Fix "overflow in PLT unwind data" warning
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* ,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         return false;
962       // For 32-bit, conservatively assume anything but calls to
963       // function code might be taking the address of the function.
964       return !is_branch_reloc(r_type);
965     }
966
967     inline bool
968     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969                                          Target_powerpc* ,
970                                          Sized_relobj_file<size, big_endian>* ,
971                                          unsigned int ,
972                                          Output_section* ,
973                                          const elfcpp::Rela<size, big_endian>& ,
974                                          unsigned int r_type,
975                                          Symbol*)
976     {
977       // As above.
978       if (size == 64)
979         return false;
980       return !is_branch_reloc(r_type);
981     }
982
983     static bool
984     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
985                               Sized_relobj_file<size, big_endian>* object,
986                               unsigned int r_type, bool report_err);
987
988   private:
989     static void
990     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
991                             unsigned int r_type);
992
993     static void
994     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
995                              unsigned int r_type, Symbol*);
996
997     static void
998     generate_tls_call(Symbol_table* symtab, Layout* layout,
999                       Target_powerpc* target);
1000
1001     void
1002     check_non_pic(Relobj*, unsigned int r_type);
1003
1004     // Whether we have issued an error about a non-PIC compilation.
1005     bool issued_non_pic_error_;
1006   };
1007
1008   Address
1009   symval_for_branch(const Symbol_table* symtab, Address value,
1010                     const Sized_symbol<size>* gsym,
1011                     Powerpc_relobj<size, big_endian>* object,
1012                     unsigned int *dest_shndx);
1013
1014   // The class which implements relocation.
1015   class Relocate : protected Track_tls
1016   {
1017    public:
1018     // Use 'at' branch hints when true, 'y' when false.
1019     // FIXME maybe: set this with an option.
1020     static const bool is_isa_v2 = true;
1021
1022     Relocate()
1023       : Track_tls()
1024     { }
1025
1026     // Do a relocation.  Return false if the caller should not issue
1027     // any warnings about this relocation.
1028     inline bool
1029     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1030              Output_section*, size_t relnum,
1031              const elfcpp::Rela<size, big_endian>&,
1032              unsigned int r_type, const Sized_symbol<size>*,
1033              const Symbol_value<size>*,
1034              unsigned char*,
1035              typename elfcpp::Elf_types<size>::Elf_Addr,
1036              section_size_type);
1037   };
1038
1039   class Relocate_comdat_behavior
1040   {
1041    public:
1042     // Decide what the linker should do for relocations that refer to
1043     // discarded comdat sections.
1044     inline Comdat_behavior
1045     get(const char* name)
1046     {
1047       gold::Default_comdat_behavior default_behavior;
1048       Comdat_behavior ret = default_behavior.get(name);
1049       if (ret == CB_WARNING)
1050         {
1051           if (size == 32
1052               && (strcmp(name, ".fixup") == 0
1053                   || strcmp(name, ".got2") == 0))
1054             ret = CB_IGNORE;
1055           if (size == 64
1056               && (strcmp(name, ".opd") == 0
1057                   || strcmp(name, ".toc") == 0
1058                   || strcmp(name, ".toc1") == 0))
1059             ret = CB_IGNORE;
1060         }
1061       return ret;
1062     }
1063   };
1064
1065   // A class which returns the size required for a relocation type,
1066   // used while scanning relocs during a relocatable link.
1067   class Relocatable_size_for_reloc
1068   {
1069    public:
1070     unsigned int
1071     get_size_for_reloc(unsigned int, Relobj*)
1072     {
1073       gold_unreachable();
1074       return 0;
1075     }
1076   };
1077
1078   // Optimize the TLS relocation type based on what we know about the
1079   // symbol.  IS_FINAL is true if the final address of this symbol is
1080   // known at link time.
1081
1082   tls::Tls_optimization
1083   optimize_tls_gd(bool is_final)
1084   {
1085     // If we are generating a shared library, then we can't do anything
1086     // in the linker.
1087     if (parameters->options().shared())
1088       return tls::TLSOPT_NONE;
1089
1090     if (!is_final)
1091       return tls::TLSOPT_TO_IE;
1092     return tls::TLSOPT_TO_LE;
1093   }
1094
1095   tls::Tls_optimization
1096   optimize_tls_ld()
1097   {
1098     if (parameters->options().shared())
1099       return tls::TLSOPT_NONE;
1100
1101     return tls::TLSOPT_TO_LE;
1102   }
1103
1104   tls::Tls_optimization
1105   optimize_tls_ie(bool is_final)
1106   {
1107     if (!is_final || parameters->options().shared())
1108       return tls::TLSOPT_NONE;
1109
1110     return tls::TLSOPT_TO_LE;
1111   }
1112
1113   // Create glink.
1114   void
1115   make_glink_section(Layout*);
1116
1117   // Create the PLT section.
1118   void
1119   make_plt_section(Symbol_table*, Layout*);
1120
1121   void
1122   make_iplt_section(Symbol_table*, Layout*);
1123
1124   void
1125   make_brlt_section(Layout*);
1126
1127   // Create a PLT entry for a global symbol.
1128   void
1129   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1130
1131   // Create a PLT entry for a local IFUNC symbol.
1132   void
1133   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1134                              Sized_relobj_file<size, big_endian>*,
1135                              unsigned int);
1136
1137
1138   // Create a GOT entry for local dynamic __tls_get_addr.
1139   unsigned int
1140   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1141                    Sized_relobj_file<size, big_endian>* object);
1142
1143   unsigned int
1144   tlsld_got_offset() const
1145   {
1146     return this->tlsld_got_offset_;
1147   }
1148
1149   // Get the dynamic reloc section, creating it if necessary.
1150   Reloc_section*
1151   rela_dyn_section(Layout*);
1152
1153   // Similarly, but for ifunc symbols get the one for ifunc.
1154   Reloc_section*
1155   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1156
1157   // Copy a relocation against a global symbol.
1158   void
1159   copy_reloc(Symbol_table* symtab, Layout* layout,
1160              Sized_relobj_file<size, big_endian>* object,
1161              unsigned int shndx, Output_section* output_section,
1162              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1163   {
1164     this->copy_relocs_.copy_reloc(symtab, layout,
1165                                   symtab->get_sized_symbol<size>(sym),
1166                                   object, shndx, output_section,
1167                                   reloc, this->rela_dyn_section(layout));
1168   }
1169
1170   // Look over all the input sections, deciding where to place stubs.
1171   void
1172   group_sections(Layout*, const Task*);
1173
1174   // Sort output sections by address.
1175   struct Sort_sections
1176   {
1177     bool
1178     operator()(const Output_section* sec1, const Output_section* sec2)
1179     { return sec1->address() < sec2->address(); }
1180   };
1181
1182   class Branch_info
1183   {
1184    public:
1185     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1186                 unsigned int data_shndx,
1187                 Address r_offset,
1188                 unsigned int r_type,
1189                 unsigned int r_sym,
1190                 Address addend)
1191       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1192         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1193     { }
1194
1195     ~Branch_info()
1196     { }
1197
1198     // If this branch needs a plt call stub, or a long branch stub, make one.
1199     void
1200     make_stub(Stub_table<size, big_endian>*,
1201               Stub_table<size, big_endian>*,
1202               Symbol_table*) const;
1203
1204    private:
1205     // The branch location..
1206     Powerpc_relobj<size, big_endian>* object_;
1207     unsigned int shndx_;
1208     Address offset_;
1209     // ..and the branch type and destination.
1210     unsigned int r_type_;
1211     unsigned int r_sym_;
1212     Address addend_;
1213   };
1214
1215   // Information about this specific target which we pass to the
1216   // general Target structure.
1217   static Target::Target_info powerpc_info;
1218
1219   // The types of GOT entries needed for this platform.
1220   // These values are exposed to the ABI in an incremental link.
1221   // Do not renumber existing values without changing the version
1222   // number of the .gnu_incremental_inputs section.
1223   enum Got_type
1224   {
1225     GOT_TYPE_STANDARD,
1226     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1227     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1228     GOT_TYPE_TPREL      // entry for @got@tprel
1229   };
1230
1231   // The GOT section.
1232   Output_data_got_powerpc<size, big_endian>* got_;
1233   // The PLT section.  This is a container for a table of addresses,
1234   // and their relocations.  Each address in the PLT has a dynamic
1235   // relocation (R_*_JMP_SLOT) and each address will have a
1236   // corresponding entry in .glink for lazy resolution of the PLT.
1237   // ppc32 initialises the PLT to point at the .glink entry, while
1238   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1239   // linker adds a stub that loads the PLT entry into ctr then
1240   // branches to ctr.  There may be more than one stub for each PLT
1241   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1242   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1243   Output_data_plt_powerpc<size, big_endian>* plt_;
1244   // The IPLT section.  Like plt_, this is a container for a table of
1245   // addresses and their relocations, specifically for STT_GNU_IFUNC
1246   // functions that resolve locally (STT_GNU_IFUNC functions that
1247   // don't resolve locally go in PLT).  Unlike plt_, these have no
1248   // entry in .glink for lazy resolution, and the relocation section
1249   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1250   // the relocation section may contain relocations against
1251   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1252   // relocation section will appear at the end of other dynamic
1253   // relocations, so that ld.so applies these relocations after other
1254   // dynamic relocations.  In a static executable, the relocation
1255   // section is emitted and marked with __rela_iplt_start and
1256   // __rela_iplt_end symbols.
1257   Output_data_plt_powerpc<size, big_endian>* iplt_;
1258   // Section holding long branch destinations.
1259   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1260   // The .glink section.
1261   Output_data_glink<size, big_endian>* glink_;
1262   // The dynamic reloc section.
1263   Reloc_section* rela_dyn_;
1264   // Relocs saved to avoid a COPY reloc.
1265   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1266   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1267   unsigned int tlsld_got_offset_;
1268
1269   Stub_tables stub_tables_;
1270   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1271   Branch_lookup_table branch_lookup_table_;
1272
1273   typedef std::vector<Branch_info> Branches;
1274   Branches branch_info_;
1275
1276   bool plt_thread_safe_;
1277 };
1278
1279 template<>
1280 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1281 {
1282   32,                   // size
1283   true,                 // is_big_endian
1284   elfcpp::EM_PPC,       // machine_code
1285   false,                // has_make_symbol
1286   false,                // has_resolve
1287   false,                // has_code_fill
1288   true,                 // is_default_stack_executable
1289   false,                // can_icf_inline_merge_sections
1290   '\0',                 // wrap_char
1291   "/usr/lib/ld.so.1",   // dynamic_linker
1292   0x10000000,           // default_text_segment_address
1293   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1294   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1295   false,                // isolate_execinstr
1296   0,                    // rosegment_gap
1297   elfcpp::SHN_UNDEF,    // small_common_shndx
1298   elfcpp::SHN_UNDEF,    // large_common_shndx
1299   0,                    // small_common_section_flags
1300   0,                    // large_common_section_flags
1301   NULL,                 // attributes_section
1302   NULL,                 // attributes_vendor
1303   "_start"              // entry_symbol_name
1304 };
1305
1306 template<>
1307 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1308 {
1309   32,                   // size
1310   false,                // is_big_endian
1311   elfcpp::EM_PPC,       // machine_code
1312   false,                // has_make_symbol
1313   false,                // has_resolve
1314   false,                // has_code_fill
1315   true,                 // is_default_stack_executable
1316   false,                // can_icf_inline_merge_sections
1317   '\0',                 // wrap_char
1318   "/usr/lib/ld.so.1",   // dynamic_linker
1319   0x10000000,           // default_text_segment_address
1320   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1321   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1322   false,                // isolate_execinstr
1323   0,                    // rosegment_gap
1324   elfcpp::SHN_UNDEF,    // small_common_shndx
1325   elfcpp::SHN_UNDEF,    // large_common_shndx
1326   0,                    // small_common_section_flags
1327   0,                    // large_common_section_flags
1328   NULL,                 // attributes_section
1329   NULL,                 // attributes_vendor
1330   "_start"              // entry_symbol_name
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1335 {
1336   64,                   // size
1337   true,                 // is_big_endian
1338   elfcpp::EM_PPC64,     // machine_code
1339   false,                // has_make_symbol
1340   false,                // has_resolve
1341   false,                // has_code_fill
1342   true,                 // is_default_stack_executable
1343   false,                // can_icf_inline_merge_sections
1344   '\0',                 // wrap_char
1345   "/usr/lib/ld.so.1",   // dynamic_linker
1346   0x10000000,           // default_text_segment_address
1347   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1348   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1349   false,                // isolate_execinstr
1350   0,                    // rosegment_gap
1351   elfcpp::SHN_UNDEF,    // small_common_shndx
1352   elfcpp::SHN_UNDEF,    // large_common_shndx
1353   0,                    // small_common_section_flags
1354   0,                    // large_common_section_flags
1355   NULL,                 // attributes_section
1356   NULL,                 // attributes_vendor
1357   "_start"              // entry_symbol_name
1358 };
1359
1360 template<>
1361 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1362 {
1363   64,                   // size
1364   false,                // is_big_endian
1365   elfcpp::EM_PPC64,     // machine_code
1366   false,                // has_make_symbol
1367   false,                // has_resolve
1368   false,                // has_code_fill
1369   true,                 // is_default_stack_executable
1370   false,                // can_icf_inline_merge_sections
1371   '\0',                 // wrap_char
1372   "/usr/lib/ld.so.1",   // dynamic_linker
1373   0x10000000,           // default_text_segment_address
1374   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1375   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1376   false,                // isolate_execinstr
1377   0,                    // rosegment_gap
1378   elfcpp::SHN_UNDEF,    // small_common_shndx
1379   elfcpp::SHN_UNDEF,    // large_common_shndx
1380   0,                    // small_common_section_flags
1381   0,                    // large_common_section_flags
1382   NULL,                 // attributes_section
1383   NULL,                 // attributes_vendor
1384   "_start"              // entry_symbol_name
1385 };
1386
1387 inline bool
1388 is_branch_reloc(unsigned int r_type)
1389 {
1390   return (r_type == elfcpp::R_POWERPC_REL24
1391           || r_type == elfcpp::R_PPC_PLTREL24
1392           || r_type == elfcpp::R_PPC_LOCAL24PC
1393           || r_type == elfcpp::R_POWERPC_REL14
1394           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1395           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1396           || r_type == elfcpp::R_POWERPC_ADDR24
1397           || r_type == elfcpp::R_POWERPC_ADDR14
1398           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1399           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1400 }
1401
1402 // If INSN is an opcode that may be used with an @tls operand, return
1403 // the transformed insn for TLS optimisation, otherwise return 0.  If
1404 // REG is non-zero only match an insn with RB or RA equal to REG.
1405 uint32_t
1406 at_tls_transform(uint32_t insn, unsigned int reg)
1407 {
1408   if ((insn & (0x3f << 26)) != 31 << 26)
1409     return 0;
1410
1411   unsigned int rtra;
1412   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1413     rtra = insn & ((1 << 26) - (1 << 16));
1414   else if (((insn >> 16) & 0x1f) == reg)
1415     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1416   else
1417     return 0;
1418
1419   if ((insn & (0x3ff << 1)) == 266 << 1)
1420     // add -> addi
1421     insn = 14 << 26;
1422   else if ((insn & (0x1f << 1)) == 23 << 1
1423            && ((insn & (0x1f << 6)) < 14 << 6
1424                || ((insn & (0x1f << 6)) >= 16 << 6
1425                    && (insn & (0x1f << 6)) < 24 << 6)))
1426     // load and store indexed -> dform
1427     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1428   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1429     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1430     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1431   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1432     // lwax -> lwa
1433     insn = (58 << 26) | 2;
1434   else
1435     return 0;
1436   insn |= rtra;
1437   return insn;
1438 }
1439
1440
1441 template<int size, bool big_endian>
1442 class Powerpc_relocate_functions
1443 {
1444 public:
1445   enum Overflow_check
1446   {
1447     CHECK_NONE,
1448     CHECK_SIGNED,
1449     CHECK_UNSIGNED,
1450     CHECK_BITFIELD,
1451     CHECK_LOW_INSN,
1452     CHECK_HIGH_INSN
1453   };
1454
1455   enum Status
1456   {
1457     STATUS_OK,
1458     STATUS_OVERFLOW
1459   };
1460
1461 private:
1462   typedef Powerpc_relocate_functions<size, big_endian> This;
1463   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1464
1465   template<int valsize>
1466   static inline bool
1467   has_overflow_signed(Address value)
1468   {
1469     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1470     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1471     limit <<= ((valsize - 1) >> 1);
1472     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1473     return value + limit > (limit << 1) - 1;
1474   }
1475
1476   template<int valsize>
1477   static inline bool
1478   has_overflow_unsigned(Address value)
1479   {
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_bitfield(Address value)
1489   {
1490     return (has_overflow_unsigned<valsize>(value)
1491             && has_overflow_signed<valsize>(value));
1492   }
1493
1494   template<int valsize>
1495   static inline Status
1496   overflowed(Address value, Overflow_check overflow)
1497   {
1498     if (overflow == CHECK_SIGNED)
1499       {
1500         if (has_overflow_signed<valsize>(value))
1501           return STATUS_OVERFLOW;
1502       }
1503     else if (overflow == CHECK_UNSIGNED)
1504       {
1505         if (has_overflow_unsigned<valsize>(value))
1506           return STATUS_OVERFLOW;
1507       }
1508     else if (overflow == CHECK_BITFIELD)
1509       {
1510         if (has_overflow_bitfield<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     return STATUS_OK;
1514   }
1515
1516   // Do a simple RELA relocation
1517   template<int valsize>
1518   static inline Status
1519   rela(unsigned char* view, Address value, Overflow_check overflow)
1520   {
1521     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1522     Valtype* wv = reinterpret_cast<Valtype*>(view);
1523     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1524     return overflowed<valsize>(value, overflow);
1525   }
1526
1527   template<int valsize>
1528   static inline Status
1529   rela(unsigned char* view,
1530        unsigned int right_shift,
1531        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1532        Address value,
1533        Overflow_check overflow)
1534   {
1535     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1536     Valtype* wv = reinterpret_cast<Valtype*>(view);
1537     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1538     Valtype reloc = value >> right_shift;
1539     val &= ~dst_mask;
1540     reloc &= dst_mask;
1541     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1542     return overflowed<valsize>(value >> right_shift, overflow);
1543   }
1544
1545   // Do a simple RELA relocation, unaligned.
1546   template<int valsize>
1547   static inline Status
1548   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1549   {
1550     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1551     return overflowed<valsize>(value, overflow);
1552   }
1553
1554   template<int valsize>
1555   static inline Status
1556   rela_ua(unsigned char* view,
1557           unsigned int right_shift,
1558           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1559           Address value,
1560           Overflow_check overflow)
1561   {
1562     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1563       Valtype;
1564     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1565     Valtype reloc = value >> right_shift;
1566     val &= ~dst_mask;
1567     reloc &= dst_mask;
1568     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1569     return overflowed<valsize>(value >> right_shift, overflow);
1570   }
1571
1572 public:
1573   // R_PPC64_ADDR64: (Symbol + Addend)
1574   static inline void
1575   addr64(unsigned char* view, Address value)
1576   { This::template rela<64>(view, value, CHECK_NONE); }
1577
1578   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1579   static inline void
1580   addr64_u(unsigned char* view, Address value)
1581   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1582
1583   // R_POWERPC_ADDR32: (Symbol + Addend)
1584   static inline Status
1585   addr32(unsigned char* view, Address value, Overflow_check overflow)
1586   { return This::template rela<32>(view, value, overflow); }
1587
1588   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1589   static inline Status
1590   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1591   { return This::template rela_ua<32>(view, value, overflow); }
1592
1593   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1594   static inline Status
1595   addr24(unsigned char* view, Address value, Overflow_check overflow)
1596   {
1597     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1598     if (overflow != CHECK_NONE && (value & 3) != 0)
1599       stat = STATUS_OVERFLOW;
1600     return stat;
1601   }
1602
1603   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1604   static inline Status
1605   addr16(unsigned char* view, Address value, Overflow_check overflow)
1606   { return This::template rela<16>(view, value, overflow); }
1607
1608   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1609   static inline Status
1610   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1611   { return This::template rela_ua<16>(view, value, overflow); }
1612
1613   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1614   static inline Status
1615   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1616   {
1617     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1618     if (overflow != CHECK_NONE && (value & 3) != 0)
1619       stat = STATUS_OVERFLOW;
1620     return stat;
1621   }
1622
1623   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1624   static inline void
1625   addr16_hi(unsigned char* view, Address value)
1626   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1627
1628   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1629   static inline void
1630   addr16_ha(unsigned char* view, Address value)
1631   { This::addr16_hi(view, value + 0x8000); }
1632
1633   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1634   static inline void
1635   addr16_hi2(unsigned char* view, Address value)
1636   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1637
1638   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1639   static inline void
1640   addr16_ha2(unsigned char* view, Address value)
1641   { This::addr16_hi2(view, value + 0x8000); }
1642
1643   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1644   static inline void
1645   addr16_hi3(unsigned char* view, Address value)
1646   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1647
1648   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1649   static inline void
1650   addr16_ha3(unsigned char* view, Address value)
1651   { This::addr16_hi3(view, value + 0x8000); }
1652
1653   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1654   static inline Status
1655   addr14(unsigned char* view, Address value, Overflow_check overflow)
1656   {
1657     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1658     if (overflow != CHECK_NONE && (value & 3) != 0)
1659       stat = STATUS_OVERFLOW;
1660     return stat;
1661   }
1662 };
1663
1664 // Set ABI version for input and output.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1669 {
1670   this->e_flags_ |= ver;
1671   if (this->abiversion() != 0)
1672     {
1673       Target_powerpc<size, big_endian>* target =
1674         static_cast<Target_powerpc<size, big_endian>*>(
1675            parameters->sized_target<size, big_endian>());
1676       if (target->abiversion() == 0)
1677         target->set_abiversion(this->abiversion());
1678       else if (target->abiversion() != this->abiversion())
1679         gold_error(_("%s: ABI version %d is not compatible "
1680                      "with ABI version %d output"),
1681                    this->name().c_str(),
1682                    this->abiversion(), target->abiversion());
1683
1684     }
1685 }
1686
1687 // Stash away the index of .got2 or .opd in a relocatable object, if
1688 // such a section exists.
1689
1690 template<int size, bool big_endian>
1691 bool
1692 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1693     Read_symbols_data* sd)
1694 {
1695   const unsigned char* const pshdrs = sd->section_headers->data();
1696   const unsigned char* namesu = sd->section_names->data();
1697   const char* names = reinterpret_cast<const char*>(namesu);
1698   section_size_type names_size = sd->section_names_size;
1699   const unsigned char* s;
1700
1701   s = this->template find_shdr<size, big_endian>(pshdrs,
1702                                                  size == 32 ? ".got2" : ".opd",
1703                                                  names, names_size, NULL);
1704   if (s != NULL)
1705     {
1706       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1707       this->special_ = ndx;
1708       if (size == 64)
1709         {
1710           if (this->abiversion() == 0)
1711             this->set_abiversion(1);
1712           else if (this->abiversion() > 1)
1713             gold_error(_("%s: .opd invalid in abiv%d"),
1714                        this->name().c_str(), this->abiversion());
1715         }
1716     }
1717   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1718 }
1719
1720 // Examine .rela.opd to build info about function entry points.
1721
1722 template<int size, bool big_endian>
1723 void
1724 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1725     size_t reloc_count,
1726     const unsigned char* prelocs,
1727     const unsigned char* plocal_syms)
1728 {
1729   if (size == 64)
1730     {
1731       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1732         Reltype;
1733       const int reloc_size
1734         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1735       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1736       Address expected_off = 0;
1737       bool regular = true;
1738       unsigned int opd_ent_size = 0;
1739
1740       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1741         {
1742           Reltype reloc(prelocs);
1743           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1744             = reloc.get_r_info();
1745           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1746           if (r_type == elfcpp::R_PPC64_ADDR64)
1747             {
1748               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1749               typename elfcpp::Elf_types<size>::Elf_Addr value;
1750               bool is_ordinary;
1751               unsigned int shndx;
1752               if (r_sym < this->local_symbol_count())
1753                 {
1754                   typename elfcpp::Sym<size, big_endian>
1755                     lsym(plocal_syms + r_sym * sym_size);
1756                   shndx = lsym.get_st_shndx();
1757                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1758                   value = lsym.get_st_value();
1759                 }
1760               else
1761                 shndx = this->symbol_section_and_value(r_sym, &value,
1762                                                        &is_ordinary);
1763               this->set_opd_ent(reloc.get_r_offset(), shndx,
1764                                 value + reloc.get_r_addend());
1765               if (i == 2)
1766                 {
1767                   expected_off = reloc.get_r_offset();
1768                   opd_ent_size = expected_off;
1769                 }
1770               else if (expected_off != reloc.get_r_offset())
1771                 regular = false;
1772               expected_off += opd_ent_size;
1773             }
1774           else if (r_type == elfcpp::R_PPC64_TOC)
1775             {
1776               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1777                 regular = false;
1778             }
1779           else
1780             {
1781               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1782                            this->name().c_str(), r_type);
1783               regular = false;
1784             }
1785         }
1786       if (reloc_count <= 2)
1787         opd_ent_size = this->section_size(this->opd_shndx());
1788       if (opd_ent_size != 24 && opd_ent_size != 16)
1789         regular = false;
1790       if (!regular)
1791         {
1792           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1793                        this->name().c_str());
1794           opd_ent_size = 0;
1795         }
1796     }
1797 }
1798
1799 template<int size, bool big_endian>
1800 void
1801 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1802 {
1803   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1804   if (size == 64)
1805     {
1806       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1807            p != rd->relocs.end();
1808            ++p)
1809         {
1810           if (p->data_shndx == this->opd_shndx())
1811             {
1812               uint64_t opd_size = this->section_size(this->opd_shndx());
1813               gold_assert(opd_size == static_cast<size_t>(opd_size));
1814               if (opd_size != 0)
1815                 {
1816                   this->init_opd(opd_size);
1817                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1818                                         rd->local_symbols->data());
1819                 }
1820               break;
1821             }
1822         }
1823     }
1824 }
1825
1826 // Read the symbols then set up st_other vector.
1827
1828 template<int size, bool big_endian>
1829 void
1830 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1831 {
1832   Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1833   if (size == 64)
1834     {
1835       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1836       const unsigned char* const pshdrs = sd->section_headers->data();
1837       const unsigned int loccount = this->do_local_symbol_count();
1838       if (loccount != 0)
1839         {
1840           this->st_other_.resize(loccount);
1841           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1842           off_t locsize = loccount * sym_size;
1843           const unsigned int symtab_shndx = this->symtab_shndx();
1844           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1845           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1846           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1847                                                       locsize, true, false);
1848           psyms += sym_size;
1849           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1850             {
1851               elfcpp::Sym<size, big_endian> sym(psyms);
1852               unsigned char st_other = sym.get_st_other();
1853               this->st_other_[i] = st_other;
1854               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1855                 {
1856                   if (this->abiversion() == 0)
1857                     this->set_abiversion(2);
1858                   else if (this->abiversion() < 2)
1859                     gold_error(_("%s: local symbol %d has invalid st_other"
1860                                  " for ABI version 1"),
1861                                this->name().c_str(), i);
1862                 }
1863             }
1864         }
1865     }
1866 }
1867
1868 template<int size, bool big_endian>
1869 void
1870 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1871 {
1872   this->e_flags_ |= ver;
1873   if (this->abiversion() != 0)
1874     {
1875       Target_powerpc<size, big_endian>* target =
1876         static_cast<Target_powerpc<size, big_endian>*>(
1877           parameters->sized_target<size, big_endian>());
1878       if (target->abiversion() == 0)
1879         target->set_abiversion(this->abiversion());
1880       else if (target->abiversion() != this->abiversion())
1881         gold_error(_("%s: ABI version %d is not compatible "
1882                      "with ABI version %d output"),
1883                    this->name().c_str(),
1884                    this->abiversion(), target->abiversion());
1885
1886     }
1887 }
1888
1889 // Call Sized_dynobj::do_read_symbols to read the symbols then
1890 // read .opd from a dynamic object, filling in opd_ent_ vector,
1891
1892 template<int size, bool big_endian>
1893 void
1894 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1895 {
1896   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1897   if (size == 64)
1898     {
1899       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1900       const unsigned char* const pshdrs = sd->section_headers->data();
1901       const unsigned char* namesu = sd->section_names->data();
1902       const char* names = reinterpret_cast<const char*>(namesu);
1903       const unsigned char* s = NULL;
1904       const unsigned char* opd;
1905       section_size_type opd_size;
1906
1907       // Find and read .opd section.
1908       while (1)
1909         {
1910           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1911                                                          sd->section_names_size,
1912                                                          s);
1913           if (s == NULL)
1914             return;
1915
1916           typename elfcpp::Shdr<size, big_endian> shdr(s);
1917           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1918               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1919             {
1920               if (this->abiversion() == 0)
1921                 this->set_abiversion(1);
1922               else if (this->abiversion() > 1)
1923                 gold_error(_("%s: .opd invalid in abiv%d"),
1924                            this->name().c_str(), this->abiversion());
1925
1926               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1927               this->opd_address_ = shdr.get_sh_addr();
1928               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1929               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1930                                    true, false);
1931               break;
1932             }
1933         }
1934
1935       // Build set of executable sections.
1936       // Using a set is probably overkill.  There is likely to be only
1937       // a few executable sections, typically .init, .text and .fini,
1938       // and they are generally grouped together.
1939       typedef std::set<Sec_info> Exec_sections;
1940       Exec_sections exec_sections;
1941       s = pshdrs;
1942       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1943         {
1944           typename elfcpp::Shdr<size, big_endian> shdr(s);
1945           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1946               && ((shdr.get_sh_flags()
1947                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1948                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1949               && shdr.get_sh_size() != 0)
1950             {
1951               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1952                                             shdr.get_sh_size(), i));
1953             }
1954         }
1955       if (exec_sections.empty())
1956         return;
1957
1958       // Look over the OPD entries.  This is complicated by the fact
1959       // that some binaries will use two-word entries while others
1960       // will use the standard three-word entries.  In most cases
1961       // the third word (the environment pointer for languages like
1962       // Pascal) is unused and will be zero.  If the third word is
1963       // used it should not be pointing into executable sections,
1964       // I think.
1965       this->init_opd(opd_size);
1966       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1967         {
1968           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1969           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1970           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1971           if (val == 0)
1972             // Chances are that this is the third word of an OPD entry.
1973             continue;
1974           typename Exec_sections::const_iterator e
1975             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1976           if (e != exec_sections.begin())
1977             {
1978               --e;
1979               if (e->start <= val && val < e->start + e->len)
1980                 {
1981                   // We have an address in an executable section.
1982                   // VAL ought to be the function entry, set it up.
1983                   this->set_opd_ent(p - opd, e->shndx, val);
1984                   // Skip second word of OPD entry, the TOC pointer.
1985                   p += 8;
1986                 }
1987             }
1988           // If we didn't match any executable sections, we likely
1989           // have a non-zero third word in the OPD entry.
1990         }
1991     }
1992 }
1993
1994 // Set up some symbols.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1999     Symbol_table* symtab,
2000     Layout* layout)
2001 {
2002   if (size == 32)
2003     {
2004       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2005       // undefined when scanning relocs (and thus requires
2006       // non-relative dynamic relocs).  The proper value will be
2007       // updated later.
2008       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2009       if (gotsym != NULL && gotsym->is_undefined())
2010         {
2011           Target_powerpc<size, big_endian>* target =
2012             static_cast<Target_powerpc<size, big_endian>*>(
2013                 parameters->sized_target<size, big_endian>());
2014           Output_data_got_powerpc<size, big_endian>* got
2015             = target->got_section(symtab, layout);
2016           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2017                                         Symbol_table::PREDEFINED,
2018                                         got, 0, 0,
2019                                         elfcpp::STT_OBJECT,
2020                                         elfcpp::STB_LOCAL,
2021                                         elfcpp::STV_HIDDEN, 0,
2022                                         false, false);
2023         }
2024
2025       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2026       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2027       if (sdasym != NULL && sdasym->is_undefined())
2028         {
2029           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2030           Output_section* os
2031             = layout->add_output_section_data(".sdata", 0,
2032                                               elfcpp::SHF_ALLOC
2033                                               | elfcpp::SHF_WRITE,
2034                                               sdata, ORDER_SMALL_DATA, false);
2035           symtab->define_in_output_data("_SDA_BASE_", NULL,
2036                                         Symbol_table::PREDEFINED,
2037                                         os, 32768, 0, elfcpp::STT_OBJECT,
2038                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2039                                         0, false, false);
2040         }
2041     }
2042   else
2043     {
2044       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2045       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2046       if (gotsym != NULL && gotsym->is_undefined())
2047         {
2048           Target_powerpc<size, big_endian>* target =
2049             static_cast<Target_powerpc<size, big_endian>*>(
2050                 parameters->sized_target<size, big_endian>());
2051           Output_data_got_powerpc<size, big_endian>* got
2052             = target->got_section(symtab, layout);
2053           symtab->define_in_output_data(".TOC.", NULL,
2054                                         Symbol_table::PREDEFINED,
2055                                         got, 0x8000, 0,
2056                                         elfcpp::STT_OBJECT,
2057                                         elfcpp::STB_LOCAL,
2058                                         elfcpp::STV_HIDDEN, 0,
2059                                         false, false);
2060         }
2061     }
2062 }
2063
2064 // Set up PowerPC target specific relobj.
2065
2066 template<int size, bool big_endian>
2067 Object*
2068 Target_powerpc<size, big_endian>::do_make_elf_object(
2069     const std::string& name,
2070     Input_file* input_file,
2071     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2072 {
2073   int et = ehdr.get_e_type();
2074   // ET_EXEC files are valid input for --just-symbols/-R,
2075   // and we treat them as relocatable objects.
2076   if (et == elfcpp::ET_REL
2077       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2078     {
2079       Powerpc_relobj<size, big_endian>* obj =
2080         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2081       obj->setup();
2082       return obj;
2083     }
2084   else if (et == elfcpp::ET_DYN)
2085     {
2086       Powerpc_dynobj<size, big_endian>* obj =
2087         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2088       obj->setup();
2089       return obj;
2090     }
2091   else
2092     {
2093       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2094       return NULL;
2095     }
2096 }
2097
2098 template<int size, bool big_endian>
2099 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2100 {
2101 public:
2102   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2103   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2104
2105   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2106     : Output_data_got<size, big_endian>(),
2107       symtab_(symtab), layout_(layout),
2108       header_ent_cnt_(size == 32 ? 3 : 1),
2109       header_index_(size == 32 ? 0x2000 : 0)
2110   { }
2111
2112   // Override all the Output_data_got methods we use so as to first call
2113   // reserve_ent().
2114   bool
2115   add_global(Symbol* gsym, unsigned int got_type)
2116   {
2117     this->reserve_ent();
2118     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2119   }
2120
2121   bool
2122   add_global_plt(Symbol* gsym, unsigned int got_type)
2123   {
2124     this->reserve_ent();
2125     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2126   }
2127
2128   bool
2129   add_global_tls(Symbol* gsym, unsigned int got_type)
2130   { return this->add_global_plt(gsym, got_type); }
2131
2132   void
2133   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2134                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2135   {
2136     this->reserve_ent();
2137     Output_data_got<size, big_endian>::
2138       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2139   }
2140
2141   void
2142   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2143                            Output_data_reloc_generic* rel_dyn,
2144                            unsigned int r_type_1, unsigned int r_type_2)
2145   {
2146     this->reserve_ent(2);
2147     Output_data_got<size, big_endian>::
2148       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2149   }
2150
2151   bool
2152   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2153   {
2154     this->reserve_ent();
2155     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2156                                                         got_type);
2157   }
2158
2159   bool
2160   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2161   {
2162     this->reserve_ent();
2163     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2164                                                             got_type);
2165   }
2166
2167   bool
2168   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2169   { return this->add_local_plt(object, sym_index, got_type); }
2170
2171   void
2172   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2173                      unsigned int got_type,
2174                      Output_data_reloc_generic* rel_dyn,
2175                      unsigned int r_type)
2176   {
2177     this->reserve_ent(2);
2178     Output_data_got<size, big_endian>::
2179       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2180   }
2181
2182   unsigned int
2183   add_constant(Valtype constant)
2184   {
2185     this->reserve_ent();
2186     return Output_data_got<size, big_endian>::add_constant(constant);
2187   }
2188
2189   unsigned int
2190   add_constant_pair(Valtype c1, Valtype c2)
2191   {
2192     this->reserve_ent(2);
2193     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2194   }
2195
2196   // Offset of _GLOBAL_OFFSET_TABLE_.
2197   unsigned int
2198   g_o_t() const
2199   {
2200     return this->got_offset(this->header_index_);
2201   }
2202
2203   // Offset of base used to access the GOT/TOC.
2204   // The got/toc pointer reg will be set to this value.
2205   Valtype
2206   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2207   {
2208     if (size == 32)
2209       return this->g_o_t();
2210     else
2211       return (this->output_section()->address()
2212               + object->toc_base_offset()
2213               - this->address());
2214   }
2215
2216   // Ensure our GOT has a header.
2217   void
2218   set_final_data_size()
2219   {
2220     if (this->header_ent_cnt_ != 0)
2221       this->make_header();
2222     Output_data_got<size, big_endian>::set_final_data_size();
2223   }
2224
2225   // First word of GOT header needs some values that are not
2226   // handled by Output_data_got so poke them in here.
2227   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2228   void
2229   do_write(Output_file* of)
2230   {
2231     Valtype val = 0;
2232     if (size == 32 && this->layout_->dynamic_data() != NULL)
2233       val = this->layout_->dynamic_section()->address();
2234     if (size == 64)
2235       val = this->output_section()->address() + 0x8000;
2236     this->replace_constant(this->header_index_, val);
2237     Output_data_got<size, big_endian>::do_write(of);
2238   }
2239
2240 private:
2241   void
2242   reserve_ent(unsigned int cnt = 1)
2243   {
2244     if (this->header_ent_cnt_ == 0)
2245       return;
2246     if (this->num_entries() + cnt > this->header_index_)
2247       this->make_header();
2248   }
2249
2250   void
2251   make_header()
2252   {
2253     this->header_ent_cnt_ = 0;
2254     this->header_index_ = this->num_entries();
2255     if (size == 32)
2256       {
2257         Output_data_got<size, big_endian>::add_constant(0);
2258         Output_data_got<size, big_endian>::add_constant(0);
2259         Output_data_got<size, big_endian>::add_constant(0);
2260
2261         // Define _GLOBAL_OFFSET_TABLE_ at the header
2262         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2263         if (gotsym != NULL)
2264           {
2265             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2266             sym->set_value(this->g_o_t());
2267           }
2268         else
2269           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2270                                                Symbol_table::PREDEFINED,
2271                                                this, this->g_o_t(), 0,
2272                                                elfcpp::STT_OBJECT,
2273                                                elfcpp::STB_LOCAL,
2274                                                elfcpp::STV_HIDDEN, 0,
2275                                                false, false);
2276       }
2277     else
2278       Output_data_got<size, big_endian>::add_constant(0);
2279   }
2280
2281   // Stashed pointers.
2282   Symbol_table* symtab_;
2283   Layout* layout_;
2284
2285   // GOT header size.
2286   unsigned int header_ent_cnt_;
2287   // GOT header index.
2288   unsigned int header_index_;
2289 };
2290
2291 // Get the GOT section, creating it if necessary.
2292
2293 template<int size, bool big_endian>
2294 Output_data_got_powerpc<size, big_endian>*
2295 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2296                                               Layout* layout)
2297 {
2298   if (this->got_ == NULL)
2299     {
2300       gold_assert(symtab != NULL && layout != NULL);
2301
2302       this->got_
2303         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2304
2305       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2306                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2307                                       this->got_, ORDER_DATA, false);
2308     }
2309
2310   return this->got_;
2311 }
2312
2313 // Get the dynamic reloc section, creating it if necessary.
2314
2315 template<int size, bool big_endian>
2316 typename Target_powerpc<size, big_endian>::Reloc_section*
2317 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2318 {
2319   if (this->rela_dyn_ == NULL)
2320     {
2321       gold_assert(layout != NULL);
2322       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2323       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2324                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2325                                       ORDER_DYNAMIC_RELOCS, false);
2326     }
2327   return this->rela_dyn_;
2328 }
2329
2330 // Similarly, but for ifunc symbols get the one for ifunc.
2331
2332 template<int size, bool big_endian>
2333 typename Target_powerpc<size, big_endian>::Reloc_section*
2334 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2335                                                    Layout* layout,
2336                                                    bool for_ifunc)
2337 {
2338   if (!for_ifunc)
2339     return this->rela_dyn_section(layout);
2340
2341   if (this->iplt_ == NULL)
2342     this->make_iplt_section(symtab, layout);
2343   return this->iplt_->rel_plt();
2344 }
2345
2346 class Stub_control
2347 {
2348  public:
2349   // Determine the stub group size.  The group size is the absolute
2350   // value of the parameter --stub-group-size.  If --stub-group-size
2351   // is passed a negative value, we restrict stubs to be always before
2352   // the stubbed branches.
2353   Stub_control(int32_t size)
2354     : state_(NO_GROUP), stub_group_size_(abs(size)),
2355       stub14_group_size_(abs(size)),
2356       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2357       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2358   {
2359     if (stub_group_size_ == 1)
2360       {
2361         // Default values.
2362         if (stubs_always_before_branch_)
2363           {
2364             stub_group_size_ = 0x1e00000;
2365             stub14_group_size_ = 0x7800;
2366           }
2367         else
2368           {
2369             stub_group_size_ = 0x1c00000;
2370             stub14_group_size_ = 0x7000;
2371           }
2372         suppress_size_errors_ = true;
2373       }
2374   }
2375
2376   // Return true iff input section can be handled by current stub
2377   // group.
2378   bool
2379   can_add_to_stub_group(Output_section* o,
2380                         const Output_section::Input_section* i,
2381                         bool has14);
2382
2383   const Output_section::Input_section*
2384   owner()
2385   { return owner_; }
2386
2387   Output_section*
2388   output_section()
2389   { return output_section_; }
2390
2391  private:
2392   typedef enum
2393   {
2394     NO_GROUP,
2395     FINDING_STUB_SECTION,
2396     HAS_STUB_SECTION
2397   } State;
2398
2399   State state_;
2400   uint32_t stub_group_size_;
2401   uint32_t stub14_group_size_;
2402   bool stubs_always_before_branch_;
2403   bool suppress_size_errors_;
2404   uint64_t group_end_addr_;
2405   const Output_section::Input_section* owner_;
2406   Output_section* output_section_;
2407 };
2408
2409 // Return true iff input section can be handled by current stub
2410 // group.
2411
2412 bool
2413 Stub_control::can_add_to_stub_group(Output_section* o,
2414                                     const Output_section::Input_section* i,
2415                                     bool has14)
2416 {
2417   uint32_t group_size
2418     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2419   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2420   uint64_t this_size;
2421   uint64_t start_addr = o->address();
2422
2423   if (whole_sec)
2424     // .init and .fini sections are pasted together to form a single
2425     // function.  We can't be adding stubs in the middle of the function.
2426     this_size = o->data_size();
2427   else
2428     {
2429       start_addr += i->relobj()->output_section_offset(i->shndx());
2430       this_size = i->data_size();
2431     }
2432   uint64_t end_addr = start_addr + this_size;
2433   bool toobig = this_size > group_size;
2434
2435   if (toobig && !this->suppress_size_errors_)
2436     gold_warning(_("%s:%s exceeds group size"),
2437                  i->relobj()->name().c_str(),
2438                  i->relobj()->section_name(i->shndx()).c_str());
2439
2440   if (this->state_ != HAS_STUB_SECTION
2441       && (!whole_sec || this->output_section_ != o)
2442       && (this->state_ == NO_GROUP
2443           || this->group_end_addr_ - end_addr < group_size))
2444     {
2445       this->owner_ = i;
2446       this->output_section_ = o;
2447     }
2448
2449   if (this->state_ == NO_GROUP)
2450     {
2451       this->state_ = FINDING_STUB_SECTION;
2452       this->group_end_addr_ = end_addr;
2453     }
2454   else if (this->group_end_addr_ - start_addr < group_size)
2455     ;
2456   // Adding this section would make the group larger than GROUP_SIZE.
2457   else if (this->state_ == FINDING_STUB_SECTION
2458            && !this->stubs_always_before_branch_
2459            && !toobig)
2460     {
2461       // But wait, there's more!  Input sections up to GROUP_SIZE
2462       // bytes before the stub table can be handled by it too.
2463       this->state_ = HAS_STUB_SECTION;
2464       this->group_end_addr_ = end_addr;
2465     }
2466   else
2467     {
2468       this->state_ = NO_GROUP;
2469       return false;
2470     }
2471   return true;
2472 }
2473
2474 // Look over all the input sections, deciding where to place stubs.
2475
2476 template<int size, bool big_endian>
2477 void
2478 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2479                                                  const Task*)
2480 {
2481   Stub_control stub_control(parameters->options().stub_group_size());
2482
2483   // Group input sections and insert stub table
2484   Stub_table<size, big_endian>* stub_table = NULL;
2485   Layout::Section_list section_list;
2486   layout->get_executable_sections(&section_list);
2487   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2488   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2489        o != section_list.rend();
2490        ++o)
2491     {
2492       typedef Output_section::Input_section_list Input_section_list;
2493       for (Input_section_list::const_reverse_iterator i
2494              = (*o)->input_sections().rbegin();
2495            i != (*o)->input_sections().rend();
2496            ++i)
2497         {
2498           if (i->is_input_section())
2499             {
2500               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2501                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2502               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2503               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2504                 {
2505                   stub_table->init(stub_control.owner(),
2506                                    stub_control.output_section());
2507                   stub_table = NULL;
2508                 }
2509               if (stub_table == NULL)
2510                 stub_table = this->new_stub_table();
2511               ppcobj->set_stub_table(i->shndx(), stub_table);
2512             }
2513         }
2514     }
2515   if (stub_table != NULL)
2516     {
2517       const Output_section::Input_section* i = stub_control.owner();
2518       if (!i->is_input_section())
2519         {
2520           // Corner case.  A new stub group was made for the first
2521           // section (last one looked at here) for some reason, but
2522           // the first section is already being used as the owner for
2523           // a stub table for following sections.  Force it into that
2524           // stub group.
2525           gold_assert(this->stub_tables_.size() >= 2);
2526           this->stub_tables_.pop_back();
2527           delete stub_table;
2528           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2529             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2530           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2531         }
2532       else
2533         stub_table->init(i, stub_control.output_section());
2534     }
2535 }
2536
2537 // If this branch needs a plt call stub, or a long branch stub, make one.
2538
2539 template<int size, bool big_endian>
2540 void
2541 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2542     Stub_table<size, big_endian>* stub_table,
2543     Stub_table<size, big_endian>* ifunc_stub_table,
2544     Symbol_table* symtab) const
2545 {
2546   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2547   if (sym != NULL && sym->is_forwarder())
2548     sym = symtab->resolve_forwards(sym);
2549   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2550   Target_powerpc<size, big_endian>* target =
2551     static_cast<Target_powerpc<size, big_endian>*>(
2552       parameters->sized_target<size, big_endian>());
2553   if (gsym != NULL
2554       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2555       : this->object_->local_has_plt_offset(this->r_sym_))
2556     {
2557       if (size == 64
2558           && gsym != NULL
2559           && target->abiversion() >= 2
2560           && !parameters->options().output_is_position_independent()
2561           && !is_branch_reloc(this->r_type_))
2562         target->glink_section()->add_global_entry(gsym);
2563       else
2564         {
2565           if (stub_table == NULL)
2566             stub_table = this->object_->stub_table(this->shndx_);
2567           if (stub_table == NULL)
2568             {
2569               // This is a ref from a data section to an ifunc symbol.
2570               stub_table = ifunc_stub_table;
2571             }
2572           gold_assert(stub_table != NULL);
2573           if (gsym != NULL)
2574             stub_table->add_plt_call_entry(this->object_, gsym,
2575                                            this->r_type_, this->addend_);
2576           else
2577             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2578                                            this->r_type_, this->addend_);
2579         }
2580     }
2581   else
2582     {
2583       unsigned long max_branch_offset;
2584       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2585           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2586           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2587         max_branch_offset = 1 << 15;
2588       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2589                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2590                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2591         max_branch_offset = 1 << 25;
2592       else
2593         return;
2594       Address from = this->object_->get_output_section_offset(this->shndx_);
2595       gold_assert(from != invalid_address);
2596       from += (this->object_->output_section(this->shndx_)->address()
2597                + this->offset_);
2598       Address to;
2599       if (gsym != NULL)
2600         {
2601           switch (gsym->source())
2602             {
2603             case Symbol::FROM_OBJECT:
2604               {
2605                 Object* symobj = gsym->object();
2606                 if (symobj->is_dynamic()
2607                     || symobj->pluginobj() != NULL)
2608                   return;
2609                 bool is_ordinary;
2610                 unsigned int shndx = gsym->shndx(&is_ordinary);
2611                 if (shndx == elfcpp::SHN_UNDEF)
2612                   return;
2613               }
2614               break;
2615
2616             case Symbol::IS_UNDEFINED:
2617               return;
2618
2619             default:
2620               break;
2621             }
2622           Symbol_table::Compute_final_value_status status;
2623           to = symtab->compute_final_value<size>(gsym, &status);
2624           if (status != Symbol_table::CFVS_OK)
2625             return;
2626           if (size == 64)
2627             to += this->object_->ppc64_local_entry_offset(gsym);
2628         }
2629       else
2630         {
2631           const Symbol_value<size>* psymval
2632             = this->object_->local_symbol(this->r_sym_);
2633           Symbol_value<size> symval;
2634           typedef Sized_relobj_file<size, big_endian> ObjType;
2635           typename ObjType::Compute_final_local_value_status status
2636             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2637                                                        &symval, symtab);
2638           if (status != ObjType::CFLV_OK
2639               || !symval.has_output_value())
2640             return;
2641           to = symval.value(this->object_, 0);
2642           if (size == 64)
2643             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2644         }
2645       to += this->addend_;
2646       if (stub_table == NULL)
2647         stub_table = this->object_->stub_table(this->shndx_);
2648       if (size == 64 && target->abiversion() < 2)
2649         {
2650           unsigned int dest_shndx;
2651           to = target->symval_for_branch(symtab, to, gsym,
2652                                          this->object_, &dest_shndx);
2653         }
2654       Address delta = to - from;
2655       if (delta + max_branch_offset >= 2 * max_branch_offset)
2656         {
2657           if (stub_table == NULL)
2658             {
2659               gold_warning(_("%s:%s: branch in non-executable section,"
2660                              " no long branch stub for you"),
2661                            this->object_->name().c_str(),
2662                            this->object_->section_name(this->shndx_).c_str());
2663               return;
2664             }
2665           stub_table->add_long_branch_entry(this->object_, to);
2666         }
2667     }
2668 }
2669
2670 // Relaxation hook.  This is where we do stub generation.
2671
2672 template<int size, bool big_endian>
2673 bool
2674 Target_powerpc<size, big_endian>::do_relax(int pass,
2675                                            const Input_objects*,
2676                                            Symbol_table* symtab,
2677                                            Layout* layout,
2678                                            const Task* task)
2679 {
2680   unsigned int prev_brlt_size = 0;
2681   if (pass == 1)
2682     {
2683       bool thread_safe
2684         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2685       if (size == 64
2686           && this->abiversion() < 2
2687           && !thread_safe
2688           && !parameters->options().user_set_plt_thread_safe())
2689         {
2690           static const char* const thread_starter[] =
2691             {
2692               "pthread_create",
2693               /* libstdc++ */
2694               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2695               /* librt */
2696               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2697               "mq_notify", "create_timer",
2698               /* libanl */
2699               "getaddrinfo_a",
2700               /* libgomp */
2701               "GOMP_parallel_start",
2702               "GOMP_parallel_loop_static_start",
2703               "GOMP_parallel_loop_dynamic_start",
2704               "GOMP_parallel_loop_guided_start",
2705               "GOMP_parallel_loop_runtime_start",
2706               "GOMP_parallel_sections_start",
2707             };
2708
2709           if (parameters->options().shared())
2710             thread_safe = true;
2711           else
2712             {
2713               for (unsigned int i = 0;
2714                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2715                    i++)
2716                 {
2717                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2718                   thread_safe = (sym != NULL
2719                                  && sym->in_reg()
2720                                  && sym->in_real_elf());
2721                   if (thread_safe)
2722                     break;
2723                 }
2724             }
2725         }
2726       this->plt_thread_safe_ = thread_safe;
2727       this->group_sections(layout, task);
2728     }
2729
2730   // We need address of stub tables valid for make_stub.
2731   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2732        p != this->stub_tables_.end();
2733        ++p)
2734     {
2735       const Powerpc_relobj<size, big_endian>* object
2736         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2737       Address off = object->get_output_section_offset((*p)->shndx());
2738       gold_assert(off != invalid_address);
2739       Output_section* os = (*p)->output_section();
2740       (*p)->set_address_and_size(os, off);
2741     }
2742
2743   if (pass != 1)
2744     {
2745       // Clear plt call stubs, long branch stubs and branch lookup table.
2746       prev_brlt_size = this->branch_lookup_table_.size();
2747       this->branch_lookup_table_.clear();
2748       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2749            p != this->stub_tables_.end();
2750            ++p)
2751         {
2752           (*p)->clear_stubs();
2753         }
2754     }
2755
2756   // Build all the stubs.
2757   Stub_table<size, big_endian>* ifunc_stub_table
2758     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2759   Stub_table<size, big_endian>* one_stub_table
2760     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2761   for (typename Branches::const_iterator b = this->branch_info_.begin();
2762        b != this->branch_info_.end();
2763        b++)
2764     {
2765       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2766     }
2767
2768   // Did anything change size?
2769   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2770   bool again = num_huge_branches != prev_brlt_size;
2771   if (size == 64 && num_huge_branches != 0)
2772     this->make_brlt_section(layout);
2773   if (size == 64 && again)
2774     this->brlt_section_->set_current_size(num_huge_branches);
2775
2776   typedef Unordered_set<Output_section*> Output_sections;
2777   Output_sections os_need_update;
2778   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2779        p != this->stub_tables_.end();
2780        ++p)
2781     {
2782       if ((*p)->size_update())
2783         {
2784           again = true;
2785           (*p)->add_eh_frame(layout);
2786           os_need_update.insert((*p)->output_section());
2787         }
2788     }
2789
2790   // Set output section offsets for all input sections in an output
2791   // section that just changed size.  Anything past the stubs will
2792   // need updating.
2793   for (typename Output_sections::iterator p = os_need_update.begin();
2794        p != os_need_update.end();
2795        p++)
2796     {
2797       Output_section* os = *p;
2798       Address off = 0;
2799       typedef Output_section::Input_section_list Input_section_list;
2800       for (Input_section_list::const_iterator i = os->input_sections().begin();
2801            i != os->input_sections().end();
2802            ++i)
2803         {
2804           off = align_address(off, i->addralign());
2805           if (i->is_input_section() || i->is_relaxed_input_section())
2806             i->relobj()->set_section_offset(i->shndx(), off);
2807           if (i->is_relaxed_input_section())
2808             {
2809               Stub_table<size, big_endian>* stub_table
2810                 = static_cast<Stub_table<size, big_endian>*>(
2811                     i->relaxed_input_section());
2812               off += stub_table->set_address_and_size(os, off);
2813             }
2814           else
2815             off += i->data_size();
2816         }
2817       // If .branch_lt is part of this output section, then we have
2818       // just done the offset adjustment.
2819       os->clear_section_offsets_need_adjustment();
2820     }
2821
2822   if (size == 64
2823       && !again
2824       && num_huge_branches != 0
2825       && parameters->options().output_is_position_independent())
2826     {
2827       // Fill in the BRLT relocs.
2828       this->brlt_section_->reset_brlt_sizes();
2829       for (typename Branch_lookup_table::const_iterator p
2830              = this->branch_lookup_table_.begin();
2831            p != this->branch_lookup_table_.end();
2832            ++p)
2833         {
2834           this->brlt_section_->add_reloc(p->first, p->second);
2835         }
2836       this->brlt_section_->finalize_brlt_sizes();
2837     }
2838   return again;
2839 }
2840
2841 template<int size, bool big_endian>
2842 void
2843 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2844                                                       unsigned char* oview,
2845                                                       uint64_t* paddress,
2846                                                       off_t* plen) const
2847 {
2848   uint64_t address = plt->address();
2849   off_t len = plt->data_size();
2850
2851   if (plt == this->glink_)
2852     {
2853       // See Output_data_glink::do_write() for glink contents.
2854       if (len == 0)
2855         {
2856           gold_assert(parameters->doing_static_link());
2857           // Static linking may need stubs, to support ifunc and long
2858           // branches.  We need to create an output section for
2859           // .eh_frame early in the link process, to have a place to
2860           // attach stub .eh_frame info.  We also need to have
2861           // registered a CIE that matches the stub CIE.  Both of
2862           // these requirements are satisfied by creating an FDE and
2863           // CIE for .glink, even though static linking will leave
2864           // .glink zero length.
2865           // ??? Hopefully generating an FDE with a zero address range
2866           // won't confuse anything that consumes .eh_frame info.
2867         }
2868       else if (size == 64)
2869         {
2870           // There is one word before __glink_PLTresolve
2871           address += 8;
2872           len -= 8;
2873         }
2874       else if (parameters->options().output_is_position_independent())
2875         {
2876           // There are two FDEs for a position independent glink.
2877           // The first covers the branch table, the second
2878           // __glink_PLTresolve at the end of glink.
2879           off_t resolve_size = this->glink_->pltresolve_size;
2880           if (oview[9] == elfcpp::DW_CFA_nop)
2881             len -= resolve_size;
2882           else
2883             {
2884               address += len - resolve_size;
2885               len = resolve_size;
2886             }
2887         }
2888     }
2889   else
2890     {
2891       // Must be a stub table.
2892       const Stub_table<size, big_endian>* stub_table
2893         = static_cast<const Stub_table<size, big_endian>*>(plt);
2894       uint64_t stub_address = stub_table->stub_address();
2895       len -= stub_address - address;
2896       address = stub_address;
2897     }
2898
2899   *paddress = address;
2900   *plen = len;
2901 }
2902
2903 // A class to handle the PLT data.
2904
2905 template<int size, bool big_endian>
2906 class Output_data_plt_powerpc : public Output_section_data_build
2907 {
2908  public:
2909   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2910                             size, big_endian> Reloc_section;
2911
2912   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2913                           Reloc_section* plt_rel,
2914                           const char* name)
2915     : Output_section_data_build(size == 32 ? 4 : 8),
2916       rel_(plt_rel),
2917       targ_(targ),
2918       name_(name)
2919   { }
2920
2921   // Add an entry to the PLT.
2922   void
2923   add_entry(Symbol*);
2924
2925   void
2926   add_ifunc_entry(Symbol*);
2927
2928   void
2929   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2930
2931   // Return the .rela.plt section data.
2932   Reloc_section*
2933   rel_plt() const
2934   {
2935     return this->rel_;
2936   }
2937
2938   // Return the number of PLT entries.
2939   unsigned int
2940   entry_count() const
2941   {
2942     if (this->current_data_size() == 0)
2943       return 0;
2944     return ((this->current_data_size() - this->first_plt_entry_offset())
2945             / this->plt_entry_size());
2946   }
2947
2948  protected:
2949   void
2950   do_adjust_output_section(Output_section* os)
2951   {
2952     os->set_entsize(0);
2953   }
2954
2955   // Write to a map file.
2956   void
2957   do_print_to_mapfile(Mapfile* mapfile) const
2958   { mapfile->print_output_data(this, this->name_); }
2959
2960  private:
2961   // Return the offset of the first non-reserved PLT entry.
2962   unsigned int
2963   first_plt_entry_offset() const
2964   {
2965     // IPLT has no reserved entry.
2966     if (this->name_[3] == 'I')
2967       return 0;
2968     return this->targ_->first_plt_entry_offset();
2969   }
2970
2971   // Return the size of each PLT entry.
2972   unsigned int
2973   plt_entry_size() const
2974   {
2975     return this->targ_->plt_entry_size();
2976   }
2977
2978   // Write out the PLT data.
2979   void
2980   do_write(Output_file*);
2981
2982   // The reloc section.
2983   Reloc_section* rel_;
2984   // Allows access to .glink for do_write.
2985   Target_powerpc<size, big_endian>* targ_;
2986   // What to report in map file.
2987   const char *name_;
2988 };
2989
2990 // Add an entry to the PLT.
2991
2992 template<int size, bool big_endian>
2993 void
2994 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2995 {
2996   if (!gsym->has_plt_offset())
2997     {
2998       section_size_type off = this->current_data_size();
2999       if (off == 0)
3000         off += this->first_plt_entry_offset();
3001       gsym->set_plt_offset(off);
3002       gsym->set_needs_dynsym_entry();
3003       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3004       this->rel_->add_global(gsym, dynrel, this, off, 0);
3005       off += this->plt_entry_size();
3006       this->set_current_data_size(off);
3007     }
3008 }
3009
3010 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3011
3012 template<int size, bool big_endian>
3013 void
3014 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3015 {
3016   if (!gsym->has_plt_offset())
3017     {
3018       section_size_type off = this->current_data_size();
3019       gsym->set_plt_offset(off);
3020       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3021       if (size == 64 && this->targ_->abiversion() < 2)
3022         dynrel = elfcpp::R_PPC64_JMP_IREL;
3023       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3024       off += this->plt_entry_size();
3025       this->set_current_data_size(off);
3026     }
3027 }
3028
3029 // Add an entry for a local ifunc symbol to the IPLT.
3030
3031 template<int size, bool big_endian>
3032 void
3033 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3034     Sized_relobj_file<size, big_endian>* relobj,
3035     unsigned int local_sym_index)
3036 {
3037   if (!relobj->local_has_plt_offset(local_sym_index))
3038     {
3039       section_size_type off = this->current_data_size();
3040       relobj->set_local_plt_offset(local_sym_index, off);
3041       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3042       if (size == 64 && this->targ_->abiversion() < 2)
3043         dynrel = elfcpp::R_PPC64_JMP_IREL;
3044       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3045                                               this, off, 0);
3046       off += this->plt_entry_size();
3047       this->set_current_data_size(off);
3048     }
3049 }
3050
3051 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3052 static const uint32_t add_2_2_11        = 0x7c425a14;
3053 static const uint32_t add_3_3_2         = 0x7c631214;
3054 static const uint32_t add_3_3_13        = 0x7c636a14;
3055 static const uint32_t add_11_0_11       = 0x7d605a14;
3056 static const uint32_t add_11_2_11       = 0x7d625a14;
3057 static const uint32_t add_11_11_2       = 0x7d6b1214;
3058 static const uint32_t addi_0_12         = 0x380c0000;
3059 static const uint32_t addi_2_2          = 0x38420000;
3060 static const uint32_t addi_3_3          = 0x38630000;
3061 static const uint32_t addi_11_11        = 0x396b0000;
3062 static const uint32_t addi_12_12        = 0x398c0000;
3063 static const uint32_t addis_0_2         = 0x3c020000;
3064 static const uint32_t addis_0_13        = 0x3c0d0000;
3065 static const uint32_t addis_3_2         = 0x3c620000;
3066 static const uint32_t addis_3_13        = 0x3c6d0000;
3067 static const uint32_t addis_11_2        = 0x3d620000;
3068 static const uint32_t addis_11_11       = 0x3d6b0000;
3069 static const uint32_t addis_11_30       = 0x3d7e0000;
3070 static const uint32_t addis_12_12       = 0x3d8c0000;
3071 static const uint32_t b                 = 0x48000000;
3072 static const uint32_t bcl_20_31         = 0x429f0005;
3073 static const uint32_t bctr              = 0x4e800420;
3074 static const uint32_t blr               = 0x4e800020;
3075 static const uint32_t bnectr_p4         = 0x4ce20420;
3076 static const uint32_t cmpldi_2_0        = 0x28220000;
3077 static const uint32_t cror_15_15_15     = 0x4def7b82;
3078 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3079 static const uint32_t ld_0_1            = 0xe8010000;
3080 static const uint32_t ld_0_12           = 0xe80c0000;
3081 static const uint32_t ld_2_1            = 0xe8410000;
3082 static const uint32_t ld_2_2            = 0xe8420000;
3083 static const uint32_t ld_2_11           = 0xe84b0000;
3084 static const uint32_t ld_11_2           = 0xe9620000;
3085 static const uint32_t ld_11_11          = 0xe96b0000;
3086 static const uint32_t ld_12_2           = 0xe9820000;
3087 static const uint32_t ld_12_11          = 0xe98b0000;
3088 static const uint32_t ld_12_12          = 0xe98c0000;
3089 static const uint32_t lfd_0_1           = 0xc8010000;
3090 static const uint32_t li_0_0            = 0x38000000;
3091 static const uint32_t li_12_0           = 0x39800000;
3092 static const uint32_t lis_0_0           = 0x3c000000;
3093 static const uint32_t lis_11            = 0x3d600000;
3094 static const uint32_t lis_12            = 0x3d800000;
3095 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3096 static const uint32_t lwz_0_12          = 0x800c0000;
3097 static const uint32_t lwz_11_11         = 0x816b0000;
3098 static const uint32_t lwz_11_30         = 0x817e0000;
3099 static const uint32_t lwz_12_12         = 0x818c0000;
3100 static const uint32_t lwzu_0_12         = 0x840c0000;
3101 static const uint32_t mflr_0            = 0x7c0802a6;
3102 static const uint32_t mflr_11           = 0x7d6802a6;
3103 static const uint32_t mflr_12           = 0x7d8802a6;
3104 static const uint32_t mtctr_0           = 0x7c0903a6;
3105 static const uint32_t mtctr_11          = 0x7d6903a6;
3106 static const uint32_t mtctr_12          = 0x7d8903a6;
3107 static const uint32_t mtlr_0            = 0x7c0803a6;
3108 static const uint32_t mtlr_12           = 0x7d8803a6;
3109 static const uint32_t nop               = 0x60000000;
3110 static const uint32_t ori_0_0_0         = 0x60000000;
3111 static const uint32_t srdi_0_0_2        = 0x7800f082;
3112 static const uint32_t std_0_1           = 0xf8010000;
3113 static const uint32_t std_0_12          = 0xf80c0000;
3114 static const uint32_t std_2_1           = 0xf8410000;
3115 static const uint32_t stfd_0_1          = 0xd8010000;
3116 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3117 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3118 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3119 static const uint32_t xor_2_12_12       = 0x7d826278;
3120 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3121
3122 // Write out the PLT.
3123
3124 template<int size, bool big_endian>
3125 void
3126 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3127 {
3128   if (size == 32 && this->name_[3] != 'I')
3129     {
3130       const section_size_type offset = this->offset();
3131       const section_size_type oview_size
3132         = convert_to_section_size_type(this->data_size());
3133       unsigned char* const oview = of->get_output_view(offset, oview_size);
3134       unsigned char* pov = oview;
3135       unsigned char* endpov = oview + oview_size;
3136
3137       // The address of the .glink branch table
3138       const Output_data_glink<size, big_endian>* glink
3139         = this->targ_->glink_section();
3140       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3141
3142       while (pov < endpov)
3143         {
3144           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3145           pov += 4;
3146           branch_tab += 4;
3147         }
3148
3149       of->write_output_view(offset, oview_size, oview);
3150     }
3151 }
3152
3153 // Create the PLT section.
3154
3155 template<int size, bool big_endian>
3156 void
3157 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3158                                                    Layout* layout)
3159 {
3160   if (this->plt_ == NULL)
3161     {
3162       if (this->got_ == NULL)
3163         this->got_section(symtab, layout);
3164
3165       if (this->glink_ == NULL)
3166         make_glink_section(layout);
3167
3168       // Ensure that .rela.dyn always appears before .rela.plt  This is
3169       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3170       // needs to include .rela.plt in its range.
3171       this->rela_dyn_section(layout);
3172
3173       Reloc_section* plt_rel = new Reloc_section(false);
3174       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3175                                       elfcpp::SHF_ALLOC, plt_rel,
3176                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3177       this->plt_
3178         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3179                                                         "** PLT");
3180       layout->add_output_section_data(".plt",
3181                                       (size == 32
3182                                        ? elfcpp::SHT_PROGBITS
3183                                        : elfcpp::SHT_NOBITS),
3184                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3185                                       this->plt_,
3186                                       (size == 32
3187                                        ? ORDER_SMALL_DATA
3188                                        : ORDER_SMALL_BSS),
3189                                       false);
3190     }
3191 }
3192
3193 // Create the IPLT section.
3194
3195 template<int size, bool big_endian>
3196 void
3197 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3198                                                     Layout* layout)
3199 {
3200   if (this->iplt_ == NULL)
3201     {
3202       this->make_plt_section(symtab, layout);
3203
3204       Reloc_section* iplt_rel = new Reloc_section(false);
3205       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3206       this->iplt_
3207         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3208                                                         "** IPLT");
3209       this->plt_->output_section()->add_output_section_data(this->iplt_);
3210     }
3211 }
3212
3213 // A section for huge long branch addresses, similar to plt section.
3214
3215 template<int size, bool big_endian>
3216 class Output_data_brlt_powerpc : public Output_section_data_build
3217 {
3218  public:
3219   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3220   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3221                             size, big_endian> Reloc_section;
3222
3223   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3224                            Reloc_section* brlt_rel)
3225     : Output_section_data_build(size == 32 ? 4 : 8),
3226       rel_(brlt_rel),
3227       targ_(targ)
3228   { }
3229
3230   void
3231   reset_brlt_sizes()
3232   {
3233     this->reset_data_size();
3234     this->rel_->reset_data_size();
3235   }
3236
3237   void
3238   finalize_brlt_sizes()
3239   {
3240     this->finalize_data_size();
3241     this->rel_->finalize_data_size();
3242   }
3243
3244   // Add a reloc for an entry in the BRLT.
3245   void
3246   add_reloc(Address to, unsigned int off)
3247   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3248
3249   // Update section and reloc section size.
3250   void
3251   set_current_size(unsigned int num_branches)
3252   {
3253     this->reset_address_and_file_offset();
3254     this->set_current_data_size(num_branches * 16);
3255     this->finalize_data_size();
3256     Output_section* os = this->output_section();
3257     os->set_section_offsets_need_adjustment();
3258     if (this->rel_ != NULL)
3259       {
3260         unsigned int reloc_size
3261           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3262         this->rel_->reset_address_and_file_offset();
3263         this->rel_->set_current_data_size(num_branches * reloc_size);
3264         this->rel_->finalize_data_size();
3265         Output_section* os = this->rel_->output_section();
3266         os->set_section_offsets_need_adjustment();
3267       }
3268   }
3269
3270  protected:
3271   void
3272   do_adjust_output_section(Output_section* os)
3273   {
3274     os->set_entsize(0);
3275   }
3276
3277   // Write to a map file.
3278   void
3279   do_print_to_mapfile(Mapfile* mapfile) const
3280   { mapfile->print_output_data(this, "** BRLT"); }
3281
3282  private:
3283   // Write out the BRLT data.
3284   void
3285   do_write(Output_file*);
3286
3287   // The reloc section.
3288   Reloc_section* rel_;
3289   Target_powerpc<size, big_endian>* targ_;
3290 };
3291
3292 // Make the branch lookup table section.
3293
3294 template<int size, bool big_endian>
3295 void
3296 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3297 {
3298   if (size == 64 && this->brlt_section_ == NULL)
3299     {
3300       Reloc_section* brlt_rel = NULL;
3301       bool is_pic = parameters->options().output_is_position_independent();
3302       if (is_pic)
3303         {
3304           // When PIC we can't fill in .branch_lt (like .plt it can be
3305           // a bss style section) but must initialise at runtime via
3306           // dynamic relocats.
3307           this->rela_dyn_section(layout);
3308           brlt_rel = new Reloc_section(false);
3309           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3310         }
3311       this->brlt_section_
3312         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3313       if (this->plt_ && is_pic)
3314         this->plt_->output_section()
3315           ->add_output_section_data(this->brlt_section_);
3316       else
3317         layout->add_output_section_data(".branch_lt",
3318                                         (is_pic ? elfcpp::SHT_NOBITS
3319                                          : elfcpp::SHT_PROGBITS),
3320                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3321                                         this->brlt_section_,
3322                                         (is_pic ? ORDER_SMALL_BSS
3323                                          : ORDER_SMALL_DATA),
3324                                         false);
3325     }
3326 }
3327
3328 // Write out .branch_lt when non-PIC.
3329
3330 template<int size, bool big_endian>
3331 void
3332 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3333 {
3334   if (size == 64 && !parameters->options().output_is_position_independent())
3335     {
3336       const section_size_type offset = this->offset();
3337       const section_size_type oview_size
3338         = convert_to_section_size_type(this->data_size());
3339       unsigned char* const oview = of->get_output_view(offset, oview_size);
3340
3341       this->targ_->write_branch_lookup_table(oview);
3342       of->write_output_view(offset, oview_size, oview);
3343     }
3344 }
3345
3346 static inline uint32_t
3347 l(uint32_t a)
3348 {
3349   return a & 0xffff;
3350 }
3351
3352 static inline uint32_t
3353 hi(uint32_t a)
3354 {
3355   return l(a >> 16);
3356 }
3357
3358 static inline uint32_t
3359 ha(uint32_t a)
3360 {
3361   return hi(a + 0x8000);
3362 }
3363
3364 template<int size>
3365 struct Eh_cie
3366 {
3367   static const unsigned char eh_frame_cie[12];
3368 };
3369
3370 template<int size>
3371 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3372 {
3373   1,                                    // CIE version.
3374   'z', 'R', 0,                          // Augmentation string.
3375   4,                                    // Code alignment.
3376   0x80 - size / 8 ,                     // Data alignment.
3377   65,                                   // RA reg.
3378   1,                                    // Augmentation size.
3379   (elfcpp::DW_EH_PE_pcrel
3380    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3381   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3382 };
3383
3384 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3385 static const unsigned char glink_eh_frame_fde_64v1[] =
3386 {
3387   0, 0, 0, 0,                           // Replaced with offset to .glink.
3388   0, 0, 0, 0,                           // Replaced with size of .glink.
3389   0,                                    // Augmentation size.
3390   elfcpp::DW_CFA_advance_loc + 1,
3391   elfcpp::DW_CFA_register, 65, 12,
3392   elfcpp::DW_CFA_advance_loc + 4,
3393   elfcpp::DW_CFA_restore_extended, 65
3394 };
3395
3396 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3397 static const unsigned char glink_eh_frame_fde_64v2[] =
3398 {
3399   0, 0, 0, 0,                           // Replaced with offset to .glink.
3400   0, 0, 0, 0,                           // Replaced with size of .glink.
3401   0,                                    // Augmentation size.
3402   elfcpp::DW_CFA_advance_loc + 1,
3403   elfcpp::DW_CFA_register, 65, 0,
3404   elfcpp::DW_CFA_advance_loc + 4,
3405   elfcpp::DW_CFA_restore_extended, 65
3406 };
3407
3408 // Describe __glink_PLTresolve use of LR, 32-bit version.
3409 static const unsigned char glink_eh_frame_fde_32[] =
3410 {
3411   0, 0, 0, 0,                           // Replaced with offset to .glink.
3412   0, 0, 0, 0,                           // Replaced with size of .glink.
3413   0,                                    // Augmentation size.
3414   elfcpp::DW_CFA_advance_loc + 2,
3415   elfcpp::DW_CFA_register, 65, 0,
3416   elfcpp::DW_CFA_advance_loc + 4,
3417   elfcpp::DW_CFA_restore_extended, 65
3418 };
3419
3420 static const unsigned char default_fde[] =
3421 {
3422   0, 0, 0, 0,                           // Replaced with offset to stubs.
3423   0, 0, 0, 0,                           // Replaced with size of stubs.
3424   0,                                    // Augmentation size.
3425   elfcpp::DW_CFA_nop,                   // Pad.
3426   elfcpp::DW_CFA_nop,
3427   elfcpp::DW_CFA_nop
3428 };
3429
3430 template<bool big_endian>
3431 static inline void
3432 write_insn(unsigned char* p, uint32_t v)
3433 {
3434   elfcpp::Swap<32, big_endian>::writeval(p, v);
3435 }
3436
3437 // Stub_table holds information about plt and long branch stubs.
3438 // Stubs are built in an area following some input section determined
3439 // by group_sections().  This input section is converted to a relaxed
3440 // input section allowing it to be resized to accommodate the stubs
3441
3442 template<int size, bool big_endian>
3443 class Stub_table : public Output_relaxed_input_section
3444 {
3445  public:
3446   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3447   static const Address invalid_address = static_cast<Address>(0) - 1;
3448
3449   Stub_table(Target_powerpc<size, big_endian>* targ)
3450     : Output_relaxed_input_section(NULL, 0, 0),
3451       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3452       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3453       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3454   { }
3455
3456   // Delayed Output_relaxed_input_section init.
3457   void
3458   init(const Output_section::Input_section*, Output_section*);
3459
3460   // Add a plt call stub.
3461   void
3462   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3463                      const Symbol*,
3464                      unsigned int,
3465                      Address);
3466
3467   void
3468   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3469                      unsigned int,
3470                      unsigned int,
3471                      Address);
3472
3473   // Find a given plt call stub.
3474   Address
3475   find_plt_call_entry(const Symbol*) const;
3476
3477   Address
3478   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3479                       unsigned int) const;
3480
3481   Address
3482   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3483                       const Symbol*,
3484                       unsigned int,
3485                       Address) const;
3486
3487   Address
3488   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3489                       unsigned int,
3490                       unsigned int,
3491                       Address) const;
3492
3493   // Add a long branch stub.
3494   void
3495   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3496
3497   Address
3498   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3499                          Address) const;
3500
3501   void
3502   clear_stubs()
3503   {
3504     this->plt_call_stubs_.clear();
3505     this->plt_size_ = 0;
3506     this->long_branch_stubs_.clear();
3507     this->branch_size_ = 0;
3508   }
3509
3510   Address
3511   set_address_and_size(const Output_section* os, Address off)
3512   {
3513     Address start_off = off;
3514     off += this->orig_data_size_;
3515     Address my_size = this->plt_size_ + this->branch_size_;
3516     if (my_size != 0)
3517       off = align_address(off, this->stub_align());
3518     // Include original section size and alignment padding in size
3519     my_size += off - start_off;
3520     this->reset_address_and_file_offset();
3521     this->set_current_data_size(my_size);
3522     this->set_address_and_file_offset(os->address() + start_off,
3523                                       os->offset() + start_off);
3524     return my_size;
3525   }
3526
3527   Address
3528   stub_address() const
3529   {
3530     return align_address(this->address() + this->orig_data_size_,
3531                          this->stub_align());
3532   }
3533
3534   Address
3535   stub_offset() const
3536   {
3537     return align_address(this->offset() + this->orig_data_size_,
3538                          this->stub_align());
3539   }
3540
3541   section_size_type
3542   plt_size() const
3543   { return this->plt_size_; }
3544
3545   bool
3546   size_update()
3547   {
3548     Output_section* os = this->output_section();
3549     if (os->addralign() < this->stub_align())
3550       {
3551         os->set_addralign(this->stub_align());
3552         // FIXME: get rid of the insane checkpointing.
3553         // We can't increase alignment of the input section to which
3554         // stubs are attached;  The input section may be .init which
3555         // is pasted together with other .init sections to form a
3556         // function.  Aligning might insert zero padding resulting in
3557         // sigill.  However we do need to increase alignment of the
3558         // output section so that the align_address() on offset in
3559         // set_address_and_size() adds the same padding as the
3560         // align_address() on address in stub_address().
3561         // What's more, we need this alignment for the layout done in
3562         // relaxation_loop_body() so that the output section starts at
3563         // a suitably aligned address.
3564         os->checkpoint_set_addralign(this->stub_align());
3565       }
3566     if (this->last_plt_size_ != this->plt_size_
3567         || this->last_branch_size_ != this->branch_size_)
3568       {
3569         this->last_plt_size_ = this->plt_size_;
3570         this->last_branch_size_ = this->branch_size_;
3571         return true;
3572       }
3573     return false;
3574   }
3575
3576   // Add .eh_frame info for this stub section.  Unlike other linker
3577   // generated .eh_frame this is added late in the link, because we
3578   // only want the .eh_frame info if this particular stub section is
3579   // non-empty.
3580   void
3581   add_eh_frame(Layout* layout)
3582   {
3583     if (!this->eh_frame_added_)
3584       {
3585         if (!parameters->options().ld_generated_unwind_info())
3586           return;
3587
3588         // Since we add stub .eh_frame info late, it must be placed
3589         // after all other linker generated .eh_frame info so that
3590         // merge mapping need not be updated for input sections.
3591         // There is no provision to use a different CIE to that used
3592         // by .glink.
3593         if (!this->targ_->has_glink())
3594           return;
3595
3596         layout->add_eh_frame_for_plt(this,
3597                                      Eh_cie<size>::eh_frame_cie,
3598                                      sizeof (Eh_cie<size>::eh_frame_cie),
3599                                      default_fde,
3600                                      sizeof (default_fde));
3601         this->eh_frame_added_ = true;
3602       }
3603   }
3604
3605   Target_powerpc<size, big_endian>*
3606   targ() const
3607   { return targ_; }
3608
3609  private:
3610   class Plt_stub_ent;
3611   class Plt_stub_ent_hash;
3612   typedef Unordered_map<Plt_stub_ent, unsigned int,
3613                         Plt_stub_ent_hash> Plt_stub_entries;
3614
3615   // Alignment of stub section.
3616   unsigned int
3617   stub_align() const
3618   {
3619     if (size == 32)
3620       return 16;
3621     unsigned int min_align = 32;
3622     unsigned int user_align = 1 << parameters->options().plt_align();
3623     return std::max(user_align, min_align);
3624   }
3625
3626   // Return the plt offset for the given call stub.
3627   Address
3628   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3629   {
3630     const Symbol* gsym = p->first.sym_;
3631     if (gsym != NULL)
3632       {
3633         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3634                     && gsym->can_use_relative_reloc(false));
3635         return gsym->plt_offset();
3636       }
3637     else
3638       {
3639         *is_iplt = true;
3640         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3641         unsigned int local_sym_index = p->first.locsym_;
3642         return relobj->local_plt_offset(local_sym_index);
3643       }
3644   }
3645
3646   // Size of a given plt call stub.
3647   unsigned int
3648   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3649   {
3650     if (size == 32)
3651       return 16;
3652
3653     bool is_iplt;
3654     Address plt_addr = this->plt_off(p, &is_iplt);
3655     if (is_iplt)
3656       plt_addr += this->targ_->iplt_section()->address();
3657     else
3658       plt_addr += this->targ_->plt_section()->address();
3659     Address got_addr = this->targ_->got_section()->output_section()->address();
3660     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3661       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3662     got_addr += ppcobj->toc_base_offset();
3663     Address off = plt_addr - got_addr;
3664     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3665     if (this->targ_->abiversion() < 2)
3666       {
3667         bool static_chain = parameters->options().plt_static_chain();
3668         bool thread_safe = this->targ_->plt_thread_safe();
3669         bytes += (4
3670                   + 4 * static_chain
3671                   + 8 * thread_safe
3672                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3673       }
3674     unsigned int align = 1 << parameters->options().plt_align();
3675     if (align > 1)
3676       bytes = (bytes + align - 1) & -align;
3677     return bytes;
3678   }
3679
3680   // Return long branch stub size.
3681   unsigned int
3682   branch_stub_size(Address to)
3683   {
3684     Address loc
3685       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3686     if (to - loc + (1 << 25) < 2 << 25)
3687       return 4;
3688     if (size == 64 || !parameters->options().output_is_position_independent())
3689       return 16;
3690     return 32;
3691   }
3692
3693   // Write out stubs.
3694   void
3695   do_write(Output_file*);
3696
3697   // Plt call stub keys.
3698   class Plt_stub_ent
3699   {
3700   public:
3701     Plt_stub_ent(const Symbol* sym)
3702       : sym_(sym), object_(0), addend_(0), locsym_(0)
3703     { }
3704
3705     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3706                  unsigned int locsym_index)
3707       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3708     { }
3709
3710     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3711                  const Symbol* sym,
3712                  unsigned int r_type,
3713                  Address addend)
3714       : sym_(sym), object_(0), addend_(0), locsym_(0)
3715     {
3716       if (size != 32)
3717         this->addend_ = addend;
3718       else if (parameters->options().output_is_position_independent()
3719                && r_type == elfcpp::R_PPC_PLTREL24)
3720         {
3721           this->addend_ = addend;
3722           if (this->addend_ >= 32768)
3723             this->object_ = object;
3724         }
3725     }
3726
3727     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3728                  unsigned int locsym_index,
3729                  unsigned int r_type,
3730                  Address addend)
3731       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3732     {
3733       if (size != 32)
3734         this->addend_ = addend;
3735       else if (parameters->options().output_is_position_independent()
3736                && r_type == elfcpp::R_PPC_PLTREL24)
3737         this->addend_ = addend;
3738     }
3739
3740     bool operator==(const Plt_stub_ent& that) const
3741     {
3742       return (this->sym_ == that.sym_
3743               && this->object_ == that.object_
3744               && this->addend_ == that.addend_
3745               && this->locsym_ == that.locsym_);
3746     }
3747
3748     const Symbol* sym_;
3749     const Sized_relobj_file<size, big_endian>* object_;
3750     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3751     unsigned int locsym_;
3752   };
3753
3754   class Plt_stub_ent_hash
3755   {
3756   public:
3757     size_t operator()(const Plt_stub_ent& ent) const
3758     {
3759       return (reinterpret_cast<uintptr_t>(ent.sym_)
3760               ^ reinterpret_cast<uintptr_t>(ent.object_)
3761               ^ ent.addend_
3762               ^ ent.locsym_);
3763     }
3764   };
3765
3766   // Long branch stub keys.
3767   class Branch_stub_ent
3768   {
3769   public:
3770     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3771       : dest_(to), toc_base_off_(0)
3772     {
3773       if (size == 64)
3774         toc_base_off_ = obj->toc_base_offset();
3775     }
3776
3777     bool operator==(const Branch_stub_ent& that) const
3778     {
3779       return (this->dest_ == that.dest_
3780               && (size == 32
3781                   || this->toc_base_off_ == that.toc_base_off_));
3782     }
3783
3784     Address dest_;
3785     unsigned int toc_base_off_;
3786   };
3787
3788   class Branch_stub_ent_hash
3789   {
3790   public:
3791     size_t operator()(const Branch_stub_ent& ent) const
3792     { return ent.dest_ ^ ent.toc_base_off_; }
3793   };
3794
3795   // In a sane world this would be a global.
3796   Target_powerpc<size, big_endian>* targ_;
3797   // Map sym/object/addend to stub offset.
3798   Plt_stub_entries plt_call_stubs_;
3799   // Map destination address to stub offset.
3800   typedef Unordered_map<Branch_stub_ent, unsigned int,
3801                         Branch_stub_ent_hash> Branch_stub_entries;
3802   Branch_stub_entries long_branch_stubs_;
3803   // size of input section
3804   section_size_type orig_data_size_;
3805   // size of stubs
3806   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3807   // Whether .eh_frame info has been created for this stub section.
3808   bool eh_frame_added_;
3809 };
3810
3811 // Make a new stub table, and record.
3812
3813 template<int size, bool big_endian>
3814 Stub_table<size, big_endian>*
3815 Target_powerpc<size, big_endian>::new_stub_table()
3816 {
3817   Stub_table<size, big_endian>* stub_table
3818     = new Stub_table<size, big_endian>(this);
3819   this->stub_tables_.push_back(stub_table);
3820   return stub_table;
3821 }
3822
3823 // Delayed stub table initialisation, because we create the stub table
3824 // before we know to which section it will be attached.
3825
3826 template<int size, bool big_endian>
3827 void
3828 Stub_table<size, big_endian>::init(
3829     const Output_section::Input_section* owner,
3830     Output_section* output_section)
3831 {
3832   this->set_relobj(owner->relobj());
3833   this->set_shndx(owner->shndx());
3834   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3835   this->set_output_section(output_section);
3836   this->orig_data_size_ = owner->current_data_size();
3837
3838   std::vector<Output_relaxed_input_section*> new_relaxed;
3839   new_relaxed.push_back(this);
3840   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3841 }
3842
3843 // Add a plt call stub, if we do not already have one for this
3844 // sym/object/addend combo.
3845
3846 template<int size, bool big_endian>
3847 void
3848 Stub_table<size, big_endian>::add_plt_call_entry(
3849     const Sized_relobj_file<size, big_endian>* object,
3850     const Symbol* gsym,
3851     unsigned int r_type,
3852     Address addend)
3853 {
3854   Plt_stub_ent ent(object, gsym, r_type, addend);
3855   unsigned int off = this->plt_size_;
3856   std::pair<typename Plt_stub_entries::iterator, bool> p
3857     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3858   if (p.second)
3859     this->plt_size_ = off + this->plt_call_size(p.first);
3860 }
3861
3862 template<int size, bool big_endian>
3863 void
3864 Stub_table<size, big_endian>::add_plt_call_entry(
3865     const Sized_relobj_file<size, big_endian>* object,
3866     unsigned int locsym_index,
3867     unsigned int r_type,
3868     Address addend)
3869 {
3870   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3871   unsigned int off = this->plt_size_;
3872   std::pair<typename Plt_stub_entries::iterator, bool> p
3873     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3874   if (p.second)
3875     this->plt_size_ = off + this->plt_call_size(p.first);
3876 }
3877
3878 // Find a plt call stub.
3879
3880 template<int size, bool big_endian>
3881 typename Stub_table<size, big_endian>::Address
3882 Stub_table<size, big_endian>::find_plt_call_entry(
3883     const Sized_relobj_file<size, big_endian>* object,
3884     const Symbol* gsym,
3885     unsigned int r_type,
3886     Address addend) const
3887 {
3888   Plt_stub_ent ent(object, gsym, r_type, addend);
3889   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3890   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3891 }
3892
3893 template<int size, bool big_endian>
3894 typename Stub_table<size, big_endian>::Address
3895 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3896 {
3897   Plt_stub_ent ent(gsym);
3898   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3899   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3900 }
3901
3902 template<int size, bool big_endian>
3903 typename Stub_table<size, big_endian>::Address
3904 Stub_table<size, big_endian>::find_plt_call_entry(
3905     const Sized_relobj_file<size, big_endian>* object,
3906     unsigned int locsym_index,
3907     unsigned int r_type,
3908     Address addend) const
3909 {
3910   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3911   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3912   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3913 }
3914
3915 template<int size, bool big_endian>
3916 typename Stub_table<size, big_endian>::Address
3917 Stub_table<size, big_endian>::find_plt_call_entry(
3918     const Sized_relobj_file<size, big_endian>* object,
3919     unsigned int locsym_index) const
3920 {
3921   Plt_stub_ent ent(object, locsym_index);
3922   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3923   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3924 }
3925
3926 // Add a long branch stub if we don't already have one to given
3927 // destination.
3928
3929 template<int size, bool big_endian>
3930 void
3931 Stub_table<size, big_endian>::add_long_branch_entry(
3932     const Powerpc_relobj<size, big_endian>* object,
3933     Address to)
3934 {
3935   Branch_stub_ent ent(object, to);
3936   Address off = this->branch_size_;
3937   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3938     {
3939       unsigned int stub_size = this->branch_stub_size(to);
3940       this->branch_size_ = off + stub_size;
3941       if (size == 64 && stub_size != 4)
3942         this->targ_->add_branch_lookup_table(to);
3943     }
3944 }
3945
3946 // Find long branch stub.
3947
3948 template<int size, bool big_endian>
3949 typename Stub_table<size, big_endian>::Address
3950 Stub_table<size, big_endian>::find_long_branch_entry(
3951     const Powerpc_relobj<size, big_endian>* object,
3952     Address to) const
3953 {
3954   Branch_stub_ent ent(object, to);
3955   typename Branch_stub_entries::const_iterator p
3956     = this->long_branch_stubs_.find(ent);
3957   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3958 }
3959
3960 // A class to handle .glink.
3961
3962 template<int size, bool big_endian>
3963 class Output_data_glink : public Output_section_data
3964 {
3965  public:
3966   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3967   static const Address invalid_address = static_cast<Address>(0) - 1;
3968   static const int pltresolve_size = 16*4;
3969
3970   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3971     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3972       end_branch_table_(), ge_size_(0)
3973   { }
3974
3975   void
3976   add_eh_frame(Layout* layout);
3977
3978   void
3979   add_global_entry(const Symbol*);
3980
3981   Address
3982   find_global_entry(const Symbol*) const;
3983
3984   Address
3985   global_entry_address() const
3986   {
3987     gold_assert(this->is_data_size_valid());
3988     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3989     return this->address() + global_entry_off;
3990   }
3991
3992  protected:
3993   // Write to a map file.
3994   void
3995   do_print_to_mapfile(Mapfile* mapfile) const
3996   { mapfile->print_output_data(this, _("** glink")); }
3997
3998  private:
3999   void
4000   set_final_data_size();
4001
4002   // Write out .glink
4003   void
4004   do_write(Output_file*);
4005
4006   // Allows access to .got and .plt for do_write.
4007   Target_powerpc<size, big_endian>* targ_;
4008
4009   // Map sym to stub offset.
4010   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4011   Global_entry_stub_entries global_entry_stubs_;
4012
4013   unsigned int end_branch_table_, ge_size_;
4014 };
4015
4016 template<int size, bool big_endian>
4017 void
4018 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4019 {
4020   if (!parameters->options().ld_generated_unwind_info())
4021     return;
4022
4023   if (size == 64)
4024     {
4025       if (this->targ_->abiversion() < 2)
4026         layout->add_eh_frame_for_plt(this,
4027                                      Eh_cie<64>::eh_frame_cie,
4028                                      sizeof (Eh_cie<64>::eh_frame_cie),
4029                                      glink_eh_frame_fde_64v1,
4030                                      sizeof (glink_eh_frame_fde_64v1));
4031       else
4032         layout->add_eh_frame_for_plt(this,
4033                                      Eh_cie<64>::eh_frame_cie,
4034                                      sizeof (Eh_cie<64>::eh_frame_cie),
4035                                      glink_eh_frame_fde_64v2,
4036                                      sizeof (glink_eh_frame_fde_64v2));
4037     }
4038   else
4039     {
4040       // 32-bit .glink can use the default since the CIE return
4041       // address reg, LR, is valid.
4042       layout->add_eh_frame_for_plt(this,
4043                                    Eh_cie<32>::eh_frame_cie,
4044                                    sizeof (Eh_cie<32>::eh_frame_cie),
4045                                    default_fde,
4046                                    sizeof (default_fde));
4047       // Except where LR is used in a PIC __glink_PLTresolve.
4048       if (parameters->options().output_is_position_independent())
4049         layout->add_eh_frame_for_plt(this,
4050                                      Eh_cie<32>::eh_frame_cie,
4051                                      sizeof (Eh_cie<32>::eh_frame_cie),
4052                                      glink_eh_frame_fde_32,
4053                                      sizeof (glink_eh_frame_fde_32));
4054     }
4055 }
4056
4057 template<int size, bool big_endian>
4058 void
4059 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4060 {
4061   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4062     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4063   if (p.second)
4064     this->ge_size_ += 16;
4065 }
4066
4067 template<int size, bool big_endian>
4068 typename Output_data_glink<size, big_endian>::Address
4069 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4070 {
4071   typename Global_entry_stub_entries::const_iterator p
4072     = this->global_entry_stubs_.find(gsym);
4073   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4074 }
4075
4076 template<int size, bool big_endian>
4077 void
4078 Output_data_glink<size, big_endian>::set_final_data_size()
4079 {
4080   unsigned int count = this->targ_->plt_entry_count();
4081   section_size_type total = 0;
4082
4083   if (count != 0)
4084     {
4085       if (size == 32)
4086         {
4087           // space for branch table
4088           total += 4 * (count - 1);
4089
4090           total += -total & 15;
4091           total += this->pltresolve_size;
4092         }
4093       else
4094         {
4095           total += this->pltresolve_size;
4096
4097           // space for branch table
4098           total += 4 * count;
4099           if (this->targ_->abiversion() < 2)
4100             {
4101               total += 4 * count;
4102               if (count > 0x8000)
4103                 total += 4 * (count - 0x8000);
4104             }
4105         }
4106     }
4107   this->end_branch_table_ = total;
4108   total = (total + 15) & -16;
4109   total += this->ge_size_;
4110
4111   this->set_data_size(total);
4112 }
4113
4114 // Write out plt and long branch stub code.
4115
4116 template<int size, bool big_endian>
4117 void
4118 Stub_table<size, big_endian>::do_write(Output_file* of)
4119 {
4120   if (this->plt_call_stubs_.empty()
4121       && this->long_branch_stubs_.empty())
4122     return;
4123
4124   const section_size_type start_off = this->offset();
4125   const section_size_type off = this->stub_offset();
4126   const section_size_type oview_size =
4127     convert_to_section_size_type(this->data_size() - (off - start_off));
4128   unsigned char* const oview = of->get_output_view(off, oview_size);
4129   unsigned char* p;
4130
4131   if (size == 64)
4132     {
4133       const Output_data_got_powerpc<size, big_endian>* got
4134         = this->targ_->got_section();
4135       Address got_os_addr = got->output_section()->address();
4136
4137       if (!this->plt_call_stubs_.empty())
4138         {
4139           // The base address of the .plt section.
4140           Address plt_base = this->targ_->plt_section()->address();
4141           Address iplt_base = invalid_address;
4142
4143           // Write out plt call stubs.
4144           typename Plt_stub_entries::const_iterator cs;
4145           for (cs = this->plt_call_stubs_.begin();
4146                cs != this->plt_call_stubs_.end();
4147                ++cs)
4148             {
4149               bool is_iplt;
4150               Address pltoff = this->plt_off(cs, &is_iplt);
4151               Address plt_addr = pltoff;
4152               if (is_iplt)
4153                 {
4154                   if (iplt_base == invalid_address)
4155                     iplt_base = this->targ_->iplt_section()->address();
4156                   plt_addr += iplt_base;
4157                 }
4158               else
4159                 plt_addr += plt_base;
4160               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4161                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4162               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4163               Address off = plt_addr - got_addr;
4164
4165               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4166                 gold_error(_("%s: linkage table error against `%s'"),
4167                            cs->first.object_->name().c_str(),
4168                            cs->first.sym_->demangled_name().c_str());
4169
4170               bool plt_load_toc = this->targ_->abiversion() < 2;
4171               bool static_chain
4172                 = plt_load_toc && parameters->options().plt_static_chain();
4173               bool thread_safe
4174                 = plt_load_toc && this->targ_->plt_thread_safe();
4175               bool use_fake_dep = false;
4176               Address cmp_branch_off = 0;
4177               if (thread_safe)
4178                 {
4179                   unsigned int pltindex
4180                     = ((pltoff - this->targ_->first_plt_entry_offset())
4181                        / this->targ_->plt_entry_size());
4182                   Address glinkoff
4183                     = (this->targ_->glink_section()->pltresolve_size
4184                        + pltindex * 8);
4185                   if (pltindex > 32768)
4186                     glinkoff += (pltindex - 32768) * 4;
4187                   Address to
4188                     = this->targ_->glink_section()->address() + glinkoff;
4189                   Address from
4190                     = (this->stub_address() + cs->second + 24
4191                        + 4 * (ha(off) != 0)
4192                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4193                        + 4 * static_chain);
4194                   cmp_branch_off = to - from;
4195                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4196                 }
4197
4198               p = oview + cs->second;
4199               if (ha(off) != 0)
4200                 {
4201                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4202                   p += 4;
4203                   write_insn<big_endian>(p, addis_11_2 + ha(off));
4204                   p += 4;
4205                   write_insn<big_endian>(p, ld_12_11 + l(off));
4206                   p += 4;
4207                   if (plt_load_toc
4208                       && ha(off + 8 + 8 * static_chain) != ha(off))
4209                     {
4210                       write_insn<big_endian>(p, addi_11_11 + l(off));
4211                       p += 4;
4212                       off = 0;
4213                     }
4214                   write_insn<big_endian>(p, mtctr_12);
4215                   p += 4;
4216                   if (plt_load_toc)
4217                     {
4218                       if (use_fake_dep)
4219                         {
4220                           write_insn<big_endian>(p, xor_2_12_12);
4221                           p += 4;
4222                           write_insn<big_endian>(p, add_11_11_2);
4223                           p += 4;
4224                         }
4225                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4226                       p += 4;
4227                       if (static_chain)
4228                         {
4229                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4230                           p += 4;
4231                         }
4232                     }
4233                 }
4234               else
4235                 {
4236                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4237                   p += 4;
4238                   write_insn<big_endian>(p, ld_12_2 + l(off));
4239                   p += 4;
4240                   if (plt_load_toc
4241                       && ha(off + 8 + 8 * static_chain) != ha(off))
4242                     {
4243                       write_insn<big_endian>(p, addi_2_2 + l(off));
4244                       p += 4;
4245                       off = 0;
4246                     }
4247                   write_insn<big_endian>(p, mtctr_12);
4248                   p += 4;
4249                   if (plt_load_toc)
4250                     {
4251                       if (use_fake_dep)
4252                         {
4253                           write_insn<big_endian>(p, xor_11_12_12);
4254                           p += 4;
4255                           write_insn<big_endian>(p, add_2_2_11);
4256                           p += 4;
4257                         }
4258                       if (static_chain)
4259                         {
4260                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4261                           p += 4;
4262                         }
4263                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4264                       p += 4;
4265                     }
4266                 }
4267               if (thread_safe && !use_fake_dep)
4268                 {
4269                   write_insn<big_endian>(p, cmpldi_2_0);
4270                   p += 4;
4271                   write_insn<big_endian>(p, bnectr_p4);
4272                   p += 4;
4273                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4274                 }
4275               else
4276                 write_insn<big_endian>(p, bctr);
4277             }
4278         }
4279
4280       // Write out long branch stubs.
4281       typename Branch_stub_entries::const_iterator bs;
4282       for (bs = this->long_branch_stubs_.begin();
4283            bs != this->long_branch_stubs_.end();
4284            ++bs)
4285         {
4286           p = oview + this->plt_size_ + bs->second;
4287           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4288           Address delta = bs->first.dest_ - loc;
4289           if (delta + (1 << 25) < 2 << 25)
4290             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4291           else
4292             {
4293               Address brlt_addr
4294                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4295               gold_assert(brlt_addr != invalid_address);
4296               brlt_addr += this->targ_->brlt_section()->address();
4297               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4298               Address brltoff = brlt_addr - got_addr;
4299               if (ha(brltoff) == 0)
4300                 {
4301                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4302                 }
4303               else
4304                 {
4305                   write_insn<big_endian>(p, addis_11_2 + ha(brltoff)),  p += 4;
4306                   write_insn<big_endian>(p, ld_12_11 + l(brltoff)),     p += 4;
4307                 }
4308               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4309               write_insn<big_endian>(p, bctr);
4310             }
4311         }
4312     }
4313   else
4314     {
4315       if (!this->plt_call_stubs_.empty())
4316         {
4317           // The base address of the .plt section.
4318           Address plt_base = this->targ_->plt_section()->address();
4319           Address iplt_base = invalid_address;
4320           // The address of _GLOBAL_OFFSET_TABLE_.
4321           Address g_o_t = invalid_address;
4322
4323           // Write out plt call stubs.
4324           typename Plt_stub_entries::const_iterator cs;
4325           for (cs = this->plt_call_stubs_.begin();
4326                cs != this->plt_call_stubs_.end();
4327                ++cs)
4328             {
4329               bool is_iplt;
4330               Address plt_addr = this->plt_off(cs, &is_iplt);
4331               if (is_iplt)
4332                 {
4333                   if (iplt_base == invalid_address)
4334                     iplt_base = this->targ_->iplt_section()->address();
4335                   plt_addr += iplt_base;
4336                 }
4337               else
4338                 plt_addr += plt_base;
4339
4340               p = oview + cs->second;
4341               if (parameters->options().output_is_position_independent())
4342                 {
4343                   Address got_addr;
4344                   const Powerpc_relobj<size, big_endian>* ppcobj
4345                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4346                        (cs->first.object_));
4347                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4348                     {
4349                       unsigned int got2 = ppcobj->got2_shndx();
4350                       got_addr = ppcobj->get_output_section_offset(got2);
4351                       gold_assert(got_addr != invalid_address);
4352                       got_addr += (ppcobj->output_section(got2)->address()
4353                                    + cs->first.addend_);
4354                     }
4355                   else
4356                     {
4357                       if (g_o_t == invalid_address)
4358                         {
4359                           const Output_data_got_powerpc<size, big_endian>* got
4360                             = this->targ_->got_section();
4361                           g_o_t = got->address() + got->g_o_t();
4362                         }
4363                       got_addr = g_o_t;
4364                     }
4365
4366                   Address off = plt_addr - got_addr;
4367                   if (ha(off) == 0)
4368                     {
4369                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4370                       write_insn<big_endian>(p +  4, mtctr_11);
4371                       write_insn<big_endian>(p +  8, bctr);
4372                     }
4373                   else
4374                     {
4375                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4376                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4377                       write_insn<big_endian>(p +  8, mtctr_11);
4378                       write_insn<big_endian>(p + 12, bctr);
4379                     }
4380                 }
4381               else
4382                 {
4383                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4384                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4385                   write_insn<big_endian>(p +  8, mtctr_11);
4386                   write_insn<big_endian>(p + 12, bctr);
4387                 }
4388             }
4389         }
4390
4391       // Write out long branch stubs.
4392       typename Branch_stub_entries::const_iterator bs;
4393       for (bs = this->long_branch_stubs_.begin();
4394            bs != this->long_branch_stubs_.end();
4395            ++bs)
4396         {
4397           p = oview + this->plt_size_ + bs->second;
4398           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4399           Address delta = bs->first.dest_ - loc;
4400           if (delta + (1 << 25) < 2 << 25)
4401             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4402           else if (!parameters->options().output_is_position_independent())
4403             {
4404               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4405               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4406               write_insn<big_endian>(p +  8, mtctr_12);
4407               write_insn<big_endian>(p + 12, bctr);
4408             }
4409           else
4410             {
4411               delta -= 8;
4412               write_insn<big_endian>(p +  0, mflr_0);
4413               write_insn<big_endian>(p +  4, bcl_20_31);
4414               write_insn<big_endian>(p +  8, mflr_12);
4415               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4416               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4417               write_insn<big_endian>(p + 20, mtlr_0);
4418               write_insn<big_endian>(p + 24, mtctr_12);
4419               write_insn<big_endian>(p + 28, bctr);
4420             }
4421         }
4422     }
4423 }
4424
4425 // Write out .glink.
4426
4427 template<int size, bool big_endian>
4428 void
4429 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4430 {
4431   const section_size_type off = this->offset();
4432   const section_size_type oview_size =
4433     convert_to_section_size_type(this->data_size());
4434   unsigned char* const oview = of->get_output_view(off, oview_size);
4435   unsigned char* p;
4436
4437   // The base address of the .plt section.
4438   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4439   Address plt_base = this->targ_->plt_section()->address();
4440
4441   if (size == 64)
4442     {
4443       if (this->end_branch_table_ != 0)
4444         {
4445           // Write pltresolve stub.
4446           p = oview;
4447           Address after_bcl = this->address() + 16;
4448           Address pltoff = plt_base - after_bcl;
4449
4450           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4451
4452           if (this->targ_->abiversion() < 2)
4453             {
4454               write_insn<big_endian>(p, mflr_12),               p += 4;
4455               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4456               write_insn<big_endian>(p, mflr_11),               p += 4;
4457               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4458               write_insn<big_endian>(p, mtlr_12),               p += 4;
4459               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4460               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4461               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4462               write_insn<big_endian>(p, mtctr_12),              p += 4;
4463               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4464             }
4465           else
4466             {
4467               write_insn<big_endian>(p, mflr_0),                p += 4;
4468               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4469               write_insn<big_endian>(p, mflr_11),               p += 4;
4470               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4471               write_insn<big_endian>(p, mtlr_0),                p += 4;
4472               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4473               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4474               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4475               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4476               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4477               write_insn<big_endian>(p, mtctr_12),              p += 4;
4478               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4479             }
4480           write_insn<big_endian>(p, bctr),                      p += 4;
4481           while (p < oview + this->pltresolve_size)
4482             write_insn<big_endian>(p, nop), p += 4;
4483
4484           // Write lazy link call stubs.
4485           uint32_t indx = 0;
4486           while (p < oview + this->end_branch_table_)
4487             {
4488               if (this->targ_->abiversion() < 2)
4489                 {
4490                   if (indx < 0x8000)
4491                     {
4492                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4493                     }
4494                   else
4495                     {
4496                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4497                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4498                     }
4499                 }
4500               uint32_t branch_off = 8 - (p - oview);
4501               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4502               indx++;
4503             }
4504         }
4505
4506       Address plt_base = this->targ_->plt_section()->address();
4507       Address iplt_base = invalid_address;
4508       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4509       Address global_entry_base = this->address() + global_entry_off;
4510       typename Global_entry_stub_entries::const_iterator ge;
4511       for (ge = this->global_entry_stubs_.begin();
4512            ge != this->global_entry_stubs_.end();
4513            ++ge)
4514         {
4515           p = oview + global_entry_off + ge->second;
4516           Address plt_addr = ge->first->plt_offset();
4517           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4518               && ge->first->can_use_relative_reloc(false))
4519             {
4520               if (iplt_base == invalid_address)
4521                 iplt_base = this->targ_->iplt_section()->address();
4522               plt_addr += iplt_base;
4523             }
4524           else
4525             plt_addr += plt_base;
4526           Address my_addr = global_entry_base + ge->second;
4527           Address off = plt_addr - my_addr;
4528
4529           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4530             gold_error(_("%s: linkage table error against `%s'"),
4531                        ge->first->object()->name().c_str(),
4532                        ge->first->demangled_name().c_str());
4533
4534           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4535           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4536           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4537           write_insn<big_endian>(p, bctr);
4538         }
4539     }
4540   else
4541     {
4542       const Output_data_got_powerpc<size, big_endian>* got
4543         = this->targ_->got_section();
4544       // The address of _GLOBAL_OFFSET_TABLE_.
4545       Address g_o_t = got->address() + got->g_o_t();
4546
4547       // Write out pltresolve branch table.
4548       p = oview;
4549       unsigned int the_end = oview_size - this->pltresolve_size;
4550       unsigned char* end_p = oview + the_end;
4551       while (p < end_p - 8 * 4)
4552         write_insn<big_endian>(p, b + end_p - p), p += 4;
4553       while (p < end_p)
4554         write_insn<big_endian>(p, nop), p += 4;
4555
4556       // Write out pltresolve call stub.
4557       if (parameters->options().output_is_position_independent())
4558         {
4559           Address res0_off = 0;
4560           Address after_bcl_off = the_end + 12;
4561           Address bcl_res0 = after_bcl_off - res0_off;
4562
4563           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4564           write_insn<big_endian>(p +  4, mflr_0);
4565           write_insn<big_endian>(p +  8, bcl_20_31);
4566           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4567           write_insn<big_endian>(p + 16, mflr_12);
4568           write_insn<big_endian>(p + 20, mtlr_0);
4569           write_insn<big_endian>(p + 24, sub_11_11_12);
4570
4571           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4572
4573           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4574           if (ha(got_bcl) == ha(got_bcl + 4))
4575             {
4576               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4577               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4578             }
4579           else
4580             {
4581               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4582               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4583             }
4584           write_insn<big_endian>(p + 40, mtctr_0);
4585           write_insn<big_endian>(p + 44, add_0_11_11);
4586           write_insn<big_endian>(p + 48, add_11_0_11);
4587           write_insn<big_endian>(p + 52, bctr);
4588           write_insn<big_endian>(p + 56, nop);
4589           write_insn<big_endian>(p + 60, nop);
4590         }
4591       else
4592         {
4593           Address res0 = this->address();
4594
4595           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4596           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4597           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4598             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4599           else
4600             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4601           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4602           write_insn<big_endian>(p + 16, mtctr_0);
4603           write_insn<big_endian>(p + 20, add_0_11_11);
4604           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4605             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4606           else
4607             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4608           write_insn<big_endian>(p + 28, add_11_0_11);
4609           write_insn<big_endian>(p + 32, bctr);
4610           write_insn<big_endian>(p + 36, nop);
4611           write_insn<big_endian>(p + 40, nop);
4612           write_insn<big_endian>(p + 44, nop);
4613           write_insn<big_endian>(p + 48, nop);
4614           write_insn<big_endian>(p + 52, nop);
4615           write_insn<big_endian>(p + 56, nop);
4616           write_insn<big_endian>(p + 60, nop);
4617         }
4618       p += 64;
4619     }
4620
4621   of->write_output_view(off, oview_size, oview);
4622 }
4623
4624
4625 // A class to handle linker generated save/restore functions.
4626
4627 template<int size, bool big_endian>
4628 class Output_data_save_res : public Output_section_data_build
4629 {
4630  public:
4631   Output_data_save_res(Symbol_table* symtab);
4632
4633  protected:
4634   // Write to a map file.
4635   void
4636   do_print_to_mapfile(Mapfile* mapfile) const
4637   { mapfile->print_output_data(this, _("** save/restore")); }
4638
4639   void
4640   do_write(Output_file*);
4641
4642  private:
4643   // The maximum size of save/restore contents.
4644   static const unsigned int savres_max = 218*4;
4645
4646   void
4647   savres_define(Symbol_table* symtab,
4648                 const char *name,
4649                 unsigned int lo, unsigned int hi,
4650                 unsigned char* write_ent(unsigned char*, int),
4651                 unsigned char* write_tail(unsigned char*, int));
4652
4653   unsigned char *contents_;
4654 };
4655
4656 template<bool big_endian>
4657 static unsigned char*
4658 savegpr0(unsigned char* p, int r)
4659 {
4660   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4661   write_insn<big_endian>(p, insn);
4662   return p + 4;
4663 }
4664
4665 template<bool big_endian>
4666 static unsigned char*
4667 savegpr0_tail(unsigned char* p, int r)
4668 {
4669   p = savegpr0<big_endian>(p, r);
4670   uint32_t insn = std_0_1 + 16;
4671   write_insn<big_endian>(p, insn);
4672   p = p + 4;
4673   write_insn<big_endian>(p, blr);
4674   return p + 4;
4675 }
4676
4677 template<bool big_endian>
4678 static unsigned char*
4679 restgpr0(unsigned char* p, int r)
4680 {
4681   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4682   write_insn<big_endian>(p, insn);
4683   return p + 4;
4684 }
4685
4686 template<bool big_endian>
4687 static unsigned char*
4688 restgpr0_tail(unsigned char* p, int r)
4689 {
4690   uint32_t insn = ld_0_1 + 16;
4691   write_insn<big_endian>(p, insn);
4692   p = p + 4;
4693   p = restgpr0<big_endian>(p, r);
4694   write_insn<big_endian>(p, mtlr_0);
4695   p = p + 4;
4696   if (r == 29)
4697     {
4698       p = restgpr0<big_endian>(p, 30);
4699       p = restgpr0<big_endian>(p, 31);
4700     }
4701   write_insn<big_endian>(p, blr);
4702   return p + 4;
4703 }
4704
4705 template<bool big_endian>
4706 static unsigned char*
4707 savegpr1(unsigned char* p, int r)
4708 {
4709   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4710   write_insn<big_endian>(p, insn);
4711   return p + 4;
4712 }
4713
4714 template<bool big_endian>
4715 static unsigned char*
4716 savegpr1_tail(unsigned char* p, int r)
4717 {
4718   p = savegpr1<big_endian>(p, r);
4719   write_insn<big_endian>(p, blr);
4720   return p + 4;
4721 }
4722
4723 template<bool big_endian>
4724 static unsigned char*
4725 restgpr1(unsigned char* p, int r)
4726 {
4727   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4728   write_insn<big_endian>(p, insn);
4729   return p + 4;
4730 }
4731
4732 template<bool big_endian>
4733 static unsigned char*
4734 restgpr1_tail(unsigned char* p, int r)
4735 {
4736   p = restgpr1<big_endian>(p, r);
4737   write_insn<big_endian>(p, blr);
4738   return p + 4;
4739 }
4740
4741 template<bool big_endian>
4742 static unsigned char*
4743 savefpr(unsigned char* p, int r)
4744 {
4745   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4746   write_insn<big_endian>(p, insn);
4747   return p + 4;
4748 }
4749
4750 template<bool big_endian>
4751 static unsigned char*
4752 savefpr0_tail(unsigned char* p, int r)
4753 {
4754   p = savefpr<big_endian>(p, r);
4755   write_insn<big_endian>(p, std_0_1 + 16);
4756   p = p + 4;
4757   write_insn<big_endian>(p, blr);
4758   return p + 4;
4759 }
4760
4761 template<bool big_endian>
4762 static unsigned char*
4763 restfpr(unsigned char* p, int r)
4764 {
4765   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4766   write_insn<big_endian>(p, insn);
4767   return p + 4;
4768 }
4769
4770 template<bool big_endian>
4771 static unsigned char*
4772 restfpr0_tail(unsigned char* p, int r)
4773 {
4774   write_insn<big_endian>(p, ld_0_1 + 16);
4775   p = p + 4;
4776   p = restfpr<big_endian>(p, r);
4777   write_insn<big_endian>(p, mtlr_0);
4778   p = p + 4;
4779   if (r == 29)
4780     {
4781       p = restfpr<big_endian>(p, 30);
4782       p = restfpr<big_endian>(p, 31);
4783     }
4784   write_insn<big_endian>(p, blr);
4785   return p + 4;
4786 }
4787
4788 template<bool big_endian>
4789 static unsigned char*
4790 savefpr1_tail(unsigned char* p, int r)
4791 {
4792   p = savefpr<big_endian>(p, r);
4793   write_insn<big_endian>(p, blr);
4794   return p + 4;
4795 }
4796
4797 template<bool big_endian>
4798 static unsigned char*
4799 restfpr1_tail(unsigned char* p, int r)
4800 {
4801   p = restfpr<big_endian>(p, r);
4802   write_insn<big_endian>(p, blr);
4803   return p + 4;
4804 }
4805
4806 template<bool big_endian>
4807 static unsigned char*
4808 savevr(unsigned char* p, int r)
4809 {
4810   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4811   write_insn<big_endian>(p, insn);
4812   p = p + 4;
4813   insn = stvx_0_12_0 + (r << 21);
4814   write_insn<big_endian>(p, insn);
4815   return p + 4;
4816 }
4817
4818 template<bool big_endian>
4819 static unsigned char*
4820 savevr_tail(unsigned char* p, int r)
4821 {
4822   p = savevr<big_endian>(p, r);
4823   write_insn<big_endian>(p, blr);
4824   return p + 4;
4825 }
4826
4827 template<bool big_endian>
4828 static unsigned char*
4829 restvr(unsigned char* p, int r)
4830 {
4831   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4832   write_insn<big_endian>(p, insn);
4833   p = p + 4;
4834   insn = lvx_0_12_0 + (r << 21);
4835   write_insn<big_endian>(p, insn);
4836   return p + 4;
4837 }
4838
4839 template<bool big_endian>
4840 static unsigned char*
4841 restvr_tail(unsigned char* p, int r)
4842 {
4843   p = restvr<big_endian>(p, r);
4844   write_insn<big_endian>(p, blr);
4845   return p + 4;
4846 }
4847
4848
4849 template<int size, bool big_endian>
4850 Output_data_save_res<size, big_endian>::Output_data_save_res(
4851     Symbol_table* symtab)
4852   : Output_section_data_build(4),
4853     contents_(NULL)
4854 {
4855   this->savres_define(symtab,
4856                       "_savegpr0_", 14, 31,
4857                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4858   this->savres_define(symtab,
4859                       "_restgpr0_", 14, 29,
4860                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4861   this->savres_define(symtab,
4862                       "_restgpr0_", 30, 31,
4863                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4864   this->savres_define(symtab,
4865                       "_savegpr1_", 14, 31,
4866                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4867   this->savres_define(symtab,
4868                       "_restgpr1_", 14, 31,
4869                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4870   this->savres_define(symtab,
4871                       "_savefpr_", 14, 31,
4872                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4873   this->savres_define(symtab,
4874                       "_restfpr_", 14, 29,
4875                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4876   this->savres_define(symtab,
4877                       "_restfpr_", 30, 31,
4878                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4879   this->savres_define(symtab,
4880                       "._savef", 14, 31,
4881                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4882   this->savres_define(symtab,
4883                       "._restf", 14, 31,
4884                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4885   this->savres_define(symtab,
4886                       "_savevr_", 20, 31,
4887                       savevr<big_endian>, savevr_tail<big_endian>);
4888   this->savres_define(symtab,
4889                       "_restvr_", 20, 31,
4890                       restvr<big_endian>, restvr_tail<big_endian>);
4891 }
4892
4893 template<int size, bool big_endian>
4894 void
4895 Output_data_save_res<size, big_endian>::savres_define(
4896     Symbol_table* symtab,
4897     const char *name,
4898     unsigned int lo, unsigned int hi,
4899     unsigned char* write_ent(unsigned char*, int),
4900     unsigned char* write_tail(unsigned char*, int))
4901 {
4902   size_t len = strlen(name);
4903   bool writing = false;
4904   char sym[16];
4905
4906   memcpy(sym, name, len);
4907   sym[len + 2] = 0;
4908
4909   for (unsigned int i = lo; i <= hi; i++)
4910     {
4911       sym[len + 0] = i / 10 + '0';
4912       sym[len + 1] = i % 10 + '0';
4913       Symbol* gsym = symtab->lookup(sym);
4914       bool refd = gsym != NULL && gsym->is_undefined();
4915       writing = writing || refd;
4916       if (writing)
4917         {
4918           if (this->contents_ == NULL)
4919             this->contents_ = new unsigned char[this->savres_max];
4920
4921           section_size_type value = this->current_data_size();
4922           unsigned char* p = this->contents_ + value;
4923           if (i != hi)
4924             p = write_ent(p, i);
4925           else
4926             p = write_tail(p, i);
4927           section_size_type cur_size = p - this->contents_;
4928           this->set_current_data_size(cur_size);
4929           if (refd)
4930             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4931                                           this, value, cur_size - value,
4932                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4933                                           elfcpp::STV_HIDDEN, 0, false, false);
4934         }
4935     }
4936 }
4937
4938 // Write out save/restore.
4939
4940 template<int size, bool big_endian>
4941 void
4942 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4943 {
4944   const section_size_type off = this->offset();
4945   const section_size_type oview_size =
4946     convert_to_section_size_type(this->data_size());
4947   unsigned char* const oview = of->get_output_view(off, oview_size);
4948   memcpy(oview, this->contents_, oview_size);
4949   of->write_output_view(off, oview_size, oview);
4950 }
4951
4952
4953 // Create the glink section.
4954
4955 template<int size, bool big_endian>
4956 void
4957 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4958 {
4959   if (this->glink_ == NULL)
4960     {
4961       this->glink_ = new Output_data_glink<size, big_endian>(this);
4962       this->glink_->add_eh_frame(layout);
4963       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4964                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4965                                       this->glink_, ORDER_TEXT, false);
4966     }
4967 }
4968
4969 // Create a PLT entry for a global symbol.
4970
4971 template<int size, bool big_endian>
4972 void
4973 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4974                                                  Layout* layout,
4975                                                  Symbol* gsym)
4976 {
4977   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4978       && gsym->can_use_relative_reloc(false))
4979     {
4980       if (this->iplt_ == NULL)
4981         this->make_iplt_section(symtab, layout);
4982       this->iplt_->add_ifunc_entry(gsym);
4983     }
4984   else
4985     {
4986       if (this->plt_ == NULL)
4987         this->make_plt_section(symtab, layout);
4988       this->plt_->add_entry(gsym);
4989     }
4990 }
4991
4992 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4993
4994 template<int size, bool big_endian>
4995 void
4996 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4997     Symbol_table* symtab,
4998     Layout* layout,
4999     Sized_relobj_file<size, big_endian>* relobj,
5000     unsigned int r_sym)
5001 {
5002   if (this->iplt_ == NULL)
5003     this->make_iplt_section(symtab, layout);
5004   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5005 }
5006
5007 // Return the number of entries in the PLT.
5008
5009 template<int size, bool big_endian>
5010 unsigned int
5011 Target_powerpc<size, big_endian>::plt_entry_count() const
5012 {
5013   if (this->plt_ == NULL)
5014     return 0;
5015   return this->plt_->entry_count();
5016 }
5017
5018 // Create a GOT entry for local dynamic __tls_get_addr calls.
5019
5020 template<int size, bool big_endian>
5021 unsigned int
5022 Target_powerpc<size, big_endian>::tlsld_got_offset(
5023     Symbol_table* symtab,
5024     Layout* layout,
5025     Sized_relobj_file<size, big_endian>* object)
5026 {
5027   if (this->tlsld_got_offset_ == -1U)
5028     {
5029       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5030       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5031       Output_data_got_powerpc<size, big_endian>* got
5032         = this->got_section(symtab, layout);
5033       unsigned int got_offset = got->add_constant_pair(0, 0);
5034       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5035                           got_offset, 0);
5036       this->tlsld_got_offset_ = got_offset;
5037     }
5038   return this->tlsld_got_offset_;
5039 }
5040
5041 // Get the Reference_flags for a particular relocation.
5042
5043 template<int size, bool big_endian>
5044 int
5045 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5046     unsigned int r_type,
5047     const Target_powerpc* target)
5048 {
5049   int ref = 0;
5050
5051   switch (r_type)
5052     {
5053     case elfcpp::R_POWERPC_NONE:
5054     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5055     case elfcpp::R_POWERPC_GNU_VTENTRY:
5056     case elfcpp::R_PPC64_TOC:
5057       // No symbol reference.
5058       break;
5059
5060     case elfcpp::R_PPC64_ADDR64:
5061     case elfcpp::R_PPC64_UADDR64:
5062     case elfcpp::R_POWERPC_ADDR32:
5063     case elfcpp::R_POWERPC_UADDR32:
5064     case elfcpp::R_POWERPC_ADDR16:
5065     case elfcpp::R_POWERPC_UADDR16:
5066     case elfcpp::R_POWERPC_ADDR16_LO:
5067     case elfcpp::R_POWERPC_ADDR16_HI:
5068     case elfcpp::R_POWERPC_ADDR16_HA:
5069       ref = Symbol::ABSOLUTE_REF;
5070       break;
5071
5072     case elfcpp::R_POWERPC_ADDR24:
5073     case elfcpp::R_POWERPC_ADDR14:
5074     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5075     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5076       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5077       break;
5078
5079     case elfcpp::R_PPC64_REL64:
5080     case elfcpp::R_POWERPC_REL32:
5081     case elfcpp::R_PPC_LOCAL24PC:
5082     case elfcpp::R_POWERPC_REL16:
5083     case elfcpp::R_POWERPC_REL16_LO:
5084     case elfcpp::R_POWERPC_REL16_HI:
5085     case elfcpp::R_POWERPC_REL16_HA:
5086       ref = Symbol::RELATIVE_REF;
5087       break;
5088
5089     case elfcpp::R_POWERPC_REL24:
5090     case elfcpp::R_PPC_PLTREL24:
5091     case elfcpp::R_POWERPC_REL14:
5092     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5093     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5094       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5095       break;
5096
5097     case elfcpp::R_POWERPC_GOT16:
5098     case elfcpp::R_POWERPC_GOT16_LO:
5099     case elfcpp::R_POWERPC_GOT16_HI:
5100     case elfcpp::R_POWERPC_GOT16_HA:
5101     case elfcpp::R_PPC64_GOT16_DS:
5102     case elfcpp::R_PPC64_GOT16_LO_DS:
5103     case elfcpp::R_PPC64_TOC16:
5104     case elfcpp::R_PPC64_TOC16_LO:
5105     case elfcpp::R_PPC64_TOC16_HI:
5106     case elfcpp::R_PPC64_TOC16_HA:
5107     case elfcpp::R_PPC64_TOC16_DS:
5108     case elfcpp::R_PPC64_TOC16_LO_DS:
5109       // Absolute in GOT.
5110       ref = Symbol::ABSOLUTE_REF;
5111       break;
5112
5113     case elfcpp::R_POWERPC_GOT_TPREL16:
5114     case elfcpp::R_POWERPC_TLS:
5115       ref = Symbol::TLS_REF;
5116       break;
5117
5118     case elfcpp::R_POWERPC_COPY:
5119     case elfcpp::R_POWERPC_GLOB_DAT:
5120     case elfcpp::R_POWERPC_JMP_SLOT:
5121     case elfcpp::R_POWERPC_RELATIVE:
5122     case elfcpp::R_POWERPC_DTPMOD:
5123     default:
5124       // Not expected.  We will give an error later.
5125       break;
5126     }
5127
5128   if (size == 64 && target->abiversion() < 2)
5129     ref |= Symbol::FUNC_DESC_ABI;
5130   return ref;
5131 }
5132
5133 // Report an unsupported relocation against a local symbol.
5134
5135 template<int size, bool big_endian>
5136 void
5137 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5138     Sized_relobj_file<size, big_endian>* object,
5139     unsigned int r_type)
5140 {
5141   gold_error(_("%s: unsupported reloc %u against local symbol"),
5142              object->name().c_str(), r_type);
5143 }
5144
5145 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5146 // dynamic linker does not support it, issue an error.
5147
5148 template<int size, bool big_endian>
5149 void
5150 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5151                                                       unsigned int r_type)
5152 {
5153   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5154
5155   // These are the relocation types supported by glibc for both 32-bit
5156   // and 64-bit powerpc.
5157   switch (r_type)
5158     {
5159     case elfcpp::R_POWERPC_NONE:
5160     case elfcpp::R_POWERPC_RELATIVE:
5161     case elfcpp::R_POWERPC_GLOB_DAT:
5162     case elfcpp::R_POWERPC_DTPMOD:
5163     case elfcpp::R_POWERPC_DTPREL:
5164     case elfcpp::R_POWERPC_TPREL:
5165     case elfcpp::R_POWERPC_JMP_SLOT:
5166     case elfcpp::R_POWERPC_COPY:
5167     case elfcpp::R_POWERPC_IRELATIVE:
5168     case elfcpp::R_POWERPC_ADDR32:
5169     case elfcpp::R_POWERPC_UADDR32:
5170     case elfcpp::R_POWERPC_ADDR24:
5171     case elfcpp::R_POWERPC_ADDR16:
5172     case elfcpp::R_POWERPC_UADDR16:
5173     case elfcpp::R_POWERPC_ADDR16_LO:
5174     case elfcpp::R_POWERPC_ADDR16_HI:
5175     case elfcpp::R_POWERPC_ADDR16_HA:
5176     case elfcpp::R_POWERPC_ADDR14:
5177     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5178     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5179     case elfcpp::R_POWERPC_REL32:
5180     case elfcpp::R_POWERPC_REL24:
5181     case elfcpp::R_POWERPC_TPREL16:
5182     case elfcpp::R_POWERPC_TPREL16_LO:
5183     case elfcpp::R_POWERPC_TPREL16_HI:
5184     case elfcpp::R_POWERPC_TPREL16_HA:
5185       return;
5186
5187     default:
5188       break;
5189     }
5190
5191   if (size == 64)
5192     {
5193       switch (r_type)
5194         {
5195           // These are the relocation types supported only on 64-bit.
5196         case elfcpp::R_PPC64_ADDR64:
5197         case elfcpp::R_PPC64_UADDR64:
5198         case elfcpp::R_PPC64_JMP_IREL:
5199         case elfcpp::R_PPC64_ADDR16_DS:
5200         case elfcpp::R_PPC64_ADDR16_LO_DS:
5201         case elfcpp::R_PPC64_ADDR16_HIGH:
5202         case elfcpp::R_PPC64_ADDR16_HIGHA:
5203         case elfcpp::R_PPC64_ADDR16_HIGHER:
5204         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5205         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5206         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5207         case elfcpp::R_PPC64_REL64:
5208         case elfcpp::R_POWERPC_ADDR30:
5209         case elfcpp::R_PPC64_TPREL16_DS:
5210         case elfcpp::R_PPC64_TPREL16_LO_DS:
5211         case elfcpp::R_PPC64_TPREL16_HIGH:
5212         case elfcpp::R_PPC64_TPREL16_HIGHA:
5213         case elfcpp::R_PPC64_TPREL16_HIGHER:
5214         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5215         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5216         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5217           return;
5218
5219         default:
5220           break;
5221         }
5222     }
5223   else
5224     {
5225       switch (r_type)
5226         {
5227           // These are the relocation types supported only on 32-bit.
5228           // ??? glibc ld.so doesn't need to support these.
5229         case elfcpp::R_POWERPC_DTPREL16:
5230         case elfcpp::R_POWERPC_DTPREL16_LO:
5231         case elfcpp::R_POWERPC_DTPREL16_HI:
5232         case elfcpp::R_POWERPC_DTPREL16_HA:
5233           return;
5234
5235         default:
5236           break;
5237         }
5238     }
5239
5240   // This prevents us from issuing more than one error per reloc
5241   // section.  But we can still wind up issuing more than one
5242   // error per object file.
5243   if (this->issued_non_pic_error_)
5244     return;
5245   gold_assert(parameters->options().output_is_position_independent());
5246   object->error(_("requires unsupported dynamic reloc; "
5247                   "recompile with -fPIC"));
5248   this->issued_non_pic_error_ = true;
5249   return;
5250 }
5251
5252 // Return whether we need to make a PLT entry for a relocation of the
5253 // given type against a STT_GNU_IFUNC symbol.
5254
5255 template<int size, bool big_endian>
5256 bool
5257 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5258      Target_powerpc<size, big_endian>* target,
5259      Sized_relobj_file<size, big_endian>* object,
5260      unsigned int r_type,
5261      bool report_err)
5262 {
5263   // In non-pic code any reference will resolve to the plt call stub
5264   // for the ifunc symbol.
5265   if ((size == 32 || target->abiversion() >= 2)
5266       && !parameters->options().output_is_position_independent())
5267     return true;
5268
5269   switch (r_type)
5270     {
5271     // Word size refs from data sections are OK, but don't need a PLT entry.
5272     case elfcpp::R_POWERPC_ADDR32:
5273     case elfcpp::R_POWERPC_UADDR32:
5274       if (size == 32)
5275         return false;
5276       break;
5277
5278     case elfcpp::R_PPC64_ADDR64:
5279     case elfcpp::R_PPC64_UADDR64:
5280       if (size == 64)
5281         return false;
5282       break;
5283
5284     // GOT refs are good, but also don't need a PLT entry.
5285     case elfcpp::R_POWERPC_GOT16:
5286     case elfcpp::R_POWERPC_GOT16_LO:
5287     case elfcpp::R_POWERPC_GOT16_HI:
5288     case elfcpp::R_POWERPC_GOT16_HA:
5289     case elfcpp::R_PPC64_GOT16_DS:
5290     case elfcpp::R_PPC64_GOT16_LO_DS:
5291       return false;
5292
5293     // Function calls are good, and these do need a PLT entry.
5294     case elfcpp::R_POWERPC_ADDR24:
5295     case elfcpp::R_POWERPC_ADDR14:
5296     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5297     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5298     case elfcpp::R_POWERPC_REL24:
5299     case elfcpp::R_PPC_PLTREL24:
5300     case elfcpp::R_POWERPC_REL14:
5301     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5302     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5303       return true;
5304
5305     default:
5306       break;
5307     }
5308
5309   // Anything else is a problem.
5310   // If we are building a static executable, the libc startup function
5311   // responsible for applying indirect function relocations is going
5312   // to complain about the reloc type.
5313   // If we are building a dynamic executable, we will have a text
5314   // relocation.  The dynamic loader will set the text segment
5315   // writable and non-executable to apply text relocations.  So we'll
5316   // segfault when trying to run the indirection function to resolve
5317   // the reloc.
5318   if (report_err)
5319     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5320                object->name().c_str(), r_type);
5321   return false;
5322 }
5323
5324 // Scan a relocation for a local symbol.
5325
5326 template<int size, bool big_endian>
5327 inline void
5328 Target_powerpc<size, big_endian>::Scan::local(
5329     Symbol_table* symtab,
5330     Layout* layout,
5331     Target_powerpc<size, big_endian>* target,
5332     Sized_relobj_file<size, big_endian>* object,
5333     unsigned int data_shndx,
5334     Output_section* output_section,
5335     const elfcpp::Rela<size, big_endian>& reloc,
5336     unsigned int r_type,
5337     const elfcpp::Sym<size, big_endian>& lsym,
5338     bool is_discarded)
5339 {
5340   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5341
5342   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5343       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5344     {
5345       this->expect_tls_get_addr_call();
5346       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5347       if (tls_type != tls::TLSOPT_NONE)
5348         this->skip_next_tls_get_addr_call();
5349     }
5350   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5351            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5352     {
5353       this->expect_tls_get_addr_call();
5354       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5355       if (tls_type != tls::TLSOPT_NONE)
5356         this->skip_next_tls_get_addr_call();
5357     }
5358
5359   Powerpc_relobj<size, big_endian>* ppc_object
5360     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5361
5362   if (is_discarded)
5363     {
5364       if (size == 64
5365           && data_shndx == ppc_object->opd_shndx()
5366           && r_type == elfcpp::R_PPC64_ADDR64)
5367         ppc_object->set_opd_discard(reloc.get_r_offset());
5368       return;
5369     }
5370
5371   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5372   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5373   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5374     {
5375       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5376       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5377                           r_type, r_sym, reloc.get_r_addend());
5378       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5379     }
5380
5381   switch (r_type)
5382     {
5383     case elfcpp::R_POWERPC_NONE:
5384     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5385     case elfcpp::R_POWERPC_GNU_VTENTRY:
5386     case elfcpp::R_PPC64_TOCSAVE:
5387     case elfcpp::R_POWERPC_TLS:
5388       break;
5389
5390     case elfcpp::R_PPC64_TOC:
5391       {
5392         Output_data_got_powerpc<size, big_endian>* got
5393           = target->got_section(symtab, layout);
5394         if (parameters->options().output_is_position_independent())
5395           {
5396             Address off = reloc.get_r_offset();
5397             if (size == 64
5398                 && target->abiversion() < 2
5399                 && data_shndx == ppc_object->opd_shndx()
5400                 && ppc_object->get_opd_discard(off - 8))
5401               break;
5402
5403             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5404             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5405             rela_dyn->add_output_section_relative(got->output_section(),
5406                                                   elfcpp::R_POWERPC_RELATIVE,
5407                                                   output_section,
5408                                                   object, data_shndx, off,
5409                                                   symobj->toc_base_offset());
5410           }
5411       }
5412       break;
5413
5414     case elfcpp::R_PPC64_ADDR64:
5415     case elfcpp::R_PPC64_UADDR64:
5416     case elfcpp::R_POWERPC_ADDR32:
5417     case elfcpp::R_POWERPC_UADDR32:
5418     case elfcpp::R_POWERPC_ADDR24:
5419     case elfcpp::R_POWERPC_ADDR16:
5420     case elfcpp::R_POWERPC_ADDR16_LO:
5421     case elfcpp::R_POWERPC_ADDR16_HI:
5422     case elfcpp::R_POWERPC_ADDR16_HA:
5423     case elfcpp::R_POWERPC_UADDR16:
5424     case elfcpp::R_PPC64_ADDR16_HIGH:
5425     case elfcpp::R_PPC64_ADDR16_HIGHA:
5426     case elfcpp::R_PPC64_ADDR16_HIGHER:
5427     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5428     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5429     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5430     case elfcpp::R_PPC64_ADDR16_DS:
5431     case elfcpp::R_PPC64_ADDR16_LO_DS:
5432     case elfcpp::R_POWERPC_ADDR14:
5433     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5434     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5435       // If building a shared library (or a position-independent
5436       // executable), we need to create a dynamic relocation for
5437       // this location.
5438       if (parameters->options().output_is_position_independent()
5439           || (size == 64 && is_ifunc && target->abiversion() < 2))
5440         {
5441           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5442                                                              is_ifunc);
5443           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5444               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5445             {
5446               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5447               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5448                                      : elfcpp::R_POWERPC_RELATIVE);
5449               rela_dyn->add_local_relative(object, r_sym, dynrel,
5450                                            output_section, data_shndx,
5451                                            reloc.get_r_offset(),
5452                                            reloc.get_r_addend(), false);
5453             }
5454           else
5455             {
5456               check_non_pic(object, r_type);
5457               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5458               rela_dyn->add_local(object, r_sym, r_type, output_section,
5459                                   data_shndx, reloc.get_r_offset(),
5460                                   reloc.get_r_addend());
5461             }
5462         }
5463       break;
5464
5465     case elfcpp::R_POWERPC_REL24:
5466     case elfcpp::R_PPC_PLTREL24:
5467     case elfcpp::R_PPC_LOCAL24PC:
5468     case elfcpp::R_POWERPC_REL14:
5469     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5470     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5471       if (!is_ifunc)
5472         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5473                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5474                             reloc.get_r_addend());
5475       break;
5476
5477     case elfcpp::R_PPC64_REL64:
5478     case elfcpp::R_POWERPC_REL32:
5479     case elfcpp::R_POWERPC_REL16:
5480     case elfcpp::R_POWERPC_REL16_LO:
5481     case elfcpp::R_POWERPC_REL16_HI:
5482     case elfcpp::R_POWERPC_REL16_HA:
5483     case elfcpp::R_POWERPC_SECTOFF:
5484     case elfcpp::R_POWERPC_SECTOFF_LO:
5485     case elfcpp::R_POWERPC_SECTOFF_HI:
5486     case elfcpp::R_POWERPC_SECTOFF_HA:
5487     case elfcpp::R_PPC64_SECTOFF_DS:
5488     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5489     case elfcpp::R_POWERPC_TPREL16:
5490     case elfcpp::R_POWERPC_TPREL16_LO:
5491     case elfcpp::R_POWERPC_TPREL16_HI:
5492     case elfcpp::R_POWERPC_TPREL16_HA:
5493     case elfcpp::R_PPC64_TPREL16_DS:
5494     case elfcpp::R_PPC64_TPREL16_LO_DS:
5495     case elfcpp::R_PPC64_TPREL16_HIGH:
5496     case elfcpp::R_PPC64_TPREL16_HIGHA:
5497     case elfcpp::R_PPC64_TPREL16_HIGHER:
5498     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5499     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5500     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5501     case elfcpp::R_POWERPC_DTPREL16:
5502     case elfcpp::R_POWERPC_DTPREL16_LO:
5503     case elfcpp::R_POWERPC_DTPREL16_HI:
5504     case elfcpp::R_POWERPC_DTPREL16_HA:
5505     case elfcpp::R_PPC64_DTPREL16_DS:
5506     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5507     case elfcpp::R_PPC64_DTPREL16_HIGH:
5508     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5509     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5510     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5511     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5512     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5513     case elfcpp::R_PPC64_TLSGD:
5514     case elfcpp::R_PPC64_TLSLD:
5515     case elfcpp::R_PPC64_ADDR64_LOCAL:
5516       break;
5517
5518     case elfcpp::R_POWERPC_GOT16:
5519     case elfcpp::R_POWERPC_GOT16_LO:
5520     case elfcpp::R_POWERPC_GOT16_HI:
5521     case elfcpp::R_POWERPC_GOT16_HA:
5522     case elfcpp::R_PPC64_GOT16_DS:
5523     case elfcpp::R_PPC64_GOT16_LO_DS:
5524       {
5525         // The symbol requires a GOT entry.
5526         Output_data_got_powerpc<size, big_endian>* got
5527           = target->got_section(symtab, layout);
5528         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5529
5530         if (!parameters->options().output_is_position_independent())
5531           {
5532             if ((size == 32 && is_ifunc)
5533                 || (size == 64 && target->abiversion() >= 2))
5534               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5535             else
5536               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5537           }
5538         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5539           {
5540             // If we are generating a shared object or a pie, this
5541             // symbol's GOT entry will be set by a dynamic relocation.
5542             unsigned int off;
5543             off = got->add_constant(0);
5544             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5545
5546             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5547                                                                is_ifunc);
5548             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5549                                    : elfcpp::R_POWERPC_RELATIVE);
5550             rela_dyn->add_local_relative(object, r_sym, dynrel,
5551                                          got, off, 0, false);
5552           }
5553       }
5554       break;
5555
5556     case elfcpp::R_PPC64_TOC16:
5557     case elfcpp::R_PPC64_TOC16_LO:
5558     case elfcpp::R_PPC64_TOC16_HI:
5559     case elfcpp::R_PPC64_TOC16_HA:
5560     case elfcpp::R_PPC64_TOC16_DS:
5561     case elfcpp::R_PPC64_TOC16_LO_DS:
5562       // We need a GOT section.
5563       target->got_section(symtab, layout);
5564       break;
5565
5566     case elfcpp::R_POWERPC_GOT_TLSGD16:
5567     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5568     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5569     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5570       {
5571         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5572         if (tls_type == tls::TLSOPT_NONE)
5573           {
5574             Output_data_got_powerpc<size, big_endian>* got
5575               = target->got_section(symtab, layout);
5576             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5577             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5578             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5579                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5580           }
5581         else if (tls_type == tls::TLSOPT_TO_LE)
5582           {
5583             // no GOT relocs needed for Local Exec.
5584           }
5585         else
5586           gold_unreachable();
5587       }
5588       break;
5589
5590     case elfcpp::R_POWERPC_GOT_TLSLD16:
5591     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5592     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5593     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5594       {
5595         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5596         if (tls_type == tls::TLSOPT_NONE)
5597           target->tlsld_got_offset(symtab, layout, object);
5598         else if (tls_type == tls::TLSOPT_TO_LE)
5599           {
5600             // no GOT relocs needed for Local Exec.
5601             if (parameters->options().emit_relocs())
5602               {
5603                 Output_section* os = layout->tls_segment()->first_section();
5604                 gold_assert(os != NULL);
5605                 os->set_needs_symtab_index();
5606               }
5607           }
5608         else
5609           gold_unreachable();
5610       }
5611       break;
5612
5613     case elfcpp::R_POWERPC_GOT_DTPREL16:
5614     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5615     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5616     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5617       {
5618         Output_data_got_powerpc<size, big_endian>* got
5619           = target->got_section(symtab, layout);
5620         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5621         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5622       }
5623       break;
5624
5625     case elfcpp::R_POWERPC_GOT_TPREL16:
5626     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5627     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5628     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5629       {
5630         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5631         if (tls_type == tls::TLSOPT_NONE)
5632           {
5633             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5634             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5635               {
5636                 Output_data_got_powerpc<size, big_endian>* got
5637                   = target->got_section(symtab, layout);
5638                 unsigned int off = got->add_constant(0);
5639                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5640
5641                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5642                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5643                                                       elfcpp::R_POWERPC_TPREL,
5644                                                       got, off, 0);
5645               }
5646           }
5647         else if (tls_type == tls::TLSOPT_TO_LE)
5648           {
5649             // no GOT relocs needed for Local Exec.
5650           }
5651         else
5652           gold_unreachable();
5653       }
5654       break;
5655
5656     default:
5657       unsupported_reloc_local(object, r_type);
5658       break;
5659     }
5660
5661   switch (r_type)
5662     {
5663     case elfcpp::R_POWERPC_GOT_TLSLD16:
5664     case elfcpp::R_POWERPC_GOT_TLSGD16:
5665     case elfcpp::R_POWERPC_GOT_TPREL16:
5666     case elfcpp::R_POWERPC_GOT_DTPREL16:
5667     case elfcpp::R_POWERPC_GOT16:
5668     case elfcpp::R_PPC64_GOT16_DS:
5669     case elfcpp::R_PPC64_TOC16:
5670     case elfcpp::R_PPC64_TOC16_DS:
5671       ppc_object->set_has_small_toc_reloc();
5672     default:
5673       break;
5674     }
5675 }
5676
5677 // Report an unsupported relocation against a global symbol.
5678
5679 template<int size, bool big_endian>
5680 void
5681 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5682     Sized_relobj_file<size, big_endian>* object,
5683     unsigned int r_type,
5684     Symbol* gsym)
5685 {
5686   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5687              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5688 }
5689
5690 // Scan a relocation for a global symbol.
5691
5692 template<int size, bool big_endian>
5693 inline void
5694 Target_powerpc<size, big_endian>::Scan::global(
5695     Symbol_table* symtab,
5696     Layout* layout,
5697     Target_powerpc<size, big_endian>* target,
5698     Sized_relobj_file<size, big_endian>* object,
5699     unsigned int data_shndx,
5700     Output_section* output_section,
5701     const elfcpp::Rela<size, big_endian>& reloc,
5702     unsigned int r_type,
5703     Symbol* gsym)
5704 {
5705   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5706     return;
5707
5708   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5709       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5710     {
5711       this->expect_tls_get_addr_call();
5712       const bool final = gsym->final_value_is_known();
5713       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5714       if (tls_type != tls::TLSOPT_NONE)
5715         this->skip_next_tls_get_addr_call();
5716     }
5717   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5718            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5719     {
5720       this->expect_tls_get_addr_call();
5721       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5722       if (tls_type != tls::TLSOPT_NONE)
5723         this->skip_next_tls_get_addr_call();
5724     }
5725
5726   Powerpc_relobj<size, big_endian>* ppc_object
5727     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5728
5729   // A STT_GNU_IFUNC symbol may require a PLT entry.
5730   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5731   bool pushed_ifunc = false;
5732   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5733     {
5734       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5735                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5736                           reloc.get_r_addend());
5737       target->make_plt_entry(symtab, layout, gsym);
5738       pushed_ifunc = true;
5739     }
5740
5741   switch (r_type)
5742     {
5743     case elfcpp::R_POWERPC_NONE:
5744     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5745     case elfcpp::R_POWERPC_GNU_VTENTRY:
5746     case elfcpp::R_PPC_LOCAL24PC:
5747     case elfcpp::R_POWERPC_TLS:
5748       break;
5749
5750     case elfcpp::R_PPC64_TOC:
5751       {
5752         Output_data_got_powerpc<size, big_endian>* got
5753           = target->got_section(symtab, layout);
5754         if (parameters->options().output_is_position_independent())
5755           {
5756             Address off = reloc.get_r_offset();
5757             if (size == 64
5758                 && data_shndx == ppc_object->opd_shndx()
5759                 && ppc_object->get_opd_discard(off - 8))
5760               break;
5761
5762             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5763             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5764             if (data_shndx != ppc_object->opd_shndx())
5765               symobj = static_cast
5766                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5767             rela_dyn->add_output_section_relative(got->output_section(),
5768                                                   elfcpp::R_POWERPC_RELATIVE,
5769                                                   output_section,
5770                                                   object, data_shndx, off,
5771                                                   symobj->toc_base_offset());
5772           }
5773       }
5774       break;
5775
5776     case elfcpp::R_PPC64_ADDR64:
5777       if (size == 64
5778           && target->abiversion() < 2
5779           && data_shndx == ppc_object->opd_shndx()
5780           && (gsym->is_defined_in_discarded_section()
5781               || gsym->object() != object))
5782         {
5783           ppc_object->set_opd_discard(reloc.get_r_offset());
5784           break;
5785         }
5786       // Fall thru
5787     case elfcpp::R_PPC64_UADDR64:
5788     case elfcpp::R_POWERPC_ADDR32:
5789     case elfcpp::R_POWERPC_UADDR32:
5790     case elfcpp::R_POWERPC_ADDR24:
5791     case elfcpp::R_POWERPC_ADDR16:
5792     case elfcpp::R_POWERPC_ADDR16_LO:
5793     case elfcpp::R_POWERPC_ADDR16_HI:
5794     case elfcpp::R_POWERPC_ADDR16_HA:
5795     case elfcpp::R_POWERPC_UADDR16:
5796     case elfcpp::R_PPC64_ADDR16_HIGH:
5797     case elfcpp::R_PPC64_ADDR16_HIGHA:
5798     case elfcpp::R_PPC64_ADDR16_HIGHER:
5799     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5800     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5801     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5802     case elfcpp::R_PPC64_ADDR16_DS:
5803     case elfcpp::R_PPC64_ADDR16_LO_DS:
5804     case elfcpp::R_POWERPC_ADDR14:
5805     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5806     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5807       {
5808         // Make a PLT entry if necessary.
5809         if (gsym->needs_plt_entry())
5810           {
5811             // Since this is not a PC-relative relocation, we may be
5812             // taking the address of a function. In that case we need to
5813             // set the entry in the dynamic symbol table to the address of
5814             // the PLT call stub.
5815             bool need_ifunc_plt = false;
5816             if ((size == 32 || target->abiversion() >= 2)
5817                 && gsym->is_from_dynobj()
5818                 && !parameters->options().output_is_position_independent())
5819               {
5820                 gsym->set_needs_dynsym_value();
5821                 need_ifunc_plt = true;
5822               }
5823             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5824               {
5825                 target->push_branch(ppc_object, data_shndx,
5826                                     reloc.get_r_offset(), r_type,
5827                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5828                                     reloc.get_r_addend());
5829                 target->make_plt_entry(symtab, layout, gsym);
5830               }
5831           }
5832         // Make a dynamic relocation if necessary.
5833         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5834             || (size == 64 && is_ifunc && target->abiversion() < 2))
5835           {
5836             if (!parameters->options().output_is_position_independent()
5837                 && gsym->may_need_copy_reloc())
5838               {
5839                 target->copy_reloc(symtab, layout, object,
5840                                    data_shndx, output_section, gsym, reloc);
5841               }
5842             else if ((((size == 32
5843                         && r_type == elfcpp::R_POWERPC_ADDR32)
5844                        || (size == 64
5845                            && r_type == elfcpp::R_PPC64_ADDR64
5846                            && target->abiversion() >= 2))
5847                       && gsym->can_use_relative_reloc(false)
5848                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5849                            && parameters->options().shared()))
5850                      || (size == 64
5851                          && r_type == elfcpp::R_PPC64_ADDR64
5852                          && target->abiversion() < 2
5853                          && (gsym->can_use_relative_reloc(false)
5854                              || data_shndx == ppc_object->opd_shndx())))
5855               {
5856                 Reloc_section* rela_dyn
5857                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5858                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5859                                        : elfcpp::R_POWERPC_RELATIVE);
5860                 rela_dyn->add_symbolless_global_addend(
5861                     gsym, dynrel, output_section, object, data_shndx,
5862                     reloc.get_r_offset(), reloc.get_r_addend());
5863               }
5864             else
5865               {
5866                 Reloc_section* rela_dyn
5867                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5868                 check_non_pic(object, r_type);
5869                 rela_dyn->add_global(gsym, r_type, output_section,
5870                                      object, data_shndx,
5871                                      reloc.get_r_offset(),
5872                                      reloc.get_r_addend());
5873               }
5874           }
5875       }
5876       break;
5877
5878     case elfcpp::R_PPC_PLTREL24:
5879     case elfcpp::R_POWERPC_REL24:
5880       if (!is_ifunc)
5881         {
5882           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5883                               r_type,
5884                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5885                               reloc.get_r_addend());
5886           if (gsym->needs_plt_entry()
5887               || (!gsym->final_value_is_known()
5888                   && (gsym->is_undefined()
5889                       || gsym->is_from_dynobj()
5890                       || gsym->is_preemptible())))
5891             target->make_plt_entry(symtab, layout, gsym);
5892         }
5893       // Fall thru
5894
5895     case elfcpp::R_PPC64_REL64:
5896     case elfcpp::R_POWERPC_REL32:
5897       // Make a dynamic relocation if necessary.
5898       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5899         {
5900           if (!parameters->options().output_is_position_independent()
5901               && gsym->may_need_copy_reloc())
5902             {
5903               target->copy_reloc(symtab, layout, object,
5904                                  data_shndx, output_section, gsym,
5905                                  reloc);
5906             }
5907           else
5908             {
5909               Reloc_section* rela_dyn
5910                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5911               check_non_pic(object, r_type);
5912               rela_dyn->add_global(gsym, r_type, output_section, object,
5913                                    data_shndx, reloc.get_r_offset(),
5914                                    reloc.get_r_addend());
5915             }
5916         }
5917       break;
5918
5919     case elfcpp::R_POWERPC_REL14:
5920     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5921     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5922       if (!is_ifunc)
5923         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5924                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5925                             reloc.get_r_addend());
5926       break;
5927
5928     case elfcpp::R_POWERPC_REL16:
5929     case elfcpp::R_POWERPC_REL16_LO:
5930     case elfcpp::R_POWERPC_REL16_HI:
5931     case elfcpp::R_POWERPC_REL16_HA:
5932     case elfcpp::R_POWERPC_SECTOFF:
5933     case elfcpp::R_POWERPC_SECTOFF_LO:
5934     case elfcpp::R_POWERPC_SECTOFF_HI:
5935     case elfcpp::R_POWERPC_SECTOFF_HA:
5936     case elfcpp::R_PPC64_SECTOFF_DS:
5937     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5938     case elfcpp::R_POWERPC_TPREL16:
5939     case elfcpp::R_POWERPC_TPREL16_LO:
5940     case elfcpp::R_POWERPC_TPREL16_HI:
5941     case elfcpp::R_POWERPC_TPREL16_HA:
5942     case elfcpp::R_PPC64_TPREL16_DS:
5943     case elfcpp::R_PPC64_TPREL16_LO_DS:
5944     case elfcpp::R_PPC64_TPREL16_HIGH:
5945     case elfcpp::R_PPC64_TPREL16_HIGHA:
5946     case elfcpp::R_PPC64_TPREL16_HIGHER:
5947     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5948     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5949     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5950     case elfcpp::R_POWERPC_DTPREL16:
5951     case elfcpp::R_POWERPC_DTPREL16_LO:
5952     case elfcpp::R_POWERPC_DTPREL16_HI:
5953     case elfcpp::R_POWERPC_DTPREL16_HA:
5954     case elfcpp::R_PPC64_DTPREL16_DS:
5955     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5956     case elfcpp::R_PPC64_DTPREL16_HIGH:
5957     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5958     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5959     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5960     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5961     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5962     case elfcpp::R_PPC64_TLSGD:
5963     case elfcpp::R_PPC64_TLSLD:
5964     case elfcpp::R_PPC64_ADDR64_LOCAL:
5965       break;
5966
5967     case elfcpp::R_POWERPC_GOT16:
5968     case elfcpp::R_POWERPC_GOT16_LO:
5969     case elfcpp::R_POWERPC_GOT16_HI:
5970     case elfcpp::R_POWERPC_GOT16_HA:
5971     case elfcpp::R_PPC64_GOT16_DS:
5972     case elfcpp::R_PPC64_GOT16_LO_DS:
5973       {
5974         // The symbol requires a GOT entry.
5975         Output_data_got_powerpc<size, big_endian>* got;
5976
5977         got = target->got_section(symtab, layout);
5978         if (gsym->final_value_is_known())
5979           {
5980             if ((size == 32 && is_ifunc)
5981                 || (size == 64 && target->abiversion() >= 2))
5982               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5983             else
5984               got->add_global(gsym, GOT_TYPE_STANDARD);
5985           }
5986         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5987           {
5988             // If we are generating a shared object or a pie, this
5989             // symbol's GOT entry will be set by a dynamic relocation.
5990             unsigned int off = got->add_constant(0);
5991             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5992
5993             Reloc_section* rela_dyn
5994               = target->rela_dyn_section(symtab, layout, is_ifunc);
5995
5996             if (gsym->can_use_relative_reloc(false)
5997                 && !((size == 32
5998                       || target->abiversion() >= 2)
5999                      && gsym->visibility() == elfcpp::STV_PROTECTED
6000                      && parameters->options().shared()))
6001               {
6002                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6003                                        : elfcpp::R_POWERPC_RELATIVE);
6004                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6005               }
6006             else
6007               {
6008                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6009                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6010               }
6011           }
6012       }
6013       break;
6014
6015     case elfcpp::R_PPC64_TOC16:
6016     case elfcpp::R_PPC64_TOC16_LO:
6017     case elfcpp::R_PPC64_TOC16_HI:
6018     case elfcpp::R_PPC64_TOC16_HA:
6019     case elfcpp::R_PPC64_TOC16_DS:
6020     case elfcpp::R_PPC64_TOC16_LO_DS:
6021       // We need a GOT section.
6022       target->got_section(symtab, layout);
6023       break;
6024
6025     case elfcpp::R_POWERPC_GOT_TLSGD16:
6026     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6027     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6028     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6029       {
6030         const bool final = gsym->final_value_is_known();
6031         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6032         if (tls_type == tls::TLSOPT_NONE)
6033           {
6034             Output_data_got_powerpc<size, big_endian>* got
6035               = target->got_section(symtab, layout);
6036             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6037             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6038                                           elfcpp::R_POWERPC_DTPMOD,
6039                                           elfcpp::R_POWERPC_DTPREL);
6040           }
6041         else if (tls_type == tls::TLSOPT_TO_IE)
6042           {
6043             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6044               {
6045                 Output_data_got_powerpc<size, big_endian>* got
6046                   = target->got_section(symtab, layout);
6047                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6048                 if (gsym->is_undefined()
6049                     || gsym->is_from_dynobj())
6050                   {
6051                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6052                                              elfcpp::R_POWERPC_TPREL);
6053                   }
6054                 else
6055                   {
6056                     unsigned int off = got->add_constant(0);
6057                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6058                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6059                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6060                                                            got, off, 0);
6061                   }
6062               }
6063           }
6064         else if (tls_type == tls::TLSOPT_TO_LE)
6065           {
6066             // no GOT relocs needed for Local Exec.
6067           }
6068         else
6069           gold_unreachable();
6070       }
6071       break;
6072
6073     case elfcpp::R_POWERPC_GOT_TLSLD16:
6074     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6075     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6076     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6077       {
6078         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6079         if (tls_type == tls::TLSOPT_NONE)
6080           target->tlsld_got_offset(symtab, layout, object);
6081         else if (tls_type == tls::TLSOPT_TO_LE)
6082           {
6083             // no GOT relocs needed for Local Exec.
6084             if (parameters->options().emit_relocs())
6085               {
6086                 Output_section* os = layout->tls_segment()->first_section();
6087                 gold_assert(os != NULL);
6088                 os->set_needs_symtab_index();
6089               }
6090           }
6091         else
6092           gold_unreachable();
6093       }
6094       break;
6095
6096     case elfcpp::R_POWERPC_GOT_DTPREL16:
6097     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6098     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6099     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6100       {
6101         Output_data_got_powerpc<size, big_endian>* got
6102           = target->got_section(symtab, layout);
6103         if (!gsym->final_value_is_known()
6104             && (gsym->is_from_dynobj()
6105                 || gsym->is_undefined()
6106                 || gsym->is_preemptible()))
6107           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6108                                    target->rela_dyn_section(layout),
6109                                    elfcpp::R_POWERPC_DTPREL);
6110         else
6111           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6112       }
6113       break;
6114
6115     case elfcpp::R_POWERPC_GOT_TPREL16:
6116     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6117     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6118     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6119       {
6120         const bool final = gsym->final_value_is_known();
6121         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6122         if (tls_type == tls::TLSOPT_NONE)
6123           {
6124             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6125               {
6126                 Output_data_got_powerpc<size, big_endian>* got
6127                   = target->got_section(symtab, layout);
6128                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6129                 if (gsym->is_undefined()
6130                     || gsym->is_from_dynobj())
6131                   {
6132                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6133                                              elfcpp::R_POWERPC_TPREL);
6134                   }
6135                 else
6136                   {
6137                     unsigned int off = got->add_constant(0);
6138                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6139                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6140                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6141                                                            got, off, 0);
6142                   }
6143               }
6144           }
6145         else if (tls_type == tls::TLSOPT_TO_LE)
6146           {
6147             // no GOT relocs needed for Local Exec.
6148           }
6149         else
6150           gold_unreachable();
6151       }
6152       break;
6153
6154     default:
6155       unsupported_reloc_global(object, r_type, gsym);
6156       break;
6157     }
6158
6159   switch (r_type)
6160     {
6161     case elfcpp::R_POWERPC_GOT_TLSLD16:
6162     case elfcpp::R_POWERPC_GOT_TLSGD16:
6163     case elfcpp::R_POWERPC_GOT_TPREL16:
6164     case elfcpp::R_POWERPC_GOT_DTPREL16:
6165     case elfcpp::R_POWERPC_GOT16:
6166     case elfcpp::R_PPC64_GOT16_DS:
6167     case elfcpp::R_PPC64_TOC16:
6168     case elfcpp::R_PPC64_TOC16_DS:
6169       ppc_object->set_has_small_toc_reloc();
6170     default:
6171       break;
6172     }
6173 }
6174
6175 // Process relocations for gc.
6176
6177 template<int size, bool big_endian>
6178 void
6179 Target_powerpc<size, big_endian>::gc_process_relocs(
6180     Symbol_table* symtab,
6181     Layout* layout,
6182     Sized_relobj_file<size, big_endian>* object,
6183     unsigned int data_shndx,
6184     unsigned int,
6185     const unsigned char* prelocs,
6186     size_t reloc_count,
6187     Output_section* output_section,
6188     bool needs_special_offset_handling,
6189     size_t local_symbol_count,
6190     const unsigned char* plocal_symbols)
6191 {
6192   typedef Target_powerpc<size, big_endian> Powerpc;
6193   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6194   Powerpc_relobj<size, big_endian>* ppc_object
6195     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6196   if (size == 64)
6197     ppc_object->set_opd_valid();
6198   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6199     {
6200       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6201       for (p = ppc_object->access_from_map()->begin();
6202            p != ppc_object->access_from_map()->end();
6203            ++p)
6204         {
6205           Address dst_off = p->first;
6206           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6207           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6208           for (s = p->second.begin(); s != p->second.end(); ++s)
6209             {
6210               Object* src_obj = s->first;
6211               unsigned int src_indx = s->second;
6212               symtab->gc()->add_reference(src_obj, src_indx,
6213                                           ppc_object, dst_indx);
6214             }
6215           p->second.clear();
6216         }
6217       ppc_object->access_from_map()->clear();
6218       ppc_object->process_gc_mark(symtab);
6219       // Don't look at .opd relocs as .opd will reference everything.
6220       return;
6221     }
6222
6223   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6224                           typename Target_powerpc::Relocatable_size_for_reloc>(
6225     symtab,
6226     layout,
6227     this,
6228     object,
6229     data_shndx,
6230     prelocs,
6231     reloc_count,
6232     output_section,
6233     needs_special_offset_handling,
6234     local_symbol_count,
6235     plocal_symbols);
6236 }
6237
6238 // Handle target specific gc actions when adding a gc reference from
6239 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6240 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6241 // section of a function descriptor.
6242
6243 template<int size, bool big_endian>
6244 void
6245 Target_powerpc<size, big_endian>::do_gc_add_reference(
6246     Symbol_table* symtab,
6247     Object* src_obj,
6248     unsigned int src_shndx,
6249     Object* dst_obj,
6250     unsigned int dst_shndx,
6251     Address dst_off) const
6252 {
6253   if (size != 64 || dst_obj->is_dynamic())
6254     return;
6255
6256   Powerpc_relobj<size, big_endian>* ppc_object
6257     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6258   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6259     {
6260       if (ppc_object->opd_valid())
6261         {
6262           dst_shndx = ppc_object->get_opd_ent(dst_off);
6263           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6264         }
6265       else
6266         {
6267           // If we haven't run scan_opd_relocs, we must delay
6268           // processing this function descriptor reference.
6269           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6270         }
6271     }
6272 }
6273
6274 // Add any special sections for this symbol to the gc work list.
6275 // For powerpc64, this adds the code section of a function
6276 // descriptor.
6277
6278 template<int size, bool big_endian>
6279 void
6280 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6281     Symbol_table* symtab,
6282     Symbol* sym) const
6283 {
6284   if (size == 64)
6285     {
6286       Powerpc_relobj<size, big_endian>* ppc_object
6287         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6288       bool is_ordinary;
6289       unsigned int shndx = sym->shndx(&is_ordinary);
6290       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6291         {
6292           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6293           Address dst_off = gsym->value();
6294           if (ppc_object->opd_valid())
6295             {
6296               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6297               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6298             }
6299           else
6300             ppc_object->add_gc_mark(dst_off);
6301         }
6302     }
6303 }
6304
6305 // For a symbol location in .opd, set LOC to the location of the
6306 // function entry.
6307
6308 template<int size, bool big_endian>
6309 void
6310 Target_powerpc<size, big_endian>::do_function_location(
6311     Symbol_location* loc) const
6312 {
6313   if (size == 64 && loc->shndx != 0)
6314     {
6315       if (loc->object->is_dynamic())
6316         {
6317           Powerpc_dynobj<size, big_endian>* ppc_object
6318             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6319           if (loc->shndx == ppc_object->opd_shndx())
6320             {
6321               Address dest_off;
6322               Address off = loc->offset - ppc_object->opd_address();
6323               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6324               loc->offset = dest_off;
6325             }
6326         }
6327       else
6328         {
6329           const Powerpc_relobj<size, big_endian>* ppc_object
6330             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6331           if (loc->shndx == ppc_object->opd_shndx())
6332             {
6333               Address dest_off;
6334               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6335               loc->offset = dest_off;
6336             }
6337         }
6338     }
6339 }
6340
6341 // Scan relocations for a section.
6342
6343 template<int size, bool big_endian>
6344 void
6345 Target_powerpc<size, big_endian>::scan_relocs(
6346     Symbol_table* symtab,
6347     Layout* layout,
6348     Sized_relobj_file<size, big_endian>* object,
6349     unsigned int data_shndx,
6350     unsigned int sh_type,
6351     const unsigned char* prelocs,
6352     size_t reloc_count,
6353     Output_section* output_section,
6354     bool needs_special_offset_handling,
6355     size_t local_symbol_count,
6356     const unsigned char* plocal_symbols)
6357 {
6358   typedef Target_powerpc<size, big_endian> Powerpc;
6359   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6360
6361   if (sh_type == elfcpp::SHT_REL)
6362     {
6363       gold_error(_("%s: unsupported REL reloc section"),
6364                  object->name().c_str());
6365       return;
6366     }
6367
6368   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6369     symtab,
6370     layout,
6371     this,
6372     object,
6373     data_shndx,
6374     prelocs,
6375     reloc_count,
6376     output_section,
6377     needs_special_offset_handling,
6378     local_symbol_count,
6379     plocal_symbols);
6380 }
6381
6382 // Functor class for processing the global symbol table.
6383 // Removes symbols defined on discarded opd entries.
6384
6385 template<bool big_endian>
6386 class Global_symbol_visitor_opd
6387 {
6388  public:
6389   Global_symbol_visitor_opd()
6390   { }
6391
6392   void
6393   operator()(Sized_symbol<64>* sym)
6394   {
6395     if (sym->has_symtab_index()
6396         || sym->source() != Symbol::FROM_OBJECT
6397         || !sym->in_real_elf())
6398       return;
6399
6400     if (sym->object()->is_dynamic())
6401       return;
6402
6403     Powerpc_relobj<64, big_endian>* symobj
6404       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6405     if (symobj->opd_shndx() == 0)
6406       return;
6407
6408     bool is_ordinary;
6409     unsigned int shndx = sym->shndx(&is_ordinary);
6410     if (shndx == symobj->opd_shndx()
6411         && symobj->get_opd_discard(sym->value()))
6412       sym->set_symtab_index(-1U);
6413   }
6414 };
6415
6416 template<int size, bool big_endian>
6417 void
6418 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6419     Layout* layout,
6420     Symbol_table* symtab)
6421 {
6422   if (size == 64)
6423     {
6424       Output_data_save_res<64, big_endian>* savres
6425         = new Output_data_save_res<64, big_endian>(symtab);
6426       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6427                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6428                                       savres, ORDER_TEXT, false);
6429     }
6430 }
6431
6432 // Sort linker created .got section first (for the header), then input
6433 // sections belonging to files using small model code.
6434
6435 template<bool big_endian>
6436 class Sort_toc_sections
6437 {
6438  public:
6439   bool
6440   operator()(const Output_section::Input_section& is1,
6441              const Output_section::Input_section& is2) const
6442   {
6443     if (!is1.is_input_section() && is2.is_input_section())
6444       return true;
6445     bool small1
6446       = (is1.is_input_section()
6447          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6448              ->has_small_toc_reloc()));
6449     bool small2
6450       = (is2.is_input_section()
6451          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6452              ->has_small_toc_reloc()));
6453     return small1 && !small2;
6454   }
6455 };
6456
6457 // Finalize the sections.
6458
6459 template<int size, bool big_endian>
6460 void
6461 Target_powerpc<size, big_endian>::do_finalize_sections(
6462     Layout* layout,
6463     const Input_objects*,
6464     Symbol_table* symtab)
6465 {
6466   if (parameters->doing_static_link())
6467     {
6468       // At least some versions of glibc elf-init.o have a strong
6469       // reference to __rela_iplt marker syms.  A weak ref would be
6470       // better..
6471       if (this->iplt_ != NULL)
6472         {
6473           Reloc_section* rel = this->iplt_->rel_plt();
6474           symtab->define_in_output_data("__rela_iplt_start", NULL,
6475                                         Symbol_table::PREDEFINED, rel, 0, 0,
6476                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6477                                         elfcpp::STV_HIDDEN, 0, false, true);
6478           symtab->define_in_output_data("__rela_iplt_end", NULL,
6479                                         Symbol_table::PREDEFINED, rel, 0, 0,
6480                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6481                                         elfcpp::STV_HIDDEN, 0, true, true);
6482         }
6483       else
6484         {
6485           symtab->define_as_constant("__rela_iplt_start", NULL,
6486                                      Symbol_table::PREDEFINED, 0, 0,
6487                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6488                                      elfcpp::STV_HIDDEN, 0, true, false);
6489           symtab->define_as_constant("__rela_iplt_end", NULL,
6490                                      Symbol_table::PREDEFINED, 0, 0,
6491                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6492                                      elfcpp::STV_HIDDEN, 0, true, false);
6493         }
6494     }
6495
6496   if (size == 64)
6497     {
6498       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6499       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6500
6501       if (!parameters->options().relocatable())
6502         {
6503           this->define_save_restore_funcs(layout, symtab);
6504
6505           // Annoyingly, we need to make these sections now whether or
6506           // not we need them.  If we delay until do_relax then we
6507           // need to mess with the relaxation machinery checkpointing.
6508           this->got_section(symtab, layout);
6509           this->make_brlt_section(layout);
6510
6511           if (parameters->options().toc_sort())
6512             {
6513               Output_section* os = this->got_->output_section();
6514               if (os != NULL && os->input_sections().size() > 1)
6515                 std::stable_sort(os->input_sections().begin(),
6516                                  os->input_sections().end(),
6517                                  Sort_toc_sections<big_endian>());
6518             }
6519         }
6520     }
6521
6522   // Fill in some more dynamic tags.
6523   Output_data_dynamic* odyn = layout->dynamic_data();
6524   if (odyn != NULL)
6525     {
6526       const Reloc_section* rel_plt = (this->plt_ == NULL
6527                                       ? NULL
6528                                       : this->plt_->rel_plt());
6529       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6530                                       this->rela_dyn_, true, size == 32);
6531
6532       if (size == 32)
6533         {
6534           if (this->got_ != NULL)
6535             {
6536               this->got_->finalize_data_size();
6537               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6538                                             this->got_, this->got_->g_o_t());
6539             }
6540         }
6541       else
6542         {
6543           if (this->glink_ != NULL)
6544             {
6545               this->glink_->finalize_data_size();
6546               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6547                                             this->glink_,
6548                                             (this->glink_->pltresolve_size
6549                                              - 32));
6550             }
6551         }
6552     }
6553
6554   // Emit any relocs we saved in an attempt to avoid generating COPY
6555   // relocs.
6556   if (this->copy_relocs_.any_saved_relocs())
6557     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6558 }
6559
6560 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6561 // reloc.
6562
6563 static bool
6564 ok_lo_toc_insn(uint32_t insn)
6565 {
6566   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6567           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6568           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6569           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6570           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6571           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6572           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6573           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6574           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6575           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6576           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6577           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6578           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6579           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6580           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6581               && (insn & 3) != 1)
6582           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6583               && ((insn & 3) == 0 || (insn & 3) == 3))
6584           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6585 }
6586
6587 // Return the value to use for a branch relocation.
6588
6589 template<int size, bool big_endian>
6590 typename Target_powerpc<size, big_endian>::Address
6591 Target_powerpc<size, big_endian>::symval_for_branch(
6592     const Symbol_table* symtab,
6593     Address value,
6594     const Sized_symbol<size>* gsym,
6595     Powerpc_relobj<size, big_endian>* object,
6596     unsigned int *dest_shndx)
6597 {
6598   if (size == 32 || this->abiversion() >= 2)
6599     gold_unreachable();
6600   *dest_shndx = 0;
6601
6602   // If the symbol is defined in an opd section, ie. is a function
6603   // descriptor, use the function descriptor code entry address
6604   Powerpc_relobj<size, big_endian>* symobj = object;
6605   if (gsym != NULL
6606       && gsym->source() != Symbol::FROM_OBJECT)
6607     return value;
6608   if (gsym != NULL)
6609     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6610   unsigned int shndx = symobj->opd_shndx();
6611   if (shndx == 0)
6612     return value;
6613   Address opd_addr = symobj->get_output_section_offset(shndx);
6614   if (opd_addr == invalid_address)
6615     return value;
6616   opd_addr += symobj->output_section_address(shndx);
6617   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6618     {
6619       Address sec_off;
6620       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6621       if (symtab->is_section_folded(symobj, *dest_shndx))
6622         {
6623           Section_id folded
6624             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6625           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6626           *dest_shndx = folded.second;
6627         }
6628       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6629       gold_assert(sec_addr != invalid_address);
6630       sec_addr += symobj->output_section(*dest_shndx)->address();
6631       value = sec_addr + sec_off;
6632     }
6633   return value;
6634 }
6635
6636 // Perform a relocation.
6637
6638 template<int size, bool big_endian>
6639 inline bool
6640 Target_powerpc<size, big_endian>::Relocate::relocate(
6641     const Relocate_info<size, big_endian>* relinfo,
6642     Target_powerpc* target,
6643     Output_section* os,
6644     size_t relnum,
6645     const elfcpp::Rela<size, big_endian>& rela,
6646     unsigned int r_type,
6647     const Sized_symbol<size>* gsym,
6648     const Symbol_value<size>* psymval,
6649     unsigned char* view,
6650     Address address,
6651     section_size_type view_size)
6652 {
6653   if (view == NULL)
6654     return true;
6655
6656   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6657     {
6658     case Track_tls::NOT_EXPECTED:
6659       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6660                              _("__tls_get_addr call lacks marker reloc"));
6661       break;
6662     case Track_tls::EXPECTED:
6663       // We have already complained.
6664       break;
6665     case Track_tls::SKIP:
6666       return true;
6667     case Track_tls::NORMAL:
6668       break;
6669     }
6670
6671   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6672   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6673   Powerpc_relobj<size, big_endian>* const object
6674     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6675   Address value = 0;
6676   bool has_plt_value = false;
6677   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6678   if ((gsym != NULL
6679        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6680        : object->local_has_plt_offset(r_sym))
6681       && (!psymval->is_ifunc_symbol()
6682           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6683     {
6684       if (size == 64
6685           && gsym != NULL
6686           && target->abiversion() >= 2
6687           && !parameters->options().output_is_position_independent()
6688           && !is_branch_reloc(r_type))
6689         {
6690           unsigned int off = target->glink_section()->find_global_entry(gsym);
6691           gold_assert(off != (unsigned int)-1);
6692           value = target->glink_section()->global_entry_address() + off;
6693         }
6694       else
6695         {
6696           Stub_table<size, big_endian>* stub_table
6697             = object->stub_table(relinfo->data_shndx);
6698           if (stub_table == NULL)
6699             {
6700               // This is a ref from a data section to an ifunc symbol.
6701               if (target->stub_tables().size() != 0)
6702                 stub_table = target->stub_tables()[0];
6703             }
6704           gold_assert(stub_table != NULL);
6705           Address off;
6706           if (gsym != NULL)
6707             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6708                                                   rela.get_r_addend());
6709           else
6710             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6711                                                   rela.get_r_addend());
6712           gold_assert(off != invalid_address);
6713           value = stub_table->stub_address() + off;
6714         }
6715       has_plt_value = true;
6716     }
6717
6718   if (r_type == elfcpp::R_POWERPC_GOT16
6719       || r_type == elfcpp::R_POWERPC_GOT16_LO
6720       || r_type == elfcpp::R_POWERPC_GOT16_HI
6721       || r_type == elfcpp::R_POWERPC_GOT16_HA
6722       || r_type == elfcpp::R_PPC64_GOT16_DS
6723       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6724     {
6725       if (gsym != NULL)
6726         {
6727           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6728           value = gsym->got_offset(GOT_TYPE_STANDARD);
6729         }
6730       else
6731         {
6732           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6733           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6734           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6735         }
6736       value -= target->got_section()->got_base_offset(object);
6737     }
6738   else if (r_type == elfcpp::R_PPC64_TOC)
6739     {
6740       value = (target->got_section()->output_section()->address()
6741                + object->toc_base_offset());
6742     }
6743   else if (gsym != NULL
6744            && (r_type == elfcpp::R_POWERPC_REL24
6745                || r_type == elfcpp::R_PPC_PLTREL24)
6746            && has_plt_value)
6747     {
6748       if (size == 64)
6749         {
6750           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6751           Valtype* wv = reinterpret_cast<Valtype*>(view);
6752           bool can_plt_call = false;
6753           if (rela.get_r_offset() + 8 <= view_size)
6754             {
6755               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6756               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6757               if ((insn & 1) != 0
6758                   && (insn2 == nop
6759                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6760                 {
6761                   elfcpp::Swap<32, big_endian>::
6762                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6763                   can_plt_call = true;
6764                 }
6765             }
6766           if (!can_plt_call)
6767             {
6768               // If we don't have a branch and link followed by a nop,
6769               // we can't go via the plt because there is no place to
6770               // put a toc restoring instruction.
6771               // Unless we know we won't be returning.
6772               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6773                 can_plt_call = true;
6774             }
6775           if (!can_plt_call)
6776             {
6777               // g++ as of 20130507 emits self-calls without a
6778               // following nop.  This is arguably wrong since we have
6779               // conflicting information.  On the one hand a global
6780               // symbol and on the other a local call sequence, but
6781               // don't error for this special case.
6782               // It isn't possible to cheaply verify we have exactly
6783               // such a call.  Allow all calls to the same section.
6784               bool ok = false;
6785               Address code = value;
6786               if (gsym->source() == Symbol::FROM_OBJECT
6787                   && gsym->object() == object)
6788                 {
6789                   unsigned int dest_shndx = 0;
6790                   if (target->abiversion() < 2)
6791                     {
6792                       Address addend = rela.get_r_addend();
6793                       Address opdent = psymval->value(object, addend);
6794                       code = target->symval_for_branch(relinfo->symtab,
6795                                                        opdent, gsym, object,
6796                                                        &dest_shndx);
6797                     }
6798                   bool is_ordinary;
6799                   if (dest_shndx == 0)
6800                     dest_shndx = gsym->shndx(&is_ordinary);
6801                   ok = dest_shndx == relinfo->data_shndx;
6802                 }
6803               if (!ok)
6804                 {
6805                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6806                                          _("call lacks nop, can't restore toc; "
6807                                            "recompile with -fPIC"));
6808                   value = code;
6809                 }
6810             }
6811         }
6812     }
6813   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6814            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6815            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6816            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6817     {
6818       // First instruction of a global dynamic sequence, arg setup insn.
6819       const bool final = gsym == NULL || gsym->final_value_is_known();
6820       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6821       enum Got_type got_type = GOT_TYPE_STANDARD;
6822       if (tls_type == tls::TLSOPT_NONE)
6823         got_type = GOT_TYPE_TLSGD;
6824       else if (tls_type == tls::TLSOPT_TO_IE)
6825         got_type = GOT_TYPE_TPREL;
6826       if (got_type != GOT_TYPE_STANDARD)
6827         {
6828           if (gsym != NULL)
6829             {
6830               gold_assert(gsym->has_got_offset(got_type));
6831               value = gsym->got_offset(got_type);
6832             }
6833           else
6834             {
6835               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6836               gold_assert(object->local_has_got_offset(r_sym, got_type));
6837               value = object->local_got_offset(r_sym, got_type);
6838             }
6839           value -= target->got_section()->got_base_offset(object);
6840         }
6841       if (tls_type == tls::TLSOPT_TO_IE)
6842         {
6843           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6844               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6845             {
6846               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6847               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6848               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6849               if (size == 32)
6850                 insn |= 32 << 26; // lwz
6851               else
6852                 insn |= 58 << 26; // ld
6853               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6854             }
6855           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6856                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6857         }
6858       else if (tls_type == tls::TLSOPT_TO_LE)
6859         {
6860           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6861               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6862             {
6863               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6864               Insn insn = addis_3_13;
6865               if (size == 32)
6866                 insn = addis_3_2;
6867               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6868               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6869               value = psymval->value(object, rela.get_r_addend());
6870             }
6871           else
6872             {
6873               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874               Insn insn = nop;
6875               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6876               r_type = elfcpp::R_POWERPC_NONE;
6877             }
6878         }
6879     }
6880   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6881            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6882            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6883            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6884     {
6885       // First instruction of a local dynamic sequence, arg setup insn.
6886       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6887       if (tls_type == tls::TLSOPT_NONE)
6888         {
6889           value = target->tlsld_got_offset();
6890           value -= target->got_section()->got_base_offset(object);
6891         }
6892       else
6893         {
6894           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6895           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6896               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6897             {
6898               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6899               Insn insn = addis_3_13;
6900               if (size == 32)
6901                 insn = addis_3_2;
6902               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6903               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6904               value = dtp_offset;
6905             }
6906           else
6907             {
6908               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6909               Insn insn = nop;
6910               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6911               r_type = elfcpp::R_POWERPC_NONE;
6912             }
6913         }
6914     }
6915   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6916            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6917            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6918            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6919     {
6920       // Accesses relative to a local dynamic sequence address,
6921       // no optimisation here.
6922       if (gsym != NULL)
6923         {
6924           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6925           value = gsym->got_offset(GOT_TYPE_DTPREL);
6926         }
6927       else
6928         {
6929           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6930           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6931           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6932         }
6933       value -= target->got_section()->got_base_offset(object);
6934     }
6935   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6936            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6937            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6938            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6939     {
6940       // First instruction of initial exec sequence.
6941       const bool final = gsym == NULL || gsym->final_value_is_known();
6942       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6943       if (tls_type == tls::TLSOPT_NONE)
6944         {
6945           if (gsym != NULL)
6946             {
6947               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6948               value = gsym->got_offset(GOT_TYPE_TPREL);
6949             }
6950           else
6951             {
6952               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6953               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6954               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6955             }
6956           value -= target->got_section()->got_base_offset(object);
6957         }
6958       else
6959         {
6960           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6961           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6962               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6963             {
6964               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6965               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6966               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6967               if (size == 32)
6968                 insn |= addis_0_2;
6969               else
6970                 insn |= addis_0_13;
6971               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6972               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6973               value = psymval->value(object, rela.get_r_addend());
6974             }
6975           else
6976             {
6977               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6978               Insn insn = nop;
6979               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6980               r_type = elfcpp::R_POWERPC_NONE;
6981             }
6982         }
6983     }
6984   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6985            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6986     {
6987       // Second instruction of a global dynamic sequence,
6988       // the __tls_get_addr call
6989       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6990       const bool final = gsym == NULL || gsym->final_value_is_known();
6991       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6992       if (tls_type != tls::TLSOPT_NONE)
6993         {
6994           if (tls_type == tls::TLSOPT_TO_IE)
6995             {
6996               Insn* iview = reinterpret_cast<Insn*>(view);
6997               Insn insn = add_3_3_13;
6998               if (size == 32)
6999                 insn = add_3_3_2;
7000               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001               r_type = elfcpp::R_POWERPC_NONE;
7002             }
7003           else
7004             {
7005               Insn* iview = reinterpret_cast<Insn*>(view);
7006               Insn insn = addi_3_3;
7007               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7008               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7009               view += 2 * big_endian;
7010               value = psymval->value(object, rela.get_r_addend());
7011             }
7012           this->skip_next_tls_get_addr_call();
7013         }
7014     }
7015   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7016            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7017     {
7018       // Second instruction of a local dynamic sequence,
7019       // the __tls_get_addr call
7020       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7021       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7022       if (tls_type == tls::TLSOPT_TO_LE)
7023         {
7024           Insn* iview = reinterpret_cast<Insn*>(view);
7025           Insn insn = addi_3_3;
7026           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7027           this->skip_next_tls_get_addr_call();
7028           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7029           view += 2 * big_endian;
7030           value = dtp_offset;
7031         }
7032     }
7033   else if (r_type == elfcpp::R_POWERPC_TLS)
7034     {
7035       // Second instruction of an initial exec sequence
7036       const bool final = gsym == NULL || gsym->final_value_is_known();
7037       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7038       if (tls_type == tls::TLSOPT_TO_LE)
7039         {
7040           Insn* iview = reinterpret_cast<Insn*>(view);
7041           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7042           unsigned int reg = size == 32 ? 2 : 13;
7043           insn = at_tls_transform(insn, reg);
7044           gold_assert(insn != 0);
7045           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7046           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7047           view += 2 * big_endian;
7048           value = psymval->value(object, rela.get_r_addend());
7049         }
7050     }
7051   else if (!has_plt_value)
7052     {
7053       Address addend = 0;
7054       unsigned int dest_shndx;
7055       if (r_type != elfcpp::R_PPC_PLTREL24)
7056         addend = rela.get_r_addend();
7057       value = psymval->value(object, addend);
7058       if (size == 64 && is_branch_reloc(r_type))
7059         {
7060           if (target->abiversion() >= 2)
7061             {
7062               if (gsym != NULL)
7063                 value += object->ppc64_local_entry_offset(gsym);
7064               else
7065                 value += object->ppc64_local_entry_offset(r_sym);
7066             }
7067           else
7068             value = target->symval_for_branch(relinfo->symtab, value,
7069                                               gsym, object, &dest_shndx);
7070         }
7071       unsigned int max_branch_offset = 0;
7072       if (r_type == elfcpp::R_POWERPC_REL24
7073           || r_type == elfcpp::R_PPC_PLTREL24
7074           || r_type == elfcpp::R_PPC_LOCAL24PC)
7075         max_branch_offset = 1 << 25;
7076       else if (r_type == elfcpp::R_POWERPC_REL14
7077                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7078                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7079         max_branch_offset = 1 << 15;
7080       if (max_branch_offset != 0
7081           && value - address + max_branch_offset >= 2 * max_branch_offset)
7082         {
7083           Stub_table<size, big_endian>* stub_table
7084             = object->stub_table(relinfo->data_shndx);
7085           if (stub_table != NULL)
7086             {
7087               Address off = stub_table->find_long_branch_entry(object, value);
7088               if (off != invalid_address)
7089                 value = (stub_table->stub_address() + stub_table->plt_size()
7090                          + off);
7091             }
7092         }
7093     }
7094
7095   switch (r_type)
7096     {
7097     case elfcpp::R_PPC64_REL64:
7098     case elfcpp::R_POWERPC_REL32:
7099     case elfcpp::R_POWERPC_REL24:
7100     case elfcpp::R_PPC_PLTREL24:
7101     case elfcpp::R_PPC_LOCAL24PC:
7102     case elfcpp::R_POWERPC_REL16:
7103     case elfcpp::R_POWERPC_REL16_LO:
7104     case elfcpp::R_POWERPC_REL16_HI:
7105     case elfcpp::R_POWERPC_REL16_HA:
7106     case elfcpp::R_POWERPC_REL14:
7107     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7108     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7109       value -= address;
7110       break;
7111
7112     case elfcpp::R_PPC64_TOC16:
7113     case elfcpp::R_PPC64_TOC16_LO:
7114     case elfcpp::R_PPC64_TOC16_HI:
7115     case elfcpp::R_PPC64_TOC16_HA:
7116     case elfcpp::R_PPC64_TOC16_DS:
7117     case elfcpp::R_PPC64_TOC16_LO_DS:
7118       // Subtract the TOC base address.
7119       value -= (target->got_section()->output_section()->address()
7120                 + object->toc_base_offset());
7121       break;
7122
7123     case elfcpp::R_POWERPC_SECTOFF:
7124     case elfcpp::R_POWERPC_SECTOFF_LO:
7125     case elfcpp::R_POWERPC_SECTOFF_HI:
7126     case elfcpp::R_POWERPC_SECTOFF_HA:
7127     case elfcpp::R_PPC64_SECTOFF_DS:
7128     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7129       if (os != NULL)
7130         value -= os->address();
7131       break;
7132
7133     case elfcpp::R_PPC64_TPREL16_DS:
7134     case elfcpp::R_PPC64_TPREL16_LO_DS:
7135     case elfcpp::R_PPC64_TPREL16_HIGH:
7136     case elfcpp::R_PPC64_TPREL16_HIGHA:
7137       if (size != 64)
7138         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7139         break;
7140     case elfcpp::R_POWERPC_TPREL16:
7141     case elfcpp::R_POWERPC_TPREL16_LO:
7142     case elfcpp::R_POWERPC_TPREL16_HI:
7143     case elfcpp::R_POWERPC_TPREL16_HA:
7144     case elfcpp::R_POWERPC_TPREL:
7145     case elfcpp::R_PPC64_TPREL16_HIGHER:
7146     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7147     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7148     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7149       // tls symbol values are relative to tls_segment()->vaddr()
7150       value -= tp_offset;
7151       break;
7152
7153     case elfcpp::R_PPC64_DTPREL16_DS:
7154     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7155     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7156     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7157     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7158     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7159       if (size != 64)
7160         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7161         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7162         break;
7163     case elfcpp::R_POWERPC_DTPREL16:
7164     case elfcpp::R_POWERPC_DTPREL16_LO:
7165     case elfcpp::R_POWERPC_DTPREL16_HI:
7166     case elfcpp::R_POWERPC_DTPREL16_HA:
7167     case elfcpp::R_POWERPC_DTPREL:
7168     case elfcpp::R_PPC64_DTPREL16_HIGH:
7169     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7170       // tls symbol values are relative to tls_segment()->vaddr()
7171       value -= dtp_offset;
7172       break;
7173
7174     case elfcpp::R_PPC64_ADDR64_LOCAL:
7175       if (gsym != NULL)
7176         value += object->ppc64_local_entry_offset(gsym);
7177       else
7178         value += object->ppc64_local_entry_offset(r_sym);
7179       break;
7180
7181     default:
7182       break;
7183     }
7184
7185   Insn branch_bit = 0;
7186   switch (r_type)
7187     {
7188     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7189     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7190       branch_bit = 1 << 21;
7191     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7192     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7193       {
7194         Insn* iview = reinterpret_cast<Insn*>(view);
7195         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7196         insn &= ~(1 << 21);
7197         insn |= branch_bit;
7198         if (this->is_isa_v2)
7199           {
7200             // Set 'a' bit.  This is 0b00010 in BO field for branch
7201             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7202             // for branch on CTR insns (BO == 1a00t or 1a01t).
7203             if ((insn & (0x14 << 21)) == (0x04 << 21))
7204               insn |= 0x02 << 21;
7205             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7206               insn |= 0x08 << 21;
7207             else
7208               break;
7209           }
7210         else
7211           {
7212             // Invert 'y' bit if not the default.
7213             if (static_cast<Signed_address>(value) < 0)
7214               insn ^= 1 << 21;
7215           }
7216         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7217       }
7218       break;
7219
7220     default:
7221       break;
7222     }
7223
7224   if (size == 64)
7225     {
7226       // Multi-instruction sequences that access the TOC can be
7227       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7228       // to             nop;           addi rb,r2,x;
7229       switch (r_type)
7230         {
7231         default:
7232           break;
7233
7234         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7235         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7236         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7237         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7238         case elfcpp::R_POWERPC_GOT16_HA:
7239         case elfcpp::R_PPC64_TOC16_HA:
7240           if (parameters->options().toc_optimize())
7241             {
7242               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7243               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7244               if ((insn & ((0x3f << 26) | 0x1f << 16))
7245                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7246                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7247                                        _("toc optimization is not supported "
7248                                          "for %#08x instruction"), insn);
7249               else if (value + 0x8000 < 0x10000)
7250                 {
7251                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7252                   return true;
7253                 }
7254             }
7255           break;
7256
7257         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7258         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7259         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7260         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7261         case elfcpp::R_POWERPC_GOT16_LO:
7262         case elfcpp::R_PPC64_GOT16_LO_DS:
7263         case elfcpp::R_PPC64_TOC16_LO:
7264         case elfcpp::R_PPC64_TOC16_LO_DS:
7265           if (parameters->options().toc_optimize())
7266             {
7267               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7268               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7269               if (!ok_lo_toc_insn(insn))
7270                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7271                                        _("toc optimization is not supported "
7272                                          "for %#08x instruction"), insn);
7273               else if (value + 0x8000 < 0x10000)
7274                 {
7275                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7276                     {
7277                       // Transform addic to addi when we change reg.
7278                       insn &= ~((0x3f << 26) | (0x1f << 16));
7279                       insn |= (14u << 26) | (2 << 16);
7280                     }
7281                   else
7282                     {
7283                       insn &= ~(0x1f << 16);
7284                       insn |= 2 << 16;
7285                     }
7286                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7287                 }
7288             }
7289           break;
7290         }
7291     }
7292
7293   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7294   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7295   switch (r_type)
7296     {
7297     case elfcpp::R_POWERPC_ADDR32:
7298     case elfcpp::R_POWERPC_UADDR32:
7299       if (size == 64)
7300         overflow = Reloc::CHECK_BITFIELD;
7301       break;
7302
7303     case elfcpp::R_POWERPC_REL32:
7304       if (size == 64)
7305         overflow = Reloc::CHECK_SIGNED;
7306       break;
7307
7308     case elfcpp::R_POWERPC_UADDR16:
7309       overflow = Reloc::CHECK_BITFIELD;
7310       break;
7311
7312     case elfcpp::R_POWERPC_ADDR16:
7313       // We really should have three separate relocations,
7314       // one for 16-bit data, one for insns with 16-bit signed fields,
7315       // and one for insns with 16-bit unsigned fields.
7316       overflow = Reloc::CHECK_BITFIELD;
7317       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7318         overflow = Reloc::CHECK_LOW_INSN;
7319       break;
7320
7321     case elfcpp::R_POWERPC_ADDR16_HI:
7322     case elfcpp::R_POWERPC_ADDR16_HA:
7323     case elfcpp::R_POWERPC_GOT16_HI:
7324     case elfcpp::R_POWERPC_GOT16_HA:
7325     case elfcpp::R_POWERPC_PLT16_HI:
7326     case elfcpp::R_POWERPC_PLT16_HA:
7327     case elfcpp::R_POWERPC_SECTOFF_HI:
7328     case elfcpp::R_POWERPC_SECTOFF_HA:
7329     case elfcpp::R_PPC64_TOC16_HI:
7330     case elfcpp::R_PPC64_TOC16_HA:
7331     case elfcpp::R_PPC64_PLTGOT16_HI:
7332     case elfcpp::R_PPC64_PLTGOT16_HA:
7333     case elfcpp::R_POWERPC_TPREL16_HI:
7334     case elfcpp::R_POWERPC_TPREL16_HA:
7335     case elfcpp::R_POWERPC_DTPREL16_HI:
7336     case elfcpp::R_POWERPC_DTPREL16_HA:
7337     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7338     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7339     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7340     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7341     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7342     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7343     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7344     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7345     case elfcpp::R_POWERPC_REL16_HI:
7346     case elfcpp::R_POWERPC_REL16_HA:
7347       if (size != 32)
7348         overflow = Reloc::CHECK_HIGH_INSN;
7349       break;
7350
7351     case elfcpp::R_POWERPC_REL16:
7352     case elfcpp::R_PPC64_TOC16:
7353     case elfcpp::R_POWERPC_GOT16:
7354     case elfcpp::R_POWERPC_SECTOFF:
7355     case elfcpp::R_POWERPC_TPREL16:
7356     case elfcpp::R_POWERPC_DTPREL16:
7357     case elfcpp::R_POWERPC_GOT_TLSGD16:
7358     case elfcpp::R_POWERPC_GOT_TLSLD16:
7359     case elfcpp::R_POWERPC_GOT_TPREL16:
7360     case elfcpp::R_POWERPC_GOT_DTPREL16:
7361       overflow = Reloc::CHECK_LOW_INSN;
7362       break;
7363
7364     case elfcpp::R_POWERPC_ADDR24:
7365     case elfcpp::R_POWERPC_ADDR14:
7366     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7367     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7368     case elfcpp::R_PPC64_ADDR16_DS:
7369     case elfcpp::R_POWERPC_REL24:
7370     case elfcpp::R_PPC_PLTREL24:
7371     case elfcpp::R_PPC_LOCAL24PC:
7372     case elfcpp::R_PPC64_TPREL16_DS:
7373     case elfcpp::R_PPC64_DTPREL16_DS:
7374     case elfcpp::R_PPC64_TOC16_DS:
7375     case elfcpp::R_PPC64_GOT16_DS:
7376     case elfcpp::R_PPC64_SECTOFF_DS:
7377     case elfcpp::R_POWERPC_REL14:
7378     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7379     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7380       overflow = Reloc::CHECK_SIGNED;
7381       break;
7382     }
7383
7384   if (overflow == Reloc::CHECK_LOW_INSN
7385       || overflow == Reloc::CHECK_HIGH_INSN)
7386     {
7387       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7388       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7389
7390       overflow = Reloc::CHECK_SIGNED;
7391       if (overflow == Reloc::CHECK_LOW_INSN
7392           ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7393              || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7394              || (insn & (0x3f << 26)) == 26u << 26 /* xori */
7395              || (insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7396           : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7397              || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7398              || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7399         overflow = Reloc::CHECK_UNSIGNED;
7400     }
7401
7402   typename Powerpc_relocate_functions<size, big_endian>::Status status
7403     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7404   switch (r_type)
7405     {
7406     case elfcpp::R_POWERPC_NONE:
7407     case elfcpp::R_POWERPC_TLS:
7408     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7409     case elfcpp::R_POWERPC_GNU_VTENTRY:
7410       break;
7411
7412     case elfcpp::R_PPC64_ADDR64:
7413     case elfcpp::R_PPC64_REL64:
7414     case elfcpp::R_PPC64_TOC:
7415     case elfcpp::R_PPC64_ADDR64_LOCAL:
7416       Reloc::addr64(view, value);
7417       break;
7418
7419     case elfcpp::R_POWERPC_TPREL:
7420     case elfcpp::R_POWERPC_DTPREL:
7421       if (size == 64)
7422         Reloc::addr64(view, value);
7423       else
7424         status = Reloc::addr32(view, value, overflow);
7425       break;
7426
7427     case elfcpp::R_PPC64_UADDR64:
7428       Reloc::addr64_u(view, value);
7429       break;
7430
7431     case elfcpp::R_POWERPC_ADDR32:
7432       status = Reloc::addr32(view, value, overflow);
7433       break;
7434
7435     case elfcpp::R_POWERPC_REL32:
7436     case elfcpp::R_POWERPC_UADDR32:
7437       status = Reloc::addr32_u(view, value, overflow);
7438       break;
7439
7440     case elfcpp::R_POWERPC_ADDR24:
7441     case elfcpp::R_POWERPC_REL24:
7442     case elfcpp::R_PPC_PLTREL24:
7443     case elfcpp::R_PPC_LOCAL24PC:
7444       status = Reloc::addr24(view, value, overflow);
7445       break;
7446
7447     case elfcpp::R_POWERPC_GOT_DTPREL16:
7448     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7449       if (size == 64)
7450         {
7451           status = Reloc::addr16_ds(view, value, overflow);
7452           break;
7453         }
7454     case elfcpp::R_POWERPC_ADDR16:
7455     case elfcpp::R_POWERPC_REL16:
7456     case elfcpp::R_PPC64_TOC16:
7457     case elfcpp::R_POWERPC_GOT16:
7458     case elfcpp::R_POWERPC_SECTOFF:
7459     case elfcpp::R_POWERPC_TPREL16:
7460     case elfcpp::R_POWERPC_DTPREL16:
7461     case elfcpp::R_POWERPC_GOT_TLSGD16:
7462     case elfcpp::R_POWERPC_GOT_TLSLD16:
7463     case elfcpp::R_POWERPC_GOT_TPREL16:
7464     case elfcpp::R_POWERPC_ADDR16_LO:
7465     case elfcpp::R_POWERPC_REL16_LO:
7466     case elfcpp::R_PPC64_TOC16_LO:
7467     case elfcpp::R_POWERPC_GOT16_LO:
7468     case elfcpp::R_POWERPC_SECTOFF_LO:
7469     case elfcpp::R_POWERPC_TPREL16_LO:
7470     case elfcpp::R_POWERPC_DTPREL16_LO:
7471     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7472     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7473     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7474       status = Reloc::addr16(view, value, overflow);
7475       break;
7476
7477     case elfcpp::R_POWERPC_UADDR16:
7478       status = Reloc::addr16_u(view, value, overflow);
7479       break;
7480
7481     case elfcpp::R_PPC64_ADDR16_HIGH:
7482     case elfcpp::R_PPC64_TPREL16_HIGH:
7483     case elfcpp::R_PPC64_DTPREL16_HIGH:
7484       if (size == 32)
7485         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7486         goto unsupp;
7487     case elfcpp::R_POWERPC_ADDR16_HI:
7488     case elfcpp::R_POWERPC_REL16_HI:
7489     case elfcpp::R_PPC64_TOC16_HI:
7490     case elfcpp::R_POWERPC_GOT16_HI:
7491     case elfcpp::R_POWERPC_SECTOFF_HI:
7492     case elfcpp::R_POWERPC_TPREL16_HI:
7493     case elfcpp::R_POWERPC_DTPREL16_HI:
7494     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7495     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7496     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7497     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7498       Reloc::addr16_hi(view, value);
7499       break;
7500
7501     case elfcpp::R_PPC64_ADDR16_HIGHA:
7502     case elfcpp::R_PPC64_TPREL16_HIGHA:
7503     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7504       if (size == 32)
7505         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7506         goto unsupp;
7507     case elfcpp::R_POWERPC_ADDR16_HA:
7508     case elfcpp::R_POWERPC_REL16_HA:
7509     case elfcpp::R_PPC64_TOC16_HA:
7510     case elfcpp::R_POWERPC_GOT16_HA:
7511     case elfcpp::R_POWERPC_SECTOFF_HA:
7512     case elfcpp::R_POWERPC_TPREL16_HA:
7513     case elfcpp::R_POWERPC_DTPREL16_HA:
7514     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7515     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7516     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7517     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7518       Reloc::addr16_ha(view, value);
7519       break;
7520
7521     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7522       if (size == 32)
7523         // R_PPC_EMB_NADDR16_LO
7524         goto unsupp;
7525     case elfcpp::R_PPC64_ADDR16_HIGHER:
7526     case elfcpp::R_PPC64_TPREL16_HIGHER:
7527       Reloc::addr16_hi2(view, value);
7528       break;
7529
7530     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7531       if (size == 32)
7532         // R_PPC_EMB_NADDR16_HI
7533         goto unsupp;
7534     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7535     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7536       Reloc::addr16_ha2(view, value);
7537       break;
7538
7539     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7540       if (size == 32)
7541         // R_PPC_EMB_NADDR16_HA
7542         goto unsupp;
7543     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7544     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7545       Reloc::addr16_hi3(view, value);
7546       break;
7547
7548     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7549       if (size == 32)
7550         // R_PPC_EMB_SDAI16
7551         goto unsupp;
7552     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7553     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7554       Reloc::addr16_ha3(view, value);
7555       break;
7556
7557     case elfcpp::R_PPC64_DTPREL16_DS:
7558     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7559       if (size == 32)
7560         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7561         goto unsupp;
7562     case elfcpp::R_PPC64_TPREL16_DS:
7563     case elfcpp::R_PPC64_TPREL16_LO_DS:
7564       if (size == 32)
7565         // R_PPC_TLSGD, R_PPC_TLSLD
7566         break;
7567     case elfcpp::R_PPC64_ADDR16_DS:
7568     case elfcpp::R_PPC64_ADDR16_LO_DS:
7569     case elfcpp::R_PPC64_TOC16_DS:
7570     case elfcpp::R_PPC64_TOC16_LO_DS:
7571     case elfcpp::R_PPC64_GOT16_DS:
7572     case elfcpp::R_PPC64_GOT16_LO_DS:
7573     case elfcpp::R_PPC64_SECTOFF_DS:
7574     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7575       status = Reloc::addr16_ds(view, value, overflow);
7576       break;
7577
7578     case elfcpp::R_POWERPC_ADDR14:
7579     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7580     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7581     case elfcpp::R_POWERPC_REL14:
7582     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7583     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7584       status = Reloc::addr14(view, value, overflow);
7585       break;
7586
7587     case elfcpp::R_POWERPC_COPY:
7588     case elfcpp::R_POWERPC_GLOB_DAT:
7589     case elfcpp::R_POWERPC_JMP_SLOT:
7590     case elfcpp::R_POWERPC_RELATIVE:
7591     case elfcpp::R_POWERPC_DTPMOD:
7592     case elfcpp::R_PPC64_JMP_IREL:
7593     case elfcpp::R_POWERPC_IRELATIVE:
7594       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7595                              _("unexpected reloc %u in object file"),
7596                              r_type);
7597       break;
7598
7599     case elfcpp::R_PPC_EMB_SDA21:
7600       if (size == 32)
7601         goto unsupp;
7602       else
7603         {
7604           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7605         }
7606       break;
7607
7608     case elfcpp::R_PPC_EMB_SDA2I16:
7609     case elfcpp::R_PPC_EMB_SDA2REL:
7610       if (size == 32)
7611         goto unsupp;
7612       // R_PPC64_TLSGD, R_PPC64_TLSLD
7613       break;
7614
7615     case elfcpp::R_POWERPC_PLT32:
7616     case elfcpp::R_POWERPC_PLTREL32:
7617     case elfcpp::R_POWERPC_PLT16_LO:
7618     case elfcpp::R_POWERPC_PLT16_HI:
7619     case elfcpp::R_POWERPC_PLT16_HA:
7620     case elfcpp::R_PPC_SDAREL16:
7621     case elfcpp::R_POWERPC_ADDR30:
7622     case elfcpp::R_PPC64_PLT64:
7623     case elfcpp::R_PPC64_PLTREL64:
7624     case elfcpp::R_PPC64_PLTGOT16:
7625     case elfcpp::R_PPC64_PLTGOT16_LO:
7626     case elfcpp::R_PPC64_PLTGOT16_HI:
7627     case elfcpp::R_PPC64_PLTGOT16_HA:
7628     case elfcpp::R_PPC64_PLT16_LO_DS:
7629     case elfcpp::R_PPC64_PLTGOT16_DS:
7630     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7631     case elfcpp::R_PPC_EMB_RELSDA:
7632     case elfcpp::R_PPC_TOC16:
7633     default:
7634     unsupp:
7635       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7636                              _("unsupported reloc %u"),
7637                              r_type);
7638       break;
7639     }
7640   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7641     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7642                            _("relocation overflow"));
7643
7644   return true;
7645 }
7646
7647 // Relocate section data.
7648
7649 template<int size, bool big_endian>
7650 void
7651 Target_powerpc<size, big_endian>::relocate_section(
7652     const Relocate_info<size, big_endian>* relinfo,
7653     unsigned int sh_type,
7654     const unsigned char* prelocs,
7655     size_t reloc_count,
7656     Output_section* output_section,
7657     bool needs_special_offset_handling,
7658     unsigned char* view,
7659     Address address,
7660     section_size_type view_size,
7661     const Reloc_symbol_changes* reloc_symbol_changes)
7662 {
7663   typedef Target_powerpc<size, big_endian> Powerpc;
7664   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7665   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7666     Powerpc_comdat_behavior;
7667
7668   gold_assert(sh_type == elfcpp::SHT_RELA);
7669
7670   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7671                          Powerpc_relocate, Powerpc_comdat_behavior>(
7672     relinfo,
7673     this,
7674     prelocs,
7675     reloc_count,
7676     output_section,
7677     needs_special_offset_handling,
7678     view,
7679     address,
7680     view_size,
7681     reloc_symbol_changes);
7682 }
7683
7684 class Powerpc_scan_relocatable_reloc
7685 {
7686 public:
7687   // Return the strategy to use for a local symbol which is not a
7688   // section symbol, given the relocation type.
7689   inline Relocatable_relocs::Reloc_strategy
7690   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7691   {
7692     if (r_type == 0 && r_sym == 0)
7693       return Relocatable_relocs::RELOC_DISCARD;
7694     return Relocatable_relocs::RELOC_COPY;
7695   }
7696
7697   // Return the strategy to use for a local symbol which is a section
7698   // symbol, given the relocation type.
7699   inline Relocatable_relocs::Reloc_strategy
7700   local_section_strategy(unsigned int, Relobj*)
7701   {
7702     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7703   }
7704
7705   // Return the strategy to use for a global symbol, given the
7706   // relocation type, the object, and the symbol index.
7707   inline Relocatable_relocs::Reloc_strategy
7708   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7709   {
7710     if (r_type == elfcpp::R_PPC_PLTREL24)
7711       return Relocatable_relocs::RELOC_SPECIAL;
7712     return Relocatable_relocs::RELOC_COPY;
7713   }
7714 };
7715
7716 // Scan the relocs during a relocatable link.
7717
7718 template<int size, bool big_endian>
7719 void
7720 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7721     Symbol_table* symtab,
7722     Layout* layout,
7723     Sized_relobj_file<size, big_endian>* object,
7724     unsigned int data_shndx,
7725     unsigned int sh_type,
7726     const unsigned char* prelocs,
7727     size_t reloc_count,
7728     Output_section* output_section,
7729     bool needs_special_offset_handling,
7730     size_t local_symbol_count,
7731     const unsigned char* plocal_symbols,
7732     Relocatable_relocs* rr)
7733 {
7734   gold_assert(sh_type == elfcpp::SHT_RELA);
7735
7736   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7737                                 Powerpc_scan_relocatable_reloc>(
7738     symtab,
7739     layout,
7740     object,
7741     data_shndx,
7742     prelocs,
7743     reloc_count,
7744     output_section,
7745     needs_special_offset_handling,
7746     local_symbol_count,
7747     plocal_symbols,
7748     rr);
7749 }
7750
7751 // Emit relocations for a section.
7752 // This is a modified version of the function by the same name in
7753 // target-reloc.h.  Using relocate_special_relocatable for
7754 // R_PPC_PLTREL24 would require duplication of the entire body of the
7755 // loop, so we may as well duplicate the whole thing.
7756
7757 template<int size, bool big_endian>
7758 void
7759 Target_powerpc<size, big_endian>::relocate_relocs(
7760     const Relocate_info<size, big_endian>* relinfo,
7761     unsigned int sh_type,
7762     const unsigned char* prelocs,
7763     size_t reloc_count,
7764     Output_section* output_section,
7765     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7766     const Relocatable_relocs* rr,
7767     unsigned char*,
7768     Address view_address,
7769     section_size_type,
7770     unsigned char* reloc_view,
7771     section_size_type reloc_view_size)
7772 {
7773   gold_assert(sh_type == elfcpp::SHT_RELA);
7774
7775   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7776     Reltype;
7777   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7778     Reltype_write;
7779   const int reloc_size
7780     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7781
7782   Powerpc_relobj<size, big_endian>* const object
7783     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7784   const unsigned int local_count = object->local_symbol_count();
7785   unsigned int got2_shndx = object->got2_shndx();
7786   Address got2_addend = 0;
7787   if (got2_shndx != 0)
7788     {
7789       got2_addend = object->get_output_section_offset(got2_shndx);
7790       gold_assert(got2_addend != invalid_address);
7791     }
7792
7793   unsigned char* pwrite = reloc_view;
7794   bool zap_next = false;
7795   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7796     {
7797       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7798       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7799         continue;
7800
7801       Reltype reloc(prelocs);
7802       Reltype_write reloc_write(pwrite);
7803
7804       Address offset = reloc.get_r_offset();
7805       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7806       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7807       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7808       const unsigned int orig_r_sym = r_sym;
7809       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7810         = reloc.get_r_addend();
7811       const Symbol* gsym = NULL;
7812
7813       if (zap_next)
7814         {
7815           // We could arrange to discard these and other relocs for
7816           // tls optimised sequences in the strategy methods, but for
7817           // now do as BFD ld does.
7818           r_type = elfcpp::R_POWERPC_NONE;
7819           zap_next = false;
7820         }
7821
7822       // Get the new symbol index.
7823       if (r_sym < local_count)
7824         {
7825           switch (strategy)
7826             {
7827             case Relocatable_relocs::RELOC_COPY:
7828             case Relocatable_relocs::RELOC_SPECIAL:
7829               if (r_sym != 0)
7830                 {
7831                   r_sym = object->symtab_index(r_sym);
7832                   gold_assert(r_sym != -1U);
7833                 }
7834               break;
7835
7836             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7837               {
7838                 // We are adjusting a section symbol.  We need to find
7839                 // the symbol table index of the section symbol for
7840                 // the output section corresponding to input section
7841                 // in which this symbol is defined.
7842                 gold_assert(r_sym < local_count);
7843                 bool is_ordinary;
7844                 unsigned int shndx =
7845                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7846                 gold_assert(is_ordinary);
7847                 Output_section* os = object->output_section(shndx);
7848                 gold_assert(os != NULL);
7849                 gold_assert(os->needs_symtab_index());
7850                 r_sym = os->symtab_index();
7851               }
7852               break;
7853
7854             default:
7855               gold_unreachable();
7856             }
7857         }
7858       else
7859         {
7860           gsym = object->global_symbol(r_sym);
7861           gold_assert(gsym != NULL);
7862           if (gsym->is_forwarder())
7863             gsym = relinfo->symtab->resolve_forwards(gsym);
7864
7865           gold_assert(gsym->has_symtab_index());
7866           r_sym = gsym->symtab_index();
7867         }
7868
7869       // Get the new offset--the location in the output section where
7870       // this relocation should be applied.
7871       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7872         offset += offset_in_output_section;
7873       else
7874         {
7875           section_offset_type sot_offset =
7876             convert_types<section_offset_type, Address>(offset);
7877           section_offset_type new_sot_offset =
7878             output_section->output_offset(object, relinfo->data_shndx,
7879                                           sot_offset);
7880           gold_assert(new_sot_offset != -1);
7881           offset = new_sot_offset;
7882         }
7883
7884       // In an object file, r_offset is an offset within the section.
7885       // In an executable or dynamic object, generated by
7886       // --emit-relocs, r_offset is an absolute address.
7887       if (!parameters->options().relocatable())
7888         {
7889           offset += view_address;
7890           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7891             offset -= offset_in_output_section;
7892         }
7893
7894       // Handle the reloc addend based on the strategy.
7895       if (strategy == Relocatable_relocs::RELOC_COPY)
7896         ;
7897       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7898         {
7899           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7900           addend = psymval->value(object, addend);
7901         }
7902       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7903         {
7904           if (addend >= 32768)
7905             addend += got2_addend;
7906         }
7907       else
7908         gold_unreachable();
7909
7910       if (!parameters->options().relocatable())
7911         {
7912           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7913               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7914               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7915               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7916             {
7917               // First instruction of a global dynamic sequence,
7918               // arg setup insn.
7919               const bool final = gsym == NULL || gsym->final_value_is_known();
7920               switch (this->optimize_tls_gd(final))
7921                 {
7922                 case tls::TLSOPT_TO_IE:
7923                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7924                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7925                   break;
7926                 case tls::TLSOPT_TO_LE:
7927                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7928                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7929                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7930                   else
7931                     {
7932                       r_type = elfcpp::R_POWERPC_NONE;
7933                       offset -= 2 * big_endian;
7934                     }
7935                   break;
7936                 default:
7937                   break;
7938                 }
7939             }
7940           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7941                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7942                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7943                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7944             {
7945               // First instruction of a local dynamic sequence,
7946               // arg setup insn.
7947               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7948                 {
7949                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7950                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7951                     {
7952                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7953                       const Output_section* os = relinfo->layout->tls_segment()
7954                         ->first_section();
7955                       gold_assert(os != NULL);
7956                       gold_assert(os->needs_symtab_index());
7957                       r_sym = os->symtab_index();
7958                       addend = dtp_offset;
7959                     }
7960                   else
7961                     {
7962                       r_type = elfcpp::R_POWERPC_NONE;
7963                       offset -= 2 * big_endian;
7964                     }
7965                 }
7966             }
7967           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7968                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7969                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7970                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7971             {
7972               // First instruction of initial exec sequence.
7973               const bool final = gsym == NULL || gsym->final_value_is_known();
7974               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7975                 {
7976                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7977                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7978                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7979                   else
7980                     {
7981                       r_type = elfcpp::R_POWERPC_NONE;
7982                       offset -= 2 * big_endian;
7983                     }
7984                 }
7985             }
7986           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7987                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7988             {
7989               // Second instruction of a global dynamic sequence,
7990               // the __tls_get_addr call
7991               const bool final = gsym == NULL || gsym->final_value_is_known();
7992               switch (this->optimize_tls_gd(final))
7993                 {
7994                 case tls::TLSOPT_TO_IE:
7995                   r_type = elfcpp::R_POWERPC_NONE;
7996                   zap_next = true;
7997                   break;
7998                 case tls::TLSOPT_TO_LE:
7999                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8000                   offset += 2 * big_endian;
8001                   zap_next = true;
8002                   break;
8003                 default:
8004                   break;
8005                 }
8006             }
8007           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8008                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8009             {
8010               // Second instruction of a local dynamic sequence,
8011               // the __tls_get_addr call
8012               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8013                 {
8014                   const Output_section* os = relinfo->layout->tls_segment()
8015                     ->first_section();
8016                   gold_assert(os != NULL);
8017                   gold_assert(os->needs_symtab_index());
8018                   r_sym = os->symtab_index();
8019                   addend = dtp_offset;
8020                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8021                   offset += 2 * big_endian;
8022                   zap_next = true;
8023                 }
8024             }
8025           else if (r_type == elfcpp::R_POWERPC_TLS)
8026             {
8027               // Second instruction of an initial exec sequence
8028               const bool final = gsym == NULL || gsym->final_value_is_known();
8029               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8030                 {
8031                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8032                   offset += 2 * big_endian;
8033                 }
8034             }
8035         }
8036
8037       reloc_write.put_r_offset(offset);
8038       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8039       reloc_write.put_r_addend(addend);
8040
8041       pwrite += reloc_size;
8042     }
8043
8044   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8045               == reloc_view_size);
8046 }
8047
8048 // Return the value to use for a dynamic symbol which requires special
8049 // treatment.  This is how we support equality comparisons of function
8050 // pointers across shared library boundaries, as described in the
8051 // processor specific ABI supplement.
8052
8053 template<int size, bool big_endian>
8054 uint64_t
8055 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8056 {
8057   if (size == 32)
8058     {
8059       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8060       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8061            p != this->stub_tables_.end();
8062            ++p)
8063         {
8064           Address off = (*p)->find_plt_call_entry(gsym);
8065           if (off != invalid_address)
8066             return (*p)->stub_address() + off;
8067         }
8068     }
8069   else if (this->abiversion() >= 2)
8070     {
8071       unsigned int off = this->glink_section()->find_global_entry(gsym);
8072       if (off != (unsigned int)-1)
8073         return this->glink_section()->global_entry_address() + off;
8074     }
8075   gold_unreachable();
8076 }
8077
8078 // Return the PLT address to use for a local symbol.
8079 template<int size, bool big_endian>
8080 uint64_t
8081 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8082     const Relobj* object,
8083     unsigned int symndx) const
8084 {
8085   if (size == 32)
8086     {
8087       const Sized_relobj<size, big_endian>* relobj
8088         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8089       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8090            p != this->stub_tables_.end();
8091            ++p)
8092         {
8093           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8094                                                   symndx);
8095           if (off != invalid_address)
8096             return (*p)->stub_address() + off;
8097         }
8098     }
8099   gold_unreachable();
8100 }
8101
8102 // Return the PLT address to use for a global symbol.
8103 template<int size, bool big_endian>
8104 uint64_t
8105 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8106     const Symbol* gsym) const
8107 {
8108   if (size == 32)
8109     {
8110       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8111            p != this->stub_tables_.end();
8112            ++p)
8113         {
8114           Address off = (*p)->find_plt_call_entry(gsym);
8115           if (off != invalid_address)
8116             return (*p)->stub_address() + off;
8117         }
8118     }
8119   else if (this->abiversion() >= 2)
8120     {
8121       unsigned int off = this->glink_section()->find_global_entry(gsym);
8122       if (off != (unsigned int)-1)
8123         return this->glink_section()->global_entry_address() + off;
8124     }
8125   gold_unreachable();
8126 }
8127
8128 // Return the offset to use for the GOT_INDX'th got entry which is
8129 // for a local tls symbol specified by OBJECT, SYMNDX.
8130 template<int size, bool big_endian>
8131 int64_t
8132 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8133     const Relobj* object,
8134     unsigned int symndx,
8135     unsigned int got_indx) const
8136 {
8137   const Powerpc_relobj<size, big_endian>* ppc_object
8138     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8139   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8140     {
8141       for (Got_type got_type = GOT_TYPE_TLSGD;
8142            got_type <= GOT_TYPE_TPREL;
8143            got_type = Got_type(got_type + 1))
8144         if (ppc_object->local_has_got_offset(symndx, got_type))
8145           {
8146             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8147             if (got_type == GOT_TYPE_TLSGD)
8148               off += size / 8;
8149             if (off == got_indx * (size / 8))
8150               {
8151                 if (got_type == GOT_TYPE_TPREL)
8152                   return -tp_offset;
8153                 else
8154                   return -dtp_offset;
8155               }
8156           }
8157     }
8158   gold_unreachable();
8159 }
8160
8161 // Return the offset to use for the GOT_INDX'th got entry which is
8162 // for global tls symbol GSYM.
8163 template<int size, bool big_endian>
8164 int64_t
8165 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8166     Symbol* gsym,
8167     unsigned int got_indx) const
8168 {
8169   if (gsym->type() == elfcpp::STT_TLS)
8170     {
8171       for (Got_type got_type = GOT_TYPE_TLSGD;
8172            got_type <= GOT_TYPE_TPREL;
8173            got_type = Got_type(got_type + 1))
8174         if (gsym->has_got_offset(got_type))
8175           {
8176             unsigned int off = gsym->got_offset(got_type);
8177             if (got_type == GOT_TYPE_TLSGD)
8178               off += size / 8;
8179             if (off == got_indx * (size / 8))
8180               {
8181                 if (got_type == GOT_TYPE_TPREL)
8182                   return -tp_offset;
8183                 else
8184                   return -dtp_offset;
8185               }
8186           }
8187     }
8188   gold_unreachable();
8189 }
8190
8191 // The selector for powerpc object files.
8192
8193 template<int size, bool big_endian>
8194 class Target_selector_powerpc : public Target_selector
8195 {
8196 public:
8197   Target_selector_powerpc()
8198     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8199                       size, big_endian,
8200                       (size == 64
8201                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8202                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8203                       (size == 64
8204                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8205                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8206   { }
8207
8208   virtual Target*
8209   do_instantiate_target()
8210   { return new Target_powerpc<size, big_endian>(); }
8211 };
8212
8213 Target_selector_powerpc<32, true> target_selector_ppc32;
8214 Target_selector_powerpc<32, false> target_selector_ppc32le;
8215 Target_selector_powerpc<64, true> target_selector_ppc64;
8216 Target_selector_powerpc<64, false> target_selector_ppc64le;
8217
8218 // Instantiate these constants for -O0
8219 template<int size, bool big_endian>
8220 const int Output_data_glink<size, big_endian>::pltresolve_size;
8221 template<int size, bool big_endian>
8222 const typename Output_data_glink<size, big_endian>::Address
8223   Output_data_glink<size, big_endian>::invalid_address;
8224 template<int size, bool big_endian>
8225 const typename Stub_table<size, big_endian>::Address
8226   Stub_table<size, big_endian>::invalid_address;
8227 template<int size, bool big_endian>
8228 const typename Target_powerpc<size, big_endian>::Address
8229   Target_powerpc<size, big_endian>::invalid_address;
8230
8231 } // End anonymous namespace.