PR gold/15354
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_()
81   { }
82
83   ~Powerpc_relobj()
84   { }
85
86   // The .got2 section shndx.
87   unsigned int
88   got2_shndx() const
89   {
90     if (size == 32)
91       return this->special_;
92     else
93       return 0;
94   }
95
96   // The .opd section shndx.
97   unsigned int
98   opd_shndx() const
99   {
100     if (size == 32)
101       return 0;
102     else
103       return this->special_;
104   }
105
106   // Init OPD entry arrays.
107   void
108   init_opd(size_t opd_size)
109   {
110     size_t count = this->opd_ent_ndx(opd_size);
111     this->opd_ent_.resize(count);
112   }
113
114   // Return section and offset of function entry for .opd + R_OFF.
115   unsigned int
116   get_opd_ent(Address r_off, Address* value = NULL) const
117   {
118     size_t ndx = this->opd_ent_ndx(r_off);
119     gold_assert(ndx < this->opd_ent_.size());
120     gold_assert(this->opd_ent_[ndx].shndx != 0);
121     if (value != NULL)
122       *value = this->opd_ent_[ndx].off;
123     return this->opd_ent_[ndx].shndx;
124   }
125
126   // Set section and offset of function entry for .opd + R_OFF.
127   void
128   set_opd_ent(Address r_off, unsigned int shndx, Address value)
129   {
130     size_t ndx = this->opd_ent_ndx(r_off);
131     gold_assert(ndx < this->opd_ent_.size());
132     this->opd_ent_[ndx].shndx = shndx;
133     this->opd_ent_[ndx].off = value;
134   }
135
136   // Return discard flag for .opd + R_OFF.
137   bool
138   get_opd_discard(Address r_off) const
139   {
140     size_t ndx = this->opd_ent_ndx(r_off);
141     gold_assert(ndx < this->opd_ent_.size());
142     return this->opd_ent_[ndx].discard;
143   }
144
145   // Set discard flag for .opd + R_OFF.
146   void
147   set_opd_discard(Address r_off)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].discard = true;
152   }
153
154   bool
155   opd_valid() const
156   { return this->opd_valid_; }
157
158   void
159   set_opd_valid()
160   { this->opd_valid_ = true; }
161
162   // Examine .rela.opd to build info about function entry points.
163   void
164   scan_opd_relocs(size_t reloc_count,
165                   const unsigned char* prelocs,
166                   const unsigned char* plocal_syms);
167
168   // Perform the Sized_relobj_file method, then set up opd info from
169   // .opd relocs.
170   void
171   do_read_relocs(Read_relocs_data*);
172
173   bool
174   do_find_special_sections(Read_symbols_data* sd);
175
176   // Adjust this local symbol value.  Return false if the symbol
177   // should be discarded from the output file.
178   bool
179   do_adjust_local_symbol(Symbol_value<size>* lv) const
180   {
181     if (size == 64 && this->opd_shndx() != 0)
182       {
183         bool is_ordinary;
184         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
185           return true;
186         if (this->get_opd_discard(lv->input_value()))
187           return false;
188       }
189     return true;
190   }
191
192   Access_from*
193   access_from_map()
194   { return &this->access_from_map_; }
195
196   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
197   // section at DST_OFF.
198   void
199   add_reference(Object* src_obj,
200                 unsigned int src_indx,
201                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
202   {
203     Section_id src_id(src_obj, src_indx);
204     this->access_from_map_[dst_off].insert(src_id);
205   }
206
207   // Add a reference to the code section specified by the .opd entry
208   // at DST_OFF
209   void
210   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
211   {
212     size_t ndx = this->opd_ent_ndx(dst_off);
213     if (ndx >= this->opd_ent_.size())
214       this->opd_ent_.resize(ndx + 1);
215     this->opd_ent_[ndx].gc_mark = true;
216   }
217
218   void
219   process_gc_mark(Symbol_table* symtab)
220   {
221     for (size_t i = 0; i < this->opd_ent_.size(); i++)
222       if (this->opd_ent_[i].gc_mark)
223         {
224           unsigned int shndx = this->opd_ent_[i].shndx;
225           symtab->gc()->worklist().push(Section_id(this, shndx));
226         }
227   }
228
229   // Return offset in output GOT section that this object will use
230   // as a TOC pointer.  Won't be just a constant with multi-toc support.
231   Address
232   toc_base_offset() const
233   { return 0x8000; }
234
235   void
236   set_has_small_toc_reloc()
237   { has_small_toc_reloc_ = true; }
238
239   bool
240   has_small_toc_reloc() const
241   { return has_small_toc_reloc_; }
242
243   void
244   set_has_14bit_branch(unsigned int shndx)
245   {
246     if (shndx >= this->has14_.size())
247       this->has14_.resize(shndx + 1);
248     this->has14_[shndx] = true;
249   }
250
251   bool
252   has_14bit_branch(unsigned int shndx) const
253   { return shndx < this->has14_.size() && this->has14_[shndx];  }
254
255   void
256   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
257   {
258     if (shndx >= this->stub_table_.size())
259       this->stub_table_.resize(shndx + 1);
260     this->stub_table_[shndx] = stub_table;
261   }
262
263   Stub_table<size, big_endian>*
264   stub_table(unsigned int shndx)
265   {
266     if (shndx < this->stub_table_.size())
267       return this->stub_table_[shndx];
268     return NULL;
269   }
270
271 private:
272   struct Opd_ent
273   {
274     unsigned int shndx;
275     bool discard : 1;
276     bool gc_mark : 1;
277     Address off;
278   };
279
280   // Return index into opd_ent_ array for .opd entry at OFF.
281   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
282   // apart when the language doesn't use the last 8-byte word, the
283   // environment pointer.  Thus dividing the entry section offset by
284   // 16 will give an index into opd_ent_ that works for either layout
285   // of .opd.  (It leaves some elements of the vector unused when .opd
286   // entries are spaced 24 bytes apart, but we don't know the spacing
287   // until relocations are processed, and in any case it is possible
288   // for an object to have some entries spaced 16 bytes apart and
289   // others 24 bytes apart.)
290   size_t
291   opd_ent_ndx(size_t off) const
292   { return off >> 4;}
293
294   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
295   unsigned int special_;
296
297   // For 64-bit, whether this object uses small model relocs to access
298   // the toc.
299   bool has_small_toc_reloc_;
300
301   // Set at the start of gc_process_relocs, when we know opd_ent_
302   // vector is valid.  The flag could be made atomic and set in
303   // do_read_relocs with memory_order_release and then tested with
304   // memory_order_acquire, potentially resulting in fewer entries in
305   // access_from_map_.
306   bool opd_valid_;
307
308   // The first 8-byte word of an OPD entry gives the address of the
309   // entry point of the function.  Relocatable object files have a
310   // relocation on this word.  The following vector records the
311   // section and offset specified by these relocations.
312   std::vector<Opd_ent> opd_ent_;
313
314   // References made to this object's .opd section when running
315   // gc_process_relocs for another object, before the opd_ent_ vector
316   // is valid for this object.
317   Access_from access_from_map_;
318
319   // Whether input section has a 14-bit branch reloc.
320   std::vector<bool> has14_;
321
322   // The stub table to use for a given input section.
323   std::vector<Stub_table<size, big_endian>*> stub_table_;
324 };
325
326 template<int size, bool big_endian>
327 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
328 {
329 public:
330   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
331
332   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
333                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
334     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
335       opd_shndx_(0), opd_ent_()
336   { }
337
338   ~Powerpc_dynobj()
339   { }
340
341   // Call Sized_dynobj::do_read_symbols to read the symbols then
342   // read .opd from a dynamic object, filling in opd_ent_ vector,
343   void
344   do_read_symbols(Read_symbols_data*);
345
346   // The .opd section shndx.
347   unsigned int
348   opd_shndx() const
349   {
350     return this->opd_shndx_;
351   }
352
353   // The .opd section address.
354   Address
355   opd_address() const
356   {
357     return this->opd_address_;
358   }
359
360   // Init OPD entry arrays.
361   void
362   init_opd(size_t opd_size)
363   {
364     size_t count = this->opd_ent_ndx(opd_size);
365     this->opd_ent_.resize(count);
366   }
367
368   // Return section and offset of function entry for .opd + R_OFF.
369   unsigned int
370   get_opd_ent(Address r_off, Address* value = NULL) const
371   {
372     size_t ndx = this->opd_ent_ndx(r_off);
373     gold_assert(ndx < this->opd_ent_.size());
374     gold_assert(this->opd_ent_[ndx].shndx != 0);
375     if (value != NULL)
376       *value = this->opd_ent_[ndx].off;
377     return this->opd_ent_[ndx].shndx;
378   }
379
380   // Set section and offset of function entry for .opd + R_OFF.
381   void
382   set_opd_ent(Address r_off, unsigned int shndx, Address value)
383   {
384     size_t ndx = this->opd_ent_ndx(r_off);
385     gold_assert(ndx < this->opd_ent_.size());
386     this->opd_ent_[ndx].shndx = shndx;
387     this->opd_ent_[ndx].off = value;
388   }
389
390 private:
391   // Used to specify extent of executable sections.
392   struct Sec_info
393   {
394     Sec_info(Address start_, Address len_, unsigned int shndx_)
395       : start(start_), len(len_), shndx(shndx_)
396     { }
397
398     bool
399     operator<(const Sec_info& that) const
400     { return this->start < that.start; }
401
402     Address start;
403     Address len;
404     unsigned int shndx;
405   };
406
407   struct Opd_ent
408   {
409     unsigned int shndx;
410     Address off;
411   };
412
413   // Return index into opd_ent_ array for .opd entry at OFF.
414   size_t
415   opd_ent_ndx(size_t off) const
416   { return off >> 4;}
417
418   // For 64-bit the .opd section shndx and address.
419   unsigned int opd_shndx_;
420   Address opd_address_;
421
422   // The first 8-byte word of an OPD entry gives the address of the
423   // entry point of the function.  Records the section and offset
424   // corresponding to the address.  Note that in dynamic objects,
425   // offset is *not* relative to the section.
426   std::vector<Opd_ent> opd_ent_;
427 };
428
429 template<int size, bool big_endian>
430 class Target_powerpc : public Sized_target<size, big_endian>
431 {
432  public:
433   typedef
434     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
435   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
436   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
437   static const Address invalid_address = static_cast<Address>(0) - 1;
438   // Offset of tp and dtp pointers from start of TLS block.
439   static const Address tp_offset = 0x7000;
440   static const Address dtp_offset = 0x8000;
441
442   Target_powerpc()
443     : Sized_target<size, big_endian>(&powerpc_info),
444       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
445       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
446       dynbss_(NULL), tlsld_got_offset_(-1U),
447       stub_tables_(), branch_lookup_table_(), branch_info_(),
448       plt_thread_safe_(false)
449   {
450   }
451
452   // Process the relocations to determine unreferenced sections for
453   // garbage collection.
454   void
455   gc_process_relocs(Symbol_table* symtab,
456                     Layout* layout,
457                     Sized_relobj_file<size, big_endian>* object,
458                     unsigned int data_shndx,
459                     unsigned int sh_type,
460                     const unsigned char* prelocs,
461                     size_t reloc_count,
462                     Output_section* output_section,
463                     bool needs_special_offset_handling,
464                     size_t local_symbol_count,
465                     const unsigned char* plocal_symbols);
466
467   // Scan the relocations to look for symbol adjustments.
468   void
469   scan_relocs(Symbol_table* symtab,
470               Layout* layout,
471               Sized_relobj_file<size, big_endian>* object,
472               unsigned int data_shndx,
473               unsigned int sh_type,
474               const unsigned char* prelocs,
475               size_t reloc_count,
476               Output_section* output_section,
477               bool needs_special_offset_handling,
478               size_t local_symbol_count,
479               const unsigned char* plocal_symbols);
480
481   // Map input .toc section to output .got section.
482   const char*
483   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
484   {
485     if (size == 64 && strcmp(name, ".toc") == 0)
486       {
487         *plen = 4;
488         return ".got";
489       }
490     return NULL;
491   }
492
493   // Provide linker defined save/restore functions.
494   void
495   define_save_restore_funcs(Layout*, Symbol_table*);
496
497   // No stubs unless a final link.
498   bool
499   do_may_relax() const
500   { return !parameters->options().relocatable(); }
501
502   bool
503   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
504
505   void
506   do_plt_fde_location(const Output_data*, unsigned char*,
507                       uint64_t*, off_t*) const;
508
509   // Stash info about branches, for stub generation.
510   void
511   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
512               unsigned int data_shndx, Address r_offset,
513               unsigned int r_type, unsigned int r_sym, Address addend)
514   {
515     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
516     this->branch_info_.push_back(info);
517     if (r_type == elfcpp::R_POWERPC_REL14
518         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
519         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
520       ppc_object->set_has_14bit_branch(data_shndx);
521   }
522
523   Stub_table<size, big_endian>*
524   new_stub_table();
525
526   void
527   do_define_standard_symbols(Symbol_table*, Layout*);
528
529   // Finalize the sections.
530   void
531   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
532
533   // Return the value to use for a dynamic which requires special
534   // treatment.
535   uint64_t
536   do_dynsym_value(const Symbol*) const;
537
538   // Return the PLT address to use for a local symbol.
539   uint64_t
540   do_plt_address_for_local(const Relobj*, unsigned int) const;
541
542   // Return the PLT address to use for a global symbol.
543   uint64_t
544   do_plt_address_for_global(const Symbol*) const;
545
546   // Return the offset to use for the GOT_INDX'th got entry which is
547   // for a local tls symbol specified by OBJECT, SYMNDX.
548   int64_t
549   do_tls_offset_for_local(const Relobj* object,
550                           unsigned int symndx,
551                           unsigned int got_indx) const;
552
553   // Return the offset to use for the GOT_INDX'th got entry which is
554   // for global tls symbol GSYM.
555   int64_t
556   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
557
558   void
559   do_function_location(Symbol_location*) const;
560
561   bool
562   do_can_check_for_function_pointers() const
563   { return true; }
564
565   // Relocate a section.
566   void
567   relocate_section(const Relocate_info<size, big_endian>*,
568                    unsigned int sh_type,
569                    const unsigned char* prelocs,
570                    size_t reloc_count,
571                    Output_section* output_section,
572                    bool needs_special_offset_handling,
573                    unsigned char* view,
574                    Address view_address,
575                    section_size_type view_size,
576                    const Reloc_symbol_changes*);
577
578   // Scan the relocs during a relocatable link.
579   void
580   scan_relocatable_relocs(Symbol_table* symtab,
581                           Layout* layout,
582                           Sized_relobj_file<size, big_endian>* object,
583                           unsigned int data_shndx,
584                           unsigned int sh_type,
585                           const unsigned char* prelocs,
586                           size_t reloc_count,
587                           Output_section* output_section,
588                           bool needs_special_offset_handling,
589                           size_t local_symbol_count,
590                           const unsigned char* plocal_symbols,
591                           Relocatable_relocs*);
592
593   // Emit relocations for a section.
594   void
595   relocate_relocs(const Relocate_info<size, big_endian>*,
596                   unsigned int sh_type,
597                   const unsigned char* prelocs,
598                   size_t reloc_count,
599                   Output_section* output_section,
600                   typename elfcpp::Elf_types<size>::Elf_Off
601                     offset_in_output_section,
602                   const Relocatable_relocs*,
603                   unsigned char*,
604                   Address view_address,
605                   section_size_type,
606                   unsigned char* reloc_view,
607                   section_size_type reloc_view_size);
608
609   // Return whether SYM is defined by the ABI.
610   bool
611   do_is_defined_by_abi(const Symbol* sym) const
612   {
613     return strcmp(sym->name(), "__tls_get_addr") == 0;
614   }
615
616   // Return the size of the GOT section.
617   section_size_type
618   got_size() const
619   {
620     gold_assert(this->got_ != NULL);
621     return this->got_->data_size();
622   }
623
624   // Get the PLT section.
625   const Output_data_plt_powerpc<size, big_endian>*
626   plt_section() const
627   {
628     gold_assert(this->plt_ != NULL);
629     return this->plt_;
630   }
631
632   // Get the IPLT section.
633   const Output_data_plt_powerpc<size, big_endian>*
634   iplt_section() const
635   {
636     gold_assert(this->iplt_ != NULL);
637     return this->iplt_;
638   }
639
640   // Get the .glink section.
641   const Output_data_glink<size, big_endian>*
642   glink_section() const
643   {
644     gold_assert(this->glink_ != NULL);
645     return this->glink_;
646   }
647
648   bool has_glink() const
649   { return this->glink_ != NULL; }
650
651   // Get the GOT section.
652   const Output_data_got_powerpc<size, big_endian>*
653   got_section() const
654   {
655     gold_assert(this->got_ != NULL);
656     return this->got_;
657   }
658
659   // Get the GOT section, creating it if necessary.
660   Output_data_got_powerpc<size, big_endian>*
661   got_section(Symbol_table*, Layout*);
662
663   Object*
664   do_make_elf_object(const std::string&, Input_file*, off_t,
665                      const elfcpp::Ehdr<size, big_endian>&);
666
667   // Return the number of entries in the GOT.
668   unsigned int
669   got_entry_count() const
670   {
671     if (this->got_ == NULL)
672       return 0;
673     return this->got_size() / (size / 8);
674   }
675
676   // Return the number of entries in the PLT.
677   unsigned int
678   plt_entry_count() const;
679
680   // Return the offset of the first non-reserved PLT entry.
681   unsigned int
682   first_plt_entry_offset() const;
683
684   // Return the size of each PLT entry.
685   unsigned int
686   plt_entry_size() const;
687
688   // Add any special sections for this symbol to the gc work list.
689   // For powerpc64, this adds the code section of a function
690   // descriptor.
691   void
692   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
693
694   // Handle target specific gc actions when adding a gc reference from
695   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
696   // and DST_OFF.  For powerpc64, this adds a referenc to the code
697   // section of a function descriptor.
698   void
699   do_gc_add_reference(Symbol_table* symtab,
700                       Object* src_obj,
701                       unsigned int src_shndx,
702                       Object* dst_obj,
703                       unsigned int dst_shndx,
704                       Address dst_off) const;
705
706   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
707   const Stub_tables&
708   stub_tables() const
709   { return this->stub_tables_; }
710
711   const Output_data_brlt_powerpc<size, big_endian>*
712   brlt_section() const
713   { return this->brlt_section_; }
714
715   void
716   add_branch_lookup_table(Address to)
717   {
718     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
719     this->branch_lookup_table_.insert(std::make_pair(to, off));
720   }
721
722   Address
723   find_branch_lookup_table(Address to)
724   {
725     typename Branch_lookup_table::const_iterator p
726       = this->branch_lookup_table_.find(to);
727     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
728   }
729
730   void
731   write_branch_lookup_table(unsigned char *oview)
732   {
733     for (typename Branch_lookup_table::const_iterator p
734            = this->branch_lookup_table_.begin();
735          p != this->branch_lookup_table_.end();
736          ++p)
737       {
738         elfcpp::Swap<32, big_endian>::writeval(oview + p->second, p->first);
739       }
740   }
741
742   bool
743   plt_thread_safe() const
744   { return this->plt_thread_safe_; }
745
746  private:
747
748   class Track_tls
749   {
750   public:
751     enum Tls_get_addr
752     {
753       NOT_EXPECTED = 0,
754       EXPECTED = 1,
755       SKIP = 2,
756       NORMAL = 3
757     };
758
759     Track_tls()
760       : tls_get_addr_(NOT_EXPECTED),
761         relinfo_(NULL), relnum_(0), r_offset_(0)
762     { }
763
764     ~Track_tls()
765     {
766       if (this->tls_get_addr_ != NOT_EXPECTED)
767         this->missing();
768     }
769
770     void
771     missing(void)
772     {
773       if (this->relinfo_ != NULL)
774         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
775                                _("missing expected __tls_get_addr call"));
776     }
777
778     void
779     expect_tls_get_addr_call(
780         const Relocate_info<size, big_endian>* relinfo,
781         size_t relnum,
782         Address r_offset)
783     {
784       this->tls_get_addr_ = EXPECTED;
785       this->relinfo_ = relinfo;
786       this->relnum_ = relnum;
787       this->r_offset_ = r_offset;
788     }
789
790     void
791     expect_tls_get_addr_call()
792     { this->tls_get_addr_ = EXPECTED; }
793
794     void
795     skip_next_tls_get_addr_call()
796     {this->tls_get_addr_ = SKIP; }
797
798     Tls_get_addr
799     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
800     {
801       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
802                            || r_type == elfcpp::R_PPC_PLTREL24)
803                           && gsym != NULL
804                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
805       Tls_get_addr last_tls = this->tls_get_addr_;
806       this->tls_get_addr_ = NOT_EXPECTED;
807       if (is_tls_call && last_tls != EXPECTED)
808         return last_tls;
809       else if (!is_tls_call && last_tls != NOT_EXPECTED)
810         {
811           this->missing();
812           return EXPECTED;
813         }
814       return NORMAL;
815     }
816
817   private:
818     // What we're up to regarding calls to __tls_get_addr.
819     // On powerpc, the branch and link insn making a call to
820     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
821     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
822     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
823     // The marker relocation always comes first, and has the same
824     // symbol as the reloc on the insn setting up the __tls_get_addr
825     // argument.  This ties the arg setup insn with the call insn,
826     // allowing ld to safely optimize away the call.  We check that
827     // every call to __tls_get_addr has a marker relocation, and that
828     // every marker relocation is on a call to __tls_get_addr.
829     Tls_get_addr tls_get_addr_;
830     // Info about the last reloc for error message.
831     const Relocate_info<size, big_endian>* relinfo_;
832     size_t relnum_;
833     Address r_offset_;
834   };
835
836   // The class which scans relocations.
837   class Scan : protected Track_tls
838   {
839   public:
840     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
841
842     Scan()
843       : Track_tls(), issued_non_pic_error_(false)
844     { }
845
846     static inline int
847     get_reference_flags(unsigned int r_type);
848
849     inline void
850     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
851           Sized_relobj_file<size, big_endian>* object,
852           unsigned int data_shndx,
853           Output_section* output_section,
854           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
855           const elfcpp::Sym<size, big_endian>& lsym,
856           bool is_discarded);
857
858     inline void
859     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
860            Sized_relobj_file<size, big_endian>* object,
861            unsigned int data_shndx,
862            Output_section* output_section,
863            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
864            Symbol* gsym);
865
866     inline bool
867     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
868                                         Target_powerpc* ,
869                                         Sized_relobj_file<size, big_endian>* ,
870                                         unsigned int ,
871                                         Output_section* ,
872                                         const elfcpp::Rela<size, big_endian>& ,
873                                         unsigned int r_type,
874                                         const elfcpp::Sym<size, big_endian>&)
875     {
876       // PowerPC64 .opd is not folded, so any identical function text
877       // may be folded and we'll still keep function addresses distinct.
878       // That means no reloc is of concern here.
879       if (size == 64)
880         return false;
881       // For 32-bit, conservatively assume anything but calls to
882       // function code might be taking the address of the function.
883       return !is_branch_reloc(r_type);
884     }
885
886     inline bool
887     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
888                                          Target_powerpc* ,
889                                          Sized_relobj_file<size, big_endian>* ,
890                                          unsigned int ,
891                                          Output_section* ,
892                                          const elfcpp::Rela<size, big_endian>& ,
893                                          unsigned int r_type,
894                                          Symbol*)
895     {
896       // As above.
897       if (size == 64)
898         return false;
899       return !is_branch_reloc(r_type);
900     }
901
902     static bool
903     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
904                               unsigned int r_type, bool report_err);
905
906   private:
907     static void
908     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
909                             unsigned int r_type);
910
911     static void
912     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
913                              unsigned int r_type, Symbol*);
914
915     static void
916     generate_tls_call(Symbol_table* symtab, Layout* layout,
917                       Target_powerpc* target);
918
919     void
920     check_non_pic(Relobj*, unsigned int r_type);
921
922     // Whether we have issued an error about a non-PIC compilation.
923     bool issued_non_pic_error_;
924   };
925
926   Address
927   symval_for_branch(const Symbol_table* symtab, Address value,
928                     const Sized_symbol<size>* gsym,
929                     Powerpc_relobj<size, big_endian>* object,
930                     unsigned int *dest_shndx);
931
932   // The class which implements relocation.
933   class Relocate : protected Track_tls
934   {
935    public:
936     // Use 'at' branch hints when true, 'y' when false.
937     // FIXME maybe: set this with an option.
938     static const bool is_isa_v2 = true;
939
940     Relocate()
941       : Track_tls()
942     { }
943
944     // Do a relocation.  Return false if the caller should not issue
945     // any warnings about this relocation.
946     inline bool
947     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
948              Output_section*, size_t relnum,
949              const elfcpp::Rela<size, big_endian>&,
950              unsigned int r_type, const Sized_symbol<size>*,
951              const Symbol_value<size>*,
952              unsigned char*,
953              typename elfcpp::Elf_types<size>::Elf_Addr,
954              section_size_type);
955   };
956
957   class Relocate_comdat_behavior
958   {
959    public:
960     // Decide what the linker should do for relocations that refer to
961     // discarded comdat sections.
962     inline Comdat_behavior
963     get(const char* name)
964     {
965       gold::Default_comdat_behavior default_behavior;
966       Comdat_behavior ret = default_behavior.get(name);
967       if (ret == CB_WARNING)
968         {
969           if (size == 32
970               && (strcmp(name, ".fixup") == 0
971                   || strcmp(name, ".got2") == 0))
972             ret = CB_IGNORE;
973           if (size == 64
974               && (strcmp(name, ".opd") == 0
975                   || strcmp(name, ".toc") == 0
976                   || strcmp(name, ".toc1") == 0))
977             ret = CB_IGNORE;
978         }
979       return ret;
980     }
981   };
982
983   // A class which returns the size required for a relocation type,
984   // used while scanning relocs during a relocatable link.
985   class Relocatable_size_for_reloc
986   {
987    public:
988     unsigned int
989     get_size_for_reloc(unsigned int, Relobj*)
990     {
991       gold_unreachable();
992       return 0;
993     }
994   };
995
996   // Optimize the TLS relocation type based on what we know about the
997   // symbol.  IS_FINAL is true if the final address of this symbol is
998   // known at link time.
999
1000   tls::Tls_optimization
1001   optimize_tls_gd(bool is_final)
1002   {
1003     // If we are generating a shared library, then we can't do anything
1004     // in the linker.
1005     if (parameters->options().shared())
1006       return tls::TLSOPT_NONE;
1007
1008     if (!is_final)
1009       return tls::TLSOPT_TO_IE;
1010     return tls::TLSOPT_TO_LE;
1011   }
1012
1013   tls::Tls_optimization
1014   optimize_tls_ld()
1015   {
1016     if (parameters->options().shared())
1017       return tls::TLSOPT_NONE;
1018
1019     return tls::TLSOPT_TO_LE;
1020   }
1021
1022   tls::Tls_optimization
1023   optimize_tls_ie(bool is_final)
1024   {
1025     if (!is_final || parameters->options().shared())
1026       return tls::TLSOPT_NONE;
1027
1028     return tls::TLSOPT_TO_LE;
1029   }
1030
1031   // Create glink.
1032   void
1033   make_glink_section(Layout*);
1034
1035   // Create the PLT section.
1036   void
1037   make_plt_section(Symbol_table*, Layout*);
1038
1039   void
1040   make_iplt_section(Symbol_table*, Layout*);
1041
1042   void
1043   make_brlt_section(Layout*);
1044
1045   // Create a PLT entry for a global symbol.
1046   void
1047   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1048
1049   // Create a PLT entry for a local IFUNC symbol.
1050   void
1051   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1052                              Sized_relobj_file<size, big_endian>*,
1053                              unsigned int);
1054
1055
1056   // Create a GOT entry for local dynamic __tls_get_addr.
1057   unsigned int
1058   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1059                    Sized_relobj_file<size, big_endian>* object);
1060
1061   unsigned int
1062   tlsld_got_offset() const
1063   {
1064     return this->tlsld_got_offset_;
1065   }
1066
1067   // Get the dynamic reloc section, creating it if necessary.
1068   Reloc_section*
1069   rela_dyn_section(Layout*);
1070
1071   // Similarly, but for ifunc symbols get the one for ifunc.
1072   Reloc_section*
1073   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1074
1075   // Copy a relocation against a global symbol.
1076   void
1077   copy_reloc(Symbol_table* symtab, Layout* layout,
1078              Sized_relobj_file<size, big_endian>* object,
1079              unsigned int shndx, Output_section* output_section,
1080              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1081   {
1082     this->copy_relocs_.copy_reloc(symtab, layout,
1083                                   symtab->get_sized_symbol<size>(sym),
1084                                   object, shndx, output_section,
1085                                   reloc, this->rela_dyn_section(layout));
1086   }
1087
1088   // Look over all the input sections, deciding where to place stub.
1089   void
1090   group_sections(Layout*, const Task*);
1091
1092   // Sort output sections by address.
1093   struct Sort_sections
1094   {
1095     bool
1096     operator()(const Output_section* sec1, const Output_section* sec2)
1097     { return sec1->address() < sec2->address(); }
1098   };
1099
1100   class Branch_info
1101   {
1102    public:
1103     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1104                 unsigned int data_shndx,
1105                 Address r_offset,
1106                 unsigned int r_type,
1107                 unsigned int r_sym,
1108                 Address addend)
1109       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1110         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1111     { }
1112
1113     ~Branch_info()
1114     { }
1115
1116     // If this branch needs a plt call stub, or a long branch stub, make one.
1117     void
1118     make_stub(Stub_table<size, big_endian>*,
1119               Stub_table<size, big_endian>*,
1120               Symbol_table*) const;
1121
1122    private:
1123     // The branch location..
1124     Powerpc_relobj<size, big_endian>* object_;
1125     unsigned int shndx_;
1126     Address offset_;
1127     // ..and the branch type and destination.
1128     unsigned int r_type_;
1129     unsigned int r_sym_;
1130     Address addend_;
1131   };
1132
1133   // Information about this specific target which we pass to the
1134   // general Target structure.
1135   static Target::Target_info powerpc_info;
1136
1137   // The types of GOT entries needed for this platform.
1138   // These values are exposed to the ABI in an incremental link.
1139   // Do not renumber existing values without changing the version
1140   // number of the .gnu_incremental_inputs section.
1141   enum Got_type
1142   {
1143     GOT_TYPE_STANDARD,
1144     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1145     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1146     GOT_TYPE_TPREL      // entry for @got@tprel
1147   };
1148
1149   // The GOT section.
1150   Output_data_got_powerpc<size, big_endian>* got_;
1151   // The PLT section.  This is a container for a table of addresses,
1152   // and their relocations.  Each address in the PLT has a dynamic
1153   // relocation (R_*_JMP_SLOT) and each address will have a
1154   // corresponding entry in .glink for lazy resolution of the PLT.
1155   // ppc32 initialises the PLT to point at the .glink entry, while
1156   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1157   // linker adds a stub that loads the PLT entry into ctr then
1158   // branches to ctr.  There may be more than one stub for each PLT
1159   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1160   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1161   Output_data_plt_powerpc<size, big_endian>* plt_;
1162   // The IPLT section.  Like plt_, this is a container for a table of
1163   // addresses and their relocations, specifically for STT_GNU_IFUNC
1164   // functions that resolve locally (STT_GNU_IFUNC functions that
1165   // don't resolve locally go in PLT).  Unlike plt_, these have no
1166   // entry in .glink for lazy resolution, and the relocation section
1167   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1168   // the relocation section may contain relocations against
1169   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1170   // relocation section will appear at the end of other dynamic
1171   // relocations, so that ld.so applies these relocations after other
1172   // dynamic relocations.  In a static executable, the relocation
1173   // section is emitted and marked with __rela_iplt_start and
1174   // __rela_iplt_end symbols.
1175   Output_data_plt_powerpc<size, big_endian>* iplt_;
1176   // Section holding long branch destinations.
1177   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1178   // The .glink section.
1179   Output_data_glink<size, big_endian>* glink_;
1180   // The dynamic reloc section.
1181   Reloc_section* rela_dyn_;
1182   // Relocs saved to avoid a COPY reloc.
1183   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1184   // Space for variables copied with a COPY reloc.
1185   Output_data_space* dynbss_;
1186   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1187   unsigned int tlsld_got_offset_;
1188
1189   Stub_tables stub_tables_;
1190   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1191   Branch_lookup_table branch_lookup_table_;
1192
1193   typedef std::vector<Branch_info> Branches;
1194   Branches branch_info_;
1195
1196   bool plt_thread_safe_;
1197 };
1198
1199 template<>
1200 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1201 {
1202   32,                   // size
1203   true,                 // is_big_endian
1204   elfcpp::EM_PPC,       // machine_code
1205   false,                // has_make_symbol
1206   false,                // has_resolve
1207   false,                // has_code_fill
1208   true,                 // is_default_stack_executable
1209   false,                // can_icf_inline_merge_sections
1210   '\0',                 // wrap_char
1211   "/usr/lib/ld.so.1",   // dynamic_linker
1212   0x10000000,           // default_text_segment_address
1213   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1214   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1215   false,                // isolate_execinstr
1216   0,                    // rosegment_gap
1217   elfcpp::SHN_UNDEF,    // small_common_shndx
1218   elfcpp::SHN_UNDEF,    // large_common_shndx
1219   0,                    // small_common_section_flags
1220   0,                    // large_common_section_flags
1221   NULL,                 // attributes_section
1222   NULL                  // attributes_vendor
1223 };
1224
1225 template<>
1226 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1227 {
1228   32,                   // size
1229   false,                // is_big_endian
1230   elfcpp::EM_PPC,       // machine_code
1231   false,                // has_make_symbol
1232   false,                // has_resolve
1233   false,                // has_code_fill
1234   true,                 // is_default_stack_executable
1235   false,                // can_icf_inline_merge_sections
1236   '\0',                 // wrap_char
1237   "/usr/lib/ld.so.1",   // dynamic_linker
1238   0x10000000,           // default_text_segment_address
1239   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1240   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1241   false,                // isolate_execinstr
1242   0,                    // rosegment_gap
1243   elfcpp::SHN_UNDEF,    // small_common_shndx
1244   elfcpp::SHN_UNDEF,    // large_common_shndx
1245   0,                    // small_common_section_flags
1246   0,                    // large_common_section_flags
1247   NULL,                 // attributes_section
1248   NULL                  // attributes_vendor
1249 };
1250
1251 template<>
1252 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1253 {
1254   64,                   // size
1255   true,                 // is_big_endian
1256   elfcpp::EM_PPC64,     // machine_code
1257   false,                // has_make_symbol
1258   false,                // has_resolve
1259   false,                // has_code_fill
1260   true,                 // is_default_stack_executable
1261   false,                // can_icf_inline_merge_sections
1262   '\0',                 // wrap_char
1263   "/usr/lib/ld.so.1",   // dynamic_linker
1264   0x10000000,           // default_text_segment_address
1265   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1266   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1267   false,                // isolate_execinstr
1268   0,                    // rosegment_gap
1269   elfcpp::SHN_UNDEF,    // small_common_shndx
1270   elfcpp::SHN_UNDEF,    // large_common_shndx
1271   0,                    // small_common_section_flags
1272   0,                    // large_common_section_flags
1273   NULL,                 // attributes_section
1274   NULL                  // attributes_vendor
1275 };
1276
1277 template<>
1278 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1279 {
1280   64,                   // size
1281   false,                // is_big_endian
1282   elfcpp::EM_PPC64,     // machine_code
1283   false,                // has_make_symbol
1284   false,                // has_resolve
1285   false,                // has_code_fill
1286   true,                 // is_default_stack_executable
1287   false,                // can_icf_inline_merge_sections
1288   '\0',                 // wrap_char
1289   "/usr/lib/ld.so.1",   // dynamic_linker
1290   0x10000000,           // default_text_segment_address
1291   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1292   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1293   false,                // isolate_execinstr
1294   0,                    // rosegment_gap
1295   elfcpp::SHN_UNDEF,    // small_common_shndx
1296   elfcpp::SHN_UNDEF,    // large_common_shndx
1297   0,                    // small_common_section_flags
1298   0,                    // large_common_section_flags
1299   NULL,                 // attributes_section
1300   NULL                  // attributes_vendor
1301 };
1302
1303 inline bool
1304 is_branch_reloc(unsigned int r_type)
1305 {
1306   return (r_type == elfcpp::R_POWERPC_REL24
1307           || r_type == elfcpp::R_PPC_PLTREL24
1308           || r_type == elfcpp::R_PPC_LOCAL24PC
1309           || r_type == elfcpp::R_POWERPC_REL14
1310           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1311           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1312           || r_type == elfcpp::R_POWERPC_ADDR24
1313           || r_type == elfcpp::R_POWERPC_ADDR14
1314           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1315           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1316 }
1317
1318 // If INSN is an opcode that may be used with an @tls operand, return
1319 // the transformed insn for TLS optimisation, otherwise return 0.  If
1320 // REG is non-zero only match an insn with RB or RA equal to REG.
1321 uint32_t
1322 at_tls_transform(uint32_t insn, unsigned int reg)
1323 {
1324   if ((insn & (0x3f << 26)) != 31 << 26)
1325     return 0;
1326
1327   unsigned int rtra;
1328   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1329     rtra = insn & ((1 << 26) - (1 << 16));
1330   else if (((insn >> 16) & 0x1f) == reg)
1331     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1332   else
1333     return 0;
1334
1335   if ((insn & (0x3ff << 1)) == 266 << 1)
1336     // add -> addi
1337     insn = 14 << 26;
1338   else if ((insn & (0x1f << 1)) == 23 << 1
1339            && ((insn & (0x1f << 6)) < 14 << 6
1340                || ((insn & (0x1f << 6)) >= 16 << 6
1341                    && (insn & (0x1f << 6)) < 24 << 6)))
1342     // load and store indexed -> dform
1343     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1344   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1345     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1346     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1347   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1348     // lwax -> lwa
1349     insn = (58 << 26) | 2;
1350   else
1351     return 0;
1352   insn |= rtra;
1353   return insn;
1354 }
1355
1356 // Modified version of symtab.h class Symbol member
1357 // Given a direct absolute or pc-relative static relocation against
1358 // the global symbol, this function returns whether a dynamic relocation
1359 // is needed.
1360
1361 template<int size>
1362 bool
1363 needs_dynamic_reloc(const Symbol* gsym, int flags)
1364 {
1365   // No dynamic relocations in a static link!
1366   if (parameters->doing_static_link())
1367     return false;
1368
1369   // A reference to an undefined symbol from an executable should be
1370   // statically resolved to 0, and does not need a dynamic relocation.
1371   // This matches gnu ld behavior.
1372   if (gsym->is_undefined() && !parameters->options().shared())
1373     return false;
1374
1375   // A reference to an absolute symbol does not need a dynamic relocation.
1376   if (gsym->is_absolute())
1377     return false;
1378
1379   // An absolute reference within a position-independent output file
1380   // will need a dynamic relocation.
1381   if ((flags & Symbol::ABSOLUTE_REF)
1382       && parameters->options().output_is_position_independent())
1383     return true;
1384
1385   // A function call that can branch to a local PLT entry does not need
1386   // a dynamic relocation.
1387   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1388     return false;
1389
1390   // A reference to any PLT entry in a non-position-independent executable
1391   // does not need a dynamic relocation.
1392   // Except due to having function descriptors on powerpc64 we don't define
1393   // functions to their plt code in an executable, so this doesn't apply.
1394   if (size == 32
1395       && !parameters->options().output_is_position_independent()
1396       && gsym->has_plt_offset())
1397     return false;
1398
1399   // A reference to a symbol defined in a dynamic object or to a
1400   // symbol that is preemptible will need a dynamic relocation.
1401   if (gsym->is_from_dynobj()
1402       || gsym->is_undefined()
1403       || gsym->is_preemptible())
1404     return true;
1405
1406   // For all other cases, return FALSE.
1407   return false;
1408 }
1409
1410 // Modified version of symtab.h class Symbol member
1411 // Whether we should use the PLT offset associated with a symbol for
1412 // a relocation.  FLAGS is a set of Reference_flags.
1413
1414 template<int size>
1415 bool
1416 use_plt_offset(const Symbol* gsym, int flags)
1417 {
1418   // If the symbol doesn't have a PLT offset, then naturally we
1419   // don't want to use it.
1420   if (!gsym->has_plt_offset())
1421     return false;
1422
1423   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1424   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1425     return true;
1426
1427   // If we are going to generate a dynamic relocation, then we will
1428   // wind up using that, so no need to use the PLT entry.
1429   if (needs_dynamic_reloc<size>(gsym, flags))
1430     return false;
1431
1432   // If the symbol is from a dynamic object, we need to use the PLT
1433   // entry.
1434   if (gsym->is_from_dynobj())
1435     return true;
1436
1437   // If we are generating a shared object, and this symbol is
1438   // undefined or preemptible, we need to use the PLT entry.
1439   if (parameters->options().shared()
1440       && (gsym->is_undefined() || gsym->is_preemptible()))
1441     return true;
1442
1443   // If this is a call to a weak undefined symbol, we need to use
1444   // the PLT entry; the symbol may be defined by a library loaded
1445   // at runtime.
1446   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1447     return true;
1448
1449   // Otherwise we can use the regular definition.
1450   return false;
1451 }
1452
1453 template<int size, bool big_endian>
1454 class Powerpc_relocate_functions
1455 {
1456 public:
1457   enum Overflow_check
1458   {
1459     CHECK_NONE,
1460     CHECK_SIGNED,
1461     CHECK_BITFIELD
1462   };
1463
1464   enum Status
1465   {
1466     STATUS_OK,
1467     STATUS_OVERFLOW
1468   };
1469
1470 private:
1471   typedef Powerpc_relocate_functions<size, big_endian> This;
1472   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1473
1474   template<int valsize>
1475   static inline bool
1476   has_overflow_signed(Address value)
1477   {
1478     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1479     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1480     limit <<= ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1482     return value + limit > (limit << 1) - 1;
1483   }
1484
1485   template<int valsize>
1486   static inline bool
1487   has_overflow_bitfield(Address value)
1488   {
1489     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1490     limit <<= ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1492     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1493   }
1494
1495   template<int valsize>
1496   static inline Status
1497   overflowed(Address value, Overflow_check overflow)
1498   {
1499     if (overflow == CHECK_SIGNED)
1500       {
1501         if (has_overflow_signed<valsize>(value))
1502           return STATUS_OVERFLOW;
1503       }
1504     else if (overflow == CHECK_BITFIELD)
1505       {
1506         if (has_overflow_bitfield<valsize>(value))
1507           return STATUS_OVERFLOW;
1508       }
1509     return STATUS_OK;
1510   }
1511
1512   // Do a simple RELA relocation
1513   template<int valsize>
1514   static inline Status
1515   rela(unsigned char* view, Address value, Overflow_check overflow)
1516   {
1517     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1518     Valtype* wv = reinterpret_cast<Valtype*>(view);
1519     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1520     return overflowed<valsize>(value, overflow);
1521   }
1522
1523   template<int valsize>
1524   static inline Status
1525   rela(unsigned char* view,
1526        unsigned int right_shift,
1527        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1528        Address value,
1529        Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1534     Valtype reloc = value >> right_shift;
1535     val &= ~dst_mask;
1536     reloc &= dst_mask;
1537     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1538     return overflowed<valsize>(value >> right_shift, overflow);
1539   }
1540
1541   // Do a simple RELA relocation, unaligned.
1542   template<int valsize>
1543   static inline Status
1544   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1545   {
1546     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1547     return overflowed<valsize>(value, overflow);
1548   }
1549
1550   template<int valsize>
1551   static inline Status
1552   rela_ua(unsigned char* view,
1553           unsigned int right_shift,
1554           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1555           Address value,
1556           Overflow_check overflow)
1557   {
1558     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1559       Valtype;
1560     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1561     Valtype reloc = value >> right_shift;
1562     val &= ~dst_mask;
1563     reloc &= dst_mask;
1564     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1565     return overflowed<valsize>(value >> right_shift, overflow);
1566   }
1567
1568 public:
1569   // R_PPC64_ADDR64: (Symbol + Addend)
1570   static inline void
1571   addr64(unsigned char* view, Address value)
1572   { This::template rela<64>(view, value, CHECK_NONE); }
1573
1574   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1575   static inline void
1576   addr64_u(unsigned char* view, Address value)
1577   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1578
1579   // R_POWERPC_ADDR32: (Symbol + Addend)
1580   static inline Status
1581   addr32(unsigned char* view, Address value, Overflow_check overflow)
1582   { return This::template rela<32>(view, value, overflow); }
1583
1584   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1585   static inline Status
1586   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1587   { return This::template rela_ua<32>(view, value, overflow); }
1588
1589   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1590   static inline Status
1591   addr24(unsigned char* view, Address value, Overflow_check overflow)
1592   {
1593     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1594     if (overflow != CHECK_NONE && (value & 3) != 0)
1595       stat = STATUS_OVERFLOW;
1596     return stat;
1597   }
1598
1599   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1600   static inline Status
1601   addr16(unsigned char* view, Address value, Overflow_check overflow)
1602   { return This::template rela<16>(view, value, overflow); }
1603
1604   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1605   static inline Status
1606   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1607   { return This::template rela_ua<16>(view, value, overflow); }
1608
1609   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1610   static inline Status
1611   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1612   {
1613     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1614     if (overflow != CHECK_NONE && (value & 3) != 0)
1615       stat = STATUS_OVERFLOW;
1616     return stat;
1617   }
1618
1619   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1620   static inline void
1621   addr16_hi(unsigned char* view, Address value)
1622   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1623
1624   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1625   static inline void
1626   addr16_ha(unsigned char* view, Address value)
1627   { This::addr16_hi(view, value + 0x8000); }
1628
1629   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1630   static inline void
1631   addr16_hi2(unsigned char* view, Address value)
1632   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1633
1634   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1635   static inline void
1636   addr16_ha2(unsigned char* view, Address value)
1637   { This::addr16_hi2(view, value + 0x8000); }
1638
1639   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1640   static inline void
1641   addr16_hi3(unsigned char* view, Address value)
1642   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1643
1644   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1645   static inline void
1646   addr16_ha3(unsigned char* view, Address value)
1647   { This::addr16_hi3(view, value + 0x8000); }
1648
1649   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1650   static inline Status
1651   addr14(unsigned char* view, Address value, Overflow_check overflow)
1652   {
1653     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1654     if (overflow != CHECK_NONE && (value & 3) != 0)
1655       stat = STATUS_OVERFLOW;
1656     return stat;
1657   }
1658 };
1659
1660 // Stash away the index of .got2 or .opd in a relocatable object, if
1661 // such a section exists.
1662
1663 template<int size, bool big_endian>
1664 bool
1665 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1666     Read_symbols_data* sd)
1667 {
1668   const unsigned char* const pshdrs = sd->section_headers->data();
1669   const unsigned char* namesu = sd->section_names->data();
1670   const char* names = reinterpret_cast<const char*>(namesu);
1671   section_size_type names_size = sd->section_names_size;
1672   const unsigned char* s;
1673
1674   s = this->template find_shdr<size, big_endian>(pshdrs,
1675                                                  size == 32 ? ".got2" : ".opd",
1676                                                  names, names_size, NULL);
1677   if (s != NULL)
1678     {
1679       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1680       this->special_ = ndx;
1681     }
1682   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1683 }
1684
1685 // Examine .rela.opd to build info about function entry points.
1686
1687 template<int size, bool big_endian>
1688 void
1689 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1690     size_t reloc_count,
1691     const unsigned char* prelocs,
1692     const unsigned char* plocal_syms)
1693 {
1694   if (size == 64)
1695     {
1696       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1697         Reltype;
1698       const int reloc_size
1699         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1700       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1701       Address expected_off = 0;
1702       bool regular = true;
1703       unsigned int opd_ent_size = 0;
1704
1705       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1706         {
1707           Reltype reloc(prelocs);
1708           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1709             = reloc.get_r_info();
1710           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1711           if (r_type == elfcpp::R_PPC64_ADDR64)
1712             {
1713               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1714               typename elfcpp::Elf_types<size>::Elf_Addr value;
1715               bool is_ordinary;
1716               unsigned int shndx;
1717               if (r_sym < this->local_symbol_count())
1718                 {
1719                   typename elfcpp::Sym<size, big_endian>
1720                     lsym(plocal_syms + r_sym * sym_size);
1721                   shndx = lsym.get_st_shndx();
1722                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1723                   value = lsym.get_st_value();
1724                 }
1725               else
1726                 shndx = this->symbol_section_and_value(r_sym, &value,
1727                                                        &is_ordinary);
1728               this->set_opd_ent(reloc.get_r_offset(), shndx,
1729                                 value + reloc.get_r_addend());
1730               if (i == 2)
1731                 {
1732                   expected_off = reloc.get_r_offset();
1733                   opd_ent_size = expected_off;
1734                 }
1735               else if (expected_off != reloc.get_r_offset())
1736                 regular = false;
1737               expected_off += opd_ent_size;
1738             }
1739           else if (r_type == elfcpp::R_PPC64_TOC)
1740             {
1741               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1742                 regular = false;
1743             }
1744           else
1745             {
1746               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1747                            this->name().c_str(), r_type);
1748               regular = false;
1749             }
1750         }
1751       if (reloc_count <= 2)
1752         opd_ent_size = this->section_size(this->opd_shndx());
1753       if (opd_ent_size != 24 && opd_ent_size != 16)
1754         regular = false;
1755       if (!regular)
1756         {
1757           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1758                        this->name().c_str());
1759           opd_ent_size = 0;
1760         }
1761     }
1762 }
1763
1764 template<int size, bool big_endian>
1765 void
1766 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1767 {
1768   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1769   if (size == 64)
1770     {
1771       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1772            p != rd->relocs.end();
1773            ++p)
1774         {
1775           if (p->data_shndx == this->opd_shndx())
1776             {
1777               uint64_t opd_size = this->section_size(this->opd_shndx());
1778               gold_assert(opd_size == static_cast<size_t>(opd_size));
1779               if (opd_size != 0)
1780                 {
1781                   this->init_opd(opd_size);
1782                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1783                                         rd->local_symbols->data());
1784                 }
1785               break;
1786             }
1787         }
1788     }
1789 }
1790
1791 // Call Sized_dynobj::do_read_symbols to read the symbols then
1792 // read .opd from a dynamic object, filling in opd_ent_ vector,
1793
1794 template<int size, bool big_endian>
1795 void
1796 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1797 {
1798   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1799   if (size == 64)
1800     {
1801       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1802       const unsigned char* const pshdrs = sd->section_headers->data();
1803       const unsigned char* namesu = sd->section_names->data();
1804       const char* names = reinterpret_cast<const char*>(namesu);
1805       const unsigned char* s = NULL;
1806       const unsigned char* opd;
1807       section_size_type opd_size;
1808
1809       // Find and read .opd section.
1810       while (1)
1811         {
1812           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1813                                                          sd->section_names_size,
1814                                                          s);
1815           if (s == NULL)
1816             return;
1817
1818           typename elfcpp::Shdr<size, big_endian> shdr(s);
1819           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1820               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1821             {
1822               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1823               this->opd_address_ = shdr.get_sh_addr();
1824               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1825               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1826                                    true, false);
1827               break;
1828             }
1829         }
1830
1831       // Build set of executable sections.
1832       // Using a set is probably overkill.  There is likely to be only
1833       // a few executable sections, typically .init, .text and .fini,
1834       // and they are generally grouped together.
1835       typedef std::set<Sec_info> Exec_sections;
1836       Exec_sections exec_sections;
1837       s = pshdrs;
1838       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1839         {
1840           typename elfcpp::Shdr<size, big_endian> shdr(s);
1841           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1842               && ((shdr.get_sh_flags()
1843                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1844                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1845               && shdr.get_sh_size() != 0)
1846             {
1847               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1848                                             shdr.get_sh_size(), i));
1849             }
1850         }
1851       if (exec_sections.empty())
1852         return;
1853
1854       // Look over the OPD entries.  This is complicated by the fact
1855       // that some binaries will use two-word entries while others
1856       // will use the standard three-word entries.  In most cases
1857       // the third word (the environment pointer for languages like
1858       // Pascal) is unused and will be zero.  If the third word is
1859       // used it should not be pointing into executable sections,
1860       // I think.
1861       this->init_opd(opd_size);
1862       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1863         {
1864           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1865           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1866           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1867           if (val == 0)
1868             // Chances are that this is the third word of an OPD entry.
1869             continue;
1870           typename Exec_sections::const_iterator e
1871             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1872           if (e != exec_sections.begin())
1873             {
1874               --e;
1875               if (e->start <= val && val < e->start + e->len)
1876                 {
1877                   // We have an address in an executable section.
1878                   // VAL ought to be the function entry, set it up.
1879                   this->set_opd_ent(p - opd, e->shndx, val);
1880                   // Skip second word of OPD entry, the TOC pointer.
1881                   p += 8;
1882                 }
1883             }
1884           // If we didn't match any executable sections, we likely
1885           // have a non-zero third word in the OPD entry.
1886         }
1887     }
1888 }
1889
1890 // Set up some symbols.
1891
1892 template<int size, bool big_endian>
1893 void
1894 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1895     Symbol_table* symtab,
1896     Layout* layout)
1897 {
1898   if (size == 32)
1899     {
1900       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1901       // undefined when scanning relocs (and thus requires
1902       // non-relative dynamic relocs).  The proper value will be
1903       // updated later.
1904       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1905       if (gotsym != NULL && gotsym->is_undefined())
1906         {
1907           Target_powerpc<size, big_endian>* target =
1908             static_cast<Target_powerpc<size, big_endian>*>(
1909                 parameters->sized_target<size, big_endian>());
1910           Output_data_got_powerpc<size, big_endian>* got
1911             = target->got_section(symtab, layout);
1912           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1913                                         Symbol_table::PREDEFINED,
1914                                         got, 0, 0,
1915                                         elfcpp::STT_OBJECT,
1916                                         elfcpp::STB_LOCAL,
1917                                         elfcpp::STV_HIDDEN, 0,
1918                                         false, false);
1919         }
1920
1921       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1922       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1923       if (sdasym != NULL && sdasym->is_undefined())
1924         {
1925           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1926           Output_section* os
1927             = layout->add_output_section_data(".sdata", 0,
1928                                               elfcpp::SHF_ALLOC
1929                                               | elfcpp::SHF_WRITE,
1930                                               sdata, ORDER_SMALL_DATA, false);
1931           symtab->define_in_output_data("_SDA_BASE_", NULL,
1932                                         Symbol_table::PREDEFINED,
1933                                         os, 32768, 0, elfcpp::STT_OBJECT,
1934                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1935                                         0, false, false);
1936         }
1937     }
1938 }
1939
1940 // Set up PowerPC target specific relobj.
1941
1942 template<int size, bool big_endian>
1943 Object*
1944 Target_powerpc<size, big_endian>::do_make_elf_object(
1945     const std::string& name,
1946     Input_file* input_file,
1947     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1948 {
1949   int et = ehdr.get_e_type();
1950   // ET_EXEC files are valid input for --just-symbols/-R,
1951   // and we treat them as relocatable objects.
1952   if (et == elfcpp::ET_REL
1953       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1954     {
1955       Powerpc_relobj<size, big_endian>* obj =
1956         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1957       obj->setup();
1958       return obj;
1959     }
1960   else if (et == elfcpp::ET_DYN)
1961     {
1962       Powerpc_dynobj<size, big_endian>* obj =
1963         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1964       obj->setup();
1965       return obj;
1966     }
1967   else
1968     {
1969       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1970       return NULL;
1971     }
1972 }
1973
1974 template<int size, bool big_endian>
1975 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1976 {
1977 public:
1978   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1979   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1980
1981   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1982     : Output_data_got<size, big_endian>(),
1983       symtab_(symtab), layout_(layout),
1984       header_ent_cnt_(size == 32 ? 3 : 1),
1985       header_index_(size == 32 ? 0x2000 : 0)
1986   { }
1987
1988   class Got_entry;
1989
1990   // Create a new GOT entry and return its offset.
1991   unsigned int
1992   add_got_entry(Got_entry got_entry)
1993   {
1994     this->reserve_ent();
1995     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1996   }
1997
1998   // Create a pair of new GOT entries and return the offset of the first.
1999   unsigned int
2000   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
2001   {
2002     this->reserve_ent(2);
2003     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
2004                                                                  got_entry_2);
2005   }
2006
2007   unsigned int
2008   add_constant_pair(Valtype c1, Valtype c2)
2009   {
2010     this->reserve_ent(2);
2011     unsigned int got_offset = this->add_constant(c1);
2012     this->add_constant(c2);
2013     return got_offset;
2014   }
2015
2016   // Offset of _GLOBAL_OFFSET_TABLE_.
2017   unsigned int
2018   g_o_t() const
2019   {
2020     return this->got_offset(this->header_index_);
2021   }
2022
2023   // Offset of base used to access the GOT/TOC.
2024   // The got/toc pointer reg will be set to this value.
2025   Valtype
2026   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2027   {
2028     if (size == 32)
2029       return this->g_o_t();
2030     else
2031       return (this->output_section()->address()
2032               + object->toc_base_offset()
2033               - this->address());
2034   }
2035
2036   // Ensure our GOT has a header.
2037   void
2038   set_final_data_size()
2039   {
2040     if (this->header_ent_cnt_ != 0)
2041       this->make_header();
2042     Output_data_got<size, big_endian>::set_final_data_size();
2043   }
2044
2045   // First word of GOT header needs some values that are not
2046   // handled by Output_data_got so poke them in here.
2047   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2048   void
2049   do_write(Output_file* of)
2050   {
2051     Valtype val = 0;
2052     if (size == 32 && this->layout_->dynamic_data() != NULL)
2053       val = this->layout_->dynamic_section()->address();
2054     if (size == 64)
2055       val = this->output_section()->address() + 0x8000;
2056     this->replace_constant(this->header_index_, val);
2057     Output_data_got<size, big_endian>::do_write(of);
2058   }
2059
2060 private:
2061   void
2062   reserve_ent(unsigned int cnt = 1)
2063   {
2064     if (this->header_ent_cnt_ == 0)
2065       return;
2066     if (this->num_entries() + cnt > this->header_index_)
2067       this->make_header();
2068   }
2069
2070   void
2071   make_header()
2072   {
2073     this->header_ent_cnt_ = 0;
2074     this->header_index_ = this->num_entries();
2075     if (size == 32)
2076       {
2077         Output_data_got<size, big_endian>::add_constant(0);
2078         Output_data_got<size, big_endian>::add_constant(0);
2079         Output_data_got<size, big_endian>::add_constant(0);
2080
2081         // Define _GLOBAL_OFFSET_TABLE_ at the header
2082         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2083         if (gotsym != NULL)
2084           {
2085             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2086             sym->set_value(this->g_o_t());
2087           }
2088         else
2089           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2090                                                Symbol_table::PREDEFINED,
2091                                                this, this->g_o_t(), 0,
2092                                                elfcpp::STT_OBJECT,
2093                                                elfcpp::STB_LOCAL,
2094                                                elfcpp::STV_HIDDEN, 0,
2095                                                false, false);
2096       }
2097     else
2098       Output_data_got<size, big_endian>::add_constant(0);
2099   }
2100
2101   // Stashed pointers.
2102   Symbol_table* symtab_;
2103   Layout* layout_;
2104
2105   // GOT header size.
2106   unsigned int header_ent_cnt_;
2107   // GOT header index.
2108   unsigned int header_index_;
2109 };
2110
2111 // Get the GOT section, creating it if necessary.
2112
2113 template<int size, bool big_endian>
2114 Output_data_got_powerpc<size, big_endian>*
2115 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2116                                               Layout* layout)
2117 {
2118   if (this->got_ == NULL)
2119     {
2120       gold_assert(symtab != NULL && layout != NULL);
2121
2122       this->got_
2123         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2124
2125       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2126                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2127                                       this->got_, ORDER_DATA, false);
2128     }
2129
2130   return this->got_;
2131 }
2132
2133 // Get the dynamic reloc section, creating it if necessary.
2134
2135 template<int size, bool big_endian>
2136 typename Target_powerpc<size, big_endian>::Reloc_section*
2137 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2138 {
2139   if (this->rela_dyn_ == NULL)
2140     {
2141       gold_assert(layout != NULL);
2142       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2143       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2144                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2145                                       ORDER_DYNAMIC_RELOCS, false);
2146     }
2147   return this->rela_dyn_;
2148 }
2149
2150 // Similarly, but for ifunc symbols get the one for ifunc.
2151
2152 template<int size, bool big_endian>
2153 typename Target_powerpc<size, big_endian>::Reloc_section*
2154 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2155                                                    Layout* layout,
2156                                                    bool for_ifunc)
2157 {
2158   if (!for_ifunc)
2159     return this->rela_dyn_section(layout);
2160
2161   if (this->iplt_ == NULL)
2162     this->make_iplt_section(symtab, layout);
2163   return this->iplt_->rel_plt();
2164 }
2165
2166 class Stub_control
2167 {
2168  public:
2169   // Determine the stub group size.  The group size is the absolute
2170   // value of the parameter --stub-group-size.  If --stub-group-size
2171   // is passed a negative value, we restrict stubs to be always before
2172   // the stubbed branches.
2173   Stub_control(int32_t size)
2174     : state_(NO_GROUP), stub_group_size_(abs(size)),
2175       stub14_group_size_(abs(size)),
2176       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2177       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2178   {
2179     if (stub_group_size_ == 1)
2180       {
2181         // Default values.
2182         if (stubs_always_before_branch_)
2183           {
2184             stub_group_size_ = 0x1e00000;
2185             stub14_group_size_ = 0x7800;
2186           }
2187         else
2188           {
2189             stub_group_size_ = 0x1c00000;
2190             stub14_group_size_ = 0x7000;
2191           }
2192         suppress_size_errors_ = true;
2193       }
2194   }
2195
2196   // Return true iff input section can be handled by current stub
2197   // group.
2198   bool
2199   can_add_to_stub_group(Output_section* o,
2200                         const Output_section::Input_section* i,
2201                         bool has14);
2202
2203   const Output_section::Input_section*
2204   owner()
2205   { return owner_; }
2206
2207   Output_section*
2208   output_section()
2209   { return output_section_; }
2210
2211  private:
2212   typedef enum
2213   {
2214     NO_GROUP,
2215     FINDING_STUB_SECTION,
2216     HAS_STUB_SECTION
2217   } State;
2218
2219   State state_;
2220   uint32_t stub_group_size_;
2221   uint32_t stub14_group_size_;
2222   bool stubs_always_before_branch_;
2223   bool suppress_size_errors_;
2224   uint64_t group_end_addr_;
2225   const Output_section::Input_section* owner_;
2226   Output_section* output_section_;
2227 };
2228
2229 // Return true iff input section can be handled by current stub/
2230 // group.
2231
2232 bool
2233 Stub_control::can_add_to_stub_group(Output_section* o,
2234                                     const Output_section::Input_section* i,
2235                                     bool has14)
2236 {
2237   uint32_t group_size
2238     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2239   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2240   uint64_t this_size;
2241   uint64_t start_addr = o->address();
2242
2243   if (whole_sec)
2244     // .init and .fini sections are pasted together to form a single
2245     // function.  We can't be adding stubs in the middle of the function.
2246     this_size = o->data_size();
2247   else
2248     {
2249       start_addr += i->relobj()->output_section_offset(i->shndx());
2250       this_size = i->data_size();
2251     }
2252   uint64_t end_addr = start_addr + this_size;
2253   bool toobig = this_size > group_size;
2254
2255   if (toobig && !this->suppress_size_errors_)
2256     gold_warning(_("%s:%s exceeds group size"),
2257                  i->relobj()->name().c_str(),
2258                  i->relobj()->section_name(i->shndx()).c_str());
2259
2260   if (this->state_ != HAS_STUB_SECTION
2261       && (!whole_sec || this->output_section_ != o))
2262     {
2263       this->owner_ = i;
2264       this->output_section_ = o;
2265     }
2266
2267   if (this->state_ == NO_GROUP)
2268     {
2269       this->state_ = FINDING_STUB_SECTION;
2270       this->group_end_addr_ = end_addr;
2271     }
2272   else if (this->group_end_addr_ - start_addr < group_size)
2273     ;
2274   // Adding this section would make the group larger than GROUP_SIZE.
2275   else if (this->state_ == FINDING_STUB_SECTION
2276            && !this->stubs_always_before_branch_
2277            && !toobig)
2278     {
2279       // But wait, there's more!  Input sections up to GROUP_SIZE
2280       // bytes before the stub table can be handled by it too.
2281       this->state_ = HAS_STUB_SECTION;
2282       this->group_end_addr_ = end_addr;
2283     }
2284   else
2285     {
2286       this->state_ = NO_GROUP;
2287       return false;
2288     }
2289   return true;
2290 }
2291
2292 // Look over all the input sections, deciding where to place stubs.
2293
2294 template<int size, bool big_endian>
2295 void
2296 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2297                                                  const Task*)
2298 {
2299   Stub_control stub_control(parameters->options().stub_group_size());
2300
2301   // Group input sections and insert stub table
2302   Stub_table<size, big_endian>* stub_table = NULL;
2303   Layout::Section_list section_list;
2304   layout->get_executable_sections(&section_list);
2305   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2306   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2307        o != section_list.rend();
2308        ++o)
2309     {
2310       typedef Output_section::Input_section_list Input_section_list;
2311       for (Input_section_list::const_reverse_iterator i
2312              = (*o)->input_sections().rbegin();
2313            i != (*o)->input_sections().rend();
2314            ++i)
2315         {
2316           if (i->is_input_section())
2317             {
2318               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2319                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2320               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2321               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2322                 {
2323                   stub_table->init(stub_control.owner(),
2324                                    stub_control.output_section());
2325                   stub_table = NULL;
2326                 }
2327               if (stub_table == NULL)
2328                 stub_table = this->new_stub_table();
2329               ppcobj->set_stub_table(i->shndx(), stub_table);
2330             }
2331         }
2332     }
2333   if (stub_table != NULL)
2334     stub_table->init(stub_control.owner(), stub_control.output_section());
2335 }
2336
2337 // If this branch needs a plt call stub, or a long branch stub, make one.
2338
2339 template<int size, bool big_endian>
2340 void
2341 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2342     Stub_table<size, big_endian>* stub_table,
2343     Stub_table<size, big_endian>* ifunc_stub_table,
2344     Symbol_table* symtab) const
2345 {
2346   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2347   if (sym != NULL && sym->is_forwarder())
2348     sym = symtab->resolve_forwards(sym);
2349   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2350   if (gsym != NULL
2351       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2352       : this->object_->local_has_plt_offset(this->r_sym_))
2353     {
2354       if (stub_table == NULL)
2355         stub_table = this->object_->stub_table(this->shndx_);
2356       if (stub_table == NULL)
2357         {
2358           // This is a ref from a data section to an ifunc symbol.
2359           stub_table = ifunc_stub_table;
2360         }
2361       gold_assert(stub_table != NULL);
2362       if (gsym != NULL)
2363         stub_table->add_plt_call_entry(this->object_, gsym,
2364                                        this->r_type_, this->addend_);
2365       else
2366         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2367                                        this->r_type_, this->addend_);
2368     }
2369   else
2370     {
2371       unsigned int max_branch_offset;
2372       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2373           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2374           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2375         max_branch_offset = 1 << 15;
2376       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2377                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2378                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2379         max_branch_offset = 1 << 25;
2380       else
2381         return;
2382       Address from = this->object_->get_output_section_offset(this->shndx_);
2383       gold_assert(from != invalid_address);
2384       from += (this->object_->output_section(this->shndx_)->address()
2385                + this->offset_);
2386       Address to;
2387       if (gsym != NULL)
2388         {
2389           switch (gsym->source())
2390             {
2391             case Symbol::FROM_OBJECT:
2392               {
2393                 Object* symobj = gsym->object();
2394                 if (symobj->is_dynamic()
2395                     || symobj->pluginobj() != NULL)
2396                   return;
2397                 bool is_ordinary;
2398                 unsigned int shndx = gsym->shndx(&is_ordinary);
2399                 if (shndx == elfcpp::SHN_UNDEF)
2400                   return;
2401               }
2402               break;
2403
2404             case Symbol::IS_UNDEFINED:
2405               return;
2406
2407             default:
2408               break;
2409             }
2410           Symbol_table::Compute_final_value_status status;
2411           to = symtab->compute_final_value<size>(gsym, &status);
2412           if (status != Symbol_table::CFVS_OK)
2413             return;
2414         }
2415       else
2416         {
2417           const Symbol_value<size>* psymval
2418             = this->object_->local_symbol(this->r_sym_);
2419           Symbol_value<size> symval;
2420           typedef Sized_relobj_file<size, big_endian> ObjType;
2421           typename ObjType::Compute_final_local_value_status status
2422             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2423                                                        &symval, symtab);
2424           if (status != ObjType::CFLV_OK
2425               || !symval.has_output_value())
2426             return;
2427           to = symval.value(this->object_, 0);
2428         }
2429       to += this->addend_;
2430       if (stub_table == NULL)
2431         stub_table = this->object_->stub_table(this->shndx_);
2432       gold_assert(stub_table != NULL);
2433       if (size == 64 && is_branch_reloc(this->r_type_))
2434         {
2435           unsigned int dest_shndx;
2436           to = stub_table->targ()->symval_for_branch(symtab, to, gsym,
2437                                                      this->object_,
2438                                                      &dest_shndx);
2439         }
2440       Address delta = to - from;
2441       if (delta + max_branch_offset >= 2 * max_branch_offset)
2442         {
2443           stub_table->add_long_branch_entry(this->object_, to);
2444         }
2445     }
2446 }
2447
2448 // Relaxation hook.  This is where we do stub generation.
2449
2450 template<int size, bool big_endian>
2451 bool
2452 Target_powerpc<size, big_endian>::do_relax(int pass,
2453                                            const Input_objects*,
2454                                            Symbol_table* symtab,
2455                                            Layout* layout,
2456                                            const Task* task)
2457 {
2458   unsigned int prev_brlt_size = 0;
2459   if (pass == 1)
2460     {
2461       bool thread_safe = parameters->options().plt_thread_safe();
2462       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2463         {
2464           static const char* const thread_starter[] =
2465             {
2466               "pthread_create",
2467               /* libstdc++ */
2468               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2469               /* librt */
2470               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2471               "mq_notify", "create_timer",
2472               /* libanl */
2473               "getaddrinfo_a",
2474               /* libgomp */
2475               "GOMP_parallel_start",
2476               "GOMP_parallel_loop_static_start",
2477               "GOMP_parallel_loop_dynamic_start",
2478               "GOMP_parallel_loop_guided_start",
2479               "GOMP_parallel_loop_runtime_start",
2480               "GOMP_parallel_sections_start", 
2481             };
2482
2483           if (parameters->options().shared())
2484             thread_safe = true;
2485           else
2486             {
2487               for (unsigned int i = 0;
2488                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2489                    i++)
2490                 {
2491                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2492                   thread_safe = (sym != NULL
2493                                  && sym->in_reg()
2494                                  && sym->in_real_elf());
2495                   if (thread_safe)
2496                     break;
2497                 }
2498             }
2499         }
2500       this->plt_thread_safe_ = thread_safe;
2501       this->group_sections(layout, task);
2502     }
2503
2504   // We need address of stub tables valid for make_stub.
2505   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2506        p != this->stub_tables_.end();
2507        ++p)
2508     {
2509       const Powerpc_relobj<size, big_endian>* object
2510         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2511       Address off = object->get_output_section_offset((*p)->shndx());
2512       gold_assert(off != invalid_address);
2513       Output_section* os = (*p)->output_section();
2514       (*p)->set_address_and_size(os, off);
2515     }
2516
2517   if (pass != 1)
2518     {
2519       // Clear plt call stubs, long branch stubs and branch lookup table.
2520       prev_brlt_size = this->branch_lookup_table_.size();
2521       this->branch_lookup_table_.clear();
2522       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2523            p != this->stub_tables_.end();
2524            ++p)
2525         {
2526           (*p)->clear_stubs();
2527         }
2528     }
2529
2530   // Build all the stubs.
2531   Stub_table<size, big_endian>* ifunc_stub_table
2532     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2533   Stub_table<size, big_endian>* one_stub_table
2534     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2535   for (typename Branches::const_iterator b = this->branch_info_.begin();
2536        b != this->branch_info_.end();
2537        b++)
2538     {
2539       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2540     }
2541
2542   // Did anything change size?
2543   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2544   bool again = num_huge_branches != prev_brlt_size;
2545   if (size == 64 && num_huge_branches != 0)
2546     this->make_brlt_section(layout);
2547   if (size == 64 && again)
2548     this->brlt_section_->set_current_size(num_huge_branches);
2549
2550   typedef Unordered_set<Output_section*> Output_sections;
2551   Output_sections os_need_update;
2552   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2553        p != this->stub_tables_.end();
2554        ++p)
2555     {
2556       if ((*p)->size_update())
2557         {
2558           again = true;
2559           (*p)->add_eh_frame(layout);
2560           os_need_update.insert((*p)->output_section());
2561         }
2562     }
2563
2564   // Set output section offsets for all input sections in an output
2565   // section that just changed size.  Anything past the stubs will
2566   // need updating.
2567   for (typename Output_sections::iterator p = os_need_update.begin();
2568        p != os_need_update.end();
2569        p++)
2570     {
2571       Output_section* os = *p;
2572       Address off = 0;
2573       typedef Output_section::Input_section_list Input_section_list;
2574       for (Input_section_list::const_iterator i = os->input_sections().begin();
2575            i != os->input_sections().end();
2576            ++i)
2577         {
2578           off = align_address(off, i->addralign());
2579           if (i->is_input_section() || i->is_relaxed_input_section())
2580             i->relobj()->set_section_offset(i->shndx(), off);
2581           if (i->is_relaxed_input_section())
2582             {
2583               Stub_table<size, big_endian>* stub_table
2584                 = static_cast<Stub_table<size, big_endian>*>(
2585                     i->relaxed_input_section());
2586               off += stub_table->set_address_and_size(os, off);
2587             }
2588           else
2589             off += i->data_size();
2590         }
2591       // If .branch_lt is part of this output section, then we have
2592       // just done the offset adjustment.
2593       os->clear_section_offsets_need_adjustment();
2594     }
2595
2596   if (size == 64
2597       && !again
2598       && num_huge_branches != 0
2599       && parameters->options().output_is_position_independent())
2600     {
2601       // Fill in the BRLT relocs.
2602       this->brlt_section_->reset_data_size();
2603       for (typename Branch_lookup_table::const_iterator p
2604              = this->branch_lookup_table_.begin();
2605            p != this->branch_lookup_table_.end();
2606            ++p)
2607         {
2608           this->brlt_section_->add_reloc(p->first, p->second);
2609         }
2610       this->brlt_section_->finalize_data_size();
2611     }
2612   return again;
2613 }
2614
2615 template<int size, bool big_endian>
2616 void
2617 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2618                                                       unsigned char* oview,
2619                                                       uint64_t* paddress,
2620                                                       off_t* plen) const
2621 {
2622   uint64_t address = plt->address();
2623   off_t len = plt->data_size();
2624
2625   if (plt == this->glink_)
2626     {
2627       // See Output_data_glink::do_write() for glink contents.
2628       if (size == 64)
2629         {
2630           // There is one word before __glink_PLTresolve
2631           address += 8;
2632           len -= 8;
2633         }
2634       else if (parameters->options().output_is_position_independent())
2635         {
2636           // There are two FDEs for a position independent glink.
2637           // The first covers the branch table, the second
2638           // __glink_PLTresolve at the end of glink.
2639           off_t resolve_size = this->glink_->pltresolve_size;
2640           if (oview[9] == 0)
2641             len -= resolve_size;
2642           else
2643             {
2644               address += len - resolve_size;
2645               len = resolve_size;
2646             }
2647         }
2648     }
2649   else
2650     {
2651       // Must be a stub table.
2652       const Stub_table<size, big_endian>* stub_table
2653         = static_cast<const Stub_table<size, big_endian>*>(plt);
2654       uint64_t stub_address = stub_table->stub_address();
2655       len -= stub_address - address;
2656       address = stub_address;
2657     }
2658
2659   *paddress = address;
2660   *plen = len;
2661 }
2662
2663 // A class to handle the PLT data.
2664
2665 template<int size, bool big_endian>
2666 class Output_data_plt_powerpc : public Output_section_data_build
2667 {
2668  public:
2669   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2670                             size, big_endian> Reloc_section;
2671
2672   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2673                           Reloc_section* plt_rel,
2674                           unsigned int reserved_size,
2675                           const char* name)
2676     : Output_section_data_build(size == 32 ? 4 : 8),
2677       rel_(plt_rel),
2678       targ_(targ),
2679       initial_plt_entry_size_(reserved_size),
2680       name_(name)
2681   { }
2682
2683   // Add an entry to the PLT.
2684   void
2685   add_entry(Symbol*);
2686
2687   void
2688   add_ifunc_entry(Symbol*);
2689
2690   void
2691   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2692
2693   // Return the .rela.plt section data.
2694   Reloc_section*
2695   rel_plt() const
2696   {
2697     return this->rel_;
2698   }
2699
2700   // Return the number of PLT entries.
2701   unsigned int
2702   entry_count() const
2703   {
2704     if (this->current_data_size() == 0)
2705       return 0;
2706     return ((this->current_data_size() - this->initial_plt_entry_size_)
2707             / plt_entry_size);
2708   }
2709
2710   // Return the offset of the first non-reserved PLT entry.
2711   unsigned int
2712   first_plt_entry_offset()
2713   { return this->initial_plt_entry_size_; }
2714
2715   // Return the size of a PLT entry.
2716   static unsigned int
2717   get_plt_entry_size()
2718   { return plt_entry_size; }
2719
2720  protected:
2721   void
2722   do_adjust_output_section(Output_section* os)
2723   {
2724     os->set_entsize(0);
2725   }
2726
2727   // Write to a map file.
2728   void
2729   do_print_to_mapfile(Mapfile* mapfile) const
2730   { mapfile->print_output_data(this, this->name_); }
2731
2732  private:
2733   // The size of an entry in the PLT.
2734   static const int plt_entry_size = size == 32 ? 4 : 24;
2735
2736   // Write out the PLT data.
2737   void
2738   do_write(Output_file*);
2739
2740   // The reloc section.
2741   Reloc_section* rel_;
2742   // Allows access to .glink for do_write.
2743   Target_powerpc<size, big_endian>* targ_;
2744   // The size of the first reserved entry.
2745   int initial_plt_entry_size_;
2746   // What to report in map file.
2747   const char *name_;
2748 };
2749
2750 // Add an entry to the PLT.
2751
2752 template<int size, bool big_endian>
2753 void
2754 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2755 {
2756   if (!gsym->has_plt_offset())
2757     {
2758       section_size_type off = this->current_data_size();
2759       if (off == 0)
2760         off += this->first_plt_entry_offset();
2761       gsym->set_plt_offset(off);
2762       gsym->set_needs_dynsym_entry();
2763       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2764       this->rel_->add_global(gsym, dynrel, this, off, 0);
2765       off += plt_entry_size;
2766       this->set_current_data_size(off);
2767     }
2768 }
2769
2770 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2771
2772 template<int size, bool big_endian>
2773 void
2774 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2775 {
2776   if (!gsym->has_plt_offset())
2777     {
2778       section_size_type off = this->current_data_size();
2779       gsym->set_plt_offset(off);
2780       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2781       if (size == 64)
2782         dynrel = elfcpp::R_PPC64_JMP_IREL;
2783       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2784       off += plt_entry_size;
2785       this->set_current_data_size(off);
2786     }
2787 }
2788
2789 // Add an entry for a local ifunc symbol to the IPLT.
2790
2791 template<int size, bool big_endian>
2792 void
2793 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2794     Sized_relobj_file<size, big_endian>* relobj,
2795     unsigned int local_sym_index)
2796 {
2797   if (!relobj->local_has_plt_offset(local_sym_index))
2798     {
2799       section_size_type off = this->current_data_size();
2800       relobj->set_local_plt_offset(local_sym_index, off);
2801       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2802       if (size == 64)
2803         dynrel = elfcpp::R_PPC64_JMP_IREL;
2804       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2805                                               this, off, 0);
2806       off += plt_entry_size;
2807       this->set_current_data_size(off);
2808     }
2809 }
2810
2811 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2812 static const uint32_t add_2_2_11        = 0x7c425a14;
2813 static const uint32_t add_3_3_2         = 0x7c631214;
2814 static const uint32_t add_3_3_13        = 0x7c636a14;
2815 static const uint32_t add_11_0_11       = 0x7d605a14;
2816 static const uint32_t add_12_2_11       = 0x7d825a14;
2817 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2818 static const uint32_t addi_11_11        = 0x396b0000;
2819 static const uint32_t addi_12_12        = 0x398c0000;
2820 static const uint32_t addi_2_2          = 0x38420000;
2821 static const uint32_t addi_3_2          = 0x38620000;
2822 static const uint32_t addi_3_3          = 0x38630000;
2823 static const uint32_t addis_0_2         = 0x3c020000;
2824 static const uint32_t addis_0_13        = 0x3c0d0000;
2825 static const uint32_t addis_11_11       = 0x3d6b0000;
2826 static const uint32_t addis_11_30       = 0x3d7e0000;
2827 static const uint32_t addis_12_12       = 0x3d8c0000;
2828 static const uint32_t addis_12_2        = 0x3d820000;
2829 static const uint32_t addis_3_2         = 0x3c620000;
2830 static const uint32_t addis_3_13        = 0x3c6d0000;
2831 static const uint32_t b                 = 0x48000000;
2832 static const uint32_t bcl_20_31         = 0x429f0005;
2833 static const uint32_t bctr              = 0x4e800420;
2834 static const uint32_t blr               = 0x4e800020;
2835 static const uint32_t blrl              = 0x4e800021;
2836 static const uint32_t bnectr_p4         = 0x4ce20420;
2837 static const uint32_t cmpldi_2_0        = 0x28220000;
2838 static const uint32_t cror_15_15_15     = 0x4def7b82;
2839 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2840 static const uint32_t ld_0_1            = 0xe8010000;
2841 static const uint32_t ld_0_12           = 0xe80c0000;
2842 static const uint32_t ld_11_12          = 0xe96c0000;
2843 static const uint32_t ld_11_2           = 0xe9620000;
2844 static const uint32_t ld_2_1            = 0xe8410000;
2845 static const uint32_t ld_2_11           = 0xe84b0000;
2846 static const uint32_t ld_2_12           = 0xe84c0000;
2847 static const uint32_t ld_2_2            = 0xe8420000;
2848 static const uint32_t lfd_0_1           = 0xc8010000;
2849 static const uint32_t li_0_0            = 0x38000000;
2850 static const uint32_t li_12_0           = 0x39800000;
2851 static const uint32_t lis_0_0           = 0x3c000000;
2852 static const uint32_t lis_11            = 0x3d600000;
2853 static const uint32_t lis_12            = 0x3d800000;
2854 static const uint32_t lwz_0_12          = 0x800c0000;
2855 static const uint32_t lwz_11_11         = 0x816b0000;
2856 static const uint32_t lwz_11_30         = 0x817e0000;
2857 static const uint32_t lwz_12_12         = 0x818c0000;
2858 static const uint32_t lwzu_0_12         = 0x840c0000;
2859 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2860 static const uint32_t mflr_0            = 0x7c0802a6;
2861 static const uint32_t mflr_11           = 0x7d6802a6;
2862 static const uint32_t mflr_12           = 0x7d8802a6;
2863 static const uint32_t mtctr_0           = 0x7c0903a6;
2864 static const uint32_t mtctr_11          = 0x7d6903a6;
2865 static const uint32_t mtctr_12          = 0x7d8903a6;
2866 static const uint32_t mtlr_0            = 0x7c0803a6;
2867 static const uint32_t mtlr_12           = 0x7d8803a6;
2868 static const uint32_t nop               = 0x60000000;
2869 static const uint32_t ori_0_0_0         = 0x60000000;
2870 static const uint32_t std_0_1           = 0xf8010000;
2871 static const uint32_t std_0_12          = 0xf80c0000;
2872 static const uint32_t std_2_1           = 0xf8410000;
2873 static const uint32_t stfd_0_1          = 0xd8010000;
2874 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2875 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2876 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2877
2878 // Write out the PLT.
2879
2880 template<int size, bool big_endian>
2881 void
2882 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2883 {
2884   if (size == 32 && this->name_[3] != 'I')
2885     {
2886       const section_size_type offset = this->offset();
2887       const section_size_type oview_size
2888         = convert_to_section_size_type(this->data_size());
2889       unsigned char* const oview = of->get_output_view(offset, oview_size);
2890       unsigned char* pov = oview;
2891       unsigned char* endpov = oview + oview_size;
2892
2893       // The address of the .glink branch table
2894       const Output_data_glink<size, big_endian>* glink
2895         = this->targ_->glink_section();
2896       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2897
2898       while (pov < endpov)
2899         {
2900           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2901           pov += 4;
2902           branch_tab += 4;
2903         }
2904
2905       of->write_output_view(offset, oview_size, oview);
2906     }
2907 }
2908
2909 // Create the PLT section.
2910
2911 template<int size, bool big_endian>
2912 void
2913 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2914                                                    Layout* layout)
2915 {
2916   if (this->plt_ == NULL)
2917     {
2918       if (this->got_ == NULL)
2919         this->got_section(symtab, layout);
2920
2921       if (this->glink_ == NULL)
2922         make_glink_section(layout);
2923
2924       // Ensure that .rela.dyn always appears before .rela.plt  This is
2925       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2926       // needs to include .rela.plt in its range.
2927       this->rela_dyn_section(layout);
2928
2929       Reloc_section* plt_rel = new Reloc_section(false);
2930       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2931                                       elfcpp::SHF_ALLOC, plt_rel,
2932                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2933       this->plt_
2934         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2935                                                         size == 32 ? 0 : 24,
2936                                                         "** PLT");
2937       layout->add_output_section_data(".plt",
2938                                       (size == 32
2939                                        ? elfcpp::SHT_PROGBITS
2940                                        : elfcpp::SHT_NOBITS),
2941                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2942                                       this->plt_,
2943                                       (size == 32
2944                                        ? ORDER_SMALL_DATA
2945                                        : ORDER_SMALL_BSS),
2946                                       false);
2947     }
2948 }
2949
2950 // Create the IPLT section.
2951
2952 template<int size, bool big_endian>
2953 void
2954 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2955                                                     Layout* layout)
2956 {
2957   if (this->iplt_ == NULL)
2958     {
2959       this->make_plt_section(symtab, layout);
2960
2961       Reloc_section* iplt_rel = new Reloc_section(false);
2962       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2963       this->iplt_
2964         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2965                                                         0, "** IPLT");
2966       this->plt_->output_section()->add_output_section_data(this->iplt_);
2967     }
2968 }
2969
2970 // A section for huge long branch addresses, similar to plt section.
2971
2972 template<int size, bool big_endian>
2973 class Output_data_brlt_powerpc : public Output_section_data_build
2974 {
2975  public:
2976   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2977   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2978                             size, big_endian> Reloc_section;
2979
2980   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
2981                            Reloc_section* brlt_rel)
2982     : Output_section_data_build(size == 32 ? 4 : 8),
2983       rel_(brlt_rel),
2984       targ_(targ)
2985   { }
2986
2987   // Add a reloc for an entry in the BRLT.
2988   void
2989   add_reloc(Address to, unsigned int off)
2990   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
2991
2992   // Update section and reloc section size.
2993   void
2994   set_current_size(unsigned int num_branches)
2995   {
2996     this->reset_address_and_file_offset();
2997     this->set_current_data_size(num_branches * 16);
2998     this->finalize_data_size();
2999     Output_section* os = this->output_section();
3000     os->set_section_offsets_need_adjustment();
3001     if (this->rel_ != NULL)
3002       {
3003         unsigned int reloc_size
3004           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3005         this->rel_->reset_address_and_file_offset();
3006         this->rel_->set_current_data_size(num_branches * reloc_size);
3007         this->rel_->finalize_data_size();
3008         Output_section* os = this->rel_->output_section();
3009         os->set_section_offsets_need_adjustment();
3010       }
3011   }
3012
3013  protected:
3014   void
3015   do_adjust_output_section(Output_section* os)
3016   {
3017     os->set_entsize(0);
3018   }
3019
3020   // Write to a map file.
3021   void
3022   do_print_to_mapfile(Mapfile* mapfile) const
3023   { mapfile->print_output_data(this, "** BRLT"); }
3024
3025  private:
3026   // Write out the BRLT data.
3027   void
3028   do_write(Output_file*);
3029
3030   // The reloc section.
3031   Reloc_section* rel_;
3032   Target_powerpc<size, big_endian>* targ_;
3033 };
3034
3035 // Make the branch lookup table section.
3036
3037 template<int size, bool big_endian>
3038 void
3039 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3040 {
3041   if (size == 64 && this->brlt_section_ == NULL)
3042     {
3043       Reloc_section* brlt_rel = NULL;
3044       bool is_pic = parameters->options().output_is_position_independent();
3045       if (is_pic)
3046         {
3047           // When PIC we can't fill in .branch_lt (like .plt it can be
3048           // a bss style section) but must initialise at runtime via
3049           // dynamic relocats.
3050           this->rela_dyn_section(layout);
3051           brlt_rel = new Reloc_section(false);
3052           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3053         }
3054       this->brlt_section_
3055         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3056       if (this->plt_ && is_pic)
3057         this->plt_->output_section()
3058           ->add_output_section_data(this->brlt_section_);
3059       else
3060         layout->add_output_section_data(".branch_lt",
3061                                         (is_pic ? elfcpp::SHT_NOBITS
3062                                          : elfcpp::SHT_PROGBITS),
3063                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3064                                         this->brlt_section_,
3065                                         (is_pic ? ORDER_SMALL_BSS
3066                                          : ORDER_SMALL_DATA),
3067                                         false);
3068     }
3069 }
3070
3071 // Write out .branch_lt when non-PIC.
3072
3073 template<int size, bool big_endian>
3074 void
3075 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3076 {
3077   if (size == 64 && !parameters->options().output_is_position_independent())
3078     {
3079       const section_size_type offset = this->offset();
3080       const section_size_type oview_size
3081         = convert_to_section_size_type(this->data_size());
3082       unsigned char* const oview = of->get_output_view(offset, oview_size);
3083
3084       this->targ_->write_branch_lookup_table(oview);
3085       of->write_output_view(offset, oview_size, oview);
3086     }
3087 }
3088
3089 static inline uint32_t
3090 l(uint32_t a)
3091 {
3092   return a & 0xffff;
3093 }
3094
3095 static inline uint32_t
3096 hi(uint32_t a)
3097 {
3098   return l(a >> 16);
3099 }
3100
3101 static inline uint32_t
3102 ha(uint32_t a)
3103 {
3104   return hi(a + 0x8000);
3105 }
3106
3107 template<int size>
3108 struct Eh_cie
3109 {
3110   static const unsigned char eh_frame_cie[12];
3111 };
3112
3113 template<int size>
3114 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3115 {
3116   1,                                    // CIE version.
3117   'z', 'R', 0,                          // Augmentation string.
3118   4,                                    // Code alignment.
3119   0x80 - size / 8 ,                     // Data alignment.
3120   65,                                   // RA reg.
3121   1,                                    // Augmentation size.
3122   (elfcpp::DW_EH_PE_pcrel
3123    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3124   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3125 };
3126
3127 // Describe __glink_PLTresolve use of LR, 64-bit version.
3128 static const unsigned char glink_eh_frame_fde_64[] =
3129 {
3130   0, 0, 0, 0,                           // Replaced with offset to .glink.
3131   0, 0, 0, 0,                           // Replaced with size of .glink.
3132   0,                                    // Augmentation size.
3133   elfcpp::DW_CFA_advance_loc + 1,
3134   elfcpp::DW_CFA_register, 65, 12,
3135   elfcpp::DW_CFA_advance_loc + 4,
3136   elfcpp::DW_CFA_restore_extended, 65
3137 };
3138
3139 // Describe __glink_PLTresolve use of LR, 32-bit version.
3140 static const unsigned char glink_eh_frame_fde_32[] =
3141 {
3142   0, 0, 0, 0,                           // Replaced with offset to .glink.
3143   0, 0, 0, 0,                           // Replaced with size of .glink.
3144   0,                                    // Augmentation size.
3145   elfcpp::DW_CFA_advance_loc + 2,
3146   elfcpp::DW_CFA_register, 65, 0,
3147   elfcpp::DW_CFA_advance_loc + 4,
3148   elfcpp::DW_CFA_restore_extended, 65
3149 };
3150
3151 static const unsigned char default_fde[] =
3152 {
3153   0, 0, 0, 0,                           // Replaced with offset to stubs.
3154   0, 0, 0, 0,                           // Replaced with size of stubs.
3155   0,                                    // Augmentation size.
3156   elfcpp::DW_CFA_nop,                   // Pad.
3157   elfcpp::DW_CFA_nop,
3158   elfcpp::DW_CFA_nop
3159 };
3160
3161 template<bool big_endian>
3162 static inline void
3163 write_insn(unsigned char* p, uint32_t v)
3164 {
3165   elfcpp::Swap<32, big_endian>::writeval(p, v);
3166 }
3167
3168 // Stub_table holds information about plt and long branch stubs.
3169 // Stubs are built in an area following some input section determined
3170 // by group_sections().  This input section is converted to a relaxed
3171 // input section allowing it to be resized to accommodate the stubs
3172
3173 template<int size, bool big_endian>
3174 class Stub_table : public Output_relaxed_input_section
3175 {
3176  public:
3177   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3178   static const Address invalid_address = static_cast<Address>(0) - 1;
3179
3180   Stub_table(Target_powerpc<size, big_endian>* targ)
3181     : Output_relaxed_input_section(NULL, 0, 0),
3182       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3183       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3184       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3185   { }
3186
3187   // Delayed Output_relaxed_input_section init.
3188   void
3189   init(const Output_section::Input_section*, Output_section*);
3190
3191   // Add a plt call stub.
3192   void
3193   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3194                      const Symbol*,
3195                      unsigned int,
3196                      Address);
3197
3198   void
3199   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3200                      unsigned int,
3201                      unsigned int,
3202                      Address);
3203
3204   // Find a given plt call stub.
3205   Address
3206   find_plt_call_entry(const Symbol*) const;
3207
3208   Address
3209   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3210                       unsigned int) const;
3211
3212   Address
3213   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3214                       const Symbol*,
3215                       unsigned int,
3216                       Address) const;
3217
3218   Address
3219   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3220                       unsigned int,
3221                       unsigned int,
3222                       Address) const;
3223
3224   // Add a long branch stub.
3225   void
3226   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3227
3228   Address
3229   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3230                          Address) const;
3231
3232   void
3233   clear_stubs()
3234   {
3235     this->plt_call_stubs_.clear();
3236     this->plt_size_ = 0;
3237     this->long_branch_stubs_.clear();
3238     this->branch_size_ = 0;
3239   }
3240
3241   Address
3242   set_address_and_size(const Output_section* os, Address off)
3243   {
3244     Address start_off = off;
3245     off += this->orig_data_size_;
3246     Address my_size = this->plt_size_ + this->branch_size_;
3247     if (my_size != 0)
3248       off = align_address(off, this->stub_align());
3249     // Include original section size and alignment padding in size
3250     my_size += off - start_off;
3251     this->reset_address_and_file_offset();
3252     this->set_current_data_size(my_size);
3253     this->set_address_and_file_offset(os->address() + start_off,
3254                                       os->offset() + start_off);
3255     return my_size;
3256   }
3257
3258   Address
3259   stub_address() const
3260   {
3261     return align_address(this->address() + this->orig_data_size_,
3262                          this->stub_align());
3263   }
3264
3265   Address
3266   stub_offset() const
3267   {
3268     return align_address(this->offset() + this->orig_data_size_,
3269                          this->stub_align());
3270   }
3271
3272   section_size_type
3273   plt_size() const
3274   { return this->plt_size_; }
3275
3276   bool
3277   size_update()
3278   {
3279     Output_section* os = this->output_section();
3280     if (os->addralign() < this->stub_align())
3281       {
3282         os->set_addralign(this->stub_align());
3283         // FIXME: get rid of the insane checkpointing.
3284         // We can't increase alignment of the input section to which
3285         // stubs are attached;  The input section may be .init which
3286         // is pasted together with other .init sections to form a
3287         // function.  Aligning might insert zero padding resulting in
3288         // sigill.  However we do need to increase alignment of the
3289         // output section so that the align_address() on offset in
3290         // set_address_and_size() adds the same padding as the
3291         // align_address() on address in stub_address().
3292         // What's more, we need this alignment for the layout done in
3293         // relaxation_loop_body() so that the output section starts at
3294         // a suitably aligned address.
3295         os->checkpoint_set_addralign(this->stub_align());
3296       }
3297     if (this->last_plt_size_ != this->plt_size_
3298         || this->last_branch_size_ != this->branch_size_)
3299       {
3300         this->last_plt_size_ = this->plt_size_;
3301         this->last_branch_size_ = this->branch_size_;
3302         return true;
3303       }
3304     return false;
3305   }
3306
3307   // Add .eh_frame info for this stub section.  Unlike other linker
3308   // generated .eh_frame this is added late in the link, because we
3309   // only want the .eh_frame info if this particular stub section is
3310   // non-empty.
3311   void
3312   add_eh_frame(Layout* layout)
3313   {
3314     if (!this->eh_frame_added_)
3315       {
3316         if (!parameters->options().ld_generated_unwind_info())
3317           return;
3318
3319         // Since we add stub .eh_frame info late, it must be placed
3320         // after all other linker generated .eh_frame info so that
3321         // merge mapping need not be updated for input sections.
3322         // There is no provision to use a different CIE to that used
3323         // by .glink.
3324         if (!this->targ_->has_glink())
3325           return;
3326
3327         layout->add_eh_frame_for_plt(this,
3328                                      Eh_cie<size>::eh_frame_cie,
3329                                      sizeof (Eh_cie<size>::eh_frame_cie),
3330                                      default_fde,
3331                                      sizeof (default_fde));
3332         this->eh_frame_added_ = true;
3333       }
3334   }
3335
3336   Target_powerpc<size, big_endian>*
3337   targ() const
3338   { return targ_; }
3339
3340  private:
3341   class Plt_stub_ent;
3342   class Plt_stub_ent_hash;
3343   typedef Unordered_map<Plt_stub_ent, unsigned int,
3344                         Plt_stub_ent_hash> Plt_stub_entries;
3345
3346   // Alignment of stub section.
3347   unsigned int
3348   stub_align() const
3349   {
3350     if (size == 32)
3351       return 16;
3352     unsigned int min_align = 32;
3353     unsigned int user_align = 1 << parameters->options().plt_align();
3354     return std::max(user_align, min_align);
3355   }
3356
3357   // Return the plt offset for the given call stub.
3358   Address
3359   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3360   {
3361     const Symbol* gsym = p->first.sym_;
3362     if (gsym != NULL)
3363       {
3364         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3365                     && gsym->can_use_relative_reloc(false));
3366         return gsym->plt_offset();
3367       }
3368     else
3369       {
3370         *is_iplt = true;
3371         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3372         unsigned int local_sym_index = p->first.locsym_;
3373         return relobj->local_plt_offset(local_sym_index);
3374       }
3375   }
3376
3377   // Size of a given plt call stub.
3378   unsigned int
3379   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3380   {
3381     if (size == 32)
3382       return 16;
3383
3384     bool is_iplt;
3385     Address plt_addr = this->plt_off(p, &is_iplt);
3386     if (is_iplt)
3387       plt_addr += this->targ_->iplt_section()->address();
3388     else
3389       plt_addr += this->targ_->plt_section()->address();
3390     Address got_addr = this->targ_->got_section()->output_section()->address();
3391     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3392       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3393     got_addr += ppcobj->toc_base_offset();
3394     Address off = plt_addr - got_addr;
3395     bool static_chain = parameters->options().plt_static_chain();
3396     bool thread_safe = this->targ_->plt_thread_safe();
3397     unsigned int bytes = (4 * 5
3398                           + 4 * static_chain
3399                           + 8 * thread_safe
3400                           + 4 * (ha(off) != 0)
3401                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3402     unsigned int align = 1 << parameters->options().plt_align();
3403     if (align > 1)
3404       bytes = (bytes + align - 1) & -align;
3405     return bytes;
3406   }
3407
3408   // Return long branch stub size.
3409   unsigned int
3410   branch_stub_size(Address to)
3411   {
3412     Address loc
3413       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3414     if (to - loc + (1 << 25) < 2 << 25)
3415       return 4;
3416     if (size == 64 || !parameters->options().output_is_position_independent())
3417       return 16;
3418     return 32;
3419   }
3420
3421   // Write out stubs.
3422   void
3423   do_write(Output_file*);
3424
3425   // Plt call stub keys.
3426   class Plt_stub_ent
3427   {
3428   public:
3429     Plt_stub_ent(const Symbol* sym)
3430       : sym_(sym), object_(0), addend_(0), locsym_(0)
3431     { }
3432
3433     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3434                  unsigned int locsym_index)
3435       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3436     { }
3437
3438     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3439                  const Symbol* sym,
3440                  unsigned int r_type,
3441                  Address addend)
3442       : sym_(sym), object_(0), addend_(0), locsym_(0)
3443     {
3444       if (size != 32)
3445         this->addend_ = addend;
3446       else if (parameters->options().output_is_position_independent()
3447                && r_type == elfcpp::R_PPC_PLTREL24)
3448         {
3449           this->addend_ = addend;
3450           if (this->addend_ >= 32768)
3451             this->object_ = object;
3452         }
3453     }
3454
3455     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3456                  unsigned int locsym_index,
3457                  unsigned int r_type,
3458                  Address addend)
3459       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3460     {
3461       if (size != 32)
3462         this->addend_ = addend;
3463       else if (parameters->options().output_is_position_independent()
3464                && r_type == elfcpp::R_PPC_PLTREL24)
3465         this->addend_ = addend;
3466     }
3467
3468     bool operator==(const Plt_stub_ent& that) const
3469     {
3470       return (this->sym_ == that.sym_
3471               && this->object_ == that.object_
3472               && this->addend_ == that.addend_
3473               && this->locsym_ == that.locsym_);
3474     }
3475
3476     const Symbol* sym_;
3477     const Sized_relobj_file<size, big_endian>* object_;
3478     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3479     unsigned int locsym_;
3480   };
3481
3482   class Plt_stub_ent_hash
3483   {
3484   public:
3485     size_t operator()(const Plt_stub_ent& ent) const
3486     {
3487       return (reinterpret_cast<uintptr_t>(ent.sym_)
3488               ^ reinterpret_cast<uintptr_t>(ent.object_)
3489               ^ ent.addend_
3490               ^ ent.locsym_);
3491     }
3492   };
3493
3494   // Long branch stub keys.
3495   class Branch_stub_ent
3496   {
3497   public:
3498     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3499       : dest_(to), toc_base_off_(0)
3500     {
3501       if (size == 64)
3502         toc_base_off_ = obj->toc_base_offset();
3503     }
3504
3505     bool operator==(const Branch_stub_ent& that) const
3506     {
3507       return (this->dest_ == that.dest_
3508               && (size == 32
3509                   || this->toc_base_off_ == that.toc_base_off_));
3510     }
3511
3512     Address dest_;
3513     unsigned int toc_base_off_;
3514   };
3515
3516   class Branch_stub_ent_hash
3517   {
3518   public:
3519     size_t operator()(const Branch_stub_ent& ent) const
3520     { return ent.dest_ ^ ent.toc_base_off_; }
3521   };
3522
3523   // In a sane world this would be a global.
3524   Target_powerpc<size, big_endian>* targ_;
3525   // Map sym/object/addend to stub offset.
3526   Plt_stub_entries plt_call_stubs_;
3527   // Map destination address to stub offset.
3528   typedef Unordered_map<Branch_stub_ent, unsigned int,
3529                         Branch_stub_ent_hash> Branch_stub_entries;
3530   Branch_stub_entries long_branch_stubs_;
3531   // size of input section
3532   section_size_type orig_data_size_;
3533   // size of stubs
3534   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3535   // Whether .eh_frame info has been created for this stub section.
3536   bool eh_frame_added_;
3537 };
3538
3539 // Make a new stub table, and record.
3540
3541 template<int size, bool big_endian>
3542 Stub_table<size, big_endian>*
3543 Target_powerpc<size, big_endian>::new_stub_table()
3544 {
3545   Stub_table<size, big_endian>* stub_table
3546     = new Stub_table<size, big_endian>(this);
3547   this->stub_tables_.push_back(stub_table);
3548   return stub_table;
3549 }
3550
3551 // Delayed stub table initialisation, because we create the stub table
3552 // before we know to which section it will be attached.
3553
3554 template<int size, bool big_endian>
3555 void
3556 Stub_table<size, big_endian>::init(
3557     const Output_section::Input_section* owner,
3558     Output_section* output_section)
3559 {
3560   this->set_relobj(owner->relobj());
3561   this->set_shndx(owner->shndx());
3562   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3563   this->set_output_section(output_section);
3564   this->orig_data_size_ = owner->current_data_size();
3565
3566   std::vector<Output_relaxed_input_section*> new_relaxed;
3567   new_relaxed.push_back(this);
3568   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3569 }
3570
3571 // Add a plt call stub, if we do not already have one for this
3572 // sym/object/addend combo.
3573
3574 template<int size, bool big_endian>
3575 void
3576 Stub_table<size, big_endian>::add_plt_call_entry(
3577     const Sized_relobj_file<size, big_endian>* object,
3578     const Symbol* gsym,
3579     unsigned int r_type,
3580     Address addend)
3581 {
3582   Plt_stub_ent ent(object, gsym, r_type, addend);
3583   Address off = this->plt_size_;
3584   std::pair<typename Plt_stub_entries::iterator, bool> p
3585     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3586   if (p.second)
3587     this->plt_size_ = off + this->plt_call_size(p.first);
3588 }
3589
3590 template<int size, bool big_endian>
3591 void
3592 Stub_table<size, big_endian>::add_plt_call_entry(
3593     const Sized_relobj_file<size, big_endian>* object,
3594     unsigned int locsym_index,
3595     unsigned int r_type,
3596     Address addend)
3597 {
3598   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3599   Address off = this->plt_size_;
3600   std::pair<typename Plt_stub_entries::iterator, bool> p
3601     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3602   if (p.second)
3603     this->plt_size_ = off + this->plt_call_size(p.first);
3604 }
3605
3606 // Find a plt call stub.
3607
3608 template<int size, bool big_endian>
3609 typename Stub_table<size, big_endian>::Address
3610 Stub_table<size, big_endian>::find_plt_call_entry(
3611     const Sized_relobj_file<size, big_endian>* object,
3612     const Symbol* gsym,
3613     unsigned int r_type,
3614     Address addend) const
3615 {
3616   Plt_stub_ent ent(object, gsym, r_type, addend);
3617   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3618   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3619 }
3620
3621 template<int size, bool big_endian>
3622 typename Stub_table<size, big_endian>::Address
3623 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3624 {
3625   Plt_stub_ent ent(gsym);
3626   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3627   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3628 }
3629
3630 template<int size, bool big_endian>
3631 typename Stub_table<size, big_endian>::Address
3632 Stub_table<size, big_endian>::find_plt_call_entry(
3633     const Sized_relobj_file<size, big_endian>* object,
3634     unsigned int locsym_index,
3635     unsigned int r_type,
3636     Address addend) const
3637 {
3638   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3639   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3640   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3641 }
3642
3643 template<int size, bool big_endian>
3644 typename Stub_table<size, big_endian>::Address
3645 Stub_table<size, big_endian>::find_plt_call_entry(
3646     const Sized_relobj_file<size, big_endian>* object,
3647     unsigned int locsym_index) const
3648 {
3649   Plt_stub_ent ent(object, locsym_index);
3650   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3651   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3652 }
3653
3654 // Add a long branch stub if we don't already have one to given
3655 // destination.
3656
3657 template<int size, bool big_endian>
3658 void
3659 Stub_table<size, big_endian>::add_long_branch_entry(
3660     const Powerpc_relobj<size, big_endian>* object,
3661     Address to)
3662 {
3663   Branch_stub_ent ent(object, to);
3664   Address off = this->branch_size_;
3665   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3666     {
3667       unsigned int stub_size = this->branch_stub_size(to);
3668       this->branch_size_ = off + stub_size;
3669       if (size == 64 && stub_size != 4)
3670         this->targ_->add_branch_lookup_table(to);
3671     }
3672 }
3673
3674 // Find long branch stub.
3675
3676 template<int size, bool big_endian>
3677 typename Stub_table<size, big_endian>::Address
3678 Stub_table<size, big_endian>::find_long_branch_entry(
3679     const Powerpc_relobj<size, big_endian>* object,
3680     Address to) const
3681 {
3682   Branch_stub_ent ent(object, to);
3683   typename Branch_stub_entries::const_iterator p
3684     = this->long_branch_stubs_.find(ent);
3685   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3686 }
3687
3688 // A class to handle .glink.
3689
3690 template<int size, bool big_endian>
3691 class Output_data_glink : public Output_section_data
3692 {
3693  public:
3694   static const int pltresolve_size = 16*4;
3695
3696   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3697     : Output_section_data(16), targ_(targ)
3698   { }
3699
3700   void
3701   add_eh_frame(Layout* layout)
3702   {
3703     if (!parameters->options().ld_generated_unwind_info())
3704       return;
3705
3706     if (size == 64)
3707       layout->add_eh_frame_for_plt(this,
3708                                    Eh_cie<64>::eh_frame_cie,
3709                                    sizeof (Eh_cie<64>::eh_frame_cie),
3710                                    glink_eh_frame_fde_64,
3711                                    sizeof (glink_eh_frame_fde_64));
3712     else
3713       {
3714         // 32-bit .glink can use the default since the CIE return
3715         // address reg, LR, is valid.
3716         layout->add_eh_frame_for_plt(this,
3717                                      Eh_cie<32>::eh_frame_cie,
3718                                      sizeof (Eh_cie<32>::eh_frame_cie),
3719                                      default_fde,
3720                                      sizeof (default_fde));
3721         // Except where LR is used in a PIC __glink_PLTresolve.
3722         if (parameters->options().output_is_position_independent())
3723           layout->add_eh_frame_for_plt(this,
3724                                        Eh_cie<32>::eh_frame_cie,
3725                                        sizeof (Eh_cie<32>::eh_frame_cie),
3726                                        glink_eh_frame_fde_32,
3727                                        sizeof (glink_eh_frame_fde_32));
3728       }
3729   }
3730
3731  protected:
3732   // Write to a map file.
3733   void
3734   do_print_to_mapfile(Mapfile* mapfile) const
3735   { mapfile->print_output_data(this, _("** glink")); }
3736
3737  private:
3738   void
3739   set_final_data_size();
3740
3741   // Write out .glink
3742   void
3743   do_write(Output_file*);
3744
3745   // Allows access to .got and .plt for do_write.
3746   Target_powerpc<size, big_endian>* targ_;
3747 };
3748
3749 template<int size, bool big_endian>
3750 void
3751 Output_data_glink<size, big_endian>::set_final_data_size()
3752 {
3753   unsigned int count = this->targ_->plt_entry_count();
3754   section_size_type total = 0;
3755
3756   if (count != 0)
3757     {
3758       if (size == 32)
3759         {
3760           // space for branch table
3761           total += 4 * (count - 1);
3762
3763           total += -total & 15;
3764           total += this->pltresolve_size;
3765         }
3766       else
3767         {
3768           total += this->pltresolve_size;
3769
3770           // space for branch table
3771           total += 8 * count;
3772           if (count > 0x8000)
3773             total += 4 * (count - 0x8000);
3774         }
3775     }
3776
3777   this->set_data_size(total);
3778 }
3779
3780 // Write out plt and long branch stub code.
3781
3782 template<int size, bool big_endian>
3783 void
3784 Stub_table<size, big_endian>::do_write(Output_file* of)
3785 {
3786   if (this->plt_call_stubs_.empty()
3787       && this->long_branch_stubs_.empty())
3788     return;
3789
3790   const section_size_type start_off = this->offset();
3791   const section_size_type off = this->stub_offset();
3792   const section_size_type oview_size =
3793     convert_to_section_size_type(this->data_size() - (off - start_off));
3794   unsigned char* const oview = of->get_output_view(off, oview_size);
3795   unsigned char* p;
3796
3797   if (size == 64)
3798     {
3799       const Output_data_got_powerpc<size, big_endian>* got
3800         = this->targ_->got_section();
3801       Address got_os_addr = got->output_section()->address();
3802
3803       if (!this->plt_call_stubs_.empty())
3804         {
3805           // The base address of the .plt section.
3806           Address plt_base = this->targ_->plt_section()->address();
3807           Address iplt_base = invalid_address;
3808
3809           // Write out plt call stubs.
3810           typename Plt_stub_entries::const_iterator cs;
3811           for (cs = this->plt_call_stubs_.begin();
3812                cs != this->plt_call_stubs_.end();
3813                ++cs)
3814             {
3815               bool is_iplt;
3816               Address pltoff = this->plt_off(cs, &is_iplt);
3817               Address plt_addr = pltoff;
3818               if (is_iplt)
3819                 {
3820                   if (iplt_base == invalid_address)
3821                     iplt_base = this->targ_->iplt_section()->address();
3822                   plt_addr += iplt_base;
3823                 }
3824               else
3825                 plt_addr += plt_base;
3826               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3827                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3828               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3829               Address off = plt_addr - got_addr;
3830
3831               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3832                 gold_error(_("%s: linkage table error against `%s'"),
3833                            cs->first.object_->name().c_str(),
3834                            cs->first.sym_->demangled_name().c_str());
3835
3836               bool static_chain = parameters->options().plt_static_chain();
3837               bool thread_safe = this->targ_->plt_thread_safe();
3838               bool use_fake_dep = false;
3839               Address cmp_branch_off = 0;
3840               if (thread_safe)
3841                 {
3842                   unsigned int pltindex
3843                     = ((pltoff - this->targ_->first_plt_entry_offset())
3844                        / this->targ_->plt_entry_size());
3845                   Address glinkoff
3846                     = (this->targ_->glink_section()->pltresolve_size
3847                        + pltindex * 8);
3848                   if (pltindex > 32768)
3849                     glinkoff += (pltindex - 32768) * 4;
3850                   Address to
3851                     = this->targ_->glink_section()->address() + glinkoff;
3852                   Address from
3853                     = (this->stub_address() + cs->second + 24
3854                        + 4 * (ha(off) != 0)
3855                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3856                        + 4 * static_chain);
3857                   cmp_branch_off = to - from;
3858                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3859                 }
3860
3861               p = oview + cs->second;
3862               if (ha(off) != 0)
3863                 {
3864                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3865                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3866                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3867                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3868                     {
3869                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3870                       off = 0;
3871                     }
3872                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3873                   if (use_fake_dep)
3874                     {
3875                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3876                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3877                     }
3878                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3879                   if (static_chain)
3880                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3881                 }
3882               else
3883                 {
3884                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3885                   write_insn<big_endian>(p, ld_11_2 + l(off)),          p += 4;
3886                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3887                     {
3888                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3889                       off = 0;
3890                     }
3891                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3892                   if (use_fake_dep)
3893                     {
3894                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3895                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3896                     }
3897                   if (static_chain)
3898                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3899                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3900                 }
3901               if (thread_safe && !use_fake_dep)
3902                 {
3903                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3904                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3905                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3906                 }
3907               else
3908                 write_insn<big_endian>(p, bctr);
3909             }
3910         }
3911
3912       // Write out long branch stubs.
3913       typename Branch_stub_entries::const_iterator bs;
3914       for (bs = this->long_branch_stubs_.begin();
3915            bs != this->long_branch_stubs_.end();
3916            ++bs)
3917         {
3918           p = oview + this->plt_size_ + bs->second;
3919           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3920           Address delta = bs->first.dest_ - loc;
3921           if (delta + (1 << 25) < 2 << 25)
3922             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3923           else
3924             {
3925               Address brlt_addr
3926                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3927               gold_assert(brlt_addr != invalid_address);
3928               brlt_addr += this->targ_->brlt_section()->address();
3929               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3930               Address brltoff = brlt_addr - got_addr;
3931               if (ha(brltoff) == 0)
3932                 {
3933                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3934                 }
3935               else
3936                 {
3937                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3938                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3939                 }
3940               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3941               write_insn<big_endian>(p, bctr);
3942             }
3943         }
3944     }
3945   else
3946     {
3947       if (!this->plt_call_stubs_.empty())
3948         {
3949           // The base address of the .plt section.
3950           Address plt_base = this->targ_->plt_section()->address();
3951           Address iplt_base = invalid_address;
3952           // The address of _GLOBAL_OFFSET_TABLE_.
3953           Address g_o_t = invalid_address;
3954
3955           // Write out plt call stubs.
3956           typename Plt_stub_entries::const_iterator cs;
3957           for (cs = this->plt_call_stubs_.begin();
3958                cs != this->plt_call_stubs_.end();
3959                ++cs)
3960             {
3961               bool is_iplt;
3962               Address plt_addr = this->plt_off(cs, &is_iplt);
3963               if (is_iplt)
3964                 {
3965                   if (iplt_base == invalid_address)
3966                     iplt_base = this->targ_->iplt_section()->address();
3967                   plt_addr += iplt_base;
3968                 }
3969               else
3970                 plt_addr += plt_base;
3971
3972               p = oview + cs->second;
3973               if (parameters->options().output_is_position_independent())
3974                 {
3975                   Address got_addr;
3976                   const Powerpc_relobj<size, big_endian>* ppcobj
3977                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
3978                        (cs->first.object_));
3979                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
3980                     {
3981                       unsigned int got2 = ppcobj->got2_shndx();
3982                       got_addr = ppcobj->get_output_section_offset(got2);
3983                       gold_assert(got_addr != invalid_address);
3984                       got_addr += (ppcobj->output_section(got2)->address()
3985                                    + cs->first.addend_);
3986                     }
3987                   else
3988                     {
3989                       if (g_o_t == invalid_address)
3990                         {
3991                           const Output_data_got_powerpc<size, big_endian>* got
3992                             = this->targ_->got_section();
3993                           g_o_t = got->address() + got->g_o_t();
3994                         }
3995                       got_addr = g_o_t;
3996                     }
3997
3998                   Address off = plt_addr - got_addr;
3999                   if (ha(off) == 0)
4000                     {
4001                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4002                       write_insn<big_endian>(p +  4, mtctr_11);
4003                       write_insn<big_endian>(p +  8, bctr);
4004                     }
4005                   else
4006                     {
4007                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4008                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4009                       write_insn<big_endian>(p +  8, mtctr_11);
4010                       write_insn<big_endian>(p + 12, bctr);
4011                     }
4012                 }
4013               else
4014                 {
4015                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4016                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4017                   write_insn<big_endian>(p +  8, mtctr_11);
4018                   write_insn<big_endian>(p + 12, bctr);
4019                 }
4020             }
4021         }
4022
4023       // Write out long branch stubs.
4024       typename Branch_stub_entries::const_iterator bs;
4025       for (bs = this->long_branch_stubs_.begin();
4026            bs != this->long_branch_stubs_.end();
4027            ++bs)
4028         {
4029           p = oview + this->plt_size_ + bs->second;
4030           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4031           Address delta = bs->first.dest_ - loc;
4032           if (delta + (1 << 25) < 2 << 25)
4033             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4034           else if (!parameters->options().output_is_position_independent())
4035             {
4036               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4037               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4038               write_insn<big_endian>(p +  8, mtctr_12);
4039               write_insn<big_endian>(p + 12, bctr);
4040             }
4041           else
4042             {
4043               delta -= 8;
4044               write_insn<big_endian>(p +  0, mflr_0);
4045               write_insn<big_endian>(p +  4, bcl_20_31);
4046               write_insn<big_endian>(p +  8, mflr_12);
4047               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4048               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4049               write_insn<big_endian>(p + 20, mtlr_0);
4050               write_insn<big_endian>(p + 24, mtctr_12);
4051               write_insn<big_endian>(p + 28, bctr);
4052             }
4053         }
4054     }
4055 }
4056
4057 // Write out .glink.
4058
4059 template<int size, bool big_endian>
4060 void
4061 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4062 {
4063   const section_size_type off = this->offset();
4064   const section_size_type oview_size =
4065     convert_to_section_size_type(this->data_size());
4066   unsigned char* const oview = of->get_output_view(off, oview_size);
4067   unsigned char* p;
4068
4069   // The base address of the .plt section.
4070   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4071   Address plt_base = this->targ_->plt_section()->address();
4072
4073   if (size == 64)
4074     {
4075       // Write pltresolve stub.
4076       p = oview;
4077       Address after_bcl = this->address() + 16;
4078       Address pltoff = plt_base - after_bcl;
4079
4080       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
4081
4082       write_insn<big_endian>(p, mflr_12),                       p += 4;
4083       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
4084       write_insn<big_endian>(p, mflr_11),                       p += 4;
4085       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
4086       write_insn<big_endian>(p, mtlr_12),                       p += 4;
4087       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
4088       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
4089       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
4090       write_insn<big_endian>(p, mtctr_11),                      p += 4;
4091       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
4092       write_insn<big_endian>(p, bctr),                          p += 4;
4093       while (p < oview + this->pltresolve_size)
4094         write_insn<big_endian>(p, nop), p += 4;
4095
4096       // Write lazy link call stubs.
4097       uint32_t indx = 0;
4098       while (p < oview + oview_size)
4099         {
4100           if (indx < 0x8000)
4101             {
4102               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
4103             }
4104           else
4105             {
4106               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
4107               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
4108             }
4109           uint32_t branch_off = 8 - (p - oview);
4110           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
4111           indx++;
4112         }
4113     }
4114   else
4115     {
4116       const Output_data_got_powerpc<size, big_endian>* got
4117         = this->targ_->got_section();
4118       // The address of _GLOBAL_OFFSET_TABLE_.
4119       Address g_o_t = got->address() + got->g_o_t();
4120
4121       // Write out pltresolve branch table.
4122       p = oview;
4123       unsigned int the_end = oview_size - this->pltresolve_size;
4124       unsigned char* end_p = oview + the_end;
4125       while (p < end_p - 8 * 4)
4126         write_insn<big_endian>(p, b + end_p - p), p += 4;
4127       while (p < end_p)
4128         write_insn<big_endian>(p, nop), p += 4;
4129
4130       // Write out pltresolve call stub.
4131       if (parameters->options().output_is_position_independent())
4132         {
4133           Address res0_off = 0;
4134           Address after_bcl_off = the_end + 12;
4135           Address bcl_res0 = after_bcl_off - res0_off;
4136
4137           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4138           write_insn<big_endian>(p +  4, mflr_0);
4139           write_insn<big_endian>(p +  8, bcl_20_31);
4140           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4141           write_insn<big_endian>(p + 16, mflr_12);
4142           write_insn<big_endian>(p + 20, mtlr_0);
4143           write_insn<big_endian>(p + 24, sub_11_11_12);
4144
4145           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4146
4147           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4148           if (ha(got_bcl) == ha(got_bcl + 4))
4149             {
4150               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4151               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4152             }
4153           else
4154             {
4155               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4156               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4157             }
4158           write_insn<big_endian>(p + 40, mtctr_0);
4159           write_insn<big_endian>(p + 44, add_0_11_11);
4160           write_insn<big_endian>(p + 48, add_11_0_11);
4161           write_insn<big_endian>(p + 52, bctr);
4162           write_insn<big_endian>(p + 56, nop);
4163           write_insn<big_endian>(p + 60, nop);
4164         }
4165       else
4166         {
4167           Address res0 = this->address();
4168
4169           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4170           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4171           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4172             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4173           else
4174             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4175           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4176           write_insn<big_endian>(p + 16, mtctr_0);
4177           write_insn<big_endian>(p + 20, add_0_11_11);
4178           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4179             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4180           else
4181             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4182           write_insn<big_endian>(p + 28, add_11_0_11);
4183           write_insn<big_endian>(p + 32, bctr);
4184           write_insn<big_endian>(p + 36, nop);
4185           write_insn<big_endian>(p + 40, nop);
4186           write_insn<big_endian>(p + 44, nop);
4187           write_insn<big_endian>(p + 48, nop);
4188           write_insn<big_endian>(p + 52, nop);
4189           write_insn<big_endian>(p + 56, nop);
4190           write_insn<big_endian>(p + 60, nop);
4191         }
4192       p += 64;
4193     }
4194
4195   of->write_output_view(off, oview_size, oview);
4196 }
4197
4198
4199 // A class to handle linker generated save/restore functions.
4200
4201 template<int size, bool big_endian>
4202 class Output_data_save_res : public Output_section_data_build
4203 {
4204  public:
4205   Output_data_save_res(Symbol_table* symtab);
4206
4207  protected:
4208   // Write to a map file.
4209   void
4210   do_print_to_mapfile(Mapfile* mapfile) const
4211   { mapfile->print_output_data(this, _("** save/restore")); }
4212
4213   void
4214   do_write(Output_file*);
4215
4216  private:
4217   // The maximum size of save/restore contents.
4218   static const unsigned int savres_max = 218*4;
4219
4220   void
4221   savres_define(Symbol_table* symtab,
4222                 const char *name,
4223                 unsigned int lo, unsigned int hi,
4224                 unsigned char* write_ent(unsigned char*, int),
4225                 unsigned char* write_tail(unsigned char*, int));
4226
4227   unsigned char *contents_;
4228 };
4229
4230 template<bool big_endian>
4231 static unsigned char*
4232 savegpr0(unsigned char* p, int r)
4233 {
4234   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4235   write_insn<big_endian>(p, insn);
4236   return p + 4;
4237 }
4238
4239 template<bool big_endian>
4240 static unsigned char*
4241 savegpr0_tail(unsigned char* p, int r)
4242 {
4243   p = savegpr0<big_endian>(p, r);
4244   uint32_t insn = std_0_1 + 16;
4245   write_insn<big_endian>(p, insn);
4246   p = p + 4;
4247   write_insn<big_endian>(p, blr);
4248   return p + 4;
4249 }
4250
4251 template<bool big_endian>
4252 static unsigned char*
4253 restgpr0(unsigned char* p, int r)
4254 {
4255   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4256   write_insn<big_endian>(p, insn);
4257   return p + 4;
4258 }
4259
4260 template<bool big_endian>
4261 static unsigned char*
4262 restgpr0_tail(unsigned char* p, int r)
4263 {
4264   uint32_t insn = ld_0_1 + 16;
4265   write_insn<big_endian>(p, insn);
4266   p = p + 4;
4267   p = restgpr0<big_endian>(p, r);
4268   write_insn<big_endian>(p, mtlr_0);
4269   p = p + 4;
4270   if (r == 29)
4271     {
4272       p = restgpr0<big_endian>(p, 30);
4273       p = restgpr0<big_endian>(p, 31);
4274     }
4275   write_insn<big_endian>(p, blr);
4276   return p + 4;
4277 }
4278
4279 template<bool big_endian>
4280 static unsigned char*
4281 savegpr1(unsigned char* p, int r)
4282 {
4283   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4284   write_insn<big_endian>(p, insn);
4285   return p + 4;
4286 }
4287
4288 template<bool big_endian>
4289 static unsigned char*
4290 savegpr1_tail(unsigned char* p, int r)
4291 {
4292   p = savegpr1<big_endian>(p, r);
4293   write_insn<big_endian>(p, blr);
4294   return p + 4;
4295 }
4296
4297 template<bool big_endian>
4298 static unsigned char*
4299 restgpr1(unsigned char* p, int r)
4300 {
4301   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4302   write_insn<big_endian>(p, insn);
4303   return p + 4;
4304 }
4305
4306 template<bool big_endian>
4307 static unsigned char*
4308 restgpr1_tail(unsigned char* p, int r)
4309 {
4310   p = restgpr1<big_endian>(p, r);
4311   write_insn<big_endian>(p, blr);
4312   return p + 4;
4313 }
4314
4315 template<bool big_endian>
4316 static unsigned char*
4317 savefpr(unsigned char* p, int r)
4318 {
4319   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4320   write_insn<big_endian>(p, insn);
4321   return p + 4;
4322 }
4323
4324 template<bool big_endian>
4325 static unsigned char*
4326 savefpr0_tail(unsigned char* p, int r)
4327 {
4328   p = savefpr<big_endian>(p, r);
4329   write_insn<big_endian>(p, std_0_1 + 16);
4330   p = p + 4;
4331   write_insn<big_endian>(p, blr);
4332   return p + 4;
4333 }
4334
4335 template<bool big_endian>
4336 static unsigned char*
4337 restfpr(unsigned char* p, int r)
4338 {
4339   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4340   write_insn<big_endian>(p, insn);
4341   return p + 4;
4342 }
4343
4344 template<bool big_endian>
4345 static unsigned char*
4346 restfpr0_tail(unsigned char* p, int r)
4347 {
4348   write_insn<big_endian>(p, ld_0_1 + 16);
4349   p = p + 4;
4350   p = restfpr<big_endian>(p, r);
4351   write_insn<big_endian>(p, mtlr_0);
4352   p = p + 4;
4353   if (r == 29)
4354     {
4355       p = restfpr<big_endian>(p, 30);
4356       p = restfpr<big_endian>(p, 31);
4357     }
4358   write_insn<big_endian>(p, blr);
4359   return p + 4;
4360 }
4361
4362 template<bool big_endian>
4363 static unsigned char*
4364 savefpr1_tail(unsigned char* p, int r)
4365 {
4366   p = savefpr<big_endian>(p, r);
4367   write_insn<big_endian>(p, blr);
4368   return p + 4;
4369 }
4370
4371 template<bool big_endian>
4372 static unsigned char*
4373 restfpr1_tail(unsigned char* p, int r)
4374 {
4375   p = restfpr<big_endian>(p, r);
4376   write_insn<big_endian>(p, blr);
4377   return p + 4;
4378 }
4379
4380 template<bool big_endian>
4381 static unsigned char*
4382 savevr(unsigned char* p, int r)
4383 {
4384   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4385   write_insn<big_endian>(p, insn);
4386   p = p + 4;
4387   insn = stvx_0_12_0 + (r << 21);
4388   write_insn<big_endian>(p, insn);
4389   return p + 4;
4390 }
4391
4392 template<bool big_endian>
4393 static unsigned char*
4394 savevr_tail(unsigned char* p, int r)
4395 {
4396   p = savevr<big_endian>(p, r);
4397   write_insn<big_endian>(p, blr);
4398   return p + 4;
4399 }
4400
4401 template<bool big_endian>
4402 static unsigned char*
4403 restvr(unsigned char* p, int r)
4404 {
4405   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4406   write_insn<big_endian>(p, insn);
4407   p = p + 4;
4408   insn = lvx_0_12_0 + (r << 21);
4409   write_insn<big_endian>(p, insn);
4410   return p + 4;
4411 }
4412
4413 template<bool big_endian>
4414 static unsigned char*
4415 restvr_tail(unsigned char* p, int r)
4416 {
4417   p = restvr<big_endian>(p, r);
4418   write_insn<big_endian>(p, blr);
4419   return p + 4;
4420 }
4421
4422
4423 template<int size, bool big_endian>
4424 Output_data_save_res<size, big_endian>::Output_data_save_res(
4425     Symbol_table* symtab)
4426   : Output_section_data_build(4),
4427     contents_(NULL)
4428 {
4429   this->savres_define(symtab,
4430                       "_savegpr0_", 14, 31,
4431                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4432   this->savres_define(symtab,
4433                       "_restgpr0_", 14, 29,
4434                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4435   this->savres_define(symtab,
4436                       "_restgpr0_", 30, 31,
4437                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4438   this->savres_define(symtab,
4439                       "_savegpr1_", 14, 31,
4440                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4441   this->savres_define(symtab,
4442                       "_restgpr1_", 14, 31,
4443                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4444   this->savres_define(symtab,
4445                       "_savefpr_", 14, 31,
4446                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4447   this->savres_define(symtab,
4448                       "_restfpr_", 14, 29,
4449                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4450   this->savres_define(symtab,
4451                       "_restfpr_", 30, 31,
4452                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4453   this->savres_define(symtab,
4454                       "._savef", 14, 31,
4455                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4456   this->savres_define(symtab,
4457                       "._restf", 14, 31,
4458                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4459   this->savres_define(symtab,
4460                       "_savevr_", 20, 31,
4461                       savevr<big_endian>, savevr_tail<big_endian>);
4462   this->savres_define(symtab,
4463                       "_restvr_", 20, 31,
4464                       restvr<big_endian>, restvr_tail<big_endian>);
4465 }
4466
4467 template<int size, bool big_endian>
4468 void
4469 Output_data_save_res<size, big_endian>::savres_define(
4470     Symbol_table* symtab,
4471     const char *name,
4472     unsigned int lo, unsigned int hi,
4473     unsigned char* write_ent(unsigned char*, int),
4474     unsigned char* write_tail(unsigned char*, int))
4475 {
4476   size_t len = strlen(name);
4477   bool writing = false;
4478   char sym[16];
4479
4480   memcpy(sym, name, len);
4481   sym[len + 2] = 0;
4482
4483   for (unsigned int i = lo; i <= hi; i++)
4484     {
4485       sym[len + 0] = i / 10 + '0';
4486       sym[len + 1] = i % 10 + '0';
4487       Symbol* gsym = symtab->lookup(sym);
4488       bool refd = gsym != NULL && gsym->is_undefined();
4489       writing = writing || refd;
4490       if (writing)
4491         {
4492           if (this->contents_ == NULL)
4493             this->contents_ = new unsigned char[this->savres_max];
4494
4495           section_size_type value = this->current_data_size();
4496           unsigned char* p = this->contents_ + value;
4497           if (i != hi)
4498             p = write_ent(p, i);
4499           else
4500             p = write_tail(p, i);
4501           section_size_type cur_size = p - this->contents_;
4502           this->set_current_data_size(cur_size);
4503           if (refd)
4504             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4505                                           this, value, cur_size - value,
4506                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4507                                           elfcpp::STV_HIDDEN, 0, false, false);
4508         }
4509     }
4510 }
4511
4512 // Write out save/restore.
4513
4514 template<int size, bool big_endian>
4515 void
4516 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4517 {
4518   const section_size_type off = this->offset();
4519   const section_size_type oview_size =
4520     convert_to_section_size_type(this->data_size());
4521   unsigned char* const oview = of->get_output_view(off, oview_size);
4522   memcpy(oview, this->contents_, oview_size);
4523   of->write_output_view(off, oview_size, oview);
4524 }
4525
4526
4527 // Create the glink section.
4528
4529 template<int size, bool big_endian>
4530 void
4531 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4532 {
4533   if (this->glink_ == NULL)
4534     {
4535       this->glink_ = new Output_data_glink<size, big_endian>(this);
4536       this->glink_->add_eh_frame(layout);
4537       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4538                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4539                                       this->glink_, ORDER_TEXT, false);
4540     }
4541 }
4542
4543 // Create a PLT entry for a global symbol.
4544
4545 template<int size, bool big_endian>
4546 void
4547 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4548                                                  Layout* layout,
4549                                                  Symbol* gsym)
4550 {
4551   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4552       && gsym->can_use_relative_reloc(false))
4553     {
4554       if (this->iplt_ == NULL)
4555         this->make_iplt_section(symtab, layout);
4556       this->iplt_->add_ifunc_entry(gsym);
4557     }
4558   else
4559     {
4560       if (this->plt_ == NULL)
4561         this->make_plt_section(symtab, layout);
4562       this->plt_->add_entry(gsym);
4563     }
4564 }
4565
4566 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4567
4568 template<int size, bool big_endian>
4569 void
4570 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4571     Symbol_table* symtab,
4572     Layout* layout,
4573     Sized_relobj_file<size, big_endian>* relobj,
4574     unsigned int r_sym)
4575 {
4576   if (this->iplt_ == NULL)
4577     this->make_iplt_section(symtab, layout);
4578   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4579 }
4580
4581 // Return the number of entries in the PLT.
4582
4583 template<int size, bool big_endian>
4584 unsigned int
4585 Target_powerpc<size, big_endian>::plt_entry_count() const
4586 {
4587   if (this->plt_ == NULL)
4588     return 0;
4589   return this->plt_->entry_count();
4590 }
4591
4592 // Return the offset of the first non-reserved PLT entry.
4593
4594 template<int size, bool big_endian>
4595 unsigned int
4596 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4597 {
4598   return this->plt_->first_plt_entry_offset();
4599 }
4600
4601 // Return the size of each PLT entry.
4602
4603 template<int size, bool big_endian>
4604 unsigned int
4605 Target_powerpc<size, big_endian>::plt_entry_size() const
4606 {
4607   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4608 }
4609
4610 // Create a GOT entry for local dynamic __tls_get_addr calls.
4611
4612 template<int size, bool big_endian>
4613 unsigned int
4614 Target_powerpc<size, big_endian>::tlsld_got_offset(
4615     Symbol_table* symtab,
4616     Layout* layout,
4617     Sized_relobj_file<size, big_endian>* object)
4618 {
4619   if (this->tlsld_got_offset_ == -1U)
4620     {
4621       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4622       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4623       Output_data_got_powerpc<size, big_endian>* got
4624         = this->got_section(symtab, layout);
4625       unsigned int got_offset = got->add_constant_pair(0, 0);
4626       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4627                           got_offset, 0);
4628       this->tlsld_got_offset_ = got_offset;
4629     }
4630   return this->tlsld_got_offset_;
4631 }
4632
4633 // Get the Reference_flags for a particular relocation.
4634
4635 template<int size, bool big_endian>
4636 int
4637 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4638 {
4639   switch (r_type)
4640     {
4641     case elfcpp::R_POWERPC_NONE:
4642     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4643     case elfcpp::R_POWERPC_GNU_VTENTRY:
4644     case elfcpp::R_PPC64_TOC:
4645       // No symbol reference.
4646       return 0;
4647
4648     case elfcpp::R_PPC64_ADDR64:
4649     case elfcpp::R_PPC64_UADDR64:
4650     case elfcpp::R_POWERPC_ADDR32:
4651     case elfcpp::R_POWERPC_UADDR32:
4652     case elfcpp::R_POWERPC_ADDR16:
4653     case elfcpp::R_POWERPC_UADDR16:
4654     case elfcpp::R_POWERPC_ADDR16_LO:
4655     case elfcpp::R_POWERPC_ADDR16_HI:
4656     case elfcpp::R_POWERPC_ADDR16_HA:
4657       return Symbol::ABSOLUTE_REF;
4658
4659     case elfcpp::R_POWERPC_ADDR24:
4660     case elfcpp::R_POWERPC_ADDR14:
4661     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4662     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4663       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4664
4665     case elfcpp::R_PPC64_REL64:
4666     case elfcpp::R_POWERPC_REL32:
4667     case elfcpp::R_PPC_LOCAL24PC:
4668     case elfcpp::R_POWERPC_REL16:
4669     case elfcpp::R_POWERPC_REL16_LO:
4670     case elfcpp::R_POWERPC_REL16_HI:
4671     case elfcpp::R_POWERPC_REL16_HA:
4672       return Symbol::RELATIVE_REF;
4673
4674     case elfcpp::R_POWERPC_REL24:
4675     case elfcpp::R_PPC_PLTREL24:
4676     case elfcpp::R_POWERPC_REL14:
4677     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4678     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4679       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4680
4681     case elfcpp::R_POWERPC_GOT16:
4682     case elfcpp::R_POWERPC_GOT16_LO:
4683     case elfcpp::R_POWERPC_GOT16_HI:
4684     case elfcpp::R_POWERPC_GOT16_HA:
4685     case elfcpp::R_PPC64_GOT16_DS:
4686     case elfcpp::R_PPC64_GOT16_LO_DS:
4687     case elfcpp::R_PPC64_TOC16:
4688     case elfcpp::R_PPC64_TOC16_LO:
4689     case elfcpp::R_PPC64_TOC16_HI:
4690     case elfcpp::R_PPC64_TOC16_HA:
4691     case elfcpp::R_PPC64_TOC16_DS:
4692     case elfcpp::R_PPC64_TOC16_LO_DS:
4693       // Absolute in GOT.
4694       return Symbol::ABSOLUTE_REF;
4695
4696     case elfcpp::R_POWERPC_GOT_TPREL16:
4697     case elfcpp::R_POWERPC_TLS:
4698       return Symbol::TLS_REF;
4699
4700     case elfcpp::R_POWERPC_COPY:
4701     case elfcpp::R_POWERPC_GLOB_DAT:
4702     case elfcpp::R_POWERPC_JMP_SLOT:
4703     case elfcpp::R_POWERPC_RELATIVE:
4704     case elfcpp::R_POWERPC_DTPMOD:
4705     default:
4706       // Not expected.  We will give an error later.
4707       return 0;
4708     }
4709 }
4710
4711 // Report an unsupported relocation against a local symbol.
4712
4713 template<int size, bool big_endian>
4714 void
4715 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4716     Sized_relobj_file<size, big_endian>* object,
4717     unsigned int r_type)
4718 {
4719   gold_error(_("%s: unsupported reloc %u against local symbol"),
4720              object->name().c_str(), r_type);
4721 }
4722
4723 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4724 // dynamic linker does not support it, issue an error.
4725
4726 template<int size, bool big_endian>
4727 void
4728 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4729                                                       unsigned int r_type)
4730 {
4731   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4732
4733   // These are the relocation types supported by glibc for both 32-bit
4734   // and 64-bit powerpc.
4735   switch (r_type)
4736     {
4737     case elfcpp::R_POWERPC_NONE:
4738     case elfcpp::R_POWERPC_RELATIVE:
4739     case elfcpp::R_POWERPC_GLOB_DAT:
4740     case elfcpp::R_POWERPC_DTPMOD:
4741     case elfcpp::R_POWERPC_DTPREL:
4742     case elfcpp::R_POWERPC_TPREL:
4743     case elfcpp::R_POWERPC_JMP_SLOT:
4744     case elfcpp::R_POWERPC_COPY:
4745     case elfcpp::R_POWERPC_IRELATIVE:
4746     case elfcpp::R_POWERPC_ADDR32:
4747     case elfcpp::R_POWERPC_UADDR32:
4748     case elfcpp::R_POWERPC_ADDR24:
4749     case elfcpp::R_POWERPC_ADDR16:
4750     case elfcpp::R_POWERPC_UADDR16:
4751     case elfcpp::R_POWERPC_ADDR16_LO:
4752     case elfcpp::R_POWERPC_ADDR16_HI:
4753     case elfcpp::R_POWERPC_ADDR16_HA:
4754     case elfcpp::R_POWERPC_ADDR14:
4755     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4756     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4757     case elfcpp::R_POWERPC_REL32:
4758     case elfcpp::R_POWERPC_REL24:
4759     case elfcpp::R_POWERPC_TPREL16:
4760     case elfcpp::R_POWERPC_TPREL16_LO:
4761     case elfcpp::R_POWERPC_TPREL16_HI:
4762     case elfcpp::R_POWERPC_TPREL16_HA:
4763       return;
4764
4765     default:
4766       break;
4767     }
4768
4769   if (size == 64)
4770     {
4771       switch (r_type)
4772         {
4773           // These are the relocation types supported only on 64-bit.
4774         case elfcpp::R_PPC64_ADDR64:
4775         case elfcpp::R_PPC64_UADDR64:
4776         case elfcpp::R_PPC64_JMP_IREL:
4777         case elfcpp::R_PPC64_ADDR16_DS:
4778         case elfcpp::R_PPC64_ADDR16_LO_DS:
4779         case elfcpp::R_PPC64_ADDR16_HIGHER:
4780         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4781         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4782         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4783         case elfcpp::R_PPC64_REL64:
4784         case elfcpp::R_POWERPC_ADDR30:
4785         case elfcpp::R_PPC64_TPREL16_DS:
4786         case elfcpp::R_PPC64_TPREL16_LO_DS:
4787         case elfcpp::R_PPC64_TPREL16_HIGHER:
4788         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4789         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4790         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4791           return;
4792
4793         default:
4794           break;
4795         }
4796     }
4797   else
4798     {
4799       switch (r_type)
4800         {
4801           // These are the relocation types supported only on 32-bit.
4802           // ??? glibc ld.so doesn't need to support these.
4803         case elfcpp::R_POWERPC_DTPREL16:
4804         case elfcpp::R_POWERPC_DTPREL16_LO:
4805         case elfcpp::R_POWERPC_DTPREL16_HI:
4806         case elfcpp::R_POWERPC_DTPREL16_HA:
4807           return;
4808
4809         default:
4810           break;
4811         }
4812     }
4813
4814   // This prevents us from issuing more than one error per reloc
4815   // section.  But we can still wind up issuing more than one
4816   // error per object file.
4817   if (this->issued_non_pic_error_)
4818     return;
4819   gold_assert(parameters->options().output_is_position_independent());
4820   object->error(_("requires unsupported dynamic reloc; "
4821                   "recompile with -fPIC"));
4822   this->issued_non_pic_error_ = true;
4823   return;
4824 }
4825
4826 // Return whether we need to make a PLT entry for a relocation of the
4827 // given type against a STT_GNU_IFUNC symbol.
4828
4829 template<int size, bool big_endian>
4830 bool
4831 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4832      Sized_relobj_file<size, big_endian>* object,
4833      unsigned int r_type,
4834      bool report_err)
4835 {
4836   // In non-pic code any reference will resolve to the plt call stub
4837   // for the ifunc symbol.
4838   if (size == 32 && !parameters->options().output_is_position_independent())
4839     return true;
4840
4841   switch (r_type)
4842     {
4843     // Word size refs from data sections are OK, but don't need a PLT entry.
4844     case elfcpp::R_POWERPC_ADDR32:
4845     case elfcpp::R_POWERPC_UADDR32:
4846       if (size == 32)
4847         return false;
4848       break;
4849
4850     case elfcpp::R_PPC64_ADDR64:
4851     case elfcpp::R_PPC64_UADDR64:
4852       if (size == 64)
4853         return false;
4854       break;
4855
4856     // GOT refs are good, but also don't need a PLT entry.
4857     case elfcpp::R_POWERPC_GOT16:
4858     case elfcpp::R_POWERPC_GOT16_LO:
4859     case elfcpp::R_POWERPC_GOT16_HI:
4860     case elfcpp::R_POWERPC_GOT16_HA:
4861     case elfcpp::R_PPC64_GOT16_DS:
4862     case elfcpp::R_PPC64_GOT16_LO_DS:
4863       return false;
4864
4865     // Function calls are good, and these do need a PLT entry.
4866     case elfcpp::R_POWERPC_ADDR24:
4867     case elfcpp::R_POWERPC_ADDR14:
4868     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4869     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4870     case elfcpp::R_POWERPC_REL24:
4871     case elfcpp::R_PPC_PLTREL24:
4872     case elfcpp::R_POWERPC_REL14:
4873     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4874     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4875       return true;
4876
4877     default:
4878       break;
4879     }
4880
4881   // Anything else is a problem.
4882   // If we are building a static executable, the libc startup function
4883   // responsible for applying indirect function relocations is going
4884   // to complain about the reloc type.
4885   // If we are building a dynamic executable, we will have a text
4886   // relocation.  The dynamic loader will set the text segment
4887   // writable and non-executable to apply text relocations.  So we'll
4888   // segfault when trying to run the indirection function to resolve
4889   // the reloc.
4890   if (report_err)
4891     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4892                object->name().c_str(), r_type);
4893   return false;
4894 }
4895
4896 // Scan a relocation for a local symbol.
4897
4898 template<int size, bool big_endian>
4899 inline void
4900 Target_powerpc<size, big_endian>::Scan::local(
4901     Symbol_table* symtab,
4902     Layout* layout,
4903     Target_powerpc<size, big_endian>* target,
4904     Sized_relobj_file<size, big_endian>* object,
4905     unsigned int data_shndx,
4906     Output_section* output_section,
4907     const elfcpp::Rela<size, big_endian>& reloc,
4908     unsigned int r_type,
4909     const elfcpp::Sym<size, big_endian>& lsym,
4910     bool is_discarded)
4911 {
4912   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4913
4914   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4915       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4916     {
4917       this->expect_tls_get_addr_call();
4918       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4919       if (tls_type != tls::TLSOPT_NONE)
4920         this->skip_next_tls_get_addr_call();
4921     }
4922   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4923            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4924     {
4925       this->expect_tls_get_addr_call();
4926       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4927       if (tls_type != tls::TLSOPT_NONE)
4928         this->skip_next_tls_get_addr_call();
4929     }
4930
4931   Powerpc_relobj<size, big_endian>* ppc_object
4932     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4933
4934   if (is_discarded)
4935     {
4936       if (size == 64
4937           && data_shndx == ppc_object->opd_shndx()
4938           && r_type == elfcpp::R_PPC64_ADDR64)
4939         ppc_object->set_opd_discard(reloc.get_r_offset());
4940       return;
4941     }
4942
4943   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4944   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4945   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
4946     {
4947       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4948       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4949                           r_type, r_sym, reloc.get_r_addend());
4950       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4951     }
4952
4953   switch (r_type)
4954     {
4955     case elfcpp::R_POWERPC_NONE:
4956     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4957     case elfcpp::R_POWERPC_GNU_VTENTRY:
4958     case elfcpp::R_PPC64_TOCSAVE:
4959     case elfcpp::R_PPC_EMB_MRKREF:
4960     case elfcpp::R_POWERPC_TLS:
4961       break;
4962
4963     case elfcpp::R_PPC64_TOC:
4964       {
4965         Output_data_got_powerpc<size, big_endian>* got
4966           = target->got_section(symtab, layout);
4967         if (parameters->options().output_is_position_independent())
4968           {
4969             Address off = reloc.get_r_offset();
4970             if (size == 64
4971                 && data_shndx == ppc_object->opd_shndx()
4972                 && ppc_object->get_opd_discard(off - 8))
4973               break;
4974
4975             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4976             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
4977             rela_dyn->add_output_section_relative(got->output_section(),
4978                                                   elfcpp::R_POWERPC_RELATIVE,
4979                                                   output_section,
4980                                                   object, data_shndx, off,
4981                                                   symobj->toc_base_offset());
4982           }
4983       }
4984       break;
4985
4986     case elfcpp::R_PPC64_ADDR64:
4987     case elfcpp::R_PPC64_UADDR64:
4988     case elfcpp::R_POWERPC_ADDR32:
4989     case elfcpp::R_POWERPC_UADDR32:
4990     case elfcpp::R_POWERPC_ADDR24:
4991     case elfcpp::R_POWERPC_ADDR16:
4992     case elfcpp::R_POWERPC_ADDR16_LO:
4993     case elfcpp::R_POWERPC_ADDR16_HI:
4994     case elfcpp::R_POWERPC_ADDR16_HA:
4995     case elfcpp::R_POWERPC_UADDR16:
4996     case elfcpp::R_PPC64_ADDR16_HIGHER:
4997     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4998     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4999     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5000     case elfcpp::R_PPC64_ADDR16_DS:
5001     case elfcpp::R_PPC64_ADDR16_LO_DS:
5002     case elfcpp::R_POWERPC_ADDR14:
5003     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5004     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5005       // If building a shared library (or a position-independent
5006       // executable), we need to create a dynamic relocation for
5007       // this location.
5008       if (parameters->options().output_is_position_independent()
5009           || (size == 64 && is_ifunc))
5010         {
5011           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5012                                                              is_ifunc);
5013           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5014               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5015             {
5016               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5017               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5018                                      : elfcpp::R_POWERPC_RELATIVE);
5019               rela_dyn->add_local_relative(object, r_sym, dynrel,
5020                                            output_section, data_shndx,
5021                                            reloc.get_r_offset(),
5022                                            reloc.get_r_addend(), false);
5023             }
5024           else
5025             {
5026               check_non_pic(object, r_type);
5027               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5028               rela_dyn->add_local(object, r_sym, r_type, output_section,
5029                                   data_shndx, reloc.get_r_offset(),
5030                                   reloc.get_r_addend());
5031             }
5032         }
5033       break;
5034
5035     case elfcpp::R_POWERPC_REL24:
5036     case elfcpp::R_PPC_PLTREL24:
5037     case elfcpp::R_PPC_LOCAL24PC:
5038     case elfcpp::R_POWERPC_REL14:
5039     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5040     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5041       if (!is_ifunc)
5042         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5043                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5044                             reloc.get_r_addend());
5045       break;
5046
5047     case elfcpp::R_PPC64_REL64:
5048     case elfcpp::R_POWERPC_REL32:
5049     case elfcpp::R_POWERPC_REL16:
5050     case elfcpp::R_POWERPC_REL16_LO:
5051     case elfcpp::R_POWERPC_REL16_HI:
5052     case elfcpp::R_POWERPC_REL16_HA:
5053     case elfcpp::R_POWERPC_SECTOFF:
5054     case elfcpp::R_POWERPC_TPREL16:
5055     case elfcpp::R_POWERPC_DTPREL16:
5056     case elfcpp::R_POWERPC_SECTOFF_LO:
5057     case elfcpp::R_POWERPC_TPREL16_LO:
5058     case elfcpp::R_POWERPC_DTPREL16_LO:
5059     case elfcpp::R_POWERPC_SECTOFF_HI:
5060     case elfcpp::R_POWERPC_TPREL16_HI:
5061     case elfcpp::R_POWERPC_DTPREL16_HI:
5062     case elfcpp::R_POWERPC_SECTOFF_HA:
5063     case elfcpp::R_POWERPC_TPREL16_HA:
5064     case elfcpp::R_POWERPC_DTPREL16_HA:
5065     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5066     case elfcpp::R_PPC64_TPREL16_HIGHER:
5067     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5068     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5069     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5070     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5071     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5072     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5073     case elfcpp::R_PPC64_TPREL16_DS:
5074     case elfcpp::R_PPC64_TPREL16_LO_DS:
5075     case elfcpp::R_PPC64_DTPREL16_DS:
5076     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5077     case elfcpp::R_PPC64_SECTOFF_DS:
5078     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5079     case elfcpp::R_PPC64_TLSGD:
5080     case elfcpp::R_PPC64_TLSLD:
5081       break;
5082
5083     case elfcpp::R_POWERPC_GOT16:
5084     case elfcpp::R_POWERPC_GOT16_LO:
5085     case elfcpp::R_POWERPC_GOT16_HI:
5086     case elfcpp::R_POWERPC_GOT16_HA:
5087     case elfcpp::R_PPC64_GOT16_DS:
5088     case elfcpp::R_PPC64_GOT16_LO_DS:
5089       {
5090         // The symbol requires a GOT entry.
5091         Output_data_got_powerpc<size, big_endian>* got
5092           = target->got_section(symtab, layout);
5093         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5094
5095         if (!parameters->options().output_is_position_independent())
5096           {
5097             if (size == 32 && is_ifunc)
5098               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5099             else
5100               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5101           }
5102         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5103           {
5104             // If we are generating a shared object or a pie, this
5105             // symbol's GOT entry will be set by a dynamic relocation.
5106             unsigned int off;
5107             off = got->add_constant(0);
5108             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5109
5110             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5111                                                                is_ifunc);
5112             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5113                                    : elfcpp::R_POWERPC_RELATIVE);
5114             rela_dyn->add_local_relative(object, r_sym, dynrel,
5115                                          got, off, 0, false);
5116           }
5117       }
5118       break;
5119
5120     case elfcpp::R_PPC64_TOC16:
5121     case elfcpp::R_PPC64_TOC16_LO:
5122     case elfcpp::R_PPC64_TOC16_HI:
5123     case elfcpp::R_PPC64_TOC16_HA:
5124     case elfcpp::R_PPC64_TOC16_DS:
5125     case elfcpp::R_PPC64_TOC16_LO_DS:
5126       // We need a GOT section.
5127       target->got_section(symtab, layout);
5128       break;
5129
5130     case elfcpp::R_POWERPC_GOT_TLSGD16:
5131     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5132     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5133     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5134       {
5135         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5136         if (tls_type == tls::TLSOPT_NONE)
5137           {
5138             Output_data_got_powerpc<size, big_endian>* got
5139               = target->got_section(symtab, layout);
5140             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5141             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5142             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5143                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5144           }
5145         else if (tls_type == tls::TLSOPT_TO_LE)
5146           {
5147             // no GOT relocs needed for Local Exec.
5148           }
5149         else
5150           gold_unreachable();
5151       }
5152       break;
5153
5154     case elfcpp::R_POWERPC_GOT_TLSLD16:
5155     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5156     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5157     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5158       {
5159         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5160         if (tls_type == tls::TLSOPT_NONE)
5161           target->tlsld_got_offset(symtab, layout, object);
5162         else if (tls_type == tls::TLSOPT_TO_LE)
5163           {
5164             // no GOT relocs needed for Local Exec.
5165             if (parameters->options().emit_relocs())
5166               {
5167                 Output_section* os = layout->tls_segment()->first_section();
5168                 gold_assert(os != NULL);
5169                 os->set_needs_symtab_index();
5170               }
5171           }
5172         else
5173           gold_unreachable();
5174       }
5175       break;
5176
5177     case elfcpp::R_POWERPC_GOT_DTPREL16:
5178     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5179     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5180     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5181       {
5182         Output_data_got_powerpc<size, big_endian>* got
5183           = target->got_section(symtab, layout);
5184         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5185         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5186       }
5187       break;
5188
5189     case elfcpp::R_POWERPC_GOT_TPREL16:
5190     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5191     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5192     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5193       {
5194         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5195         if (tls_type == tls::TLSOPT_NONE)
5196           {
5197             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5198             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5199               {
5200                 Output_data_got_powerpc<size, big_endian>* got
5201                   = target->got_section(symtab, layout);
5202                 unsigned int off = got->add_constant(0);
5203                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5204
5205                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5206                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5207                                                       elfcpp::R_POWERPC_TPREL,
5208                                                       got, off, 0);
5209               }
5210           }
5211         else if (tls_type == tls::TLSOPT_TO_LE)
5212           {
5213             // no GOT relocs needed for Local Exec.
5214           }
5215         else
5216           gold_unreachable();
5217       }
5218       break;
5219
5220     default:
5221       unsupported_reloc_local(object, r_type);
5222       break;
5223     }
5224
5225   switch (r_type)
5226     {
5227     case elfcpp::R_POWERPC_GOT_TLSLD16:
5228     case elfcpp::R_POWERPC_GOT_TLSGD16:
5229     case elfcpp::R_POWERPC_GOT_TPREL16:
5230     case elfcpp::R_POWERPC_GOT_DTPREL16:
5231     case elfcpp::R_POWERPC_GOT16:
5232     case elfcpp::R_PPC64_GOT16_DS:
5233     case elfcpp::R_PPC64_TOC16:
5234     case elfcpp::R_PPC64_TOC16_DS:
5235       ppc_object->set_has_small_toc_reloc();
5236     default:
5237       break;
5238     }
5239 }
5240
5241 // Report an unsupported relocation against a global symbol.
5242
5243 template<int size, bool big_endian>
5244 void
5245 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5246     Sized_relobj_file<size, big_endian>* object,
5247     unsigned int r_type,
5248     Symbol* gsym)
5249 {
5250   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5251              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5252 }
5253
5254 // Scan a relocation for a global symbol.
5255
5256 template<int size, bool big_endian>
5257 inline void
5258 Target_powerpc<size, big_endian>::Scan::global(
5259     Symbol_table* symtab,
5260     Layout* layout,
5261     Target_powerpc<size, big_endian>* target,
5262     Sized_relobj_file<size, big_endian>* object,
5263     unsigned int data_shndx,
5264     Output_section* output_section,
5265     const elfcpp::Rela<size, big_endian>& reloc,
5266     unsigned int r_type,
5267     Symbol* gsym)
5268 {
5269   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5270     return;
5271
5272   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5273       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5274     {
5275       this->expect_tls_get_addr_call();
5276       const bool final = gsym->final_value_is_known();
5277       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5278       if (tls_type != tls::TLSOPT_NONE)
5279         this->skip_next_tls_get_addr_call();
5280     }
5281   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5282            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5283     {
5284       this->expect_tls_get_addr_call();
5285       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5286       if (tls_type != tls::TLSOPT_NONE)
5287         this->skip_next_tls_get_addr_call();
5288     }
5289
5290   Powerpc_relobj<size, big_endian>* ppc_object
5291     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5292
5293   // A STT_GNU_IFUNC symbol may require a PLT entry.
5294   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5295   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5296     {
5297       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5298                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5299                           reloc.get_r_addend());
5300       target->make_plt_entry(symtab, layout, gsym);
5301     }
5302
5303   switch (r_type)
5304     {
5305     case elfcpp::R_POWERPC_NONE:
5306     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5307     case elfcpp::R_POWERPC_GNU_VTENTRY:
5308     case elfcpp::R_PPC_LOCAL24PC:
5309     case elfcpp::R_PPC_EMB_MRKREF:
5310     case elfcpp::R_POWERPC_TLS:
5311       break;
5312
5313     case elfcpp::R_PPC64_TOC:
5314       {
5315         Output_data_got_powerpc<size, big_endian>* got
5316           = target->got_section(symtab, layout);
5317         if (parameters->options().output_is_position_independent())
5318           {
5319             Address off = reloc.get_r_offset();
5320             if (size == 64
5321                 && data_shndx == ppc_object->opd_shndx()
5322                 && ppc_object->get_opd_discard(off - 8))
5323               break;
5324
5325             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5326             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5327             if (data_shndx != ppc_object->opd_shndx())
5328               symobj = static_cast
5329                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5330             rela_dyn->add_output_section_relative(got->output_section(),
5331                                                   elfcpp::R_POWERPC_RELATIVE,
5332                                                   output_section,
5333                                                   object, data_shndx, off,
5334                                                   symobj->toc_base_offset());
5335           }
5336       }
5337       break;
5338
5339     case elfcpp::R_PPC64_ADDR64:
5340       if (size == 64
5341           && data_shndx == ppc_object->opd_shndx()
5342           && (gsym->is_defined_in_discarded_section()
5343               || gsym->object() != object))
5344         {
5345           ppc_object->set_opd_discard(reloc.get_r_offset());
5346           break;
5347         }
5348       // Fall thru
5349     case elfcpp::R_PPC64_UADDR64:
5350     case elfcpp::R_POWERPC_ADDR32:
5351     case elfcpp::R_POWERPC_UADDR32:
5352     case elfcpp::R_POWERPC_ADDR24:
5353     case elfcpp::R_POWERPC_ADDR16:
5354     case elfcpp::R_POWERPC_ADDR16_LO:
5355     case elfcpp::R_POWERPC_ADDR16_HI:
5356     case elfcpp::R_POWERPC_ADDR16_HA:
5357     case elfcpp::R_POWERPC_UADDR16:
5358     case elfcpp::R_PPC64_ADDR16_HIGHER:
5359     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5360     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5361     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5362     case elfcpp::R_PPC64_ADDR16_DS:
5363     case elfcpp::R_PPC64_ADDR16_LO_DS:
5364     case elfcpp::R_POWERPC_ADDR14:
5365     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5366     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5367       {
5368         // Make a PLT entry if necessary.
5369         if (gsym->needs_plt_entry())
5370           {
5371             if (!is_ifunc)
5372               {
5373                 target->push_branch(ppc_object, data_shndx,
5374                                     reloc.get_r_offset(), r_type,
5375                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5376                                     reloc.get_r_addend());
5377                 target->make_plt_entry(symtab, layout, gsym);
5378               }
5379             // Since this is not a PC-relative relocation, we may be
5380             // taking the address of a function. In that case we need to
5381             // set the entry in the dynamic symbol table to the address of
5382             // the PLT call stub.
5383             if (size == 32
5384                 && gsym->is_from_dynobj()
5385                 && !parameters->options().output_is_position_independent())
5386               gsym->set_needs_dynsym_value();
5387           }
5388         // Make a dynamic relocation if necessary.
5389         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5390             || (size == 64 && is_ifunc))
5391           {
5392             if (gsym->may_need_copy_reloc())
5393               {
5394                 target->copy_reloc(symtab, layout, object,
5395                                    data_shndx, output_section, gsym, reloc);
5396               }
5397             else if ((size == 32
5398                       && r_type == elfcpp::R_POWERPC_ADDR32
5399                       && gsym->can_use_relative_reloc(false)
5400                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5401                            && parameters->options().shared()))
5402                      || (size == 64
5403                          && r_type == elfcpp::R_PPC64_ADDR64
5404                          && (gsym->can_use_relative_reloc(false)
5405                              || data_shndx == ppc_object->opd_shndx())))
5406               {
5407                 Reloc_section* rela_dyn
5408                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5409                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5410                                        : elfcpp::R_POWERPC_RELATIVE);
5411                 rela_dyn->add_symbolless_global_addend(
5412                     gsym, dynrel, output_section, object, data_shndx,
5413                     reloc.get_r_offset(), reloc.get_r_addend());
5414               }
5415             else
5416               {
5417                 Reloc_section* rela_dyn
5418                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5419                 check_non_pic(object, r_type);
5420                 rela_dyn->add_global(gsym, r_type, output_section,
5421                                      object, data_shndx,
5422                                      reloc.get_r_offset(),
5423                                      reloc.get_r_addend());
5424               }
5425           }
5426       }
5427       break;
5428
5429     case elfcpp::R_PPC_PLTREL24:
5430     case elfcpp::R_POWERPC_REL24:
5431       if (!is_ifunc)
5432         {
5433           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5434                               r_type,
5435                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5436                               reloc.get_r_addend());
5437           if (gsym->needs_plt_entry()
5438               || (!gsym->final_value_is_known()
5439                   && (gsym->is_undefined()
5440                       || gsym->is_from_dynobj()
5441                       || gsym->is_preemptible())))
5442             target->make_plt_entry(symtab, layout, gsym);
5443         }
5444       // Fall thru
5445
5446     case elfcpp::R_PPC64_REL64:
5447     case elfcpp::R_POWERPC_REL32:
5448       // Make a dynamic relocation if necessary.
5449       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5450         {
5451           if (gsym->may_need_copy_reloc())
5452             {
5453               target->copy_reloc(symtab, layout, object,
5454                                  data_shndx, output_section, gsym,
5455                                  reloc);
5456             }
5457           else
5458             {
5459               Reloc_section* rela_dyn
5460                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5461               check_non_pic(object, r_type);
5462               rela_dyn->add_global(gsym, r_type, output_section, object,
5463                                    data_shndx, reloc.get_r_offset(),
5464                                    reloc.get_r_addend());
5465             }
5466         }
5467       break;
5468
5469     case elfcpp::R_POWERPC_REL14:
5470     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5471     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5472       if (!is_ifunc)
5473         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5474                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5475                             reloc.get_r_addend());
5476       break;
5477
5478     case elfcpp::R_POWERPC_REL16:
5479     case elfcpp::R_POWERPC_REL16_LO:
5480     case elfcpp::R_POWERPC_REL16_HI:
5481     case elfcpp::R_POWERPC_REL16_HA:
5482     case elfcpp::R_POWERPC_SECTOFF:
5483     case elfcpp::R_POWERPC_TPREL16:
5484     case elfcpp::R_POWERPC_DTPREL16:
5485     case elfcpp::R_POWERPC_SECTOFF_LO:
5486     case elfcpp::R_POWERPC_TPREL16_LO:
5487     case elfcpp::R_POWERPC_DTPREL16_LO:
5488     case elfcpp::R_POWERPC_SECTOFF_HI:
5489     case elfcpp::R_POWERPC_TPREL16_HI:
5490     case elfcpp::R_POWERPC_DTPREL16_HI:
5491     case elfcpp::R_POWERPC_SECTOFF_HA:
5492     case elfcpp::R_POWERPC_TPREL16_HA:
5493     case elfcpp::R_POWERPC_DTPREL16_HA:
5494     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5495     case elfcpp::R_PPC64_TPREL16_HIGHER:
5496     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5497     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5498     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5499     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5500     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5501     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5502     case elfcpp::R_PPC64_TPREL16_DS:
5503     case elfcpp::R_PPC64_TPREL16_LO_DS:
5504     case elfcpp::R_PPC64_DTPREL16_DS:
5505     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5506     case elfcpp::R_PPC64_SECTOFF_DS:
5507     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5508     case elfcpp::R_PPC64_TLSGD:
5509     case elfcpp::R_PPC64_TLSLD:
5510       break;
5511
5512     case elfcpp::R_POWERPC_GOT16:
5513     case elfcpp::R_POWERPC_GOT16_LO:
5514     case elfcpp::R_POWERPC_GOT16_HI:
5515     case elfcpp::R_POWERPC_GOT16_HA:
5516     case elfcpp::R_PPC64_GOT16_DS:
5517     case elfcpp::R_PPC64_GOT16_LO_DS:
5518       {
5519         // The symbol requires a GOT entry.
5520         Output_data_got_powerpc<size, big_endian>* got;
5521
5522         got = target->got_section(symtab, layout);
5523         if (gsym->final_value_is_known())
5524           {
5525             if (size == 32 && is_ifunc)
5526               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5527             else
5528               got->add_global(gsym, GOT_TYPE_STANDARD);
5529           }
5530         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5531           {
5532             // If we are generating a shared object or a pie, this
5533             // symbol's GOT entry will be set by a dynamic relocation.
5534             unsigned int off = got->add_constant(0);
5535             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5536
5537             Reloc_section* rela_dyn
5538               = target->rela_dyn_section(symtab, layout, is_ifunc);
5539
5540             if (gsym->can_use_relative_reloc(false)
5541                 && !(size == 32
5542                      && gsym->visibility() == elfcpp::STV_PROTECTED
5543                      && parameters->options().shared()))
5544               {
5545                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5546                                        : elfcpp::R_POWERPC_RELATIVE);
5547                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5548               }
5549             else
5550               {
5551                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5552                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5553               }
5554           }
5555       }
5556       break;
5557
5558     case elfcpp::R_PPC64_TOC16:
5559     case elfcpp::R_PPC64_TOC16_LO:
5560     case elfcpp::R_PPC64_TOC16_HI:
5561     case elfcpp::R_PPC64_TOC16_HA:
5562     case elfcpp::R_PPC64_TOC16_DS:
5563     case elfcpp::R_PPC64_TOC16_LO_DS:
5564       // We need a GOT section.
5565       target->got_section(symtab, layout);
5566       break;
5567
5568     case elfcpp::R_POWERPC_GOT_TLSGD16:
5569     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5570     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5571     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5572       {
5573         const bool final = gsym->final_value_is_known();
5574         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5575         if (tls_type == tls::TLSOPT_NONE)
5576           {
5577             Output_data_got_powerpc<size, big_endian>* got
5578               = target->got_section(symtab, layout);
5579             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5580             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5581                                           elfcpp::R_POWERPC_DTPMOD,
5582                                           elfcpp::R_POWERPC_DTPREL);
5583           }
5584         else if (tls_type == tls::TLSOPT_TO_IE)
5585           {
5586             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5587               {
5588                 Output_data_got_powerpc<size, big_endian>* got
5589                   = target->got_section(symtab, layout);
5590                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5591                 if (gsym->is_undefined()
5592                     || gsym->is_from_dynobj())
5593                   {
5594                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5595                                              elfcpp::R_POWERPC_TPREL);
5596                   }
5597                 else
5598                   {
5599                     unsigned int off = got->add_constant(0);
5600                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5601                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5602                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5603                                                            got, off, 0);
5604                   }
5605               }
5606           }
5607         else if (tls_type == tls::TLSOPT_TO_LE)
5608           {
5609             // no GOT relocs needed for Local Exec.
5610           }
5611         else
5612           gold_unreachable();
5613       }
5614       break;
5615
5616     case elfcpp::R_POWERPC_GOT_TLSLD16:
5617     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5618     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5619     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5620       {
5621         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5622         if (tls_type == tls::TLSOPT_NONE)
5623           target->tlsld_got_offset(symtab, layout, object);
5624         else if (tls_type == tls::TLSOPT_TO_LE)
5625           {
5626             // no GOT relocs needed for Local Exec.
5627             if (parameters->options().emit_relocs())
5628               {
5629                 Output_section* os = layout->tls_segment()->first_section();
5630                 gold_assert(os != NULL);
5631                 os->set_needs_symtab_index();
5632               }
5633           }
5634         else
5635           gold_unreachable();
5636       }
5637       break;
5638
5639     case elfcpp::R_POWERPC_GOT_DTPREL16:
5640     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5641     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5642     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5643       {
5644         Output_data_got_powerpc<size, big_endian>* got
5645           = target->got_section(symtab, layout);
5646         if (!gsym->final_value_is_known()
5647             && (gsym->is_from_dynobj()
5648                 || gsym->is_undefined()
5649                 || gsym->is_preemptible()))
5650           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5651                                    target->rela_dyn_section(layout),
5652                                    elfcpp::R_POWERPC_DTPREL);
5653         else
5654           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5655       }
5656       break;
5657
5658     case elfcpp::R_POWERPC_GOT_TPREL16:
5659     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5660     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5661     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5662       {
5663         const bool final = gsym->final_value_is_known();
5664         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5665         if (tls_type == tls::TLSOPT_NONE)
5666           {
5667             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5668               {
5669                 Output_data_got_powerpc<size, big_endian>* got
5670                   = target->got_section(symtab, layout);
5671                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5672                 if (gsym->is_undefined()
5673                     || gsym->is_from_dynobj())
5674                   {
5675                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5676                                              elfcpp::R_POWERPC_TPREL);
5677                   }
5678                 else
5679                   {
5680                     unsigned int off = got->add_constant(0);
5681                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5682                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5683                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5684                                                            got, off, 0);
5685                   }
5686               }
5687           }
5688         else if (tls_type == tls::TLSOPT_TO_LE)
5689           {
5690             // no GOT relocs needed for Local Exec.
5691           }
5692         else
5693           gold_unreachable();
5694       }
5695       break;
5696
5697     default:
5698       unsupported_reloc_global(object, r_type, gsym);
5699       break;
5700     }
5701
5702   switch (r_type)
5703     {
5704     case elfcpp::R_POWERPC_GOT_TLSLD16:
5705     case elfcpp::R_POWERPC_GOT_TLSGD16:
5706     case elfcpp::R_POWERPC_GOT_TPREL16:
5707     case elfcpp::R_POWERPC_GOT_DTPREL16:
5708     case elfcpp::R_POWERPC_GOT16:
5709     case elfcpp::R_PPC64_GOT16_DS:
5710     case elfcpp::R_PPC64_TOC16:
5711     case elfcpp::R_PPC64_TOC16_DS:
5712       ppc_object->set_has_small_toc_reloc();
5713     default:
5714       break;
5715     }
5716 }
5717
5718 // Process relocations for gc.
5719
5720 template<int size, bool big_endian>
5721 void
5722 Target_powerpc<size, big_endian>::gc_process_relocs(
5723     Symbol_table* symtab,
5724     Layout* layout,
5725     Sized_relobj_file<size, big_endian>* object,
5726     unsigned int data_shndx,
5727     unsigned int,
5728     const unsigned char* prelocs,
5729     size_t reloc_count,
5730     Output_section* output_section,
5731     bool needs_special_offset_handling,
5732     size_t local_symbol_count,
5733     const unsigned char* plocal_symbols)
5734 {
5735   typedef Target_powerpc<size, big_endian> Powerpc;
5736   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5737   Powerpc_relobj<size, big_endian>* ppc_object
5738     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5739   if (size == 64)
5740     ppc_object->set_opd_valid();
5741   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5742     {
5743       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5744       for (p = ppc_object->access_from_map()->begin();
5745            p != ppc_object->access_from_map()->end();
5746            ++p)
5747         {
5748           Address dst_off = p->first;
5749           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5750           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5751           for (s = p->second.begin(); s != p->second.end(); ++s)
5752             {
5753               Object* src_obj = s->first;
5754               unsigned int src_indx = s->second;
5755               symtab->gc()->add_reference(src_obj, src_indx,
5756                                           ppc_object, dst_indx);
5757             }
5758           p->second.clear();
5759         }
5760       ppc_object->access_from_map()->clear();
5761       ppc_object->process_gc_mark(symtab);
5762       // Don't look at .opd relocs as .opd will reference everything.
5763       return;
5764     }
5765
5766   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5767                           typename Target_powerpc::Relocatable_size_for_reloc>(
5768     symtab,
5769     layout,
5770     this,
5771     object,
5772     data_shndx,
5773     prelocs,
5774     reloc_count,
5775     output_section,
5776     needs_special_offset_handling,
5777     local_symbol_count,
5778     plocal_symbols);
5779 }
5780
5781 // Handle target specific gc actions when adding a gc reference from
5782 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5783 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5784 // section of a function descriptor.
5785
5786 template<int size, bool big_endian>
5787 void
5788 Target_powerpc<size, big_endian>::do_gc_add_reference(
5789     Symbol_table* symtab,
5790     Object* src_obj,
5791     unsigned int src_shndx,
5792     Object* dst_obj,
5793     unsigned int dst_shndx,
5794     Address dst_off) const
5795 {
5796   if (size != 64 || dst_obj->is_dynamic())
5797     return;
5798
5799   Powerpc_relobj<size, big_endian>* ppc_object
5800     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5801   if (dst_shndx == ppc_object->opd_shndx())
5802     {
5803       if (ppc_object->opd_valid())
5804         {
5805           dst_shndx = ppc_object->get_opd_ent(dst_off);
5806           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5807         }
5808       else
5809         {
5810           // If we haven't run scan_opd_relocs, we must delay
5811           // processing this function descriptor reference.
5812           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5813         }
5814     }
5815 }
5816
5817 // Add any special sections for this symbol to the gc work list.
5818 // For powerpc64, this adds the code section of a function
5819 // descriptor.
5820
5821 template<int size, bool big_endian>
5822 void
5823 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5824     Symbol_table* symtab,
5825     Symbol* sym) const
5826 {
5827   if (size == 64)
5828     {
5829       Powerpc_relobj<size, big_endian>* ppc_object
5830         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5831       bool is_ordinary;
5832       unsigned int shndx = sym->shndx(&is_ordinary);
5833       if (is_ordinary && shndx == ppc_object->opd_shndx())
5834         {
5835           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5836           Address dst_off = gsym->value();
5837           if (ppc_object->opd_valid())
5838             {
5839               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5840               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5841             }
5842           else
5843             ppc_object->add_gc_mark(dst_off);
5844         }
5845     }
5846 }
5847
5848 // For a symbol location in .opd, set LOC to the location of the
5849 // function entry.
5850
5851 template<int size, bool big_endian>
5852 void
5853 Target_powerpc<size, big_endian>::do_function_location(
5854     Symbol_location* loc) const
5855 {
5856   if (size == 64)
5857     {
5858       if (loc->object->is_dynamic())
5859         {
5860           Powerpc_dynobj<size, big_endian>* ppc_object
5861             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
5862           if (loc->shndx == ppc_object->opd_shndx())
5863             {
5864               Address dest_off;
5865               Address off = loc->offset - ppc_object->opd_address();
5866               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
5867               loc->offset = dest_off;
5868             }
5869         }
5870       else
5871         {
5872           const Powerpc_relobj<size, big_endian>* ppc_object
5873             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
5874           if (loc->shndx == ppc_object->opd_shndx())
5875             {
5876               Address dest_off;
5877               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
5878               loc->offset = dest_off;
5879             }
5880         }
5881     }
5882 }
5883
5884 // Scan relocations for a section.
5885
5886 template<int size, bool big_endian>
5887 void
5888 Target_powerpc<size, big_endian>::scan_relocs(
5889     Symbol_table* symtab,
5890     Layout* layout,
5891     Sized_relobj_file<size, big_endian>* object,
5892     unsigned int data_shndx,
5893     unsigned int sh_type,
5894     const unsigned char* prelocs,
5895     size_t reloc_count,
5896     Output_section* output_section,
5897     bool needs_special_offset_handling,
5898     size_t local_symbol_count,
5899     const unsigned char* plocal_symbols)
5900 {
5901   typedef Target_powerpc<size, big_endian> Powerpc;
5902   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5903
5904   if (sh_type == elfcpp::SHT_REL)
5905     {
5906       gold_error(_("%s: unsupported REL reloc section"),
5907                  object->name().c_str());
5908       return;
5909     }
5910
5911   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5912     symtab,
5913     layout,
5914     this,
5915     object,
5916     data_shndx,
5917     prelocs,
5918     reloc_count,
5919     output_section,
5920     needs_special_offset_handling,
5921     local_symbol_count,
5922     plocal_symbols);
5923 }
5924
5925 // Functor class for processing the global symbol table.
5926 // Removes symbols defined on discarded opd entries.
5927
5928 template<bool big_endian>
5929 class Global_symbol_visitor_opd
5930 {
5931  public:
5932   Global_symbol_visitor_opd()
5933   { }
5934
5935   void
5936   operator()(Sized_symbol<64>* sym)
5937   {
5938     if (sym->has_symtab_index()
5939         || sym->source() != Symbol::FROM_OBJECT
5940         || !sym->in_real_elf())
5941       return;
5942
5943     if (sym->object()->is_dynamic())
5944       return;
5945
5946     Powerpc_relobj<64, big_endian>* symobj
5947       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5948     if (symobj->opd_shndx() == 0)
5949       return;
5950
5951     bool is_ordinary;
5952     unsigned int shndx = sym->shndx(&is_ordinary);
5953     if (shndx == symobj->opd_shndx()
5954         && symobj->get_opd_discard(sym->value()))
5955       sym->set_symtab_index(-1U);
5956   }
5957 };
5958
5959 template<int size, bool big_endian>
5960 void
5961 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5962     Layout* layout,
5963     Symbol_table* symtab)
5964 {
5965   if (size == 64)
5966     {
5967       Output_data_save_res<64, big_endian>* savres
5968         = new Output_data_save_res<64, big_endian>(symtab);
5969       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5970                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5971                                       savres, ORDER_TEXT, false);
5972     }
5973 }
5974
5975 // Sort linker created .got section first (for the header), then input
5976 // sections belonging to files using small model code.
5977
5978 template<bool big_endian>
5979 class Sort_toc_sections
5980 {
5981  public:
5982   bool
5983   operator()(const Output_section::Input_section& is1,
5984              const Output_section::Input_section& is2) const
5985   {
5986     if (!is1.is_input_section() && is2.is_input_section())
5987       return true;
5988     bool small1
5989       = (is1.is_input_section()
5990          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
5991              ->has_small_toc_reloc()));
5992     bool small2
5993       = (is2.is_input_section()
5994          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
5995              ->has_small_toc_reloc()));
5996     return small1 && !small2;
5997   }
5998 };
5999
6000 // Finalize the sections.
6001
6002 template<int size, bool big_endian>
6003 void
6004 Target_powerpc<size, big_endian>::do_finalize_sections(
6005     Layout* layout,
6006     const Input_objects*,
6007     Symbol_table* symtab)
6008 {
6009   if (parameters->doing_static_link())
6010     {
6011       // At least some versions of glibc elf-init.o have a strong
6012       // reference to __rela_iplt marker syms.  A weak ref would be
6013       // better..
6014       if (this->iplt_ != NULL)
6015         {
6016           Reloc_section* rel = this->iplt_->rel_plt();
6017           symtab->define_in_output_data("__rela_iplt_start", NULL,
6018                                         Symbol_table::PREDEFINED, rel, 0, 0,
6019                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6020                                         elfcpp::STV_HIDDEN, 0, false, true);
6021           symtab->define_in_output_data("__rela_iplt_end", NULL,
6022                                         Symbol_table::PREDEFINED, rel, 0, 0,
6023                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6024                                         elfcpp::STV_HIDDEN, 0, true, true);
6025         }
6026       else
6027         {
6028           symtab->define_as_constant("__rela_iplt_start", NULL,
6029                                      Symbol_table::PREDEFINED, 0, 0,
6030                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6031                                      elfcpp::STV_HIDDEN, 0, true, false);
6032           symtab->define_as_constant("__rela_iplt_end", NULL,
6033                                      Symbol_table::PREDEFINED, 0, 0,
6034                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6035                                      elfcpp::STV_HIDDEN, 0, true, false);
6036         }
6037     }
6038
6039   if (size == 64)
6040     {
6041       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6042       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6043
6044       if (!parameters->options().relocatable())
6045         {
6046           this->define_save_restore_funcs(layout, symtab);
6047
6048           // Annoyingly, we need to make these sections now whether or
6049           // not we need them.  If we delay until do_relax then we
6050           // need to mess with the relaxation machinery checkpointing.
6051           this->got_section(symtab, layout);
6052           this->make_brlt_section(layout);
6053
6054           if (parameters->options().toc_sort())
6055             {
6056               Output_section* os = this->got_->output_section();
6057               if (os != NULL && os->input_sections().size() > 1)
6058                 std::stable_sort(os->input_sections().begin(),
6059                                  os->input_sections().end(),
6060                                  Sort_toc_sections<big_endian>());
6061             }
6062         }
6063     }
6064
6065   // Fill in some more dynamic tags.
6066   Output_data_dynamic* odyn = layout->dynamic_data();
6067   if (odyn != NULL)
6068     {
6069       const Reloc_section* rel_plt = (this->plt_ == NULL
6070                                       ? NULL
6071                                       : this->plt_->rel_plt());
6072       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6073                                       this->rela_dyn_, true, size == 32);
6074
6075       if (size == 32)
6076         {
6077           if (this->got_ != NULL)
6078             {
6079               this->got_->finalize_data_size();
6080               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6081                                             this->got_, this->got_->g_o_t());
6082             }
6083         }
6084       else
6085         {
6086           if (this->glink_ != NULL)
6087             {
6088               this->glink_->finalize_data_size();
6089               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6090                                             this->glink_,
6091                                             (this->glink_->pltresolve_size
6092                                              - 32));
6093             }
6094         }
6095     }
6096
6097   // Emit any relocs we saved in an attempt to avoid generating COPY
6098   // relocs.
6099   if (this->copy_relocs_.any_saved_relocs())
6100     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6101 }
6102
6103 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6104 // reloc.
6105
6106 static bool
6107 ok_lo_toc_insn(uint32_t insn)
6108 {
6109   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6110           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6111           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6112           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6113           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6114           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6115           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6116           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6117           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6118           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6119           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6120           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6121           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6122           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6123           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6124               && (insn & 3) != 1)
6125           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6126               && ((insn & 3) == 0 || (insn & 3) == 3))
6127           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6128 }
6129
6130 // Return the value to use for a branch relocation.
6131
6132 template<int size, bool big_endian>
6133 typename Target_powerpc<size, big_endian>::Address
6134 Target_powerpc<size, big_endian>::symval_for_branch(
6135     const Symbol_table* symtab,
6136     Address value,
6137     const Sized_symbol<size>* gsym,
6138     Powerpc_relobj<size, big_endian>* object,
6139     unsigned int *dest_shndx)
6140 {
6141   *dest_shndx = 0;
6142   if (size == 32)
6143     return value;
6144
6145   // If the symbol is defined in an opd section, ie. is a function
6146   // descriptor, use the function descriptor code entry address
6147   Powerpc_relobj<size, big_endian>* symobj = object;
6148   if (gsym != NULL
6149       && gsym->source() != Symbol::FROM_OBJECT)
6150     return value;
6151   if (gsym != NULL)
6152     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6153   unsigned int shndx = symobj->opd_shndx();
6154   if (shndx == 0)
6155     return value;
6156   Address opd_addr = symobj->get_output_section_offset(shndx);
6157   gold_assert(opd_addr != invalid_address);
6158   opd_addr += symobj->output_section(shndx)->address();
6159   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6160     {
6161       Address sec_off;
6162       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6163       if (symtab->is_section_folded(symobj, *dest_shndx))
6164         {
6165           Section_id folded
6166             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6167           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6168           *dest_shndx = folded.second;
6169         }
6170       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6171       gold_assert(sec_addr != invalid_address);
6172       sec_addr += symobj->output_section(*dest_shndx)->address();
6173       value = sec_addr + sec_off;
6174     }
6175   return value;
6176 }
6177
6178 // Perform a relocation.
6179
6180 template<int size, bool big_endian>
6181 inline bool
6182 Target_powerpc<size, big_endian>::Relocate::relocate(
6183     const Relocate_info<size, big_endian>* relinfo,
6184     Target_powerpc* target,
6185     Output_section* os,
6186     size_t relnum,
6187     const elfcpp::Rela<size, big_endian>& rela,
6188     unsigned int r_type,
6189     const Sized_symbol<size>* gsym,
6190     const Symbol_value<size>* psymval,
6191     unsigned char* view,
6192     Address address,
6193     section_size_type view_size)
6194 {
6195   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6196     {
6197     case Track_tls::NOT_EXPECTED:
6198       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6199                              _("__tls_get_addr call lacks marker reloc"));
6200       break;
6201     case Track_tls::EXPECTED:
6202       // We have already complained.
6203       break;
6204     case Track_tls::SKIP:
6205       return true;
6206     case Track_tls::NORMAL:
6207       break;
6208     }
6209
6210   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6211   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6212   Powerpc_relobj<size, big_endian>* const object
6213     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6214   Address value = 0;
6215   bool has_plt_value = false;
6216   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6217   if ((gsym != NULL
6218        ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
6219        : object->local_has_plt_offset(r_sym))
6220       && (!psymval->is_ifunc_symbol()
6221           || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6222     {
6223       Stub_table<size, big_endian>* stub_table
6224         = object->stub_table(relinfo->data_shndx);
6225       if (stub_table == NULL)
6226         {
6227           // This is a ref from a data section to an ifunc symbol.
6228           if (target->stub_tables().size() != 0)
6229             stub_table = target->stub_tables()[0];
6230         }
6231       gold_assert(stub_table != NULL);
6232       Address off;
6233       if (gsym != NULL)
6234         off = stub_table->find_plt_call_entry(object, gsym, r_type,
6235                                               rela.get_r_addend());
6236       else
6237         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6238                                               rela.get_r_addend());
6239       gold_assert(off != invalid_address);
6240       value = stub_table->stub_address() + off;
6241       has_plt_value = true;
6242     }
6243
6244   if (r_type == elfcpp::R_POWERPC_GOT16
6245       || r_type == elfcpp::R_POWERPC_GOT16_LO
6246       || r_type == elfcpp::R_POWERPC_GOT16_HI
6247       || r_type == elfcpp::R_POWERPC_GOT16_HA
6248       || r_type == elfcpp::R_PPC64_GOT16_DS
6249       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6250     {
6251       if (gsym != NULL)
6252         {
6253           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6254           value = gsym->got_offset(GOT_TYPE_STANDARD);
6255         }
6256       else
6257         {
6258           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6259           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6260           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6261         }
6262       value -= target->got_section()->got_base_offset(object);
6263     }
6264   else if (r_type == elfcpp::R_PPC64_TOC)
6265     {
6266       value = (target->got_section()->output_section()->address()
6267                + object->toc_base_offset());
6268     }
6269   else if (gsym != NULL
6270            && (r_type == elfcpp::R_POWERPC_REL24
6271                || r_type == elfcpp::R_PPC_PLTREL24)
6272            && has_plt_value)
6273     {
6274       if (size == 64)
6275         {
6276           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6277           Valtype* wv = reinterpret_cast<Valtype*>(view);
6278           bool can_plt_call = false;
6279           if (rela.get_r_offset() + 8 <= view_size)
6280             {
6281               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6282               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6283               if ((insn & 1) != 0
6284                   && (insn2 == nop
6285                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6286                 {
6287                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
6288                   can_plt_call = true;
6289                 }
6290             }
6291           if (!can_plt_call)
6292             {
6293               // If we don't have a branch and link followed by a nop,
6294               // we can't go via the plt because there is no place to
6295               // put a toc restoring instruction.
6296               // Unless we know we won't be returning.
6297               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6298                 can_plt_call = true;
6299             }
6300           if (!can_plt_call)
6301             {
6302               // This is not an error in one special case: A self
6303               // call.  It isn't possible to cheaply verify we have
6304               // such a call so just check for a call to the same
6305               // section.
6306               bool ok = false;
6307               Address code = value;
6308               if (gsym->source() == Symbol::FROM_OBJECT
6309                   && gsym->object() == object)
6310                 {
6311                   Address addend = rela.get_r_addend();
6312                   unsigned int dest_shndx;
6313                   Address opdent = psymval->value(object, addend);
6314                   code = target->symval_for_branch(relinfo->symtab, opdent,
6315                                                    gsym, object, &dest_shndx);
6316                   bool is_ordinary;
6317                   if (dest_shndx == 0)
6318                     dest_shndx = gsym->shndx(&is_ordinary);
6319                   ok = dest_shndx == relinfo->data_shndx;
6320                 }
6321               if (!ok)
6322                 {
6323                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6324                                          _("call lacks nop, can't restore toc; "
6325                                            "recompile with -fPIC"));
6326                   value = code;
6327                 }
6328             }
6329         }
6330     }
6331   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6332            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6333            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6334            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6335     {
6336       // First instruction of a global dynamic sequence, arg setup insn.
6337       const bool final = gsym == NULL || gsym->final_value_is_known();
6338       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6339       enum Got_type got_type = GOT_TYPE_STANDARD;
6340       if (tls_type == tls::TLSOPT_NONE)
6341         got_type = GOT_TYPE_TLSGD;
6342       else if (tls_type == tls::TLSOPT_TO_IE)
6343         got_type = GOT_TYPE_TPREL;
6344       if (got_type != GOT_TYPE_STANDARD)
6345         {
6346           if (gsym != NULL)
6347             {
6348               gold_assert(gsym->has_got_offset(got_type));
6349               value = gsym->got_offset(got_type);
6350             }
6351           else
6352             {
6353               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6354               gold_assert(object->local_has_got_offset(r_sym, got_type));
6355               value = object->local_got_offset(r_sym, got_type);
6356             }
6357           value -= target->got_section()->got_base_offset(object);
6358         }
6359       if (tls_type == tls::TLSOPT_TO_IE)
6360         {
6361           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6362               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6363             {
6364               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6365               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6366               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6367               if (size == 32)
6368                 insn |= 32 << 26; // lwz
6369               else
6370                 insn |= 58 << 26; // ld
6371               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6372             }
6373           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6374                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6375         }
6376       else if (tls_type == tls::TLSOPT_TO_LE)
6377         {
6378           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6379               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6380             {
6381               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6382               Insn insn = addis_3_13;
6383               if (size == 32)
6384                 insn = addis_3_2;
6385               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6386               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6387               value = psymval->value(object, rela.get_r_addend());
6388             }
6389           else
6390             {
6391               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6392               Insn insn = nop;
6393               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6394               r_type = elfcpp::R_POWERPC_NONE;
6395             }
6396         }
6397     }
6398   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6399            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6400            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6401            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6402     {
6403       // First instruction of a local dynamic sequence, arg setup insn.
6404       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6405       if (tls_type == tls::TLSOPT_NONE)
6406         {
6407           value = target->tlsld_got_offset();
6408           value -= target->got_section()->got_base_offset(object);
6409         }
6410       else
6411         {
6412           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6413           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6414               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6415             {
6416               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6417               Insn insn = addis_3_13;
6418               if (size == 32)
6419                 insn = addis_3_2;
6420               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6421               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6422               value = dtp_offset;
6423             }
6424           else
6425             {
6426               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6427               Insn insn = nop;
6428               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6429               r_type = elfcpp::R_POWERPC_NONE;
6430             }
6431         }
6432     }
6433   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6434            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6435            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6436            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6437     {
6438       // Accesses relative to a local dynamic sequence address,
6439       // no optimisation here.
6440       if (gsym != NULL)
6441         {
6442           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6443           value = gsym->got_offset(GOT_TYPE_DTPREL);
6444         }
6445       else
6446         {
6447           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6448           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6449           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6450         }
6451       value -= target->got_section()->got_base_offset(object);
6452     }
6453   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6454            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6455            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6456            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6457     {
6458       // First instruction of initial exec sequence.
6459       const bool final = gsym == NULL || gsym->final_value_is_known();
6460       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6461       if (tls_type == tls::TLSOPT_NONE)
6462         {
6463           if (gsym != NULL)
6464             {
6465               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6466               value = gsym->got_offset(GOT_TYPE_TPREL);
6467             }
6468           else
6469             {
6470               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6471               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6472               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6473             }
6474           value -= target->got_section()->got_base_offset(object);
6475         }
6476       else
6477         {
6478           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6479           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6480               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6481             {
6482               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6483               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6484               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6485               if (size == 32)
6486                 insn |= addis_0_2;
6487               else
6488                 insn |= addis_0_13;
6489               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6490               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6491               value = psymval->value(object, rela.get_r_addend());
6492             }
6493           else
6494             {
6495               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6496               Insn insn = nop;
6497               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6498               r_type = elfcpp::R_POWERPC_NONE;
6499             }
6500         }
6501     }
6502   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6503            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6504     {
6505       // Second instruction of a global dynamic sequence,
6506       // the __tls_get_addr call
6507       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6508       const bool final = gsym == NULL || gsym->final_value_is_known();
6509       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6510       if (tls_type != tls::TLSOPT_NONE)
6511         {
6512           if (tls_type == tls::TLSOPT_TO_IE)
6513             {
6514               Insn* iview = reinterpret_cast<Insn*>(view);
6515               Insn insn = add_3_3_13;
6516               if (size == 32)
6517                 insn = add_3_3_2;
6518               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6519               r_type = elfcpp::R_POWERPC_NONE;
6520             }
6521           else
6522             {
6523               Insn* iview = reinterpret_cast<Insn*>(view);
6524               Insn insn = addi_3_3;
6525               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6526               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6527               view += 2 * big_endian;
6528               value = psymval->value(object, rela.get_r_addend());
6529             }
6530           this->skip_next_tls_get_addr_call();
6531         }
6532     }
6533   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6534            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6535     {
6536       // Second instruction of a local dynamic sequence,
6537       // the __tls_get_addr call
6538       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6539       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6540       if (tls_type == tls::TLSOPT_TO_LE)
6541         {
6542           Insn* iview = reinterpret_cast<Insn*>(view);
6543           Insn insn = addi_3_3;
6544           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6545           this->skip_next_tls_get_addr_call();
6546           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6547           view += 2 * big_endian;
6548           value = dtp_offset;
6549         }
6550     }
6551   else if (r_type == elfcpp::R_POWERPC_TLS)
6552     {
6553       // Second instruction of an initial exec sequence
6554       const bool final = gsym == NULL || gsym->final_value_is_known();
6555       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6556       if (tls_type == tls::TLSOPT_TO_LE)
6557         {
6558           Insn* iview = reinterpret_cast<Insn*>(view);
6559           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6560           unsigned int reg = size == 32 ? 2 : 13;
6561           insn = at_tls_transform(insn, reg);
6562           gold_assert(insn != 0);
6563           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6564           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6565           view += 2 * big_endian;
6566           value = psymval->value(object, rela.get_r_addend());
6567         }
6568     }
6569   else if (!has_plt_value)
6570     {
6571       Address addend = 0;
6572       unsigned int dest_shndx;
6573       if (r_type != elfcpp::R_PPC_PLTREL24)
6574         addend = rela.get_r_addend();
6575       value = psymval->value(object, addend);
6576       if (size == 64 && is_branch_reloc(r_type))
6577         value = target->symval_for_branch(relinfo->symtab, value,
6578                                           gsym, object, &dest_shndx);
6579       unsigned int max_branch_offset = 0;
6580       if (r_type == elfcpp::R_POWERPC_REL24
6581           || r_type == elfcpp::R_PPC_PLTREL24
6582           || r_type == elfcpp::R_PPC_LOCAL24PC)
6583         max_branch_offset = 1 << 25;
6584       else if (r_type == elfcpp::R_POWERPC_REL14
6585                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6586                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6587         max_branch_offset = 1 << 15;
6588       if (max_branch_offset != 0
6589           && value - address + max_branch_offset >= 2 * max_branch_offset)
6590         {
6591           Stub_table<size, big_endian>* stub_table
6592             = object->stub_table(relinfo->data_shndx);
6593           gold_assert(stub_table != NULL);
6594           Address off = stub_table->find_long_branch_entry(object, value);
6595           if (off != invalid_address)
6596             value = stub_table->stub_address() + stub_table->plt_size() + off;
6597         }
6598     }
6599
6600   switch (r_type)
6601     {
6602     case elfcpp::R_PPC64_REL64:
6603     case elfcpp::R_POWERPC_REL32:
6604     case elfcpp::R_POWERPC_REL24:
6605     case elfcpp::R_PPC_PLTREL24:
6606     case elfcpp::R_PPC_LOCAL24PC:
6607     case elfcpp::R_POWERPC_REL16:
6608     case elfcpp::R_POWERPC_REL16_LO:
6609     case elfcpp::R_POWERPC_REL16_HI:
6610     case elfcpp::R_POWERPC_REL16_HA:
6611     case elfcpp::R_POWERPC_REL14:
6612     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6613     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6614       value -= address;
6615       break;
6616
6617     case elfcpp::R_PPC64_TOC16:
6618     case elfcpp::R_PPC64_TOC16_LO:
6619     case elfcpp::R_PPC64_TOC16_HI:
6620     case elfcpp::R_PPC64_TOC16_HA:
6621     case elfcpp::R_PPC64_TOC16_DS:
6622     case elfcpp::R_PPC64_TOC16_LO_DS:
6623       // Subtract the TOC base address.
6624       value -= (target->got_section()->output_section()->address()
6625                 + object->toc_base_offset());
6626       break;
6627
6628     case elfcpp::R_POWERPC_SECTOFF:
6629     case elfcpp::R_POWERPC_SECTOFF_LO:
6630     case elfcpp::R_POWERPC_SECTOFF_HI:
6631     case elfcpp::R_POWERPC_SECTOFF_HA:
6632     case elfcpp::R_PPC64_SECTOFF_DS:
6633     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6634       if (os != NULL)
6635         value -= os->address();
6636       break;
6637
6638     case elfcpp::R_PPC64_TPREL16_DS:
6639     case elfcpp::R_PPC64_TPREL16_LO_DS:
6640       if (size != 64)
6641         // R_PPC_TLSGD and R_PPC_TLSLD
6642         break;
6643     case elfcpp::R_POWERPC_TPREL16:
6644     case elfcpp::R_POWERPC_TPREL16_LO:
6645     case elfcpp::R_POWERPC_TPREL16_HI:
6646     case elfcpp::R_POWERPC_TPREL16_HA:
6647     case elfcpp::R_POWERPC_TPREL:
6648     case elfcpp::R_PPC64_TPREL16_HIGHER:
6649     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6650     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6651     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6652       // tls symbol values are relative to tls_segment()->vaddr()
6653       value -= tp_offset;
6654       break;
6655
6656     case elfcpp::R_PPC64_DTPREL16_DS:
6657     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6658     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6659     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6660     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6661     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6662       if (size != 64)
6663         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6664         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6665         break;
6666     case elfcpp::R_POWERPC_DTPREL16:
6667     case elfcpp::R_POWERPC_DTPREL16_LO:
6668     case elfcpp::R_POWERPC_DTPREL16_HI:
6669     case elfcpp::R_POWERPC_DTPREL16_HA:
6670     case elfcpp::R_POWERPC_DTPREL:
6671       // tls symbol values are relative to tls_segment()->vaddr()
6672       value -= dtp_offset;
6673       break;
6674
6675     default:
6676       break;
6677     }
6678
6679   Insn branch_bit = 0;
6680   switch (r_type)
6681     {
6682     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6683     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6684       branch_bit = 1 << 21;
6685     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6686     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6687       {
6688         Insn* iview = reinterpret_cast<Insn*>(view);
6689         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6690         insn &= ~(1 << 21);
6691         insn |= branch_bit;
6692         if (this->is_isa_v2)
6693           {
6694             // Set 'a' bit.  This is 0b00010 in BO field for branch
6695             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6696             // for branch on CTR insns (BO == 1a00t or 1a01t).
6697             if ((insn & (0x14 << 21)) == (0x04 << 21))
6698               insn |= 0x02 << 21;
6699             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6700               insn |= 0x08 << 21;
6701             else
6702               break;
6703           }
6704         else
6705           {
6706             // Invert 'y' bit if not the default.
6707             if (static_cast<Signed_address>(value) < 0)
6708               insn ^= 1 << 21;
6709           }
6710         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6711       }
6712       break;
6713
6714     default:
6715       break;
6716     }
6717
6718   if (size == 64)
6719     {
6720       // Multi-instruction sequences that access the TOC can be
6721       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6722       // to             nop;           addi rb,r2,x;
6723       switch (r_type)
6724         {
6725         default:
6726           break;
6727
6728         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6729         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6730         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6731         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6732         case elfcpp::R_POWERPC_GOT16_HA:
6733         case elfcpp::R_PPC64_TOC16_HA:
6734           if (parameters->options().toc_optimize())
6735             {
6736               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6737               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6738               if ((insn & ((0x3f << 26) | 0x1f << 16))
6739                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6740                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6741                                        _("toc optimization is not supported "
6742                                          "for %#08x instruction"), insn);
6743               else if (value + 0x8000 < 0x10000)
6744                 {
6745                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6746                   return true;
6747                 }
6748             }
6749           break;
6750
6751         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6752         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6753         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6754         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6755         case elfcpp::R_POWERPC_GOT16_LO:
6756         case elfcpp::R_PPC64_GOT16_LO_DS:
6757         case elfcpp::R_PPC64_TOC16_LO:
6758         case elfcpp::R_PPC64_TOC16_LO_DS:
6759           if (parameters->options().toc_optimize())
6760             {
6761               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6762               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6763               if (!ok_lo_toc_insn(insn))
6764                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6765                                        _("toc optimization is not supported "
6766                                          "for %#08x instruction"), insn);
6767               else if (value + 0x8000 < 0x10000)
6768                 {
6769                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6770                     {
6771                       // Transform addic to addi when we change reg.
6772                       insn &= ~((0x3f << 26) | (0x1f << 16));
6773                       insn |= (14u << 26) | (2 << 16);
6774                     }
6775                   else
6776                     {
6777                       insn &= ~(0x1f << 16);
6778                       insn |= 2 << 16;
6779                     }
6780                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6781                 }
6782             }
6783           break;
6784         }
6785     }
6786
6787   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6788   switch (r_type)
6789     {
6790     case elfcpp::R_POWERPC_ADDR32:
6791     case elfcpp::R_POWERPC_UADDR32:
6792       if (size == 64)
6793         overflow = Reloc::CHECK_BITFIELD;
6794       break;
6795
6796     case elfcpp::R_POWERPC_REL32:
6797       if (size == 64)
6798         overflow = Reloc::CHECK_SIGNED;
6799       break;
6800
6801     case elfcpp::R_POWERPC_ADDR24:
6802     case elfcpp::R_POWERPC_ADDR16:
6803     case elfcpp::R_POWERPC_UADDR16:
6804     case elfcpp::R_PPC64_ADDR16_DS:
6805     case elfcpp::R_POWERPC_ADDR14:
6806     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6807     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6808       overflow = Reloc::CHECK_BITFIELD;
6809       break;
6810
6811     case elfcpp::R_POWERPC_REL24:
6812     case elfcpp::R_PPC_PLTREL24:
6813     case elfcpp::R_PPC_LOCAL24PC:
6814     case elfcpp::R_POWERPC_REL16:
6815     case elfcpp::R_PPC64_TOC16:
6816     case elfcpp::R_POWERPC_GOT16:
6817     case elfcpp::R_POWERPC_SECTOFF:
6818     case elfcpp::R_POWERPC_TPREL16:
6819     case elfcpp::R_POWERPC_DTPREL16:
6820     case elfcpp::R_PPC64_TPREL16_DS:
6821     case elfcpp::R_PPC64_DTPREL16_DS:
6822     case elfcpp::R_PPC64_TOC16_DS:
6823     case elfcpp::R_PPC64_GOT16_DS:
6824     case elfcpp::R_PPC64_SECTOFF_DS:
6825     case elfcpp::R_POWERPC_REL14:
6826     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6827     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6828     case elfcpp::R_POWERPC_GOT_TLSGD16:
6829     case elfcpp::R_POWERPC_GOT_TLSLD16:
6830     case elfcpp::R_POWERPC_GOT_TPREL16:
6831     case elfcpp::R_POWERPC_GOT_DTPREL16:
6832       overflow = Reloc::CHECK_SIGNED;
6833       break;
6834     }
6835
6836   typename Powerpc_relocate_functions<size, big_endian>::Status status
6837     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6838   switch (r_type)
6839     {
6840     case elfcpp::R_POWERPC_NONE:
6841     case elfcpp::R_POWERPC_TLS:
6842     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6843     case elfcpp::R_POWERPC_GNU_VTENTRY:
6844     case elfcpp::R_PPC_EMB_MRKREF:
6845       break;
6846
6847     case elfcpp::R_PPC64_ADDR64:
6848     case elfcpp::R_PPC64_REL64:
6849     case elfcpp::R_PPC64_TOC:
6850       Reloc::addr64(view, value);
6851       break;
6852
6853     case elfcpp::R_POWERPC_TPREL:
6854     case elfcpp::R_POWERPC_DTPREL:
6855       if (size == 64)
6856         Reloc::addr64(view, value);
6857       else
6858         status = Reloc::addr32(view, value, overflow);
6859       break;
6860
6861     case elfcpp::R_PPC64_UADDR64:
6862       Reloc::addr64_u(view, value);
6863       break;
6864
6865     case elfcpp::R_POWERPC_ADDR32:
6866       status = Reloc::addr32(view, value, overflow);
6867       break;
6868
6869     case elfcpp::R_POWERPC_REL32:
6870     case elfcpp::R_POWERPC_UADDR32:
6871       status = Reloc::addr32_u(view, value, overflow);
6872       break;
6873
6874     case elfcpp::R_POWERPC_ADDR24:
6875     case elfcpp::R_POWERPC_REL24:
6876     case elfcpp::R_PPC_PLTREL24:
6877     case elfcpp::R_PPC_LOCAL24PC:
6878       status = Reloc::addr24(view, value, overflow);
6879       break;
6880
6881     case elfcpp::R_POWERPC_GOT_DTPREL16:
6882     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6883       if (size == 64)
6884         {
6885           status = Reloc::addr16_ds(view, value, overflow);
6886           break;
6887         }
6888     case elfcpp::R_POWERPC_ADDR16:
6889     case elfcpp::R_POWERPC_REL16:
6890     case elfcpp::R_PPC64_TOC16:
6891     case elfcpp::R_POWERPC_GOT16:
6892     case elfcpp::R_POWERPC_SECTOFF:
6893     case elfcpp::R_POWERPC_TPREL16:
6894     case elfcpp::R_POWERPC_DTPREL16:
6895     case elfcpp::R_POWERPC_GOT_TLSGD16:
6896     case elfcpp::R_POWERPC_GOT_TLSLD16:
6897     case elfcpp::R_POWERPC_GOT_TPREL16:
6898     case elfcpp::R_POWERPC_ADDR16_LO:
6899     case elfcpp::R_POWERPC_REL16_LO:
6900     case elfcpp::R_PPC64_TOC16_LO:
6901     case elfcpp::R_POWERPC_GOT16_LO:
6902     case elfcpp::R_POWERPC_SECTOFF_LO:
6903     case elfcpp::R_POWERPC_TPREL16_LO:
6904     case elfcpp::R_POWERPC_DTPREL16_LO:
6905     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6906     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6907     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6908       status = Reloc::addr16(view, value, overflow);
6909       break;
6910
6911     case elfcpp::R_POWERPC_UADDR16:
6912       status = Reloc::addr16_u(view, value, overflow);
6913       break;
6914
6915     case elfcpp::R_POWERPC_ADDR16_HI:
6916     case elfcpp::R_POWERPC_REL16_HI:
6917     case elfcpp::R_PPC64_TOC16_HI:
6918     case elfcpp::R_POWERPC_GOT16_HI:
6919     case elfcpp::R_POWERPC_SECTOFF_HI:
6920     case elfcpp::R_POWERPC_TPREL16_HI:
6921     case elfcpp::R_POWERPC_DTPREL16_HI:
6922     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6923     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6924     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6925     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6926       Reloc::addr16_hi(view, value);
6927       break;
6928
6929     case elfcpp::R_POWERPC_ADDR16_HA:
6930     case elfcpp::R_POWERPC_REL16_HA:
6931     case elfcpp::R_PPC64_TOC16_HA:
6932     case elfcpp::R_POWERPC_GOT16_HA:
6933     case elfcpp::R_POWERPC_SECTOFF_HA:
6934     case elfcpp::R_POWERPC_TPREL16_HA:
6935     case elfcpp::R_POWERPC_DTPREL16_HA:
6936     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6937     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6938     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6939     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6940       Reloc::addr16_ha(view, value);
6941       break;
6942
6943     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6944       if (size == 32)
6945         // R_PPC_EMB_NADDR16_LO
6946         goto unsupp;
6947     case elfcpp::R_PPC64_ADDR16_HIGHER:
6948     case elfcpp::R_PPC64_TPREL16_HIGHER:
6949       Reloc::addr16_hi2(view, value);
6950       break;
6951
6952     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6953       if (size == 32)
6954         // R_PPC_EMB_NADDR16_HI
6955         goto unsupp;
6956     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6957     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6958       Reloc::addr16_ha2(view, value);
6959       break;
6960
6961     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6962       if (size == 32)
6963         // R_PPC_EMB_NADDR16_HA
6964         goto unsupp;
6965     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6966     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6967       Reloc::addr16_hi3(view, value);
6968       break;
6969
6970     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6971       if (size == 32)
6972         // R_PPC_EMB_SDAI16
6973         goto unsupp;
6974     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6975     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6976       Reloc::addr16_ha3(view, value);
6977       break;
6978
6979     case elfcpp::R_PPC64_DTPREL16_DS:
6980     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6981       if (size == 32)
6982         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
6983         goto unsupp;
6984     case elfcpp::R_PPC64_TPREL16_DS:
6985     case elfcpp::R_PPC64_TPREL16_LO_DS:
6986       if (size == 32)
6987         // R_PPC_TLSGD, R_PPC_TLSLD
6988         break;
6989     case elfcpp::R_PPC64_ADDR16_DS:
6990     case elfcpp::R_PPC64_ADDR16_LO_DS:
6991     case elfcpp::R_PPC64_TOC16_DS:
6992     case elfcpp::R_PPC64_TOC16_LO_DS:
6993     case elfcpp::R_PPC64_GOT16_DS:
6994     case elfcpp::R_PPC64_GOT16_LO_DS:
6995     case elfcpp::R_PPC64_SECTOFF_DS:
6996     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6997       status = Reloc::addr16_ds(view, value, overflow);
6998       break;
6999
7000     case elfcpp::R_POWERPC_ADDR14:
7001     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7002     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7003     case elfcpp::R_POWERPC_REL14:
7004     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7005     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7006       status = Reloc::addr14(view, value, overflow);
7007       break;
7008
7009     case elfcpp::R_POWERPC_COPY:
7010     case elfcpp::R_POWERPC_GLOB_DAT:
7011     case elfcpp::R_POWERPC_JMP_SLOT:
7012     case elfcpp::R_POWERPC_RELATIVE:
7013     case elfcpp::R_POWERPC_DTPMOD:
7014     case elfcpp::R_PPC64_JMP_IREL:
7015     case elfcpp::R_POWERPC_IRELATIVE:
7016       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7017                              _("unexpected reloc %u in object file"),
7018                              r_type);
7019       break;
7020
7021     case elfcpp::R_PPC_EMB_SDA21:
7022       if (size == 32)
7023         goto unsupp;
7024       else
7025         {
7026           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7027         }
7028       break;
7029
7030     case elfcpp::R_PPC_EMB_SDA2I16:
7031     case elfcpp::R_PPC_EMB_SDA2REL:
7032       if (size == 32)
7033         goto unsupp;
7034       // R_PPC64_TLSGD, R_PPC64_TLSLD
7035       break;
7036
7037     case elfcpp::R_POWERPC_PLT32:
7038     case elfcpp::R_POWERPC_PLTREL32:
7039     case elfcpp::R_POWERPC_PLT16_LO:
7040     case elfcpp::R_POWERPC_PLT16_HI:
7041     case elfcpp::R_POWERPC_PLT16_HA:
7042     case elfcpp::R_PPC_SDAREL16:
7043     case elfcpp::R_POWERPC_ADDR30:
7044     case elfcpp::R_PPC64_PLT64:
7045     case elfcpp::R_PPC64_PLTREL64:
7046     case elfcpp::R_PPC64_PLTGOT16:
7047     case elfcpp::R_PPC64_PLTGOT16_LO:
7048     case elfcpp::R_PPC64_PLTGOT16_HI:
7049     case elfcpp::R_PPC64_PLTGOT16_HA:
7050     case elfcpp::R_PPC64_PLT16_LO_DS:
7051     case elfcpp::R_PPC64_PLTGOT16_DS:
7052     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7053     case elfcpp::R_PPC_EMB_RELSEC16:
7054     case elfcpp::R_PPC_EMB_RELST_LO:
7055     case elfcpp::R_PPC_EMB_RELST_HI:
7056     case elfcpp::R_PPC_EMB_RELST_HA:
7057     case elfcpp::R_PPC_EMB_BIT_FLD:
7058     case elfcpp::R_PPC_EMB_RELSDA:
7059     case elfcpp::R_PPC_TOC16:
7060     default:
7061     unsupp:
7062       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7063                              _("unsupported reloc %u"),
7064                              r_type);
7065       break;
7066     }
7067   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7068     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7069                            _("relocation overflow"));
7070
7071   return true;
7072 }
7073
7074 // Relocate section data.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Target_powerpc<size, big_endian>::relocate_section(
7079     const Relocate_info<size, big_endian>* relinfo,
7080     unsigned int sh_type,
7081     const unsigned char* prelocs,
7082     size_t reloc_count,
7083     Output_section* output_section,
7084     bool needs_special_offset_handling,
7085     unsigned char* view,
7086     Address address,
7087     section_size_type view_size,
7088     const Reloc_symbol_changes* reloc_symbol_changes)
7089 {
7090   typedef Target_powerpc<size, big_endian> Powerpc;
7091   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7092   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7093     Powerpc_comdat_behavior;
7094
7095   gold_assert(sh_type == elfcpp::SHT_RELA);
7096
7097   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7098                          Powerpc_relocate, Powerpc_comdat_behavior>(
7099     relinfo,
7100     this,
7101     prelocs,
7102     reloc_count,
7103     output_section,
7104     needs_special_offset_handling,
7105     view,
7106     address,
7107     view_size,
7108     reloc_symbol_changes);
7109 }
7110
7111 class Powerpc_scan_relocatable_reloc
7112 {
7113 public:
7114   // Return the strategy to use for a local symbol which is not a
7115   // section symbol, given the relocation type.
7116   inline Relocatable_relocs::Reloc_strategy
7117   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7118   {
7119     if (r_type == 0 && r_sym == 0)
7120       return Relocatable_relocs::RELOC_DISCARD;
7121     return Relocatable_relocs::RELOC_COPY;
7122   }
7123
7124   // Return the strategy to use for a local symbol which is a section
7125   // symbol, given the relocation type.
7126   inline Relocatable_relocs::Reloc_strategy
7127   local_section_strategy(unsigned int, Relobj*)
7128   {
7129     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7130   }
7131
7132   // Return the strategy to use for a global symbol, given the
7133   // relocation type, the object, and the symbol index.
7134   inline Relocatable_relocs::Reloc_strategy
7135   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7136   {
7137     if (r_type == elfcpp::R_PPC_PLTREL24)
7138       return Relocatable_relocs::RELOC_SPECIAL;
7139     return Relocatable_relocs::RELOC_COPY;
7140   }
7141 };
7142
7143 // Scan the relocs during a relocatable link.
7144
7145 template<int size, bool big_endian>
7146 void
7147 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7148     Symbol_table* symtab,
7149     Layout* layout,
7150     Sized_relobj_file<size, big_endian>* object,
7151     unsigned int data_shndx,
7152     unsigned int sh_type,
7153     const unsigned char* prelocs,
7154     size_t reloc_count,
7155     Output_section* output_section,
7156     bool needs_special_offset_handling,
7157     size_t local_symbol_count,
7158     const unsigned char* plocal_symbols,
7159     Relocatable_relocs* rr)
7160 {
7161   gold_assert(sh_type == elfcpp::SHT_RELA);
7162
7163   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7164                                 Powerpc_scan_relocatable_reloc>(
7165     symtab,
7166     layout,
7167     object,
7168     data_shndx,
7169     prelocs,
7170     reloc_count,
7171     output_section,
7172     needs_special_offset_handling,
7173     local_symbol_count,
7174     plocal_symbols,
7175     rr);
7176 }
7177
7178 // Emit relocations for a section.
7179 // This is a modified version of the function by the same name in
7180 // target-reloc.h.  Using relocate_special_relocatable for
7181 // R_PPC_PLTREL24 would require duplication of the entire body of the
7182 // loop, so we may as well duplicate the whole thing.
7183
7184 template<int size, bool big_endian>
7185 void
7186 Target_powerpc<size, big_endian>::relocate_relocs(
7187     const Relocate_info<size, big_endian>* relinfo,
7188     unsigned int sh_type,
7189     const unsigned char* prelocs,
7190     size_t reloc_count,
7191     Output_section* output_section,
7192     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7193     const Relocatable_relocs* rr,
7194     unsigned char*,
7195     Address view_address,
7196     section_size_type,
7197     unsigned char* reloc_view,
7198     section_size_type reloc_view_size)
7199 {
7200   gold_assert(sh_type == elfcpp::SHT_RELA);
7201
7202   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7203     Reltype;
7204   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7205     Reltype_write;
7206   const int reloc_size
7207     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7208
7209   Powerpc_relobj<size, big_endian>* const object
7210     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7211   const unsigned int local_count = object->local_symbol_count();
7212   unsigned int got2_shndx = object->got2_shndx();
7213   Address got2_addend = 0;
7214   if (got2_shndx != 0)
7215     {
7216       got2_addend = object->get_output_section_offset(got2_shndx);
7217       gold_assert(got2_addend != invalid_address);
7218     }
7219
7220   unsigned char* pwrite = reloc_view;
7221   bool zap_next = false;
7222   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7223     {
7224       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7225       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7226         continue;
7227
7228       Reltype reloc(prelocs);
7229       Reltype_write reloc_write(pwrite);
7230
7231       Address offset = reloc.get_r_offset();
7232       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7233       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7234       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7235       const unsigned int orig_r_sym = r_sym;
7236       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7237         = reloc.get_r_addend();
7238       const Symbol* gsym = NULL;
7239
7240       if (zap_next)
7241         {
7242           // We could arrange to discard these and other relocs for
7243           // tls optimised sequences in the strategy methods, but for
7244           // now do as BFD ld does.
7245           r_type = elfcpp::R_POWERPC_NONE;
7246           zap_next = false;
7247         }
7248
7249       // Get the new symbol index.
7250       if (r_sym < local_count)
7251         {
7252           switch (strategy)
7253             {
7254             case Relocatable_relocs::RELOC_COPY:
7255             case Relocatable_relocs::RELOC_SPECIAL:
7256               if (r_sym != 0)
7257                 {
7258                   r_sym = object->symtab_index(r_sym);
7259                   gold_assert(r_sym != -1U);
7260                 }
7261               break;
7262
7263             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7264               {
7265                 // We are adjusting a section symbol.  We need to find
7266                 // the symbol table index of the section symbol for
7267                 // the output section corresponding to input section
7268                 // in which this symbol is defined.
7269                 gold_assert(r_sym < local_count);
7270                 bool is_ordinary;
7271                 unsigned int shndx =
7272                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7273                 gold_assert(is_ordinary);
7274                 Output_section* os = object->output_section(shndx);
7275                 gold_assert(os != NULL);
7276                 gold_assert(os->needs_symtab_index());
7277                 r_sym = os->symtab_index();
7278               }
7279               break;
7280
7281             default:
7282               gold_unreachable();
7283             }
7284         }
7285       else
7286         {
7287           gsym = object->global_symbol(r_sym);
7288           gold_assert(gsym != NULL);
7289           if (gsym->is_forwarder())
7290             gsym = relinfo->symtab->resolve_forwards(gsym);
7291
7292           gold_assert(gsym->has_symtab_index());
7293           r_sym = gsym->symtab_index();
7294         }
7295
7296       // Get the new offset--the location in the output section where
7297       // this relocation should be applied.
7298       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7299         offset += offset_in_output_section;
7300       else
7301         {
7302           section_offset_type sot_offset =
7303             convert_types<section_offset_type, Address>(offset);
7304           section_offset_type new_sot_offset =
7305             output_section->output_offset(object, relinfo->data_shndx,
7306                                           sot_offset);
7307           gold_assert(new_sot_offset != -1);
7308           offset = new_sot_offset;
7309         }
7310
7311       // In an object file, r_offset is an offset within the section.
7312       // In an executable or dynamic object, generated by
7313       // --emit-relocs, r_offset is an absolute address.
7314       if (!parameters->options().relocatable())
7315         {
7316           offset += view_address;
7317           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7318             offset -= offset_in_output_section;
7319         }
7320
7321       // Handle the reloc addend based on the strategy.
7322       if (strategy == Relocatable_relocs::RELOC_COPY)
7323         ;
7324       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7325         {
7326           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7327           addend = psymval->value(object, addend);
7328         }
7329       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7330         {
7331           if (addend >= 32768)
7332             addend += got2_addend;
7333         }
7334       else
7335         gold_unreachable();
7336
7337       if (!parameters->options().relocatable())
7338         {
7339           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7340               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7341               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7342               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7343             {
7344               // First instruction of a global dynamic sequence,
7345               // arg setup insn.
7346               const bool final = gsym == NULL || gsym->final_value_is_known();
7347               switch (this->optimize_tls_gd(final))
7348                 {
7349                 case tls::TLSOPT_TO_IE:
7350                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7351                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7352                   break;
7353                 case tls::TLSOPT_TO_LE:
7354                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7355                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7356                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7357                   else
7358                     {
7359                       r_type = elfcpp::R_POWERPC_NONE;
7360                       offset -= 2 * big_endian;
7361                     }
7362                   break;
7363                 default:
7364                   break;
7365                 }
7366             }
7367           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7368                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7369                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7370                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7371             {
7372               // First instruction of a local dynamic sequence,
7373               // arg setup insn.
7374               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7375                 {
7376                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7377                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7378                     {
7379                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7380                       const Output_section* os = relinfo->layout->tls_segment()
7381                         ->first_section();
7382                       gold_assert(os != NULL);
7383                       gold_assert(os->needs_symtab_index());
7384                       r_sym = os->symtab_index();
7385                       addend = dtp_offset;
7386                     }
7387                   else
7388                     {
7389                       r_type = elfcpp::R_POWERPC_NONE;
7390                       offset -= 2 * big_endian;
7391                     }
7392                 }
7393             }
7394           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7395                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7396                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7397                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7398             {
7399               // First instruction of initial exec sequence.
7400               const bool final = gsym == NULL || gsym->final_value_is_known();
7401               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7402                 {
7403                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7404                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7405                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7406                   else
7407                     {
7408                       r_type = elfcpp::R_POWERPC_NONE;
7409                       offset -= 2 * big_endian;
7410                     }
7411                 }
7412             }
7413           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7414                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7415             {
7416               // Second instruction of a global dynamic sequence,
7417               // the __tls_get_addr call
7418               const bool final = gsym == NULL || gsym->final_value_is_known();
7419               switch (this->optimize_tls_gd(final))
7420                 {
7421                 case tls::TLSOPT_TO_IE:
7422                   r_type = elfcpp::R_POWERPC_NONE;
7423                   zap_next = true;
7424                   break;
7425                 case tls::TLSOPT_TO_LE:
7426                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7427                   offset += 2 * big_endian;
7428                   zap_next = true;
7429                   break;
7430                 default:
7431                   break;
7432                 }
7433             }
7434           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7435                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7436             {
7437               // Second instruction of a local dynamic sequence,
7438               // the __tls_get_addr call
7439               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7440                 {
7441                   const Output_section* os = relinfo->layout->tls_segment()
7442                     ->first_section();
7443                   gold_assert(os != NULL);
7444                   gold_assert(os->needs_symtab_index());
7445                   r_sym = os->symtab_index();
7446                   addend = dtp_offset;
7447                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7448                   offset += 2 * big_endian;
7449                   zap_next = true;
7450                 }
7451             }
7452           else if (r_type == elfcpp::R_POWERPC_TLS)
7453             {
7454               // Second instruction of an initial exec sequence
7455               const bool final = gsym == NULL || gsym->final_value_is_known();
7456               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7457                 {
7458                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7459                   offset += 2 * big_endian;
7460                 }
7461             }
7462         }
7463
7464       reloc_write.put_r_offset(offset);
7465       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7466       reloc_write.put_r_addend(addend);
7467
7468       pwrite += reloc_size;
7469     }
7470
7471   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7472               == reloc_view_size);
7473 }
7474
7475 // Return the value to use for a dynamic symbol which requires special
7476 // treatment.  This is how we support equality comparisons of function
7477 // pointers across shared library boundaries, as described in the
7478 // processor specific ABI supplement.
7479
7480 template<int size, bool big_endian>
7481 uint64_t
7482 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7483 {
7484   if (size == 32)
7485     {
7486       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7487       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7488            p != this->stub_tables_.end();
7489            ++p)
7490         {
7491           Address off = (*p)->find_plt_call_entry(gsym);
7492           if (off != invalid_address)
7493             return (*p)->stub_address() + off;
7494         }
7495     }
7496   gold_unreachable();
7497 }
7498
7499 // Return the PLT address to use for a local symbol.
7500 template<int size, bool big_endian>
7501 uint64_t
7502 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7503     const Relobj* object,
7504     unsigned int symndx) const
7505 {
7506   if (size == 32)
7507     {
7508       const Sized_relobj<size, big_endian>* relobj
7509         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7510       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7511            p != this->stub_tables_.end();
7512            ++p)
7513         {
7514           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7515                                                   symndx);
7516           if (off != invalid_address)
7517             return (*p)->stub_address() + off;
7518         }
7519     }
7520   gold_unreachable();
7521 }
7522
7523 // Return the PLT address to use for a global symbol.
7524 template<int size, bool big_endian>
7525 uint64_t
7526 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7527     const Symbol* gsym) const
7528 {
7529   if (size == 32)
7530     {
7531       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7532            p != this->stub_tables_.end();
7533            ++p)
7534         {
7535           Address off = (*p)->find_plt_call_entry(gsym);
7536           if (off != invalid_address)
7537             return (*p)->stub_address() + off;
7538         }
7539     }
7540   gold_unreachable();
7541 }
7542
7543 // Return the offset to use for the GOT_INDX'th got entry which is
7544 // for a local tls symbol specified by OBJECT, SYMNDX.
7545 template<int size, bool big_endian>
7546 int64_t
7547 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7548     const Relobj* object,
7549     unsigned int symndx,
7550     unsigned int got_indx) const
7551 {
7552   const Powerpc_relobj<size, big_endian>* ppc_object
7553     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7554   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7555     {
7556       for (Got_type got_type = GOT_TYPE_TLSGD;
7557            got_type <= GOT_TYPE_TPREL;
7558            got_type = Got_type(got_type + 1))
7559         if (ppc_object->local_has_got_offset(symndx, got_type))
7560           {
7561             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7562             if (got_type == GOT_TYPE_TLSGD)
7563               off += size / 8;
7564             if (off == got_indx * (size / 8))
7565               {
7566                 if (got_type == GOT_TYPE_TPREL)
7567                   return -tp_offset;
7568                 else
7569                   return -dtp_offset;
7570               }
7571           }
7572     }
7573   gold_unreachable();
7574 }
7575
7576 // Return the offset to use for the GOT_INDX'th got entry which is
7577 // for global tls symbol GSYM.
7578 template<int size, bool big_endian>
7579 int64_t
7580 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7581     Symbol* gsym,
7582     unsigned int got_indx) const
7583 {
7584   if (gsym->type() == elfcpp::STT_TLS)
7585     {
7586       for (Got_type got_type = GOT_TYPE_TLSGD;
7587            got_type <= GOT_TYPE_TPREL;
7588            got_type = Got_type(got_type + 1))
7589         if (gsym->has_got_offset(got_type))
7590           {
7591             unsigned int off = gsym->got_offset(got_type);
7592             if (got_type == GOT_TYPE_TLSGD)
7593               off += size / 8;
7594             if (off == got_indx * (size / 8))
7595               {
7596                 if (got_type == GOT_TYPE_TPREL)
7597                   return -tp_offset;
7598                 else
7599                   return -dtp_offset;
7600               }
7601           }
7602     }
7603   gold_unreachable();
7604 }
7605
7606 // The selector for powerpc object files.
7607
7608 template<int size, bool big_endian>
7609 class Target_selector_powerpc : public Target_selector
7610 {
7611 public:
7612   Target_selector_powerpc()
7613     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7614                       size, big_endian,
7615                       (size == 64
7616                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7617                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7618                       (size == 64
7619                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7620                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7621   { }
7622
7623   virtual Target*
7624   do_instantiate_target()
7625   { return new Target_powerpc<size, big_endian>(); }
7626 };
7627
7628 Target_selector_powerpc<32, true> target_selector_ppc32;
7629 Target_selector_powerpc<32, false> target_selector_ppc32le;
7630 Target_selector_powerpc<64, true> target_selector_ppc64;
7631 Target_selector_powerpc<64, false> target_selector_ppc64le;
7632
7633 // Instantiate these constants for -O0
7634 template<int size, bool big_endian>
7635 const int Output_data_glink<size, big_endian>::pltresolve_size;
7636 template<int size, bool big_endian>
7637 const typename Stub_table<size, big_endian>::Address
7638   Stub_table<size, big_endian>::invalid_address;
7639 template<int size, bool big_endian>
7640 const typename Target_powerpc<size, big_endian>::Address
7641   Target_powerpc<size, big_endian>::invalid_address;
7642
7643 } // End anonymous namespace.