc_opt_.resize(1);
144     this->no_toc_opt_[0] = true;
145   }
146
147   // Return true if code using the .toc entry at OFF should not be edited.
148   bool
149   no_toc_opt(Address off) const
150   {
151     if (this->no_toc_opt_.empty())
152       return false;
153     off /= size / 8;
154     if (off >= this->no_toc_opt_.size())
155       return true;
156     return this->no_toc_opt_[off];
157   }
158
159   // The .got2 section shndx.
160   unsigned int
161   got2_shndx() const
162   {
163     if (size == 32)
164       return this->special_;
165     else
166       return 0;
167   }
168
169   // The .opd section shndx.
170   unsigned int
171   opd_shndx() const
172   {
173     if (size == 32)
174       return 0;
175     else
176       return this->special_;
177   }
178
179   // Init OPD entry arrays.
180   void
181   init_opd(size_t opd_size)
182   {
183     size_t count = this->opd_ent_ndx(opd_size);
184     this->opd_ent_.resize(count);
185   }
186
187   // Return section and offset of function entry for .opd + R_OFF.
188   unsigned int
189   get_opd_ent(Address r_off, Address* value = NULL) const
190   {
191     size_t ndx = this->opd_ent_ndx(r_off);
192     gold_assert(ndx < this->opd_ent_.size());
193     gold_assert(this->opd_ent_[ndx].shndx != 0);
194     if (value != NULL)
195       *value = this->opd_ent_[ndx].off;
196     return this->opd_ent_[ndx].shndx;
197   }
198
199   // Set section and offset of function entry for .opd + R_OFF.
200   void
201   set_opd_ent(Address r_off, unsigned int shndx, Address value)
202   {
203     size_t ndx = this->opd_ent_ndx(r_off);
204     gold_assert(ndx < this->opd_ent_.size());
205     this->opd_ent_[ndx].shndx = shndx;
206     this->opd_ent_[ndx].off = value;
207   }
208
209   // Return discard flag for .opd + R_OFF.
210   bool
211   get_opd_discard(Address r_off) const
212   {
213     size_t ndx = this->opd_ent_ndx(r_off);
214     gold_assert(ndx < this->opd_ent_.size());
215     return this->opd_ent_[ndx].discard;
216   }
217
218   // Set discard flag for .opd + R_OFF.
219   void
220   set_opd_discard(Address r_off)
221   {
222     size_t ndx = this->opd_ent_ndx(r_off);
223     gold_assert(ndx < this->opd_ent_.size());
224     this->opd_ent_[ndx].discard = true;
225   }
226
227   bool
228   opd_valid() const
229   { return this->opd_valid_; }
230
231   void
232   set_opd_valid()
233   { this->opd_valid_ = true; }
234
235   // Examine .rela.opd to build info about function entry points.
236   void
237   scan_opd_relocs(size_t reloc_count,
238                   const unsigned char* prelocs,
239                   const unsigned char* plocal_syms);
240
241   // Returns true if a code sequence loading a TOC entry can be
242   // converted into code calculating a TOC pointer relative offset.
243   bool
244   make_toc_relative(Target_powerpc<size, big_endian>* target,
245                     Address* value);
246
247   // Perform the Sized_relobj_file method, then set up opd info from
248   // .opd relocs.
249   void
250   do_read_relocs(Read_relocs_data*);
251
252   bool
253   do_find_special_sections(Read_symbols_data* sd);
254
255   // Adjust this local symbol value.  Return false if the symbol
256   // should be discarded from the output file.
257   bool
258   do_adjust_local_symbol(Symbol_value<size>* lv) const
259   {
260     if (size == 64 && this->opd_shndx() != 0)
261       {
262         bool is_ordinary;
263         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264           return true;
265         if (this->get_opd_discard(lv->input_value()))
266           return false;
267       }
268     return true;
269   }
270
271   Access_from*
272   access_from_map()
273   { return &this->access_from_map_; }
274
275   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276   // section at DST_OFF.
277   void
278   add_reference(Relobj* src_obj,
279                 unsigned int src_indx,
280                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281   {
282     Section_id src_id(src_obj, src_indx);
283     this->access_from_map_[dst_off].insert(src_id);
284   }
285
286   // Add a reference to the code section specified by the .opd entry
287   // at DST_OFF
288   void
289   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290   {
291     size_t ndx = this->opd_ent_ndx(dst_off);
292     if (ndx >= this->opd_ent_.size())
293       this->opd_ent_.resize(ndx + 1);
294     this->opd_ent_[ndx].gc_mark = true;
295   }
296
297   void
298   process_gc_mark(Symbol_table* symtab)
299   {
300     for (size_t i = 0; i < this->opd_ent_.size(); i++)
301       if (this->opd_ent_[i].gc_mark)
302         {
303           unsigned int shndx = this->opd_ent_[i].shndx;
304           symtab->gc()->worklist().push_back(Section_id(this, shndx));
305         }
306   }
307
308   // Return offset in output GOT section that this object will use
309   // as a TOC pointer.  Won't be just a constant with multi-toc support.
310   Address
311   toc_base_offset() const
312   { return 0x8000; }
313
314   void
315   set_has_small_toc_reloc()
316   { has_small_toc_reloc_ = true; }
317
318   bool
319   has_small_toc_reloc() const
320   { return has_small_toc_reloc_; }
321
322   void
323   set_has_14bit_branch(unsigned int shndx)
324   {
325     if (shndx >= this->has14_.size())
326       this->has14_.resize(shndx + 1);
327     this->has14_[shndx] = true;
328   }
329
330   bool
331   has_14bit_branch(unsigned int shndx) const
332   { return shndx < this->has14_.size() && this->has14_[shndx];  }
333
334   void
335   set_stub_table(unsigned int shndx, unsigned int stub_index)
336   {
337     if (shndx >= this->stub_table_index_.size())
338       this->stub_table_index_.resize(shndx + 1, -1);
339     this->stub_table_index_[shndx] = stub_index;
340   }
341
342   Stub_table<size, big_endian>*
343   stub_table(unsigned int shndx)
344   {
345     if (shndx < this->stub_table_index_.size())
346       {
347         Target_powerpc<size, big_endian>* target
348           = static_cast<Target_powerpc<size, big_endian>*>(
349               parameters->sized_target<size, big_endian>());
350         unsigned int indx = this->stub_table_index_[shndx];
351         if (indx < target->stub_tables().size())
352           return target->stub_tables()[indx];
353       }
354     return NULL;
355   }
356
357   void
358   clear_stub_table()
359   {
360     this->stub_table_index_.clear();
361   }
362
363   uint32_t
364   uniq() const
365   { return this->uniq_; }
366
367   int
368   abiversion() const
369   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371   // Set ABI version for input and output
372   void
373   set_abiversion(int ver);
374
375   unsigned int
376   st_other (unsigned int symndx) const
377   {
378     return this->st_other_[symndx];
379   }
380
381   unsigned int
382   ppc64_local_entry_offset(const Symbol* sym) const
383   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385   unsigned int
386   ppc64_local_entry_offset(unsigned int symndx) const
387   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390   struct Opd_ent
391   {
392     unsigned int shndx;
393     bool discard : 1;
394     bool gc_mark : 1;
395     Address off;
396   };
397
398   // Return index into opd_ent_ array for .opd entry at OFF.
399   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400   // apart when the language doesn't use the last 8-byte word, the
401   // environment pointer.  Thus dividing the entry section offset by
402   // 16 will give an index into opd_ent_ that works for either layout
403   // of .opd.  (It leaves some elements of the vector unused when .opd
404   // entries are spaced 24 bytes apart, but we don't know the spacing
405   // until relocations are processed, and in any case it is possible
406   // for an object to have some entries spaced 16 bytes apart and
407   // others 24 bytes apart.)
408   size_t
409   opd_ent_ndx(size_t off) const
410   { return off >> 4;}
411
412   // Per object unique identifier
413   uint32_t uniq_;
414
415   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416   unsigned int special_;
417
418   // For 64-bit the .rela.toc and .toc section shdnx.
419   unsigned int relatoc_;
420   unsigned int toc_;
421
422   // For 64-bit, whether this object uses small model relocs to access
423   // the toc.
424   bool has_small_toc_reloc_;
425
426   // Set at the start of gc_process_relocs, when we know opd_ent_
427   // vector is valid.  The flag could be made atomic and set in
428   // do_read_relocs with memory_order_release and then tested with
429   // memory_order_acquire, potentially resulting in fewer entries in
430   // access_from_map_.
431   bool opd_valid_;
432
433   // Header e_flags
434   elfcpp::Elf_Word e_flags_;
435
436   // For 64-bit, an array with one entry per 64-bit word in the .toc
437   // section, set if accesses using that word cannot be optimised.
438   std::vector<bool> no_toc_opt_;
439
440   // The first 8-byte word of an OPD entry gives the address of the
441   // entry point of the function.  Relocatable object files have a
442   // relocation on this word.  The following vector records the
443   // section and offset specified by these relocations.
444   std::vector<Opd_ent> opd_ent_;
445
446   // References made to this object's .opd section when running
447   // gc_process_relocs for another object, before the opd_ent_ vector
448   // is valid for this object.
449   Access_from access_from_map_;
450
451   // Whether input section has a 14-bit branch reloc.
452   std::vector<bool> has14_;
453
454   // The stub table to use for a given input section.
455   std::vector<unsigned int> stub_table_index_;
456
457   // ELF st_other field for local symbols.
458   std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470       opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471   {
472     this->set_abiversion(0);
473   }
474
475   ~Powerpc_dynobj()
476   { }
477
478   // Call Sized_dynobj::do_read_symbols to read the symbols then
479   // read .opd from a dynamic object, filling in opd_ent_ vector,
480   void
481   do_read_symbols(Read_symbols_data*);
482
483   // The .opd section shndx.
484   unsigned int
485   opd_shndx() const
486   {
487     return this->opd_shndx_;
488   }
489
490   // The .opd section address.
491   Address
492   opd_address() const
493   {
494     return this->opd_address_;
495   }
496
497   // Init OPD entry arrays.
498   void
499   init_opd(size_t opd_size)
500   {
501     size_t count = this->opd_ent_ndx(opd_size);
502     this->opd_ent_.resize(count);
503   }
504
505   // Return section and offset of function entry for .opd + R_OFF.
506   unsigned int
507   get_opd_ent(Address r_off, Address* value = NULL) const
508   {
509     size_t ndx = this->opd_ent_ndx(r_off);
510     gold_assert(ndx < this->opd_ent_.size());
511     gold_assert(this->opd_ent_[ndx].shndx != 0);
512     if (value != NULL)
513       *value = this->opd_ent_[ndx].off;
514     return this->opd_ent_[ndx].shndx;
515   }
516
517   // Set section and offset of function entry for .opd + R_OFF.
518   void
519   set_opd_ent(Address r_off, unsigned int shndx, Address value)
520   {
521     size_t ndx = this->opd_ent_ndx(r_off);
522     gold_assert(ndx < this->opd_ent_.size());
523     this->opd_ent_[ndx].shndx = shndx;
524     this->opd_ent_[ndx].off = value;
525   }
526
527   int
528   abiversion() const
529   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531   // Set ABI version for input and output.
532   void
533   set_abiversion(int ver);
534
535 private:
536   // Used to specify extent of executable sections.
537   struct Sec_info
538   {
539     Sec_info(Address start_, Address len_, unsigned int shndx_)
540       : start(start_), len(len_), shndx(shndx_)
541     { }
542
543     bool
544     operator<(const Sec_info& that) const
545     { return this->start < that.start; }
546
547     Address start;
548     Address len;
549     unsigned int shndx;
550   };
551
552   struct Opd_ent
553   {
554     unsigned int shndx;
555     Address off;
556   };
557
558   // Return index into opd_ent_ array for .opd entry at OFF.
559   size_t
560   opd_ent_ndx(size_t off) const
561   { return off >> 4;}
562
563   // For 64-bit the .opd section shndx and address.
564   unsigned int opd_shndx_;
565   Address opd_address_;
566
567   // Header e_flags
568   elfcpp::Elf_Word e_flags_;
569
570   // The first 8-byte word of an OPD entry gives the address of the
571   // entry point of the function.  Records the section and offset
572   // corresponding to the address.  Note that in dynamic objects,
573   // offset is *not* relative to the section.
574   std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583  public:
584   Powerpc_copy_relocs()
585     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586   { }
587
588   // Emit any saved relocations which turn out to be needed.  This is
589   // called after all the relocs have been scanned.
590   void
591   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597  public:
598   typedef
599     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602   typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603   static const Address invalid_address = static_cast<Address>(0) - 1;
604   // Offset of tp and dtp pointers from start of TLS block.
605   static const Address tp_offset = 0x7000;
606   static const Address dtp_offset = 0x8000;
607
608   Target_powerpc()
609     : Sized_target<size, big_endian>(&powerpc_info),
610       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
611       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612       tlsld_got_offset_(-1U),
613       stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614       plt_thread_safe_(false), plt_localentry0_(false),
615       plt_localentry0_init_(false), has_localentry0_(false),
616       has_tls_get_addr_opt_(false),
617       relax_failed_(false), relax_fail_count_(0),
618       stub_group_size_(0), savres_section_(0),
619       tls_get_addr_(NULL), tls_get_addr_opt_(NULL)
620   {
621   }
622
623   // Process the relocations to determine unreferenced sections for
624   // garbage collection.
625   void
626   gc_process_relocs(Symbol_table* symtab,
627                     Layout* layout,
628                     Sized_relobj_file<size, big_endian>* object,
629                     unsigned int data_shndx,
630                     unsigned int sh_type,
631                     const unsigned char* prelocs,
632                     size_t reloc_count,
633                     Output_section* output_section,
634                     bool needs_special_offset_handling,
635                     size_t local_symbol_count,
636                     const unsigned char* plocal_symbols);
637
638   // Scan the relocations to look for symbol adjustments.
639   void
640   scan_relocs(Symbol_table* symtab,
641               Layout* layout,
642               Sized_relobj_file<size, big_endian>* object,
643               unsigned int data_shndx,
644               unsigned int sh_type,
645               const unsigned char* prelocs,
646               size_t reloc_count,
647               Output_section* output_section,
648               bool needs_special_offset_handling,
649               size_t local_symbol_count,
650               const unsigned char* plocal_symbols);
651
652   // Map input .toc section to output .got section.
653   const char*
654   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
655   {
656     if (size == 64 && strcmp(name, ".toc") == 0)
657       {
658         *plen = 4;
659         return ".got";
660       }
661     return NULL;
662   }
663
664   // Provide linker defined save/restore functions.
665   void
666   define_save_restore_funcs(Layout*, Symbol_table*);
667
668   // No stubs unless a final link.
669   bool
670   do_may_relax() const
671   { return !parameters->options().relocatable(); }
672
673   bool
674   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
675
676   void
677   do_plt_fde_location(const Output_data*, unsigned char*,
678                       uint64_t*, off_t*) const;
679
680   // Stash info about branches, for stub generation.
681   void
682   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
683               unsigned int data_shndx, Address r_offset,
684               unsigned int r_type, unsigned int r_sym, Address addend)
685   {
686     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
687     this->branch_info_.push_back(info);
688     if (r_type == elfcpp::R_POWERPC_REL14
689         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
690         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
691       ppc_object->set_has_14bit_branch(data_shndx);
692   }
693
694   // Return whether the last branch is a plt call, and if so, mark the
695   // branch as having an R_PPC64_TOCSAVE.
696   bool
697   mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
698                unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
699   {
700     return (size == 64
701             && !this->branch_info_.empty()
702             && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
703                                                       r_offset, this, symtab));
704   }
705
706   // Say the given location, that of a nop in a function prologue with
707   // an R_PPC64_TOCSAVE reloc, will be used to save r2.
708   // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
709   void
710   add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
711               unsigned int shndx, Address offset)
712   {
713     Symbol_location loc;
714     loc.object = ppc_object;
715     loc.shndx = shndx;
716     loc.offset = offset;
717     this->tocsave_loc_.insert(loc);
718   }
719
720   // Accessor
721   const Tocsave_loc
722   tocsave_loc() const
723   {
724     return this->tocsave_loc_;
725   }
726
727   void
728   do_define_standard_symbols(Symbol_table*, Layout*);
729
730   // Finalize the sections.
731   void
732   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
733
734   // Return the value to use for a dynamic which requires special
735   // treatment.
736   uint64_t
737   do_dynsym_value(const Symbol*) const;
738
739   // Return the PLT address to use for a local symbol.
740   uint64_t
741   do_plt_address_for_local(const Relobj*, unsigned int) const;
742
743   // Return the PLT address to use for a global symbol.
744   uint64_t
745   do_plt_address_for_global(const Symbol*) const;
746
747   // Return the offset to use for the GOT_INDX'th got entry which is
748   // for a local tls symbol specified by OBJECT, SYMNDX.
749   int64_t
750   do_tls_offset_for_local(const Relobj* object,
751                           unsigned int symndx,
752                           unsigned int got_indx) const;
753
754   // Return the offset to use for the GOT_INDX'th got entry which is
755   // for global tls symbol GSYM.
756   int64_t
757   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
758
759   void
760   do_function_location(Symbol_location*) const;
761
762   bool
763   do_can_check_for_function_pointers() const
764   { return true; }
765
766   // Adjust -fsplit-stack code which calls non-split-stack code.
767   void
768   do_calls_non_split(Relobj* object, unsigned int shndx,
769                      section_offset_type fnoffset, section_size_type fnsize,
770                      const unsigned char* prelocs, size_t reloc_count,
771                      unsigned char* view, section_size_type view_size,
772                      std::string* from, std::string* to) const;
773
774   // Relocate a section.
775   void
776   relocate_section(const Relocate_info<size, big_endian>*,
777                    unsigned int sh_type,
778                    const unsigned char* prelocs,
779                    size_t reloc_count,
780                    Output_section* output_section,
781                    bool needs_special_offset_handling,
782                    unsigned char* view,
783                    Address view_address,
784                    section_size_type view_size,
785                    const Reloc_symbol_changes*);
786
787   // Scan the relocs during a relocatable link.
788   void
789   scan_relocatable_relocs(Symbol_table* symtab,
790                           Layout* layout,
791                           Sized_relobj_file<size, big_endian>* object,
792                           unsigned int data_shndx,
793                           unsigned int sh_type,
794                           const unsigned char* prelocs,
795                           size_t reloc_count,
796                           Output_section* output_section,
797                           bool needs_special_offset_handling,
798                           size_t local_symbol_count,
799                           const unsigned char* plocal_symbols,
800                           Relocatable_relocs*);
801
802   // Scan the relocs for --emit-relocs.
803   void
804   emit_relocs_scan(Symbol_table* symtab,
805                    Layout* layout,
806                    Sized_relobj_file<size, big_endian>* object,
807                    unsigned int data_shndx,
808                    unsigned int sh_type,
809                    const unsigned char* prelocs,
810                    size_t reloc_count,
811                    Output_section* output_section,
812                    bool needs_special_offset_handling,
813                    size_t local_symbol_count,
814                    const unsigned char* plocal_syms,
815                    Relocatable_relocs* rr);
816
817   // Emit relocations for a section.
818   void
819   relocate_relocs(const Relocate_info<size, big_endian>*,
820                   unsigned int sh_type,
821                   const unsigned char* prelocs,
822                   size_t reloc_count,
823                   Output_section* output_section,
824                   typename elfcpp::Elf_types<size>::Elf_Off
825                     offset_in_output_section,
826                   unsigned char*,
827                   Address view_address,
828                   section_size_type,
829                   unsigned char* reloc_view,
830                   section_size_type reloc_view_size);
831
832   // Return whether SYM is defined by the ABI.
833   bool
834   do_is_defined_by_abi(const Symbol* sym) const
835   {
836     return strcmp(sym->name(), "__tls_get_addr") == 0;
837   }
838
839   // Return the size of the GOT section.
840   section_size_type
841   got_size() const
842   {
843     gold_assert(this->got_ != NULL);
844     return this->got_->data_size();
845   }
846
847   // Get the PLT section.
848   const Output_data_plt_powerpc<size, big_endian>*
849   plt_section() const
850   {
851     gold_assert(this->plt_ != NULL);
852     return this->plt_;
853   }
854
855   // Get the IPLT section.
856   const Output_data_plt_powerpc<size, big_endian>*
857   iplt_section() const
858   {
859     gold_assert(this->iplt_ != NULL);
860     return this->iplt_;
861   }
862
863   // Get the .glink section.
864   const Output_data_glink<size, big_endian>*
865   glink_section() const
866   {
867     gold_assert(this->glink_ != NULL);
868     return this->glink_;
869   }
870
871   Output_data_glink<size, big_endian>*
872   glink_section()
873   {
874     gold_assert(this->glink_ != NULL);
875     return this->glink_;
876   }
877
878   bool has_glink() const
879   { return this->glink_ != NULL; }
880
881   // Get the GOT section.
882   const Output_data_got_powerpc<size, big_endian>*
883   got_section() const
884   {
885     gold_assert(this->got_ != NULL);
886     return this->got_;
887   }
888
889   // Get the GOT section, creating it if necessary.
890   Output_data_got_powerpc<size, big_endian>*
891   got_section(Symbol_table*, Layout*);
892
893   Object*
894   do_make_elf_object(const std::string&, Input_file*, off_t,
895                      const elfcpp::Ehdr<size, big_endian>&);
896
897   // Return the number of entries in the GOT.
898   unsigned int
899   got_entry_count() const
900   {
901     if (this->got_ == NULL)
902       return 0;
903     return this->got_size() / (size / 8);
904   }
905
906   // Return the number of entries in the PLT.
907   unsigned int
908   plt_entry_count() const;
909
910   // Return the offset of the first non-reserved PLT entry.
911   unsigned int
912   first_plt_entry_offset() const
913   {
914     if (size == 32)
915       return 0;
916     if (this->abiversion() >= 2)
917       return 16;
918     return 24;
919   }
920
921   // Return the size of each PLT entry.
922   unsigned int
923   plt_entry_size() const
924   {
925     if (size == 32)
926       return 4;
927     if (this->abiversion() >= 2)
928       return 8;
929     return 24;
930   }
931
932   Output_data_save_res<size, big_endian>*
933   savres_section() const
934   {
935     return this->savres_section_;
936   }
937
938   // Add any special sections for this symbol to the gc work list.
939   // For powerpc64, this adds the code section of a function
940   // descriptor.
941   void
942   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
943
944   // Handle target specific gc actions when adding a gc reference from
945   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
946   // and DST_OFF.  For powerpc64, this adds a referenc to the code
947   // section of a function descriptor.
948   void
949   do_gc_add_reference(Symbol_table* symtab,
950                       Relobj* src_obj,
951                       unsigned int src_shndx,
952                       Relobj* dst_obj,
953                       unsigned int dst_shndx,
954                       Address dst_off) const;
955
956   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
957   const Stub_tables&
958   stub_tables() const
959   { return this->stub_tables_; }
960
961   const Output_data_brlt_powerpc<size, big_endian>*
962   brlt_section() const
963   { return this->brlt_section_; }
964
965   void
966   add_branch_lookup_table(Address to)
967   {
968     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
969     this->branch_lookup_table_.insert(std::make_pair(to, off));
970   }
971
972   Address
973   find_branch_lookup_table(Address to)
974   {
975     typename Branch_lookup_table::const_iterator p
976       = this->branch_lookup_table_.find(to);
977     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
978   }
979
980   void
981   write_branch_lookup_table(unsigned char *oview)
982   {
983     for (typename Branch_lookup_table::const_iterator p
984            = this->branch_lookup_table_.begin();
985          p != this->branch_lookup_table_.end();
986          ++p)
987       {
988         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
989       }
990   }
991
992   // Wrapper used after relax to define a local symbol in output data,
993   // from the end if value < 0.
994   void
995   define_local(Symbol_table* symtab, const char* name,
996                Output_data* od, Address value, unsigned int symsize)
997   {
998     Symbol* sym
999       = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1000                                       od, value, symsize, elfcpp::STT_NOTYPE,
1001                                       elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1002                                       static_cast<Signed_address>(value) < 0,
1003                                       false);
1004     // We are creating this symbol late, so need to fix up things
1005     // done early in Layout::finalize.
1006     sym->set_dynsym_index(-1U);
1007   }
1008
1009   bool
1010   plt_thread_safe() const
1011   { return this->plt_thread_safe_; }
1012
1013   bool
1014   plt_localentry0() const
1015   { return this->plt_localentry0_; }
1016
1017   void
1018   set_has_localentry0()
1019   {
1020     this->has_localentry0_ = true;
1021   }
1022
1023   bool
1024   is_elfv2_localentry0(const Symbol* gsym) const
1025   {
1026     return (size == 64
1027             && this->abiversion() >= 2
1028             && this->plt_localentry0()
1029             && gsym->type() == elfcpp::STT_FUNC
1030             && gsym->is_defined()
1031             && gsym->nonvis() >> 3 == 0
1032             && !gsym->non_zero_localentry());
1033   }
1034
1035   bool
1036   is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1037                        unsigned int r_sym) const
1038   {
1039     const Powerpc_relobj<size, big_endian>* ppc_object
1040       = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1041
1042     if (size == 64
1043         && this->abiversion() >= 2
1044         && this->plt_localentry0()
1045         && ppc_object->st_other(r_sym) >> 5 == 0)
1046       {
1047         const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1048         bool is_ordinary;
1049         if (!psymval->is_ifunc_symbol()
1050             && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1051             && is_ordinary)
1052           return true;
1053       }
1054     return false;
1055   }
1056
1057   // Remember any symbols seen with non-zero localentry, even those
1058   // not providing a definition
1059   bool
1060   resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1061           const char*)
1062   {
1063     if (size == 64)
1064       {
1065         unsigned char st_other = sym.get_st_other();
1066         if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1067           to->set_non_zero_localentry();
1068       }
1069     // We haven't resolved anything, continue normal processing.
1070     return false;
1071   }
1072
1073   int
1074   abiversion() const
1075   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1076
1077   void
1078   set_abiversion(int ver)
1079   {
1080     elfcpp::Elf_Word flags = this->processor_specific_flags();
1081     flags &= ~elfcpp::EF_PPC64_ABI;
1082     flags |= ver & elfcpp::EF_PPC64_ABI;
1083     this->set_processor_specific_flags(flags);
1084   }
1085
1086   Symbol*
1087   tls_get_addr_opt() const
1088   { return this->tls_get_addr_opt_; }
1089
1090   Symbol*
1091   tls_get_addr() const
1092   { return this->tls_get_addr_; }
1093
1094   // If optimizing __tls_get_addr calls, whether this is the
1095   // "__tls_get_addr" symbol.
1096   bool
1097   is_tls_get_addr_opt(const Symbol* gsym) const
1098   {
1099     return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1100                                        || gsym == this->tls_get_addr_opt_);
1101   }
1102
1103   bool
1104   replace_tls_get_addr(const Symbol* gsym) const
1105   { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1106
1107   void
1108   set_has_tls_get_addr_opt()
1109   { this->has_tls_get_addr_opt_ = true; }
1110
1111   // Offset to toc save stack slot
1112   int
1113   stk_toc() const
1114   { return this->abiversion() < 2 ? 40 : 24; }
1115
1116   // Offset to linker save stack slot.  ELFv2 doesn't have a linker word,
1117   // so use the CR save slot.  Used only by __tls_get_addr call stub,
1118   // relying on __tls_get_addr not saving CR itself.
1119   int
1120   stk_linker() const
1121   { return this->abiversion() < 2 ? 32 : 8; }
1122
1123  private:
1124
1125   class Track_tls
1126   {
1127   public:
1128     enum Tls_get_addr
1129     {
1130       NOT_EXPECTED = 0,
1131       EXPECTED = 1,
1132       SKIP = 2,
1133       NORMAL = 3
1134     };
1135
1136     Track_tls()
1137       : tls_get_addr_state_(NOT_EXPECTED),
1138         relinfo_(NULL), relnum_(0), r_offset_(0)
1139     { }
1140
1141     ~Track_tls()
1142     {
1143       if (this->tls_get_addr_state_ != NOT_EXPECTED)
1144         this->missing();
1145     }
1146
1147     void
1148     missing(void)
1149     {
1150       if (this->relinfo_ != NULL)
1151         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1152                                _("missing expected __tls_get_addr call"));
1153     }
1154
1155     void
1156     expect_tls_get_addr_call(
1157         const Relocate_info<size, big_endian>* relinfo,
1158         size_t relnum,
1159         Address r_offset)
1160     {
1161       this->tls_get_addr_state_ = EXPECTED;
1162       this->relinfo_ = relinfo;
1163       this->relnum_ = relnum;
1164       this->r_offset_ = r_offset;
1165     }
1166
1167     void
1168     expect_tls_get_addr_call()
1169     { this->tls_get_addr_state_ = EXPECTED; }
1170
1171     void
1172     skip_next_tls_get_addr_call()
1173     {this->tls_get_addr_state_ = SKIP; }
1174
1175     Tls_get_addr
1176     maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1177                                  unsigned int r_type, const Symbol* gsym)
1178     {
1179       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1180                            || r_type == elfcpp::R_PPC_PLTREL24)
1181                           && gsym != NULL
1182                           && (gsym == target->tls_get_addr()
1183                               || gsym == target->tls_get_addr_opt()));
1184       Tls_get_addr last_tls = this->tls_get_addr_state_;
1185       this->tls_get_addr_state_ = NOT_EXPECTED;
1186       if (is_tls_call && last_tls != EXPECTED)
1187         return last_tls;
1188       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1189         {
1190           this->missing();
1191           return EXPECTED;
1192         }
1193       return NORMAL;
1194     }
1195
1196   private:
1197     // What we're up to regarding calls to __tls_get_addr.
1198     // On powerpc, the branch and link insn making a call to
1199     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1200     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1201     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1202     // The marker relocation always comes first, and has the same
1203     // symbol as the reloc on the insn setting up the __tls_get_addr
1204     // argument.  This ties the arg setup insn with the call insn,
1205     // allowing ld to safely optimize away the call.  We check that
1206     // every call to __tls_get_addr has a marker relocation, and that
1207     // every marker relocation is on a call to __tls_get_addr.
1208     Tls_get_addr tls_get_addr_state_;
1209     // Info about the last reloc for error message.
1210     const Relocate_info<size, big_endian>* relinfo_;
1211     size_t relnum_;
1212     Address r_offset_;
1213   };
1214
1215   // The class which scans relocations.
1216   class Scan : protected Track_tls
1217   {
1218   public:
1219     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1220
1221     Scan()
1222       : Track_tls(), issued_non_pic_error_(false)
1223     { }
1224
1225     static inline int
1226     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1227
1228     inline void
1229     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1230           Sized_relobj_file<size, big_endian>* object,
1231           unsigned int data_shndx,
1232           Output_section* output_section,
1233           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1234           const elfcpp::Sym<size, big_endian>& lsym,
1235           bool is_discarded);
1236
1237     inline void
1238     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1239            Sized_relobj_file<size, big_endian>* object,
1240            unsigned int data_shndx,
1241            Output_section* output_section,
1242            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1243            Symbol* gsym);
1244
1245     inline bool
1246     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1247                                         Target_powerpc* ,
1248                                         Sized_relobj_file<size, big_endian>* relobj,
1249                                         unsigned int ,
1250                                         Output_section* ,
1251                                         const elfcpp::Rela<size, big_endian>& ,
1252                                         unsigned int r_type,
1253                                         const elfcpp::Sym<size, big_endian>&)
1254     {
1255       // PowerPC64 .opd is not folded, so any identical function text
1256       // may be folded and we'll still keep function addresses distinct.
1257       // That means no reloc is of concern here.
1258       if (size == 64)
1259         {
1260           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1261             <Powerpc_relobj<size, big_endian>*>(relobj);
1262           if (ppcobj->abiversion() == 1)
1263             return false;
1264         }
1265       // For 32-bit and ELFv2, conservatively assume anything but calls to
1266       // function code might be taking the address of the function.
1267       return !is_branch_reloc(r_type);
1268     }
1269
1270     inline bool
1271     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1272                                          Target_powerpc* ,
1273                                          Sized_relobj_file<size, big_endian>* relobj,
1274                                          unsigned int ,
1275                                          Output_section* ,
1276                                          const elfcpp::Rela<size, big_endian>& ,
1277                                          unsigned int r_type,
1278                                          Symbol*)
1279     {
1280       // As above.
1281       if (size == 64)
1282         {
1283           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1284             <Powerpc_relobj<size, big_endian>*>(relobj);
1285           if (ppcobj->abiversion() == 1)
1286             return false;
1287         }
1288       return !is_branch_reloc(r_type);
1289     }
1290
1291     static bool
1292     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1293                               Sized_relobj_file<size, big_endian>* object,
1294                               unsigned int r_type, bool report_err);
1295
1296   private:
1297     static void
1298     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1299                             unsigned int r_type);
1300
1301     static void
1302     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1303                              unsigned int r_type, Symbol*);
1304
1305     static void
1306     generate_tls_call(Symbol_table* symtab, Layout* layout,
1307                       Target_powerpc* target);
1308
1309     void
1310     check_non_pic(Relobj*, unsigned int r_type);
1311
1312     // Whether we have issued an error about a non-PIC compilation.
1313     bool issued_non_pic_error_;
1314   };
1315
1316   bool
1317   symval_for_branch(const Symbol_table* symtab,
1318                     const Sized_symbol<size>* gsym,
1319                     Powerpc_relobj<size, big_endian>* object,
1320                     Address *value, unsigned int *dest_shndx);
1321
1322   // The class which implements relocation.
1323   class Relocate : protected Track_tls
1324   {
1325    public:
1326     // Use 'at' branch hints when true, 'y' when false.
1327     // FIXME maybe: set this with an option.
1328     static const bool is_isa_v2 = true;
1329
1330     Relocate()
1331       : Track_tls()
1332     { }
1333
1334     // Do a relocation.  Return false if the caller should not issue
1335     // any warnings about this relocation.
1336     inline bool
1337     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1338              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1339              const Sized_symbol<size>*, const Symbol_value<size>*,
1340              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1341              section_size_type);
1342   };
1343
1344   class Relocate_comdat_behavior
1345   {
1346    public:
1347     // Decide what the linker should do for relocations that refer to
1348     // discarded comdat sections.
1349     inline Comdat_behavior
1350     get(const char* name)
1351     {
1352       gold::Default_comdat_behavior default_behavior;
1353       Comdat_behavior ret = default_behavior.get(name);
1354       if (ret == CB_WARNING)
1355         {
1356           if (size == 32
1357               && (strcmp(name, ".fixup") == 0
1358                   || strcmp(name, ".got2") == 0))
1359             ret = CB_IGNORE;
1360           if (size == 64
1361               && (strcmp(name, ".opd") == 0
1362                   || strcmp(name, ".toc") == 0
1363                   || strcmp(name, ".toc1") == 0))
1364             ret = CB_IGNORE;
1365         }
1366       return ret;
1367     }
1368   };
1369
1370   // Optimize the TLS relocation type based on what we know about the
1371   // symbol.  IS_FINAL is true if the final address of this symbol is
1372   // known at link time.
1373
1374   tls::Tls_optimization
1375   optimize_tls_gd(bool is_final)
1376   {
1377     // If we are generating a shared library, then we can't do anything
1378     // in the linker.
1379     if (parameters->options().shared()
1380         || !parameters->options().tls_optimize())
1381       return tls::TLSOPT_NONE;
1382
1383     if (!is_final)
1384       return tls::TLSOPT_TO_IE;
1385     return tls::TLSOPT_TO_LE;
1386   }
1387
1388   tls::Tls_optimization
1389   optimize_tls_ld()
1390   {
1391     if (parameters->options().shared()
1392         || !parameters->options().tls_optimize())
1393       return tls::TLSOPT_NONE;
1394
1395     return tls::TLSOPT_TO_LE;
1396   }
1397
1398   tls::Tls_optimization
1399   optimize_tls_ie(bool is_final)
1400   {
1401     if (!is_final
1402         || parameters->options().shared()
1403         || !parameters->options().tls_optimize())
1404       return tls::TLSOPT_NONE;
1405
1406     return tls::TLSOPT_TO_LE;
1407   }
1408
1409   // Create glink.
1410   void
1411   make_glink_section(Layout*);
1412
1413   // Create the PLT section.
1414   void
1415   make_plt_section(Symbol_table*, Layout*);
1416
1417   void
1418   make_iplt_section(Symbol_table*, Layout*);
1419
1420   void
1421   make_brlt_section(Layout*);
1422
1423   // Create a PLT entry for a global symbol.
1424   void
1425   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1426
1427   // Create a PLT entry for a local IFUNC symbol.
1428   void
1429   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1430                              Sized_relobj_file<size, big_endian>*,
1431                              unsigned int);
1432
1433
1434   // Create a GOT entry for local dynamic __tls_get_addr.
1435   unsigned int
1436   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1437                    Sized_relobj_file<size, big_endian>* object);
1438
1439   unsigned int
1440   tlsld_got_offset() const
1441   {
1442     return this->tlsld_got_offset_;
1443   }
1444
1445   // Get the dynamic reloc section, creating it if necessary.
1446   Reloc_section*
1447   rela_dyn_section(Layout*);
1448
1449   // Similarly, but for ifunc symbols get the one for ifunc.
1450   Reloc_section*
1451   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1452
1453   // Copy a relocation against a global symbol.
1454   void
1455   copy_reloc(Symbol_table* symtab, Layout* layout,
1456              Sized_relobj_file<size, big_endian>* object,
1457              unsigned int shndx, Output_section* output_section,
1458              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1459   {
1460     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1461     this->copy_relocs_.copy_reloc(symtab, layout,
1462                                   symtab->get_sized_symbol<size>(sym),
1463                                   object, shndx, output_section,
1464                                   r_type, reloc.get_r_offset(),
1465                                   reloc.get_r_addend(),
1466                                   this->rela_dyn_section(layout));
1467   }
1468
1469   // Look over all the input sections, deciding where to place stubs.
1470   void
1471   group_sections(Layout*, const Task*, bool);
1472
1473   // Sort output sections by address.
1474   struct Sort_sections
1475   {
1476     bool
1477     operator()(const Output_section* sec1, const Output_section* sec2)
1478     { return sec1->address() < sec2->address(); }
1479   };
1480
1481   class Branch_info
1482   {
1483    public:
1484     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1485                 unsigned int data_shndx,
1486                 Address r_offset,
1487                 unsigned int r_type,
1488                 unsigned int r_sym,
1489                 Address addend)
1490       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1491         r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1492     { }
1493
1494     ~Branch_info()
1495     { }
1496
1497     // Return whether this branch is going via a plt call stub, and if
1498     // so, mark it as having an R_PPC64_TOCSAVE.
1499     bool
1500     mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1501                  unsigned int shndx, Address offset,
1502                  Target_powerpc* target, Symbol_table* symtab);
1503
1504     // If this branch needs a plt call stub, or a long branch stub, make one.
1505     bool
1506     make_stub(Stub_table<size, big_endian>*,
1507               Stub_table<size, big_endian>*,
1508               Symbol_table*) const;
1509
1510    private:
1511     // The branch location..
1512     Powerpc_relobj<size, big_endian>* object_;
1513     unsigned int shndx_;
1514     Address offset_;
1515     // ..and the branch type and destination.
1516     unsigned int r_type_ : 31;
1517     unsigned int tocsave_ : 1;
1518     unsigned int r_sym_;
1519     Address addend_;
1520   };
1521
1522   // Information about this specific target which we pass to the
1523   // general Target structure.
1524   static Target::Target_info powerpc_info;
1525
1526   // The types of GOT entries needed for this platform.
1527   // These values are exposed to the ABI in an incremental link.
1528   // Do not renumber existing values without changing the version
1529   // number of the .gnu_incremental_inputs section.
1530   enum Got_type
1531   {
1532     GOT_TYPE_STANDARD,
1533     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1534     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1535     GOT_TYPE_TPREL      // entry for @got@tprel
1536   };
1537
1538   // The GOT section.
1539   Output_data_got_powerpc<size, big_endian>* got_;
1540   // The PLT section.  This is a container for a table of addresses,
1541   // and their relocations.  Each address in the PLT has a dynamic
1542   // relocation (R_*_JMP_SLOT) and each address will have a
1543   // corresponding entry in .glink for lazy resolution of the PLT.
1544   // ppc32 initialises the PLT to point at the .glink entry, while
1545   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1546   // linker adds a stub that loads the PLT entry into ctr then
1547   // branches to ctr.  There may be more than one stub for each PLT
1548   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1549   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1550   Output_data_plt_powerpc<size, big_endian>* plt_;
1551   // The IPLT section.  Like plt_, this is a container for a table of
1552   // addresses and their relocations, specifically for STT_GNU_IFUNC
1553   // functions that resolve locally (STT_GNU_IFUNC functions that
1554   // don't resolve locally go in PLT).  Unlike plt_, these have no
1555   // entry in .glink for lazy resolution, and the relocation section
1556   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1557   // the relocation section may contain relocations against
1558   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1559   // relocation section will appear at the end of other dynamic
1560   // relocations, so that ld.so applies these relocations after other
1561   // dynamic relocations.  In a static executable, the relocation
1562   // section is emitted and marked with __rela_iplt_start and
1563   // __rela_iplt_end symbols.
1564   Output_data_plt_powerpc<size, big_endian>* iplt_;
1565   // Section holding long branch destinations.
1566   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1567   // The .glink section.
1568   Output_data_glink<size, big_endian>* glink_;
1569   // The dynamic reloc section.
1570   Reloc_section* rela_dyn_;
1571   // Relocs saved to avoid a COPY reloc.
1572   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1573   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1574   unsigned int tlsld_got_offset_;
1575
1576   Stub_tables stub_tables_;
1577   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1578   Branch_lookup_table branch_lookup_table_;
1579
1580   typedef std::vector<Branch_info> Branches;
1581   Branches branch_info_;
1582   Tocsave_loc tocsave_loc_;
1583
1584   bool plt_thread_safe_;
1585   bool plt_localentry0_;
1586   bool plt_localentry0_init_;
1587   bool has_localentry0_;
1588   bool has_tls_get_addr_opt_;
1589
1590   bool relax_failed_;
1591   int relax_fail_count_;
1592   int32_t stub_group_size_;
1593
1594   Output_data_save_res<size, big_endian> *savres_section_;
1595
1596   // The "__tls_get_addr" symbol, if present
1597   Symbol* tls_get_addr_;
1598   // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1599   Symbol* tls_get_addr_opt_;
1600 };
1601
1602 template<>
1603 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1604 {
1605   32,                   // size
1606   true,                 // is_big_endian
1607   elfcpp::EM_PPC,       // machine_code
1608   false,                // has_make_symbol
1609   false,                // has_resolve
1610   false,                // has_code_fill
1611   true,                 // is_default_stack_executable
1612   false,                // can_icf_inline_merge_sections
1613   '\0',                 // wrap_char
1614   "/usr/lib/ld.so.1",   // dynamic_linker
1615   0x10000000,           // default_text_segment_address
1616   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1617   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1618   false,                // isolate_execinstr
1619   0,                    // rosegment_gap
1620   elfcpp::SHN_UNDEF,    // small_common_shndx
1621   elfcpp::SHN_UNDEF,    // large_common_shndx
1622   0,                    // small_common_section_flags
1623   0,                    // large_common_section_flags
1624   NULL,                 // attributes_section
1625   NULL,                 // attributes_vendor
1626   "_start",             // entry_symbol_name
1627   32,                   // hash_entry_size
1628 };
1629
1630 template<>
1631 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1632 {
1633   32,                   // size
1634   false,                // is_big_endian
1635   elfcpp::EM_PPC,       // machine_code
1636   false,                // has_make_symbol
1637   false,                // has_resolve
1638   false,                // has_code_fill
1639   true,                 // is_default_stack_executable
1640   false,                // can_icf_inline_merge_sections
1641   '\0',                 // wrap_char
1642   "/usr/lib/ld.so.1",   // dynamic_linker
1643   0x10000000,           // default_text_segment_address
1644   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1645   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1646   false,                // isolate_execinstr
1647   0,                    // rosegment_gap
1648   elfcpp::SHN_UNDEF,    // small_common_shndx
1649   elfcpp::SHN_UNDEF,    // large_common_shndx
1650   0,                    // small_common_section_flags
1651   0,                    // large_common_section_flags
1652   NULL,                 // attributes_section
1653   NULL,                 // attributes_vendor
1654   "_start",             // entry_symbol_name
1655   32,                   // hash_entry_size
1656 };
1657
1658 template<>
1659 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1660 {
1661   64,                   // size
1662   true,                 // is_big_endian
1663   elfcpp::EM_PPC64,     // machine_code
1664   false,                // has_make_symbol
1665   true,                 // has_resolve
1666   false,                // has_code_fill
1667   false,                // is_default_stack_executable
1668   false,                // can_icf_inline_merge_sections
1669   '\0',                 // wrap_char
1670   "/usr/lib/ld.so.1",   // dynamic_linker
1671   0x10000000,           // default_text_segment_address
1672   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1673   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1674   false,                // isolate_execinstr
1675   0,                    // rosegment_gap
1676   elfcpp::SHN_UNDEF,    // small_common_shndx
1677   elfcpp::SHN_UNDEF,    // large_common_shndx
1678   0,                    // small_common_section_flags
1679   0,                    // large_common_section_flags
1680   NULL,                 // attributes_section
1681   NULL,                 // attributes_vendor
1682   "_start",             // entry_symbol_name
1683   32,                   // hash_entry_size
1684 };
1685
1686 template<>
1687 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1688 {
1689   64,                   // size
1690   false,                // is_big_endian
1691   elfcpp::EM_PPC64,     // machine_code
1692   false,                // has_make_symbol
1693   true,                 // has_resolve
1694   false,                // has_code_fill
1695   false,                // is_default_stack_executable
1696   false,                // can_icf_inline_merge_sections
1697   '\0',                 // wrap_char
1698   "/usr/lib/ld.so.1",   // dynamic_linker
1699   0x10000000,           // default_text_segment_address
1700   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1701   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1702   false,                // isolate_execinstr
1703   0,                    // rosegment_gap
1704   elfcpp::SHN_UNDEF,    // small_common_shndx
1705   elfcpp::SHN_UNDEF,    // large_common_shndx
1706   0,                    // small_common_section_flags
1707   0,                    // large_common_section_flags
1708   NULL,                 // attributes_section
1709   NULL,                 // attributes_vendor
1710   "_start",             // entry_symbol_name
1711   32,                   // hash_entry_size
1712 };
1713
1714 inline bool
1715 is_branch_reloc(unsigned int r_type)
1716 {
1717   return (r_type == elfcpp::R_POWERPC_REL24
1718           || r_type == elfcpp::R_PPC_PLTREL24
1719           || r_type == elfcpp::R_PPC_LOCAL24PC
1720           || r_type == elfcpp::R_POWERPC_REL14
1721           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1722           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1723           || r_type == elfcpp::R_POWERPC_ADDR24
1724           || r_type == elfcpp::R_POWERPC_ADDR14
1725           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1726           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1727 }
1728
1729 // If INSN is an opcode that may be used with an @tls operand, return
1730 // the transformed insn for TLS optimisation, otherwise return 0.  If
1731 // REG is non-zero only match an insn with RB or RA equal to REG.
1732 uint32_t
1733 at_tls_transform(uint32_t insn, unsigned int reg)
1734 {
1735   if ((insn & (0x3f << 26)) != 31 << 26)
1736     return 0;
1737
1738   unsigned int rtra;
1739   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1740     rtra = insn & ((1 << 26) - (1 << 16));
1741   else if (((insn >> 16) & 0x1f) == reg)
1742     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1743   else
1744     return 0;
1745
1746   if ((insn & (0x3ff << 1)) == 266 << 1)
1747     // add -> addi
1748     insn = 14 << 26;
1749   else if ((insn & (0x1f << 1)) == 23 << 1
1750            && ((insn & (0x1f << 6)) < 14 << 6
1751                || ((insn & (0x1f << 6)) >= 16 << 6
1752                    && (insn & (0x1f << 6)) < 24 << 6)))
1753     // load and store indexed -> dform
1754     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1755   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1756     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1757     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1758   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1759     // lwax -> lwa
1760     insn = (58 << 26) | 2;
1761   else
1762     return 0;
1763   insn |= rtra;
1764   return insn;
1765 }
1766
1767
1768 template<int size, bool big_endian>
1769 class Powerpc_relocate_functions
1770 {
1771 public:
1772   enum Overflow_check
1773   {
1774     CHECK_NONE,
1775     CHECK_SIGNED,
1776     CHECK_UNSIGNED,
1777     CHECK_BITFIELD,
1778     CHECK_LOW_INSN,
1779     CHECK_HIGH_INSN
1780   };
1781
1782   enum Status
1783   {
1784     STATUS_OK,
1785     STATUS_OVERFLOW
1786   };
1787
1788 private:
1789   typedef Powerpc_relocate_functions<size, big_endian> This;
1790   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1791   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1792
1793   template<int valsize>
1794   static inline bool
1795   has_overflow_signed(Address value)
1796   {
1797     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1798     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1799     limit <<= ((valsize - 1) >> 1);
1800     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1801     return value + limit > (limit << 1) - 1;
1802   }
1803
1804   template<int valsize>
1805   static inline bool
1806   has_overflow_unsigned(Address value)
1807   {
1808     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1809     limit <<= ((valsize - 1) >> 1);
1810     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1811     return value > (limit << 1) - 1;
1812   }
1813
1814   template<int valsize>
1815   static inline bool
1816   has_overflow_bitfield(Address value)
1817   {
1818     return (has_overflow_unsigned<valsize>(value)
1819             && has_overflow_signed<valsize>(value));
1820   }
1821
1822   template<int valsize>
1823   static inline Status
1824   overflowed(Address value, Overflow_check overflow)
1825   {
1826     if (overflow == CHECK_SIGNED)
1827       {
1828         if (has_overflow_signed<valsize>(value))
1829           return STATUS_OVERFLOW;
1830       }
1831     else if (overflow == CHECK_UNSIGNED)
1832       {
1833         if (has_overflow_unsigned<valsize>(value))
1834           return STATUS_OVERFLOW;
1835       }
1836     else if (overflow == CHECK_BITFIELD)
1837       {
1838         if (has_overflow_bitfield<valsize>(value))
1839           return STATUS_OVERFLOW;
1840       }
1841     return STATUS_OK;
1842   }
1843
1844   // Do a simple RELA relocation
1845   template<int fieldsize, int valsize>
1846   static inline Status
1847   rela(unsigned char* view, Address value, Overflow_check overflow)
1848   {
1849     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1850     Valtype* wv = reinterpret_cast<Valtype*>(view);
1851     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1852     return overflowed<valsize>(value, overflow);
1853   }
1854
1855   template<int fieldsize, int valsize>
1856   static inline Status
1857   rela(unsigned char* view,
1858        unsigned int right_shift,
1859        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1860        Address value,
1861        Overflow_check overflow)
1862   {
1863     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1864     Valtype* wv = reinterpret_cast<Valtype*>(view);
1865     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1866     Valtype reloc = value >> right_shift;
1867     val &= ~dst_mask;
1868     reloc &= dst_mask;
1869     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1870     return overflowed<valsize>(value >> right_shift, overflow);
1871   }
1872
1873   // Do a simple RELA relocation, unaligned.
1874   template<int fieldsize, int valsize>
1875   static inline Status
1876   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1877   {
1878     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1879     return overflowed<valsize>(value, overflow);
1880   }
1881
1882   template<int fieldsize, int valsize>
1883   static inline Status
1884   rela_ua(unsigned char* view,
1885           unsigned int right_shift,
1886           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1887           Address value,
1888           Overflow_check overflow)
1889   {
1890     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1891       Valtype;
1892     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1893     Valtype reloc = value >> right_shift;
1894     val &= ~dst_mask;
1895     reloc &= dst_mask;
1896     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1897     return overflowed<valsize>(value >> right_shift, overflow);
1898   }
1899
1900 public:
1901   // R_PPC64_ADDR64: (Symbol + Addend)
1902   static inline void
1903   addr64(unsigned char* view, Address value)
1904   { This::template rela<64,64>(view, value, CHECK_NONE); }
1905
1906   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1907   static inline void
1908   addr64_u(unsigned char* view, Address value)
1909   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1910
1911   // R_POWERPC_ADDR32: (Symbol + Addend)
1912   static inline Status
1913   addr32(unsigned char* view, Address value, Overflow_check overflow)
1914   { return This::template rela<32,32>(view, value, overflow); }
1915
1916   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1917   static inline Status
1918   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1919   { return This::template rela_ua<32,32>(view, value, overflow); }
1920
1921   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1922   static inline Status
1923   addr24(unsigned char* view, Address value, Overflow_check overflow)
1924   {
1925     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1926                                              value, overflow);
1927     if (overflow != CHECK_NONE && (value & 3) != 0)
1928       stat = STATUS_OVERFLOW;
1929     return stat;
1930   }
1931
1932   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1933   static inline Status
1934   addr16(unsigned char* view, Address value, Overflow_check overflow)
1935   { return This::template rela<16,16>(view, value, overflow); }
1936
1937   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1938   static inline Status
1939   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1940   { return This::template rela_ua<16,16>(view, value, overflow); }
1941
1942   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1943   static inline Status
1944   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1945   {
1946     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1947     if ((value & 3) != 0)
1948       stat = STATUS_OVERFLOW;
1949     return stat;
1950   }
1951
1952   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1953   static inline Status
1954   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1955   {
1956     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1957     if ((value & 15) != 0)
1958       stat = STATUS_OVERFLOW;
1959     return stat;
1960   }
1961
1962   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1963   static inline void
1964   addr16_hi(unsigned char* view, Address value)
1965   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1966
1967   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1968   static inline void
1969   addr16_ha(unsigned char* view, Address value)
1970   { This::addr16_hi(view, value + 0x8000); }
1971
1972   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1973   static inline void
1974   addr16_hi2(unsigned char* view, Address value)
1975   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1976
1977   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1978   static inline void
1979   addr16_ha2(unsigned char* view, Address value)
1980   { This::addr16_hi2(view, value + 0x8000); }
1981
1982   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1983   static inline void
1984   addr16_hi3(unsigned char* view, Address value)
1985   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1986
1987   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1988   static inline void
1989   addr16_ha3(unsigned char* view, Address value)
1990   { This::addr16_hi3(view, value + 0x8000); }
1991
1992   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1993   static inline Status
1994   addr14(unsigned char* view, Address value, Overflow_check overflow)
1995   {
1996     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1997     if (overflow != CHECK_NONE && (value & 3) != 0)
1998       stat = STATUS_OVERFLOW;
1999     return stat;
2000   }
2001
2002   // R_POWERPC_REL16DX_HA
2003   static inline Status
2004   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2005   {
2006     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2007     Valtype* wv = reinterpret_cast<Valtype*>(view);
2008     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2009     value += 0x8000;
2010     value = static_cast<SignedAddress>(value) >> 16;
2011     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2012     elfcpp::Swap<32, big_endian>::writeval(wv, val);
2013     return overflowed<16>(value, overflow);
2014   }
2015 };
2016
2017 // Set ABI version for input and output.
2018
2019 template<int size, bool big_endian>
2020 void
2021 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2022 {
2023   this->e_flags_ |= ver;
2024   if (this->abiversion() != 0)
2025     {
2026       Target_powerpc<size, big_endian>* target =
2027         static_cast<Target_powerpc<size, big_endian>*>(
2028            parameters->sized_target<size, big_endian>());
2029       if (target->abiversion() == 0)
2030         target->set_abiversion(this->abiversion());
2031       else if (target->abiversion() != this->abiversion())
2032         gold_error(_("%s: ABI version %d is not compatible "
2033                      "with ABI version %d output"),
2034                    this->name().c_str(),
2035                    this->abiversion(), target->abiversion());
2036
2037     }
2038 }
2039
2040 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2041 // relocatable object, if such sections exists.
2042
2043 template<int size, bool big_endian>
2044 bool
2045 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2046     Read_symbols_data* sd)
2047 {
2048   const unsigned char* const pshdrs = sd->section_headers->data();
2049   const unsigned char* namesu = sd->section_names->data();
2050   const char* names = reinterpret_cast<const char*>(namesu);
2051   section_size_type names_size = sd->section_names_size;
2052   const unsigned char* s;
2053
2054   s = this->template find_shdr<size, big_endian>(pshdrs,
2055                                                  size == 32 ? ".got2" : ".opd",
2056                                                  names, names_size, NULL);
2057   if (s != NULL)
2058     {
2059       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2060       this->special_ = ndx;
2061       if (size == 64)
2062         {
2063           if (this->abiversion() == 0)
2064             this->set_abiversion(1);
2065           else if (this->abiversion() > 1)
2066             gold_error(_("%s: .opd invalid in abiv%d"),
2067                        this->name().c_str(), this->abiversion());
2068         }
2069     }
2070   if (size == 64)
2071     {
2072       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2073                                                      names, names_size, NULL);
2074       if (s != NULL)
2075         {
2076           unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2077           this->relatoc_ = ndx;
2078           typename elfcpp::Shdr<size, big_endian> shdr(s);
2079           this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2080         }
2081     }
2082   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2083 }
2084
2085 // Examine .rela.opd to build info about function entry points.
2086
2087 template<int size, bool big_endian>
2088 void
2089 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2090     size_t reloc_count,
2091     const unsigned char* prelocs,
2092     const unsigned char* plocal_syms)
2093 {
2094   if (size == 64)
2095     {
2096       typedef typename elfcpp::Rela<size, big_endian> Reltype;
2097       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2098       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2099       Address expected_off = 0;
2100       bool regular = true;
2101       unsigned int opd_ent_size = 0;
2102
2103       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2104         {
2105           Reltype reloc(prelocs);
2106           typename elfcpp::Elf_types<size>::Elf_WXword r_info
2107             = reloc.get_r_info();
2108           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2109           if (r_type == elfcpp::R_PPC64_ADDR64)
2110             {
2111               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2112               typename elfcpp::Elf_types<size>::Elf_Addr value;
2113               bool is_ordinary;
2114               unsigned int shndx;
2115               if (r_sym < this->local_symbol_count())
2116                 {
2117                   typename elfcpp::Sym<size, big_endian>
2118                     lsym(plocal_syms + r_sym * sym_size);
2119                   shndx = lsym.get_st_shndx();
2120                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2121                   value = lsym.get_st_value();
2122                 }
2123               else
2124                 shndx = this->symbol_section_and_value(r_sym, &value,
2125                                                        &is_ordinary);
2126               this->set_opd_ent(reloc.get_r_offset(), shndx,
2127                                 value + reloc.get_r_addend());
2128               if (i == 2)
2129                 {
2130                   expected_off = reloc.get_r_offset();
2131                   opd_ent_size = expected_off;
2132                 }
2133               else if (expected_off != reloc.get_r_offset())
2134                 regular = false;
2135               expected_off += opd_ent_size;
2136             }
2137           else if (r_type == elfcpp::R_PPC64_TOC)
2138             {
2139               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2140                 regular = false;
2141             }
2142           else
2143             {
2144               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2145                            this->name().c_str(), r_type);
2146               regular = false;
2147             }
2148         }
2149       if (reloc_count <= 2)
2150         opd_ent_size = this->section_size(this->opd_shndx());
2151       if (opd_ent_size != 24 && opd_ent_size != 16)
2152         regular = false;
2153       if (!regular)
2154         {
2155           gold_warning(_("%s: .opd is not a regular array of opd entries"),
2156                        this->name().c_str());
2157           opd_ent_size = 0;
2158         }
2159     }
2160 }
2161
2162 // Returns true if a code sequence loading the TOC entry at VALUE
2163 // relative to the TOC pointer can be converted into code calculating
2164 // a TOC pointer relative offset.
2165 // If so, the TOC pointer relative offset is stored to VALUE.
2166
2167 template<int size, bool big_endian>
2168 bool
2169 Powerpc_relobj<size, big_endian>::make_toc_relative(
2170     Target_powerpc<size, big_endian>* target,
2171     Address* value)
2172 {
2173   if (size != 64)
2174     return false;
2175
2176   // With -mcmodel=medium code it is quite possible to have
2177   // toc-relative relocs referring to objects outside the TOC.
2178   // Don't try to look at a non-existent TOC.
2179   if (this->toc_shndx() == 0)
2180     return false;
2181
2182   // Convert VALUE back to an address by adding got_base (see below),
2183   // then to an offset in the TOC by subtracting the TOC output
2184   // section address and the TOC output offset.  Since this TOC output
2185   // section and the got output section are one and the same, we can
2186   // omit adding and subtracting the output section address.
2187   Address off = (*value + this->toc_base_offset()
2188                  - this->output_section_offset(this->toc_shndx()));
2189   // Is this offset in the TOC?  -mcmodel=medium code may be using
2190   // TOC relative access to variables outside the TOC.  Those of
2191   // course can't be optimized.  We also don't try to optimize code
2192   // that is using a different object's TOC.
2193   if (off >= this->section_size(this->toc_shndx()))
2194     return false;
2195
2196   if (this->no_toc_opt(off))
2197     return false;
2198
2199   section_size_type vlen;
2200   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2201   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2202   // The TOC pointer
2203   Address got_base = (target->got_section()->output_section()->address()
2204                       + this->toc_base_offset());
2205   addr -= got_base;
2206   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2207     return false;
2208
2209   *value = addr;
2210   return true;
2211 }
2212
2213 // Perform the Sized_relobj_file method, then set up opd info from
2214 // .opd relocs.
2215
2216 template<int size, bool big_endian>
2217 void
2218 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2219 {
2220   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2221   if (size == 64)
2222     {
2223       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2224            p != rd->relocs.end();
2225            ++p)
2226         {
2227           if (p->data_shndx == this->opd_shndx())
2228             {
2229               uint64_t opd_size = this->section_size(this->opd_shndx());
2230               gold_assert(opd_size == static_cast<size_t>(opd_size));
2231               if (opd_size != 0)
2232                 {
2233                   this->init_opd(opd_size);
2234                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2235                                         rd->local_symbols->data());
2236                 }
2237               break;
2238             }
2239         }
2240     }
2241 }
2242
2243 // Read the symbols then set up st_other vector.
2244
2245 template<int size, bool big_endian>
2246 void
2247 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2248 {
2249   this->base_read_symbols(sd);
2250   if (size == 64)
2251     {
2252       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2253       const unsigned char* const pshdrs = sd->section_headers->data();
2254       const unsigned int loccount = this->do_local_symbol_count();
2255       if (loccount != 0)
2256         {
2257           this->st_other_.resize(loccount);
2258           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2259           off_t locsize = loccount * sym_size;
2260           const unsigned int symtab_shndx = this->symtab_shndx();
2261           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2262           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2263           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2264                                                       locsize, true, false);
2265           psyms += sym_size;
2266           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2267             {
2268               elfcpp::Sym<size, big_endian> sym(psyms);
2269               unsigned char st_other = sym.get_st_other();
2270               this->st_other_[i] = st_other;
2271               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2272                 {
2273                   if (this->abiversion() == 0)
2274                     this->set_abiversion(2);
2275                   else if (this->abiversion() < 2)
2276                     gold_error(_("%s: local symbol %d has invalid st_other"
2277                                  " for ABI version 1"),
2278                                this->name().c_str(), i);
2279                 }
2280             }
2281         }
2282     }
2283 }
2284
2285 template<int size, bool big_endian>
2286 void
2287 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2288 {
2289   this->e_flags_ |= ver;
2290   if (this->abiversion() != 0)
2291     {
2292       Target_powerpc<size, big_endian>* target =
2293         static_cast<Target_powerpc<size, big_endian>*>(
2294           parameters->sized_target<size, big_endian>());
2295       if (target->abiversion() == 0)
2296         target->set_abiversion(this->abiversion());
2297       else if (target->abiversion() != this->abiversion())
2298         gold_error(_("%s: ABI version %d is not compatible "
2299                      "with ABI version %d output"),
2300                    this->name().c_str(),
2301                    this->abiversion(), target->abiversion());
2302
2303     }
2304 }
2305
2306 // Call Sized_dynobj::base_read_symbols to read the symbols then
2307 // read .opd from a dynamic object, filling in opd_ent_ vector,
2308
2309 template<int size, bool big_endian>
2310 void
2311 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2312 {
2313   this->base_read_symbols(sd);
2314   if (size == 64)
2315     {
2316       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2317       const unsigned char* const pshdrs = sd->section_headers->data();
2318       const unsigned char* namesu = sd->section_names->data();
2319       const char* names = reinterpret_cast<const char*>(namesu);
2320       const unsigned char* s = NULL;
2321       const unsigned char* opd;
2322       section_size_type opd_size;
2323
2324       // Find and read .opd section.
2325       while (1)
2326         {
2327           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2328                                                          sd->section_names_size,
2329                                                          s);
2330           if (s == NULL)
2331             return;
2332
2333           typename elfcpp::Shdr<size, big_endian> shdr(s);
2334           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2335               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2336             {
2337               if (this->abiversion() == 0)
2338                 this->set_abiversion(1);
2339               else if (this->abiversion() > 1)
2340                 gold_error(_("%s: .opd invalid in abiv%d"),
2341                            this->name().c_str(), this->abiversion());
2342
2343               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2344               this->opd_address_ = shdr.get_sh_addr();
2345               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2346               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2347                                    true, false);
2348               break;
2349             }
2350         }
2351
2352       // Build set of executable sections.
2353       // Using a set is probably overkill.  There is likely to be only
2354       // a few executable sections, typically .init, .text and .fini,
2355       // and they are generally grouped together.
2356       typedef std::set<Sec_info> Exec_sections;
2357       Exec_sections exec_sections;
2358       s = pshdrs;
2359       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2360         {
2361           typename elfcpp::Shdr<size, big_endian> shdr(s);
2362           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2363               && ((shdr.get_sh_flags()
2364                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2365                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2366               && shdr.get_sh_size() != 0)
2367             {
2368               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2369                                             shdr.get_sh_size(), i));
2370             }
2371         }
2372       if (exec_sections.empty())
2373         return;
2374
2375       // Look over the OPD entries.  This is complicated by the fact
2376       // that some binaries will use two-word entries while others
2377       // will use the standard three-word entries.  In most cases
2378       // the third word (the environment pointer for languages like
2379       // Pascal) is unused and will be zero.  If the third word is
2380       // used it should not be pointing into executable sections,
2381       // I think.
2382       this->init_opd(opd_size);
2383       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2384         {
2385           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2386           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2387           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2388           if (val == 0)
2389             // Chances are that this is the third word of an OPD entry.
2390             continue;
2391           typename Exec_sections::const_iterator e
2392             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2393           if (e != exec_sections.begin())
2394             {
2395               --e;
2396               if (e->start <= val && val < e->start + e->len)
2397                 {
2398                   // We have an address in an executable section.
2399                   // VAL ought to be the function entry, set it up.
2400                   this->set_opd_ent(p - opd, e->shndx, val);
2401                   // Skip second word of OPD entry, the TOC pointer.
2402                   p += 8;
2403                 }
2404             }
2405           // If we didn't match any executable sections, we likely
2406           // have a non-zero third word in the OPD entry.
2407         }
2408     }
2409 }
2410
2411 // Relocate sections.
2412
2413 template<int size, bool big_endian>
2414 void
2415 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2416     const Symbol_table* symtab, const Layout* layout,
2417     const unsigned char* pshdrs, Output_file* of,
2418     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2419 {
2420   unsigned int start = 1;
2421   if (size == 64
2422       && this->relatoc_ != 0
2423       && !parameters->options().relocatable())
2424     {
2425       // Relocate .toc first.
2426       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2427                                    this->relatoc_, this->relatoc_);
2428       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2429                                    1, this->relatoc_ - 1);
2430       start = this->relatoc_ + 1;
2431     }
2432   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2433                                start, this->shnum() - 1);
2434 }
2435
2436 // Set up some symbols.
2437
2438 template<int size, bool big_endian>
2439 void
2440 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2441     Symbol_table* symtab,
2442     Layout* layout)
2443 {
2444   if (size == 32)
2445     {
2446       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2447       // undefined when scanning relocs (and thus requires
2448       // non-relative dynamic relocs).  The proper value will be
2449       // updated later.
2450       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2451       if (gotsym != NULL && gotsym->is_undefined())
2452         {
2453           Target_powerpc<size, big_endian>* target =
2454             static_cast<Target_powerpc<size, big_endian>*>(
2455                 parameters->sized_target<size, big_endian>());
2456           Output_data_got_powerpc<size, big_endian>* got
2457             = target->got_section(symtab, layout);
2458           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2459                                         Symbol_table::PREDEFINED,
2460                                         got, 0, 0,
2461                                         elfcpp::STT_OBJECT,
2462                                         elfcpp::STB_LOCAL,
2463                                         elfcpp::STV_HIDDEN, 0,
2464                                         false, false);
2465         }
2466
2467       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2468       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2469       if (sdasym != NULL && sdasym->is_undefined())
2470         {
2471           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2472           Output_section* os
2473             = layout->add_output_section_data(".sdata", 0,
2474                                               elfcpp::SHF_ALLOC
2475                                               | elfcpp::SHF_WRITE,
2476                                               sdata, ORDER_SMALL_DATA, false);
2477           symtab->define_in_output_data("_SDA_BASE_", NULL,
2478                                         Symbol_table::PREDEFINED,
2479                                         os, 32768, 0, elfcpp::STT_OBJECT,
2480                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2481                                         0, false, false);
2482         }
2483     }
2484   else
2485     {
2486       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2487       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2488       if (gotsym != NULL && gotsym->is_undefined())
2489         {
2490           Target_powerpc<size, big_endian>* target =
2491             static_cast<Target_powerpc<size, big_endian>*>(
2492                 parameters->sized_target<size, big_endian>());
2493           Output_data_got_powerpc<size, big_endian>* got
2494             = target->got_section(symtab, layout);
2495           symtab->define_in_output_data(".TOC.", NULL,
2496                                         Symbol_table::PREDEFINED,
2497                                         got, 0x8000, 0,
2498                                         elfcpp::STT_OBJECT,
2499                                         elfcpp::STB_LOCAL,
2500                                         elfcpp::STV_HIDDEN, 0,
2501                                         false, false);
2502         }
2503     }
2504
2505   this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2506   if (parameters->options().tls_get_addr_optimize()
2507       && this->tls_get_addr_ != NULL
2508       && this->tls_get_addr_->in_reg())
2509     this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2510   if (this->tls_get_addr_opt_ != NULL)
2511     {
2512       if (this->tls_get_addr_->is_undefined()
2513           || this->tls_get_addr_->is_from_dynobj())
2514         {
2515           // Make it seem as if references to __tls_get_addr are
2516           // really to __tls_get_addr_opt, so the latter symbol is
2517           // made dynamic, not the former.
2518           this->tls_get_addr_->clear_in_reg();
2519           this->tls_get_addr_opt_->set_in_reg();
2520         }
2521       // We have a non-dynamic definition for __tls_get_addr.
2522       // Make __tls_get_addr_opt the same, if it does not already have
2523       // a non-dynamic definition.
2524       else if (this->tls_get_addr_opt_->is_undefined()
2525                || this->tls_get_addr_opt_->is_from_dynobj())
2526         {
2527           Sized_symbol<size>* from
2528             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2529           Sized_symbol<size>* to
2530             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2531           symtab->clone<size>(to, from);
2532         }
2533     }
2534 }
2535
2536 // Set up PowerPC target specific relobj.
2537
2538 template<int size, bool big_endian>
2539 Object*
2540 Target_powerpc<size, big_endian>::do_make_elf_object(
2541     const std::string& name,
2542     Input_file* input_file,
2543     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2544 {
2545   int et = ehdr.get_e_type();
2546   // ET_EXEC files are valid input for --just-symbols/-R,
2547   // and we treat them as relocatable objects.
2548   if (et == elfcpp::ET_REL
2549       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2550     {
2551       Powerpc_relobj<size, big_endian>* obj =
2552         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2553       obj->setup();
2554       return obj;
2555     }
2556   else if (et == elfcpp::ET_DYN)
2557     {
2558       Powerpc_dynobj<size, big_endian>* obj =
2559         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2560       obj->setup();
2561       return obj;
2562     }
2563   else
2564     {
2565       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2566       return NULL;
2567     }
2568 }
2569
2570 template<int size, bool big_endian>
2571 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2572 {
2573 public:
2574   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2575   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2576
2577   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2578     : Output_data_got<size, big_endian>(),
2579       symtab_(symtab), layout_(layout),
2580       header_ent_cnt_(size == 32 ? 3 : 1),
2581       header_index_(size == 32 ? 0x2000 : 0)
2582   {
2583     if (size == 64)
2584       this->set_addralign(256);
2585   }
2586
2587   // Override all the Output_data_got methods we use so as to first call
2588   // reserve_ent().
2589   bool
2590   add_global(Symbol* gsym, unsigned int got_type)
2591   {
2592     this->reserve_ent();
2593     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2594   }
2595
2596   bool
2597   add_global_plt(Symbol* gsym, unsigned int got_type)
2598   {
2599     this->reserve_ent();
2600     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2601   }
2602
2603   bool
2604   add_global_tls(Symbol* gsym, unsigned int got_type)
2605   { return this->add_global_plt(gsym, got_type); }
2606
2607   void
2608   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2609                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2610   {
2611     this->reserve_ent();
2612     Output_data_got<size, big_endian>::
2613       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2614   }
2615
2616   void
2617   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2618                            Output_data_reloc_generic* rel_dyn,
2619                            unsigned int r_type_1, unsigned int r_type_2)
2620   {
2621     if (gsym->has_got_offset(got_type))
2622       return;
2623
2624     this->reserve_ent(2);
2625     Output_data_got<size, big_endian>::
2626       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2627   }
2628
2629   bool
2630   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2631   {
2632     this->reserve_ent();
2633     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2634                                                         got_type);
2635   }
2636
2637   bool
2638   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2639   {
2640     this->reserve_ent();
2641     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2642                                                             got_type);
2643   }
2644
2645   bool
2646   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2647   { return this->add_local_plt(object, sym_index, got_type); }
2648
2649   void
2650   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2651                      unsigned int got_type,
2652                      Output_data_reloc_generic* rel_dyn,
2653                      unsigned int r_type)
2654   {
2655     if (object->local_has_got_offset(sym_index, got_type))
2656       return;
2657
2658     this->reserve_ent(2);
2659     Output_data_got<size, big_endian>::
2660       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2661   }
2662
2663   unsigned int
2664   add_constant(Valtype constant)
2665   {
2666     this->reserve_ent();
2667     return Output_data_got<size, big_endian>::add_constant(constant);
2668   }
2669
2670   unsigned int
2671   add_constant_pair(Valtype c1, Valtype c2)
2672   {
2673     this->reserve_ent(2);
2674     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2675   }
2676
2677   // Offset of _GLOBAL_OFFSET_TABLE_.
2678   unsigned int
2679   g_o_t() const
2680   {
2681     return this->got_offset(this->header_index_);
2682   }
2683
2684   // Offset of base used to access the GOT/TOC.
2685   // The got/toc pointer reg will be set to this value.
2686   Valtype
2687   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2688   {
2689     if (size == 32)
2690       return this->g_o_t();
2691     else
2692       return (this->output_section()->address()
2693               + object->toc_base_offset()
2694               - this->address());
2695   }
2696
2697   // Ensure our GOT has a header.
2698   void
2699   set_final_data_size()
2700   {
2701     if (this->header_ent_cnt_ != 0)
2702       this->make_header();
2703     Output_data_got<size, big_endian>::set_final_data_size();
2704   }
2705
2706   // First word of GOT header needs some values that are not
2707   // handled by Output_data_got so poke them in here.
2708   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2709   void
2710   do_write(Output_file* of)
2711   {
2712     Valtype val = 0;
2713     if (size == 32 && this->layout_->dynamic_data() != NULL)
2714       val = this->layout_->dynamic_section()->address();
2715     if (size == 64)
2716       val = this->output_section()->address() + 0x8000;
2717     this->replace_constant(this->header_index_, val);
2718     Output_data_got<size, big_endian>::do_write(of);
2719   }
2720
2721 private:
2722   void
2723   reserve_ent(unsigned int cnt = 1)
2724   {
2725     if (this->header_ent_cnt_ == 0)
2726       return;
2727     if (this->num_entries() + cnt > this->header_index_)
2728       this->make_header();
2729   }
2730
2731   void
2732   make_header()
2733   {
2734     this->header_ent_cnt_ = 0;
2735     this->header_index_ = this->num_entries();
2736     if (size == 32)
2737       {
2738         Output_data_got<size, big_endian>::add_constant(0);
2739         Output_data_got<size, big_endian>::add_constant(0);
2740         Output_data_got<size, big_endian>::add_constant(0);
2741
2742         // Define _GLOBAL_OFFSET_TABLE_ at the header
2743         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2744         if (gotsym != NULL)
2745           {
2746             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2747             sym->set_value(this->g_o_t());
2748           }
2749         else
2750           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2751                                                Symbol_table::PREDEFINED,
2752                                                this, this->g_o_t(), 0,
2753                                                elfcpp::STT_OBJECT,
2754                                                elfcpp::STB_LOCAL,
2755                                                elfcpp::STV_HIDDEN, 0,
2756                                                false, false);
2757       }
2758     else
2759       Output_data_got<size, big_endian>::add_constant(0);
2760   }
2761
2762   // Stashed pointers.
2763   Symbol_table* symtab_;
2764   Layout* layout_;
2765
2766   // GOT header size.
2767   unsigned int header_ent_cnt_;
2768   // GOT header index.
2769   unsigned int header_index_;
2770 };
2771
2772 // Get the GOT section, creating it if necessary.
2773
2774 template<int size, bool big_endian>
2775 Output_data_got_powerpc<size, big_endian>*
2776 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2777                                               Layout* layout)
2778 {
2779   if (this->got_ == NULL)
2780     {
2781       gold_assert(symtab != NULL && layout != NULL);
2782
2783       this->got_
2784         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2785
2786       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2787                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2788                                       this->got_, ORDER_DATA, false);
2789     }
2790
2791   return this->got_;
2792 }
2793
2794 // Get the dynamic reloc section, creating it if necessary.
2795
2796 template<int size, bool big_endian>
2797 typename Target_powerpc<size, big_endian>::Reloc_section*
2798 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2799 {
2800   if (this->rela_dyn_ == NULL)
2801     {
2802       gold_assert(layout != NULL);
2803       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2804       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2805                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2806                                       ORDER_DYNAMIC_RELOCS, false);
2807     }
2808   return this->rela_dyn_;
2809 }
2810
2811 // Similarly, but for ifunc symbols get the one for ifunc.
2812
2813 template<int size, bool big_endian>
2814 typename Target_powerpc<size, big_endian>::Reloc_section*
2815 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2816                                                    Layout* layout,
2817                                                    bool for_ifunc)
2818 {
2819   if (!for_ifunc)
2820     return this->rela_dyn_section(layout);
2821
2822   if (this->iplt_ == NULL)
2823     this->make_iplt_section(symtab, layout);
2824   return this->iplt_->rel_plt();
2825 }
2826
2827 class Stub_control
2828 {
2829  public:
2830   // Determine the stub group size.  The group size is the absolute
2831   // value of the parameter --stub-group-size.  If --stub-group-size
2832   // is passed a negative value, we restrict stubs to be always after
2833   // the stubbed branches.
2834   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2835     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2836       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2837       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2838       owner_(NULL), output_section_(NULL)
2839   {
2840   }
2841
2842   // Return true iff input section can be handled by current stub
2843   // group.
2844   bool
2845   can_add_to_stub_group(Output_section* o,
2846                         const Output_section::Input_section* i,
2847                         bool has14);
2848
2849   const Output_section::Input_section*
2850   owner()
2851   { return owner_; }
2852
2853   Output_section*
2854   output_section()
2855   { return output_section_; }
2856
2857   void
2858   set_output_and_owner(Output_section* o,
2859                        const Output_section::Input_section* i)
2860   {
2861     this->output_section_ = o;
2862     this->owner_ = i;
2863   }
2864
2865  private:
2866   typedef enum
2867   {
2868     // Initial state.
2869     NO_GROUP,
2870     // Adding group sections before the stubs.
2871     FINDING_STUB_SECTION,
2872     // Adding group sections after the stubs.
2873     HAS_STUB_SECTION
2874   } State;
2875
2876   uint32_t stub_group_size_;
2877   bool stubs_always_after_branch_;
2878   bool suppress_size_errors_;
2879   // True if a stub group can serve multiple output sections.
2880   bool multi_os_;
2881   State state_;
2882   // Current max size of group.  Starts at stub_group_size_ but is
2883   // reduced to stub_group_size_/1024 on seeing a section with
2884   // external conditional branches.
2885   uint32_t group_size_;
2886   uint64_t group_start_addr_;
2887   // owner_ and output_section_ specify the section to which stubs are
2888   // attached.  The stubs are placed at the end of this section.
2889   const Output_section::Input_section* owner_;
2890   Output_section* output_section_;
2891 };
2892
2893 // Return true iff input section can be handled by current stub
2894 // group.  Sections are presented to this function in order,
2895 // so the first section is the head of the group.
2896
2897 bool
2898 Stub_control::can_add_to_stub_group(Output_section* o,
2899                                     const Output_section::Input_section* i,
2900                                     bool has14)
2901 {
2902   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2903   uint64_t this_size;
2904   uint64_t start_addr = o->address();
2905
2906   if (whole_sec)
2907     // .init and .fini sections are pasted together to form a single
2908     // function.  We can't be adding stubs in the middle of the function.
2909     this_size = o->data_size();
2910   else
2911     {
2912       start_addr += i->relobj()->output_section_offset(i->shndx());
2913       this_size = i->data_size();
2914     }
2915
2916   uint64_t end_addr = start_addr + this_size;
2917   uint32_t group_size = this->stub_group_size_;
2918   if (has14)
2919     this->group_size_ = group_size = group_size >> 10;
2920
2921   if (this_size > group_size && !this->suppress_size_errors_)
2922     gold_warning(_("%s:%s exceeds group size"),
2923                  i->relobj()->name().c_str(),
2924                  i->relobj()->section_name(i->shndx()).c_str());
2925
2926   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2927              has14 ? " 14bit" : "",
2928              i->relobj()->name().c_str(),
2929              i->relobj()->section_name(i->shndx()).c_str(),
2930              (long long) this_size,
2931              (this->state_ == NO_GROUP
2932               ? this_size
2933               : (long long) end_addr - this->group_start_addr_));
2934
2935   if (this->state_ == NO_GROUP)
2936     {
2937       // Only here on very first use of Stub_control
2938       this->owner_ = i;
2939       this->output_section_ = o;
2940       this->state_ = FINDING_STUB_SECTION;
2941       this->group_size_ = group_size;
2942       this->group_start_addr_ = start_addr;
2943       return true;
2944     }
2945   else if (!this->multi_os_ && this->output_section_ != o)
2946     ;
2947   else if (this->state_ == HAS_STUB_SECTION)
2948     {
2949       // Can we add this section, which is after the stubs, to the
2950       // group?
2951       if (end_addr - this->group_start_addr_ <= this->group_size_)
2952         return true;
2953     }
2954   else if (this->state_ == FINDING_STUB_SECTION)
2955     {
2956       if ((whole_sec && this->output_section_ == o)
2957           || end_addr - this->group_start_addr_ <= this->group_size_)
2958         {
2959           // Stubs are added at the end of "owner_".
2960           this->owner_ = i;
2961           this->output_section_ = o;
2962           return true;
2963         }
2964       // The group before the stubs has reached maximum size.
2965       // Now see about adding sections after the stubs to the
2966       // group.  If the current section has a 14-bit branch and
2967       // the group before the stubs exceeds group_size_ (because
2968       // they didn't have 14-bit branches), don't add sections
2969       // after the stubs:  The size of stubs for such a large
2970       // group may exceed the reach of a 14-bit branch.
2971       if (!this->stubs_always_after_branch_
2972           && this_size <= this->group_size_
2973           && start_addr - this->group_start_addr_ <= this->group_size_)
2974         {
2975           gold_debug(DEBUG_TARGET, "adding after stubs");
2976           this->state_ = HAS_STUB_SECTION;
2977           this->group_start_addr_ = start_addr;
2978           return true;
2979         }
2980     }
2981   else
2982     gold_unreachable();
2983
2984   gold_debug(DEBUG_TARGET,
2985              !this->multi_os_ && this->output_section_ != o
2986              ? "nope, new output section\n"
2987              : "nope, didn't fit\n");
2988
2989   // The section fails to fit in the current group.  Set up a few
2990   // things for the next group.  owner_ and output_section_ will be
2991   // set later after we've retrieved those values for the current
2992   // group.
2993   this->state_ = FINDING_STUB_SECTION;
2994   this->group_size_ = group_size;
2995   this->group_start_addr_ = start_addr;
2996   return false;
2997 }
2998
2999 // Look over all the input sections, deciding where to place stubs.
3000
3001 template<int size, bool big_endian>
3002 void
3003 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3004                                                  const Task*,
3005                                                  bool no_size_errors)
3006 {
3007   Stub_control stub_control(this->stub_group_size_, no_size_errors,
3008                             parameters->options().stub_group_multi());
3009
3010   // Group input sections and insert stub table
3011   Stub_table_owner* table_owner = NULL;
3012   std::vector<Stub_table_owner*> tables;
3013   Layout::Section_list section_list;
3014   layout->get_executable_sections(&section_list);
3015   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3016   for (Layout::Section_list::iterator o = section_list.begin();
3017        o != section_list.end();
3018        ++o)
3019     {
3020       typedef Output_section::Input_section_list Input_section_list;
3021       for (Input_section_list::const_iterator i
3022              = (*o)->input_sections().begin();
3023            i != (*o)->input_sections().end();
3024            ++i)
3025         {
3026           if (i->is_input_section()
3027               || i->is_relaxed_input_section())
3028             {
3029               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3030                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3031               bool has14 = ppcobj->has_14bit_branch(i->shndx());
3032               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3033                 {
3034                   table_owner->output_section = stub_control.output_section();
3035                   table_owner->owner = stub_control.owner();
3036                   stub_control.set_output_and_owner(*o, &*i);
3037                   table_owner = NULL;
3038                 }
3039               if (table_owner == NULL)
3040                 {
3041                   table_owner = new Stub_table_owner;
3042                   tables.push_back(table_owner);
3043                 }
3044               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3045             }
3046         }
3047     }
3048   if (table_owner != NULL)
3049     {
3050       table_owner->output_section = stub_control.output_section();
3051       table_owner->owner = stub_control.owner();;
3052     }
3053   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3054        t != tables.end();
3055        ++t)
3056     {
3057       Stub_table<size, big_endian>* stub_table;
3058
3059       if ((*t)->owner->is_input_section())
3060         stub_table = new Stub_table<size, big_endian>(this,
3061                                                       (*t)->output_section,
3062                                                       (*t)->owner,
3063                                                       this->stub_tables_.size());
3064       else if ((*t)->owner->is_relaxed_input_section())
3065         stub_table = static_cast<Stub_table<size, big_endian>*>(
3066                         (*t)->owner->relaxed_input_section());
3067       else
3068         gold_unreachable();
3069       this->stub_tables_.push_back(stub_table);
3070       delete *t;
3071     }
3072 }
3073
3074 static unsigned long
3075 max_branch_delta (unsigned int r_type)
3076 {
3077   if (r_type == elfcpp::R_POWERPC_REL14
3078       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3079       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3080     return 1L << 15;
3081   if (r_type == elfcpp::R_POWERPC_REL24
3082       || r_type == elfcpp::R_PPC_PLTREL24
3083       || r_type == elfcpp::R_PPC_LOCAL24PC)
3084     return 1L << 25;
3085   return 0;
3086 }
3087
3088 // Return whether this branch is going via a plt call stub.
3089
3090 template<int size, bool big_endian>
3091 bool
3092 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3093     Powerpc_relobj<size, big_endian>* ppc_object,
3094     unsigned int shndx,
3095     Address offset,
3096     Target_powerpc* target,
3097     Symbol_table* symtab)
3098 {
3099   if (this->object_ != ppc_object
3100       || this->shndx_ != shndx
3101       || this->offset_ != offset)
3102     return false;
3103
3104   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3105   if (sym != NULL && sym->is_forwarder())
3106     sym = symtab->resolve_forwards(sym);
3107   if (target->replace_tls_get_addr(sym))
3108     sym = target->tls_get_addr_opt();
3109   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3110   if (gsym != NULL
3111       ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3112          && !target->is_elfv2_localentry0(gsym))
3113       : (this->object_->local_has_plt_offset(this->r_sym_)
3114          && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3115     {
3116       this->tocsave_ = 1;
3117       return true;
3118     }
3119   return false;
3120 }
3121
3122 // If this branch needs a plt call stub, or a long branch stub, make one.
3123
3124 template<int size, bool big_endian>
3125 bool
3126 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3127     Stub_table<size, big_endian>* stub_table,
3128     Stub_table<size, big_endian>* ifunc_stub_table,
3129     Symbol_table* symtab) const
3130 {
3131   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3132   Target_powerpc<size, big_endian>* target =
3133     static_cast<Target_powerpc<size, big_endian>*>(
3134       parameters->sized_target<size, big_endian>());
3135   if (sym != NULL && sym->is_forwarder())
3136     sym = symtab->resolve_forwards(sym);
3137   if (target->replace_tls_get_addr(sym))
3138     sym = target->tls_get_addr_opt();
3139   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3140   bool ok = true;
3141
3142   if (gsym != NULL
3143       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3144       : this->object_->local_has_plt_offset(this->r_sym_))
3145     {
3146       if (size == 64
3147           && gsym != NULL
3148           && target->abiversion() >= 2
3149           && !parameters->options().output_is_position_independent()
3150           && !is_branch_reloc(this->r_type_))
3151         target->glink_section()->add_global_entry(gsym);
3152       else
3153         {
3154           if (stub_table == NULL
3155               && !(size == 32
3156                    && gsym != NULL
3157                    && !parameters->options().output_is_position_independent()
3158                    && !is_branch_reloc(this->r_type_)))
3159             stub_table = this->object_->stub_table(this->shndx_);
3160           if (stub_table == NULL)
3161             {
3162               // This is a ref from a data section to an ifunc symbol,
3163               // or a non-branch reloc for which we always want to use
3164               // one set of stubs for resolving function addresses.
3165               stub_table = ifunc_stub_table;
3166             }
3167           gold_assert(stub_table != NULL);
3168           Address from = this->object_->get_output_section_offset(this->shndx_);
3169           if (from != invalid_address)
3170             from += (this->object_->output_section(this->shndx_)->address()
3171                      + this->offset_);
3172           if (gsym != NULL)
3173             ok = stub_table->add_plt_call_entry(from,
3174                                                 this->object_, gsym,
3175                                                 this->r_type_, this->addend_,
3176                                                 this->tocsave_);
3177           else
3178             ok = stub_table->add_plt_call_entry(from,
3179                                                 this->object_, this->r_sym_,
3180                                                 this->r_type_, this->addend_,
3181                                                 this->tocsave_);
3182         }
3183     }
3184   else
3185     {
3186       Address max_branch_offset = max_branch_delta(this->r_type_);
3187       if (max_branch_offset == 0)
3188         return true;
3189       Address from = this->object_->get_output_section_offset(this->shndx_);
3190       gold_assert(from != invalid_address);
3191       from += (this->object_->output_section(this->shndx_)->address()
3192                + this->offset_);
3193       Address to;
3194       if (gsym != NULL)
3195         {
3196           switch (gsym->source())
3197             {
3198             case Symbol::FROM_OBJECT:
3199               {
3200                 Object* symobj = gsym->object();
3201                 if (symobj->is_dynamic()
3202                     || symobj->pluginobj() != NULL)
3203                   return true;
3204                 bool is_ordinary;
3205                 unsigned int shndx = gsym->shndx(&is_ordinary);
3206                 if (shndx == elfcpp::SHN_UNDEF)
3207                   return true;
3208               }
3209               break;
3210
3211             case Symbol::IS_UNDEFINED:
3212               return true;
3213
3214             default:
3215               break;
3216             }
3217           Symbol_table::Compute_final_value_status status;
3218           to = symtab->compute_final_value<size>(gsym, &status);
3219           if (status != Symbol_table::CFVS_OK)
3220             return true;
3221           if (size == 64)
3222             to += this->object_->ppc64_local_entry_offset(gsym);
3223         }
3224       else
3225         {
3226           const Symbol_value<size>* psymval
3227             = this->object_->local_symbol(this->r_sym_);
3228           Symbol_value<size> symval;
3229           if (psymval->is_section_symbol())
3230             symval.set_is_section_symbol();
3231           typedef Sized_relobj_file<size, big_endian> ObjType;
3232           typename ObjType::Compute_final_local_value_status status
3233             = this->object_->compute_final_local_value(this->r_sym_, psymval,
3234                                                        &symval, symtab);
3235           if (status != ObjType::CFLV_OK
3236               || !symval.has_output_value())
3237             return true;
3238           to = symval.value(this->object_, 0);
3239           if (size == 64)
3240             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3241         }
3242       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3243         to += this->addend_;
3244       if (stub_table == NULL)
3245         stub_table = this->object_->stub_table(this->shndx_);
3246       if (size == 64 && target->abiversion() < 2)
3247         {
3248           unsigned int dest_shndx;
3249           if (!target->symval_for_branch(symtab, gsym, this->object_,
3250                                          &to, &dest_shndx))
3251             return true;
3252         }
3253       Address delta = to - from;
3254       if (delta + max_branch_offset >= 2 * max_branch_offset)
3255         {
3256           if (stub_table == NULL)
3257             {
3258               gold_warning(_("%s:%s: branch in non-executable section,"
3259                              " no long branch stub for you"),
3260                            this->object_->name().c_str(),
3261                            this->object_->section_name(this->shndx_).c_str());
3262               return true;
3263             }
3264           bool save_res = (size == 64
3265                            && gsym != NULL
3266                            && gsym->source() == Symbol::IN_OUTPUT_DATA
3267                            && gsym->output_data() == target->savres_section());
3268           ok = stub_table->add_long_branch_entry(this->object_,
3269                                                  this->r_type_,
3270                                                  from, to, save_res);
3271         }
3272     }
3273   if (!ok)
3274     gold_debug(DEBUG_TARGET,
3275                "branch at %s:%s+%#lx\n"
3276                "can't reach stub attached to %s:%s",
3277                this->object_->name().c_str(),
3278                this->object_->section_name(this->shndx_).c_str(),
3279                (unsigned long) this->offset_,
3280                stub_table->relobj()->name().c_str(),
3281                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3282
3283   return ok;
3284 }
3285
3286 // Relaxation hook.  This is where we do stub generation.
3287
3288 template<int size, bool big_endian>
3289 bool
3290 Target_powerpc<size, big_endian>::do_relax(int pass,
3291                                            const Input_objects*,
3292                                            Symbol_table* symtab,
3293                                            Layout* layout,
3294                                            const Task* task)
3295 {
3296   unsigned int prev_brlt_size = 0;
3297   if (pass == 1)
3298     {
3299       bool thread_safe
3300         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3301       if (size == 64
3302           && this->abiversion() < 2
3303           && !thread_safe
3304           && !parameters->options().user_set_plt_thread_safe())
3305         {
3306           static const char* const thread_starter[] =
3307             {
3308               "pthread_create",
3309               /* libstdc++ */
3310               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3311               /* librt */
3312               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3313               "mq_notify", "create_timer",
3314               /* libanl */
3315               "getaddrinfo_a",
3316               /* libgomp */
3317               "GOMP_parallel",
3318               "GOMP_parallel_start",
3319               "GOMP_parallel_loop_static",
3320               "GOMP_parallel_loop_static_start",
3321               "GOMP_parallel_loop_dynamic",
3322               "GOMP_parallel_loop_dynamic_start",
3323               "GOMP_parallel_loop_guided",
3324               "GOMP_parallel_loop_guided_start",
3325               "GOMP_parallel_loop_runtime",
3326               "GOMP_parallel_loop_runtime_start",
3327               "GOMP_parallel_sections",
3328               "GOMP_parallel_sections_start",
3329               /* libgo */
3330               "__go_go",
3331             };
3332
3333           if (parameters->options().shared())
3334             thread_safe = true;
3335           else
3336             {
3337               for (unsigned int i = 0;
3338                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3339                    i++)
3340                 {
3341                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3342                   thread_safe = (sym != NULL
3343                                  && sym->in_reg()
3344                                  && sym->in_real_elf());
3345                   if (thread_safe)
3346                     break;
3347                 }
3348             }
3349         }
3350       this->plt_thread_safe_ = thread_safe;
3351     }
3352
3353   if (pass == 1)
3354     {
3355       this->stub_group_size_ = parameters->options().stub_group_size();
3356       bool no_size_errors = true;
3357       if (this->stub_group_size_ == 1)
3358         this->stub_group_size_ = 0x1c00000;
3359       else if (this->stub_group_size_ == -1)
3360         this->stub_group_size_ = -0x1e00000;
3361       else
3362         no_size_errors = false;
3363       this->group_sections(layout, task, no_size_errors);
3364     }
3365   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3366     {
3367       this->branch_lookup_table_.clear();
3368       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3369            p != this->stub_tables_.end();
3370            ++p)
3371         {
3372           (*p)->clear_stubs(true);
3373         }
3374       this->stub_tables_.clear();
3375       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3376       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3377                 program_name, this->stub_group_size_);
3378       this->group_sections(layout, task, true);
3379     }
3380
3381   // We need address of stub tables valid for make_stub.
3382   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3383        p != this->stub_tables_.end();
3384        ++p)
3385     {
3386       const Powerpc_relobj<size, big_endian>* object
3387         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3388       Address off = object->get_output_section_offset((*p)->shndx());
3389       gold_assert(off != invalid_address);
3390       Output_section* os = (*p)->output_section();
3391       (*p)->set_address_and_size(os, off);
3392     }
3393
3394   if (pass != 1)
3395     {
3396       // Clear plt call stubs, long branch stubs and branch lookup table.
3397       prev_brlt_size = this->branch_lookup_table_.size();
3398       this->branch_lookup_table_.clear();
3399       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3400            p != this->stub_tables_.end();
3401            ++p)
3402         {
3403           (*p)->clear_stubs(false);
3404         }
3405     }
3406
3407   // Build all the stubs.
3408   this->relax_failed_ = false;
3409   Stub_table<size, big_endian>* ifunc_stub_table
3410     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3411   Stub_table<size, big_endian>* one_stub_table
3412     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3413   for (typename Branches::const_iterator b = this->branch_info_.begin();
3414        b != this->branch_info_.end();
3415        b++)
3416     {
3417       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3418           && !this->relax_failed_)
3419         {
3420           this->relax_failed_ = true;
3421           this->relax_fail_count_++;
3422           if (this->relax_fail_count_ < 3)
3423             return true;
3424         }
3425     }
3426
3427   // Did anything change size?
3428   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3429   bool again = num_huge_branches != prev_brlt_size;
3430   if (size == 64 && num_huge_branches != 0)
3431     this->make_brlt_section(layout);
3432   if (size == 64 && again)
3433     this->brlt_section_->set_current_size(num_huge_branches);
3434
3435   for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3436        p != this->stub_tables_.rend();
3437        ++p)
3438     (*p)->remove_eh_frame(layout);
3439
3440   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3441        p != this->stub_tables_.end();
3442        ++p)
3443     (*p)->add_eh_frame(layout);
3444
3445   typedef Unordered_set<Output_section*> Output_sections;
3446   Output_sections os_need_update;
3447   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3448        p != this->stub_tables_.end();
3449        ++p)
3450     {
3451       if ((*p)->size_update())
3452         {
3453           again = true;
3454           os_need_update.insert((*p)->output_section());
3455         }
3456     }
3457
3458   // Set output section offsets for all input sections in an output
3459   // section that just changed size.  Anything past the stubs will
3460   // need updating.
3461   for (typename Output_sections::iterator p = os_need_update.begin();
3462        p != os_need_update.end();
3463        p++)
3464     {
3465       Output_section* os = *p;
3466       Address off = 0;
3467       typedef Output_section::Input_section_list Input_section_list;
3468       for (Input_section_list::const_iterator i = os->input_sections().begin();
3469            i != os->input_sections().end();
3470            ++i)
3471         {
3472           off = align_address(off, i->addralign());
3473           if (i->is_input_section() || i->is_relaxed_input_section())
3474             i->relobj()->set_section_offset(i->shndx(), off);
3475           if (i->is_relaxed_input_section())
3476             {
3477               Stub_table<size, big_endian>* stub_table
3478                 = static_cast<Stub_table<size, big_endian>*>(
3479                     i->relaxed_input_section());
3480               Address stub_table_size = stub_table->set_address_and_size(os, off);
3481               off += stub_table_size;
3482               // After a few iterations, set current stub table size
3483               // as min size threshold, so later stub tables can only
3484               // grow in size.
3485               if (pass >= 4)
3486                 stub_table->set_min_size_threshold(stub_table_size);
3487             }
3488           else
3489             off += i->data_size();
3490         }
3491       // If .branch_lt is part of this output section, then we have
3492       // just done the offset adjustment.
3493       os->clear_section_offsets_need_adjustment();
3494     }
3495
3496   if (size == 64
3497       && !again
3498       && num_huge_branches != 0
3499       && parameters->options().output_is_position_independent())
3500     {
3501       // Fill in the BRLT relocs.
3502       this->brlt_section_->reset_brlt_sizes();
3503       for (typename Branch_lookup_table::const_iterator p
3504              = this->branch_lookup_table_.begin();
3505            p != this->branch_lookup_table_.end();
3506            ++p)
3507         {
3508           this->brlt_section_->add_reloc(p->first, p->second);
3509         }
3510       this->brlt_section_->finalize_brlt_sizes();
3511     }
3512
3513   if (!again
3514       && (parameters->options().user_set_emit_stub_syms()
3515           ? parameters->options().emit_stub_syms()
3516           : (size == 64
3517              || parameters->options().output_is_position_independent()
3518              || parameters->options().emit_relocs())))
3519     {
3520       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3521            p != this->stub_tables_.end();
3522            ++p)
3523         (*p)->define_stub_syms(symtab);
3524
3525       if (this->glink_ != NULL)
3526         {
3527           int stub_size = this->glink_->pltresolve_size();
3528           Address value = -stub_size;
3529           if (size == 64)
3530             {
3531               value = 8;
3532               stub_size -= 8;
3533             }
3534           this->define_local(symtab, "__glink_PLTresolve",
3535                              this->glink_, value, stub_size);
3536
3537           if (size != 64)
3538             this->define_local(symtab, "__glink", this->glink_, 0, 0);
3539         }
3540     }
3541
3542   return again;
3543 }
3544
3545 template<int size, bool big_endian>
3546 void
3547 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3548                                                       unsigned char* oview,
3549                                                       uint64_t* paddress,
3550                                                       off_t* plen) const
3551 {
3552   uint64_t address = plt->address();
3553   off_t len = plt->data_size();
3554
3555   if (plt == this->glink_)
3556     {
3557       // See Output_data_glink::do_write() for glink contents.
3558       if (len == 0)
3559         {
3560           gold_assert(parameters->doing_static_link());
3561           // Static linking may need stubs, to support ifunc and long
3562           // branches.  We need to create an output section for
3563           // .eh_frame early in the link process, to have a place to
3564           // attach stub .eh_frame info.  We also need to have
3565           // registered a CIE that matches the stub CIE.  Both of
3566           // these requirements are satisfied by creating an FDE and
3567           // CIE for .glink, even though static linking will leave
3568           // .glink zero length.
3569           // ??? Hopefully generating an FDE with a zero address range
3570           // won't confuse anything that consumes .eh_frame info.
3571         }
3572       else if (size == 64)
3573         {
3574           // There is one word before __glink_PLTresolve
3575           address += 8;
3576           len -= 8;
3577         }
3578       else if (parameters->options().output_is_position_independent())
3579         {
3580           // There are two FDEs for a position independent glink.
3581           // The first covers the branch table, the second
3582           // __glink_PLTresolve at the end of glink.
3583           off_t resolve_size = this->glink_->pltresolve_size();
3584           if (oview[9] == elfcpp::DW_CFA_nop)
3585             len -= resolve_size;
3586           else
3587             {
3588               address += len - resolve_size;
3589               len = resolve_size;
3590             }
3591         }
3592     }
3593   else
3594     {
3595       // Must be a stub table.
3596       const Stub_table<size, big_endian>* stub_table
3597         = static_cast<const Stub_table<size, big_endian>*>(plt);
3598       uint64_t stub_address = stub_table->stub_address();
3599       len -= stub_address - address;
3600       address = stub_address;
3601     }
3602
3603   *paddress = address;
3604   *plen = len;
3605 }
3606
3607 // A class to handle the PLT data.
3608
3609 template<int size, bool big_endian>
3610 class Output_data_plt_powerpc : public Output_section_data_build
3611 {
3612  public:
3613   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3614                             size, big_endian> Reloc_section;
3615
3616   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3617                           Reloc_section* plt_rel,
3618                           const char* name)
3619     : Output_section_data_build(size == 32 ? 4 : 8),
3620       rel_(plt_rel),
3621       targ_(targ),
3622       name_(name)
3623   { }
3624
3625   // Add an entry to the PLT.
3626   void
3627   add_entry(Symbol*);
3628
3629   void
3630   add_ifunc_entry(Symbol*);
3631
3632   void
3633   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3634
3635   // Return the .rela.plt section data.
3636   Reloc_section*
3637   rel_plt() const
3638   {
3639     return this->rel_;
3640   }
3641
3642   // Return the number of PLT entries.
3643   unsigned int
3644   entry_count() const
3645   {
3646     if (this->current_data_size() == 0)
3647       return 0;
3648     return ((this->current_data_size() - this->first_plt_entry_offset())
3649             / this->plt_entry_size());
3650   }
3651
3652  protected:
3653   void
3654   do_adjust_output_section(Output_section* os)
3655   {
3656     os->set_entsize(0);
3657   }
3658
3659   // Write to a map file.
3660   void
3661   do_print_to_mapfile(Mapfile* mapfile) const
3662   { mapfile->print_output_data(this, this->name_); }
3663
3664  private:
3665   // Return the offset of the first non-reserved PLT entry.
3666   unsigned int
3667   first_plt_entry_offset() const
3668   {
3669     // IPLT has no reserved entry.
3670     if (this->name_[3] == 'I')
3671       return 0;
3672     return this->targ_->first_plt_entry_offset();
3673   }
3674
3675   // Return the size of each PLT entry.
3676   unsigned int
3677   plt_entry_size() const
3678   {
3679     return this->targ_->plt_entry_size();
3680   }
3681
3682   // Write out the PLT data.
3683   void
3684   do_write(Output_file*);
3685
3686   // The reloc section.
3687   Reloc_section* rel_;
3688   // Allows access to .glink for do_write.
3689   Target_powerpc<size, big_endian>* targ_;
3690   // What to report in map file.
3691   const char *name_;
3692 };
3693
3694 // Add an entry to the PLT.
3695
3696 template<int size, bool big_endian>
3697 void
3698 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3699 {
3700   if (!gsym->has_plt_offset())
3701     {
3702       section_size_type off = this->current_data_size();
3703       if (off == 0)
3704         off += this->first_plt_entry_offset();
3705       gsym->set_plt_offset(off);
3706       gsym->set_needs_dynsym_entry();
3707       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3708       this->rel_->add_global(gsym, dynrel, this, off, 0);
3709       off += this->plt_entry_size();
3710       this->set_current_data_size(off);
3711     }
3712 }
3713
3714 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3715
3716 template<int size, bool big_endian>
3717 void
3718 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3719 {
3720   if (!gsym->has_plt_offset())
3721     {
3722       section_size_type off = this->current_data_size();
3723       gsym->set_plt_offset(off);
3724       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3725       if (size == 64 && this->targ_->abiversion() < 2)
3726         dynrel = elfcpp::R_PPC64_JMP_IREL;
3727       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3728       off += this->plt_entry_size();
3729       this->set_current_data_size(off);
3730     }
3731 }
3732
3733 // Add an entry for a local ifunc symbol to the IPLT.
3734
3735 template<int size, bool big_endian>
3736 void
3737 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3738     Sized_relobj_file<size, big_endian>* relobj,
3739     unsigned int local_sym_index)
3740 {
3741   if (!relobj->local_has_plt_offset(local_sym_index))
3742     {
3743       section_size_type off = this->current_data_size();
3744       relobj->set_local_plt_offset(local_sym_index, off);
3745       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3746       if (size == 64 && this->targ_->abiversion() < 2)
3747         dynrel = elfcpp::R_PPC64_JMP_IREL;
3748       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3749                                               this, off, 0);
3750       off += this->plt_entry_size();
3751       this->set_current_data_size(off);
3752     }
3753 }
3754
3755 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3756 static const uint32_t add_2_2_11        = 0x7c425a14;
3757 static const uint32_t add_2_2_12        = 0x7c426214;
3758 static const uint32_t add_3_3_2         = 0x7c631214;
3759 static const uint32_t add_3_3_13        = 0x7c636a14;
3760 static const uint32_t add_3_12_2        = 0x7c6c1214;
3761 static const uint32_t add_3_12_13       = 0x7c6c6a14;
3762 static const uint32_t add_11_0_11       = 0x7d605a14;
3763 static const uint32_t add_11_2_11       = 0x7d625a14;
3764 static const uint32_t add_11_11_2       = 0x7d6b1214;
3765 static const uint32_t addi_0_12         = 0x380c0000;
3766 static const uint32_t addi_2_2          = 0x38420000;
3767 static const uint32_t addi_3_3          = 0x38630000;
3768 static const uint32_t addi_11_11        = 0x396b0000;
3769 static const uint32_t addi_12_1         = 0x39810000;
3770 static const uint32_t addi_12_12        = 0x398c0000;
3771 static const uint32_t addis_0_2         = 0x3c020000;
3772 static const uint32_t addis_0_13        = 0x3c0d0000;
3773 static const uint32_t addis_2_12        = 0x3c4c0000;
3774 static const uint32_t addis_11_2        = 0x3d620000;
3775 static const uint32_t addis_11_11       = 0x3d6b0000;
3776 static const uint32_t addis_11_30       = 0x3d7e0000;
3777 static const uint32_t addis_12_1        = 0x3d810000;
3778 static const uint32_t addis_12_2        = 0x3d820000;
3779 static const uint32_t addis_12_12       = 0x3d8c0000;
3780 static const uint32_t b                 = 0x48000000;
3781 static const uint32_t bcl_20_31         = 0x429f0005;
3782 static const uint32_t bctr              = 0x4e800420;
3783 static const uint32_t bctrl             = 0x4e800421;
3784 static const uint32_t beqctrm           = 0x4dc20420;
3785 static const uint32_t beqctrlm          = 0x4dc20421;
3786 static const uint32_t beqlr             = 0x4d820020;
3787 static const uint32_t blr               = 0x4e800020;
3788 static const uint32_t bnectr_p4         = 0x4ce20420;
3789 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3790 static const uint32_t cmpldi_2_0        = 0x28220000;
3791 static const uint32_t cmpdi_11_0        = 0x2c2b0000;
3792 static const uint32_t cmpwi_11_0        = 0x2c0b0000;
3793 static const uint32_t cror_15_15_15     = 0x4def7b82;
3794 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3795 static const uint32_t crseteq           = 0x4c421242;
3796 static const uint32_t ld_0_1            = 0xe8010000;
3797 static const uint32_t ld_0_12           = 0xe80c0000;
3798 static const uint32_t ld_2_1            = 0xe8410000;
3799 static const uint32_t ld_2_2            = 0xe8420000;
3800 static const uint32_t ld_2_11           = 0xe84b0000;
3801 static const uint32_t ld_2_12           = 0xe84c0000;
3802 static const uint32_t ld_11_1           = 0xe9610000;
3803 static const uint32_t ld_11_2           = 0xe9620000;
3804 static const uint32_t ld_11_3           = 0xe9630000;
3805 static const uint32_t ld_11_11          = 0xe96b0000;
3806 static const uint32_t ld_12_2           = 0xe9820000;
3807 static const uint32_t ld_12_3           = 0xe9830000;
3808 static const uint32_t ld_12_11          = 0xe98b0000;
3809 static const uint32_t ld_12_12          = 0xe98c0000;
3810 static const uint32_t lfd_0_1           = 0xc8010000;
3811 static const uint32_t li_0_0            = 0x38000000;
3812 static const uint32_t li_12_0           = 0x39800000;
3813 static const uint32_t lis_0             = 0x3c000000;
3814 static const uint32_t lis_2             = 0x3c400000;
3815 static const uint32_t lis_11            = 0x3d600000;
3816 static const uint32_t lis_12            = 0x3d800000;
3817 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3818 static const uint32_t lwz_0_12          = 0x800c0000;
3819 static const uint32_t lwz_11_3          = 0x81630000;
3820 static const uint32_t lwz_11_11         = 0x816b0000;
3821 static const uint32_t lwz_11_30         = 0x817e0000;
3822 static const uint32_t lwz_12_3          = 0x81830000;
3823 static const uint32_t lwz_12_12         = 0x818c0000;
3824 static const uint32_t lwzu_0_12         = 0x840c0000;
3825 static const uint32_t mflr_0            = 0x7c0802a6;
3826 static const uint32_t mflr_11           = 0x7d6802a6;
3827 static const uint32_t mflr_12           = 0x7d8802a6;
3828 static const uint32_t mr_0_3            = 0x7c601b78;
3829 static const uint32_t mr_3_0            = 0x7c030378;
3830 static const uint32_t mtctr_0           = 0x7c0903a6;
3831 static const uint32_t mtctr_11          = 0x7d6903a6;
3832 static const uint32_t mtctr_12          = 0x7d8903a6;
3833 static const uint32_t mtlr_0            = 0x7c0803a6;
3834 static const uint32_t mtlr_11           = 0x7d6803a6;
3835 static const uint32_t mtlr_12           = 0x7d8803a6;
3836 static const uint32_t nop               = 0x60000000;
3837 static const uint32_t ori_0_0_0         = 0x60000000;
3838 static const uint32_t srdi_0_0_2        = 0x7800f082;
3839 static const uint32_t std_0_1           = 0xf8010000;
3840 static const uint32_t std_0_12          = 0xf80c0000;
3841 static const uint32_t std_2_1           = 0xf8410000;
3842 static const uint32_t std_11_1          = 0xf9610000;
3843 static const uint32_t stfd_0_1          = 0xd8010000;
3844 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3845 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3846 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3847 static const uint32_t xor_2_12_12       = 0x7d826278;
3848 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3849
3850 // Write out the PLT.
3851
3852 template<int size, bool big_endian>
3853 void
3854 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3855 {
3856   if (size == 32 && this->name_[3] != 'I')
3857     {
3858       const section_size_type offset = this->offset();
3859       const section_size_type oview_size
3860         = convert_to_section_size_type(this->data_size());
3861       unsigned char* const oview = of->get_output_view(offset, oview_size);
3862       unsigned char* pov = oview;
3863       unsigned char* endpov = oview + oview_size;
3864
3865       // The address of the .glink branch table
3866       const Output_data_glink<size, big_endian>* glink
3867         = this->targ_->glink_section();
3868       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3869
3870       while (pov < endpov)
3871         {
3872           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3873           pov += 4;
3874           branch_tab += 4;
3875         }
3876
3877       of->write_output_view(offset, oview_size, oview);
3878     }
3879 }
3880
3881 // Create the PLT section.
3882
3883 template<int size, bool big_endian>
3884 void
3885 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3886                                                    Layout* layout)
3887 {
3888   if (this->plt_ == NULL)
3889     {
3890       if (this->got_ == NULL)
3891         this->got_section(symtab, layout);
3892
3893       if (this->glink_ == NULL)
3894         make_glink_section(layout);
3895
3896       // Ensure that .rela.dyn always appears before .rela.plt  This is
3897       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3898       // needs to include .rela.plt in its range.
3899       this->rela_dyn_section(layout);
3900
3901       Reloc_section* plt_rel = new Reloc_section(false);
3902       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3903                                       elfcpp::SHF_ALLOC, plt_rel,
3904                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3905       this->plt_
3906         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3907                                                         "** PLT");
3908       layout->add_output_section_data(".plt",
3909                                       (size == 32
3910                                        ? elfcpp::SHT_PROGBITS
3911                                        : elfcpp::SHT_NOBITS),
3912                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3913                                       this->plt_,
3914                                       (size == 32
3915                                        ? ORDER_SMALL_DATA
3916                                        : ORDER_SMALL_BSS),
3917                                       false);
3918
3919       Output_section* rela_plt_os = plt_rel->output_section();
3920       rela_plt_os->set_info_section(this->plt_->output_section());
3921     }
3922 }
3923
3924 // Create the IPLT section.
3925
3926 template<int size, bool big_endian>
3927 void
3928 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3929                                                     Layout* layout)
3930 {
3931   if (this->iplt_ == NULL)
3932     {
3933       this->make_plt_section(symtab, layout);
3934
3935       Reloc_section* iplt_rel = new Reloc_section(false);
3936       if (this->rela_dyn_->output_section())
3937         this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3938       this->iplt_
3939         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3940                                                         "** IPLT");
3941       if (this->plt_->output_section())
3942         this->plt_->output_section()->add_output_section_data(this->iplt_);
3943     }
3944 }
3945
3946 // A section for huge long branch addresses, similar to plt section.
3947
3948 template<int size, bool big_endian>
3949 class Output_data_brlt_powerpc : public Output_section_data_build
3950 {
3951  public:
3952   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3953   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3954                             size, big_endian> Reloc_section;
3955
3956   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3957                            Reloc_section* brlt_rel)
3958     : Output_section_data_build(size == 32 ? 4 : 8),
3959       rel_(brlt_rel),
3960       targ_(targ)
3961   { }
3962
3963   void
3964   reset_brlt_sizes()
3965   {
3966     this->reset_data_size();
3967     this->rel_->reset_data_size();
3968   }
3969
3970   void
3971   finalize_brlt_sizes()
3972   {
3973     this->finalize_data_size();
3974     this->rel_->finalize_data_size();
3975   }
3976
3977   // Add a reloc for an entry in the BRLT.
3978   void
3979   add_reloc(Address to, unsigned int off)
3980   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3981
3982   // Update section and reloc section size.
3983   void
3984   set_current_size(unsigned int num_branches)
3985   {
3986     this->reset_address_and_file_offset();
3987     this->set_current_data_size(num_branches * 16);
3988     this->finalize_data_size();
3989     Output_section* os = this->output_section();
3990     os->set_section_offsets_need_adjustment();
3991     if (this->rel_ != NULL)
3992       {
3993         const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3994         this->rel_->reset_address_and_file_offset();
3995         this->rel_->set_current_data_size(num_branches * reloc_size);
3996         this->rel_->finalize_data_size();
3997         Output_section* os = this->rel_->output_section();
3998         os->set_section_offsets_need_adjustment();
3999       }
4000   }
4001
4002  protected:
4003   void
4004   do_adjust_output_section(Output_section* os)
4005   {
4006     os->set_entsize(0);
4007   }
4008
4009   // Write to a map file.
4010   void
4011   do_print_to_mapfile(Mapfile* mapfile) const
4012   { mapfile->print_output_data(this, "** BRLT"); }
4013
4014  private:
4015   // Write out the BRLT data.
4016   void
4017   do_write(Output_file*);
4018
4019   // The reloc section.
4020   Reloc_section* rel_;
4021   Target_powerpc<size, big_endian>* targ_;
4022 };
4023
4024 // Make the branch lookup table section.
4025
4026 template<int size, bool big_endian>
4027 void
4028 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4029 {
4030   if (size == 64 && this->brlt_section_ == NULL)
4031     {
4032       Reloc_section* brlt_rel = NULL;
4033       bool is_pic = parameters->options().output_is_position_independent();
4034       if (is_pic)
4035         {
4036           // When PIC we can't fill in .branch_lt (like .plt it can be
4037           // a bss style section) but must initialise at runtime via
4038           // dynamic relocations.
4039           this->rela_dyn_section(layout);
4040           brlt_rel = new Reloc_section(false);
4041           if (this->rela_dyn_->output_section())
4042             this->rela_dyn_->output_section()
4043               ->add_output_section_data(brlt_rel);
4044         }
4045       this->brlt_section_
4046         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4047       if (this->plt_ && is_pic && this->plt_->output_section())
4048         this->plt_->output_section()
4049           ->add_output_section_data(this->brlt_section_);
4050       else
4051         layout->add_output_section_data(".branch_lt",
4052                                         (is_pic ? elfcpp::SHT_NOBITS
4053                                          : elfcpp::SHT_PROGBITS),
4054                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4055                                         this->brlt_section_,
4056                                         (is_pic ? ORDER_SMALL_BSS
4057                                          : ORDER_SMALL_DATA),
4058                                         false);
4059     }
4060 }
4061
4062 // Write out .branch_lt when non-PIC.
4063
4064 template<int size, bool big_endian>
4065 void
4066 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4067 {
4068   if (size == 64 && !parameters->options().output_is_position_independent())
4069     {
4070       const section_size_type offset = this->offset();
4071       const section_size_type oview_size
4072         = convert_to_section_size_type(this->data_size());
4073       unsigned char* const oview = of->get_output_view(offset, oview_size);
4074
4075       this->targ_->write_branch_lookup_table(oview);
4076       of->write_output_view(offset, oview_size, oview);
4077     }
4078 }
4079
4080 static inline uint32_t
4081 l(uint32_t a)
4082 {
4083   return a & 0xffff;
4084 }
4085
4086 static inline uint32_t
4087 hi(uint32_t a)
4088 {
4089   return l(a >> 16);
4090 }
4091
4092 static inline uint32_t
4093 ha(uint32_t a)
4094 {
4095   return hi(a + 0x8000);
4096 }
4097
4098 template<int size>
4099 struct Eh_cie
4100 {
4101   static const unsigned char eh_frame_cie[12];
4102 };
4103
4104 template<int size>
4105 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4106 {
4107   1,                                    // CIE version.
4108   'z', 'R', 0,                          // Augmentation string.
4109   4,                                    // Code alignment.
4110   0x80 - size / 8 ,                     // Data alignment.
4111   65,                                   // RA reg.
4112   1,                                    // Augmentation size.
4113   (elfcpp::DW_EH_PE_pcrel
4114    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
4115   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
4116 };
4117
4118 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4119 static const unsigned char glink_eh_frame_fde_64v1[] =
4120 {
4121   0, 0, 0, 0,                           // Replaced with offset to .glink.
4122   0, 0, 0, 0,                           // Replaced with size of .glink.
4123   0,                                    // Augmentation size.
4124   elfcpp::DW_CFA_advance_loc + 1,
4125   elfcpp::DW_CFA_register, 65, 12,
4126   elfcpp::DW_CFA_advance_loc + 5,
4127   elfcpp::DW_CFA_restore_extended, 65
4128 };
4129
4130 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4131 static const unsigned char glink_eh_frame_fde_64v2[] =
4132 {
4133   0, 0, 0, 0,                           // Replaced with offset to .glink.
4134   0, 0, 0, 0,                           // Replaced with size of .glink.
4135   0,                                    // Augmentation size.
4136   elfcpp::DW_CFA_advance_loc + 1,
4137   elfcpp::DW_CFA_register, 65, 0,
4138   elfcpp::DW_CFA_advance_loc + 7,
4139   elfcpp::DW_CFA_restore_extended, 65
4140 };
4141
4142 // Describe __glink_PLTresolve use of LR, 32-bit version.
4143 static const unsigned char glink_eh_frame_fde_32[] =
4144 {
4145   0, 0, 0, 0,                           // Replaced with offset to .glink.
4146   0, 0, 0, 0,                           // Replaced with size of .glink.
4147   0,                                    // Augmentation size.
4148   elfcpp::DW_CFA_advance_loc + 2,
4149   elfcpp::DW_CFA_register, 65, 0,
4150   elfcpp::DW_CFA_advance_loc + 4,
4151   elfcpp::DW_CFA_restore_extended, 65
4152 };
4153
4154 static const unsigned char default_fde[] =
4155 {
4156   0, 0, 0, 0,                           // Replaced with offset to stubs.
4157   0, 0, 0, 0,                           // Replaced with size of stubs.
4158   0,                                    // Augmentation size.
4159   elfcpp::DW_CFA_nop,                   // Pad.
4160   elfcpp::DW_CFA_nop,
4161   elfcpp::DW_CFA_nop
4162 };
4163
4164 template<bool big_endian>
4165 static inline void
4166 write_insn(unsigned char* p, uint32_t v)
4167 {
4168   elfcpp::Swap<32, big_endian>::writeval(p, v);
4169 }
4170
4171 template<bool big_endian>
4172 static unsigned char*
4173 output_bctr(unsigned char* p)
4174 {
4175   if (!parameters->options().speculate_indirect_jumps())
4176     {
4177       write_insn<big_endian>(p, crseteq);
4178       p += 4;
4179       write_insn<big_endian>(p, beqctrm);
4180       p += 4;
4181       write_insn<big_endian>(p, b);
4182     }
4183   else
4184     write_insn<big_endian>(p, bctr);
4185   p += 4;
4186   return p;
4187 }
4188
4189 template<int size>
4190 static inline unsigned int
4191 param_plt_align()
4192 {
4193   if (!parameters->options().user_set_plt_align())
4194     return size == 64 ? 32 : 8;
4195   return 1 << parameters->options().plt_align();
4196 }
4197
4198 // Stub_table holds information about plt and long branch stubs.
4199 // Stubs are built in an area following some input section determined
4200 // by group_sections().  This input section is converted to a relaxed
4201 // input section allowing it to be resized to accommodate the stubs
4202
4203 template<int size, bool big_endian>
4204 class Stub_table : public Output_relaxed_input_section
4205 {
4206  public:
4207   struct Plt_stub_ent
4208   {
4209     Plt_stub_ent(unsigned int off, unsigned int indx)
4210       : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4211     { }
4212
4213     unsigned int off_;
4214     unsigned int indx_ : 30;
4215     unsigned int r2save_ : 1;
4216     unsigned int localentry0_ : 1;
4217   };
4218   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4219   static const Address invalid_address = static_cast<Address>(0) - 1;
4220
4221   Stub_table(Target_powerpc<size, big_endian>* targ,
4222              Output_section* output_section,
4223              const Output_section::Input_section* owner,
4224              uint32_t id)
4225     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4226                                    owner->relobj()
4227                                    ->section_addralign(owner->shndx())),
4228       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4229       orig_data_size_(owner->current_data_size()),
4230       plt_size_(0), last_plt_size_(0),
4231       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4232       need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4233       plt_fde_len_(0)
4234   {
4235     this->set_output_section(output_section);
4236
4237     std::vector<Output_relaxed_input_section*> new_relaxed;
4238     new_relaxed.push_back(this);
4239     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4240   }
4241
4242   // Add a plt call stub.
4243   bool
4244   add_plt_call_entry(Address,
4245                      const Sized_relobj_file<size, big_endian>*,
4246                      const Symbol*,
4247                      unsigned int,
4248                      Address,
4249                      bool);
4250
4251   bool
4252   add_plt_call_entry(Address,
4253                      const Sized_relobj_file<size, big_endian>*,
4254                      unsigned int,
4255                      unsigned int,
4256                      Address,
4257                      bool);
4258
4259   // Find a given plt call stub.
4260   const Plt_stub_ent*
4261   find_plt_call_entry(const Symbol*) const;
4262
4263   const Plt_stub_ent*
4264   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4265                       unsigned int) const;
4266
4267   const Plt_stub_ent*
4268   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4269                       const Symbol*,
4270                       unsigned int,
4271                       Address) const;
4272
4273   const Plt_stub_ent*
4274   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4275                       unsigned int,
4276                       unsigned int,
4277                       Address) const;
4278
4279   // Add a long branch stub.
4280   bool
4281   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4282                         unsigned int, Address, Address, bool);
4283
4284   Address
4285   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4286                          Address) const;
4287
4288   bool
4289   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4290   {
4291     Address max_branch_offset = max_branch_delta(r_type);
4292     if (max_branch_offset == 0)
4293       return true;
4294     gold_assert(from != invalid_address);
4295     Address loc = off + this->stub_address();
4296     return loc - from + max_branch_offset < 2 * max_branch_offset;
4297   }
4298
4299   void
4300   clear_stubs(bool all)
4301   {
4302     this->plt_call_stubs_.clear();
4303     this->plt_size_ = 0;
4304     this->long_branch_stubs_.clear();
4305     this->branch_size_ = 0;
4306     this->need_save_res_ = false;
4307     if (all)
4308       {
4309         this->last_plt_size_ = 0;
4310         this->last_branch_size_ = 0;
4311       }
4312   }
4313
4314   Address
4315   set_address_and_size(const Output_section* os, Address off)
4316   {
4317     Address start_off = off;
4318     off += this->orig_data_size_;
4319     Address my_size = this->plt_size_ + this->branch_size_;
4320     if (this->need_save_res_)
4321       my_size += this->targ_->savres_section()->data_size();
4322     if (my_size != 0)
4323       off = align_address(off, this->stub_align());
4324     // Include original section size and alignment padding in size
4325     my_size += off - start_off;
4326     // Ensure new size is always larger than min size
4327     // threshold. Alignment requirement is included in "my_size", so
4328     // increase "my_size" does not invalidate alignment.
4329     if (my_size < this->min_size_threshold_)
4330       my_size = this->min_size_threshold_;
4331     this->reset_address_and_file_offset();
4332     this->set_current_data_size(my_size);
4333     this->set_address_and_file_offset(os->address() + start_off,
4334                                       os->offset() + start_off);
4335     return my_size;
4336   }
4337
4338   Address
4339   stub_address() const
4340   {
4341     return align_address(this->address() + this->orig_data_size_,
4342                          this->stub_align());
4343   }
4344
4345   Address
4346   stub_offset() const
4347   {
4348     return align_address(this->offset() + this->orig_data_size_,
4349                          this->stub_align());
4350   }
4351
4352   section_size_type
4353   plt_size() const
4354   { return this->plt_size_; }
4355
4356   void
4357   set_min_size_threshold(Address min_size)
4358   { this->min_size_threshold_ = min_size; }
4359
4360   void
4361   define_stub_syms(Symbol_table*);
4362
4363   bool
4364   size_update()
4365   {
4366     Output_section* os = this->output_section();
4367     if (os->addralign() < this->stub_align())
4368       {
4369         os->set_addralign(this->stub_align());
4370         // FIXME: get rid of the insane checkpointing.
4371         // We can't increase alignment of the input section to which
4372         // stubs are attached;  The input section may be .init which
4373         // is pasted together with other .init sections to form a
4374         // function.  Aligning might insert zero padding resulting in
4375         // sigill.  However we do need to increase alignment of the
4376         // output section so that the align_address() on offset in
4377         // set_address_and_size() adds the same padding as the
4378         // align_address() on address in stub_address().
4379         // What's more, we need this alignment for the layout done in
4380         // relaxation_loop_body() so that the output section starts at
4381         // a suitably aligned address.
4382         os->checkpoint_set_addralign(this->stub_align());
4383       }
4384     if (this->last_plt_size_ != this->plt_size_
4385         || this->last_branch_size_ != this->branch_size_)
4386       {
4387         this->last_plt_size_ = this->plt_size_;
4388         this->last_branch_size_ = this->branch_size_;
4389         return true;
4390       }
4391     return false;
4392   }
4393
4394   // Generate a suitable FDE to describe code in this stub group.
4395   void
4396   init_plt_fde();
4397
4398   // Add .eh_frame info for this stub section.
4399   void
4400   add_eh_frame(Layout* layout);
4401
4402   // Remove .eh_frame info for this stub section.
4403   void
4404   remove_eh_frame(Layout* layout);
4405
4406   Target_powerpc<size, big_endian>*
4407   targ() const
4408   { return targ_; }
4409
4410  private:
4411   class Plt_stub_key;
4412   class Plt_stub_key_hash;
4413   typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4414                         Plt_stub_key_hash> Plt_stub_entries;
4415   class Branch_stub_ent;
4416   class Branch_stub_ent_hash;
4417   typedef Unordered_map<Branch_stub_ent, unsigned int,
4418                         Branch_stub_ent_hash> Branch_stub_entries;
4419
4420   // Alignment of stub section.
4421   unsigned int
4422   stub_align() const
4423   {
4424     unsigned int min_align = size == 64 ? 32 : 16;
4425     unsigned int user_align = 1 << parameters->options().plt_align();
4426     return std::max(user_align, min_align);
4427   }
4428
4429   // Return the plt offset for the given call stub.
4430   Address
4431   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4432   {
4433     const Symbol* gsym = p->first.sym_;
4434     if (gsym != NULL)
4435       {
4436         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4437                     && gsym->can_use_relative_reloc(false));
4438         return gsym->plt_offset();
4439       }
4440     else
4441       {
4442         *is_iplt = true;
4443         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4444         unsigned int local_sym_index = p->first.locsym_;
4445         return relobj->local_plt_offset(local_sym_index);
4446       }
4447   }
4448
4449   // Size of a given plt call stub.
4450   unsigned int
4451   plt_call_size(typename Plt_stub_entries::const_iterator p) const
4452   {
4453     if (size == 32)
4454       {
4455         const Symbol* gsym = p->first.sym_;
4456         return (4 * 4
4457                 + (!parameters->options().speculate_indirect_jumps() ? 2 * 4 : 0)
4458                 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4459       }
4460
4461     bool is_iplt;
4462     Address plt_addr = this->plt_off(p, &is_iplt);
4463     if (is_iplt)
4464       plt_addr += this->targ_->iplt_section()->address();
4465     else
4466       plt_addr += this->targ_->plt_section()->address();
4467     Address got_addr = this->targ_->got_section()->output_section()->address();
4468     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4469       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4470     got_addr += ppcobj->toc_base_offset();
4471     Address off = plt_addr - got_addr;
4472     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4473     if (!parameters->options().speculate_indirect_jumps())
4474       bytes += 2 * 4;
4475     const Symbol* gsym = p->first.sym_;
4476     if (this->targ_->is_tls_get_addr_opt(gsym))
4477       bytes += 13 * 4;
4478     if (this->targ_->abiversion() < 2)
4479       {
4480         bool static_chain = parameters->options().plt_static_chain();
4481         bool thread_safe = this->targ_->plt_thread_safe();
4482         bytes += (4
4483                   + 4 * static_chain
4484                   + 8 * thread_safe
4485                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4486       }
4487     return bytes;
4488   }
4489
4490   unsigned int
4491   plt_call_align(unsigned int bytes) const
4492   {
4493     unsigned int align = param_plt_align<size>();
4494     return (bytes + align - 1) & -align;
4495   }
4496
4497   // Return long branch stub size.
4498   unsigned int
4499   branch_stub_size(typename Branch_stub_entries::const_iterator p)
4500   {
4501     Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4502     if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4503       return 4;
4504     unsigned int bytes = 16;
4505     if (!parameters->options().speculate_indirect_jumps())
4506       bytes += 8;
4507     if (size == 32 && parameters->options().output_is_position_independent())
4508       bytes += 16;
4509     return bytes;
4510   }
4511
4512   // Write out stubs.
4513   void
4514   do_write(Output_file*);
4515
4516   // Plt call stub keys.
4517   class Plt_stub_key
4518   {
4519   public:
4520     Plt_stub_key(const Symbol* sym)
4521       : sym_(sym), object_(0), addend_(0), locsym_(0)
4522     { }
4523
4524     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4525                  unsigned int locsym_index)
4526       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4527     { }
4528
4529     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4530                  const Symbol* sym,
4531                  unsigned int r_type,
4532                  Address addend)
4533       : sym_(sym), object_(0), addend_(0), locsym_(0)
4534     {
4535       if (size != 32)
4536         this->addend_ = addend;
4537       else if (parameters->options().output_is_position_independent()
4538                && r_type == elfcpp::R_PPC_PLTREL24)
4539         {
4540           this->addend_ = addend;
4541           if (this->addend_ >= 32768)
4542             this->object_ = object;
4543         }
4544     }
4545
4546     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4547                  unsigned int locsym_index,
4548                  unsigned int r_type,
4549                  Address addend)
4550       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4551     {
4552       if (size != 32)
4553         this->addend_ = addend;
4554       else if (parameters->options().output_is_position_independent()
4555                && r_type == elfcpp::R_PPC_PLTREL24)
4556         this->addend_ = addend;
4557     }
4558
4559     bool operator==(const Plt_stub_key& that) const
4560     {
4561       return (this->sym_ == that.sym_
4562               && this->object_ == that.object_
4563               && this->addend_ == that.addend_
4564               && this->locsym_ == that.locsym_);
4565     }
4566
4567     const Symbol* sym_;
4568     const Sized_relobj_file<size, big_endian>* object_;
4569     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4570     unsigned int locsym_;
4571   };
4572
4573   class Plt_stub_key_hash
4574   {
4575   public:
4576     size_t operator()(const Plt_stub_key& ent) const
4577     {
4578       return (reinterpret_cast<uintptr_t>(ent.sym_)
4579               ^ reinterpret_cast<uintptr_t>(ent.object_)
4580               ^ ent.addend_
4581               ^ ent.locsym_);
4582     }
4583   };
4584
4585   // Long branch stub keys.
4586   class Branch_stub_ent
4587   {
4588   public:
4589     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4590                     Address to, bool save_res)
4591       : dest_(to), toc_base_off_(0), save_res_(save_res)
4592     {
4593       if (size == 64)
4594         toc_base_off_ = obj->toc_base_offset();
4595     }
4596
4597     bool operator==(const Branch_stub_ent& that) const
4598     {
4599       return (this->dest_ == that.dest_
4600               && (size == 32
4601                   || this->toc_base_off_ == that.toc_base_off_));
4602     }
4603
4604     Address dest_;
4605     unsigned int toc_base_off_;
4606     bool save_res_;
4607   };
4608
4609   class Branch_stub_ent_hash
4610   {
4611   public:
4612     size_t operator()(const Branch_stub_ent& ent) const
4613     { return ent.dest_ ^ ent.toc_base_off_; }
4614   };
4615
4616   // In a sane world this would be a global.
4617   Target_powerpc<size, big_endian>* targ_;
4618   // Map sym/object/addend to stub offset.
4619   Plt_stub_entries plt_call_stubs_;
4620   // Map destination address to stub offset.
4621   Branch_stub_entries long_branch_stubs_;
4622   // size of input section
4623   section_size_type orig_data_size_;
4624   // size of stubs
4625   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4626   // Some rare cases cause (PR/20529) fluctuation in stub table
4627   // size, which leads to an endless relax loop. This is to be fixed
4628   // by, after the first few iterations, allowing only increase of
4629   // stub table size. This variable sets the minimal possible size of
4630   // a stub table, it is zero for the first few iterations, then
4631   // increases monotonically.
4632   Address min_size_threshold_;
4633   // Set if this stub group needs a copy of out-of-line register
4634   // save/restore functions.
4635   bool need_save_res_;
4636   // Per stub table unique identifier.
4637   uint32_t uniq_;
4638   // The bctrl in the __tls_get_addr_opt stub, if present.
4639   unsigned int tls_get_addr_opt_bctrl_;
4640   // FDE unwind info for this stub group.
4641   unsigned int plt_fde_len_;
4642   unsigned char plt_fde_[20];
4643 };
4644
4645 // Add a plt call stub, if we do not already have one for this
4646 // sym/object/addend combo.
4647
4648 template<int size, bool big_endian>
4649 bool
4650 Stub_table<size, big_endian>::add_plt_call_entry(
4651     Address from,
4652     const Sized_relobj_file<size, big_endian>* object,
4653     const Symbol* gsym,
4654     unsigned int r_type,
4655     Address addend,
4656     bool tocsave)
4657 {
4658   Plt_stub_key key(object, gsym, r_type, addend);
4659   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4660   std::pair<typename Plt_stub_entries::iterator, bool> p
4661     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4662   if (p.second)
4663     {
4664       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4665       if (size == 64
4666           && this->targ_->is_elfv2_localentry0(gsym))
4667         {
4668           p.first->second.localentry0_ = 1;
4669           this->targ_->set_has_localentry0();
4670         }
4671       if (this->targ_->is_tls_get_addr_opt(gsym))
4672         {
4673           this->targ_->set_has_tls_get_addr_opt();
4674           this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4675         }
4676       this->plt_size_ = this->plt_call_align(this->plt_size_);
4677     }
4678   if (size == 64
4679       && !tocsave
4680       && !p.first->second.localentry0_)
4681     p.first->second.r2save_ = 1;
4682   return this->can_reach_stub(from, ent.off_, r_type);
4683 }
4684
4685 template<int size, bool big_endian>
4686 bool
4687 Stub_table<size, big_endian>::add_plt_call_entry(
4688     Address from,
4689     const Sized_relobj_file<size, big_endian>* object,
4690     unsigned int locsym_index,
4691     unsigned int r_type,
4692     Address addend,
4693     bool tocsave)
4694 {
4695   Plt_stub_key key(object, locsym_index, r_type, addend);
4696   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4697   std::pair<typename Plt_stub_entries::iterator, bool> p
4698     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4699   if (p.second)
4700     {
4701       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4702       this->plt_size_ = this->plt_call_align(this->plt_size_);
4703       if (size == 64
4704           && this->targ_->is_elfv2_localentry0(object, locsym_index))
4705         {
4706           p.first->second.localentry0_ = 1;
4707           this->targ_->set_has_localentry0();
4708         }
4709     }
4710   if (size == 64
4711       && !tocsave
4712       && !p.first->second.localentry0_)
4713     p.first->second.r2save_ = 1;
4714   return this->can_reach_stub(from, ent.off_, r_type);
4715 }
4716
4717 // Find a plt call stub.
4718
4719 template<int size, bool big_endian>
4720 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4721 Stub_table<size, big_endian>::find_plt_call_entry(
4722     const Sized_relobj_file<size, big_endian>* object,
4723     const Symbol* gsym,
4724     unsigned int r_type,
4725     Address addend) const
4726 {
4727   Plt_stub_key key(object, gsym, r_type, addend);
4728   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4729   if (p == this->plt_call_stubs_.end())
4730     return NULL;
4731   return &p->second;
4732 }
4733
4734 template<int size, bool big_endian>
4735 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4736 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4737 {
4738   Plt_stub_key key(gsym);
4739   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4740   if (p == this->plt_call_stubs_.end())
4741     return NULL;
4742   return &p->second;
4743 }
4744
4745 template<int size, bool big_endian>
4746 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4747 Stub_table<size, big_endian>::find_plt_call_entry(
4748     const Sized_relobj_file<size, big_endian>* object,
4749     unsigned int locsym_index,
4750     unsigned int r_type,
4751     Address addend) const
4752 {
4753   Plt_stub_key key(object, locsym_index, r_type, addend);
4754   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4755   if (p == this->plt_call_stubs_.end())
4756     return NULL;
4757   return &p->second;
4758 }
4759
4760 template<int size, bool big_endian>
4761 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4762 Stub_table<size, big_endian>::find_plt_call_entry(
4763     const Sized_relobj_file<size, big_endian>* object,
4764     unsigned int locsym_index) const
4765 {
4766   Plt_stub_key key(object, locsym_index);
4767   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4768   if (p == this->plt_call_stubs_.end())
4769     return NULL;
4770   return &p->second;
4771 }
4772
4773 // Add a long branch stub if we don't already have one to given
4774 // destination.
4775
4776 template<int size, bool big_endian>
4777 bool
4778 Stub_table<size, big_endian>::add_long_branch_entry(
4779     const Powerpc_relobj<size, big_endian>* object,
4780     unsigned int r_type,
4781     Address from,
4782     Address to,
4783     bool save_res)
4784 {
4785   Branch_stub_ent ent(object, to, save_res);
4786   Address off = this->branch_size_;
4787   std::pair<typename Branch_stub_entries::iterator, bool> p
4788     = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4789   if (p.second)
4790     {
4791       if (save_res)
4792         this->need_save_res_ = true;
4793       else
4794         {
4795           unsigned int stub_size = this->branch_stub_size(p.first);
4796           this->branch_size_ = off + stub_size;
4797           if (size == 64 && stub_size != 4)
4798             this->targ_->add_branch_lookup_table(to);
4799         }
4800     }
4801   return this->can_reach_stub(from, off, r_type);
4802 }
4803
4804 // Find long branch stub offset.
4805
4806 template<int size, bool big_endian>
4807 typename Stub_table<size, big_endian>::Address
4808 Stub_table<size, big_endian>::find_long_branch_entry(
4809     const Powerpc_relobj<size, big_endian>* object,
4810     Address to) const
4811 {
4812   Branch_stub_ent ent(object, to, false);
4813   typename Branch_stub_entries::const_iterator p
4814     = this->long_branch_stubs_.find(ent);
4815   if (p == this->long_branch_stubs_.end())
4816     return invalid_address;
4817   if (p->first.save_res_)
4818     return to - this->targ_->savres_section()->address() + this->branch_size_;
4819   return p->second;
4820 }
4821
4822 // Generate a suitable FDE to describe code in this stub group.
4823 // The __tls_get_addr_opt call stub needs to describe where it saves
4824 // LR, to support exceptions that might be thrown from __tls_get_addr.
4825
4826 template<int size, bool big_endian>
4827 void
4828 Stub_table<size, big_endian>::init_plt_fde()
4829 {
4830   unsigned char* p = this->plt_fde_;
4831   // offset pcrel sdata4, size udata4, and augmentation size byte.
4832   memset (p, 0, 9);
4833   p += 9;
4834   if (this->tls_get_addr_opt_bctrl_ != -1u)
4835     {
4836       unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
4837       if (to_bctrl < 64)
4838         *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
4839       else if (to_bctrl < 256)
4840         {
4841           *p++ = elfcpp::DW_CFA_advance_loc1;
4842           *p++ = to_bctrl;
4843         }
4844       else if (to_bctrl < 65536)
4845         {
4846           *p++ = elfcpp::DW_CFA_advance_loc2;
4847           elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
4848           p += 2;
4849         }
4850       else
4851         {
4852           *p++ = elfcpp::DW_CFA_advance_loc4;
4853           elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
4854           p += 4;
4855         }
4856       *p++ = elfcpp::DW_CFA_offset_extended_sf;
4857       *p++ = 65;
4858       *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
4859       *p++ = elfcpp::DW_CFA_advance_loc + 4;
4860       *p++ = elfcpp::DW_CFA_restore_extended;
4861       *p++ = 65;
4862     }
4863   this->plt_fde_len_ = p - this->plt_fde_;
4864 }
4865
4866 // Add .eh_frame info for this stub section.  Unlike other linker
4867 // generated .eh_frame this is added late in the link, because we
4868 // only want the .eh_frame info if this particular stub section is
4869 // non-empty.
4870
4871 template<int size, bool big_endian>
4872 void
4873 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
4874 {
4875   if (!parameters->options().ld_generated_unwind_info())
4876     return;
4877
4878   // Since we add stub .eh_frame info late, it must be placed
4879   // after all other linker generated .eh_frame info so that
4880   // merge mapping need not be updated for input sections.
4881   // There is no provision to use a different CIE to that used
4882   // by .glink.
4883   if (!this->targ_->has_glink())
4884     return;
4885
4886   if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
4887     return;
4888
4889   this->init_plt_fde();
4890   layout->add_eh_frame_for_plt(this,
4891                                Eh_cie<size>::eh_frame_cie,
4892                                sizeof (Eh_cie<size>::eh_frame_cie),
4893                                this->plt_fde_, this->plt_fde_len_);
4894 }
4895
4896 template<int size, bool big_endian>
4897 void
4898 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
4899 {
4900   if (this->plt_fde_len_ != 0)
4901     {
4902       layout->remove_eh_frame_for_plt(this,
4903                                       Eh_cie<size>::eh_frame_cie,
4904                                       sizeof (Eh_cie<size>::eh_frame_cie),
4905                                       this->plt_fde_, this->plt_fde_len_);
4906       this->plt_fde_len_ = 0;
4907     }
4908 }
4909
4910 // A class to handle .glink.
4911
4912 template<int size, bool big_endian>
4913 class Output_data_glink : public Output_section_data
4914 {
4915  public:
4916   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4917   static const Address invalid_address = static_cast<Address>(0) - 1;
4918
4919   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4920     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4921       end_branch_table_(), ge_size_(0)
4922   { }
4923
4924   void
4925   add_eh_frame(Layout* layout);
4926
4927   void
4928   add_global_entry(const Symbol*);
4929
4930   Address
4931   find_global_entry(const Symbol*) const;
4932
4933   unsigned int
4934   global_entry_align(unsigned int off) const
4935   {
4936     unsigned int align = param_plt_align<size>();
4937     return (off + align - 1) & -align;
4938   }
4939
4940   unsigned int
4941   global_entry_off() const
4942   {
4943     return this->global_entry_align(this->end_branch_table_);
4944   }
4945
4946   Address
4947   global_entry_address() const
4948   {
4949     gold_assert(this->is_data_size_valid());
4950     return this->address() + this->global_entry_off();
4951   }
4952
4953   int
4954   pltresolve_size() const
4955   {
4956     if (size == 64)
4957       return (8
4958               + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4)
4959               + (!parameters->options().speculate_indirect_jumps() ? 2 * 4 : 0));
4960     return 16 * 4;
4961   }
4962
4963  protected:
4964   // Write to a map file.
4965   void
4966   do_print_to_mapfile(Mapfile* mapfile) const
4967   { mapfile->print_output_data(this, _("** glink")); }
4968
4969  private:
4970   void
4971   set_final_data_size();
4972
4973   // Write out .glink
4974   void
4975   do_write(Output_file*);
4976
4977   // Allows access to .got and .plt for do_write.
4978   Target_powerpc<size, big_endian>* targ_;
4979
4980   // Map sym to stub offset.
4981   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4982   Global_entry_stub_entries global_entry_stubs_;
4983
4984   unsigned int end_branch_table_, ge_size_;
4985 };
4986
4987 template<int size, bool big_endian>
4988 void
4989 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4990 {
4991   if (!parameters->options().ld_generated_unwind_info())
4992     return;
4993
4994   if (size == 64)
4995     {
4996       if (this->targ_->abiversion() < 2)
4997         layout->add_eh_frame_for_plt(this,
4998                                      Eh_cie<64>::eh_frame_cie,
4999                                      sizeof (Eh_cie<64>::eh_frame_cie),
5000                                      glink_eh_frame_fde_64v1,
5001                                      sizeof (glink_eh_frame_fde_64v1));
5002       else
5003         layout->add_eh_frame_for_plt(this,
5004                                      Eh_cie<64>::eh_frame_cie,
5005                                      sizeof (Eh_cie<64>::eh_frame_cie),
5006                                      glink_eh_frame_fde_64v2,
5007                                      sizeof (glink_eh_frame_fde_64v2));
5008     }
5009   else
5010     {
5011       // 32-bit .glink can use the default since the CIE return
5012       // address reg, LR, is valid.
5013       layout->add_eh_frame_for_plt(this,
5014                                    Eh_cie<32>::eh_frame_cie,
5015                                    sizeof (Eh_cie<32>::eh_frame_cie),
5016                                    default_fde,
5017                                    sizeof (default_fde));
5018       // Except where LR is used in a PIC __glink_PLTresolve.
5019       if (parameters->options().output_is_position_independent())
5020         layout->add_eh_frame_for_plt(this,
5021                                      Eh_cie<32>::eh_frame_cie,
5022                                      sizeof (Eh_cie<32>::eh_frame_cie),
5023                                      glink_eh_frame_fde_32,
5024                                      sizeof (glink_eh_frame_fde_32));
5025     }
5026 }
5027
5028 template<int size, bool big_endian>
5029 void
5030 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5031 {
5032   unsigned int off = this->global_entry_align(this->ge_size_);
5033   std::pair<typename Global_entry_stub_entries::iterator, bool> p
5034     = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5035   if (p.second)
5036     this->ge_size_
5037       = off + 16 + (!parameters->options().speculate_indirect_jumps() ? 8 : 0);
5038 }
5039
5040 template<int size, bool big_endian>
5041 typename Output_data_glink<size, big_endian>::Address
5042 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5043 {
5044   typename Global_entry_stub_entries::const_iterator p
5045     = this->global_entry_stubs_.find(gsym);
5046   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5047 }
5048
5049 template<int size, bool big_endian>
5050 void
5051 Output_data_glink<size, big_endian>::set_final_data_size()
5052 {
5053   unsigned int count = this->targ_->plt_entry_count();
5054   section_size_type total = 0;
5055
5056   if (count != 0)
5057     {
5058       if (size == 32)
5059         {
5060           // space for branch table
5061           total += 4 * (count - 1);
5062
5063           total += -total & 15;
5064           total += this->pltresolve_size();
5065         }
5066       else
5067         {
5068           total += this->pltresolve_size();
5069
5070           // space for branch table
5071           total += 4 * count;
5072           if (this->targ_->abiversion() < 2)
5073             {
5074               total += 4 * count;
5075               if (count > 0x8000)
5076                 total += 4 * (count - 0x8000);
5077             }
5078         }
5079     }
5080   this->end_branch_table_ = total;
5081   total = this->global_entry_align(total);
5082   total += this->ge_size_;
5083
5084   this->set_data_size(total);
5085 }
5086
5087 // Define symbols on stubs, identifying the stub.
5088
5089 template<int size, bool big_endian>
5090 void
5091 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5092 {
5093   if (!this->plt_call_stubs_.empty())
5094     {
5095       // The key for the plt call stub hash table includes addresses,
5096       // therefore traversal order depends on those addresses, which
5097       // can change between runs if gold is a PIE.  Unfortunately the
5098       // output .symtab ordering depends on the order in which symbols
5099       // are added to the linker symtab.  We want reproducible output
5100       // so must sort the call stub symbols.
5101       typedef typename Plt_stub_entries::const_iterator plt_iter;
5102       std::vector<plt_iter> sorted;
5103       sorted.resize(this->plt_call_stubs_.size());
5104
5105       for (plt_iter cs = this->plt_call_stubs_.begin();
5106            cs != this->plt_call_stubs_.end();
5107            ++cs)
5108         sorted[cs->second.indx_] = cs;
5109
5110       for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5111         {
5112           plt_iter cs = sorted[i];
5113           char add[10];
5114           add[0] = 0;
5115           if (cs->first.addend_ != 0)
5116             sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5117           char obj[10];
5118           obj[0] = 0;
5119           if (cs->first.object_)
5120             {
5121               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5122                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5123               sprintf(obj, "%x:", ppcobj->uniq());
5124             }
5125           char localname[9];
5126           const char *symname;
5127           if (cs->first.sym_ == NULL)
5128             {
5129               sprintf(localname, "%x", cs->first.locsym_);
5130               symname = localname;
5131             }
5132           else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5133             symname = this->targ_->tls_get_addr_opt()->name();
5134           else
5135             symname = cs->first.sym_->name();
5136           char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5137           sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5138           Address value
5139             = this->stub_address() - this->address() + cs->second.off_;
5140           unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5141           this->targ_->define_local(symtab, name, this, value, stub_size);
5142         }
5143     }
5144
5145   typedef typename Branch_stub_entries::const_iterator branch_iter;
5146   for (branch_iter bs = this->long_branch_stubs_.begin();
5147        bs != this->long_branch_stubs_.end();
5148        ++bs)
5149     {
5150       if (bs->first.save_res_)
5151         continue;
5152
5153       char* name = new char[8 + 13 + 16 + 1];
5154       sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5155               static_cast<unsigned long long>(bs->first.dest_));
5156       Address value = (this->stub_address() - this->address()
5157                        + this->plt_size_ + bs->second);
5158       unsigned int stub_size = this->branch_stub_size(bs);
5159       this->targ_->define_local(symtab, name, this, value, stub_size);
5160     }
5161 }
5162
5163 // Write out plt and long branch stub code.
5164
5165 template<int size, bool big_endian>
5166 void
5167 Stub_table<size, big_endian>::do_write(Output_file* of)
5168 {
5169   if (this->plt_call_stubs_.empty()
5170       && this->long_branch_stubs_.empty())
5171     return;
5172
5173   const section_size_type start_off = this->offset();
5174   const section_size_type off = this->stub_offset();
5175   const section_size_type oview_size =
5176     convert_to_section_size_type(this->data_size() - (off - start_off));
5177   unsigned char* const oview = of->get_output_view(off, oview_size);
5178   unsigned char* p;
5179
5180   if (size == 64)
5181     {
5182       const Output_data_got_powerpc<size, big_endian>* got
5183         = this->targ_->got_section();
5184       Address got_os_addr = got->output_section()->address();
5185
5186       if (!this->plt_call_stubs_.empty())
5187         {
5188           // The base address of the .plt section.
5189           Address plt_base = this->targ_->plt_section()->address();
5190           Address iplt_base = invalid_address;
5191
5192           // Write out plt call stubs.
5193           typename Plt_stub_entries::const_iterator cs;
5194           for (cs = this->plt_call_stubs_.begin();
5195                cs != this->plt_call_stubs_.end();
5196                ++cs)
5197             {
5198               bool is_iplt;
5199               Address pltoff = this->plt_off(cs, &is_iplt);
5200               Address plt_addr = pltoff;
5201               if (is_iplt)
5202                 {
5203                   if (iplt_base == invalid_address)
5204                     iplt_base = this->targ_->iplt_section()->address();
5205                   plt_addr += iplt_base;
5206                 }
5207               else
5208                 plt_addr += plt_base;
5209               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5210                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5211               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5212               Address off = plt_addr - got_addr;
5213
5214               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5215                 gold_error(_("%s: linkage table error against `%s'"),
5216                            cs->first.object_->name().c_str(),
5217                            cs->first.sym_->demangled_name().c_str());
5218
5219               bool plt_load_toc = this->targ_->abiversion() < 2;
5220               bool static_chain
5221                 = plt_load_toc && parameters->options().plt_static_chain();
5222               bool thread_safe
5223                 = plt_load_toc && this->targ_->plt_thread_safe();
5224               bool use_fake_dep = false;
5225               Address cmp_branch_off = 0;
5226               if (thread_safe
5227                   && !parameters->options().speculate_indirect_jumps())
5228                 use_fake_dep = true;
5229               else if (thread_safe)
5230                 {
5231                   unsigned int pltindex
5232                     = ((pltoff - this->targ_->first_plt_entry_offset())
5233                        / this->targ_->plt_entry_size());
5234                   Address glinkoff
5235                     = (this->targ_->glink_section()->pltresolve_size()
5236                        + pltindex * 8);
5237                   if (pltindex > 32768)
5238                     glinkoff += (pltindex - 32768) * 4;
5239                   Address to
5240                     = this->targ_->glink_section()->address() + glinkoff;
5241                   Address from
5242                     = (this->stub_address() + cs->second.off_ + 20
5243                        + 4 * cs->second.r2save_
5244                        + 4 * (ha(off) != 0)
5245                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5246                        + 4 * static_chain);
5247                   cmp_branch_off = to - from;
5248                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5249                 }
5250
5251               p = oview + cs->second.off_;
5252               const Symbol* gsym = cs->first.sym_;
5253               if (this->targ_->is_tls_get_addr_opt(gsym))
5254                 {
5255                   write_insn<big_endian>(p, ld_11_3 + 0);
5256                   p += 4;
5257                   write_insn<big_endian>(p, ld_12_3 + 8);
5258                   p += 4;
5259                   write_insn<big_endian>(p, mr_0_3);
5260                   p += 4;
5261                   write_insn<big_endian>(p, cmpdi_11_0);
5262                   p += 4;
5263                   write_insn<big_endian>(p, add_3_12_13);
5264                   p += 4;
5265                   write_insn<big_endian>(p, beqlr);
5266                   p += 4;
5267                   write_insn<big_endian>(p, mr_3_0);
5268                   p += 4;
5269                   if (!cs->second.localentry0_)
5270                     {
5271                       write_insn<big_endian>(p, mflr_11);
5272                       p += 4;
5273                       write_insn<big_endian>(p, (std_11_1
5274                                                  + this->targ_->stk_linker()));
5275                       p += 4;
5276                     }
5277                   use_fake_dep |= thread_safe;
5278                 }
5279               if (ha(off) != 0)
5280                 {
5281                   if (cs->second.r2save_)
5282                     {
5283                       write_insn<big_endian>(p,
5284                                              std_2_1 + this->targ_->stk_toc());
5285                       p += 4;
5286                     }
5287                   if (plt_load_toc)
5288                     {
5289                       write_insn<big_endian>(p, addis_11_2 + ha(off));
5290                       p += 4;
5291                       write_insn<big_endian>(p, ld_12_11 + l(off));
5292                       p += 4;
5293                     }
5294                   else
5295                     {
5296                       write_insn<big_endian>(p, addis_12_2 + ha(off));
5297                       p += 4;
5298                       write_insn<big_endian>(p, ld_12_12 + l(off));
5299                       p += 4;
5300                     }
5301                   if (plt_load_toc
5302                       && ha(off + 8 + 8 * static_chain) != ha(off))
5303                     {
5304                       write_insn<big_endian>(p, addi_11_11 + l(off));
5305                       p += 4;
5306                       off = 0;
5307                     }
5308                   write_insn<big_endian>(p, mtctr_12);
5309                   p += 4;
5310                   if (plt_load_toc)
5311                     {
5312                       if (use_fake_dep)
5313                         {
5314                           write_insn<big_endian>(p, xor_2_12_12);
5315                           p += 4;
5316                           write_insn<big_endian>(p, add_11_11_2);
5317                           p += 4;
5318                         }
5319                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5320                       p += 4;
5321                       if (static_chain)
5322                         {
5323                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5324                           p += 4;
5325                         }
5326                     }
5327                 }
5328               else
5329                 {
5330                   if (cs->second.r2save_)
5331                     {
5332                       write_insn<big_endian>(p,
5333                                              std_2_1 + this->targ_->stk_toc());
5334                       p += 4;
5335                     }
5336                   write_insn<big_endian>(p, ld_12_2 + l(off));
5337                   p += 4;
5338                   if (plt_load_toc
5339                       && ha(off + 8 + 8 * static_chain) != ha(off))
5340                     {
5341                       write_insn<big_endian>(p, addi_2_2 + l(off));
5342                       p += 4;
5343                       off = 0;
5344                     }
5345                   write_insn<big_endian>(p, mtctr_12);
5346                   p += 4;
5347                   if (plt_load_toc)
5348                     {
5349                       if (use_fake_dep)
5350                         {
5351                           write_insn<big_endian>(p, xor_11_12_12);
5352                           p += 4;
5353                           write_insn<big_endian>(p, add_2_2_11);
5354                           p += 4;
5355                         }
5356                       if (static_chain)
5357                         {
5358                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5359                           p += 4;
5360                         }
5361                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5362                       p += 4;
5363                     }
5364                 }
5365               if (!cs->second.localentry0_
5366                   && this->targ_->is_tls_get_addr_opt(gsym))
5367                 {
5368                   if (!parameters->options().speculate_indirect_jumps())
5369                     {
5370                       write_insn<big_endian>(p, crseteq);
5371                       p += 4;
5372                       write_insn<big_endian>(p, beqctrlm);
5373                     }
5374                   else
5375                     write_insn<big_endian>(p, bctrl);
5376                   p += 4;
5377                   write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5378                   p += 4;
5379                   write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5380                   p += 4;
5381                   write_insn<big_endian>(p, mtlr_11);
5382                   p += 4;
5383                   write_insn<big_endian>(p, blr);
5384                 }
5385               else if (thread_safe && !use_fake_dep)
5386                 {
5387                   write_insn<big_endian>(p, cmpldi_2_0);
5388                   p += 4;
5389                   write_insn<big_endian>(p, bnectr_p4);
5390                   p += 4;
5391                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5392                 }
5393               else
5394                 output_bctr<big_endian>(p);
5395             }
5396         }
5397
5398       // Write out long branch stubs.
5399       typename Branch_stub_entries::const_iterator bs;
5400       for (bs = this->long_branch_stubs_.begin();
5401            bs != this->long_branch_stubs_.end();
5402            ++bs)
5403         {
5404           if (bs->first.save_res_)
5405             continue;
5406           p = oview + this->plt_size_ + bs->second;
5407           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5408           Address delta = bs->first.dest_ - loc;
5409           if (delta + (1 << 25) < 2 << 25)
5410             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5411           else
5412             {
5413               Address brlt_addr
5414                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5415               gold_assert(brlt_addr != invalid_address);
5416               brlt_addr += this->targ_->brlt_section()->address();
5417               Address got_addr = got_os_addr + bs->first.toc_base_off_;
5418               Address brltoff = brlt_addr - got_addr;
5419               if (ha(brltoff) == 0)
5420                 {
5421                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
5422                 }
5423               else
5424                 {
5425                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
5426                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
5427                 }
5428               write_insn<big_endian>(p, mtctr_12),                      p += 4;
5429               output_bctr<big_endian>(p);
5430             }
5431         }
5432     }
5433   else
5434     {
5435       if (!this->plt_call_stubs_.empty())
5436         {
5437           // The base address of the .plt section.
5438           Address plt_base = this->targ_->plt_section()->address();
5439           Address iplt_base = invalid_address;
5440           // The address of _GLOBAL_OFFSET_TABLE_.
5441           Address g_o_t = invalid_address;
5442
5443           // Write out plt call stubs.
5444           typename Plt_stub_entries::const_iterator cs;
5445           for (cs = this->plt_call_stubs_.begin();
5446                cs != this->plt_call_stubs_.end();
5447                ++cs)
5448             {
5449               bool is_iplt;
5450               Address plt_addr = this->plt_off(cs, &is_iplt);
5451               if (is_iplt)
5452                 {
5453                   if (iplt_base == invalid_address)
5454                     iplt_base = this->targ_->iplt_section()->address();
5455                   plt_addr += iplt_base;
5456                 }
5457               else
5458                 plt_addr += plt_base;
5459
5460               p = oview + cs->second.off_;
5461               const Symbol* gsym = cs->first.sym_;
5462               if (this->targ_->is_tls_get_addr_opt(gsym))
5463                 {
5464                   write_insn<big_endian>(p, lwz_11_3 + 0);
5465                   p += 4;
5466                   write_insn<big_endian>(p, lwz_12_3 + 4);
5467                   p += 4;
5468                   write_insn<big_endian>(p, mr_0_3);
5469                   p += 4;
5470                   write_insn<big_endian>(p, cmpwi_11_0);
5471                   p += 4;
5472                   write_insn<big_endian>(p, add_3_12_2);
5473                   p += 4;
5474                   write_insn<big_endian>(p, beqlr);
5475                   p += 4;
5476                   write_insn<big_endian>(p, mr_3_0);
5477                   p += 4;
5478                   write_insn<big_endian>(p, nop);
5479                   p += 4;
5480                 }
5481               if (parameters->options().output_is_position_independent())
5482                 {
5483                   Address got_addr;
5484                   const Powerpc_relobj<size, big_endian>* ppcobj
5485                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
5486                        (cs->first.object_));
5487                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
5488                     {
5489                       unsigned int got2 = ppcobj->got2_shndx();
5490                       got_addr = ppcobj->get_output_section_offset(got2);
5491                       gold_assert(got_addr != invalid_address);
5492                       got_addr += (ppcobj->output_section(got2)->address()
5493                                    + cs->first.addend_);
5494                     }
5495                   else
5496                     {
5497                       if (g_o_t == invalid_address)
5498                         {
5499                           const Output_data_got_powerpc<size, big_endian>* got
5500                             = this->targ_->got_section();
5501                           g_o_t = got->address() + got->g_o_t();
5502                         }
5503                       got_addr = g_o_t;
5504                     }
5505
5506                   Address off = plt_addr - got_addr;
5507                   if (ha(off) == 0)
5508                     write_insn<big_endian>(p, lwz_11_30 + l(off));
5509                   else
5510                     {
5511                       write_insn<big_endian>(p, addis_11_30 + ha(off));
5512                       p += 4;
5513                       write_insn<big_endian>(p, lwz_11_11 + l(off));
5514                     }
5515                 }
5516               else
5517                 {
5518                   write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5519                   p += 4;
5520                   write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5521                 }
5522               p += 4;
5523               write_insn<big_endian>(p, mtctr_11);
5524               p += 4;
5525               output_bctr<big_endian>(p);
5526             }
5527         }
5528
5529       // Write out long branch stubs.
5530       typename Branch_stub_entries::const_iterator bs;
5531       for (bs = this->long_branch_stubs_.begin();
5532            bs != this->long_branch_stubs_.end();
5533            ++bs)
5534         {
5535           if (bs->first.save_res_)
5536             continue;
5537           p = oview + this->plt_size_ + bs->second;
5538           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5539           Address delta = bs->first.dest_ - loc;
5540           if (delta + (1 << 25) < 2 << 25)
5541             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5542           else if (!parameters->options().output_is_position_independent())
5543             {
5544               write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5545               p += 4;
5546               write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5547             }
5548           else
5549             {
5550               delta -= 8;
5551               write_insn<big_endian>(p, mflr_0);
5552               p += 4;
5553               write_insn<big_endian>(p, bcl_20_31);
5554               p += 4;
5555               write_insn<big_endian>(p, mflr_12);
5556               p += 4;
5557               write_insn<big_endian>(p, addis_12_12 + ha(delta));
5558               p += 4;
5559               write_insn<big_endian>(p, addi_12_12 + l(delta));
5560               p += 4;
5561               write_insn<big_endian>(p, mtlr_0);
5562             }
5563           p += 4;
5564           write_insn<big_endian>(p, mtctr_12);
5565           p += 4;
5566           output_bctr<big_endian>(p);
5567         }
5568     }
5569   if (this->need_save_res_)
5570     {
5571       p = oview + this->plt_size_ + this->branch_size_;
5572       memcpy (p, this->targ_->savres_section()->contents(),
5573               this->targ_->savres_section()->data_size());
5574     }
5575 }
5576
5577 // Write out .glink.
5578
5579 template<int size, bool big_endian>
5580 void
5581 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5582 {
5583   const section_size_type off = this->offset();
5584   const section_size_type oview_size =
5585     convert_to_section_size_type(this->data_size());
5586   unsigned char* const oview = of->get_output_view(off, oview_size);
5587   unsigned char* p;
5588
5589   // The base address of the .plt section.
5590   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5591   Address plt_base = this->targ_->plt_section()->address();
5592
5593   if (size == 64)
5594     {
5595       if (this->end_branch_table_ != 0)
5596         {
5597           // Write pltresolve stub.
5598           p = oview;
5599           Address after_bcl = this->address() + 16;
5600           Address pltoff = plt_base - after_bcl;
5601
5602           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
5603
5604           if (this->targ_->abiversion() < 2)
5605             {
5606               write_insn<big_endian>(p, mflr_12),               p += 4;
5607               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5608               write_insn<big_endian>(p, mflr_11),               p += 4;
5609               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5610               write_insn<big_endian>(p, mtlr_12),               p += 4;
5611               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5612               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5613               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
5614               write_insn<big_endian>(p, mtctr_12),              p += 4;
5615               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
5616             }
5617           else
5618             {
5619               write_insn<big_endian>(p, mflr_0),                p += 4;
5620               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5621               write_insn<big_endian>(p, mflr_11),               p += 4;
5622               write_insn<big_endian>(p, std_2_1 + 24),          p += 4;
5623               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5624               write_insn<big_endian>(p, mtlr_0),                p += 4;
5625               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
5626               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5627               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
5628               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5629               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
5630               write_insn<big_endian>(p, mtctr_12),              p += 4;
5631               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
5632             }
5633           p = output_bctr<big_endian>(p);
5634           gold_assert(p == oview + this->pltresolve_size());
5635
5636           // Write lazy link call stubs.
5637           uint32_t indx = 0;
5638           while (p < oview + this->end_branch_table_)
5639             {
5640               if (this->targ_->abiversion() < 2)
5641                 {
5642                   if (indx < 0x8000)
5643                     {
5644                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
5645                     }
5646                   else
5647                     {
5648                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
5649                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
5650                     }
5651                 }
5652               uint32_t branch_off = 8 - (p - oview);
5653               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
5654               indx++;
5655             }
5656         }
5657
5658       Address plt_base = this->targ_->plt_section()->address();
5659       Address iplt_base = invalid_address;
5660       unsigned int global_entry_off = this->global_entry_off();
5661       Address global_entry_base = this->address() + global_entry_off;
5662       typename Global_entry_stub_entries::const_iterator ge;
5663       for (ge = this->global_entry_stubs_.begin();
5664            ge != this->global_entry_stubs_.end();
5665            ++ge)
5666         {
5667           p = oview + global_entry_off + ge->second;
5668           Address plt_addr = ge->first->plt_offset();
5669           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5670               && ge->first->can_use_relative_reloc(false))
5671             {
5672               if (iplt_base == invalid_address)
5673                 iplt_base = this->targ_->iplt_section()->address();
5674               plt_addr += iplt_base;
5675             }
5676           else
5677             plt_addr += plt_base;
5678           Address my_addr = global_entry_base + ge->second;
5679           Address off = plt_addr - my_addr;
5680
5681           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5682             gold_error(_("%s: linkage table error against `%s'"),
5683                        ge->first->object()->name().c_str(),
5684                        ge->first->demangled_name().c_str());
5685
5686           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
5687           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
5688           write_insn<big_endian>(p, mtctr_12),                  p += 4;
5689           output_bctr<big_endian>(p);
5690         }
5691     }
5692   else
5693     {
5694       const Output_data_got_powerpc<size, big_endian>* got
5695         = this->targ_->got_section();
5696       // The address of _GLOBAL_OFFSET_TABLE_.
5697       Address g_o_t = got->address() + got->g_o_t();
5698
5699       // Write out pltresolve branch table.
5700       p = oview;
5701       unsigned int the_end = oview_size - this->pltresolve_size();
5702       unsigned char* end_p = oview + the_end;
5703       while (p < end_p - 8 * 4)
5704         write_insn<big_endian>(p, b + end_p - p), p += 4;
5705       while (p < end_p)
5706         write_insn<big_endian>(p, nop), p += 4;
5707
5708       // Write out pltresolve call stub.
5709       end_p = oview + oview_size;
5710       if (parameters->options().output_is_position_independent())
5711         {
5712           Address res0_off = 0;
5713           Address after_bcl_off = the_end + 12;
5714           Address bcl_res0 = after_bcl_off - res0_off;
5715
5716           write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5717           p += 4;
5718           write_insn<big_endian>(p, mflr_0);
5719           p += 4;
5720           write_insn<big_endian>(p, bcl_20_31);
5721           p += 4;
5722           write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5723           p += 4;
5724           write_insn<big_endian>(p, mflr_12);
5725           p += 4;
5726           write_insn<big_endian>(p, mtlr_0);
5727           p += 4;
5728           write_insn<big_endian>(p, sub_11_11_12);
5729           p += 4;
5730
5731           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5732
5733           write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5734           p += 4;
5735           if (ha(got_bcl) == ha(got_bcl + 4))
5736             {
5737               write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5738               p += 4;
5739               write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5740             }
5741           else
5742             {
5743               write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5744               p += 4;
5745               write_insn<big_endian>(p, lwz_12_12 + 4);
5746             }
5747           p += 4;
5748           write_insn<big_endian>(p, mtctr_0);
5749           p += 4;
5750           write_insn<big_endian>(p, add_0_11_11);
5751           p += 4;
5752           write_insn<big_endian>(p, add_11_0_11);
5753         }
5754       else
5755         {
5756           Address res0 = this->address();
5757
5758           write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5759           p += 4;
5760           write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5761           p += 4;
5762           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5763             write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5764           else
5765             write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5766           p += 4;
5767           write_insn<big_endian>(p, addi_11_11 + l(-res0));
5768           p += 4;
5769           write_insn<big_endian>(p, mtctr_0);
5770           p += 4;
5771           write_insn<big_endian>(p, add_0_11_11);
5772           p += 4;
5773           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5774             write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5775           else
5776             write_insn<big_endian>(p, lwz_12_12 + 4);
5777           p += 4;
5778           write_insn<big_endian>(p, add_11_0_11);
5779         }
5780       p += 4;
5781       p = output_bctr<big_endian>(p);
5782       while (p < end_p)
5783         {
5784           write_insn<big_endian>(p, nop);
5785           p += 4;
5786         }
5787     }
5788
5789   of->write_output_view(off, oview_size, oview);
5790 }
5791
5792
5793 // A class to handle linker generated save/restore functions.
5794
5795 template<int size, bool big_endian>
5796 class Output_data_save_res : public Output_section_data_build
5797 {
5798  public:
5799   Output_data_save_res(Symbol_table* symtab);
5800
5801   const unsigned char*
5802   contents() const
5803   {
5804     return contents_;
5805   }
5806
5807  protected:
5808   // Write to a map file.
5809   void
5810   do_print_to_mapfile(Mapfile* mapfile) const
5811   { mapfile->print_output_data(this, _("** save/restore")); }
5812
5813   void
5814   do_write(Output_file*);
5815
5816  private:
5817   // The maximum size of save/restore contents.
5818   static const unsigned int savres_max = 218*4;
5819
5820   void
5821   savres_define(Symbol_table* symtab,
5822                 const char *name,
5823                 unsigned int lo, unsigned int hi,
5824                 unsigned char* write_ent(unsigned char*, int),
5825                 unsigned char* write_tail(unsigned char*, int));
5826
5827   unsigned char *contents_;
5828 };
5829
5830 template<bool big_endian>
5831 static unsigned char*
5832 savegpr0(unsigned char* p, int r)
5833 {
5834   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5835   write_insn<big_endian>(p, insn);
5836   return p + 4;
5837 }
5838
5839 template<bool big_endian>
5840 static unsigned char*
5841 savegpr0_tail(unsigned char* p, int r)
5842 {
5843   p = savegpr0<big_endian>(p, r);
5844   uint32_t insn = std_0_1 + 16;
5845   write_insn<big_endian>(p, insn);
5846   p = p + 4;
5847   write_insn<big_endian>(p, blr);
5848   return p + 4;
5849 }
5850
5851 template<bool big_endian>
5852 static unsigned char*
5853 restgpr0(unsigned char* p, int r)
5854 {
5855   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5856   write_insn<big_endian>(p, insn);
5857   return p + 4;
5858 }
5859
5860 template<bool big_endian>
5861 static unsigned char*
5862 restgpr0_tail(unsigned char* p, int r)
5863 {
5864   uint32_t insn = ld_0_1 + 16;
5865   write_insn<big_endian>(p, insn);
5866   p = p + 4;
5867   p = restgpr0<big_endian>(p, r);
5868   write_insn<big_endian>(p, mtlr_0);
5869   p = p + 4;
5870   if (r == 29)
5871     {
5872       p = restgpr0<big_endian>(p, 30);
5873       p = restgpr0<big_endian>(p, 31);
5874     }
5875   write_insn<big_endian>(p, blr);
5876   return p + 4;
5877 }
5878
5879 template<bool big_endian>
5880 static unsigned char*
5881 savegpr1(unsigned char* p, int r)
5882 {
5883   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5884   write_insn<big_endian>(p, insn);
5885   return p + 4;
5886 }
5887
5888 template<bool big_endian>
5889 static unsigned char*
5890 savegpr1_tail(unsigned char* p, int r)
5891 {
5892   p = savegpr1<big_endian>(p, r);
5893   write_insn<big_endian>(p, blr);
5894   return p + 4;
5895 }
5896
5897 template<bool big_endian>
5898 static unsigned char*
5899 restgpr1(unsigned char* p, int r)
5900 {
5901   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5902   write_insn<big_endian>(p, insn);
5903   return p + 4;
5904 }
5905
5906 template<bool big_endian>
5907 static unsigned char*
5908 restgpr1_tail(unsigned char* p, int r)
5909 {
5910   p = restgpr1<big_endian>(p, r);
5911   write_insn<big_endian>(p, blr);
5912   return p + 4;
5913 }
5914
5915 template<bool big_endian>
5916 static unsigned char*
5917 savefpr(unsigned char* p, int r)
5918 {
5919   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5920   write_insn<big_endian>(p, insn);
5921   return p + 4;
5922 }
5923
5924 template<bool big_endian>
5925 static unsigned char*
5926 savefpr0_tail(unsigned char* p, int r)
5927 {
5928   p = savefpr<big_endian>(p, r);
5929   write_insn<big_endian>(p, std_0_1 + 16);
5930   p = p + 4;
5931   write_insn<big_endian>(p, blr);
5932   return p + 4;
5933 }
5934
5935 template<bool big_endian>
5936 static unsigned char*
5937 restfpr(unsigned char* p, int r)
5938 {
5939   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5940   write_insn<big_endian>(p, insn);
5941   return p + 4;
5942 }
5943
5944 template<bool big_endian>
5945 static unsigned char*
5946 restfpr0_tail(unsigned char* p, int r)
5947 {
5948   write_insn<big_endian>(p, ld_0_1 + 16);
5949   p = p + 4;
5950   p = restfpr<big_endian>(p, r);
5951   write_insn<big_endian>(p, mtlr_0);
5952   p = p + 4;
5953   if (r == 29)
5954     {
5955       p = restfpr<big_endian>(p, 30);
5956       p = restfpr<big_endian>(p, 31);
5957     }
5958   write_insn<big_endian>(p, blr);
5959   return p + 4;
5960 }
5961
5962 template<bool big_endian>
5963 static unsigned char*
5964 savefpr1_tail(unsigned char* p, int r)
5965 {
5966   p = savefpr<big_endian>(p, r);
5967   write_insn<big_endian>(p, blr);
5968   return p + 4;
5969 }
5970
5971 template<bool big_endian>
5972 static unsigned char*
5973 restfpr1_tail(unsigned char* p, int r)
5974 {
5975   p = restfpr<big_endian>(p, r);
5976   write_insn<big_endian>(p, blr);
5977   return p + 4;
5978 }
5979
5980 template<bool big_endian>
5981 static unsigned char*
5982 savevr(unsigned char* p, int r)
5983 {
5984   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5985   write_insn<big_endian>(p, insn);
5986   p = p + 4;
5987   insn = stvx_0_12_0 + (r << 21);
5988   write_insn<big_endian>(p, insn);
5989   return p + 4;
5990 }
5991
5992 template<bool big_endian>
5993 static unsigned char*
5994 savevr_tail(unsigned char* p, int r)
5995 {
5996   p = savevr<big_endian>(p, r);
5997   write_insn<big_endian>(p, blr);
5998   return p + 4;
5999 }
6000
6001 template<bool big_endian>
6002 static unsigned char*
6003 restvr(unsigned char* p, int r)
6004 {
6005   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6006   write_insn<big_endian>(p, insn);
6007   p = p + 4;
6008   insn = lvx_0_12_0 + (r << 21);
6009   write_insn<big_endian>(p, insn);
6010   return p + 4;
6011 }
6012
6013 template<bool big_endian>
6014 static unsigned char*
6015 restvr_tail(unsigned char* p, int r)
6016 {
6017   p = restvr<big_endian>(p, r);
6018   write_insn<big_endian>(p, blr);
6019   return p + 4;
6020 }
6021
6022
6023 template<int size, bool big_endian>
6024 Output_data_save_res<size, big_endian>::Output_data_save_res(
6025     Symbol_table* symtab)
6026   : Output_section_data_build(4),
6027     contents_(NULL)
6028 {
6029   this->savres_define(symtab,
6030                       "_savegpr0_", 14, 31,
6031                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
6032   this->savres_define(symtab,
6033                       "_restgpr0_", 14, 29,
6034                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6035   this->savres_define(symtab,
6036                       "_restgpr0_", 30, 31,
6037                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6038   this->savres_define(symtab,
6039                       "_savegpr1_", 14, 31,
6040                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
6041   this->savres_define(symtab,
6042                       "_restgpr1_", 14, 31,
6043                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
6044   this->savres_define(symtab,
6045                       "_savefpr_", 14, 31,
6046                       savefpr<big_endian>, savefpr0_tail<big_endian>);
6047   this->savres_define(symtab,
6048                       "_restfpr_", 14, 29,
6049                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6050   this->savres_define(symtab,
6051                       "_restfpr_", 30, 31,
6052                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6053   this->savres_define(symtab,
6054                       "._savef", 14, 31,
6055                       savefpr<big_endian>, savefpr1_tail<big_endian>);
6056   this->savres_define(symtab,
6057                       "._restf", 14, 31,
6058                       restfpr<big_endian>, restfpr1_tail<big_endian>);
6059   this->savres_define(symtab,
6060                       "_savevr_", 20, 31,
6061                       savevr<big_endian>, savevr_tail<big_endian>);
6062   this->savres_define(symtab,
6063                       "_restvr_", 20, 31,
6064                       restvr<big_endian>, restvr_tail<big_endian>);
6065 }
6066
6067 template<int size, bool big_endian>
6068 void
6069 Output_data_save_res<size, big_endian>::savres_define(
6070     Symbol_table* symtab,
6071     const char *name,
6072     unsigned int lo, unsigned int hi,
6073     unsigned char* write_ent(unsigned char*, int),
6074     unsigned char* write_tail(unsigned char*, int))
6075 {
6076   size_t len = strlen(name);
6077   bool writing = false;
6078   char sym[16];
6079
6080   memcpy(sym, name, len);
6081   sym[len + 2] = 0;
6082
6083   for (unsigned int i = lo; i <= hi; i++)
6084     {
6085       sym[len + 0] = i / 10 + '0';
6086       sym[len + 1] = i % 10 + '0';
6087       Symbol* gsym = symtab->lookup(sym);
6088       bool refd = gsym != NULL && gsym->is_undefined();
6089       writing = writing || refd;
6090       if (writing)
6091         {
6092           if (this->contents_ == NULL)
6093             this->contents_ = new unsigned char[this->savres_max];
6094
6095           section_size_type value = this->current_data_size();
6096           unsigned char* p = this->contents_ + value;
6097           if (i != hi)
6098             p = write_ent(p, i);
6099           else
6100             p = write_tail(p, i);
6101           section_size_type cur_size = p - this->contents_;
6102           this->set_current_data_size(cur_size);
6103           if (refd)
6104             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6105                                           this, value, cur_size - value,
6106                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6107                                           elfcpp::STV_HIDDEN, 0, false, false);
6108         }
6109     }
6110 }
6111
6112 // Write out save/restore.
6113
6114 template<int size, bool big_endian>
6115 void
6116 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6117 {
6118   const section_size_type off = this->offset();
6119   const section_size_type oview_size =
6120     convert_to_section_size_type(this->data_size());
6121   unsigned char* const oview = of->get_output_view(off, oview_size);
6122   memcpy(oview, this->contents_, oview_size);
6123   of->write_output_view(off, oview_size, oview);
6124 }
6125
6126
6127 // Create the glink section.
6128
6129 template<int size, bool big_endian>
6130 void
6131 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6132 {
6133   if (this->glink_ == NULL)
6134     {
6135       this->glink_ = new Output_data_glink<size, big_endian>(this);
6136       this->glink_->add_eh_frame(layout);
6137       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6138                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6139                                       this->glink_, ORDER_TEXT, false);
6140     }
6141 }
6142
6143 // Create a PLT entry for a global symbol.
6144
6145 template<int size, bool big_endian>
6146 void
6147 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6148                                                  Layout* layout,
6149                                                  Symbol* gsym)
6150 {
6151   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6152       && gsym->can_use_relative_reloc(false))
6153     {
6154       if (this->iplt_ == NULL)
6155         this->make_iplt_section(symtab, layout);
6156       this->iplt_->add_ifunc_entry(gsym);
6157     }
6158   else
6159     {
6160       if (this->plt_ == NULL)
6161         this->make_plt_section(symtab, layout);
6162       this->plt_->add_entry(gsym);
6163     }
6164 }
6165
6166 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6167
6168 template<int size, bool big_endian>
6169 void
6170 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6171     Symbol_table* symtab,
6172     Layout* layout,
6173     Sized_relobj_file<size, big_endian>* relobj,
6174     unsigned int r_sym)
6175 {
6176   if (this->iplt_ == NULL)
6177     this->make_iplt_section(symtab, layout);
6178   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6179 }
6180
6181 // Return the number of entries in the PLT.
6182
6183 template<int size, bool big_endian>
6184 unsigned int
6185 Target_powerpc<size, big_endian>::plt_entry_count() const
6186 {
6187   if (this->plt_ == NULL)
6188     return 0;
6189   return this->plt_->entry_count();
6190 }
6191
6192 // Create a GOT entry for local dynamic __tls_get_addr calls.
6193
6194 template<int size, bool big_endian>
6195 unsigned int
6196 Target_powerpc<size, big_endian>::tlsld_got_offset(
6197     Symbol_table* symtab,
6198     Layout* layout,
6199     Sized_relobj_file<size, big_endian>* object)
6200 {
6201   if (this->tlsld_got_offset_ == -1U)
6202     {
6203       gold_assert(symtab != NULL && layout != NULL && object != NULL);
6204       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6205       Output_data_got_powerpc<size, big_endian>* got
6206         = this->got_section(symtab, layout);
6207       unsigned int got_offset = got->add_constant_pair(0, 0);
6208       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6209                           got_offset, 0);
6210       this->tlsld_got_offset_ = got_offset;
6211     }
6212   return this->tlsld_got_offset_;
6213 }
6214
6215 // Get the Reference_flags for a particular relocation.
6216
6217 template<int size, bool big_endian>
6218 int
6219 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6220     unsigned int r_type,
6221     const Target_powerpc* target)
6222 {
6223   int ref = 0;
6224
6225   switch (r_type)
6226     {
6227     case elfcpp::R_POWERPC_NONE:
6228     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6229     case elfcpp::R_POWERPC_GNU_VTENTRY:
6230     case elfcpp::R_PPC64_TOC:
6231       // No symbol reference.
6232       break;
6233
6234     case elfcpp::R_PPC64_ADDR64:
6235     case elfcpp::R_PPC64_UADDR64:
6236     case elfcpp::R_POWERPC_ADDR32:
6237     case elfcpp::R_POWERPC_UADDR32:
6238     case elfcpp::R_POWERPC_ADDR16:
6239     case elfcpp::R_POWERPC_UADDR16:
6240     case elfcpp::R_POWERPC_ADDR16_LO:
6241     case elfcpp::R_POWERPC_ADDR16_HI:
6242     case elfcpp::R_POWERPC_ADDR16_HA:
6243       ref = Symbol::ABSOLUTE_REF;
6244       break;
6245
6246     case elfcpp::R_POWERPC_ADDR24:
6247     case elfcpp::R_POWERPC_ADDR14:
6248     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6249     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6250       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6251       break;
6252
6253     case elfcpp::R_PPC64_REL64:
6254     case elfcpp::R_POWERPC_REL32:
6255     case elfcpp::R_PPC_LOCAL24PC:
6256     case elfcpp::R_POWERPC_REL16:
6257     case elfcpp::R_POWERPC_REL16_LO:
6258     case elfcpp::R_POWERPC_REL16_HI:
6259     case elfcpp::R_POWERPC_REL16_HA:
6260       ref = Symbol::RELATIVE_REF;
6261       break;
6262
6263     case elfcpp::R_POWERPC_REL24:
6264     case elfcpp::R_PPC_PLTREL24:
6265     case elfcpp::R_POWERPC_REL14:
6266     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6267     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6268       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6269       break;
6270
6271     case elfcpp::R_POWERPC_GOT16:
6272     case elfcpp::R_POWERPC_GOT16_LO:
6273     case elfcpp::R_POWERPC_GOT16_HI:
6274     case elfcpp::R_POWERPC_GOT16_HA:
6275     case elfcpp::R_PPC64_GOT16_DS:
6276     case elfcpp::R_PPC64_GOT16_LO_DS:
6277     case elfcpp::R_PPC64_TOC16:
6278     case elfcpp::R_PPC64_TOC16_LO:
6279     case elfcpp::R_PPC64_TOC16_HI:
6280     case elfcpp::R_PPC64_TOC16_HA:
6281     case elfcpp::R_PPC64_TOC16_DS:
6282     case elfcpp::R_PPC64_TOC16_LO_DS:
6283       ref = Symbol::RELATIVE_REF;
6284       break;
6285
6286     case elfcpp::R_POWERPC_GOT_TPREL16:
6287     case elfcpp::R_POWERPC_TLS:
6288       ref = Symbol::TLS_REF;
6289       break;
6290
6291     case elfcpp::R_POWERPC_COPY:
6292     case elfcpp::R_POWERPC_GLOB_DAT:
6293     case elfcpp::R_POWERPC_JMP_SLOT:
6294     case elfcpp::R_POWERPC_RELATIVE:
6295     case elfcpp::R_POWERPC_DTPMOD:
6296     default:
6297       // Not expected.  We will give an error later.
6298       break;
6299     }
6300
6301   if (size == 64 && target->abiversion() < 2)
6302     ref |= Symbol::FUNC_DESC_ABI;
6303   return ref;
6304 }
6305
6306 // Report an unsupported relocation against a local symbol.
6307
6308 template<int size, bool big_endian>
6309 void
6310 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6311     Sized_relobj_file<size, big_endian>* object,
6312     unsigned int r_type)
6313 {
6314   gold_error(_("%s: unsupported reloc %u against local symbol"),
6315              object->name().c_str(), r_type);
6316 }
6317
6318 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6319 // dynamic linker does not support it, issue an error.
6320
6321 template<int size, bool big_endian>
6322 void
6323 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6324                                                       unsigned int r_type)
6325 {
6326   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6327
6328   // These are the relocation types supported by glibc for both 32-bit
6329   // and 64-bit powerpc.
6330   switch (r_type)
6331     {
6332     case elfcpp::R_POWERPC_NONE:
6333     case elfcpp::R_POWERPC_RELATIVE:
6334     case elfcpp::R_POWERPC_GLOB_DAT:
6335     case elfcpp::R_POWERPC_DTPMOD:
6336     case elfcpp::R_POWERPC_DTPREL:
6337     case elfcpp::R_POWERPC_TPREL:
6338     case elfcpp::R_POWERPC_JMP_SLOT:
6339     case elfcpp::R_POWERPC_COPY:
6340     case elfcpp::R_POWERPC_IRELATIVE:
6341     case elfcpp::R_POWERPC_ADDR32:
6342     case elfcpp::R_POWERPC_UADDR32:
6343     case elfcpp::R_POWERPC_ADDR24:
6344     case elfcpp::R_POWERPC_ADDR16:
6345     case elfcpp::R_POWERPC_UADDR16:
6346     case elfcpp::R_POWERPC_ADDR16_LO:
6347     case elfcpp::R_POWERPC_ADDR16_HI:
6348     case elfcpp::R_POWERPC_ADDR16_HA:
6349     case elfcpp::R_POWERPC_ADDR14:
6350     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6351     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6352     case elfcpp::R_POWERPC_REL32:
6353     case elfcpp::R_POWERPC_REL24:
6354     case elfcpp::R_POWERPC_TPREL16:
6355     case elfcpp::R_POWERPC_TPREL16_LO:
6356     case elfcpp::R_POWERPC_TPREL16_HI:
6357     case elfcpp::R_POWERPC_TPREL16_HA:
6358       return;
6359
6360     default:
6361       break;
6362     }
6363
6364   if (size == 64)
6365     {
6366       switch (r_type)
6367         {
6368           // These are the relocation types supported only on 64-bit.
6369         case elfcpp::R_PPC64_ADDR64:
6370         case elfcpp::R_PPC64_UADDR64:
6371         case elfcpp::R_PPC64_JMP_IREL:
6372         case elfcpp::R_PPC64_ADDR16_DS:
6373         case elfcpp::R_PPC64_ADDR16_LO_DS:
6374         case elfcpp::R_PPC64_ADDR16_HIGH:
6375         case elfcpp::R_PPC64_ADDR16_HIGHA:
6376         case elfcpp::R_PPC64_ADDR16_HIGHER:
6377         case elfcpp::R_PPC64_ADDR16_HIGHEST:
6378         case elfcpp::R_PPC64_ADDR16_HIGHERA:
6379         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6380         case elfcpp::R_PPC64_REL64:
6381         case elfcpp::R_POWERPC_ADDR30:
6382         case elfcpp::R_PPC64_TPREL16_DS:
6383         case elfcpp::R_PPC64_TPREL16_LO_DS:
6384         case elfcpp::R_PPC64_TPREL16_HIGH:
6385         case elfcpp::R_PPC64_TPREL16_HIGHA:
6386         case elfcpp::R_PPC64_TPREL16_HIGHER:
6387         case elfcpp::R_PPC64_TPREL16_HIGHEST:
6388         case elfcpp::R_PPC64_TPREL16_HIGHERA:
6389         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6390           return;
6391
6392         default:
6393           break;
6394         }
6395     }
6396   else
6397     {
6398       switch (r_type)
6399         {
6400           // These are the relocation types supported only on 32-bit.
6401           // ??? glibc ld.so doesn't need to support these.
6402         case elfcpp::R_POWERPC_DTPREL16:
6403         case elfcpp::R_POWERPC_DTPREL16_LO:
6404         case elfcpp::R_POWERPC_DTPREL16_HI:
6405         case elfcpp::R_POWERPC_DTPREL16_HA:
6406           return;
6407
6408         default:
6409           break;
6410         }
6411     }
6412
6413   // This prevents us from issuing more than one error per reloc
6414   // section.  But we can still wind up issuing more than one
6415   // error per object file.
6416   if (this->issued_non_pic_error_)
6417     return;
6418   gold_assert(parameters->options().output_is_position_independent());
6419   object->error(_("requires unsupported dynamic reloc; "
6420                   "recompile with -fPIC"));
6421   this->issued_non_pic_error_ = true;
6422   return;
6423 }
6424
6425 // Return whether we need to make a PLT entry for a relocation of the
6426 // given type against a STT_GNU_IFUNC symbol.
6427
6428 template<int size, bool big_endian>
6429 bool
6430 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6431      Target_powerpc<size, big_endian>* target,
6432      Sized_relobj_file<size, big_endian>* object,
6433      unsigned int r_type,
6434      bool report_err)
6435 {
6436   // In non-pic code any reference will resolve to the plt call stub
6437   // for the ifunc symbol.
6438   if ((size == 32 || target->abiversion() >= 2)
6439       && !parameters->options().output_is_position_independent())
6440     return true;
6441
6442   switch (r_type)
6443     {
6444     // Word size refs from data sections are OK, but don't need a PLT entry.
6445     case elfcpp::R_POWERPC_ADDR32:
6446     case elfcpp::R_POWERPC_UADDR32:
6447       if (size == 32)
6448         return false;
6449       break;
6450
6451     case elfcpp::R_PPC64_ADDR64:
6452     case elfcpp::R_PPC64_UADDR64:
6453       if (size == 64)
6454         return false;
6455       break;
6456
6457     // GOT refs are good, but also don't need a PLT entry.
6458     case elfcpp::R_POWERPC_GOT16:
6459     case elfcpp::R_POWERPC_GOT16_LO:
6460     case elfcpp::R_POWERPC_GOT16_HI:
6461     case elfcpp::R_POWERPC_GOT16_HA:
6462     case elfcpp::R_PPC64_GOT16_DS:
6463     case elfcpp::R_PPC64_GOT16_LO_DS:
6464       return false;
6465
6466     // Function calls are good, and these do need a PLT entry.
6467     case elfcpp::R_POWERPC_ADDR24:
6468     case elfcpp::R_POWERPC_ADDR14:
6469     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6470     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6471     case elfcpp::R_POWERPC_REL24:
6472     case elfcpp::R_PPC_PLTREL24:
6473     case elfcpp::R_POWERPC_REL14:
6474     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6475     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6476       return true;
6477
6478     default:
6479       break;
6480     }
6481
6482   // Anything else is a problem.
6483   // If we are building a static executable, the libc startup function
6484   // responsible for applying indirect function relocations is going
6485   // to complain about the reloc type.
6486   // If we are building a dynamic executable, we will have a text
6487   // relocation.  The dynamic loader will set the text segment
6488   // writable and non-executable to apply text relocations.  So we'll
6489   // segfault when trying to run the indirection function to resolve
6490   // the reloc.
6491   if (report_err)
6492     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6493                object->name().c_str(), r_type);
6494   return false;
6495 }
6496
6497 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6498 // reloc.
6499
6500 static bool
6501 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6502 {
6503   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6504           || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6505           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6506           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6507           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6508           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6509           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6510           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6511           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6512           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6513           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6514           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6515           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6516           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6517           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6518           || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6519           || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6520               /* Exclude lfqu by testing reloc.  If relocs are ever
6521                  defined for the reduced D field in psq_lu then those
6522                  will need testing too.  */
6523               && r_type != elfcpp::R_PPC64_TOC16_LO
6524               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6525           || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6526               && (insn & 1) == 0)
6527           || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6528           || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6529               /* Exclude stfqu.  psq_stu as above for psq_lu.  */
6530               && r_type != elfcpp::R_PPC64_TOC16_LO
6531               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6532           || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6533               && (insn & 1) == 0));
6534 }
6535
6536 // Scan a relocation for a local symbol.
6537
6538 template<int size, bool big_endian>
6539 inline void
6540 Target_powerpc<size, big_endian>::Scan::local(
6541     Symbol_table* symtab,
6542     Layout* layout,
6543     Target_powerpc<size, big_endian>* target,
6544     Sized_relobj_file<size, big_endian>* object,
6545     unsigned int data_shndx,
6546     Output_section* output_section,
6547     const elfcpp::Rela<size, big_endian>& reloc,
6548     unsigned int r_type,
6549     const elfcpp::Sym<size, big_endian>& lsym,
6550     bool is_discarded)
6551 {
6552   this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6553
6554   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6555       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6556     {
6557       this->expect_tls_get_addr_call();
6558       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6559       if (tls_type != tls::TLSOPT_NONE)
6560         this->skip_next_tls_get_addr_call();
6561     }
6562   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6563            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6564     {
6565       this->expect_tls_get_addr_call();
6566       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6567       if (tls_type != tls::TLSOPT_NONE)
6568         this->skip_next_tls_get_addr_call();
6569     }
6570
6571   Powerpc_relobj<size, big_endian>* ppc_object
6572     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6573
6574   if (is_discarded)
6575     {
6576       if (size == 64
6577           && data_shndx == ppc_object->opd_shndx()
6578           && r_type == elfcpp::R_PPC64_ADDR64)
6579         ppc_object->set_opd_discard(reloc.get_r_offset());
6580       return;
6581     }
6582
6583   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6584   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6585   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6586     {
6587       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6588       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6589                           r_type, r_sym, reloc.get_r_addend());
6590       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6591     }
6592
6593   switch (r_type)
6594     {
6595     case elfcpp::R_POWERPC_NONE:
6596     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6597     case elfcpp::R_POWERPC_GNU_VTENTRY:
6598     case elfcpp::R_POWERPC_TLS:
6599     case elfcpp::R_PPC64_ENTRY:
6600       break;
6601
6602     case elfcpp::R_PPC64_TOC:
6603       {
6604         Output_data_got_powerpc<size, big_endian>* got
6605           = target->got_section(symtab, layout);
6606         if (parameters->options().output_is_position_independent())
6607           {
6608             Address off = reloc.get_r_offset();
6609             if (size == 64
6610                 && target->abiversion() < 2
6611                 && data_shndx == ppc_object->opd_shndx()
6612                 && ppc_object->get_opd_discard(off - 8))
6613               break;
6614
6615             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6616             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6617             rela_dyn->add_output_section_relative(got->output_section(),
6618                                                   elfcpp::R_POWERPC_RELATIVE,
6619                                                   output_section,
6620                                                   object, data_shndx, off,
6621                                                   symobj->toc_base_offset());
6622           }
6623       }
6624       break;
6625
6626     case elfcpp::R_PPC64_ADDR64:
6627     case elfcpp::R_PPC64_UADDR64:
6628     case elfcpp::R_POWERPC_ADDR32:
6629     case elfcpp::R_POWERPC_UADDR32:
6630     case elfcpp::R_POWERPC_ADDR24:
6631     case elfcpp::R_POWERPC_ADDR16:
6632     case elfcpp::R_POWERPC_ADDR16_LO:
6633     case elfcpp::R_POWERPC_ADDR16_HI:
6634     case elfcpp::R_POWERPC_ADDR16_HA:
6635     case elfcpp::R_POWERPC_UADDR16:
6636     case elfcpp::R_PPC64_ADDR16_HIGH:
6637     case elfcpp::R_PPC64_ADDR16_HIGHA:
6638     case elfcpp::R_PPC64_ADDR16_HIGHER:
6639     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6640     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6641     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6642     case elfcpp::R_PPC64_ADDR16_DS:
6643     case elfcpp::R_PPC64_ADDR16_LO_DS:
6644     case elfcpp::R_POWERPC_ADDR14:
6645     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6646     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6647       // If building a shared library (or a position-independent
6648       // executable), we need to create a dynamic relocation for
6649       // this location.
6650       if (parameters->options().output_is_position_independent()
6651           || (size == 64 && is_ifunc && target->abiversion() < 2))
6652         {
6653           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6654                                                              is_ifunc);
6655           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6656           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6657               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6658             {
6659               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6660                                      : elfcpp::R_POWERPC_RELATIVE);
6661               rela_dyn->add_local_relative(object, r_sym, dynrel,
6662                                            output_section, data_shndx,
6663                                            reloc.get_r_offset(),
6664                                            reloc.get_r_addend(), false);
6665             }
6666           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6667             {
6668               check_non_pic(object, r_type);
6669               rela_dyn->add_local(object, r_sym, r_type, output_section,
6670                                   data_shndx, reloc.get_r_offset(),
6671                                   reloc.get_r_addend());
6672             }
6673           else
6674             {
6675               gold_assert(lsym.get_st_value() == 0);
6676               unsigned int shndx = lsym.get_st_shndx();
6677               bool is_ordinary;
6678               shndx = object->adjust_sym_shndx(r_sym, shndx,
6679                                                &is_ordinary);
6680               if (!is_ordinary)
6681                 object->error(_("section symbol %u has bad shndx %u"),
6682                               r_sym, shndx);
6683               else
6684                 rela_dyn->add_local_section(object, shndx, r_type,
6685                                             output_section, data_shndx,
6686                                             reloc.get_r_offset());
6687             }
6688         }
6689       break;
6690
6691     case elfcpp::R_POWERPC_REL24:
6692     case elfcpp::R_PPC_PLTREL24:
6693     case elfcpp::R_PPC_LOCAL24PC:
6694     case elfcpp::R_POWERPC_REL14:
6695     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6696     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6697       if (!is_ifunc)
6698         {
6699           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6700           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6701                               r_type, r_sym, reloc.get_r_addend());
6702         }
6703       break;
6704
6705     case elfcpp::R_PPC64_TOCSAVE:
6706       // R_PPC64_TOCSAVE follows a call instruction to indicate the
6707       // caller has already saved r2 and thus a plt call stub need not
6708       // save r2.
6709       if (size == 64
6710           && target->mark_pltcall(ppc_object, data_shndx,
6711                                   reloc.get_r_offset() - 4, symtab))
6712         {
6713           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6714           unsigned int shndx = lsym.get_st_shndx();
6715           bool is_ordinary;
6716           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6717           if (!is_ordinary)
6718             object->error(_("tocsave symbol %u has bad shndx %u"),
6719                           r_sym, shndx);
6720           else
6721             target->add_tocsave(ppc_object, shndx,
6722                                 lsym.get_st_value() + reloc.get_r_addend());
6723         }
6724       break;
6725
6726     case elfcpp::R_PPC64_REL64:
6727     case elfcpp::R_POWERPC_REL32:
6728     case elfcpp::R_POWERPC_REL16:
6729     case elfcpp::R_POWERPC_REL16_LO:
6730     case elfcpp::R_POWERPC_REL16_HI:
6731     case elfcpp::R_POWERPC_REL16_HA:
6732     case elfcpp::R_POWERPC_REL16DX_HA:
6733     case elfcpp::R_POWERPC_SECTOFF:
6734     case elfcpp::R_POWERPC_SECTOFF_LO:
6735     case elfcpp::R_POWERPC_SECTOFF_HI:
6736     case elfcpp::R_POWERPC_SECTOFF_HA:
6737     case elfcpp::R_PPC64_SECTOFF_DS:
6738     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6739     case elfcpp::R_POWERPC_TPREL16:
6740     case elfcpp::R_POWERPC_TPREL16_LO:
6741     case elfcpp::R_POWERPC_TPREL16_HI:
6742     case elfcpp::R_POWERPC_TPREL16_HA:
6743     case elfcpp::R_PPC64_TPREL16_DS:
6744     case elfcpp::R_PPC64_TPREL16_LO_DS:
6745     case elfcpp::R_PPC64_TPREL16_HIGH:
6746     case elfcpp::R_PPC64_TPREL16_HIGHA:
6747     case elfcpp::R_PPC64_TPREL16_HIGHER:
6748     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6749     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6750     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6751     case elfcpp::R_POWERPC_DTPREL16:
6752     case elfcpp::R_POWERPC_DTPREL16_LO:
6753     case elfcpp::R_POWERPC_DTPREL16_HI:
6754     case elfcpp::R_POWERPC_DTPREL16_HA:
6755     case elfcpp::R_PPC64_DTPREL16_DS:
6756     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6757     case elfcpp::R_PPC64_DTPREL16_HIGH:
6758     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6759     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6760     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6761     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6762     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6763     case elfcpp::R_PPC64_TLSGD:
6764     case elfcpp::R_PPC64_TLSLD:
6765     case elfcpp::R_PPC64_ADDR64_LOCAL:
6766       break;
6767
6768     case elfcpp::R_POWERPC_GOT16:
6769     case elfcpp::R_POWERPC_GOT16_LO:
6770     case elfcpp::R_POWERPC_GOT16_HI:
6771     case elfcpp::R_POWERPC_GOT16_HA:
6772     case elfcpp::R_PPC64_GOT16_DS:
6773     case elfcpp::R_PPC64_GOT16_LO_DS:
6774       {
6775         // The symbol requires a GOT entry.
6776         Output_data_got_powerpc<size, big_endian>* got
6777           = target->got_section(symtab, layout);
6778         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6779
6780         if (!parameters->options().output_is_position_independent())
6781           {
6782             if (is_ifunc
6783                 && (size == 32 || target->abiversion() >= 2))
6784               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6785             else
6786               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6787           }
6788         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6789           {
6790             // If we are generating a shared object or a pie, this
6791             // symbol's GOT entry will be set by a dynamic relocation.
6792             unsigned int off;
6793             off = got->add_constant(0);
6794             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6795
6796             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6797                                                                is_ifunc);
6798             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6799                                    : elfcpp::R_POWERPC_RELATIVE);
6800             rela_dyn->add_local_relative(object, r_sym, dynrel,
6801                                          got, off, 0, false);
6802           }
6803       }
6804       break;
6805
6806     case elfcpp::R_PPC64_TOC16:
6807     case elfcpp::R_PPC64_TOC16_LO:
6808     case elfcpp::R_PPC64_TOC16_HI:
6809     case elfcpp::R_PPC64_TOC16_HA:
6810     case elfcpp::R_PPC64_TOC16_DS:
6811     case elfcpp::R_PPC64_TOC16_LO_DS:
6812       // We need a GOT section.
6813       target->got_section(symtab, layout);
6814       break;
6815
6816     case elfcpp::R_POWERPC_GOT_TLSGD16:
6817     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6818     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6819     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6820       {
6821         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6822         if (tls_type == tls::TLSOPT_NONE)
6823           {
6824             Output_data_got_powerpc<size, big_endian>* got
6825               = target->got_section(symtab, layout);
6826             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6827             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6828             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6829                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6830           }
6831         else if (tls_type == tls::TLSOPT_TO_LE)
6832           {
6833             // no GOT relocs needed for Local Exec.
6834           }
6835         else
6836           gold_unreachable();
6837       }
6838       break;
6839
6840     case elfcpp::R_POWERPC_GOT_TLSLD16:
6841     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6842     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6843     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6844       {
6845         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6846         if (tls_type == tls::TLSOPT_NONE)
6847           target->tlsld_got_offset(symtab, layout, object);
6848         else if (tls_type == tls::TLSOPT_TO_LE)
6849           {
6850             // no GOT relocs needed for Local Exec.
6851             if (parameters->options().emit_relocs())
6852               {
6853                 Output_section* os = layout->tls_segment()->first_section();
6854                 gold_assert(os != NULL);
6855                 os->set_needs_symtab_index();
6856               }
6857           }
6858         else
6859           gold_unreachable();
6860       }
6861       break;
6862
6863     case elfcpp::R_POWERPC_GOT_DTPREL16:
6864     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6865     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6866     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6867       {
6868         Output_data_got_powerpc<size, big_endian>* got
6869           = target->got_section(symtab, layout);
6870         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6871         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6872       }
6873       break;
6874
6875     case elfcpp::R_POWERPC_GOT_TPREL16:
6876     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6877     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6878     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6879       {
6880         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6881         if (tls_type == tls::TLSOPT_NONE)
6882           {
6883             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6884             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6885               {
6886                 Output_data_got_powerpc<size, big_endian>* got
6887                   = target->got_section(symtab, layout);
6888                 unsigned int off = got->add_constant(0);
6889                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6890
6891                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6892                 rela_dyn->add_symbolless_local_addend(object, r_sym,
6893                                                       elfcpp::R_POWERPC_TPREL,
6894                                                       got, off, 0);
6895               }
6896           }
6897         else if (tls_type == tls::TLSOPT_TO_LE)
6898           {
6899             // no GOT relocs needed for Local Exec.
6900           }
6901         else
6902           gold_unreachable();
6903       }
6904       break;
6905
6906     default:
6907       unsupported_reloc_local(object, r_type);
6908       break;
6909     }
6910
6911   if (size == 64
6912       && parameters->options().toc_optimize())
6913     {
6914       if (data_shndx == ppc_object->toc_shndx())
6915         {
6916           bool ok = true;
6917           if (r_type != elfcpp::R_PPC64_ADDR64
6918               || (is_ifunc && target->abiversion() < 2))
6919             ok = false;
6920           else if (parameters->options().output_is_position_independent())
6921             {
6922               if (is_ifunc)
6923                 ok = false;
6924               else
6925                 {
6926                   unsigned int shndx = lsym.get_st_shndx();
6927                   if (shndx >= elfcpp::SHN_LORESERVE
6928                       && shndx != elfcpp::SHN_XINDEX)
6929                     ok = false;
6930                 }
6931             }
6932           if (!ok)
6933             ppc_object->set_no_toc_opt(reloc.get_r_offset());
6934         }
6935
6936       enum {no_check, check_lo, check_ha} insn_check;
6937       switch (r_type)
6938         {
6939         default:
6940           insn_check = no_check;
6941           break;
6942
6943         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6944         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6945         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6946         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6947         case elfcpp::R_POWERPC_GOT16_HA:
6948         case elfcpp::R_PPC64_TOC16_HA:
6949           insn_check = check_ha;
6950           break;
6951
6952         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6953         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6954         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6955         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6956         case elfcpp::R_POWERPC_GOT16_LO:
6957         case elfcpp::R_PPC64_GOT16_LO_DS:
6958         case elfcpp::R_PPC64_TOC16_LO:
6959         case elfcpp::R_PPC64_TOC16_LO_DS:
6960           insn_check = check_lo;
6961           break;
6962         }
6963
6964       section_size_type slen;
6965       const unsigned char* view = NULL;
6966       if (insn_check != no_check)
6967         {
6968           view = ppc_object->section_contents(data_shndx, &slen, false);
6969           section_size_type off =
6970             convert_to_section_size_type(reloc.get_r_offset()) & -4;
6971           if (off < slen)
6972             {
6973               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6974               if (insn_check == check_lo
6975                   ? !ok_lo_toc_insn(insn, r_type)
6976                   : ((insn & ((0x3f << 26) | 0x1f << 16))
6977                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6978                 {
6979                   ppc_object->set_no_toc_opt();
6980                   gold_warning(_("%s: toc optimization is not supported "
6981                                  "for %#08x instruction"),
6982                                ppc_object->name().c_str(), insn);
6983                 }
6984             }
6985         }
6986
6987       switch (r_type)
6988         {
6989         default:
6990           break;
6991         case elfcpp::R_PPC64_TOC16:
6992         case elfcpp::R_PPC64_TOC16_LO:
6993         case elfcpp::R_PPC64_TOC16_HI:
6994         case elfcpp::R_PPC64_TOC16_HA:
6995         case elfcpp::R_PPC64_TOC16_DS:
6996         case elfcpp::R_PPC64_TOC16_LO_DS:
6997           unsigned int shndx = lsym.get_st_shndx();
6998           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6999           bool is_ordinary;
7000           shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7001           if (is_ordinary && shndx == ppc_object->toc_shndx())
7002             {
7003               Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
7004               if (dst_off < ppc_object->section_size(shndx))
7005                 {
7006                   bool ok = false;
7007                   if (r_type == elfcpp::R_PPC64_TOC16_HA)
7008                     ok = true;
7009                   else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7010                     {
7011                       // Need to check that the insn is a ld
7012                       if (!view)
7013                         view = ppc_object->section_contents(data_shndx,
7014                                                             &slen,
7015                                                             false);
7016                       section_size_type off =
7017                         (convert_to_section_size_type(reloc.get_r_offset())
7018                          + (big_endian ? -2 : 3));
7019                       if (off < slen
7020                           && (view[off] & (0x3f << 2)) == 58u << 2)
7021                         ok = true;
7022                     }
7023                   if (!ok)
7024                     ppc_object->set_no_toc_opt(dst_off);
7025                 }
7026             }
7027           break;
7028         }
7029     }
7030
7031   if (size == 32)
7032     {
7033       switch (r_type)
7034         {
7035         case elfcpp::R_POWERPC_REL32:
7036           if (ppc_object->got2_shndx() != 0
7037               && parameters->options().output_is_position_independent())
7038             {
7039               unsigned int shndx = lsym.get_st_shndx();
7040               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7041               bool is_ordinary;
7042               shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7043               if (is_ordinary && shndx == ppc_object->got2_shndx()
7044                   && (ppc_object->section_flags(data_shndx)
7045                       & elfcpp::SHF_EXECINSTR) != 0)
7046                 gold_error(_("%s: unsupported -mbss-plt code"),
7047                            ppc_object->name().c_str());
7048             }
7049           break;
7050         default:
7051           break;
7052         }
7053     }
7054
7055   switch (r_type)
7056     {
7057     case elfcpp::R_POWERPC_GOT_TLSLD16:
7058     case elfcpp::R_POWERPC_GOT_TLSGD16:
7059     case elfcpp::R_POWERPC_GOT_TPREL16:
7060     case elfcpp::R_POWERPC_GOT_DTPREL16:
7061     case elfcpp::R_POWERPC_GOT16:
7062     case elfcpp::R_PPC64_GOT16_DS:
7063     case elfcpp::R_PPC64_TOC16:
7064     case elfcpp::R_PPC64_TOC16_DS:
7065       ppc_object->set_has_small_toc_reloc();
7066     default:
7067       break;
7068     }
7069 }
7070
7071 // Report an unsupported relocation against a global symbol.
7072
7073 template<int size, bool big_endian>
7074 void
7075 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7076     Sized_relobj_file<size, big_endian>* object,
7077     unsigned int r_type,
7078     Symbol* gsym)
7079 {
7080   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7081              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7082 }
7083
7084 // Scan a relocation for a global symbol.
7085
7086 template<int size, bool big_endian>
7087 inline void
7088 Target_powerpc<size, big_endian>::Scan::global(
7089     Symbol_table* symtab,
7090     Layout* layout,
7091     Target_powerpc<size, big_endian>* target,
7092     Sized_relobj_file<size, big_endian>* object,
7093     unsigned int data_shndx,
7094     Output_section* output_section,
7095     const elfcpp::Rela<size, big_endian>& reloc,
7096     unsigned int r_type,
7097     Symbol* gsym)
7098 {
7099   if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7100       == Track_tls::SKIP)
7101     return;
7102
7103   if (target->replace_tls_get_addr(gsym))
7104     // Change a __tls_get_addr reference to __tls_get_addr_opt
7105     // so dynamic relocs are emitted against the latter symbol.
7106     gsym = target->tls_get_addr_opt();
7107
7108   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7109       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7110     {
7111       this->expect_tls_get_addr_call();
7112       const bool final = gsym->final_value_is_known();
7113       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7114       if (tls_type != tls::TLSOPT_NONE)
7115         this->skip_next_tls_get_addr_call();
7116     }
7117   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7118            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7119     {
7120       this->expect_tls_get_addr_call();
7121       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7122       if (tls_type != tls::TLSOPT_NONE)
7123         this->skip_next_tls_get_addr_call();
7124     }
7125
7126   Powerpc_relobj<size, big_endian>* ppc_object
7127     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7128
7129   // A STT_GNU_IFUNC symbol may require a PLT entry.
7130   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7131   bool pushed_ifunc = false;
7132   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7133     {
7134       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7135       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7136                           r_type, r_sym, reloc.get_r_addend());
7137       target->make_plt_entry(symtab, layout, gsym);
7138       pushed_ifunc = true;
7139     }
7140
7141   switch (r_type)
7142     {
7143     case elfcpp::R_POWERPC_NONE:
7144     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7145     case elfcpp::R_POWERPC_GNU_VTENTRY:
7146     case elfcpp::R_PPC_LOCAL24PC:
7147     case elfcpp::R_POWERPC_TLS:
7148     case elfcpp::R_PPC64_ENTRY:
7149       break;
7150
7151     case elfcpp::R_PPC64_TOC:
7152       {
7153         Output_data_got_powerpc<size, big_endian>* got
7154           = target->got_section(symtab, layout);
7155         if (parameters->options().output_is_position_independent())
7156           {
7157             Address off = reloc.get_r_offset();
7158             if (size == 64
7159                 && data_shndx == ppc_object->opd_shndx()
7160                 && ppc_object->get_opd_discard(off - 8))
7161               break;
7162
7163             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7164             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7165             if (data_shndx != ppc_object->opd_shndx())
7166               symobj = static_cast
7167                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7168             rela_dyn->add_output_section_relative(got->output_section(),
7169                                                   elfcpp::R_POWERPC_RELATIVE,
7170                                                   output_section,
7171                                                   object, data_shndx, off,
7172                                                   symobj->toc_base_offset());
7173           }
7174       }
7175       break;
7176
7177     case elfcpp::R_PPC64_ADDR64:
7178       if (size == 64
7179           && target->abiversion() < 2
7180           && data_shndx == ppc_object->opd_shndx()
7181           && (gsym->is_defined_in_discarded_section()
7182               || gsym->object() != object))
7183         {
7184           ppc_object->set_opd_discard(reloc.get_r_offset());
7185           break;
7186         }
7187       // Fall through.
7188     case elfcpp::R_PPC64_UADDR64:
7189     case elfcpp::R_POWERPC_ADDR32:
7190     case elfcpp::R_POWERPC_UADDR32:
7191     case elfcpp::R_POWERPC_ADDR24:
7192     case elfcpp::R_POWERPC_ADDR16:
7193     case elfcpp::R_POWERPC_ADDR16_LO:
7194     case elfcpp::R_POWERPC_ADDR16_HI:
7195     case elfcpp::R_POWERPC_ADDR16_HA:
7196     case elfcpp::R_POWERPC_UADDR16:
7197     case elfcpp::R_PPC64_ADDR16_HIGH:
7198     case elfcpp::R_PPC64_ADDR16_HIGHA:
7199     case elfcpp::R_PPC64_ADDR16_HIGHER:
7200     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7201     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7202     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7203     case elfcpp::R_PPC64_ADDR16_DS:
7204     case elfcpp::R_PPC64_ADDR16_LO_DS:
7205     case elfcpp::R_POWERPC_ADDR14:
7206     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7207     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7208       {
7209         // Make a PLT entry if necessary.
7210         if (gsym->needs_plt_entry())
7211           {
7212             // Since this is not a PC-relative relocation, we may be
7213             // taking the address of a function. In that case we need to
7214             // set the entry in the dynamic symbol table to the address of
7215             // the PLT call stub.
7216             bool need_ifunc_plt = false;
7217             if ((size == 32 || target->abiversion() >= 2)
7218                 && gsym->is_from_dynobj()
7219                 && !parameters->options().output_is_position_independent())
7220               {
7221                 gsym->set_needs_dynsym_value();
7222                 need_ifunc_plt = true;
7223               }
7224             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7225               {
7226                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7227                 target->push_branch(ppc_object, data_shndx,
7228                                     reloc.get_r_offset(), r_type, r_sym,
7229                                     reloc.get_r_addend());
7230                 target->make_plt_entry(symtab, layout, gsym);
7231               }
7232           }
7233         // Make a dynamic relocation if necessary.
7234         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7235             || (size == 64 && is_ifunc && target->abiversion() < 2))
7236           {
7237             if (!parameters->options().output_is_position_independent()
7238                 && gsym->may_need_copy_reloc())
7239               {
7240                 target->copy_reloc(symtab, layout, object,
7241                                    data_shndx, output_section, gsym, reloc);
7242               }
7243             else if ((((size == 32
7244                         && r_type == elfcpp::R_POWERPC_ADDR32)
7245                        || (size == 64
7246                            && r_type == elfcpp::R_PPC64_ADDR64
7247                            && target->abiversion() >= 2))
7248                       && gsym->can_use_relative_reloc(false)
7249                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
7250                            && parameters->options().shared()))
7251                      || (size == 64
7252                          && r_type == elfcpp::R_PPC64_ADDR64
7253                          && target->abiversion() < 2
7254                          && (gsym->can_use_relative_reloc(false)
7255                              || data_shndx == ppc_object->opd_shndx())))
7256               {
7257                 Reloc_section* rela_dyn
7258                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7259                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7260                                        : elfcpp::R_POWERPC_RELATIVE);
7261                 rela_dyn->add_symbolless_global_addend(
7262                     gsym, dynrel, output_section, object, data_shndx,
7263                     reloc.get_r_offset(), reloc.get_r_addend());
7264               }
7265             else
7266               {
7267                 Reloc_section* rela_dyn
7268                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7269                 check_non_pic(object, r_type);
7270                 rela_dyn->add_global(gsym, r_type, output_section,
7271                                      object, data_shndx,
7272                                      reloc.get_r_offset(),
7273                                      reloc.get_r_addend());
7274
7275                 if (size == 64
7276                     && parameters->options().toc_optimize()
7277                     && data_shndx == ppc_object->toc_shndx())
7278                   ppc_object->set_no_toc_opt(reloc.get_r_offset());
7279               }
7280           }
7281       }
7282       break;
7283
7284     case elfcpp::R_PPC_PLTREL24:
7285     case elfcpp::R_POWERPC_REL24:
7286       if (!is_ifunc)
7287         {
7288           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7289           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7290                               r_type, r_sym, reloc.get_r_addend());
7291           if (gsym->needs_plt_entry()
7292               || (!gsym->final_value_is_known()
7293                   && (gsym->is_undefined()
7294                       || gsym->is_from_dynobj()
7295                       || gsym->is_preemptible())))
7296             target->make_plt_entry(symtab, layout, gsym);
7297         }
7298       // Fall through.
7299
7300     case elfcpp::R_PPC64_REL64:
7301     case elfcpp::R_POWERPC_REL32:
7302       // Make a dynamic relocation if necessary.
7303       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7304         {
7305           if (!parameters->options().output_is_position_independent()
7306               && gsym->may_need_copy_reloc())
7307             {
7308               target->copy_reloc(symtab, layout, object,
7309                                  data_shndx, output_section, gsym,
7310                                  reloc);
7311             }
7312           else
7313             {
7314               Reloc_section* rela_dyn
7315                 = target->rela_dyn_section(symtab, layout, is_ifunc);
7316               check_non_pic(object, r_type);
7317               rela_dyn->add_global(gsym, r_type, output_section, object,
7318                                    data_shndx, reloc.get_r_offset(),
7319                                    reloc.get_r_addend());
7320             }
7321         }
7322       break;
7323
7324     case elfcpp::R_POWERPC_REL14:
7325     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7326     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7327       if (!is_ifunc)
7328         {
7329           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7330           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7331                               r_type, r_sym, reloc.get_r_addend());
7332         }
7333       break;
7334
7335     case elfcpp::R_PPC64_TOCSAVE:
7336       // R_PPC64_TOCSAVE follows a call instruction to indicate the
7337       // caller has already saved r2 and thus a plt call stub need not
7338       // save r2.
7339       if (size == 64
7340           && target->mark_pltcall(ppc_object, data_shndx,
7341                                   reloc.get_r_offset() - 4, symtab))
7342         {
7343           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7344           bool is_ordinary;
7345           unsigned int shndx = gsym->shndx(&is_ordinary);
7346           if (!is_ordinary)
7347             object->error(_("tocsave symbol %u has bad shndx %u"),
7348                           r_sym, shndx);
7349           else
7350             {
7351               Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7352               target->add_tocsave(ppc_object, shndx,
7353                                   sym->value() + reloc.get_r_addend());
7354             }
7355         }
7356       break;
7357
7358     case elfcpp::R_POWERPC_REL16:
7359     case elfcpp::R_POWERPC_REL16_LO:
7360     case elfcpp::R_POWERPC_REL16_HI:
7361     case elfcpp::R_POWERPC_REL16_HA:
7362     case elfcpp::R_POWERPC_REL16DX_HA:
7363     case elfcpp::R_POWERPC_SECTOFF:
7364     case elfcpp::R_POWERPC_SECTOFF_LO:
7365     case elfcpp::R_POWERPC_SECTOFF_HI:
7366     case elfcpp::R_POWERPC_SECTOFF_HA:
7367     case elfcpp::R_PPC64_SECTOFF_DS:
7368     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7369     case elfcpp::R_POWERPC_TPREL16:
7370     case elfcpp::R_POWERPC_TPREL16_LO:
7371     case elfcpp::R_POWERPC_TPREL16_HI:
7372     case elfcpp::R_POWERPC_TPREL16_HA:
7373     case elfcpp::R_PPC64_TPREL16_DS:
7374     case elfcpp::R_PPC64_TPREL16_LO_DS:
7375     case elfcpp::R_PPC64_TPREL16_HIGH:
7376     case elfcpp::R_PPC64_TPREL16_HIGHA:
7377     case elfcpp::R_PPC64_TPREL16_HIGHER:
7378     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7379     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7380     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7381     case elfcpp::R_POWERPC_DTPREL16:
7382     case elfcpp::R_POWERPC_DTPREL16_LO:
7383     case elfcpp::R_POWERPC_DTPREL16_HI:
7384     case elfcpp::R_POWERPC_DTPREL16_HA:
7385     case elfcpp::R_PPC64_DTPREL16_DS:
7386     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7387     case elfcpp::R_PPC64_DTPREL16_HIGH:
7388     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7389     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7390     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7391     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7392     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7393     case elfcpp::R_PPC64_TLSGD:
7394     case elfcpp::R_PPC64_TLSLD:
7395     case elfcpp::R_PPC64_ADDR64_LOCAL:
7396       break;
7397
7398     case elfcpp::R_POWERPC_GOT16:
7399     case elfcpp::R_POWERPC_GOT16_LO:
7400     case elfcpp::R_POWERPC_GOT16_HI:
7401     case elfcpp::R_POWERPC_GOT16_HA:
7402     case elfcpp::R_PPC64_GOT16_DS:
7403     case elfcpp::R_PPC64_GOT16_LO_DS:
7404       {
7405         // The symbol requires a GOT entry.
7406         Output_data_got_powerpc<size, big_endian>* got;
7407
7408         got = target->got_section(symtab, layout);
7409         if (gsym->final_value_is_known())
7410           {
7411             if (is_ifunc
7412                 && (size == 32 || target->abiversion() >= 2))
7413               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7414             else
7415               got->add_global(gsym, GOT_TYPE_STANDARD);
7416           }
7417         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7418           {
7419             // If we are generating a shared object or a pie, this
7420             // symbol's GOT entry will be set by a dynamic relocation.
7421             unsigned int off = got->add_constant(0);
7422             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7423
7424             Reloc_section* rela_dyn
7425               = target->rela_dyn_section(symtab, layout, is_ifunc);
7426
7427             if (gsym->can_use_relative_reloc(false)
7428                 && !((size == 32
7429                       || target->abiversion() >= 2)
7430                      && gsym->visibility() == elfcpp::STV_PROTECTED
7431                      && parameters->options().shared()))
7432               {
7433                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7434                                        : elfcpp::R_POWERPC_RELATIVE);
7435                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7436               }
7437             else
7438               {
7439                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7440                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7441               }
7442           }
7443       }
7444       break;
7445
7446     case elfcpp::R_PPC64_TOC16:
7447     case elfcpp::R_PPC64_TOC16_LO:
7448     case elfcpp::R_PPC64_TOC16_HI:
7449     case elfcpp::R_PPC64_TOC16_HA:
7450     case elfcpp::R_PPC64_TOC16_DS:
7451     case elfcpp::R_PPC64_TOC16_LO_DS:
7452       // We need a GOT section.
7453       target->got_section(symtab, layout);
7454       break;
7455
7456     case elfcpp::R_POWERPC_GOT_TLSGD16:
7457     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7458     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7459     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7460       {
7461         const bool final = gsym->final_value_is_known();
7462         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7463         if (tls_type == tls::TLSOPT_NONE)
7464           {
7465             Output_data_got_powerpc<size, big_endian>* got
7466               = target->got_section(symtab, layout);
7467             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7468             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7469                                           elfcpp::R_POWERPC_DTPMOD,
7470                                           elfcpp::R_POWERPC_DTPREL);
7471           }
7472         else if (tls_type == tls::TLSOPT_TO_IE)
7473           {
7474             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7475               {
7476                 Output_data_got_powerpc<size, big_endian>* got
7477                   = target->got_section(symtab, layout);
7478                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7479                 if (gsym->is_undefined()
7480                     || gsym->is_from_dynobj())
7481                   {
7482                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7483                                              elfcpp::R_POWERPC_TPREL);
7484                   }
7485                 else
7486                   {
7487                     unsigned int off = got->add_constant(0);
7488                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7489                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7490                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7491                                                            got, off, 0);
7492                   }
7493               }
7494           }
7495         else if (tls_type == tls::TLSOPT_TO_LE)
7496           {
7497             // no GOT relocs needed for Local Exec.
7498           }
7499         else
7500           gold_unreachable();
7501       }
7502       break;
7503
7504     case elfcpp::R_POWERPC_GOT_TLSLD16:
7505     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7506     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7507     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7508       {
7509         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7510         if (tls_type == tls::TLSOPT_NONE)
7511           target->tlsld_got_offset(symtab, layout, object);
7512         else if (tls_type == tls::TLSOPT_TO_LE)
7513           {
7514             // no GOT relocs needed for Local Exec.
7515             if (parameters->options().emit_relocs())
7516               {
7517                 Output_section* os = layout->tls_segment()->first_section();
7518                 gold_assert(os != NULL);
7519                 os->set_needs_symtab_index();
7520               }
7521           }
7522         else
7523           gold_unreachable();
7524       }
7525       break;
7526
7527     case elfcpp::R_POWERPC_GOT_DTPREL16:
7528     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7529     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7530     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7531       {
7532         Output_data_got_powerpc<size, big_endian>* got
7533           = target->got_section(symtab, layout);
7534         if (!gsym->final_value_is_known()
7535             && (gsym->is_from_dynobj()
7536                 || gsym->is_undefined()
7537                 || gsym->is_preemptible()))
7538           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7539                                    target->rela_dyn_section(layout),
7540                                    elfcpp::R_POWERPC_DTPREL);
7541         else
7542           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7543       }
7544       break;
7545
7546     case elfcpp::R_POWERPC_GOT_TPREL16:
7547     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7548     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7549     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7550       {
7551         const bool final = gsym->final_value_is_known();
7552         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7553         if (tls_type == tls::TLSOPT_NONE)
7554           {
7555             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7556               {
7557                 Output_data_got_powerpc<size, big_endian>* got
7558                   = target->got_section(symtab, layout);
7559                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7560                 if (gsym->is_undefined()
7561                     || gsym->is_from_dynobj())
7562                   {
7563                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7564                                              elfcpp::R_POWERPC_TPREL);
7565                   }
7566                 else
7567                   {
7568                     unsigned int off = got->add_constant(0);
7569                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7570                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7571                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7572                                                            got, off, 0);
7573                   }
7574               }
7575           }
7576         else if (tls_type == tls::TLSOPT_TO_LE)
7577           {
7578             // no GOT relocs needed for Local Exec.
7579           }
7580         else
7581           gold_unreachable();
7582       }
7583       break;
7584
7585     default:
7586       unsupported_reloc_global(object, r_type, gsym);
7587       break;
7588     }
7589
7590   if (size == 64
7591       && parameters->options().toc_optimize())
7592     {
7593       if (data_shndx == ppc_object->toc_shndx())
7594         {
7595           bool ok = true;
7596           if (r_type != elfcpp::R_PPC64_ADDR64
7597               || (is_ifunc && target->abiversion() < 2))
7598             ok = false;
7599           else if (parameters->options().output_is_position_independent()
7600                    && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7601             ok = false;
7602           if (!ok)
7603             ppc_object->set_no_toc_opt(reloc.get_r_offset());
7604         }
7605
7606       enum {no_check, check_lo, check_ha} insn_check;
7607       switch (r_type)
7608         {
7609         default:
7610           insn_check = no_check;
7611           break;
7612
7613         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7614         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7615         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7616         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7617         case elfcpp::R_POWERPC_GOT16_HA:
7618         case elfcpp::R_PPC64_TOC16_HA:
7619           insn_check = check_ha;
7620           break;
7621
7622         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7623         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7624         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7625         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7626         case elfcpp::R_POWERPC_GOT16_LO:
7627         case elfcpp::R_PPC64_GOT16_LO_DS:
7628         case elfcpp::R_PPC64_TOC16_LO:
7629         case elfcpp::R_PPC64_TOC16_LO_DS:
7630           insn_check = check_lo;
7631           break;
7632         }
7633
7634       section_size_type slen;
7635       const unsigned char* view = NULL;
7636       if (insn_check != no_check)
7637         {
7638           view = ppc_object->section_contents(data_shndx, &slen, false);
7639           section_size_type off =
7640             convert_to_section_size_type(reloc.get_r_offset()) & -4;
7641           if (off < slen)
7642             {
7643               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7644               if (insn_check == check_lo
7645                   ? !ok_lo_toc_insn(insn, r_type)
7646                   : ((insn & ((0x3f << 26) | 0x1f << 16))
7647                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7648                 {
7649                   ppc_object->set_no_toc_opt();
7650                   gold_warning(_("%s: toc optimization is not supported "
7651                                  "for %#08x instruction"),
7652                                ppc_object->name().c_str(), insn);
7653                 }
7654             }
7655         }
7656
7657       switch (r_type)
7658         {
7659         default:
7660           break;
7661         case elfcpp::R_PPC64_TOC16:
7662         case elfcpp::R_PPC64_TOC16_LO:
7663         case elfcpp::R_PPC64_TOC16_HI:
7664         case elfcpp::R_PPC64_TOC16_HA:
7665         case elfcpp::R_PPC64_TOC16_DS:
7666         case elfcpp::R_PPC64_TOC16_LO_DS:
7667           if (gsym->source() == Symbol::FROM_OBJECT
7668               && !gsym->object()->is_dynamic())
7669             {
7670               Powerpc_relobj<size, big_endian>* sym_object
7671                 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7672               bool is_ordinary;
7673               unsigned int shndx = gsym->shndx(&is_ordinary);
7674               if (shndx == sym_object->toc_shndx())
7675                 {
7676                   Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7677                   Address dst_off = sym->value() + reloc.get_r_addend();
7678                   if (dst_off < sym_object->section_size(shndx))
7679                     {
7680                       bool ok = false;
7681                       if (r_type == elfcpp::R_PPC64_TOC16_HA)
7682                         ok = true;
7683                       else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7684                         {
7685                           // Need to check that the insn is a ld
7686                           if (!view)
7687                             view = ppc_object->section_contents(data_shndx,
7688                                                                 &slen,
7689                                                                 false);
7690                           section_size_type off =
7691                             (convert_to_section_size_type(reloc.get_r_offset())
7692                              + (big_endian ? -2 : 3));
7693                           if (off < slen
7694                               && (view[off] & (0x3f << 2)) == (58u << 2))
7695                             ok = true;
7696                         }
7697                       if (!ok)
7698                         sym_object->set_no_toc_opt(dst_off);
7699                     }
7700                 }
7701             }
7702           break;
7703         }
7704     }
7705
7706   if (size == 32)
7707     {
7708       switch (r_type)
7709         {
7710         case elfcpp::R_PPC_LOCAL24PC:
7711           if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7712             gold_error(_("%s: unsupported -mbss-plt code"),
7713                        ppc_object->name().c_str());
7714           break;
7715         default:
7716           break;
7717         }
7718     }
7719
7720   switch (r_type)
7721     {
7722     case elfcpp::R_POWERPC_GOT_TLSLD16:
7723     case elfcpp::R_POWERPC_GOT_TLSGD16:
7724     case elfcpp::R_POWERPC_GOT_TPREL16:
7725     case elfcpp::R_POWERPC_GOT_DTPREL16:
7726     case elfcpp::R_POWERPC_GOT16:
7727     case elfcpp::R_PPC64_GOT16_DS:
7728     case elfcpp::R_PPC64_TOC16:
7729     case elfcpp::R_PPC64_TOC16_DS:
7730       ppc_object->set_has_small_toc_reloc();
7731     default:
7732       break;
7733     }
7734 }
7735
7736 // Process relocations for gc.
7737
7738 template<int size, bool big_endian>
7739 void
7740 Target_powerpc<size, big_endian>::gc_process_relocs(
7741     Symbol_table* symtab,
7742     Layout* layout,
7743     Sized_relobj_file<size, big_endian>* object,
7744     unsigned int data_shndx,
7745     unsigned int,
7746     const unsigned char* prelocs,
7747     size_t reloc_count,
7748     Output_section* output_section,
7749     bool needs_special_offset_handling,
7750     size_t local_symbol_count,
7751     const unsigned char* plocal_symbols)
7752 {
7753   typedef Target_powerpc<size, big_endian> Powerpc;
7754   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7755       Classify_reloc;
7756
7757   Powerpc_relobj<size, big_endian>* ppc_object
7758     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7759   if (size == 64)
7760     ppc_object->set_opd_valid();
7761   if (size == 64 && data_shndx == ppc_object->opd_shndx())
7762     {
7763       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7764       for (p = ppc_object->access_from_map()->begin();
7765            p != ppc_object->access_from_map()->end();
7766            ++p)
7767         {
7768           Address dst_off = p->first;
7769           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7770           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7771           for (s = p->second.begin(); s != p->second.end(); ++s)
7772             {
7773               Relobj* src_obj = s->first;
7774               unsigned int src_indx = s->second;
7775               symtab->gc()->add_reference(src_obj, src_indx,
7776                                           ppc_object, dst_indx);
7777             }
7778           p->second.clear();
7779         }
7780       ppc_object->access_from_map()->clear();
7781       ppc_object->process_gc_mark(symtab);
7782       // Don't look at .opd relocs as .opd will reference everything.
7783       return;
7784     }
7785
7786   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7787     symtab,
7788     layout,
7789     this,
7790     object,
7791     data_shndx,
7792     prelocs,
7793     reloc_count,
7794     output_section,
7795     needs_special_offset_handling,
7796     local_symbol_count,
7797     plocal_symbols);
7798 }
7799
7800 // Handle target specific gc actions when adding a gc reference from
7801 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7802 // and DST_OFF.  For powerpc64, this adds a referenc to the code
7803 // section of a function descriptor.
7804
7805 template<int size, bool big_endian>
7806 void
7807 Target_powerpc<size, big_endian>::do_gc_add_reference(
7808     Symbol_table* symtab,
7809     Relobj* src_obj,
7810     unsigned int src_shndx,
7811     Relobj* dst_obj,
7812     unsigned int dst_shndx,
7813     Address dst_off) const
7814 {
7815   if (size != 64 || dst_obj->is_dynamic())
7816     return;
7817
7818   Powerpc_relobj<size, big_endian>* ppc_object
7819     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7820   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7821     {
7822       if (ppc_object->opd_valid())
7823         {
7824           dst_shndx = ppc_object->get_opd_ent(dst_off);
7825           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7826         }
7827       else
7828         {
7829           // If we haven't run scan_opd_relocs, we must delay
7830           // processing this function descriptor reference.
7831           ppc_object->add_reference(src_obj, src_shndx, dst_off);
7832         }
7833     }
7834 }
7835
7836 // Add any special sections for this symbol to the gc work list.
7837 // For powerpc64, this adds the code section of a function
7838 // descriptor.
7839
7840 template<int size, bool big_endian>
7841 void
7842 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7843     Symbol_table* symtab,
7844     Symbol* sym) const
7845 {
7846   if (size == 64)
7847     {
7848       Powerpc_relobj<size, big_endian>* ppc_object
7849         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7850       bool is_ordinary;
7851       unsigned int shndx = sym->shndx(&is_ordinary);
7852       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7853         {
7854           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7855           Address dst_off = gsym->value();
7856           if (ppc_object->opd_valid())
7857             {
7858               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7859               symtab->gc()->worklist().push_back(Section_id(ppc_object,
7860                                                             dst_indx));
7861             }
7862           else
7863             ppc_object->add_gc_mark(dst_off);
7864         }
7865     }
7866 }
7867
7868 // For a symbol location in .opd, set LOC to the location of the
7869 // function entry.
7870
7871 template<int size, bool big_endian>
7872 void
7873 Target_powerpc<size, big_endian>::do_function_location(
7874     Symbol_location* loc) const
7875 {
7876   if (size == 64 && loc->shndx != 0)
7877     {
7878       if (loc->object->is_dynamic())
7879         {
7880           Powerpc_dynobj<size, big_endian>* ppc_object
7881             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7882           if (loc->shndx == ppc_object->opd_shndx())
7883             {
7884               Address dest_off;
7885               Address off = loc->offset - ppc_object->opd_address();
7886               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7887               loc->offset = dest_off;
7888             }
7889         }
7890       else
7891         {
7892           const Powerpc_relobj<size, big_endian>* ppc_object
7893             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7894           if (loc->shndx == ppc_object->opd_shndx())
7895             {
7896               Address dest_off;
7897               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7898               loc->offset = dest_off;
7899             }
7900         }
7901     }
7902 }
7903
7904 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7905 // compiled with -fsplit-stack.  The function calls non-split-stack
7906 // code.  Change the function to ensure it has enough stack space to
7907 // call some random function.
7908
7909 template<int size, bool big_endian>
7910 void
7911 Target_powerpc<size, big_endian>::do_calls_non_split(
7912     Relobj* object,
7913     unsigned int shndx,
7914     section_offset_type fnoffset,
7915     section_size_type fnsize,
7916     const unsigned char* prelocs,
7917     size_t reloc_count,
7918     unsigned char* view,
7919     section_size_type view_size,
7920     std::string* from,
7921     std::string* to) const
7922 {
7923   // 32-bit not supported.
7924   if (size == 32)
7925     {
7926       // warn
7927       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7928                                  prelocs, reloc_count, view, view_size,
7929                                  from, to);
7930       return;
7931     }
7932
7933   // The function always starts with
7934   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
7935   //    addis %r12,%r1,-allocate@ha
7936   //    addi %r12,%r12,-allocate@l
7937   //    cmpld %r12,%r0
7938   // but note that the addis or addi may be replaced with a nop
7939
7940   unsigned char *entry = view + fnoffset;
7941   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7942
7943   if ((insn & 0xffff0000) == addis_2_12)
7944     {
7945       /* Skip ELFv2 global entry code.  */
7946       entry += 8;
7947       insn = elfcpp::Swap<32, big_endian>::readval(entry);
7948     }
7949
7950   unsigned char *pinsn = entry;
7951   bool ok = false;
7952   const uint32_t ld_private_ss = 0xe80d8fc0;
7953   if (insn == ld_private_ss)
7954     {
7955       int32_t allocate = 0;
7956       while (1)
7957         {
7958           pinsn += 4;
7959           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7960           if ((insn & 0xffff0000) == addis_12_1)
7961             allocate += (insn & 0xffff) << 16;
7962           else if ((insn & 0xffff0000) == addi_12_1
7963                    || (insn & 0xffff0000) == addi_12_12)
7964             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7965           else if (insn != nop)
7966             break;
7967         }
7968       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7969         {
7970           int extra = parameters->options().split_stack_adjust_size();
7971           allocate -= extra;
7972           if (allocate >= 0 || extra < 0)
7973             {
7974               object->error(_("split-stack stack size overflow at "
7975                               "section %u offset %0zx"),
7976                             shndx, static_cast<size_t>(fnoffset));
7977               return;
7978             }
7979           pinsn = entry + 4;
7980           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7981           if (insn != addis_12_1)
7982             {
7983               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7984               pinsn += 4;
7985               insn = addi_12_12 | (allocate & 0xffff);
7986               if (insn != addi_12_12)
7987                 {
7988                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7989                   pinsn += 4;
7990                 }
7991             }
7992           else
7993             {
7994               insn = addi_12_1 | (allocate & 0xffff);
7995               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7996               pinsn += 4;
7997             }
7998           if (pinsn != entry + 12)
7999             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
8000
8001           ok = true;
8002         }
8003     }
8004
8005   if (!ok)
8006     {
8007       if (!object->has_no_split_stack())
8008         object->error(_("failed to match split-stack sequence at "
8009                         "section %u offset %0zx"),
8010                       shndx, static_cast<size_t>(fnoffset));
8011     }
8012 }
8013
8014 // Scan relocations for a section.
8015
8016 template<int size, bool big_endian>
8017 void
8018 Target_powerpc<size, big_endian>::scan_relocs(
8019     Symbol_table* symtab,
8020     Layout* layout,
8021     Sized_relobj_file<size, big_endian>* object,
8022     unsigned int data_shndx,
8023     unsigned int sh_type,
8024     const unsigned char* prelocs,
8025     size_t reloc_count,
8026     Output_section* output_section,
8027     bool needs_special_offset_handling,
8028     size_t local_symbol_count,
8029     const unsigned char* plocal_symbols)
8030 {
8031   typedef Target_powerpc<size, big_endian> Powerpc;
8032   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8033       Classify_reloc;
8034
8035   if (!this->plt_localentry0_init_)
8036     {
8037       bool plt_localentry0 = false;
8038       if (size == 64
8039           && this->abiversion() >= 2)
8040         {
8041           if (parameters->options().user_set_plt_localentry())
8042             plt_localentry0 = parameters->options().plt_localentry();
8043           if (plt_localentry0
8044               && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8045             gold_warning(_("--plt-localentry is especially dangerous without "
8046                            "ld.so support to detect ABI violations"));
8047         }
8048       this->plt_localentry0_ = plt_localentry0;
8049       this->plt_localentry0_init_ = true;
8050     }
8051
8052   if (sh_type == elfcpp::SHT_REL)
8053     {
8054       gold_error(_("%s: unsupported REL reloc section"),
8055                  object->name().c_str());
8056       return;
8057     }
8058
8059   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8060     symtab,
8061     layout,
8062     this,
8063     object,
8064     data_shndx,
8065     prelocs,
8066     reloc_count,
8067     output_section,
8068     needs_special_offset_handling,
8069     local_symbol_count,
8070     plocal_symbols);
8071 }
8072
8073 // Functor class for processing the global symbol table.
8074 // Removes symbols defined on discarded opd entries.
8075
8076 template<bool big_endian>
8077 class Global_symbol_visitor_opd
8078 {
8079  public:
8080   Global_symbol_visitor_opd()
8081   { }
8082
8083   void
8084   operator()(Sized_symbol<64>* sym)
8085   {
8086     if (sym->has_symtab_index()
8087         || sym->source() != Symbol::FROM_OBJECT
8088         || !sym->in_real_elf())
8089       return;
8090
8091     if (sym->object()->is_dynamic())
8092       return;
8093
8094     Powerpc_relobj<64, big_endian>* symobj
8095       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8096     if (symobj->opd_shndx() == 0)
8097       return;
8098
8099     bool is_ordinary;
8100     unsigned int shndx = sym->shndx(&is_ordinary);
8101     if (shndx == symobj->opd_shndx()
8102         && symobj->get_opd_discard(sym->value()))
8103       {
8104         sym->set_undefined();
8105         sym->set_visibility(elfcpp::STV_DEFAULT);
8106         sym->set_is_defined_in_discarded_section();
8107         sym->set_symtab_index(-1U);
8108       }
8109   }
8110 };
8111
8112 template<int size, bool big_endian>
8113 void
8114 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8115     Layout* layout,
8116     Symbol_table* symtab)
8117 {
8118   if (size == 64)
8119     {
8120       Output_data_save_res<size, big_endian>* savres
8121         = new Output_data_save_res<size, big_endian>(symtab);
8122       this->savres_section_ = savres;
8123       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8124                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8125                                       savres, ORDER_TEXT, false);
8126     }
8127 }
8128
8129 // Sort linker created .got section first (for the header), then input
8130 // sections belonging to files using small model code.
8131
8132 template<bool big_endian>
8133 class Sort_toc_sections
8134 {
8135  public:
8136   bool
8137   operator()(const Output_section::Input_section& is1,
8138              const Output_section::Input_section& is2) const
8139   {
8140     if (!is1.is_input_section() && is2.is_input_section())
8141       return true;
8142     bool small1
8143       = (is1.is_input_section()
8144          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8145              ->has_small_toc_reloc()));
8146     bool small2
8147       = (is2.is_input_section()
8148          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8149              ->has_small_toc_reloc()));
8150     return small1 && !small2;
8151   }
8152 };
8153
8154 // Finalize the sections.
8155
8156 template<int size, bool big_endian>
8157 void
8158 Target_powerpc<size, big_endian>::do_finalize_sections(
8159     Layout* layout,
8160     const Input_objects*,
8161     Symbol_table* symtab)
8162 {
8163   if (parameters->doing_static_link())
8164     {
8165       // At least some versions of glibc elf-init.o have a strong
8166       // reference to __rela_iplt marker syms.  A weak ref would be
8167       // better..
8168       if (this->iplt_ != NULL)
8169         {
8170           Reloc_section* rel = this->iplt_->rel_plt();
8171           symtab->define_in_output_data("__rela_iplt_start", NULL,
8172                                         Symbol_table::PREDEFINED, rel, 0, 0,
8173                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8174                                         elfcpp::STV_HIDDEN, 0, false, true);
8175           symtab->define_in_output_data("__rela_iplt_end", NULL,
8176                                         Symbol_table::PREDEFINED, rel, 0, 0,
8177                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8178                                         elfcpp::STV_HIDDEN, 0, true, true);
8179         }
8180       else
8181         {
8182           symtab->define_as_constant("__rela_iplt_start", NULL,
8183                                      Symbol_table::PREDEFINED, 0, 0,
8184                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8185                                      elfcpp::STV_HIDDEN, 0, true, false);
8186           symtab->define_as_constant("__rela_iplt_end", NULL,
8187                                      Symbol_table::PREDEFINED, 0, 0,
8188                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8189                                      elfcpp::STV_HIDDEN, 0, true, false);
8190         }
8191     }
8192
8193   if (size == 64)
8194     {
8195       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8196       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8197
8198       if (!parameters->options().relocatable())
8199         {
8200           this->define_save_restore_funcs(layout, symtab);
8201
8202           // Annoyingly, we need to make these sections now whether or
8203           // not we need them.  If we delay until do_relax then we
8204           // need to mess with the relaxation machinery checkpointing.
8205           this->got_section(symtab, layout);
8206           this->make_brlt_section(layout);
8207
8208           if (parameters->options().toc_sort())
8209             {
8210               Output_section* os = this->got_->output_section();
8211               if (os != NULL && os->input_sections().size() > 1)
8212                 std::stable_sort(os->input_sections().begin(),
8213                                  os->input_sections().end(),
8214                                  Sort_toc_sections<big_endian>());
8215             }
8216         }
8217     }
8218
8219   // Fill in some more dynamic tags.
8220   Output_data_dynamic* odyn = layout->dynamic_data();
8221   if (odyn != NULL)
8222     {
8223       const Reloc_section* rel_plt = (this->plt_ == NULL
8224                                       ? NULL
8225                                       : this->plt_->rel_plt());
8226       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8227                                       this->rela_dyn_, true, size == 32);
8228
8229       if (size == 32)
8230         {
8231           if (this->got_ != NULL)
8232             {
8233               this->got_->finalize_data_size();
8234               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8235                                             this->got_, this->got_->g_o_t());
8236             }
8237           if (this->has_tls_get_addr_opt_)
8238             odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8239         }
8240       else
8241         {
8242           if (this->glink_ != NULL)
8243             {
8244               this->glink_->finalize_data_size();
8245               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8246                                             this->glink_,
8247                                             (this->glink_->pltresolve_size()
8248                                              - 32));
8249             }
8250           if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8251             odyn->add_constant(elfcpp::DT_PPC64_OPT,
8252                                ((this->has_localentry0_
8253                                  ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8254                                 | (this->has_tls_get_addr_opt_
8255                                    ? elfcpp::PPC64_OPT_TLS : 0)));
8256         }
8257     }
8258
8259   // Emit any relocs we saved in an attempt to avoid generating COPY
8260   // relocs.
8261   if (this->copy_relocs_.any_saved_relocs())
8262     this->copy_relocs_.emit(this->rela_dyn_section(layout));
8263 }
8264
8265 // Emit any saved relocs, and mark toc entries using any of these
8266 // relocs as not optimizable.
8267
8268 template<int sh_type, int size, bool big_endian>
8269 void
8270 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8271     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8272 {
8273   if (size == 64
8274       && parameters->options().toc_optimize())
8275     {
8276       for (typename Copy_relocs<sh_type, size, big_endian>::
8277              Copy_reloc_entries::iterator p = this->entries_.begin();
8278            p != this->entries_.end();
8279            ++p)
8280         {
8281           typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8282             entry = *p;
8283
8284           // If the symbol is no longer defined in a dynamic object,
8285           // then we emitted a COPY relocation.  If it is still
8286           // dynamic then we'll need dynamic relocations and thus
8287           // can't optimize toc entries.
8288           if (entry.sym_->is_from_dynobj())
8289             {
8290               Powerpc_relobj<size, big_endian>* ppc_object
8291                 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8292               if (entry.shndx_ == ppc_object->toc_shndx())
8293                 ppc_object->set_no_toc_opt(entry.address_);
8294             }
8295         }
8296     }
8297
8298   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8299 }
8300
8301 // Return the value to use for a branch relocation.
8302
8303 template<int size, bool big_endian>
8304 bool
8305 Target_powerpc<size, big_endian>::symval_for_branch(
8306     const Symbol_table* symtab,
8307     const Sized_symbol<size>* gsym,
8308     Powerpc_relobj<size, big_endian>* object,
8309     Address *value,
8310     unsigned int *dest_shndx)
8311 {
8312   if (size == 32 || this->abiversion() >= 2)
8313     gold_unreachable();
8314   *dest_shndx = 0;
8315
8316   // If the symbol is defined in an opd section, ie. is a function
8317   // descriptor, use the function descriptor code entry address
8318   Powerpc_relobj<size, big_endian>* symobj = object;
8319   if (gsym != NULL
8320       && (gsym->source() != Symbol::FROM_OBJECT
8321           || gsym->object()->is_dynamic()))
8322     return true;
8323   if (gsym != NULL)
8324     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8325   unsigned int shndx = symobj->opd_shndx();
8326   if (shndx == 0)
8327     return true;
8328   Address opd_addr = symobj->get_output_section_offset(shndx);
8329   if (opd_addr == invalid_address)
8330     return true;
8331   opd_addr += symobj->output_section_address(shndx);
8332   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8333     {
8334       Address sec_off;
8335       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8336       if (symtab->is_section_folded(symobj, *dest_shndx))
8337         {
8338           Section_id folded
8339             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8340           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8341           *dest_shndx = folded.second;
8342         }
8343       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8344       if (sec_addr == invalid_address)
8345         return false;
8346
8347       sec_addr += symobj->output_section(*dest_shndx)->address();
8348       *value = sec_addr + sec_off;
8349     }
8350   return true;
8351 }
8352
8353 // Perform a relocation.
8354
8355 template<int size, bool big_endian>
8356 inline bool
8357 Target_powerpc<size, big_endian>::Relocate::relocate(
8358     const Relocate_info<size, big_endian>* relinfo,
8359     unsigned int,
8360     Target_powerpc* target,
8361     Output_section* os,
8362     size_t relnum,
8363     const unsigned char* preloc,
8364     const Sized_symbol<size>* gsym,
8365     const Symbol_value<size>* psymval,
8366     unsigned char* view,
8367     Address address,
8368     section_size_type view_size)
8369 {
8370   if (view == NULL)
8371     return true;
8372
8373   if (target->replace_tls_get_addr(gsym))
8374     gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8375
8376   const elfcpp::Rela<size, big_endian> rela(preloc);
8377   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8378   switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8379     {
8380     case Track_tls::NOT_EXPECTED:
8381       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8382                              _("__tls_get_addr call lacks marker reloc"));
8383       break;
8384     case Track_tls::EXPECTED:
8385       // We have already complained.
8386       break;
8387     case Track_tls::SKIP:
8388       return true;
8389     case Track_tls::NORMAL:
8390       break;
8391     }
8392
8393   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8394   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8395   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8396   // Offset from start of insn to d-field reloc.
8397   const int d_offset = big_endian ? 2 : 0;
8398
8399   Powerpc_relobj<size, big_endian>* const object
8400     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8401   Address value = 0;
8402   bool has_stub_value = false;
8403   bool localentry0 = false;
8404   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8405   if ((gsym != NULL
8406        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8407        : object->local_has_plt_offset(r_sym))
8408       && (!psymval->is_ifunc_symbol()
8409           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8410     {
8411       if (size == 64
8412           && gsym != NULL
8413           && target->abiversion() >= 2
8414           && !parameters->options().output_is_position_independent()
8415           && !is_branch_reloc(r_type))
8416         {
8417           Address off = target->glink_section()->find_global_entry(gsym);
8418           if (off != invalid_address)
8419             {
8420               value = target->glink_section()->global_entry_address() + off;
8421               has_stub_value = true;
8422             }
8423         }
8424       else
8425         {
8426           Stub_table<size, big_endian>* stub_table = NULL;
8427           if (target->stub_tables().size() == 1)
8428             stub_table = target->stub_tables()[0];
8429           if (stub_table == NULL
8430               && !(size == 32
8431                    && gsym != NULL
8432                    && !parameters->options().output_is_position_independent()
8433                    && !is_branch_reloc(r_type)))
8434             stub_table = object->stub_table(relinfo->data_shndx);
8435           if (stub_table == NULL)
8436             {
8437               // This is a ref from a data section to an ifunc symbol,
8438               // or a non-branch reloc for which we always want to use
8439               // one set of stubs for resolving function addresses.
8440               if (target->stub_tables().size() != 0)
8441                 stub_table = target->stub_tables()[0];
8442             }
8443           if (stub_table != NULL)
8444             {
8445               const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8446               if (gsym != NULL)
8447                 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8448                                                       rela.get_r_addend());
8449               else
8450                 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8451                                                       rela.get_r_addend());
8452               if (ent != NULL)
8453                 {
8454                   value = stub_table->stub_address() + ent->off_;
8455                   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8456                   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8457                   size_t reloc_count = shdr.get_sh_size() / reloc_size;
8458                   if (size == 64
8459                       && ent->r2save_
8460                       && relnum + 1 < reloc_count)
8461                     {
8462                       Reltype next_rela(preloc + reloc_size);
8463                       if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8464                           == elfcpp::R_PPC64_TOCSAVE
8465                           && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8466                         value += 4;
8467                     }
8468                   localentry0 = ent->localentry0_;
8469                   has_stub_value = true;
8470                 }
8471             }
8472         }
8473       // We don't care too much about bogus debug references to
8474       // non-local functions, but otherwise there had better be a plt
8475       // call stub or global entry stub as appropriate.
8476       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8477     }
8478
8479   if (r_type == elfcpp::R_POWERPC_GOT16
8480       || r_type == elfcpp::R_POWERPC_GOT16_LO
8481       || r_type == elfcpp::R_POWERPC_GOT16_HI
8482       || r_type == elfcpp::R_POWERPC_GOT16_HA
8483       || r_type == elfcpp::R_PPC64_GOT16_DS
8484       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8485     {
8486       if (gsym != NULL)
8487         {
8488           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8489           value = gsym->got_offset(GOT_TYPE_STANDARD);
8490         }
8491       else
8492         {
8493           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8494           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8495         }
8496       value -= target->got_section()->got_base_offset(object);
8497     }
8498   else if (r_type == elfcpp::R_PPC64_TOC)
8499     {
8500       value = (target->got_section()->output_section()->address()
8501                + object->toc_base_offset());
8502     }
8503   else if (gsym != NULL
8504            && (r_type == elfcpp::R_POWERPC_REL24
8505                || r_type == elfcpp::R_PPC_PLTREL24)
8506            && has_stub_value)
8507     {
8508       if (size == 64)
8509         {
8510           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8511           Valtype* wv = reinterpret_cast<Valtype*>(view);
8512           bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
8513           if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
8514             {
8515               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8516               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8517               if ((insn & 1) != 0
8518                   && (insn2 == nop
8519                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8520                 {
8521                   elfcpp::Swap<32, big_endian>::
8522                     writeval(wv + 1, ld_2_1 + target->stk_toc());
8523                   can_plt_call = true;
8524                 }
8525             }
8526           if (!can_plt_call)
8527             {
8528               // If we don't have a branch and link followed by a nop,
8529               // we can't go via the plt because there is no place to
8530               // put a toc restoring instruction.
8531               // Unless we know we won't be returning.
8532               if (strcmp(gsym->name(), "__libc_start_main") == 0)
8533                 can_plt_call = true;
8534             }
8535           if (!can_plt_call)
8536             {
8537               // g++ as of 20130507 emits self-calls without a
8538               // following nop.  This is arguably wrong since we have
8539               // conflicting information.  On the one hand a global
8540               // symbol and on the other a local call sequence, but
8541               // don't error for this special case.
8542               // It isn't possible to cheaply verify we have exactly
8543               // such a call.  Allow all calls to the same section.
8544               bool ok = false;
8545               Address code = value;
8546               if (gsym->source() == Symbol::FROM_OBJECT
8547                   && gsym->object() == object)
8548                 {
8549                   unsigned int dest_shndx = 0;
8550                   if (target->abiversion() < 2)
8551                     {
8552                       Address addend = rela.get_r_addend();
8553                       code = psymval->value(object, addend);
8554                       target->symval_for_branch(relinfo->symtab, gsym, object,
8555                                                 &code, &dest_shndx);
8556                     }
8557                   bool is_ordinary;
8558                   if (dest_shndx == 0)
8559                     dest_shndx = gsym->shndx(&is_ordinary);
8560                   ok = dest_shndx == relinfo->data_shndx;
8561                 }
8562               if (!ok)
8563                 {
8564                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8565                                          _("call lacks nop, can't restore toc; "
8566                                            "recompile with -fPIC"));
8567                   value = code;
8568                 }
8569             }
8570         }
8571     }
8572   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8573            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8574            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8575            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8576     {
8577       // First instruction of a global dynamic sequence, arg setup insn.
8578       const bool final = gsym == NULL || gsym->final_value_is_known();
8579       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8580       enum Got_type got_type = GOT_TYPE_STANDARD;
8581       if (tls_type == tls::TLSOPT_NONE)
8582         got_type = GOT_TYPE_TLSGD;
8583       else if (tls_type == tls::TLSOPT_TO_IE)
8584         got_type = GOT_TYPE_TPREL;
8585       if (got_type != GOT_TYPE_STANDARD)
8586         {
8587           if (gsym != NULL)
8588             {
8589               gold_assert(gsym->has_got_offset(got_type));
8590               value = gsym->got_offset(got_type);
8591             }
8592           else
8593             {
8594               gold_assert(object->local_has_got_offset(r_sym, got_type));
8595               value = object->local_got_offset(r_sym, got_type);
8596             }
8597           value -= target->got_section()->got_base_offset(object);
8598         }
8599       if (tls_type == tls::TLSOPT_TO_IE)
8600         {
8601           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8602               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8603             {
8604               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8605               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8606               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8607               if (size == 32)
8608                 insn |= 32 << 26; // lwz
8609               else
8610                 insn |= 58 << 26; // ld
8611               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8612             }
8613           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8614                      - elfcpp::R_POWERPC_GOT_TLSGD16);
8615         }
8616       else if (tls_type == tls::TLSOPT_TO_LE)
8617         {
8618           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8619               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8620             {
8621               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8622               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8623               insn &= (1 << 26) - (1 << 21); // extract rt
8624               if (size == 32)
8625                 insn |= addis_0_2;
8626               else
8627                 insn |= addis_0_13;
8628               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8629               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8630               value = psymval->value(object, rela.get_r_addend());
8631             }
8632           else
8633             {
8634               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8635               Insn insn = nop;
8636               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8637               r_type = elfcpp::R_POWERPC_NONE;
8638             }
8639         }
8640     }
8641   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8642            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8643            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8644            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8645     {
8646       // First instruction of a local dynamic sequence, arg setup insn.
8647       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8648       if (tls_type == tls::TLSOPT_NONE)
8649         {
8650           value = target->tlsld_got_offset();
8651           value -= target->got_section()->got_base_offset(object);
8652         }
8653       else
8654         {
8655           gold_assert(tls_type == tls::TLSOPT_TO_LE);
8656           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8657               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8658             {
8659               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8660               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8661               insn &= (1 << 26) - (1 << 21); // extract rt
8662               if (size == 32)
8663                 insn |= addis_0_2;
8664               else
8665                 insn |= addis_0_13;
8666               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8667               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8668               value = dtp_offset;
8669             }
8670           else
8671             {
8672               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8673               Insn insn = nop;
8674               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8675               r_type = elfcpp::R_POWERPC_NONE;
8676             }
8677         }
8678     }
8679   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8680            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8681            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8682            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8683     {
8684       // Accesses relative to a local dynamic sequence address,
8685       // no optimisation here.
8686       if (gsym != NULL)
8687         {
8688           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8689           value = gsym->got_offset(GOT_TYPE_DTPREL);
8690         }
8691       else
8692         {
8693           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8694           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8695         }
8696       value -= target->got_section()->got_base_offset(object);
8697     }
8698   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8699            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8700            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8701            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8702     {
8703       // First instruction of initial exec sequence.
8704       const bool final = gsym == NULL || gsym->final_value_is_known();
8705       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8706       if (tls_type == tls::TLSOPT_NONE)
8707         {
8708           if (gsym != NULL)
8709             {
8710               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8711               value = gsym->got_offset(GOT_TYPE_TPREL);
8712             }
8713           else
8714             {
8715               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8716               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8717             }
8718           value -= target->got_section()->got_base_offset(object);
8719         }
8720       else
8721         {
8722           gold_assert(tls_type == tls::TLSOPT_TO_LE);
8723           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8724               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8725             {
8726               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8727               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8728               insn &= (1 << 26) - (1 << 21); // extract rt from ld
8729               if (size == 32)
8730                 insn |= addis_0_2;
8731               else
8732                 insn |= addis_0_13;
8733               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8734               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8735               value = psymval->value(object, rela.get_r_addend());
8736             }
8737           else
8738             {
8739               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8740               Insn insn = nop;
8741               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8742               r_type = elfcpp::R_POWERPC_NONE;
8743             }
8744         }
8745     }
8746   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8747            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8748     {
8749       // Second instruction of a global dynamic sequence,
8750       // the __tls_get_addr call
8751       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8752       const bool final = gsym == NULL || gsym->final_value_is_known();
8753       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8754       if (tls_type != tls::TLSOPT_NONE)
8755         {
8756           if (tls_type == tls::TLSOPT_TO_IE)
8757             {
8758               Insn* iview = reinterpret_cast<Insn*>(view);
8759               Insn insn = add_3_3_13;
8760               if (size == 32)
8761                 insn = add_3_3_2;
8762               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8763               r_type = elfcpp::R_POWERPC_NONE;
8764             }
8765           else
8766             {
8767               Insn* iview = reinterpret_cast<Insn*>(view);
8768               Insn insn = addi_3_3;
8769               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8770               r_type = elfcpp::R_POWERPC_TPREL16_LO;
8771               view += d_offset;
8772               value = psymval->value(object, rela.get_r_addend());
8773             }
8774           this->skip_next_tls_get_addr_call();
8775         }
8776     }
8777   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8778            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8779     {
8780       // Second instruction of a local dynamic sequence,
8781       // the __tls_get_addr call
8782       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8783       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8784       if (tls_type == tls::TLSOPT_TO_LE)
8785         {
8786           Insn* iview = reinterpret_cast<Insn*>(view);
8787           Insn insn = addi_3_3;
8788           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8789           this->skip_next_tls_get_addr_call();
8790           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8791           view += d_offset;
8792           value = dtp_offset;
8793         }
8794     }
8795   else if (r_type == elfcpp::R_POWERPC_TLS)
8796     {
8797       // Second instruction of an initial exec sequence
8798       const bool final = gsym == NULL || gsym->final_value_is_known();
8799       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8800       if (tls_type == tls::TLSOPT_TO_LE)
8801         {
8802           Insn* iview = reinterpret_cast<Insn*>(view);
8803           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8804           unsigned int reg = size == 32 ? 2 : 13;
8805           insn = at_tls_transform(insn, reg);
8806           gold_assert(insn != 0);
8807           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8808           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8809           view += d_offset;
8810           value = psymval->value(object, rela.get_r_addend());
8811         }
8812     }
8813   else if (!has_stub_value)
8814     {
8815       Address addend = 0;
8816       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8817         addend = rela.get_r_addend();
8818       value = psymval->value(object, addend);
8819       if (size == 64 && is_branch_reloc(r_type))
8820         {
8821           if (target->abiversion() >= 2)
8822             {
8823               if (gsym != NULL)
8824                 value += object->ppc64_local_entry_offset(gsym);
8825               else
8826                 value += object->ppc64_local_entry_offset(r_sym);
8827             }
8828           else
8829             {
8830               unsigned int dest_shndx;
8831               target->symval_for_branch(relinfo->symtab, gsym, object,
8832                                         &value, &dest_shndx);
8833             }
8834         }
8835       Address max_branch_offset = max_branch_delta(r_type);
8836       if (max_branch_offset != 0
8837           && value - address + max_branch_offset >= 2 * max_branch_offset)
8838         {
8839           Stub_table<size, big_endian>* stub_table
8840             = object->stub_table(relinfo->data_shndx);
8841           if (stub_table != NULL)
8842             {
8843               Address off = stub_table->find_long_branch_entry(object, value);
8844               if (off != invalid_address)
8845                 {
8846                   value = (stub_table->stub_address() + stub_table->plt_size()
8847                            + off);
8848                   has_stub_value = true;
8849                 }
8850             }
8851         }
8852     }
8853
8854   switch (r_type)
8855     {
8856     case elfcpp::R_PPC64_REL64:
8857     case elfcpp::R_POWERPC_REL32:
8858     case elfcpp::R_POWERPC_REL24:
8859     case elfcpp::R_PPC_PLTREL24:
8860     case elfcpp::R_PPC_LOCAL24PC:
8861     case elfcpp::R_POWERPC_REL16:
8862     case elfcpp::R_POWERPC_REL16_LO:
8863     case elfcpp::R_POWERPC_REL16_HI:
8864     case elfcpp::R_POWERPC_REL16_HA:
8865     case elfcpp::R_POWERPC_REL16DX_HA:
8866     case elfcpp::R_POWERPC_REL14:
8867     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8868     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8869       value -= address;
8870       break;
8871
8872     case elfcpp::R_PPC64_TOC16:
8873     case elfcpp::R_PPC64_TOC16_LO:
8874     case elfcpp::R_PPC64_TOC16_HI:
8875     case elfcpp::R_PPC64_TOC16_HA:
8876     case elfcpp::R_PPC64_TOC16_DS:
8877     case elfcpp::R_PPC64_TOC16_LO_DS:
8878       // Subtract the TOC base address.
8879       value -= (target->got_section()->output_section()->address()
8880                 + object->toc_base_offset());
8881       break;
8882
8883     case elfcpp::R_POWERPC_SECTOFF:
8884     case elfcpp::R_POWERPC_SECTOFF_LO:
8885     case elfcpp::R_POWERPC_SECTOFF_HI:
8886     case elfcpp::R_POWERPC_SECTOFF_HA:
8887     case elfcpp::R_PPC64_SECTOFF_DS:
8888     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8889       if (os != NULL)
8890         value -= os->address();
8891       break;
8892
8893     case elfcpp::R_PPC64_TPREL16_DS:
8894     case elfcpp::R_PPC64_TPREL16_LO_DS:
8895     case elfcpp::R_PPC64_TPREL16_HIGH:
8896     case elfcpp::R_PPC64_TPREL16_HIGHA:
8897       if (size != 64)
8898         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8899         break;
8900       // Fall through.
8901     case elfcpp::R_POWERPC_TPREL16:
8902     case elfcpp::R_POWERPC_TPREL16_LO:
8903     case elfcpp::R_POWERPC_TPREL16_HI:
8904     case elfcpp::R_POWERPC_TPREL16_HA:
8905     case elfcpp::R_POWERPC_TPREL:
8906     case elfcpp::R_PPC64_TPREL16_HIGHER:
8907     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8908     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8909     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8910       // tls symbol values are relative to tls_segment()->vaddr()
8911       value -= tp_offset;
8912       break;
8913
8914     case elfcpp::R_PPC64_DTPREL16_DS:
8915     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8916     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8917     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8918     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8919     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8920       if (size != 64)
8921         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8922         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8923         break;
8924       // Fall through.
8925     case elfcpp::R_POWERPC_DTPREL16:
8926     case elfcpp::R_POWERPC_DTPREL16_LO:
8927     case elfcpp::R_POWERPC_DTPREL16_HI:
8928     case elfcpp::R_POWERPC_DTPREL16_HA:
8929     case elfcpp::R_POWERPC_DTPREL:
8930     case elfcpp::R_PPC64_DTPREL16_HIGH:
8931     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8932       // tls symbol values are relative to tls_segment()->vaddr()
8933       value -= dtp_offset;
8934       break;
8935
8936     case elfcpp::R_PPC64_ADDR64_LOCAL:
8937       if (gsym != NULL)
8938         value += object->ppc64_local_entry_offset(gsym);
8939       else
8940         value += object->ppc64_local_entry_offset(r_sym);
8941       break;
8942
8943     default:
8944       break;
8945     }
8946
8947   Insn branch_bit = 0;
8948   switch (r_type)
8949     {
8950     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8951     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8952       branch_bit = 1 << 21;
8953       // Fall through.
8954     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8955     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8956       {
8957         Insn* iview = reinterpret_cast<Insn*>(view);
8958         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8959         insn &= ~(1 << 21);
8960         insn |= branch_bit;
8961         if (this->is_isa_v2)
8962           {
8963             // Set 'a' bit.  This is 0b00010 in BO field for branch
8964             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8965             // for branch on CTR insns (BO == 1a00t or 1a01t).
8966             if ((insn & (0x14 << 21)) == (0x04 << 21))
8967               insn |= 0x02 << 21;
8968             else if ((insn & (0x14 << 21)) == (0x10 << 21))
8969               insn |= 0x08 << 21;
8970             else
8971               break;
8972           }
8973         else
8974           {
8975             // Invert 'y' bit if not the default.
8976             if (static_cast<Signed_address>(value) < 0)
8977               insn ^= 1 << 21;
8978           }
8979         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8980       }
8981       break;
8982
8983     default:
8984       break;
8985     }
8986
8987   if (size == 64)
8988     {
8989       switch (r_type)
8990         {
8991         default:
8992           break;
8993
8994           // Multi-instruction sequences that access the GOT/TOC can
8995           // be optimized, eg.
8996           //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8997           // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8998           // and
8999           //     addis ra,r2,0; addi rb,ra,x@toc@l;
9000           // to  nop;           addi rb,r2,x@toc;
9001           // FIXME: the @got sequence shown above is not yet
9002           // optimized.  Note that gcc as of 2017-01-07 doesn't use
9003           // the ELF @got relocs except for TLS, instead using the
9004           // PowerOpen variant of a compiler managed GOT (called TOC).
9005           // The PowerOpen TOC sequence equivalent to the first
9006           // example is optimized.
9007         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9008         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9009         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9010         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9011         case elfcpp::R_POWERPC_GOT16_HA:
9012         case elfcpp::R_PPC64_TOC16_HA:
9013           if (parameters->options().toc_optimize())
9014             {
9015               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9016               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9017               if (r_type == elfcpp::R_PPC64_TOC16_HA
9018                   && object->make_toc_relative(target, &value))
9019                 {
9020                   gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
9021                               == ((15u << 26) | (2 << 16)));
9022                 }
9023               if (((insn & ((0x3f << 26) | 0x1f << 16))
9024                    == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
9025                   && value + 0x8000 < 0x10000)
9026                 {
9027                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9028                   return true;
9029                 }
9030             }
9031           break;
9032
9033         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9034         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9035         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9036         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9037         case elfcpp::R_POWERPC_GOT16_LO:
9038         case elfcpp::R_PPC64_GOT16_LO_DS:
9039         case elfcpp::R_PPC64_TOC16_LO:
9040         case elfcpp::R_PPC64_TOC16_LO_DS:
9041           if (parameters->options().toc_optimize())
9042             {
9043               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9044               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9045               bool changed = false;
9046               if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9047                   && object->make_toc_relative(target, &value))
9048                 {
9049                   gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9050                   insn ^= (14u << 26) ^ (58u << 26);
9051                   r_type = elfcpp::R_PPC64_TOC16_LO;
9052                   changed = true;
9053                 }
9054               if (ok_lo_toc_insn(insn, r_type)
9055                   && value + 0x8000 < 0x10000)
9056                 {
9057                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9058                     {
9059                       // Transform addic to addi when we change reg.
9060                       insn &= ~((0x3f << 26) | (0x1f << 16));
9061                       insn |= (14u << 26) | (2 << 16);
9062                     }
9063                   else
9064                     {
9065                       insn &= ~(0x1f << 16);
9066                       insn |= 2 << 16;
9067                     }
9068                   changed = true;
9069                 }
9070               if (changed)
9071                 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9072             }
9073           break;
9074
9075         case elfcpp::R_POWERPC_TPREL16_HA:
9076           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9077             {
9078               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9079               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9080               if ((insn & ((0x3f << 26) | 0x1f << 16))
9081                   != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9082                 ;
9083               else
9084                 {
9085                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9086                   return true;
9087                 }
9088             }
9089           break;
9090
9091         case elfcpp::R_PPC64_TPREL16_LO_DS:
9092           if (size == 32)
9093             // R_PPC_TLSGD, R_PPC_TLSLD
9094             break;
9095           // Fall through.
9096         case elfcpp::R_POWERPC_TPREL16_LO:
9097           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9098             {
9099               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9100               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9101               insn &= ~(0x1f << 16);
9102               insn |= (size == 32 ? 2 : 13) << 16;
9103               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9104             }
9105           break;
9106
9107         case elfcpp::R_PPC64_ENTRY:
9108           value = (target->got_section()->output_section()->address()
9109                    + object->toc_base_offset());
9110           if (value + 0x80008000 <= 0xffffffff
9111               && !parameters->options().output_is_position_independent())
9112             {
9113               Insn* iview = reinterpret_cast<Insn*>(view);
9114               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9115               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9116
9117               if ((insn1 & ~0xfffc) == ld_2_12
9118                   && insn2 == add_2_2_12)
9119                 {
9120                   insn1 = lis_2 + ha(value);
9121                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9122                   insn2 = addi_2_2 + l(value);
9123                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9124                   return true;
9125                 }
9126             }
9127           else
9128             {
9129               value -= address;
9130               if (value + 0x80008000 <= 0xffffffff)
9131                 {
9132                   Insn* iview = reinterpret_cast<Insn*>(view);
9133                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9134                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9135
9136                   if ((insn1 & ~0xfffc) == ld_2_12
9137                       && insn2 == add_2_2_12)
9138                     {
9139                       insn1 = addis_2_12 + ha(value);
9140                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9141                       insn2 = addi_2_2 + l(value);
9142                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9143                       return true;
9144                     }
9145                 }
9146             }
9147           break;
9148
9149         case elfcpp::R_POWERPC_REL16_LO:
9150           // If we are generating a non-PIC executable, edit
9151           //    0:      addis 2,12,.TOC.-0b@ha
9152           //            addi 2,2,.TOC.-0b@l
9153           // used by ELFv2 global entry points to set up r2, to
9154           //            lis 2,.TOC.@ha
9155           //            addi 2,2,.TOC.@l
9156           // if .TOC. is in range.  */
9157           if (value + address - 4 + 0x80008000 <= 0xffffffff
9158               && relnum != 0
9159               && preloc != NULL
9160               && target->abiversion() >= 2
9161               && !parameters->options().output_is_position_independent()
9162               && rela.get_r_addend() == d_offset + 4
9163               && gsym != NULL
9164               && strcmp(gsym->name(), ".TOC.") == 0)
9165             {
9166               const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9167               Reltype prev_rela(preloc - reloc_size);
9168               if ((prev_rela.get_r_info()
9169                    == elfcpp::elf_r_info<size>(r_sym,
9170                                                elfcpp::R_POWERPC_REL16_HA))
9171                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9172                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9173                 {
9174                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9175                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9176                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9177
9178                   if ((insn1 & 0xffff0000) == addis_2_12
9179                       && (insn2 & 0xffff0000) == addi_2_2)
9180                     {
9181                       insn1 = lis_2 + ha(value + address - 4);
9182                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9183                       insn2 = addi_2_2 + l(value + address - 4);
9184                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9185                       if (relinfo->rr)
9186                         {
9187                           relinfo->rr->set_strategy(relnum - 1,
9188                                                     Relocatable_relocs::RELOC_SPECIAL);
9189                           relinfo->rr->set_strategy(relnum,
9190                                                     Relocatable_relocs::RELOC_SPECIAL);
9191                         }
9192                       return true;
9193                     }
9194                 }
9195             }
9196           break;
9197         }
9198     }
9199
9200   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9201   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9202   switch (r_type)
9203     {
9204     case elfcpp::R_POWERPC_ADDR32:
9205     case elfcpp::R_POWERPC_UADDR32:
9206       if (size == 64)
9207         overflow = Reloc::CHECK_BITFIELD;
9208       break;
9209
9210     case elfcpp::R_POWERPC_REL32:
9211     case elfcpp::R_POWERPC_REL16DX_HA:
9212       if (size == 64)
9213         overflow = Reloc::CHECK_SIGNED;
9214       break;
9215
9216     case elfcpp::R_POWERPC_UADDR16:
9217       overflow = Reloc::CHECK_BITFIELD;
9218       break;
9219
9220     case elfcpp::R_POWERPC_ADDR16:
9221       // We really should have three separate relocations,
9222       // one for 16-bit data, one for insns with 16-bit signed fields,
9223       // and one for insns with 16-bit unsigned fields.
9224       overflow = Reloc::CHECK_BITFIELD;
9225       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9226         overflow = Reloc::CHECK_LOW_INSN;
9227       break;
9228
9229     case elfcpp::R_POWERPC_ADDR16_HI:
9230     case elfcpp::R_POWERPC_ADDR16_HA:
9231     case elfcpp::R_POWERPC_GOT16_HI:
9232     case elfcpp::R_POWERPC_GOT16_HA:
9233     case elfcpp::R_POWERPC_PLT16_HI:
9234     case elfcpp::R_POWERPC_PLT16_HA:
9235     case elfcpp::R_POWERPC_SECTOFF_HI:
9236     case elfcpp::R_POWERPC_SECTOFF_HA:
9237     case elfcpp::R_PPC64_TOC16_HI:
9238     case elfcpp::R_PPC64_TOC16_HA:
9239     case elfcpp::R_PPC64_PLTGOT16_HI:
9240     case elfcpp::R_PPC64_PLTGOT16_HA:
9241     case elfcpp::R_POWERPC_TPREL16_HI:
9242     case elfcpp::R_POWERPC_TPREL16_HA:
9243     case elfcpp::R_POWERPC_DTPREL16_HI:
9244     case elfcpp::R_POWERPC_DTPREL16_HA:
9245     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9246     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9247     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9248     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9249     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9250     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9251     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9252     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9253     case elfcpp::R_POWERPC_REL16_HI:
9254     case elfcpp::R_POWERPC_REL16_HA:
9255       if (size != 32)
9256         overflow = Reloc::CHECK_HIGH_INSN;
9257       break;
9258
9259     case elfcpp::R_POWERPC_REL16:
9260     case elfcpp::R_PPC64_TOC16:
9261     case elfcpp::R_POWERPC_GOT16:
9262     case elfcpp::R_POWERPC_SECTOFF:
9263     case elfcpp::R_POWERPC_TPREL16:
9264     case elfcpp::R_POWERPC_DTPREL16:
9265     case elfcpp::R_POWERPC_GOT_TLSGD16:
9266     case elfcpp::R_POWERPC_GOT_TLSLD16:
9267     case elfcpp::R_POWERPC_GOT_TPREL16:
9268     case elfcpp::R_POWERPC_GOT_DTPREL16:
9269       overflow = Reloc::CHECK_LOW_INSN;
9270       break;
9271
9272     case elfcpp::R_POWERPC_ADDR24:
9273     case elfcpp::R_POWERPC_ADDR14:
9274     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9275     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9276     case elfcpp::R_PPC64_ADDR16_DS:
9277     case elfcpp::R_POWERPC_REL24:
9278     case elfcpp::R_PPC_PLTREL24:
9279     case elfcpp::R_PPC_LOCAL24PC:
9280     case elfcpp::R_PPC64_TPREL16_DS:
9281     case elfcpp::R_PPC64_DTPREL16_DS:
9282     case elfcpp::R_PPC64_TOC16_DS:
9283     case elfcpp::R_PPC64_GOT16_DS:
9284     case elfcpp::R_PPC64_SECTOFF_DS:
9285     case elfcpp::R_POWERPC_REL14:
9286     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9287     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9288       overflow = Reloc::CHECK_SIGNED;
9289       break;
9290     }
9291
9292   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9293   Insn insn = 0;
9294
9295   if (overflow == Reloc::CHECK_LOW_INSN
9296       || overflow == Reloc::CHECK_HIGH_INSN)
9297     {
9298       insn = elfcpp::Swap<32, big_endian>::readval(iview);
9299
9300       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9301         overflow = Reloc::CHECK_BITFIELD;
9302       else if (overflow == Reloc::CHECK_LOW_INSN
9303                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9304                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9305                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9306                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9307                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9308                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9309         overflow = Reloc::CHECK_UNSIGNED;
9310       else
9311         overflow = Reloc::CHECK_SIGNED;
9312     }
9313
9314   bool maybe_dq_reloc = false;
9315   typename Powerpc_relocate_functions<size, big_endian>::Status status
9316     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9317   switch (r_type)
9318     {
9319     case elfcpp::R_POWERPC_NONE:
9320     case elfcpp::R_POWERPC_TLS:
9321     case elfcpp::R_POWERPC_GNU_VTINHERIT:
9322     case elfcpp::R_POWERPC_GNU_VTENTRY:
9323       break;
9324
9325     case elfcpp::R_PPC64_ADDR64:
9326     case elfcpp::R_PPC64_REL64:
9327     case elfcpp::R_PPC64_TOC:
9328     case elfcpp::R_PPC64_ADDR64_LOCAL:
9329       Reloc::addr64(view, value);
9330       break;
9331
9332     case elfcpp::R_POWERPC_TPREL:
9333     case elfcpp::R_POWERPC_DTPREL:
9334       if (size == 64)
9335         Reloc::addr64(view, value);
9336       else
9337         status = Reloc::addr32(view, value, overflow);
9338       break;
9339
9340     case elfcpp::R_PPC64_UADDR64:
9341       Reloc::addr64_u(view, value);
9342       break;
9343
9344     case elfcpp::R_POWERPC_ADDR32:
9345       status = Reloc::addr32(view, value, overflow);
9346       break;
9347
9348     case elfcpp::R_POWERPC_REL32:
9349     case elfcpp::R_POWERPC_UADDR32:
9350       status = Reloc::addr32_u(view, value, overflow);
9351       break;
9352
9353     case elfcpp::R_POWERPC_ADDR24:
9354     case elfcpp::R_POWERPC_REL24:
9355     case elfcpp::R_PPC_PLTREL24:
9356     case elfcpp::R_PPC_LOCAL24PC:
9357       status = Reloc::addr24(view, value, overflow);
9358       break;
9359
9360     case elfcpp::R_POWERPC_GOT_DTPREL16:
9361     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9362     case elfcpp::R_POWERPC_GOT_TPREL16:
9363     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9364       if (size == 64)
9365         {
9366           // On ppc64 these are all ds form
9367           maybe_dq_reloc = true;
9368           break;
9369         }
9370       // Fall through.
9371     case elfcpp::R_POWERPC_ADDR16:
9372     case elfcpp::R_POWERPC_REL16:
9373     case elfcpp::R_PPC64_TOC16:
9374     case elfcpp::R_POWERPC_GOT16:
9375     case elfcpp::R_POWERPC_SECTOFF:
9376     case elfcpp::R_POWERPC_TPREL16:
9377     case elfcpp::R_POWERPC_DTPREL16:
9378     case elfcpp::R_POWERPC_GOT_TLSGD16:
9379     case elfcpp::R_POWERPC_GOT_TLSLD16:
9380     case elfcpp::R_POWERPC_ADDR16_LO:
9381     case elfcpp::R_POWERPC_REL16_LO:
9382     case elfcpp::R_PPC64_TOC16_LO:
9383     case elfcpp::R_POWERPC_GOT16_LO:
9384     case elfcpp::R_POWERPC_SECTOFF_LO:
9385     case elfcpp::R_POWERPC_TPREL16_LO:
9386     case elfcpp::R_POWERPC_DTPREL16_LO:
9387     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9388     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9389       if (size == 64)
9390         status = Reloc::addr16(view, value, overflow);
9391       else
9392         maybe_dq_reloc = true;
9393       break;
9394
9395     case elfcpp::R_POWERPC_UADDR16:
9396       status = Reloc::addr16_u(view, value, overflow);
9397       break;
9398
9399     case elfcpp::R_PPC64_ADDR16_HIGH:
9400     case elfcpp::R_PPC64_TPREL16_HIGH:
9401     case elfcpp::R_PPC64_DTPREL16_HIGH:
9402       if (size == 32)
9403         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9404         goto unsupp;
9405       // Fall through.
9406     case elfcpp::R_POWERPC_ADDR16_HI:
9407     case elfcpp::R_POWERPC_REL16_HI:
9408     case elfcpp::R_PPC64_TOC16_HI:
9409     case elfcpp::R_POWERPC_GOT16_HI:
9410     case elfcpp::R_POWERPC_SECTOFF_HI:
9411     case elfcpp::R_POWERPC_TPREL16_HI:
9412     case elfcpp::R_POWERPC_DTPREL16_HI:
9413     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9414     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9415     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9416     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9417       Reloc::addr16_hi(view, value);
9418       break;
9419
9420     case elfcpp::R_PPC64_ADDR16_HIGHA:
9421     case elfcpp::R_PPC64_TPREL16_HIGHA:
9422     case elfcpp::R_PPC64_DTPREL16_HIGHA:
9423       if (size == 32)
9424         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
9425         goto unsupp;
9426       // Fall through.
9427     case elfcpp::R_POWERPC_ADDR16_HA:
9428     case elfcpp::R_POWERPC_REL16_HA:
9429     case elfcpp::R_PPC64_TOC16_HA:
9430     case elfcpp::R_POWERPC_GOT16_HA:
9431     case elfcpp::R_POWERPC_SECTOFF_HA:
9432     case elfcpp::R_POWERPC_TPREL16_HA:
9433     case elfcpp::R_POWERPC_DTPREL16_HA:
9434     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9435     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9436     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9437     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9438       Reloc::addr16_ha(view, value);
9439       break;
9440
9441     case elfcpp::R_POWERPC_REL16DX_HA:
9442       status = Reloc::addr16dx_ha(view, value, overflow);
9443       break;
9444
9445     case elfcpp::R_PPC64_DTPREL16_HIGHER:
9446       if (size == 32)
9447         // R_PPC_EMB_NADDR16_LO
9448         goto unsupp;
9449       // Fall through.
9450     case elfcpp::R_PPC64_ADDR16_HIGHER:
9451     case elfcpp::R_PPC64_TPREL16_HIGHER:
9452       Reloc::addr16_hi2(view, value);
9453       break;
9454
9455     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9456       if (size == 32)
9457         // R_PPC_EMB_NADDR16_HI
9458         goto unsupp;
9459       // Fall through.
9460     case elfcpp::R_PPC64_ADDR16_HIGHERA:
9461     case elfcpp::R_PPC64_TPREL16_HIGHERA:
9462       Reloc::addr16_ha2(view, value);
9463       break;
9464
9465     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9466       if (size == 32)
9467         // R_PPC_EMB_NADDR16_HA
9468         goto unsupp;
9469       // Fall through.
9470     case elfcpp::R_PPC64_ADDR16_HIGHEST:
9471     case elfcpp::R_PPC64_TPREL16_HIGHEST:
9472       Reloc::addr16_hi3(view, value);
9473       break;
9474
9475     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9476       if (size == 32)
9477         // R_PPC_EMB_SDAI16
9478         goto unsupp;
9479       // Fall through.
9480     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9481     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9482       Reloc::addr16_ha3(view, value);
9483       break;
9484
9485     case elfcpp::R_PPC64_DTPREL16_DS:
9486     case elfcpp::R_PPC64_DTPREL16_LO_DS:
9487       if (size == 32)
9488         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9489         goto unsupp;
9490       // Fall through.
9491     case elfcpp::R_PPC64_TPREL16_DS:
9492     case elfcpp::R_PPC64_TPREL16_LO_DS:
9493       if (size == 32)
9494         // R_PPC_TLSGD, R_PPC_TLSLD
9495         break;
9496       // Fall through.
9497     case elfcpp::R_PPC64_ADDR16_DS:
9498     case elfcpp::R_PPC64_ADDR16_LO_DS:
9499     case elfcpp::R_PPC64_TOC16_DS:
9500     case elfcpp::R_PPC64_TOC16_LO_DS:
9501     case elfcpp::R_PPC64_GOT16_DS:
9502     case elfcpp::R_PPC64_GOT16_LO_DS:
9503     case elfcpp::R_PPC64_SECTOFF_DS:
9504     case elfcpp::R_PPC64_SECTOFF_LO_DS:
9505       maybe_dq_reloc = true;
9506       break;
9507
9508     case elfcpp::R_POWERPC_ADDR14:
9509     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9510     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9511     case elfcpp::R_POWERPC_REL14:
9512     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9513     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9514       status = Reloc::addr14(view, value, overflow);
9515       break;
9516
9517     case elfcpp::R_POWERPC_COPY:
9518     case elfcpp::R_POWERPC_GLOB_DAT:
9519     case elfcpp::R_POWERPC_JMP_SLOT:
9520     case elfcpp::R_POWERPC_RELATIVE:
9521     case elfcpp::R_POWERPC_DTPMOD:
9522     case elfcpp::R_PPC64_JMP_IREL:
9523     case elfcpp::R_POWERPC_IRELATIVE:
9524       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9525                              _("unexpected reloc %u in object file"),
9526                              r_type);
9527       break;
9528
9529     case elfcpp::R_PPC64_TOCSAVE:
9530       if (size == 32)
9531         // R_PPC_EMB_SDA21
9532         goto unsupp;
9533       else
9534         {
9535           Symbol_location loc;
9536           loc.object = relinfo->object;
9537           loc.shndx = relinfo->data_shndx;
9538           loc.offset = rela.get_r_offset();
9539           Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9540           if (p != target->tocsave_loc().end())
9541             {
9542               // If we've generated plt calls using this tocsave, then
9543               // the nop needs to be changed to save r2.
9544               Insn* iview = reinterpret_cast<Insn*>(view);
9545               if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9546                 elfcpp::Swap<32, big_endian>::
9547                   writeval(iview, std_2_1 + target->stk_toc());
9548             }
9549         }
9550       break;
9551
9552     case elfcpp::R_PPC_EMB_SDA2I16:
9553     case elfcpp::R_PPC_EMB_SDA2REL:
9554       if (size == 32)
9555         goto unsupp;
9556       // R_PPC64_TLSGD, R_PPC64_TLSLD
9557       break;
9558
9559     case elfcpp::R_POWERPC_PLT32:
9560     case elfcpp::R_POWERPC_PLTREL32:
9561     case elfcpp::R_POWERPC_PLT16_LO:
9562     case elfcpp::R_POWERPC_PLT16_HI:
9563     case elfcpp::R_POWERPC_PLT16_HA:
9564     case elfcpp::R_PPC_SDAREL16:
9565     case elfcpp::R_POWERPC_ADDR30:
9566     case elfcpp::R_PPC64_PLT64:
9567     case elfcpp::R_PPC64_PLTREL64:
9568     case elfcpp::R_PPC64_PLTGOT16:
9569     case elfcpp::R_PPC64_PLTGOT16_LO:
9570     case elfcpp::R_PPC64_PLTGOT16_HI:
9571     case elfcpp::R_PPC64_PLTGOT16_HA:
9572     case elfcpp::R_PPC64_PLT16_LO_DS:
9573     case elfcpp::R_PPC64_PLTGOT16_DS:
9574     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9575     case elfcpp::R_PPC_EMB_RELSDA:
9576     case elfcpp::R_PPC_TOC16:
9577     default:
9578     unsupp:
9579       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9580                              _("unsupported reloc %u"),
9581                              r_type);
9582       break;
9583     }
9584
9585   if (maybe_dq_reloc)
9586     {
9587       if (insn == 0)
9588         insn = elfcpp::Swap<32, big_endian>::readval(iview);
9589
9590       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9591           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9592               && (insn & 3) == 1))
9593         status = Reloc::addr16_dq(view, value, overflow);
9594       else if (size == 64
9595                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9596                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9597                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9598                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9599         status = Reloc::addr16_ds(view, value, overflow);
9600       else
9601         status = Reloc::addr16(view, value, overflow);
9602     }
9603
9604   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9605       && (has_stub_value
9606           || !(gsym != NULL
9607                && gsym->is_undefined()
9608                && is_branch_reloc(r_type))))
9609     {
9610       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9611                              _("relocation overflow"));
9612       if (has_stub_value)
9613         gold_info(_("try relinking with a smaller --stub-group-size"));
9614     }
9615
9616   return true;
9617 }
9618
9619 // Relocate section data.
9620
9621 template<int size, bool big_endian>
9622 void
9623 Target_powerpc<size, big_endian>::relocate_section(
9624     const Relocate_info<size, big_endian>* relinfo,
9625     unsigned int sh_type,
9626     const unsigned char* prelocs,
9627     size_t reloc_count,
9628     Output_section* output_section,
9629     bool needs_special_offset_handling,
9630     unsigned char* view,
9631     Address address,
9632     section_size_type view_size,
9633     const Reloc_symbol_changes* reloc_symbol_changes)
9634 {
9635   typedef Target_powerpc<size, big_endian> Powerpc;
9636   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9637   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9638     Powerpc_comdat_behavior;
9639   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9640       Classify_reloc;
9641
9642   gold_assert(sh_type == elfcpp::SHT_RELA);
9643
9644   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9645                          Powerpc_comdat_behavior, Classify_reloc>(
9646     relinfo,
9647     this,
9648     prelocs,
9649     reloc_count,
9650     output_section,
9651     needs_special_offset_handling,
9652     view,
9653     address,
9654     view_size,
9655     reloc_symbol_changes);
9656 }
9657
9658 template<int size, bool big_endian>
9659 class Powerpc_scan_relocatable_reloc
9660 {
9661 public:
9662   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9663   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9664   static const int sh_type = elfcpp::SHT_RELA;
9665
9666   // Return the symbol referred to by the relocation.
9667   static inline unsigned int
9668   get_r_sym(const Reltype* reloc)
9669   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9670
9671   // Return the type of the relocation.
9672   static inline unsigned int
9673   get_r_type(const Reltype* reloc)
9674   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9675
9676   // Return the strategy to use for a local symbol which is not a
9677   // section symbol, given the relocation type.
9678   inline Relocatable_relocs::Reloc_strategy
9679   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9680   {
9681     if (r_type == 0 && r_sym == 0)
9682       return Relocatable_relocs::RELOC_DISCARD;
9683     return Relocatable_relocs::RELOC_COPY;
9684   }
9685
9686   // Return the strategy to use for a local symbol which is a section
9687   // symbol, given the relocation type.
9688   inline Relocatable_relocs::Reloc_strategy
9689   local_section_strategy(unsigned int, Relobj*)
9690   {
9691     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9692   }
9693
9694   // Return the strategy to use for a global symbol, given the
9695   // relocation type, the object, and the symbol index.
9696   inline Relocatable_relocs::Reloc_strategy
9697   global_strategy(unsigned int r_type, Relobj*, unsigned int)
9698   {
9699     if (r_type == elfcpp::R_PPC_PLTREL24)
9700       return Relocatable_relocs::RELOC_SPECIAL;
9701     return Relocatable_relocs::RELOC_COPY;
9702   }
9703 };
9704
9705 // Scan the relocs during a relocatable link.
9706
9707 template<int size, bool big_endian>
9708 void
9709 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9710     Symbol_table* symtab,
9711     Layout* layout,
9712     Sized_relobj_file<size, big_endian>* object,
9713     unsigned int data_shndx,
9714     unsigned int sh_type,
9715     const unsigned char* prelocs,
9716     size_t reloc_count,
9717     Output_section* output_section,
9718     bool needs_special_offset_handling,
9719     size_t local_symbol_count,
9720     const unsigned char* plocal_symbols,
9721     Relocatable_relocs* rr)
9722 {
9723   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9724
9725   gold_assert(sh_type == elfcpp::SHT_RELA);
9726
9727   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9728     symtab,
9729     layout,
9730     object,
9731     data_shndx,
9732     prelocs,
9733     reloc_count,
9734     output_section,
9735     needs_special_offset_handling,
9736     local_symbol_count,
9737     plocal_symbols,
9738     rr);
9739 }
9740
9741 // Scan the relocs for --emit-relocs.
9742
9743 template<int size, bool big_endian>
9744 void
9745 Target_powerpc<size, big_endian>::emit_relocs_scan(
9746     Symbol_table* symtab,
9747     Layout* layout,
9748     Sized_relobj_file<size, big_endian>* object,
9749     unsigned int data_shndx,
9750     unsigned int sh_type,
9751     const unsigned char* prelocs,
9752     size_t reloc_count,
9753     Output_section* output_section,
9754     bool needs_special_offset_handling,
9755     size_t local_symbol_count,
9756     const unsigned char* plocal_syms,
9757     Relocatable_relocs* rr)
9758 {
9759   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9760       Classify_reloc;
9761   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9762       Emit_relocs_strategy;
9763
9764   gold_assert(sh_type == elfcpp::SHT_RELA);
9765
9766   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9767     symtab,
9768     layout,
9769     object,
9770     data_shndx,
9771     prelocs,
9772     reloc_count,
9773     output_section,
9774     needs_special_offset_handling,
9775     local_symbol_count,
9776     plocal_syms,
9777     rr);
9778 }
9779
9780 // Emit relocations for a section.
9781 // This is a modified version of the function by the same name in
9782 // target-reloc.h.  Using relocate_special_relocatable for
9783 // R_PPC_PLTREL24 would require duplication of the entire body of the
9784 // loop, so we may as well duplicate the whole thing.
9785
9786 template<int size, bool big_endian>
9787 void
9788 Target_powerpc<size, big_endian>::relocate_relocs(
9789     const Relocate_info<size, big_endian>* relinfo,
9790     unsigned int sh_type,
9791     const unsigned char* prelocs,
9792     size_t reloc_count,
9793     Output_section* output_section,
9794     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9795     unsigned char*,
9796     Address view_address,
9797     section_size_type,
9798     unsigned char* reloc_view,
9799     section_size_type reloc_view_size)
9800 {
9801   gold_assert(sh_type == elfcpp::SHT_RELA);
9802
9803   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9804   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9805   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9806   // Offset from start of insn to d-field reloc.
9807   const int d_offset = big_endian ? 2 : 0;
9808
9809   Powerpc_relobj<size, big_endian>* const object
9810     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9811   const unsigned int local_count = object->local_symbol_count();
9812   unsigned int got2_shndx = object->got2_shndx();
9813   Address got2_addend = 0;
9814   if (got2_shndx != 0)
9815     {
9816       got2_addend = object->get_output_section_offset(got2_shndx);
9817       gold_assert(got2_addend != invalid_address);
9818     }
9819
9820   const bool relocatable = parameters->options().relocatable();
9821
9822   unsigned char* pwrite = reloc_view;
9823   bool zap_next = false;
9824   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9825     {
9826       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9827       if (strategy == Relocatable_relocs::RELOC_DISCARD)
9828         continue;
9829
9830       Reltype reloc(prelocs);
9831       Reltype_write reloc_write(pwrite);
9832
9833       Address offset = reloc.get_r_offset();
9834       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9835       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9836       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9837       const unsigned int orig_r_sym = r_sym;
9838       typename elfcpp::Elf_types<size>::Elf_Swxword addend
9839         = reloc.get_r_addend();
9840       const Symbol* gsym = NULL;
9841
9842       if (zap_next)
9843         {
9844           // We could arrange to discard these and other relocs for
9845           // tls optimised sequences in the strategy methods, but for
9846           // now do as BFD ld does.
9847           r_type = elfcpp::R_POWERPC_NONE;
9848           zap_next = false;
9849         }
9850
9851       // Get the new symbol index.
9852       Output_section* os = NULL;
9853       if (r_sym < local_count)
9854         {
9855           switch (strategy)
9856             {
9857             case Relocatable_relocs::RELOC_COPY:
9858             case Relocatable_relocs::RELOC_SPECIAL:
9859               if (r_sym != 0)
9860                 {
9861                   r_sym = object->symtab_index(r_sym);
9862                   gold_assert(r_sym != -1U);
9863                 }
9864               break;
9865
9866             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9867               {
9868                 // We are adjusting a section symbol.  We need to find
9869                 // the symbol table index of the section symbol for
9870                 // the output section corresponding to input section
9871                 // in which this symbol is defined.
9872                 gold_assert(r_sym < local_count);
9873                 bool is_ordinary;
9874                 unsigned int shndx =
9875                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
9876                 gold_assert(is_ordinary);
9877                 os = object->output_section(shndx);
9878                 gold_assert(os != NULL);
9879                 gold_assert(os->needs_symtab_index());
9880                 r_sym = os->symtab_index();
9881               }
9882               break;
9883
9884             default:
9885               gold_unreachable();
9886             }
9887         }
9888       else
9889         {
9890           gsym = object->global_symbol(r_sym);
9891           gold_assert(gsym != NULL);
9892           if (gsym->is_forwarder())
9893             gsym = relinfo->symtab->resolve_forwards(gsym);
9894
9895           gold_assert(gsym->has_symtab_index());
9896           r_sym = gsym->symtab_index();
9897         }
9898
9899       // Get the new offset--the location in the output section where
9900       // this relocation should be applied.
9901       if (static_cast<Address>(offset_in_output_section) != invalid_address)
9902         offset += offset_in_output_section;
9903       else
9904         {
9905           section_offset_type sot_offset =
9906             convert_types<section_offset_type, Address>(offset);
9907           section_offset_type new_sot_offset =
9908             output_section->output_offset(object, relinfo->data_shndx,
9909                                           sot_offset);
9910           gold_assert(new_sot_offset != -1);
9911           offset = new_sot_offset;
9912         }
9913
9914       // In an object file, r_offset is an offset within the section.
9915       // In an executable or dynamic object, generated by
9916       // --emit-relocs, r_offset is an absolute address.
9917       if (!relocatable)
9918         {
9919           offset += view_address;
9920           if (static_cast<Address>(offset_in_output_section) != invalid_address)
9921             offset -= offset_in_output_section;
9922         }
9923
9924       // Handle the reloc addend based on the strategy.
9925       if (strategy == Relocatable_relocs::RELOC_COPY)
9926         ;
9927       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9928         {
9929           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9930           addend = psymval->value(object, addend);
9931           // In a relocatable link, the symbol value is relative to
9932           // the start of the output section. For a non-relocatable
9933           // link, we need to adjust the addend.
9934           if (!relocatable)
9935             {
9936               gold_assert(os != NULL);
9937               addend -= os->address();
9938             }
9939         }
9940       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9941         {
9942           if (size == 32)
9943             {
9944               if (addend >= 32768)
9945                 addend += got2_addend;
9946             }
9947           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9948             {
9949               r_type = elfcpp::R_POWERPC_ADDR16_HA;
9950               addend -= d_offset;
9951             }
9952           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9953             {
9954               r_type = elfcpp::R_POWERPC_ADDR16_LO;
9955               addend -= d_offset + 4;
9956             }
9957         }
9958       else
9959         gold_unreachable();
9960
9961       if (!relocatable)
9962         {
9963           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9964               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9965               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9966               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9967             {
9968               // First instruction of a global dynamic sequence,
9969               // arg setup insn.
9970               const bool final = gsym == NULL || gsym->final_value_is_known();
9971               switch (this->optimize_tls_gd(final))
9972                 {
9973                 case tls::TLSOPT_TO_IE:
9974                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9975                              - elfcpp::R_POWERPC_GOT_TLSGD16);
9976                   break;
9977                 case tls::TLSOPT_TO_LE:
9978                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9979                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9980                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
9981                   else
9982                     {
9983                       r_type = elfcpp::R_POWERPC_NONE;
9984                       offset -= d_offset;
9985                     }
9986                   break;
9987                 default:
9988                   break;
9989                 }
9990             }
9991           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9992                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9993                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9994                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9995             {
9996               // First instruction of a local dynamic sequence,
9997               // arg setup insn.
9998               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9999                 {
10000                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10001                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
10002                     {
10003                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
10004                       const Output_section* os = relinfo->layout->tls_segment()
10005                         ->first_section();
10006                       gold_assert(os != NULL);
10007                       gold_assert(os->needs_symtab_index());
10008                       r_sym = os->symtab_index();
10009                       addend = dtp_offset;
10010                     }
10011                   else
10012                     {
10013                       r_type = elfcpp::R_POWERPC_NONE;
10014                       offset -= d_offset;
10015                     }
10016                 }
10017             }
10018           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10019                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
10020                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
10021                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
10022             {
10023               // First instruction of initial exec sequence.
10024               const bool final = gsym == NULL || gsym->final_value_is_known();
10025               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10026                 {
10027                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10028                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
10029                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
10030                   else
10031                     {
10032                       r_type = elfcpp::R_POWERPC_NONE;
10033                       offset -= d_offset;
10034                     }
10035                 }
10036             }
10037           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10038                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10039             {
10040               // Second instruction of a global dynamic sequence,
10041               // the __tls_get_addr call
10042               const bool final = gsym == NULL || gsym->final_value_is_known();
10043               switch (this->optimize_tls_gd(final))
10044                 {
10045                 case tls::TLSOPT_TO_IE:
10046                   r_type = elfcpp::R_POWERPC_NONE;
10047                   zap_next = true;
10048                   break;
10049                 case tls::TLSOPT_TO_LE:
10050                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10051                   offset += d_offset;
10052                   zap_next = true;
10053                   break;
10054                 default:
10055                   break;
10056                 }
10057             }
10058           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10059                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10060             {
10061               // Second instruction of a local dynamic sequence,
10062               // the __tls_get_addr call
10063               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10064                 {
10065                   const Output_section* os = relinfo->layout->tls_segment()
10066                     ->first_section();
10067                   gold_assert(os != NULL);
10068                   gold_assert(os->needs_symtab_index());
10069                   r_sym = os->symtab_index();
10070                   addend = dtp_offset;
10071                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10072                   offset += d_offset;
10073                   zap_next = true;
10074                 }
10075             }
10076           else if (r_type == elfcpp::R_POWERPC_TLS)
10077             {
10078               // Second instruction of an initial exec sequence
10079               const bool final = gsym == NULL || gsym->final_value_is_known();
10080               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10081                 {
10082                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10083                   offset += d_offset;
10084                 }
10085             }
10086         }
10087
10088       reloc_write.put_r_offset(offset);
10089       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10090       reloc_write.put_r_addend(addend);
10091
10092       pwrite += reloc_size;
10093     }
10094
10095   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10096               == reloc_view_size);
10097 }
10098
10099 // Return the value to use for a dynamic symbol which requires special
10100 // treatment.  This is how we support equality comparisons of function
10101 // pointers across shared library boundaries, as described in the
10102 // processor specific ABI supplement.
10103
10104 template<int size, bool big_endian>
10105 uint64_t
10106 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10107 {
10108   if (size == 32)
10109     {
10110       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10111       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10112            p != this->stub_tables_.end();
10113            ++p)
10114         {
10115           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10116             = (*p)->find_plt_call_entry(gsym);
10117           if (ent != NULL)
10118             return (*p)->stub_address() + ent->off_;
10119         }
10120     }
10121   else if (this->abiversion() >= 2)
10122     {
10123       Address off = this->glink_section()->find_global_entry(gsym);
10124       if (off != invalid_address)
10125         return this->glink_section()->global_entry_address() + off;
10126     }
10127   gold_unreachable();
10128 }
10129
10130 // Return the PLT address to use for a local symbol.
10131 template<int size, bool big_endian>
10132 uint64_t
10133 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10134     const Relobj* object,
10135     unsigned int symndx) const
10136 {
10137   if (size == 32)
10138     {
10139       const Sized_relobj<size, big_endian>* relobj
10140         = static_cast<const Sized_relobj<size, big_endian>*>(object);
10141       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10142            p != this->stub_tables_.end();
10143            ++p)
10144         {
10145           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10146             = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10147           if (ent != NULL)
10148             return (*p)->stub_address() + ent->off_;
10149         }
10150     }
10151   gold_unreachable();
10152 }
10153
10154 // Return the PLT address to use for a global symbol.
10155 template<int size, bool big_endian>
10156 uint64_t
10157 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10158     const Symbol* gsym) const
10159 {
10160   if (size == 32)
10161     {
10162       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10163            p != this->stub_tables_.end();
10164            ++p)
10165         {
10166           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10167             = (*p)->find_plt_call_entry(gsym);
10168           if (ent != NULL)
10169             return (*p)->stub_address() + ent->off_;
10170         }
10171     }
10172   else if (this->abiversion() >= 2)
10173     {
10174       Address off = this->glink_section()->find_global_entry(gsym);
10175       if (off != invalid_address)
10176         return this->glink_section()->global_entry_address() + off;
10177     }
10178   gold_unreachable();
10179 }
10180
10181 // Return the offset to use for the GOT_INDX'th got entry which is
10182 // for a local tls symbol specified by OBJECT, SYMNDX.
10183 template<int size, bool big_endian>
10184 int64_t
10185 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10186     const Relobj* object,
10187     unsigned int symndx,
10188     unsigned int got_indx) const
10189 {
10190   const Powerpc_relobj<size, big_endian>* ppc_object
10191     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10192   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10193     {
10194       for (Got_type got_type = GOT_TYPE_TLSGD;
10195            got_type <= GOT_TYPE_TPREL;
10196            got_type = Got_type(got_type + 1))
10197         if (ppc_object->local_has_got_offset(symndx, got_type))
10198           {
10199             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10200             if (got_type == GOT_TYPE_TLSGD)
10201               off += size / 8;
10202             if (off == got_indx * (size / 8))
10203               {
10204                 if (got_type == GOT_TYPE_TPREL)
10205                   return -tp_offset;
10206                 else
10207                   return -dtp_offset;
10208               }
10209           }
10210     }
10211   gold_unreachable();
10212 }
10213
10214 // Return the offset to use for the GOT_INDX'th got entry which is
10215 // for global tls symbol GSYM.
10216 template<int size, bool big_endian>
10217 int64_t
10218 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10219     Symbol* gsym,
10220     unsigned int got_indx) const
10221 {
10222   if (gsym->type() == elfcpp::STT_TLS)
10223     {
10224       for (Got_type got_type = GOT_TYPE_TLSGD;
10225            got_type <= GOT_TYPE_TPREL;
10226            got_type = Got_type(got_type + 1))
10227         if (gsym->has_got_offset(got_type))
10228           {
10229             unsigned int off = gsym->got_offset(got_type);
10230             if (got_type == GOT_TYPE_TLSGD)
10231               off += size / 8;
10232             if (off == got_indx * (size / 8))
10233               {
10234                 if (got_type == GOT_TYPE_TPREL)
10235                   return -tp_offset;
10236                 else
10237                   return -dtp_offset;
10238               }
10239           }
10240     }
10241   gold_unreachable();
10242 }
10243
10244 // The selector for powerpc object files.
10245
10246 template<int size, bool big_endian>
10247 class Target_selector_powerpc : public Target_selector
10248 {
10249 public:
10250   Target_selector_powerpc()
10251     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10252                       size, big_endian,
10253                       (size == 64
10254                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10255                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10256                       (size == 64
10257                        ? (big_endian ? "elf64ppc" : "elf64lppc")
10258                        : (big_endian ? "elf32ppc" : "elf32lppc")))
10259   { }
10260
10261   virtual Target*
10262   do_instantiate_target()
10263   { return new Target_powerpc<size, big_endian>(); }
10264 };
10265
10266 Target_selector_powerpc<32, true> target_selector_ppc32;
10267 Target_selector_powerpc<32, false> target_selector_ppc32le;
10268 Target_selector_powerpc<64, true> target_selector_ppc64;
10269 Target_selector_powerpc<64, false> target_selector_ppc64le;
10270
10271 // Instantiate these constants for -O0
10272 template<int size, bool big_endian>
10273 const typename Output_data_glink<size, big_endian>::Address
10274   Output_data_glink<size, big_endian>::invalid_address;
10275 template<int size, bool big_endian>
10276 const typename Stub_table<size, big_endian>::Address
10277   Stub_table<size, big_endian>::invalid_address;
10278 template<int size, bool big_endian>
10279 const typename Target_powerpc<size, big_endian>::Address
10280   Target_powerpc<size, big_endian>::invalid_address;
10281
10282 } // End anonymous namespace.