PR21503, Gold doesn't create linker stub symbols on ppc64
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2017 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Stub_table_owner()
74     : output_section(NULL), owner(NULL)
75   { }
76
77   Output_section* output_section;
78   const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93   typedef Unordered_map<Address, Section_refs> Access_from;
94
95   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98       uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99       has_small_toc_reloc_(false), opd_valid_(false),
100       e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101       access_from_map_(), has14_(), stub_table_index_(), st_other_()
102   {
103     this->set_abiversion(0);
104   }
105
106   ~Powerpc_relobj()
107   { }
108
109   // Read the symbols then set up st_other vector.
110   void
111   do_read_symbols(Read_symbols_data*);
112
113   // Arrange to always relocate .toc first.
114   virtual void
115   do_relocate_sections(
116       const Symbol_table* symtab, const Layout* layout,
117       const unsigned char* pshdrs, Output_file* of,
118       typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120   // The .toc section index.
121   unsigned int
122   toc_shndx() const
123   {
124     return this->toc_;
125   }
126
127   // Mark .toc entry at OFF as not optimizable.
128   void
129   set_no_toc_opt(Address off)
130   {
131     if (this->no_toc_opt_.empty())
132       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133                                / (size / 8));
134     off /= size / 8;
135     if (off < this->no_toc_opt_.size())
136       this->no_toc_opt_[off] = true;
137   }
138
139   // Mark the entire .toc as not optimizable.
140   void
141   set_no_toc_opt()
142   {
143     this->no_toc_opt_.resize(1);
144     this->no_toc_opt_[0] = true;
145   }
146
147   // Return true if code using the .toc entry at OFF should not be edited.
148   bool
149   no_toc_opt(Address off) const
150   {
151     if (this->no_toc_opt_.empty())
152       return false;
153     off /= size / 8;
154     if (off >= this->no_toc_opt_.size())
155       return true;
156     return this->no_toc_opt_[off];
157   }
158
159   // The .got2 section shndx.
160   unsigned int
161   got2_shndx() const
162   {
163     if (size == 32)
164       return this->special_;
165     else
166       return 0;
167   }
168
169   // The .opd section shndx.
170   unsigned int
171   opd_shndx() const
172   {
173     if (size == 32)
174       return 0;
175     else
176       return this->special_;
177   }
178
179   // Init OPD entry arrays.
180   void
181   init_opd(size_t opd_size)
182   {
183     size_t count = this->opd_ent_ndx(opd_size);
184     this->opd_ent_.resize(count);
185   }
186
187   // Return section and offset of function entry for .opd + R_OFF.
188   unsigned int
189   get_opd_ent(Address r_off, Address* value = NULL) const
190   {
191     size_t ndx = this->opd_ent_ndx(r_off);
192     gold_assert(ndx < this->opd_ent_.size());
193     gold_assert(this->opd_ent_[ndx].shndx != 0);
194     if (value != NULL)
195       *value = this->opd_ent_[ndx].off;
196     return this->opd_ent_[ndx].shndx;
197   }
198
199   // Set section and offset of function entry for .opd + R_OFF.
200   void
201   set_opd_ent(Address r_off, unsigned int shndx, Address value)
202   {
203     size_t ndx = this->opd_ent_ndx(r_off);
204     gold_assert(ndx < this->opd_ent_.size());
205     this->opd_ent_[ndx].shndx = shndx;
206     this->opd_ent_[ndx].off = value;
207   }
208
209   // Return discard flag for .opd + R_OFF.
210   bool
211   get_opd_discard(Address r_off) const
212   {
213     size_t ndx = this->opd_ent_ndx(r_off);
214     gold_assert(ndx < this->opd_ent_.size());
215     return this->opd_ent_[ndx].discard;
216   }
217
218   // Set discard flag for .opd + R_OFF.
219   void
220   set_opd_discard(Address r_off)
221   {
222     size_t ndx = this->opd_ent_ndx(r_off);
223     gold_assert(ndx < this->opd_ent_.size());
224     this->opd_ent_[ndx].discard = true;
225   }
226
227   bool
228   opd_valid() const
229   { return this->opd_valid_; }
230
231   void
232   set_opd_valid()
233   { this->opd_valid_ = true; }
234
235   // Examine .rela.opd to build info about function entry points.
236   void
237   scan_opd_relocs(size_t reloc_count,
238                   const unsigned char* prelocs,
239                   const unsigned char* plocal_syms);
240
241   // Returns true if a code sequence loading a TOC entry can be
242   // converted into code calculating a TOC pointer relative offset.
243   bool
244   make_toc_relative(Target_powerpc<size, big_endian>* target,
245                     Address* value);
246
247   // Perform the Sized_relobj_file method, then set up opd info from
248   // .opd relocs.
249   void
250   do_read_relocs(Read_relocs_data*);
251
252   bool
253   do_find_special_sections(Read_symbols_data* sd);
254
255   // Adjust this local symbol value.  Return false if the symbol
256   // should be discarded from the output file.
257   bool
258   do_adjust_local_symbol(Symbol_value<size>* lv) const
259   {
260     if (size == 64 && this->opd_shndx() != 0)
261       {
262         bool is_ordinary;
263         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264           return true;
265         if (this->get_opd_discard(lv->input_value()))
266           return false;
267       }
268     return true;
269   }
270
271   Access_from*
272   access_from_map()
273   { return &this->access_from_map_; }
274
275   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276   // section at DST_OFF.
277   void
278   add_reference(Relobj* src_obj,
279                 unsigned int src_indx,
280                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281   {
282     Section_id src_id(src_obj, src_indx);
283     this->access_from_map_[dst_off].insert(src_id);
284   }
285
286   // Add a reference to the code section specified by the .opd entry
287   // at DST_OFF
288   void
289   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290   {
291     size_t ndx = this->opd_ent_ndx(dst_off);
292     if (ndx >= this->opd_ent_.size())
293       this->opd_ent_.resize(ndx + 1);
294     this->opd_ent_[ndx].gc_mark = true;
295   }
296
297   void
298   process_gc_mark(Symbol_table* symtab)
299   {
300     for (size_t i = 0; i < this->opd_ent_.size(); i++)
301       if (this->opd_ent_[i].gc_mark)
302         {
303           unsigned int shndx = this->opd_ent_[i].shndx;
304           symtab->gc()->worklist().push_back(Section_id(this, shndx));
305         }
306   }
307
308   // Return offset in output GOT section that this object will use
309   // as a TOC pointer.  Won't be just a constant with multi-toc support.
310   Address
311   toc_base_offset() const
312   { return 0x8000; }
313
314   void
315   set_has_small_toc_reloc()
316   { has_small_toc_reloc_ = true; }
317
318   bool
319   has_small_toc_reloc() const
320   { return has_small_toc_reloc_; }
321
322   void
323   set_has_14bit_branch(unsigned int shndx)
324   {
325     if (shndx >= this->has14_.size())
326       this->has14_.resize(shndx + 1);
327     this->has14_[shndx] = true;
328   }
329
330   bool
331   has_14bit_branch(unsigned int shndx) const
332   { return shndx < this->has14_.size() && this->has14_[shndx];  }
333
334   void
335   set_stub_table(unsigned int shndx, unsigned int stub_index)
336   {
337     if (shndx >= this->stub_table_index_.size())
338       this->stub_table_index_.resize(shndx + 1, -1);
339     this->stub_table_index_[shndx] = stub_index;
340   }
341
342   Stub_table<size, big_endian>*
343   stub_table(unsigned int shndx)
344   {
345     if (shndx < this->stub_table_index_.size())
346       {
347         Target_powerpc<size, big_endian>* target
348           = static_cast<Target_powerpc<size, big_endian>*>(
349               parameters->sized_target<size, big_endian>());
350         unsigned int indx = this->stub_table_index_[shndx];
351         if (indx < target->stub_tables().size())
352           return target->stub_tables()[indx];
353       }
354     return NULL;
355   }
356
357   void
358   clear_stub_table()
359   {
360     this->stub_table_index_.clear();
361   }
362
363   uint32_t
364   uniq() const
365   { return this->uniq_; }
366
367   int
368   abiversion() const
369   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371   // Set ABI version for input and output
372   void
373   set_abiversion(int ver);
374
375   unsigned int
376   ppc64_local_entry_offset(const Symbol* sym) const
377   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
378
379   unsigned int
380   ppc64_local_entry_offset(unsigned int symndx) const
381   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
382
383 private:
384   struct Opd_ent
385   {
386     unsigned int shndx;
387     bool discard : 1;
388     bool gc_mark : 1;
389     Address off;
390   };
391
392   // Return index into opd_ent_ array for .opd entry at OFF.
393   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
394   // apart when the language doesn't use the last 8-byte word, the
395   // environment pointer.  Thus dividing the entry section offset by
396   // 16 will give an index into opd_ent_ that works for either layout
397   // of .opd.  (It leaves some elements of the vector unused when .opd
398   // entries are spaced 24 bytes apart, but we don't know the spacing
399   // until relocations are processed, and in any case it is possible
400   // for an object to have some entries spaced 16 bytes apart and
401   // others 24 bytes apart.)
402   size_t
403   opd_ent_ndx(size_t off) const
404   { return off >> 4;}
405
406   // Per object unique identifier
407   uint32_t uniq_;
408
409   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
410   unsigned int special_;
411
412   // For 64-bit the .rela.toc and .toc section shdnx.
413   unsigned int relatoc_;
414   unsigned int toc_;
415
416   // For 64-bit, whether this object uses small model relocs to access
417   // the toc.
418   bool has_small_toc_reloc_;
419
420   // Set at the start of gc_process_relocs, when we know opd_ent_
421   // vector is valid.  The flag could be made atomic and set in
422   // do_read_relocs with memory_order_release and then tested with
423   // memory_order_acquire, potentially resulting in fewer entries in
424   // access_from_map_.
425   bool opd_valid_;
426
427   // Header e_flags
428   elfcpp::Elf_Word e_flags_;
429
430   // For 64-bit, an array with one entry per 64-bit word in the .toc
431   // section, set if accesses using that word cannot be optimised.
432   std::vector<bool> no_toc_opt_;
433
434   // The first 8-byte word of an OPD entry gives the address of the
435   // entry point of the function.  Relocatable object files have a
436   // relocation on this word.  The following vector records the
437   // section and offset specified by these relocations.
438   std::vector<Opd_ent> opd_ent_;
439
440   // References made to this object's .opd section when running
441   // gc_process_relocs for another object, before the opd_ent_ vector
442   // is valid for this object.
443   Access_from access_from_map_;
444
445   // Whether input section has a 14-bit branch reloc.
446   std::vector<bool> has14_;
447
448   // The stub table to use for a given input section.
449   std::vector<unsigned int> stub_table_index_;
450
451   // ELF st_other field for local symbols.
452   std::vector<unsigned char> st_other_;
453 };
454
455 template<int size, bool big_endian>
456 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
457 {
458 public:
459   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
460
461   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
462                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
463     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
464       opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
465   {
466     this->set_abiversion(0);
467   }
468
469   ~Powerpc_dynobj()
470   { }
471
472   // Call Sized_dynobj::do_read_symbols to read the symbols then
473   // read .opd from a dynamic object, filling in opd_ent_ vector,
474   void
475   do_read_symbols(Read_symbols_data*);
476
477   // The .opd section shndx.
478   unsigned int
479   opd_shndx() const
480   {
481     return this->opd_shndx_;
482   }
483
484   // The .opd section address.
485   Address
486   opd_address() const
487   {
488     return this->opd_address_;
489   }
490
491   // Init OPD entry arrays.
492   void
493   init_opd(size_t opd_size)
494   {
495     size_t count = this->opd_ent_ndx(opd_size);
496     this->opd_ent_.resize(count);
497   }
498
499   // Return section and offset of function entry for .opd + R_OFF.
500   unsigned int
501   get_opd_ent(Address r_off, Address* value = NULL) const
502   {
503     size_t ndx = this->opd_ent_ndx(r_off);
504     gold_assert(ndx < this->opd_ent_.size());
505     gold_assert(this->opd_ent_[ndx].shndx != 0);
506     if (value != NULL)
507       *value = this->opd_ent_[ndx].off;
508     return this->opd_ent_[ndx].shndx;
509   }
510
511   // Set section and offset of function entry for .opd + R_OFF.
512   void
513   set_opd_ent(Address r_off, unsigned int shndx, Address value)
514   {
515     size_t ndx = this->opd_ent_ndx(r_off);
516     gold_assert(ndx < this->opd_ent_.size());
517     this->opd_ent_[ndx].shndx = shndx;
518     this->opd_ent_[ndx].off = value;
519   }
520
521   int
522   abiversion() const
523   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
524
525   // Set ABI version for input and output.
526   void
527   set_abiversion(int ver);
528
529 private:
530   // Used to specify extent of executable sections.
531   struct Sec_info
532   {
533     Sec_info(Address start_, Address len_, unsigned int shndx_)
534       : start(start_), len(len_), shndx(shndx_)
535     { }
536
537     bool
538     operator<(const Sec_info& that) const
539     { return this->start < that.start; }
540
541     Address start;
542     Address len;
543     unsigned int shndx;
544   };
545
546   struct Opd_ent
547   {
548     unsigned int shndx;
549     Address off;
550   };
551
552   // Return index into opd_ent_ array for .opd entry at OFF.
553   size_t
554   opd_ent_ndx(size_t off) const
555   { return off >> 4;}
556
557   // For 64-bit the .opd section shndx and address.
558   unsigned int opd_shndx_;
559   Address opd_address_;
560
561   // Header e_flags
562   elfcpp::Elf_Word e_flags_;
563
564   // The first 8-byte word of an OPD entry gives the address of the
565   // entry point of the function.  Records the section and offset
566   // corresponding to the address.  Note that in dynamic objects,
567   // offset is *not* relative to the section.
568   std::vector<Opd_ent> opd_ent_;
569 };
570
571 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
572 // base class will emit.
573
574 template<int sh_type, int size, bool big_endian>
575 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
576 {
577  public:
578   Powerpc_copy_relocs()
579     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
580   { }
581
582   // Emit any saved relocations which turn out to be needed.  This is
583   // called after all the relocs have been scanned.
584   void
585   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
586 };
587
588 template<int size, bool big_endian>
589 class Target_powerpc : public Sized_target<size, big_endian>
590 {
591  public:
592   typedef
593     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
594   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
595   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
596   static const Address invalid_address = static_cast<Address>(0) - 1;
597   // Offset of tp and dtp pointers from start of TLS block.
598   static const Address tp_offset = 0x7000;
599   static const Address dtp_offset = 0x8000;
600
601   Target_powerpc()
602     : Sized_target<size, big_endian>(&powerpc_info),
603       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
604       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
605       tlsld_got_offset_(-1U),
606       stub_tables_(), branch_lookup_table_(), branch_info_(),
607       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
608       stub_group_size_(0), savres_section_(0)
609   {
610   }
611
612   // Process the relocations to determine unreferenced sections for
613   // garbage collection.
614   void
615   gc_process_relocs(Symbol_table* symtab,
616                     Layout* layout,
617                     Sized_relobj_file<size, big_endian>* object,
618                     unsigned int data_shndx,
619                     unsigned int sh_type,
620                     const unsigned char* prelocs,
621                     size_t reloc_count,
622                     Output_section* output_section,
623                     bool needs_special_offset_handling,
624                     size_t local_symbol_count,
625                     const unsigned char* plocal_symbols);
626
627   // Scan the relocations to look for symbol adjustments.
628   void
629   scan_relocs(Symbol_table* symtab,
630               Layout* layout,
631               Sized_relobj_file<size, big_endian>* object,
632               unsigned int data_shndx,
633               unsigned int sh_type,
634               const unsigned char* prelocs,
635               size_t reloc_count,
636               Output_section* output_section,
637               bool needs_special_offset_handling,
638               size_t local_symbol_count,
639               const unsigned char* plocal_symbols);
640
641   // Map input .toc section to output .got section.
642   const char*
643   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
644   {
645     if (size == 64 && strcmp(name, ".toc") == 0)
646       {
647         *plen = 4;
648         return ".got";
649       }
650     return NULL;
651   }
652
653   // Provide linker defined save/restore functions.
654   void
655   define_save_restore_funcs(Layout*, Symbol_table*);
656
657   // No stubs unless a final link.
658   bool
659   do_may_relax() const
660   { return !parameters->options().relocatable(); }
661
662   bool
663   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
664
665   void
666   do_plt_fde_location(const Output_data*, unsigned char*,
667                       uint64_t*, off_t*) const;
668
669   // Stash info about branches, for stub generation.
670   void
671   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
672               unsigned int data_shndx, Address r_offset,
673               unsigned int r_type, unsigned int r_sym, Address addend)
674   {
675     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
676     this->branch_info_.push_back(info);
677     if (r_type == elfcpp::R_POWERPC_REL14
678         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
679         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
680       ppc_object->set_has_14bit_branch(data_shndx);
681   }
682
683   void
684   do_define_standard_symbols(Symbol_table*, Layout*);
685
686   // Finalize the sections.
687   void
688   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
689
690   // Return the value to use for a dynamic which requires special
691   // treatment.
692   uint64_t
693   do_dynsym_value(const Symbol*) const;
694
695   // Return the PLT address to use for a local symbol.
696   uint64_t
697   do_plt_address_for_local(const Relobj*, unsigned int) const;
698
699   // Return the PLT address to use for a global symbol.
700   uint64_t
701   do_plt_address_for_global(const Symbol*) const;
702
703   // Return the offset to use for the GOT_INDX'th got entry which is
704   // for a local tls symbol specified by OBJECT, SYMNDX.
705   int64_t
706   do_tls_offset_for_local(const Relobj* object,
707                           unsigned int symndx,
708                           unsigned int got_indx) const;
709
710   // Return the offset to use for the GOT_INDX'th got entry which is
711   // for global tls symbol GSYM.
712   int64_t
713   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
714
715   void
716   do_function_location(Symbol_location*) const;
717
718   bool
719   do_can_check_for_function_pointers() const
720   { return true; }
721
722   // Adjust -fsplit-stack code which calls non-split-stack code.
723   void
724   do_calls_non_split(Relobj* object, unsigned int shndx,
725                      section_offset_type fnoffset, section_size_type fnsize,
726                      const unsigned char* prelocs, size_t reloc_count,
727                      unsigned char* view, section_size_type view_size,
728                      std::string* from, std::string* to) const;
729
730   // Relocate a section.
731   void
732   relocate_section(const Relocate_info<size, big_endian>*,
733                    unsigned int sh_type,
734                    const unsigned char* prelocs,
735                    size_t reloc_count,
736                    Output_section* output_section,
737                    bool needs_special_offset_handling,
738                    unsigned char* view,
739                    Address view_address,
740                    section_size_type view_size,
741                    const Reloc_symbol_changes*);
742
743   // Scan the relocs during a relocatable link.
744   void
745   scan_relocatable_relocs(Symbol_table* symtab,
746                           Layout* layout,
747                           Sized_relobj_file<size, big_endian>* object,
748                           unsigned int data_shndx,
749                           unsigned int sh_type,
750                           const unsigned char* prelocs,
751                           size_t reloc_count,
752                           Output_section* output_section,
753                           bool needs_special_offset_handling,
754                           size_t local_symbol_count,
755                           const unsigned char* plocal_symbols,
756                           Relocatable_relocs*);
757
758   // Scan the relocs for --emit-relocs.
759   void
760   emit_relocs_scan(Symbol_table* symtab,
761                    Layout* layout,
762                    Sized_relobj_file<size, big_endian>* object,
763                    unsigned int data_shndx,
764                    unsigned int sh_type,
765                    const unsigned char* prelocs,
766                    size_t reloc_count,
767                    Output_section* output_section,
768                    bool needs_special_offset_handling,
769                    size_t local_symbol_count,
770                    const unsigned char* plocal_syms,
771                    Relocatable_relocs* rr);
772
773   // Emit relocations for a section.
774   void
775   relocate_relocs(const Relocate_info<size, big_endian>*,
776                   unsigned int sh_type,
777                   const unsigned char* prelocs,
778                   size_t reloc_count,
779                   Output_section* output_section,
780                   typename elfcpp::Elf_types<size>::Elf_Off
781                     offset_in_output_section,
782                   unsigned char*,
783                   Address view_address,
784                   section_size_type,
785                   unsigned char* reloc_view,
786                   section_size_type reloc_view_size);
787
788   // Return whether SYM is defined by the ABI.
789   bool
790   do_is_defined_by_abi(const Symbol* sym) const
791   {
792     return strcmp(sym->name(), "__tls_get_addr") == 0;
793   }
794
795   // Return the size of the GOT section.
796   section_size_type
797   got_size() const
798   {
799     gold_assert(this->got_ != NULL);
800     return this->got_->data_size();
801   }
802
803   // Get the PLT section.
804   const Output_data_plt_powerpc<size, big_endian>*
805   plt_section() const
806   {
807     gold_assert(this->plt_ != NULL);
808     return this->plt_;
809   }
810
811   // Get the IPLT section.
812   const Output_data_plt_powerpc<size, big_endian>*
813   iplt_section() const
814   {
815     gold_assert(this->iplt_ != NULL);
816     return this->iplt_;
817   }
818
819   // Get the .glink section.
820   const Output_data_glink<size, big_endian>*
821   glink_section() const
822   {
823     gold_assert(this->glink_ != NULL);
824     return this->glink_;
825   }
826
827   Output_data_glink<size, big_endian>*
828   glink_section()
829   {
830     gold_assert(this->glink_ != NULL);
831     return this->glink_;
832   }
833
834   bool has_glink() const
835   { return this->glink_ != NULL; }
836
837   // Get the GOT section.
838   const Output_data_got_powerpc<size, big_endian>*
839   got_section() const
840   {
841     gold_assert(this->got_ != NULL);
842     return this->got_;
843   }
844
845   // Get the GOT section, creating it if necessary.
846   Output_data_got_powerpc<size, big_endian>*
847   got_section(Symbol_table*, Layout*);
848
849   Object*
850   do_make_elf_object(const std::string&, Input_file*, off_t,
851                      const elfcpp::Ehdr<size, big_endian>&);
852
853   // Return the number of entries in the GOT.
854   unsigned int
855   got_entry_count() const
856   {
857     if (this->got_ == NULL)
858       return 0;
859     return this->got_size() / (size / 8);
860   }
861
862   // Return the number of entries in the PLT.
863   unsigned int
864   plt_entry_count() const;
865
866   // Return the offset of the first non-reserved PLT entry.
867   unsigned int
868   first_plt_entry_offset() const
869   {
870     if (size == 32)
871       return 0;
872     if (this->abiversion() >= 2)
873       return 16;
874     return 24;
875   }
876
877   // Return the size of each PLT entry.
878   unsigned int
879   plt_entry_size() const
880   {
881     if (size == 32)
882       return 4;
883     if (this->abiversion() >= 2)
884       return 8;
885     return 24;
886   }
887
888   Output_data_save_res<size, big_endian>*
889   savres_section() const
890   {
891     return this->savres_section_;
892   }
893
894   // Add any special sections for this symbol to the gc work list.
895   // For powerpc64, this adds the code section of a function
896   // descriptor.
897   void
898   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
899
900   // Handle target specific gc actions when adding a gc reference from
901   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
902   // and DST_OFF.  For powerpc64, this adds a referenc to the code
903   // section of a function descriptor.
904   void
905   do_gc_add_reference(Symbol_table* symtab,
906                       Relobj* src_obj,
907                       unsigned int src_shndx,
908                       Relobj* dst_obj,
909                       unsigned int dst_shndx,
910                       Address dst_off) const;
911
912   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
913   const Stub_tables&
914   stub_tables() const
915   { return this->stub_tables_; }
916
917   const Output_data_brlt_powerpc<size, big_endian>*
918   brlt_section() const
919   { return this->brlt_section_; }
920
921   void
922   add_branch_lookup_table(Address to)
923   {
924     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
925     this->branch_lookup_table_.insert(std::make_pair(to, off));
926   }
927
928   Address
929   find_branch_lookup_table(Address to)
930   {
931     typename Branch_lookup_table::const_iterator p
932       = this->branch_lookup_table_.find(to);
933     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
934   }
935
936   void
937   write_branch_lookup_table(unsigned char *oview)
938   {
939     for (typename Branch_lookup_table::const_iterator p
940            = this->branch_lookup_table_.begin();
941          p != this->branch_lookup_table_.end();
942          ++p)
943       {
944         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
945       }
946   }
947
948   // Wrapper used after relax to define a local symbol in output data,
949   // from the end if value < 0.
950   void
951   define_local(Symbol_table* symtab, const char* name,
952                Output_data* od, Address value, unsigned int symsize)
953   {
954     Symbol* sym
955       = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
956                                       od, value, symsize, elfcpp::STT_NOTYPE,
957                                       elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
958                                       static_cast<Signed_address>(value) < 0,
959                                       false);
960     // We are creating this symbol late, so need to fix up things
961     // done early in Layout::finalize.
962     sym->set_dynsym_index(-1U);
963   }
964
965   bool
966   plt_thread_safe() const
967   { return this->plt_thread_safe_; }
968
969   int
970   abiversion () const
971   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
972
973   void
974   set_abiversion (int ver)
975   {
976     elfcpp::Elf_Word flags = this->processor_specific_flags();
977     flags &= ~elfcpp::EF_PPC64_ABI;
978     flags |= ver & elfcpp::EF_PPC64_ABI;
979     this->set_processor_specific_flags(flags);
980   }
981
982   // Offset to to save stack slot
983   int
984   stk_toc () const
985   { return this->abiversion() < 2 ? 40 : 24; }
986
987  private:
988
989   class Track_tls
990   {
991   public:
992     enum Tls_get_addr
993     {
994       NOT_EXPECTED = 0,
995       EXPECTED = 1,
996       SKIP = 2,
997       NORMAL = 3
998     };
999
1000     Track_tls()
1001       : tls_get_addr_(NOT_EXPECTED),
1002         relinfo_(NULL), relnum_(0), r_offset_(0)
1003     { }
1004
1005     ~Track_tls()
1006     {
1007       if (this->tls_get_addr_ != NOT_EXPECTED)
1008         this->missing();
1009     }
1010
1011     void
1012     missing(void)
1013     {
1014       if (this->relinfo_ != NULL)
1015         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1016                                _("missing expected __tls_get_addr call"));
1017     }
1018
1019     void
1020     expect_tls_get_addr_call(
1021         const Relocate_info<size, big_endian>* relinfo,
1022         size_t relnum,
1023         Address r_offset)
1024     {
1025       this->tls_get_addr_ = EXPECTED;
1026       this->relinfo_ = relinfo;
1027       this->relnum_ = relnum;
1028       this->r_offset_ = r_offset;
1029     }
1030
1031     void
1032     expect_tls_get_addr_call()
1033     { this->tls_get_addr_ = EXPECTED; }
1034
1035     void
1036     skip_next_tls_get_addr_call()
1037     {this->tls_get_addr_ = SKIP; }
1038
1039     Tls_get_addr
1040     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
1041     {
1042       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1043                            || r_type == elfcpp::R_PPC_PLTREL24)
1044                           && gsym != NULL
1045                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
1046       Tls_get_addr last_tls = this->tls_get_addr_;
1047       this->tls_get_addr_ = NOT_EXPECTED;
1048       if (is_tls_call && last_tls != EXPECTED)
1049         return last_tls;
1050       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1051         {
1052           this->missing();
1053           return EXPECTED;
1054         }
1055       return NORMAL;
1056     }
1057
1058   private:
1059     // What we're up to regarding calls to __tls_get_addr.
1060     // On powerpc, the branch and link insn making a call to
1061     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1062     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1063     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1064     // The marker relocation always comes first, and has the same
1065     // symbol as the reloc on the insn setting up the __tls_get_addr
1066     // argument.  This ties the arg setup insn with the call insn,
1067     // allowing ld to safely optimize away the call.  We check that
1068     // every call to __tls_get_addr has a marker relocation, and that
1069     // every marker relocation is on a call to __tls_get_addr.
1070     Tls_get_addr tls_get_addr_;
1071     // Info about the last reloc for error message.
1072     const Relocate_info<size, big_endian>* relinfo_;
1073     size_t relnum_;
1074     Address r_offset_;
1075   };
1076
1077   // The class which scans relocations.
1078   class Scan : protected Track_tls
1079   {
1080   public:
1081     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1082
1083     Scan()
1084       : Track_tls(), issued_non_pic_error_(false)
1085     { }
1086
1087     static inline int
1088     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1089
1090     inline void
1091     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1092           Sized_relobj_file<size, big_endian>* object,
1093           unsigned int data_shndx,
1094           Output_section* output_section,
1095           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1096           const elfcpp::Sym<size, big_endian>& lsym,
1097           bool is_discarded);
1098
1099     inline void
1100     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1101            Sized_relobj_file<size, big_endian>* object,
1102            unsigned int data_shndx,
1103            Output_section* output_section,
1104            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1105            Symbol* gsym);
1106
1107     inline bool
1108     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1109                                         Target_powerpc* ,
1110                                         Sized_relobj_file<size, big_endian>* relobj,
1111                                         unsigned int ,
1112                                         Output_section* ,
1113                                         const elfcpp::Rela<size, big_endian>& ,
1114                                         unsigned int r_type,
1115                                         const elfcpp::Sym<size, big_endian>&)
1116     {
1117       // PowerPC64 .opd is not folded, so any identical function text
1118       // may be folded and we'll still keep function addresses distinct.
1119       // That means no reloc is of concern here.
1120       if (size == 64)
1121         {
1122           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1123             <Powerpc_relobj<size, big_endian>*>(relobj);
1124           if (ppcobj->abiversion() == 1)
1125             return false;
1126         }
1127       // For 32-bit and ELFv2, conservatively assume anything but calls to
1128       // function code might be taking the address of the function.
1129       return !is_branch_reloc(r_type);
1130     }
1131
1132     inline bool
1133     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1134                                          Target_powerpc* ,
1135                                          Sized_relobj_file<size, big_endian>* relobj,
1136                                          unsigned int ,
1137                                          Output_section* ,
1138                                          const elfcpp::Rela<size, big_endian>& ,
1139                                          unsigned int r_type,
1140                                          Symbol*)
1141     {
1142       // As above.
1143       if (size == 64)
1144         {
1145           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1146             <Powerpc_relobj<size, big_endian>*>(relobj);
1147           if (ppcobj->abiversion() == 1)
1148             return false;
1149         }
1150       return !is_branch_reloc(r_type);
1151     }
1152
1153     static bool
1154     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1155                               Sized_relobj_file<size, big_endian>* object,
1156                               unsigned int r_type, bool report_err);
1157
1158   private:
1159     static void
1160     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1161                             unsigned int r_type);
1162
1163     static void
1164     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1165                              unsigned int r_type, Symbol*);
1166
1167     static void
1168     generate_tls_call(Symbol_table* symtab, Layout* layout,
1169                       Target_powerpc* target);
1170
1171     void
1172     check_non_pic(Relobj*, unsigned int r_type);
1173
1174     // Whether we have issued an error about a non-PIC compilation.
1175     bool issued_non_pic_error_;
1176   };
1177
1178   bool
1179   symval_for_branch(const Symbol_table* symtab,
1180                     const Sized_symbol<size>* gsym,
1181                     Powerpc_relobj<size, big_endian>* object,
1182                     Address *value, unsigned int *dest_shndx);
1183
1184   // The class which implements relocation.
1185   class Relocate : protected Track_tls
1186   {
1187    public:
1188     // Use 'at' branch hints when true, 'y' when false.
1189     // FIXME maybe: set this with an option.
1190     static const bool is_isa_v2 = true;
1191
1192     Relocate()
1193       : Track_tls()
1194     { }
1195
1196     // Do a relocation.  Return false if the caller should not issue
1197     // any warnings about this relocation.
1198     inline bool
1199     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1200              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1201              const Sized_symbol<size>*, const Symbol_value<size>*,
1202              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1203              section_size_type);
1204   };
1205
1206   class Relocate_comdat_behavior
1207   {
1208    public:
1209     // Decide what the linker should do for relocations that refer to
1210     // discarded comdat sections.
1211     inline Comdat_behavior
1212     get(const char* name)
1213     {
1214       gold::Default_comdat_behavior default_behavior;
1215       Comdat_behavior ret = default_behavior.get(name);
1216       if (ret == CB_WARNING)
1217         {
1218           if (size == 32
1219               && (strcmp(name, ".fixup") == 0
1220                   || strcmp(name, ".got2") == 0))
1221             ret = CB_IGNORE;
1222           if (size == 64
1223               && (strcmp(name, ".opd") == 0
1224                   || strcmp(name, ".toc") == 0
1225                   || strcmp(name, ".toc1") == 0))
1226             ret = CB_IGNORE;
1227         }
1228       return ret;
1229     }
1230   };
1231
1232   // Optimize the TLS relocation type based on what we know about the
1233   // symbol.  IS_FINAL is true if the final address of this symbol is
1234   // known at link time.
1235
1236   tls::Tls_optimization
1237   optimize_tls_gd(bool is_final)
1238   {
1239     // If we are generating a shared library, then we can't do anything
1240     // in the linker.
1241     if (parameters->options().shared())
1242       return tls::TLSOPT_NONE;
1243
1244     if (!is_final)
1245       return tls::TLSOPT_TO_IE;
1246     return tls::TLSOPT_TO_LE;
1247   }
1248
1249   tls::Tls_optimization
1250   optimize_tls_ld()
1251   {
1252     if (parameters->options().shared())
1253       return tls::TLSOPT_NONE;
1254
1255     return tls::TLSOPT_TO_LE;
1256   }
1257
1258   tls::Tls_optimization
1259   optimize_tls_ie(bool is_final)
1260   {
1261     if (!is_final || parameters->options().shared())
1262       return tls::TLSOPT_NONE;
1263
1264     return tls::TLSOPT_TO_LE;
1265   }
1266
1267   // Create glink.
1268   void
1269   make_glink_section(Layout*);
1270
1271   // Create the PLT section.
1272   void
1273   make_plt_section(Symbol_table*, Layout*);
1274
1275   void
1276   make_iplt_section(Symbol_table*, Layout*);
1277
1278   void
1279   make_brlt_section(Layout*);
1280
1281   // Create a PLT entry for a global symbol.
1282   void
1283   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1284
1285   // Create a PLT entry for a local IFUNC symbol.
1286   void
1287   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1288                              Sized_relobj_file<size, big_endian>*,
1289                              unsigned int);
1290
1291
1292   // Create a GOT entry for local dynamic __tls_get_addr.
1293   unsigned int
1294   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1295                    Sized_relobj_file<size, big_endian>* object);
1296
1297   unsigned int
1298   tlsld_got_offset() const
1299   {
1300     return this->tlsld_got_offset_;
1301   }
1302
1303   // Get the dynamic reloc section, creating it if necessary.
1304   Reloc_section*
1305   rela_dyn_section(Layout*);
1306
1307   // Similarly, but for ifunc symbols get the one for ifunc.
1308   Reloc_section*
1309   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1310
1311   // Copy a relocation against a global symbol.
1312   void
1313   copy_reloc(Symbol_table* symtab, Layout* layout,
1314              Sized_relobj_file<size, big_endian>* object,
1315              unsigned int shndx, Output_section* output_section,
1316              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1317   {
1318     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1319     this->copy_relocs_.copy_reloc(symtab, layout,
1320                                   symtab->get_sized_symbol<size>(sym),
1321                                   object, shndx, output_section,
1322                                   r_type, reloc.get_r_offset(),
1323                                   reloc.get_r_addend(),
1324                                   this->rela_dyn_section(layout));
1325   }
1326
1327   // Look over all the input sections, deciding where to place stubs.
1328   void
1329   group_sections(Layout*, const Task*, bool);
1330
1331   // Sort output sections by address.
1332   struct Sort_sections
1333   {
1334     bool
1335     operator()(const Output_section* sec1, const Output_section* sec2)
1336     { return sec1->address() < sec2->address(); }
1337   };
1338
1339   class Branch_info
1340   {
1341    public:
1342     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1343                 unsigned int data_shndx,
1344                 Address r_offset,
1345                 unsigned int r_type,
1346                 unsigned int r_sym,
1347                 Address addend)
1348       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1349         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1350     { }
1351
1352     ~Branch_info()
1353     { }
1354
1355     // If this branch needs a plt call stub, or a long branch stub, make one.
1356     bool
1357     make_stub(Stub_table<size, big_endian>*,
1358               Stub_table<size, big_endian>*,
1359               Symbol_table*) const;
1360
1361    private:
1362     // The branch location..
1363     Powerpc_relobj<size, big_endian>* object_;
1364     unsigned int shndx_;
1365     Address offset_;
1366     // ..and the branch type and destination.
1367     unsigned int r_type_;
1368     unsigned int r_sym_;
1369     Address addend_;
1370   };
1371
1372   // Information about this specific target which we pass to the
1373   // general Target structure.
1374   static Target::Target_info powerpc_info;
1375
1376   // The types of GOT entries needed for this platform.
1377   // These values are exposed to the ABI in an incremental link.
1378   // Do not renumber existing values without changing the version
1379   // number of the .gnu_incremental_inputs section.
1380   enum Got_type
1381   {
1382     GOT_TYPE_STANDARD,
1383     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1384     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1385     GOT_TYPE_TPREL      // entry for @got@tprel
1386   };
1387
1388   // The GOT section.
1389   Output_data_got_powerpc<size, big_endian>* got_;
1390   // The PLT section.  This is a container for a table of addresses,
1391   // and their relocations.  Each address in the PLT has a dynamic
1392   // relocation (R_*_JMP_SLOT) and each address will have a
1393   // corresponding entry in .glink for lazy resolution of the PLT.
1394   // ppc32 initialises the PLT to point at the .glink entry, while
1395   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1396   // linker adds a stub that loads the PLT entry into ctr then
1397   // branches to ctr.  There may be more than one stub for each PLT
1398   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1399   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1400   Output_data_plt_powerpc<size, big_endian>* plt_;
1401   // The IPLT section.  Like plt_, this is a container for a table of
1402   // addresses and their relocations, specifically for STT_GNU_IFUNC
1403   // functions that resolve locally (STT_GNU_IFUNC functions that
1404   // don't resolve locally go in PLT).  Unlike plt_, these have no
1405   // entry in .glink for lazy resolution, and the relocation section
1406   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1407   // the relocation section may contain relocations against
1408   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1409   // relocation section will appear at the end of other dynamic
1410   // relocations, so that ld.so applies these relocations after other
1411   // dynamic relocations.  In a static executable, the relocation
1412   // section is emitted and marked with __rela_iplt_start and
1413   // __rela_iplt_end symbols.
1414   Output_data_plt_powerpc<size, big_endian>* iplt_;
1415   // Section holding long branch destinations.
1416   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1417   // The .glink section.
1418   Output_data_glink<size, big_endian>* glink_;
1419   // The dynamic reloc section.
1420   Reloc_section* rela_dyn_;
1421   // Relocs saved to avoid a COPY reloc.
1422   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1423   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1424   unsigned int tlsld_got_offset_;
1425
1426   Stub_tables stub_tables_;
1427   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1428   Branch_lookup_table branch_lookup_table_;
1429
1430   typedef std::vector<Branch_info> Branches;
1431   Branches branch_info_;
1432
1433   bool plt_thread_safe_;
1434
1435   bool relax_failed_;
1436   int relax_fail_count_;
1437   int32_t stub_group_size_;
1438
1439   Output_data_save_res<size, big_endian> *savres_section_;
1440 };
1441
1442 template<>
1443 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1444 {
1445   32,                   // size
1446   true,                 // is_big_endian
1447   elfcpp::EM_PPC,       // machine_code
1448   false,                // has_make_symbol
1449   false,                // has_resolve
1450   false,                // has_code_fill
1451   true,                 // is_default_stack_executable
1452   false,                // can_icf_inline_merge_sections
1453   '\0',                 // wrap_char
1454   "/usr/lib/ld.so.1",   // dynamic_linker
1455   0x10000000,           // default_text_segment_address
1456   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1457   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1458   false,                // isolate_execinstr
1459   0,                    // rosegment_gap
1460   elfcpp::SHN_UNDEF,    // small_common_shndx
1461   elfcpp::SHN_UNDEF,    // large_common_shndx
1462   0,                    // small_common_section_flags
1463   0,                    // large_common_section_flags
1464   NULL,                 // attributes_section
1465   NULL,                 // attributes_vendor
1466   "_start",             // entry_symbol_name
1467   32,                   // hash_entry_size
1468 };
1469
1470 template<>
1471 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1472 {
1473   32,                   // size
1474   false,                // is_big_endian
1475   elfcpp::EM_PPC,       // machine_code
1476   false,                // has_make_symbol
1477   false,                // has_resolve
1478   false,                // has_code_fill
1479   true,                 // is_default_stack_executable
1480   false,                // can_icf_inline_merge_sections
1481   '\0',                 // wrap_char
1482   "/usr/lib/ld.so.1",   // dynamic_linker
1483   0x10000000,           // default_text_segment_address
1484   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1485   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1486   false,                // isolate_execinstr
1487   0,                    // rosegment_gap
1488   elfcpp::SHN_UNDEF,    // small_common_shndx
1489   elfcpp::SHN_UNDEF,    // large_common_shndx
1490   0,                    // small_common_section_flags
1491   0,                    // large_common_section_flags
1492   NULL,                 // attributes_section
1493   NULL,                 // attributes_vendor
1494   "_start",             // entry_symbol_name
1495   32,                   // hash_entry_size
1496 };
1497
1498 template<>
1499 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1500 {
1501   64,                   // size
1502   true,                 // is_big_endian
1503   elfcpp::EM_PPC64,     // machine_code
1504   false,                // has_make_symbol
1505   false,                // has_resolve
1506   false,                // has_code_fill
1507   true,                 // is_default_stack_executable
1508   false,                // can_icf_inline_merge_sections
1509   '\0',                 // wrap_char
1510   "/usr/lib/ld.so.1",   // dynamic_linker
1511   0x10000000,           // default_text_segment_address
1512   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1513   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1514   false,                // isolate_execinstr
1515   0,                    // rosegment_gap
1516   elfcpp::SHN_UNDEF,    // small_common_shndx
1517   elfcpp::SHN_UNDEF,    // large_common_shndx
1518   0,                    // small_common_section_flags
1519   0,                    // large_common_section_flags
1520   NULL,                 // attributes_section
1521   NULL,                 // attributes_vendor
1522   "_start",             // entry_symbol_name
1523   32,                   // hash_entry_size
1524 };
1525
1526 template<>
1527 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1528 {
1529   64,                   // size
1530   false,                // is_big_endian
1531   elfcpp::EM_PPC64,     // machine_code
1532   false,                // has_make_symbol
1533   false,                // has_resolve
1534   false,                // has_code_fill
1535   true,                 // is_default_stack_executable
1536   false,                // can_icf_inline_merge_sections
1537   '\0',                 // wrap_char
1538   "/usr/lib/ld.so.1",   // dynamic_linker
1539   0x10000000,           // default_text_segment_address
1540   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1541   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1542   false,                // isolate_execinstr
1543   0,                    // rosegment_gap
1544   elfcpp::SHN_UNDEF,    // small_common_shndx
1545   elfcpp::SHN_UNDEF,    // large_common_shndx
1546   0,                    // small_common_section_flags
1547   0,                    // large_common_section_flags
1548   NULL,                 // attributes_section
1549   NULL,                 // attributes_vendor
1550   "_start",             // entry_symbol_name
1551   32,                   // hash_entry_size
1552 };
1553
1554 inline bool
1555 is_branch_reloc(unsigned int r_type)
1556 {
1557   return (r_type == elfcpp::R_POWERPC_REL24
1558           || r_type == elfcpp::R_PPC_PLTREL24
1559           || r_type == elfcpp::R_PPC_LOCAL24PC
1560           || r_type == elfcpp::R_POWERPC_REL14
1561           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1562           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1563           || r_type == elfcpp::R_POWERPC_ADDR24
1564           || r_type == elfcpp::R_POWERPC_ADDR14
1565           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1566           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1567 }
1568
1569 // If INSN is an opcode that may be used with an @tls operand, return
1570 // the transformed insn for TLS optimisation, otherwise return 0.  If
1571 // REG is non-zero only match an insn with RB or RA equal to REG.
1572 uint32_t
1573 at_tls_transform(uint32_t insn, unsigned int reg)
1574 {
1575   if ((insn & (0x3f << 26)) != 31 << 26)
1576     return 0;
1577
1578   unsigned int rtra;
1579   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1580     rtra = insn & ((1 << 26) - (1 << 16));
1581   else if (((insn >> 16) & 0x1f) == reg)
1582     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1583   else
1584     return 0;
1585
1586   if ((insn & (0x3ff << 1)) == 266 << 1)
1587     // add -> addi
1588     insn = 14 << 26;
1589   else if ((insn & (0x1f << 1)) == 23 << 1
1590            && ((insn & (0x1f << 6)) < 14 << 6
1591                || ((insn & (0x1f << 6)) >= 16 << 6
1592                    && (insn & (0x1f << 6)) < 24 << 6)))
1593     // load and store indexed -> dform
1594     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1595   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1596     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1597     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1598   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1599     // lwax -> lwa
1600     insn = (58 << 26) | 2;
1601   else
1602     return 0;
1603   insn |= rtra;
1604   return insn;
1605 }
1606
1607
1608 template<int size, bool big_endian>
1609 class Powerpc_relocate_functions
1610 {
1611 public:
1612   enum Overflow_check
1613   {
1614     CHECK_NONE,
1615     CHECK_SIGNED,
1616     CHECK_UNSIGNED,
1617     CHECK_BITFIELD,
1618     CHECK_LOW_INSN,
1619     CHECK_HIGH_INSN
1620   };
1621
1622   enum Status
1623   {
1624     STATUS_OK,
1625     STATUS_OVERFLOW
1626   };
1627
1628 private:
1629   typedef Powerpc_relocate_functions<size, big_endian> This;
1630   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1631   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1632
1633   template<int valsize>
1634   static inline bool
1635   has_overflow_signed(Address value)
1636   {
1637     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1638     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1639     limit <<= ((valsize - 1) >> 1);
1640     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1641     return value + limit > (limit << 1) - 1;
1642   }
1643
1644   template<int valsize>
1645   static inline bool
1646   has_overflow_unsigned(Address value)
1647   {
1648     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1649     limit <<= ((valsize - 1) >> 1);
1650     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1651     return value > (limit << 1) - 1;
1652   }
1653
1654   template<int valsize>
1655   static inline bool
1656   has_overflow_bitfield(Address value)
1657   {
1658     return (has_overflow_unsigned<valsize>(value)
1659             && has_overflow_signed<valsize>(value));
1660   }
1661
1662   template<int valsize>
1663   static inline Status
1664   overflowed(Address value, Overflow_check overflow)
1665   {
1666     if (overflow == CHECK_SIGNED)
1667       {
1668         if (has_overflow_signed<valsize>(value))
1669           return STATUS_OVERFLOW;
1670       }
1671     else if (overflow == CHECK_UNSIGNED)
1672       {
1673         if (has_overflow_unsigned<valsize>(value))
1674           return STATUS_OVERFLOW;
1675       }
1676     else if (overflow == CHECK_BITFIELD)
1677       {
1678         if (has_overflow_bitfield<valsize>(value))
1679           return STATUS_OVERFLOW;
1680       }
1681     return STATUS_OK;
1682   }
1683
1684   // Do a simple RELA relocation
1685   template<int fieldsize, int valsize>
1686   static inline Status
1687   rela(unsigned char* view, Address value, Overflow_check overflow)
1688   {
1689     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1690     Valtype* wv = reinterpret_cast<Valtype*>(view);
1691     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1692     return overflowed<valsize>(value, overflow);
1693   }
1694
1695   template<int fieldsize, int valsize>
1696   static inline Status
1697   rela(unsigned char* view,
1698        unsigned int right_shift,
1699        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1700        Address value,
1701        Overflow_check overflow)
1702   {
1703     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1704     Valtype* wv = reinterpret_cast<Valtype*>(view);
1705     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1706     Valtype reloc = value >> right_shift;
1707     val &= ~dst_mask;
1708     reloc &= dst_mask;
1709     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1710     return overflowed<valsize>(value >> right_shift, overflow);
1711   }
1712
1713   // Do a simple RELA relocation, unaligned.
1714   template<int fieldsize, int valsize>
1715   static inline Status
1716   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1717   {
1718     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1719     return overflowed<valsize>(value, overflow);
1720   }
1721
1722   template<int fieldsize, int valsize>
1723   static inline Status
1724   rela_ua(unsigned char* view,
1725           unsigned int right_shift,
1726           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1727           Address value,
1728           Overflow_check overflow)
1729   {
1730     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1731       Valtype;
1732     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1733     Valtype reloc = value >> right_shift;
1734     val &= ~dst_mask;
1735     reloc &= dst_mask;
1736     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1737     return overflowed<valsize>(value >> right_shift, overflow);
1738   }
1739
1740 public:
1741   // R_PPC64_ADDR64: (Symbol + Addend)
1742   static inline void
1743   addr64(unsigned char* view, Address value)
1744   { This::template rela<64,64>(view, value, CHECK_NONE); }
1745
1746   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1747   static inline void
1748   addr64_u(unsigned char* view, Address value)
1749   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1750
1751   // R_POWERPC_ADDR32: (Symbol + Addend)
1752   static inline Status
1753   addr32(unsigned char* view, Address value, Overflow_check overflow)
1754   { return This::template rela<32,32>(view, value, overflow); }
1755
1756   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1757   static inline Status
1758   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1759   { return This::template rela_ua<32,32>(view, value, overflow); }
1760
1761   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1762   static inline Status
1763   addr24(unsigned char* view, Address value, Overflow_check overflow)
1764   {
1765     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1766                                              value, overflow);
1767     if (overflow != CHECK_NONE && (value & 3) != 0)
1768       stat = STATUS_OVERFLOW;
1769     return stat;
1770   }
1771
1772   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1773   static inline Status
1774   addr16(unsigned char* view, Address value, Overflow_check overflow)
1775   { return This::template rela<16,16>(view, value, overflow); }
1776
1777   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1778   static inline Status
1779   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1780   { return This::template rela_ua<16,16>(view, value, overflow); }
1781
1782   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1783   static inline Status
1784   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1785   {
1786     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1787     if ((value & 3) != 0)
1788       stat = STATUS_OVERFLOW;
1789     return stat;
1790   }
1791
1792   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1793   static inline Status
1794   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1795   {
1796     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1797     if ((value & 15) != 0)
1798       stat = STATUS_OVERFLOW;
1799     return stat;
1800   }
1801
1802   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1803   static inline void
1804   addr16_hi(unsigned char* view, Address value)
1805   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1806
1807   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1808   static inline void
1809   addr16_ha(unsigned char* view, Address value)
1810   { This::addr16_hi(view, value + 0x8000); }
1811
1812   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1813   static inline void
1814   addr16_hi2(unsigned char* view, Address value)
1815   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1816
1817   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1818   static inline void
1819   addr16_ha2(unsigned char* view, Address value)
1820   { This::addr16_hi2(view, value + 0x8000); }
1821
1822   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1823   static inline void
1824   addr16_hi3(unsigned char* view, Address value)
1825   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1826
1827   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1828   static inline void
1829   addr16_ha3(unsigned char* view, Address value)
1830   { This::addr16_hi3(view, value + 0x8000); }
1831
1832   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1833   static inline Status
1834   addr14(unsigned char* view, Address value, Overflow_check overflow)
1835   {
1836     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1837     if (overflow != CHECK_NONE && (value & 3) != 0)
1838       stat = STATUS_OVERFLOW;
1839     return stat;
1840   }
1841
1842   // R_POWERPC_REL16DX_HA
1843   static inline Status
1844   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1845   {
1846     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1847     Valtype* wv = reinterpret_cast<Valtype*>(view);
1848     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1849     value += 0x8000;
1850     value = static_cast<SignedAddress>(value) >> 16;
1851     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1852     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1853     return overflowed<16>(value, overflow);
1854   }
1855 };
1856
1857 // Set ABI version for input and output.
1858
1859 template<int size, bool big_endian>
1860 void
1861 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1862 {
1863   this->e_flags_ |= ver;
1864   if (this->abiversion() != 0)
1865     {
1866       Target_powerpc<size, big_endian>* target =
1867         static_cast<Target_powerpc<size, big_endian>*>(
1868            parameters->sized_target<size, big_endian>());
1869       if (target->abiversion() == 0)
1870         target->set_abiversion(this->abiversion());
1871       else if (target->abiversion() != this->abiversion())
1872         gold_error(_("%s: ABI version %d is not compatible "
1873                      "with ABI version %d output"),
1874                    this->name().c_str(),
1875                    this->abiversion(), target->abiversion());
1876
1877     }
1878 }
1879
1880 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
1881 // relocatable object, if such sections exists.
1882
1883 template<int size, bool big_endian>
1884 bool
1885 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1886     Read_symbols_data* sd)
1887 {
1888   const unsigned char* const pshdrs = sd->section_headers->data();
1889   const unsigned char* namesu = sd->section_names->data();
1890   const char* names = reinterpret_cast<const char*>(namesu);
1891   section_size_type names_size = sd->section_names_size;
1892   const unsigned char* s;
1893
1894   s = this->template find_shdr<size, big_endian>(pshdrs,
1895                                                  size == 32 ? ".got2" : ".opd",
1896                                                  names, names_size, NULL);
1897   if (s != NULL)
1898     {
1899       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1900       this->special_ = ndx;
1901       if (size == 64)
1902         {
1903           if (this->abiversion() == 0)
1904             this->set_abiversion(1);
1905           else if (this->abiversion() > 1)
1906             gold_error(_("%s: .opd invalid in abiv%d"),
1907                        this->name().c_str(), this->abiversion());
1908         }
1909     }
1910   if (size == 64)
1911     {
1912       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
1913                                                      names, names_size, NULL);
1914       if (s != NULL)
1915         {
1916           unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1917           this->relatoc_ = ndx;
1918           typename elfcpp::Shdr<size, big_endian> shdr(s);
1919           this->toc_ = this->adjust_shndx(shdr.get_sh_info());
1920         }
1921     }
1922   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1923 }
1924
1925 // Examine .rela.opd to build info about function entry points.
1926
1927 template<int size, bool big_endian>
1928 void
1929 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1930     size_t reloc_count,
1931     const unsigned char* prelocs,
1932     const unsigned char* plocal_syms)
1933 {
1934   if (size == 64)
1935     {
1936       typedef typename elfcpp::Rela<size, big_endian> Reltype;
1937       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1938       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1939       Address expected_off = 0;
1940       bool regular = true;
1941       unsigned int opd_ent_size = 0;
1942
1943       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1944         {
1945           Reltype reloc(prelocs);
1946           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1947             = reloc.get_r_info();
1948           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1949           if (r_type == elfcpp::R_PPC64_ADDR64)
1950             {
1951               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1952               typename elfcpp::Elf_types<size>::Elf_Addr value;
1953               bool is_ordinary;
1954               unsigned int shndx;
1955               if (r_sym < this->local_symbol_count())
1956                 {
1957                   typename elfcpp::Sym<size, big_endian>
1958                     lsym(plocal_syms + r_sym * sym_size);
1959                   shndx = lsym.get_st_shndx();
1960                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1961                   value = lsym.get_st_value();
1962                 }
1963               else
1964                 shndx = this->symbol_section_and_value(r_sym, &value,
1965                                                        &is_ordinary);
1966               this->set_opd_ent(reloc.get_r_offset(), shndx,
1967                                 value + reloc.get_r_addend());
1968               if (i == 2)
1969                 {
1970                   expected_off = reloc.get_r_offset();
1971                   opd_ent_size = expected_off;
1972                 }
1973               else if (expected_off != reloc.get_r_offset())
1974                 regular = false;
1975               expected_off += opd_ent_size;
1976             }
1977           else if (r_type == elfcpp::R_PPC64_TOC)
1978             {
1979               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1980                 regular = false;
1981             }
1982           else
1983             {
1984               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1985                            this->name().c_str(), r_type);
1986               regular = false;
1987             }
1988         }
1989       if (reloc_count <= 2)
1990         opd_ent_size = this->section_size(this->opd_shndx());
1991       if (opd_ent_size != 24 && opd_ent_size != 16)
1992         regular = false;
1993       if (!regular)
1994         {
1995           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1996                        this->name().c_str());
1997           opd_ent_size = 0;
1998         }
1999     }
2000 }
2001
2002 // Returns true if a code sequence loading the TOC entry at VALUE
2003 // relative to the TOC pointer can be converted into code calculating
2004 // a TOC pointer relative offset.
2005 // If so, the TOC pointer relative offset is stored to VALUE.
2006
2007 template<int size, bool big_endian>
2008 bool
2009 Powerpc_relobj<size, big_endian>::make_toc_relative(
2010     Target_powerpc<size, big_endian>* target,
2011     Address* value)
2012 {
2013   if (size != 64)
2014     return false;
2015
2016   // With -mcmodel=medium code it is quite possible to have
2017   // toc-relative relocs referring to objects outside the TOC.
2018   // Don't try to look at a non-existent TOC.
2019   if (this->toc_shndx() == 0)
2020     return false;
2021
2022   // Convert VALUE back to an address by adding got_base (see below),
2023   // then to an offset in the TOC by subtracting the TOC output
2024   // section address and the TOC output offset.  Since this TOC output
2025   // section and the got output section are one and the same, we can
2026   // omit adding and subtracting the output section address.
2027   Address off = (*value + this->toc_base_offset()
2028                  - this->output_section_offset(this->toc_shndx()));
2029   // Is this offset in the TOC?  -mcmodel=medium code may be using
2030   // TOC relative access to variables outside the TOC.  Those of
2031   // course can't be optimized.  We also don't try to optimize code
2032   // that is using a different object's TOC.
2033   if (off >= this->section_size(this->toc_shndx()))
2034     return false;
2035
2036   if (this->no_toc_opt(off))
2037     return false;
2038
2039   section_size_type vlen;
2040   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2041   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2042   // The TOC pointer
2043   Address got_base = (target->got_section()->output_section()->address()
2044                       + this->toc_base_offset());
2045   addr -= got_base;
2046   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2047     return false;
2048
2049   *value = addr;
2050   return true;
2051 }
2052
2053 // Perform the Sized_relobj_file method, then set up opd info from
2054 // .opd relocs.
2055
2056 template<int size, bool big_endian>
2057 void
2058 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2059 {
2060   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2061   if (size == 64)
2062     {
2063       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2064            p != rd->relocs.end();
2065            ++p)
2066         {
2067           if (p->data_shndx == this->opd_shndx())
2068             {
2069               uint64_t opd_size = this->section_size(this->opd_shndx());
2070               gold_assert(opd_size == static_cast<size_t>(opd_size));
2071               if (opd_size != 0)
2072                 {
2073                   this->init_opd(opd_size);
2074                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2075                                         rd->local_symbols->data());
2076                 }
2077               break;
2078             }
2079         }
2080     }
2081 }
2082
2083 // Read the symbols then set up st_other vector.
2084
2085 template<int size, bool big_endian>
2086 void
2087 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2088 {
2089   this->base_read_symbols(sd);
2090   if (size == 64)
2091     {
2092       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2093       const unsigned char* const pshdrs = sd->section_headers->data();
2094       const unsigned int loccount = this->do_local_symbol_count();
2095       if (loccount != 0)
2096         {
2097           this->st_other_.resize(loccount);
2098           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2099           off_t locsize = loccount * sym_size;
2100           const unsigned int symtab_shndx = this->symtab_shndx();
2101           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2102           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2103           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2104                                                       locsize, true, false);
2105           psyms += sym_size;
2106           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2107             {
2108               elfcpp::Sym<size, big_endian> sym(psyms);
2109               unsigned char st_other = sym.get_st_other();
2110               this->st_other_[i] = st_other;
2111               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2112                 {
2113                   if (this->abiversion() == 0)
2114                     this->set_abiversion(2);
2115                   else if (this->abiversion() < 2)
2116                     gold_error(_("%s: local symbol %d has invalid st_other"
2117                                  " for ABI version 1"),
2118                                this->name().c_str(), i);
2119                 }
2120             }
2121         }
2122     }
2123 }
2124
2125 template<int size, bool big_endian>
2126 void
2127 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2128 {
2129   this->e_flags_ |= ver;
2130   if (this->abiversion() != 0)
2131     {
2132       Target_powerpc<size, big_endian>* target =
2133         static_cast<Target_powerpc<size, big_endian>*>(
2134           parameters->sized_target<size, big_endian>());
2135       if (target->abiversion() == 0)
2136         target->set_abiversion(this->abiversion());
2137       else if (target->abiversion() != this->abiversion())
2138         gold_error(_("%s: ABI version %d is not compatible "
2139                      "with ABI version %d output"),
2140                    this->name().c_str(),
2141                    this->abiversion(), target->abiversion());
2142
2143     }
2144 }
2145
2146 // Call Sized_dynobj::base_read_symbols to read the symbols then
2147 // read .opd from a dynamic object, filling in opd_ent_ vector,
2148
2149 template<int size, bool big_endian>
2150 void
2151 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2152 {
2153   this->base_read_symbols(sd);
2154   if (size == 64)
2155     {
2156       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2157       const unsigned char* const pshdrs = sd->section_headers->data();
2158       const unsigned char* namesu = sd->section_names->data();
2159       const char* names = reinterpret_cast<const char*>(namesu);
2160       const unsigned char* s = NULL;
2161       const unsigned char* opd;
2162       section_size_type opd_size;
2163
2164       // Find and read .opd section.
2165       while (1)
2166         {
2167           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2168                                                          sd->section_names_size,
2169                                                          s);
2170           if (s == NULL)
2171             return;
2172
2173           typename elfcpp::Shdr<size, big_endian> shdr(s);
2174           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2175               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2176             {
2177               if (this->abiversion() == 0)
2178                 this->set_abiversion(1);
2179               else if (this->abiversion() > 1)
2180                 gold_error(_("%s: .opd invalid in abiv%d"),
2181                            this->name().c_str(), this->abiversion());
2182
2183               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2184               this->opd_address_ = shdr.get_sh_addr();
2185               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2186               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2187                                    true, false);
2188               break;
2189             }
2190         }
2191
2192       // Build set of executable sections.
2193       // Using a set is probably overkill.  There is likely to be only
2194       // a few executable sections, typically .init, .text and .fini,
2195       // and they are generally grouped together.
2196       typedef std::set<Sec_info> Exec_sections;
2197       Exec_sections exec_sections;
2198       s = pshdrs;
2199       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2200         {
2201           typename elfcpp::Shdr<size, big_endian> shdr(s);
2202           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2203               && ((shdr.get_sh_flags()
2204                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2205                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2206               && shdr.get_sh_size() != 0)
2207             {
2208               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2209                                             shdr.get_sh_size(), i));
2210             }
2211         }
2212       if (exec_sections.empty())
2213         return;
2214
2215       // Look over the OPD entries.  This is complicated by the fact
2216       // that some binaries will use two-word entries while others
2217       // will use the standard three-word entries.  In most cases
2218       // the third word (the environment pointer for languages like
2219       // Pascal) is unused and will be zero.  If the third word is
2220       // used it should not be pointing into executable sections,
2221       // I think.
2222       this->init_opd(opd_size);
2223       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2224         {
2225           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2226           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2227           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2228           if (val == 0)
2229             // Chances are that this is the third word of an OPD entry.
2230             continue;
2231           typename Exec_sections::const_iterator e
2232             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2233           if (e != exec_sections.begin())
2234             {
2235               --e;
2236               if (e->start <= val && val < e->start + e->len)
2237                 {
2238                   // We have an address in an executable section.
2239                   // VAL ought to be the function entry, set it up.
2240                   this->set_opd_ent(p - opd, e->shndx, val);
2241                   // Skip second word of OPD entry, the TOC pointer.
2242                   p += 8;
2243                 }
2244             }
2245           // If we didn't match any executable sections, we likely
2246           // have a non-zero third word in the OPD entry.
2247         }
2248     }
2249 }
2250
2251 // Relocate sections.
2252
2253 template<int size, bool big_endian>
2254 void
2255 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2256     const Symbol_table* symtab, const Layout* layout,
2257     const unsigned char* pshdrs, Output_file* of,
2258     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2259 {
2260   unsigned int start = 1;
2261   if (size == 64
2262       && this->relatoc_ != 0
2263       && !parameters->options().relocatable())
2264     {
2265       // Relocate .toc first.
2266       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2267                                    this->relatoc_, this->relatoc_);
2268       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2269                                    1, this->relatoc_ - 1);
2270       start = this->relatoc_ + 1;
2271     }
2272   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2273                                start, this->shnum() - 1);
2274 }
2275
2276 // Set up some symbols.
2277
2278 template<int size, bool big_endian>
2279 void
2280 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2281     Symbol_table* symtab,
2282     Layout* layout)
2283 {
2284   if (size == 32)
2285     {
2286       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2287       // undefined when scanning relocs (and thus requires
2288       // non-relative dynamic relocs).  The proper value will be
2289       // updated later.
2290       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2291       if (gotsym != NULL && gotsym->is_undefined())
2292         {
2293           Target_powerpc<size, big_endian>* target =
2294             static_cast<Target_powerpc<size, big_endian>*>(
2295                 parameters->sized_target<size, big_endian>());
2296           Output_data_got_powerpc<size, big_endian>* got
2297             = target->got_section(symtab, layout);
2298           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2299                                         Symbol_table::PREDEFINED,
2300                                         got, 0, 0,
2301                                         elfcpp::STT_OBJECT,
2302                                         elfcpp::STB_LOCAL,
2303                                         elfcpp::STV_HIDDEN, 0,
2304                                         false, false);
2305         }
2306
2307       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2308       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2309       if (sdasym != NULL && sdasym->is_undefined())
2310         {
2311           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2312           Output_section* os
2313             = layout->add_output_section_data(".sdata", 0,
2314                                               elfcpp::SHF_ALLOC
2315                                               | elfcpp::SHF_WRITE,
2316                                               sdata, ORDER_SMALL_DATA, false);
2317           symtab->define_in_output_data("_SDA_BASE_", NULL,
2318                                         Symbol_table::PREDEFINED,
2319                                         os, 32768, 0, elfcpp::STT_OBJECT,
2320                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2321                                         0, false, false);
2322         }
2323     }
2324   else
2325     {
2326       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2327       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2328       if (gotsym != NULL && gotsym->is_undefined())
2329         {
2330           Target_powerpc<size, big_endian>* target =
2331             static_cast<Target_powerpc<size, big_endian>*>(
2332                 parameters->sized_target<size, big_endian>());
2333           Output_data_got_powerpc<size, big_endian>* got
2334             = target->got_section(symtab, layout);
2335           symtab->define_in_output_data(".TOC.", NULL,
2336                                         Symbol_table::PREDEFINED,
2337                                         got, 0x8000, 0,
2338                                         elfcpp::STT_OBJECT,
2339                                         elfcpp::STB_LOCAL,
2340                                         elfcpp::STV_HIDDEN, 0,
2341                                         false, false);
2342         }
2343     }
2344 }
2345
2346 // Set up PowerPC target specific relobj.
2347
2348 template<int size, bool big_endian>
2349 Object*
2350 Target_powerpc<size, big_endian>::do_make_elf_object(
2351     const std::string& name,
2352     Input_file* input_file,
2353     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2354 {
2355   int et = ehdr.get_e_type();
2356   // ET_EXEC files are valid input for --just-symbols/-R,
2357   // and we treat them as relocatable objects.
2358   if (et == elfcpp::ET_REL
2359       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2360     {
2361       Powerpc_relobj<size, big_endian>* obj =
2362         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2363       obj->setup();
2364       return obj;
2365     }
2366   else if (et == elfcpp::ET_DYN)
2367     {
2368       Powerpc_dynobj<size, big_endian>* obj =
2369         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2370       obj->setup();
2371       return obj;
2372     }
2373   else
2374     {
2375       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2376       return NULL;
2377     }
2378 }
2379
2380 template<int size, bool big_endian>
2381 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2382 {
2383 public:
2384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2385   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2386
2387   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2388     : Output_data_got<size, big_endian>(),
2389       symtab_(symtab), layout_(layout),
2390       header_ent_cnt_(size == 32 ? 3 : 1),
2391       header_index_(size == 32 ? 0x2000 : 0)
2392   {
2393     if (size == 64)
2394       this->set_addralign(256);
2395   }
2396
2397   // Override all the Output_data_got methods we use so as to first call
2398   // reserve_ent().
2399   bool
2400   add_global(Symbol* gsym, unsigned int got_type)
2401   {
2402     this->reserve_ent();
2403     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2404   }
2405
2406   bool
2407   add_global_plt(Symbol* gsym, unsigned int got_type)
2408   {
2409     this->reserve_ent();
2410     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2411   }
2412
2413   bool
2414   add_global_tls(Symbol* gsym, unsigned int got_type)
2415   { return this->add_global_plt(gsym, got_type); }
2416
2417   void
2418   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2419                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2420   {
2421     this->reserve_ent();
2422     Output_data_got<size, big_endian>::
2423       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2424   }
2425
2426   void
2427   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2428                            Output_data_reloc_generic* rel_dyn,
2429                            unsigned int r_type_1, unsigned int r_type_2)
2430   {
2431     this->reserve_ent(2);
2432     Output_data_got<size, big_endian>::
2433       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2434   }
2435
2436   bool
2437   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2438   {
2439     this->reserve_ent();
2440     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2441                                                         got_type);
2442   }
2443
2444   bool
2445   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2446   {
2447     this->reserve_ent();
2448     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2449                                                             got_type);
2450   }
2451
2452   bool
2453   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2454   { return this->add_local_plt(object, sym_index, got_type); }
2455
2456   void
2457   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2458                      unsigned int got_type,
2459                      Output_data_reloc_generic* rel_dyn,
2460                      unsigned int r_type)
2461   {
2462     this->reserve_ent(2);
2463     Output_data_got<size, big_endian>::
2464       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2465   }
2466
2467   unsigned int
2468   add_constant(Valtype constant)
2469   {
2470     this->reserve_ent();
2471     return Output_data_got<size, big_endian>::add_constant(constant);
2472   }
2473
2474   unsigned int
2475   add_constant_pair(Valtype c1, Valtype c2)
2476   {
2477     this->reserve_ent(2);
2478     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2479   }
2480
2481   // Offset of _GLOBAL_OFFSET_TABLE_.
2482   unsigned int
2483   g_o_t() const
2484   {
2485     return this->got_offset(this->header_index_);
2486   }
2487
2488   // Offset of base used to access the GOT/TOC.
2489   // The got/toc pointer reg will be set to this value.
2490   Valtype
2491   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2492   {
2493     if (size == 32)
2494       return this->g_o_t();
2495     else
2496       return (this->output_section()->address()
2497               + object->toc_base_offset()
2498               - this->address());
2499   }
2500
2501   // Ensure our GOT has a header.
2502   void
2503   set_final_data_size()
2504   {
2505     if (this->header_ent_cnt_ != 0)
2506       this->make_header();
2507     Output_data_got<size, big_endian>::set_final_data_size();
2508   }
2509
2510   // First word of GOT header needs some values that are not
2511   // handled by Output_data_got so poke them in here.
2512   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2513   void
2514   do_write(Output_file* of)
2515   {
2516     Valtype val = 0;
2517     if (size == 32 && this->layout_->dynamic_data() != NULL)
2518       val = this->layout_->dynamic_section()->address();
2519     if (size == 64)
2520       val = this->output_section()->address() + 0x8000;
2521     this->replace_constant(this->header_index_, val);
2522     Output_data_got<size, big_endian>::do_write(of);
2523   }
2524
2525 private:
2526   void
2527   reserve_ent(unsigned int cnt = 1)
2528   {
2529     if (this->header_ent_cnt_ == 0)
2530       return;
2531     if (this->num_entries() + cnt > this->header_index_)
2532       this->make_header();
2533   }
2534
2535   void
2536   make_header()
2537   {
2538     this->header_ent_cnt_ = 0;
2539     this->header_index_ = this->num_entries();
2540     if (size == 32)
2541       {
2542         Output_data_got<size, big_endian>::add_constant(0);
2543         Output_data_got<size, big_endian>::add_constant(0);
2544         Output_data_got<size, big_endian>::add_constant(0);
2545
2546         // Define _GLOBAL_OFFSET_TABLE_ at the header
2547         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2548         if (gotsym != NULL)
2549           {
2550             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2551             sym->set_value(this->g_o_t());
2552           }
2553         else
2554           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2555                                                Symbol_table::PREDEFINED,
2556                                                this, this->g_o_t(), 0,
2557                                                elfcpp::STT_OBJECT,
2558                                                elfcpp::STB_LOCAL,
2559                                                elfcpp::STV_HIDDEN, 0,
2560                                                false, false);
2561       }
2562     else
2563       Output_data_got<size, big_endian>::add_constant(0);
2564   }
2565
2566   // Stashed pointers.
2567   Symbol_table* symtab_;
2568   Layout* layout_;
2569
2570   // GOT header size.
2571   unsigned int header_ent_cnt_;
2572   // GOT header index.
2573   unsigned int header_index_;
2574 };
2575
2576 // Get the GOT section, creating it if necessary.
2577
2578 template<int size, bool big_endian>
2579 Output_data_got_powerpc<size, big_endian>*
2580 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2581                                               Layout* layout)
2582 {
2583   if (this->got_ == NULL)
2584     {
2585       gold_assert(symtab != NULL && layout != NULL);
2586
2587       this->got_
2588         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2589
2590       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2591                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2592                                       this->got_, ORDER_DATA, false);
2593     }
2594
2595   return this->got_;
2596 }
2597
2598 // Get the dynamic reloc section, creating it if necessary.
2599
2600 template<int size, bool big_endian>
2601 typename Target_powerpc<size, big_endian>::Reloc_section*
2602 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2603 {
2604   if (this->rela_dyn_ == NULL)
2605     {
2606       gold_assert(layout != NULL);
2607       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2608       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2609                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2610                                       ORDER_DYNAMIC_RELOCS, false);
2611     }
2612   return this->rela_dyn_;
2613 }
2614
2615 // Similarly, but for ifunc symbols get the one for ifunc.
2616
2617 template<int size, bool big_endian>
2618 typename Target_powerpc<size, big_endian>::Reloc_section*
2619 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2620                                                    Layout* layout,
2621                                                    bool for_ifunc)
2622 {
2623   if (!for_ifunc)
2624     return this->rela_dyn_section(layout);
2625
2626   if (this->iplt_ == NULL)
2627     this->make_iplt_section(symtab, layout);
2628   return this->iplt_->rel_plt();
2629 }
2630
2631 class Stub_control
2632 {
2633  public:
2634   // Determine the stub group size.  The group size is the absolute
2635   // value of the parameter --stub-group-size.  If --stub-group-size
2636   // is passed a negative value, we restrict stubs to be always after
2637   // the stubbed branches.
2638   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2639     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2640       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2641       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2642       owner_(NULL), output_section_(NULL)
2643   {
2644   }
2645
2646   // Return true iff input section can be handled by current stub
2647   // group.
2648   bool
2649   can_add_to_stub_group(Output_section* o,
2650                         const Output_section::Input_section* i,
2651                         bool has14);
2652
2653   const Output_section::Input_section*
2654   owner()
2655   { return owner_; }
2656
2657   Output_section*
2658   output_section()
2659   { return output_section_; }
2660
2661   void
2662   set_output_and_owner(Output_section* o,
2663                        const Output_section::Input_section* i)
2664   {
2665     this->output_section_ = o;
2666     this->owner_ = i;
2667   }
2668
2669  private:
2670   typedef enum
2671   {
2672     // Initial state.
2673     NO_GROUP,
2674     // Adding group sections before the stubs.
2675     FINDING_STUB_SECTION,
2676     // Adding group sections after the stubs.
2677     HAS_STUB_SECTION
2678   } State;
2679
2680   uint32_t stub_group_size_;
2681   bool stubs_always_after_branch_;
2682   bool suppress_size_errors_;
2683   // True if a stub group can serve multiple output sections.
2684   bool multi_os_;
2685   State state_;
2686   // Current max size of group.  Starts at stub_group_size_ but is
2687   // reduced to stub_group_size_/1024 on seeing a section with
2688   // external conditional branches.
2689   uint32_t group_size_;
2690   uint64_t group_start_addr_;
2691   // owner_ and output_section_ specify the section to which stubs are
2692   // attached.  The stubs are placed at the end of this section.
2693   const Output_section::Input_section* owner_;
2694   Output_section* output_section_;
2695 };
2696
2697 // Return true iff input section can be handled by current stub
2698 // group.  Sections are presented to this function in order,
2699 // so the first section is the head of the group.
2700
2701 bool
2702 Stub_control::can_add_to_stub_group(Output_section* o,
2703                                     const Output_section::Input_section* i,
2704                                     bool has14)
2705 {
2706   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2707   uint64_t this_size;
2708   uint64_t start_addr = o->address();
2709
2710   if (whole_sec)
2711     // .init and .fini sections are pasted together to form a single
2712     // function.  We can't be adding stubs in the middle of the function.
2713     this_size = o->data_size();
2714   else
2715     {
2716       start_addr += i->relobj()->output_section_offset(i->shndx());
2717       this_size = i->data_size();
2718     }
2719
2720   uint64_t end_addr = start_addr + this_size;
2721   uint32_t group_size = this->stub_group_size_;
2722   if (has14)
2723     this->group_size_ = group_size = group_size >> 10;
2724
2725   if (this_size > group_size && !this->suppress_size_errors_)
2726     gold_warning(_("%s:%s exceeds group size"),
2727                  i->relobj()->name().c_str(),
2728                  i->relobj()->section_name(i->shndx()).c_str());
2729
2730   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2731              has14 ? " 14bit" : "",
2732              i->relobj()->name().c_str(),
2733              i->relobj()->section_name(i->shndx()).c_str(),
2734              (long long) this_size,
2735              (this->state_ == NO_GROUP
2736               ? this_size
2737               : (long long) end_addr - this->group_start_addr_));
2738
2739   if (this->state_ == NO_GROUP)
2740     {
2741       // Only here on very first use of Stub_control
2742       this->owner_ = i;
2743       this->output_section_ = o;
2744       this->state_ = FINDING_STUB_SECTION;
2745       this->group_size_ = group_size;
2746       this->group_start_addr_ = start_addr;
2747       return true;
2748     }
2749   else if (!this->multi_os_ && this->output_section_ != o)
2750     ;
2751   else if (this->state_ == HAS_STUB_SECTION)
2752     {
2753       // Can we add this section, which is after the stubs, to the
2754       // group?
2755       if (end_addr - this->group_start_addr_ <= this->group_size_)
2756         return true;
2757     }
2758   else if (this->state_ == FINDING_STUB_SECTION)
2759     {
2760       if ((whole_sec && this->output_section_ == o)
2761           || end_addr - this->group_start_addr_ <= this->group_size_)
2762         {
2763           // Stubs are added at the end of "owner_".
2764           this->owner_ = i;
2765           this->output_section_ = o;
2766           return true;
2767         }
2768       // The group before the stubs has reached maximum size.
2769       // Now see about adding sections after the stubs to the
2770       // group.  If the current section has a 14-bit branch and
2771       // the group before the stubs exceeds group_size_ (because
2772       // they didn't have 14-bit branches), don't add sections
2773       // after the stubs:  The size of stubs for such a large
2774       // group may exceed the reach of a 14-bit branch.
2775       if (!this->stubs_always_after_branch_
2776           && this_size <= this->group_size_
2777           && start_addr - this->group_start_addr_ <= this->group_size_)
2778         {
2779           gold_debug(DEBUG_TARGET, "adding after stubs");
2780           this->state_ = HAS_STUB_SECTION;
2781           this->group_start_addr_ = start_addr;
2782           return true;
2783         }
2784     }
2785   else
2786     gold_unreachable();
2787
2788   gold_debug(DEBUG_TARGET,
2789              !this->multi_os_ && this->output_section_ != o
2790              ? "nope, new output section\n"
2791              : "nope, didn't fit\n");
2792
2793   // The section fails to fit in the current group.  Set up a few
2794   // things for the next group.  owner_ and output_section_ will be
2795   // set later after we've retrieved those values for the current
2796   // group.
2797   this->state_ = FINDING_STUB_SECTION;
2798   this->group_size_ = group_size;
2799   this->group_start_addr_ = start_addr;
2800   return false;
2801 }
2802
2803 // Look over all the input sections, deciding where to place stubs.
2804
2805 template<int size, bool big_endian>
2806 void
2807 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2808                                                  const Task*,
2809                                                  bool no_size_errors)
2810 {
2811   Stub_control stub_control(this->stub_group_size_, no_size_errors,
2812                             parameters->options().stub_group_multi());
2813
2814   // Group input sections and insert stub table
2815   Stub_table_owner* table_owner = NULL;
2816   std::vector<Stub_table_owner*> tables;
2817   Layout::Section_list section_list;
2818   layout->get_executable_sections(&section_list);
2819   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2820   for (Layout::Section_list::iterator o = section_list.begin();
2821        o != section_list.end();
2822        ++o)
2823     {
2824       typedef Output_section::Input_section_list Input_section_list;
2825       for (Input_section_list::const_iterator i
2826              = (*o)->input_sections().begin();
2827            i != (*o)->input_sections().end();
2828            ++i)
2829         {
2830           if (i->is_input_section()
2831               || i->is_relaxed_input_section())
2832             {
2833               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2834                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2835               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2836               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2837                 {
2838                   table_owner->output_section = stub_control.output_section();
2839                   table_owner->owner = stub_control.owner();
2840                   stub_control.set_output_and_owner(*o, &*i);
2841                   table_owner = NULL;
2842                 }
2843               if (table_owner == NULL)
2844                 {
2845                   table_owner = new Stub_table_owner;
2846                   tables.push_back(table_owner);
2847                 }
2848               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2849             }
2850         }
2851     }
2852   if (table_owner != NULL)
2853     {
2854       table_owner->output_section = stub_control.output_section();
2855       table_owner->owner = stub_control.owner();;
2856     }
2857   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2858        t != tables.end();
2859        ++t)
2860     {
2861       Stub_table<size, big_endian>* stub_table;
2862
2863       if ((*t)->owner->is_input_section())
2864         stub_table = new Stub_table<size, big_endian>(this,
2865                                                       (*t)->output_section,
2866                                                       (*t)->owner,
2867                                                       this->stub_tables_.size());
2868       else if ((*t)->owner->is_relaxed_input_section())
2869         stub_table = static_cast<Stub_table<size, big_endian>*>(
2870                         (*t)->owner->relaxed_input_section());
2871       else
2872         gold_unreachable();
2873       this->stub_tables_.push_back(stub_table);
2874       delete *t;
2875     }
2876 }
2877
2878 static unsigned long
2879 max_branch_delta (unsigned int r_type)
2880 {
2881   if (r_type == elfcpp::R_POWERPC_REL14
2882       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2883       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2884     return 1L << 15;
2885   if (r_type == elfcpp::R_POWERPC_REL24
2886       || r_type == elfcpp::R_PPC_PLTREL24
2887       || r_type == elfcpp::R_PPC_LOCAL24PC)
2888     return 1L << 25;
2889   return 0;
2890 }
2891
2892 // If this branch needs a plt call stub, or a long branch stub, make one.
2893
2894 template<int size, bool big_endian>
2895 bool
2896 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2897     Stub_table<size, big_endian>* stub_table,
2898     Stub_table<size, big_endian>* ifunc_stub_table,
2899     Symbol_table* symtab) const
2900 {
2901   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2902   if (sym != NULL && sym->is_forwarder())
2903     sym = symtab->resolve_forwards(sym);
2904   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2905   Target_powerpc<size, big_endian>* target =
2906     static_cast<Target_powerpc<size, big_endian>*>(
2907       parameters->sized_target<size, big_endian>());
2908   bool ok = true;
2909
2910   if (gsym != NULL
2911       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2912       : this->object_->local_has_plt_offset(this->r_sym_))
2913     {
2914       if (size == 64
2915           && gsym != NULL
2916           && target->abiversion() >= 2
2917           && !parameters->options().output_is_position_independent()
2918           && !is_branch_reloc(this->r_type_))
2919         target->glink_section()->add_global_entry(gsym);
2920       else
2921         {
2922           if (stub_table == NULL)
2923             stub_table = this->object_->stub_table(this->shndx_);
2924           if (stub_table == NULL)
2925             {
2926               // This is a ref from a data section to an ifunc symbol.
2927               stub_table = ifunc_stub_table;
2928             }
2929           gold_assert(stub_table != NULL);
2930           Address from = this->object_->get_output_section_offset(this->shndx_);
2931           if (from != invalid_address)
2932             from += (this->object_->output_section(this->shndx_)->address()
2933                      + this->offset_);
2934           if (gsym != NULL)
2935             ok = stub_table->add_plt_call_entry(from,
2936                                                 this->object_, gsym,
2937                                                 this->r_type_, this->addend_);
2938           else
2939             ok = stub_table->add_plt_call_entry(from,
2940                                                 this->object_, this->r_sym_,
2941                                                 this->r_type_, this->addend_);
2942         }
2943     }
2944   else
2945     {
2946       Address max_branch_offset = max_branch_delta(this->r_type_);
2947       if (max_branch_offset == 0)
2948         return true;
2949       Address from = this->object_->get_output_section_offset(this->shndx_);
2950       gold_assert(from != invalid_address);
2951       from += (this->object_->output_section(this->shndx_)->address()
2952                + this->offset_);
2953       Address to;
2954       if (gsym != NULL)
2955         {
2956           switch (gsym->source())
2957             {
2958             case Symbol::FROM_OBJECT:
2959               {
2960                 Object* symobj = gsym->object();
2961                 if (symobj->is_dynamic()
2962                     || symobj->pluginobj() != NULL)
2963                   return true;
2964                 bool is_ordinary;
2965                 unsigned int shndx = gsym->shndx(&is_ordinary);
2966                 if (shndx == elfcpp::SHN_UNDEF)
2967                   return true;
2968               }
2969               break;
2970
2971             case Symbol::IS_UNDEFINED:
2972               return true;
2973
2974             default:
2975               break;
2976             }
2977           Symbol_table::Compute_final_value_status status;
2978           to = symtab->compute_final_value<size>(gsym, &status);
2979           if (status != Symbol_table::CFVS_OK)
2980             return true;
2981           if (size == 64)
2982             to += this->object_->ppc64_local_entry_offset(gsym);
2983         }
2984       else
2985         {
2986           const Symbol_value<size>* psymval
2987             = this->object_->local_symbol(this->r_sym_);
2988           Symbol_value<size> symval;
2989           if (psymval->is_section_symbol())
2990             symval.set_is_section_symbol();
2991           typedef Sized_relobj_file<size, big_endian> ObjType;
2992           typename ObjType::Compute_final_local_value_status status
2993             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2994                                                        &symval, symtab);
2995           if (status != ObjType::CFLV_OK
2996               || !symval.has_output_value())
2997             return true;
2998           to = symval.value(this->object_, 0);
2999           if (size == 64)
3000             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3001         }
3002       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3003         to += this->addend_;
3004       if (stub_table == NULL)
3005         stub_table = this->object_->stub_table(this->shndx_);
3006       if (size == 64 && target->abiversion() < 2)
3007         {
3008           unsigned int dest_shndx;
3009           if (!target->symval_for_branch(symtab, gsym, this->object_,
3010                                          &to, &dest_shndx))
3011             return true;
3012         }
3013       Address delta = to - from;
3014       if (delta + max_branch_offset >= 2 * max_branch_offset)
3015         {
3016           if (stub_table == NULL)
3017             {
3018               gold_warning(_("%s:%s: branch in non-executable section,"
3019                              " no long branch stub for you"),
3020                            this->object_->name().c_str(),
3021                            this->object_->section_name(this->shndx_).c_str());
3022               return true;
3023             }
3024           bool save_res = (size == 64
3025                            && gsym != NULL
3026                            && gsym->source() == Symbol::IN_OUTPUT_DATA
3027                            && gsym->output_data() == target->savres_section());
3028           ok = stub_table->add_long_branch_entry(this->object_,
3029                                                  this->r_type_,
3030                                                  from, to, save_res);
3031         }
3032     }
3033   if (!ok)
3034     gold_debug(DEBUG_TARGET,
3035                "branch at %s:%s+%#lx\n"
3036                "can't reach stub attached to %s:%s",
3037                this->object_->name().c_str(),
3038                this->object_->section_name(this->shndx_).c_str(),
3039                (unsigned long) this->offset_,
3040                stub_table->relobj()->name().c_str(),
3041                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3042
3043   return ok;
3044 }
3045
3046 // Relaxation hook.  This is where we do stub generation.
3047
3048 template<int size, bool big_endian>
3049 bool
3050 Target_powerpc<size, big_endian>::do_relax(int pass,
3051                                            const Input_objects*,
3052                                            Symbol_table* symtab,
3053                                            Layout* layout,
3054                                            const Task* task)
3055 {
3056   unsigned int prev_brlt_size = 0;
3057   if (pass == 1)
3058     {
3059       bool thread_safe
3060         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3061       if (size == 64
3062           && this->abiversion() < 2
3063           && !thread_safe
3064           && !parameters->options().user_set_plt_thread_safe())
3065         {
3066           static const char* const thread_starter[] =
3067             {
3068               "pthread_create",
3069               /* libstdc++ */
3070               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3071               /* librt */
3072               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3073               "mq_notify", "create_timer",
3074               /* libanl */
3075               "getaddrinfo_a",
3076               /* libgomp */
3077               "GOMP_parallel",
3078               "GOMP_parallel_start",
3079               "GOMP_parallel_loop_static",
3080               "GOMP_parallel_loop_static_start",
3081               "GOMP_parallel_loop_dynamic",
3082               "GOMP_parallel_loop_dynamic_start",
3083               "GOMP_parallel_loop_guided",
3084               "GOMP_parallel_loop_guided_start",
3085               "GOMP_parallel_loop_runtime",
3086               "GOMP_parallel_loop_runtime_start",
3087               "GOMP_parallel_sections",
3088               "GOMP_parallel_sections_start",
3089               /* libgo */
3090               "__go_go",
3091             };
3092
3093           if (parameters->options().shared())
3094             thread_safe = true;
3095           else
3096             {
3097               for (unsigned int i = 0;
3098                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3099                    i++)
3100                 {
3101                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3102                   thread_safe = (sym != NULL
3103                                  && sym->in_reg()
3104                                  && sym->in_real_elf());
3105                   if (thread_safe)
3106                     break;
3107                 }
3108             }
3109         }
3110       this->plt_thread_safe_ = thread_safe;
3111     }
3112
3113   if (pass == 1)
3114     {
3115       this->stub_group_size_ = parameters->options().stub_group_size();
3116       bool no_size_errors = true;
3117       if (this->stub_group_size_ == 1)
3118         this->stub_group_size_ = 0x1c00000;
3119       else if (this->stub_group_size_ == -1)
3120         this->stub_group_size_ = -0x1e00000;
3121       else
3122         no_size_errors = false;
3123       this->group_sections(layout, task, no_size_errors);
3124     }
3125   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3126     {
3127       this->branch_lookup_table_.clear();
3128       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3129            p != this->stub_tables_.end();
3130            ++p)
3131         {
3132           (*p)->clear_stubs(true);
3133         }
3134       this->stub_tables_.clear();
3135       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3136       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3137                 program_name, this->stub_group_size_);
3138       this->group_sections(layout, task, true);
3139     }
3140
3141   // We need address of stub tables valid for make_stub.
3142   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3143        p != this->stub_tables_.end();
3144        ++p)
3145     {
3146       const Powerpc_relobj<size, big_endian>* object
3147         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3148       Address off = object->get_output_section_offset((*p)->shndx());
3149       gold_assert(off != invalid_address);
3150       Output_section* os = (*p)->output_section();
3151       (*p)->set_address_and_size(os, off);
3152     }
3153
3154   if (pass != 1)
3155     {
3156       // Clear plt call stubs, long branch stubs and branch lookup table.
3157       prev_brlt_size = this->branch_lookup_table_.size();
3158       this->branch_lookup_table_.clear();
3159       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3160            p != this->stub_tables_.end();
3161            ++p)
3162         {
3163           (*p)->clear_stubs(false);
3164         }
3165     }
3166
3167   // Build all the stubs.
3168   this->relax_failed_ = false;
3169   Stub_table<size, big_endian>* ifunc_stub_table
3170     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3171   Stub_table<size, big_endian>* one_stub_table
3172     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3173   for (typename Branches::const_iterator b = this->branch_info_.begin();
3174        b != this->branch_info_.end();
3175        b++)
3176     {
3177       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3178           && !this->relax_failed_)
3179         {
3180           this->relax_failed_ = true;
3181           this->relax_fail_count_++;
3182           if (this->relax_fail_count_ < 3)
3183             return true;
3184         }
3185     }
3186
3187   // Did anything change size?
3188   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3189   bool again = num_huge_branches != prev_brlt_size;
3190   if (size == 64 && num_huge_branches != 0)
3191     this->make_brlt_section(layout);
3192   if (size == 64 && again)
3193     this->brlt_section_->set_current_size(num_huge_branches);
3194
3195   typedef Unordered_set<Output_section*> Output_sections;
3196   Output_sections os_need_update;
3197   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3198        p != this->stub_tables_.end();
3199        ++p)
3200     {
3201       if ((*p)->size_update())
3202         {
3203           again = true;
3204           (*p)->add_eh_frame(layout);
3205           os_need_update.insert((*p)->output_section());
3206         }
3207     }
3208
3209   // Set output section offsets for all input sections in an output
3210   // section that just changed size.  Anything past the stubs will
3211   // need updating.
3212   for (typename Output_sections::iterator p = os_need_update.begin();
3213        p != os_need_update.end();
3214        p++)
3215     {
3216       Output_section* os = *p;
3217       Address off = 0;
3218       typedef Output_section::Input_section_list Input_section_list;
3219       for (Input_section_list::const_iterator i = os->input_sections().begin();
3220            i != os->input_sections().end();
3221            ++i)
3222         {
3223           off = align_address(off, i->addralign());
3224           if (i->is_input_section() || i->is_relaxed_input_section())
3225             i->relobj()->set_section_offset(i->shndx(), off);
3226           if (i->is_relaxed_input_section())
3227             {
3228               Stub_table<size, big_endian>* stub_table
3229                 = static_cast<Stub_table<size, big_endian>*>(
3230                     i->relaxed_input_section());
3231               Address stub_table_size = stub_table->set_address_and_size(os, off);
3232               off += stub_table_size;
3233               // After a few iterations, set current stub table size
3234               // as min size threshold, so later stub tables can only
3235               // grow in size.
3236               if (pass >= 4)
3237                 stub_table->set_min_size_threshold(stub_table_size);
3238             }
3239           else
3240             off += i->data_size();
3241         }
3242       // If .branch_lt is part of this output section, then we have
3243       // just done the offset adjustment.
3244       os->clear_section_offsets_need_adjustment();
3245     }
3246
3247   if (size == 64
3248       && !again
3249       && num_huge_branches != 0
3250       && parameters->options().output_is_position_independent())
3251     {
3252       // Fill in the BRLT relocs.
3253       this->brlt_section_->reset_brlt_sizes();
3254       for (typename Branch_lookup_table::const_iterator p
3255              = this->branch_lookup_table_.begin();
3256            p != this->branch_lookup_table_.end();
3257            ++p)
3258         {
3259           this->brlt_section_->add_reloc(p->first, p->second);
3260         }
3261       this->brlt_section_->finalize_brlt_sizes();
3262     }
3263
3264   if (!again
3265       && (parameters->options().user_set_emit_stub_syms()
3266           ? parameters->options().emit_stub_syms()
3267           : (size == 64
3268              || parameters->options().output_is_position_independent()
3269              || parameters->options().emit_relocs())))
3270     {
3271       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3272            p != this->stub_tables_.end();
3273            ++p)
3274         (*p)->define_stub_syms(symtab);
3275
3276       if (this->glink_ != NULL)
3277         {
3278           int stub_size = this->glink_->pltresolve_size;
3279           Address value = -stub_size;
3280           if (size == 64)
3281             {
3282               value = 8;
3283               stub_size -= 8;
3284             }
3285           this->define_local(symtab, "__glink_PLTresolve",
3286                              this->glink_, value, stub_size);
3287
3288           if (size != 64)
3289             this->define_local(symtab, "__glink", this->glink_, 0, 0);
3290         }
3291     }
3292
3293   return again;
3294 }
3295
3296 template<int size, bool big_endian>
3297 void
3298 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3299                                                       unsigned char* oview,
3300                                                       uint64_t* paddress,
3301                                                       off_t* plen) const
3302 {
3303   uint64_t address = plt->address();
3304   off_t len = plt->data_size();
3305
3306   if (plt == this->glink_)
3307     {
3308       // See Output_data_glink::do_write() for glink contents.
3309       if (len == 0)
3310         {
3311           gold_assert(parameters->doing_static_link());
3312           // Static linking may need stubs, to support ifunc and long
3313           // branches.  We need to create an output section for
3314           // .eh_frame early in the link process, to have a place to
3315           // attach stub .eh_frame info.  We also need to have
3316           // registered a CIE that matches the stub CIE.  Both of
3317           // these requirements are satisfied by creating an FDE and
3318           // CIE for .glink, even though static linking will leave
3319           // .glink zero length.
3320           // ??? Hopefully generating an FDE with a zero address range
3321           // won't confuse anything that consumes .eh_frame info.
3322         }
3323       else if (size == 64)
3324         {
3325           // There is one word before __glink_PLTresolve
3326           address += 8;
3327           len -= 8;
3328         }
3329       else if (parameters->options().output_is_position_independent())
3330         {
3331           // There are two FDEs for a position independent glink.
3332           // The first covers the branch table, the second
3333           // __glink_PLTresolve at the end of glink.
3334           off_t resolve_size = this->glink_->pltresolve_size;
3335           if (oview[9] == elfcpp::DW_CFA_nop)
3336             len -= resolve_size;
3337           else
3338             {
3339               address += len - resolve_size;
3340               len = resolve_size;
3341             }
3342         }
3343     }
3344   else
3345     {
3346       // Must be a stub table.
3347       const Stub_table<size, big_endian>* stub_table
3348         = static_cast<const Stub_table<size, big_endian>*>(plt);
3349       uint64_t stub_address = stub_table->stub_address();
3350       len -= stub_address - address;
3351       address = stub_address;
3352     }
3353
3354   *paddress = address;
3355   *plen = len;
3356 }
3357
3358 // A class to handle the PLT data.
3359
3360 template<int size, bool big_endian>
3361 class Output_data_plt_powerpc : public Output_section_data_build
3362 {
3363  public:
3364   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3365                             size, big_endian> Reloc_section;
3366
3367   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3368                           Reloc_section* plt_rel,
3369                           const char* name)
3370     : Output_section_data_build(size == 32 ? 4 : 8),
3371       rel_(plt_rel),
3372       targ_(targ),
3373       name_(name)
3374   { }
3375
3376   // Add an entry to the PLT.
3377   void
3378   add_entry(Symbol*);
3379
3380   void
3381   add_ifunc_entry(Symbol*);
3382
3383   void
3384   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3385
3386   // Return the .rela.plt section data.
3387   Reloc_section*
3388   rel_plt() const
3389   {
3390     return this->rel_;
3391   }
3392
3393   // Return the number of PLT entries.
3394   unsigned int
3395   entry_count() const
3396   {
3397     if (this->current_data_size() == 0)
3398       return 0;
3399     return ((this->current_data_size() - this->first_plt_entry_offset())
3400             / this->plt_entry_size());
3401   }
3402
3403  protected:
3404   void
3405   do_adjust_output_section(Output_section* os)
3406   {
3407     os->set_entsize(0);
3408   }
3409
3410   // Write to a map file.
3411   void
3412   do_print_to_mapfile(Mapfile* mapfile) const
3413   { mapfile->print_output_data(this, this->name_); }
3414
3415  private:
3416   // Return the offset of the first non-reserved PLT entry.
3417   unsigned int
3418   first_plt_entry_offset() const
3419   {
3420     // IPLT has no reserved entry.
3421     if (this->name_[3] == 'I')
3422       return 0;
3423     return this->targ_->first_plt_entry_offset();
3424   }
3425
3426   // Return the size of each PLT entry.
3427   unsigned int
3428   plt_entry_size() const
3429   {
3430     return this->targ_->plt_entry_size();
3431   }
3432
3433   // Write out the PLT data.
3434   void
3435   do_write(Output_file*);
3436
3437   // The reloc section.
3438   Reloc_section* rel_;
3439   // Allows access to .glink for do_write.
3440   Target_powerpc<size, big_endian>* targ_;
3441   // What to report in map file.
3442   const char *name_;
3443 };
3444
3445 // Add an entry to the PLT.
3446
3447 template<int size, bool big_endian>
3448 void
3449 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3450 {
3451   if (!gsym->has_plt_offset())
3452     {
3453       section_size_type off = this->current_data_size();
3454       if (off == 0)
3455         off += this->first_plt_entry_offset();
3456       gsym->set_plt_offset(off);
3457       gsym->set_needs_dynsym_entry();
3458       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3459       this->rel_->add_global(gsym, dynrel, this, off, 0);
3460       off += this->plt_entry_size();
3461       this->set_current_data_size(off);
3462     }
3463 }
3464
3465 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3466
3467 template<int size, bool big_endian>
3468 void
3469 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3470 {
3471   if (!gsym->has_plt_offset())
3472     {
3473       section_size_type off = this->current_data_size();
3474       gsym->set_plt_offset(off);
3475       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3476       if (size == 64 && this->targ_->abiversion() < 2)
3477         dynrel = elfcpp::R_PPC64_JMP_IREL;
3478       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3479       off += this->plt_entry_size();
3480       this->set_current_data_size(off);
3481     }
3482 }
3483
3484 // Add an entry for a local ifunc symbol to the IPLT.
3485
3486 template<int size, bool big_endian>
3487 void
3488 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3489     Sized_relobj_file<size, big_endian>* relobj,
3490     unsigned int local_sym_index)
3491 {
3492   if (!relobj->local_has_plt_offset(local_sym_index))
3493     {
3494       section_size_type off = this->current_data_size();
3495       relobj->set_local_plt_offset(local_sym_index, off);
3496       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3497       if (size == 64 && this->targ_->abiversion() < 2)
3498         dynrel = elfcpp::R_PPC64_JMP_IREL;
3499       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3500                                               this, off, 0);
3501       off += this->plt_entry_size();
3502       this->set_current_data_size(off);
3503     }
3504 }
3505
3506 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3507 static const uint32_t add_2_2_11        = 0x7c425a14;
3508 static const uint32_t add_2_2_12        = 0x7c426214;
3509 static const uint32_t add_3_3_2         = 0x7c631214;
3510 static const uint32_t add_3_3_13        = 0x7c636a14;
3511 static const uint32_t add_11_0_11       = 0x7d605a14;
3512 static const uint32_t add_11_2_11       = 0x7d625a14;
3513 static const uint32_t add_11_11_2       = 0x7d6b1214;
3514 static const uint32_t addi_0_12         = 0x380c0000;
3515 static const uint32_t addi_2_2          = 0x38420000;
3516 static const uint32_t addi_3_3          = 0x38630000;
3517 static const uint32_t addi_11_11        = 0x396b0000;
3518 static const uint32_t addi_12_1         = 0x39810000;
3519 static const uint32_t addi_12_12        = 0x398c0000;
3520 static const uint32_t addis_0_2         = 0x3c020000;
3521 static const uint32_t addis_0_13        = 0x3c0d0000;
3522 static const uint32_t addis_2_12        = 0x3c4c0000;
3523 static const uint32_t addis_11_2        = 0x3d620000;
3524 static const uint32_t addis_11_11       = 0x3d6b0000;
3525 static const uint32_t addis_11_30       = 0x3d7e0000;
3526 static const uint32_t addis_12_1        = 0x3d810000;
3527 static const uint32_t addis_12_2        = 0x3d820000;
3528 static const uint32_t addis_12_12       = 0x3d8c0000;
3529 static const uint32_t b                 = 0x48000000;
3530 static const uint32_t bcl_20_31         = 0x429f0005;
3531 static const uint32_t bctr              = 0x4e800420;
3532 static const uint32_t blr               = 0x4e800020;
3533 static const uint32_t bnectr_p4         = 0x4ce20420;
3534 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3535 static const uint32_t cmpldi_2_0        = 0x28220000;
3536 static const uint32_t cror_15_15_15     = 0x4def7b82;
3537 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3538 static const uint32_t ld_0_1            = 0xe8010000;
3539 static const uint32_t ld_0_12           = 0xe80c0000;
3540 static const uint32_t ld_2_1            = 0xe8410000;
3541 static const uint32_t ld_2_2            = 0xe8420000;
3542 static const uint32_t ld_2_11           = 0xe84b0000;
3543 static const uint32_t ld_2_12           = 0xe84c0000;
3544 static const uint32_t ld_11_2           = 0xe9620000;
3545 static const uint32_t ld_11_11          = 0xe96b0000;
3546 static const uint32_t ld_12_2           = 0xe9820000;
3547 static const uint32_t ld_12_11          = 0xe98b0000;
3548 static const uint32_t ld_12_12          = 0xe98c0000;
3549 static const uint32_t lfd_0_1           = 0xc8010000;
3550 static const uint32_t li_0_0            = 0x38000000;
3551 static const uint32_t li_12_0           = 0x39800000;
3552 static const uint32_t lis_0             = 0x3c000000;
3553 static const uint32_t lis_2             = 0x3c400000;
3554 static const uint32_t lis_11            = 0x3d600000;
3555 static const uint32_t lis_12            = 0x3d800000;
3556 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3557 static const uint32_t lwz_0_12          = 0x800c0000;
3558 static const uint32_t lwz_11_11         = 0x816b0000;
3559 static const uint32_t lwz_11_30         = 0x817e0000;
3560 static const uint32_t lwz_12_12         = 0x818c0000;
3561 static const uint32_t lwzu_0_12         = 0x840c0000;
3562 static const uint32_t mflr_0            = 0x7c0802a6;
3563 static const uint32_t mflr_11           = 0x7d6802a6;
3564 static const uint32_t mflr_12           = 0x7d8802a6;
3565 static const uint32_t mtctr_0           = 0x7c0903a6;
3566 static const uint32_t mtctr_11          = 0x7d6903a6;
3567 static const uint32_t mtctr_12          = 0x7d8903a6;
3568 static const uint32_t mtlr_0            = 0x7c0803a6;
3569 static const uint32_t mtlr_12           = 0x7d8803a6;
3570 static const uint32_t nop               = 0x60000000;
3571 static const uint32_t ori_0_0_0         = 0x60000000;
3572 static const uint32_t srdi_0_0_2        = 0x7800f082;
3573 static const uint32_t std_0_1           = 0xf8010000;
3574 static const uint32_t std_0_12          = 0xf80c0000;
3575 static const uint32_t std_2_1           = 0xf8410000;
3576 static const uint32_t stfd_0_1          = 0xd8010000;
3577 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3578 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3579 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3580 static const uint32_t xor_2_12_12       = 0x7d826278;
3581 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3582
3583 // Write out the PLT.
3584
3585 template<int size, bool big_endian>
3586 void
3587 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3588 {
3589   if (size == 32 && this->name_[3] != 'I')
3590     {
3591       const section_size_type offset = this->offset();
3592       const section_size_type oview_size
3593         = convert_to_section_size_type(this->data_size());
3594       unsigned char* const oview = of->get_output_view(offset, oview_size);
3595       unsigned char* pov = oview;
3596       unsigned char* endpov = oview + oview_size;
3597
3598       // The address of the .glink branch table
3599       const Output_data_glink<size, big_endian>* glink
3600         = this->targ_->glink_section();
3601       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3602
3603       while (pov < endpov)
3604         {
3605           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3606           pov += 4;
3607           branch_tab += 4;
3608         }
3609
3610       of->write_output_view(offset, oview_size, oview);
3611     }
3612 }
3613
3614 // Create the PLT section.
3615
3616 template<int size, bool big_endian>
3617 void
3618 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3619                                                    Layout* layout)
3620 {
3621   if (this->plt_ == NULL)
3622     {
3623       if (this->got_ == NULL)
3624         this->got_section(symtab, layout);
3625
3626       if (this->glink_ == NULL)
3627         make_glink_section(layout);
3628
3629       // Ensure that .rela.dyn always appears before .rela.plt  This is
3630       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3631       // needs to include .rela.plt in its range.
3632       this->rela_dyn_section(layout);
3633
3634       Reloc_section* plt_rel = new Reloc_section(false);
3635       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3636                                       elfcpp::SHF_ALLOC, plt_rel,
3637                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3638       this->plt_
3639         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3640                                                         "** PLT");
3641       layout->add_output_section_data(".plt",
3642                                       (size == 32
3643                                        ? elfcpp::SHT_PROGBITS
3644                                        : elfcpp::SHT_NOBITS),
3645                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3646                                       this->plt_,
3647                                       (size == 32
3648                                        ? ORDER_SMALL_DATA
3649                                        : ORDER_SMALL_BSS),
3650                                       false);
3651
3652       Output_section* rela_plt_os = plt_rel->output_section();
3653       rela_plt_os->set_info_section(this->plt_->output_section());
3654     }
3655 }
3656
3657 // Create the IPLT section.
3658
3659 template<int size, bool big_endian>
3660 void
3661 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3662                                                     Layout* layout)
3663 {
3664   if (this->iplt_ == NULL)
3665     {
3666       this->make_plt_section(symtab, layout);
3667
3668       Reloc_section* iplt_rel = new Reloc_section(false);
3669       if (this->rela_dyn_->output_section())
3670         this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3671       this->iplt_
3672         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3673                                                         "** IPLT");
3674       if (this->plt_->output_section())
3675         this->plt_->output_section()->add_output_section_data(this->iplt_);
3676     }
3677 }
3678
3679 // A section for huge long branch addresses, similar to plt section.
3680
3681 template<int size, bool big_endian>
3682 class Output_data_brlt_powerpc : public Output_section_data_build
3683 {
3684  public:
3685   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3686   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3687                             size, big_endian> Reloc_section;
3688
3689   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3690                            Reloc_section* brlt_rel)
3691     : Output_section_data_build(size == 32 ? 4 : 8),
3692       rel_(brlt_rel),
3693       targ_(targ)
3694   { }
3695
3696   void
3697   reset_brlt_sizes()
3698   {
3699     this->reset_data_size();
3700     this->rel_->reset_data_size();
3701   }
3702
3703   void
3704   finalize_brlt_sizes()
3705   {
3706     this->finalize_data_size();
3707     this->rel_->finalize_data_size();
3708   }
3709
3710   // Add a reloc for an entry in the BRLT.
3711   void
3712   add_reloc(Address to, unsigned int off)
3713   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3714
3715   // Update section and reloc section size.
3716   void
3717   set_current_size(unsigned int num_branches)
3718   {
3719     this->reset_address_and_file_offset();
3720     this->set_current_data_size(num_branches * 16);
3721     this->finalize_data_size();
3722     Output_section* os = this->output_section();
3723     os->set_section_offsets_need_adjustment();
3724     if (this->rel_ != NULL)
3725       {
3726         const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3727         this->rel_->reset_address_and_file_offset();
3728         this->rel_->set_current_data_size(num_branches * reloc_size);
3729         this->rel_->finalize_data_size();
3730         Output_section* os = this->rel_->output_section();
3731         os->set_section_offsets_need_adjustment();
3732       }
3733   }
3734
3735  protected:
3736   void
3737   do_adjust_output_section(Output_section* os)
3738   {
3739     os->set_entsize(0);
3740   }
3741
3742   // Write to a map file.
3743   void
3744   do_print_to_mapfile(Mapfile* mapfile) const
3745   { mapfile->print_output_data(this, "** BRLT"); }
3746
3747  private:
3748   // Write out the BRLT data.
3749   void
3750   do_write(Output_file*);
3751
3752   // The reloc section.
3753   Reloc_section* rel_;
3754   Target_powerpc<size, big_endian>* targ_;
3755 };
3756
3757 // Make the branch lookup table section.
3758
3759 template<int size, bool big_endian>
3760 void
3761 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3762 {
3763   if (size == 64 && this->brlt_section_ == NULL)
3764     {
3765       Reloc_section* brlt_rel = NULL;
3766       bool is_pic = parameters->options().output_is_position_independent();
3767       if (is_pic)
3768         {
3769           // When PIC we can't fill in .branch_lt (like .plt it can be
3770           // a bss style section) but must initialise at runtime via
3771           // dynamic relocations.
3772           this->rela_dyn_section(layout);
3773           brlt_rel = new Reloc_section(false);
3774           if (this->rela_dyn_->output_section())
3775             this->rela_dyn_->output_section()
3776               ->add_output_section_data(brlt_rel);
3777         }
3778       this->brlt_section_
3779         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3780       if (this->plt_ && is_pic && this->plt_->output_section())
3781         this->plt_->output_section()
3782           ->add_output_section_data(this->brlt_section_);
3783       else
3784         layout->add_output_section_data(".branch_lt",
3785                                         (is_pic ? elfcpp::SHT_NOBITS
3786                                          : elfcpp::SHT_PROGBITS),
3787                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3788                                         this->brlt_section_,
3789                                         (is_pic ? ORDER_SMALL_BSS
3790                                          : ORDER_SMALL_DATA),
3791                                         false);
3792     }
3793 }
3794
3795 // Write out .branch_lt when non-PIC.
3796
3797 template<int size, bool big_endian>
3798 void
3799 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3800 {
3801   if (size == 64 && !parameters->options().output_is_position_independent())
3802     {
3803       const section_size_type offset = this->offset();
3804       const section_size_type oview_size
3805         = convert_to_section_size_type(this->data_size());
3806       unsigned char* const oview = of->get_output_view(offset, oview_size);
3807
3808       this->targ_->write_branch_lookup_table(oview);
3809       of->write_output_view(offset, oview_size, oview);
3810     }
3811 }
3812
3813 static inline uint32_t
3814 l(uint32_t a)
3815 {
3816   return a & 0xffff;
3817 }
3818
3819 static inline uint32_t
3820 hi(uint32_t a)
3821 {
3822   return l(a >> 16);
3823 }
3824
3825 static inline uint32_t
3826 ha(uint32_t a)
3827 {
3828   return hi(a + 0x8000);
3829 }
3830
3831 template<int size>
3832 struct Eh_cie
3833 {
3834   static const unsigned char eh_frame_cie[12];
3835 };
3836
3837 template<int size>
3838 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3839 {
3840   1,                                    // CIE version.
3841   'z', 'R', 0,                          // Augmentation string.
3842   4,                                    // Code alignment.
3843   0x80 - size / 8 ,                     // Data alignment.
3844   65,                                   // RA reg.
3845   1,                                    // Augmentation size.
3846   (elfcpp::DW_EH_PE_pcrel
3847    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3848   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3849 };
3850
3851 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3852 static const unsigned char glink_eh_frame_fde_64v1[] =
3853 {
3854   0, 0, 0, 0,                           // Replaced with offset to .glink.
3855   0, 0, 0, 0,                           // Replaced with size of .glink.
3856   0,                                    // Augmentation size.
3857   elfcpp::DW_CFA_advance_loc + 1,
3858   elfcpp::DW_CFA_register, 65, 12,
3859   elfcpp::DW_CFA_advance_loc + 4,
3860   elfcpp::DW_CFA_restore_extended, 65
3861 };
3862
3863 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3864 static const unsigned char glink_eh_frame_fde_64v2[] =
3865 {
3866   0, 0, 0, 0,                           // Replaced with offset to .glink.
3867   0, 0, 0, 0,                           // Replaced with size of .glink.
3868   0,                                    // Augmentation size.
3869   elfcpp::DW_CFA_advance_loc + 1,
3870   elfcpp::DW_CFA_register, 65, 0,
3871   elfcpp::DW_CFA_advance_loc + 4,
3872   elfcpp::DW_CFA_restore_extended, 65
3873 };
3874
3875 // Describe __glink_PLTresolve use of LR, 32-bit version.
3876 static const unsigned char glink_eh_frame_fde_32[] =
3877 {
3878   0, 0, 0, 0,                           // Replaced with offset to .glink.
3879   0, 0, 0, 0,                           // Replaced with size of .glink.
3880   0,                                    // Augmentation size.
3881   elfcpp::DW_CFA_advance_loc + 2,
3882   elfcpp::DW_CFA_register, 65, 0,
3883   elfcpp::DW_CFA_advance_loc + 4,
3884   elfcpp::DW_CFA_restore_extended, 65
3885 };
3886
3887 static const unsigned char default_fde[] =
3888 {
3889   0, 0, 0, 0,                           // Replaced with offset to stubs.
3890   0, 0, 0, 0,                           // Replaced with size of stubs.
3891   0,                                    // Augmentation size.
3892   elfcpp::DW_CFA_nop,                   // Pad.
3893   elfcpp::DW_CFA_nop,
3894   elfcpp::DW_CFA_nop
3895 };
3896
3897 template<bool big_endian>
3898 static inline void
3899 write_insn(unsigned char* p, uint32_t v)
3900 {
3901   elfcpp::Swap<32, big_endian>::writeval(p, v);
3902 }
3903
3904 // Stub_table holds information about plt and long branch stubs.
3905 // Stubs are built in an area following some input section determined
3906 // by group_sections().  This input section is converted to a relaxed
3907 // input section allowing it to be resized to accommodate the stubs
3908
3909 template<int size, bool big_endian>
3910 class Stub_table : public Output_relaxed_input_section
3911 {
3912  public:
3913   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3914   static const Address invalid_address = static_cast<Address>(0) - 1;
3915
3916   Stub_table(Target_powerpc<size, big_endian>* targ,
3917              Output_section* output_section,
3918              const Output_section::Input_section* owner,
3919              uint32_t id)
3920     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3921                                    owner->relobj()
3922                                    ->section_addralign(owner->shndx())),
3923       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3924       orig_data_size_(owner->current_data_size()),
3925       plt_size_(0), last_plt_size_(0),
3926       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3927       eh_frame_added_(false), need_save_res_(false), uniq_(id)
3928   {
3929     this->set_output_section(output_section);
3930
3931     std::vector<Output_relaxed_input_section*> new_relaxed;
3932     new_relaxed.push_back(this);
3933     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3934   }
3935
3936   // Add a plt call stub.
3937   bool
3938   add_plt_call_entry(Address,
3939                      const Sized_relobj_file<size, big_endian>*,
3940                      const Symbol*,
3941                      unsigned int,
3942                      Address);
3943
3944   bool
3945   add_plt_call_entry(Address,
3946                      const Sized_relobj_file<size, big_endian>*,
3947                      unsigned int,
3948                      unsigned int,
3949                      Address);
3950
3951   // Find a given plt call stub.
3952   Address
3953   find_plt_call_entry(const Symbol*) const;
3954
3955   Address
3956   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3957                       unsigned int) const;
3958
3959   Address
3960   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3961                       const Symbol*,
3962                       unsigned int,
3963                       Address) const;
3964
3965   Address
3966   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3967                       unsigned int,
3968                       unsigned int,
3969                       Address) const;
3970
3971   // Add a long branch stub.
3972   bool
3973   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3974                         unsigned int, Address, Address, bool);
3975
3976   Address
3977   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3978                          Address) const;
3979
3980   bool
3981   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3982   {
3983     Address max_branch_offset = max_branch_delta(r_type);
3984     if (max_branch_offset == 0)
3985       return true;
3986     gold_assert(from != invalid_address);
3987     Address loc = off + this->stub_address();
3988     return loc - from + max_branch_offset < 2 * max_branch_offset;
3989   }
3990
3991   void
3992   clear_stubs(bool all)
3993   {
3994     this->plt_call_stubs_.clear();
3995     this->plt_size_ = 0;
3996     this->long_branch_stubs_.clear();
3997     this->branch_size_ = 0;
3998     this->need_save_res_ = false;
3999     if (all)
4000       {
4001         this->last_plt_size_ = 0;
4002         this->last_branch_size_ = 0;
4003       }
4004   }
4005
4006   Address
4007   set_address_and_size(const Output_section* os, Address off)
4008   {
4009     Address start_off = off;
4010     off += this->orig_data_size_;
4011     Address my_size = this->plt_size_ + this->branch_size_;
4012     if (this->need_save_res_)
4013       my_size += this->targ_->savres_section()->data_size();
4014     if (my_size != 0)
4015       off = align_address(off, this->stub_align());
4016     // Include original section size and alignment padding in size
4017     my_size += off - start_off;
4018     // Ensure new size is always larger than min size
4019     // threshold. Alignment requirement is included in "my_size", so
4020     // increase "my_size" does not invalidate alignment.
4021     if (my_size < this->min_size_threshold_)
4022       my_size = this->min_size_threshold_;
4023     this->reset_address_and_file_offset();
4024     this->set_current_data_size(my_size);
4025     this->set_address_and_file_offset(os->address() + start_off,
4026                                       os->offset() + start_off);
4027     return my_size;
4028   }
4029
4030   Address
4031   stub_address() const
4032   {
4033     return align_address(this->address() + this->orig_data_size_,
4034                          this->stub_align());
4035   }
4036
4037   Address
4038   stub_offset() const
4039   {
4040     return align_address(this->offset() + this->orig_data_size_,
4041                          this->stub_align());
4042   }
4043
4044   section_size_type
4045   plt_size() const
4046   { return this->plt_size_; }
4047
4048   void
4049   set_min_size_threshold(Address min_size)
4050   { this->min_size_threshold_ = min_size; }
4051
4052   void
4053   define_stub_syms(Symbol_table*);
4054
4055   bool
4056   size_update()
4057   {
4058     Output_section* os = this->output_section();
4059     if (os->addralign() < this->stub_align())
4060       {
4061         os->set_addralign(this->stub_align());
4062         // FIXME: get rid of the insane checkpointing.
4063         // We can't increase alignment of the input section to which
4064         // stubs are attached;  The input section may be .init which
4065         // is pasted together with other .init sections to form a
4066         // function.  Aligning might insert zero padding resulting in
4067         // sigill.  However we do need to increase alignment of the
4068         // output section so that the align_address() on offset in
4069         // set_address_and_size() adds the same padding as the
4070         // align_address() on address in stub_address().
4071         // What's more, we need this alignment for the layout done in
4072         // relaxation_loop_body() so that the output section starts at
4073         // a suitably aligned address.
4074         os->checkpoint_set_addralign(this->stub_align());
4075       }
4076     if (this->last_plt_size_ != this->plt_size_
4077         || this->last_branch_size_ != this->branch_size_)
4078       {
4079         this->last_plt_size_ = this->plt_size_;
4080         this->last_branch_size_ = this->branch_size_;
4081         return true;
4082       }
4083     return false;
4084   }
4085
4086   // Add .eh_frame info for this stub section.  Unlike other linker
4087   // generated .eh_frame this is added late in the link, because we
4088   // only want the .eh_frame info if this particular stub section is
4089   // non-empty.
4090   void
4091   add_eh_frame(Layout* layout)
4092   {
4093     if (!this->eh_frame_added_)
4094       {
4095         if (!parameters->options().ld_generated_unwind_info())
4096           return;
4097
4098         // Since we add stub .eh_frame info late, it must be placed
4099         // after all other linker generated .eh_frame info so that
4100         // merge mapping need not be updated for input sections.
4101         // There is no provision to use a different CIE to that used
4102         // by .glink.
4103         if (!this->targ_->has_glink())
4104           return;
4105
4106         layout->add_eh_frame_for_plt(this,
4107                                      Eh_cie<size>::eh_frame_cie,
4108                                      sizeof (Eh_cie<size>::eh_frame_cie),
4109                                      default_fde,
4110                                      sizeof (default_fde));
4111         this->eh_frame_added_ = true;
4112       }
4113   }
4114
4115   Target_powerpc<size, big_endian>*
4116   targ() const
4117   { return targ_; }
4118
4119  private:
4120   class Plt_stub_ent;
4121   class Plt_stub_ent_hash;
4122   typedef Unordered_map<Plt_stub_ent, unsigned int,
4123                         Plt_stub_ent_hash> Plt_stub_entries;
4124   class Branch_stub_ent;
4125   class Branch_stub_ent_hash;
4126   typedef Unordered_map<Branch_stub_ent, unsigned int,
4127                         Branch_stub_ent_hash> Branch_stub_entries;
4128
4129   // Alignment of stub section.
4130   unsigned int
4131   stub_align() const
4132   {
4133     if (size == 32)
4134       return 16;
4135     unsigned int min_align = 32;
4136     unsigned int user_align = 1 << parameters->options().plt_align();
4137     return std::max(user_align, min_align);
4138   }
4139
4140   // Return the plt offset for the given call stub.
4141   Address
4142   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4143   {
4144     const Symbol* gsym = p->first.sym_;
4145     if (gsym != NULL)
4146       {
4147         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4148                     && gsym->can_use_relative_reloc(false));
4149         return gsym->plt_offset();
4150       }
4151     else
4152       {
4153         *is_iplt = true;
4154         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4155         unsigned int local_sym_index = p->first.locsym_;
4156         return relobj->local_plt_offset(local_sym_index);
4157       }
4158   }
4159
4160   // Size of a given plt call stub.
4161   unsigned int
4162   plt_call_size(typename Plt_stub_entries::const_iterator p) const
4163   {
4164     if (size == 32)
4165       return 16;
4166
4167     bool is_iplt;
4168     Address plt_addr = this->plt_off(p, &is_iplt);
4169     if (is_iplt)
4170       plt_addr += this->targ_->iplt_section()->address();
4171     else
4172       plt_addr += this->targ_->plt_section()->address();
4173     Address got_addr = this->targ_->got_section()->output_section()->address();
4174     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4175       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4176     got_addr += ppcobj->toc_base_offset();
4177     Address off = plt_addr - got_addr;
4178     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4179     if (this->targ_->abiversion() < 2)
4180       {
4181         bool static_chain = parameters->options().plt_static_chain();
4182         bool thread_safe = this->targ_->plt_thread_safe();
4183         bytes += (4
4184                   + 4 * static_chain
4185                   + 8 * thread_safe
4186                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4187       }
4188     unsigned int align = 1 << parameters->options().plt_align();
4189     if (align > 1)
4190       bytes = (bytes + align - 1) & -align;
4191     return bytes;
4192   }
4193
4194   // Return long branch stub size.
4195   unsigned int
4196   branch_stub_size(typename Branch_stub_entries::const_iterator p)
4197   {
4198     Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4199     if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4200       return 4;
4201     if (size == 64 || !parameters->options().output_is_position_independent())
4202       return 16;
4203     return 32;
4204   }
4205
4206   // Write out stubs.
4207   void
4208   do_write(Output_file*);
4209
4210   // Plt call stub keys.
4211   class Plt_stub_ent
4212   {
4213   public:
4214     Plt_stub_ent(const Symbol* sym)
4215       : sym_(sym), object_(0), addend_(0), locsym_(0)
4216     { }
4217
4218     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4219                  unsigned int locsym_index)
4220       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4221     { }
4222
4223     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4224                  const Symbol* sym,
4225                  unsigned int r_type,
4226                  Address addend)
4227       : sym_(sym), object_(0), addend_(0), locsym_(0)
4228     {
4229       if (size != 32)
4230         this->addend_ = addend;
4231       else if (parameters->options().output_is_position_independent()
4232                && r_type == elfcpp::R_PPC_PLTREL24)
4233         {
4234           this->addend_ = addend;
4235           if (this->addend_ >= 32768)
4236             this->object_ = object;
4237         }
4238     }
4239
4240     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4241                  unsigned int locsym_index,
4242                  unsigned int r_type,
4243                  Address addend)
4244       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4245     {
4246       if (size != 32)
4247         this->addend_ = addend;
4248       else if (parameters->options().output_is_position_independent()
4249                && r_type == elfcpp::R_PPC_PLTREL24)
4250         this->addend_ = addend;
4251     }
4252
4253     bool operator==(const Plt_stub_ent& that) const
4254     {
4255       return (this->sym_ == that.sym_
4256               && this->object_ == that.object_
4257               && this->addend_ == that.addend_
4258               && this->locsym_ == that.locsym_);
4259     }
4260
4261     const Symbol* sym_;
4262     const Sized_relobj_file<size, big_endian>* object_;
4263     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4264     unsigned int locsym_;
4265     unsigned int indx_;
4266   };
4267
4268   class Plt_stub_ent_hash
4269   {
4270   public:
4271     size_t operator()(const Plt_stub_ent& ent) const
4272     {
4273       return (reinterpret_cast<uintptr_t>(ent.sym_)
4274               ^ reinterpret_cast<uintptr_t>(ent.object_)
4275               ^ ent.addend_
4276               ^ ent.locsym_);
4277     }
4278   };
4279
4280   // Long branch stub keys.
4281   class Branch_stub_ent
4282   {
4283   public:
4284     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4285                     Address to, bool save_res)
4286       : dest_(to), toc_base_off_(0), save_res_(save_res)
4287     {
4288       if (size == 64)
4289         toc_base_off_ = obj->toc_base_offset();
4290     }
4291
4292     bool operator==(const Branch_stub_ent& that) const
4293     {
4294       return (this->dest_ == that.dest_
4295               && (size == 32
4296                   || this->toc_base_off_ == that.toc_base_off_));
4297     }
4298
4299     Address dest_;
4300     unsigned int toc_base_off_;
4301     bool save_res_;
4302   };
4303
4304   class Branch_stub_ent_hash
4305   {
4306   public:
4307     size_t operator()(const Branch_stub_ent& ent) const
4308     { return ent.dest_ ^ ent.toc_base_off_; }
4309   };
4310
4311   // In a sane world this would be a global.
4312   Target_powerpc<size, big_endian>* targ_;
4313   // Map sym/object/addend to stub offset.
4314   Plt_stub_entries plt_call_stubs_;
4315   // Map destination address to stub offset.
4316   Branch_stub_entries long_branch_stubs_;
4317   // size of input section
4318   section_size_type orig_data_size_;
4319   // size of stubs
4320   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4321   // Some rare cases cause (PR/20529) fluctuation in stub table
4322   // size, which leads to an endless relax loop. This is to be fixed
4323   // by, after the first few iterations, allowing only increase of
4324   // stub table size. This variable sets the minimal possible size of
4325   // a stub table, it is zero for the first few iterations, then
4326   // increases monotonically.
4327   Address min_size_threshold_;
4328   // Whether .eh_frame info has been created for this stub section.
4329   bool eh_frame_added_;
4330   // Set if this stub group needs a copy of out-of-line register
4331   // save/restore functions.
4332   bool need_save_res_;
4333   // Per stub table unique identifier.
4334   uint32_t uniq_;
4335 };
4336
4337 // Add a plt call stub, if we do not already have one for this
4338 // sym/object/addend combo.
4339
4340 template<int size, bool big_endian>
4341 bool
4342 Stub_table<size, big_endian>::add_plt_call_entry(
4343     Address from,
4344     const Sized_relobj_file<size, big_endian>* object,
4345     const Symbol* gsym,
4346     unsigned int r_type,
4347     Address addend)
4348 {
4349   Plt_stub_ent ent(object, gsym, r_type, addend);
4350   unsigned int off = this->plt_size_;
4351   ent.indx_ = this->plt_call_stubs_.size();
4352   std::pair<typename Plt_stub_entries::iterator, bool> p
4353     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4354   if (p.second)
4355     this->plt_size_ = off + this->plt_call_size(p.first);
4356   return this->can_reach_stub(from, off, r_type);
4357 }
4358
4359 template<int size, bool big_endian>
4360 bool
4361 Stub_table<size, big_endian>::add_plt_call_entry(
4362     Address from,
4363     const Sized_relobj_file<size, big_endian>* object,
4364     unsigned int locsym_index,
4365     unsigned int r_type,
4366     Address addend)
4367 {
4368   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4369   unsigned int off = this->plt_size_;
4370   ent.indx_ = this->plt_call_stubs_.size();
4371   std::pair<typename Plt_stub_entries::iterator, bool> p
4372     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4373   if (p.second)
4374     this->plt_size_ = off + this->plt_call_size(p.first);
4375   return this->can_reach_stub(from, off, r_type);
4376 }
4377
4378 // Find a plt call stub.
4379
4380 template<int size, bool big_endian>
4381 typename Stub_table<size, big_endian>::Address
4382 Stub_table<size, big_endian>::find_plt_call_entry(
4383     const Sized_relobj_file<size, big_endian>* object,
4384     const Symbol* gsym,
4385     unsigned int r_type,
4386     Address addend) const
4387 {
4388   Plt_stub_ent ent(object, gsym, r_type, addend);
4389   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4390   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4391 }
4392
4393 template<int size, bool big_endian>
4394 typename Stub_table<size, big_endian>::Address
4395 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4396 {
4397   Plt_stub_ent ent(gsym);
4398   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4399   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4400 }
4401
4402 template<int size, bool big_endian>
4403 typename Stub_table<size, big_endian>::Address
4404 Stub_table<size, big_endian>::find_plt_call_entry(
4405     const Sized_relobj_file<size, big_endian>* object,
4406     unsigned int locsym_index,
4407     unsigned int r_type,
4408     Address addend) const
4409 {
4410   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4411   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4412   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4413 }
4414
4415 template<int size, bool big_endian>
4416 typename Stub_table<size, big_endian>::Address
4417 Stub_table<size, big_endian>::find_plt_call_entry(
4418     const Sized_relobj_file<size, big_endian>* object,
4419     unsigned int locsym_index) const
4420 {
4421   Plt_stub_ent ent(object, locsym_index);
4422   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4423   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4424 }
4425
4426 // Add a long branch stub if we don't already have one to given
4427 // destination.
4428
4429 template<int size, bool big_endian>
4430 bool
4431 Stub_table<size, big_endian>::add_long_branch_entry(
4432     const Powerpc_relobj<size, big_endian>* object,
4433     unsigned int r_type,
4434     Address from,
4435     Address to,
4436     bool save_res)
4437 {
4438   Branch_stub_ent ent(object, to, save_res);
4439   Address off = this->branch_size_;
4440   std::pair<typename Branch_stub_entries::iterator, bool> p
4441     = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4442   if (p.second)
4443     {
4444       if (save_res)
4445         this->need_save_res_ = true;
4446       else
4447         {
4448           unsigned int stub_size = this->branch_stub_size(p.first);
4449           this->branch_size_ = off + stub_size;
4450           if (size == 64 && stub_size != 4)
4451             this->targ_->add_branch_lookup_table(to);
4452         }
4453     }
4454   return this->can_reach_stub(from, off, r_type);
4455 }
4456
4457 // Find long branch stub offset.
4458
4459 template<int size, bool big_endian>
4460 typename Stub_table<size, big_endian>::Address
4461 Stub_table<size, big_endian>::find_long_branch_entry(
4462     const Powerpc_relobj<size, big_endian>* object,
4463     Address to) const
4464 {
4465   Branch_stub_ent ent(object, to, false);
4466   typename Branch_stub_entries::const_iterator p
4467     = this->long_branch_stubs_.find(ent);
4468   if (p == this->long_branch_stubs_.end())
4469     return invalid_address;
4470   if (p->first.save_res_)
4471     return to - this->targ_->savres_section()->address() + this->branch_size_;
4472   return p->second;
4473 }
4474
4475 // A class to handle .glink.
4476
4477 template<int size, bool big_endian>
4478 class Output_data_glink : public Output_section_data
4479 {
4480  public:
4481   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4482   static const Address invalid_address = static_cast<Address>(0) - 1;
4483   static const int pltresolve_size = 16*4;
4484
4485   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4486     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4487       end_branch_table_(), ge_size_(0)
4488   { }
4489
4490   void
4491   add_eh_frame(Layout* layout);
4492
4493   void
4494   add_global_entry(const Symbol*);
4495
4496   Address
4497   find_global_entry(const Symbol*) const;
4498
4499   Address
4500   global_entry_address() const
4501   {
4502     gold_assert(this->is_data_size_valid());
4503     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4504     return this->address() + global_entry_off;
4505   }
4506
4507  protected:
4508   // Write to a map file.
4509   void
4510   do_print_to_mapfile(Mapfile* mapfile) const
4511   { mapfile->print_output_data(this, _("** glink")); }
4512
4513  private:
4514   void
4515   set_final_data_size();
4516
4517   // Write out .glink
4518   void
4519   do_write(Output_file*);
4520
4521   // Allows access to .got and .plt for do_write.
4522   Target_powerpc<size, big_endian>* targ_;
4523
4524   // Map sym to stub offset.
4525   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4526   Global_entry_stub_entries global_entry_stubs_;
4527
4528   unsigned int end_branch_table_, ge_size_;
4529 };
4530
4531 template<int size, bool big_endian>
4532 void
4533 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4534 {
4535   if (!parameters->options().ld_generated_unwind_info())
4536     return;
4537
4538   if (size == 64)
4539     {
4540       if (this->targ_->abiversion() < 2)
4541         layout->add_eh_frame_for_plt(this,
4542                                      Eh_cie<64>::eh_frame_cie,
4543                                      sizeof (Eh_cie<64>::eh_frame_cie),
4544                                      glink_eh_frame_fde_64v1,
4545                                      sizeof (glink_eh_frame_fde_64v1));
4546       else
4547         layout->add_eh_frame_for_plt(this,
4548                                      Eh_cie<64>::eh_frame_cie,
4549                                      sizeof (Eh_cie<64>::eh_frame_cie),
4550                                      glink_eh_frame_fde_64v2,
4551                                      sizeof (glink_eh_frame_fde_64v2));
4552     }
4553   else
4554     {
4555       // 32-bit .glink can use the default since the CIE return
4556       // address reg, LR, is valid.
4557       layout->add_eh_frame_for_plt(this,
4558                                    Eh_cie<32>::eh_frame_cie,
4559                                    sizeof (Eh_cie<32>::eh_frame_cie),
4560                                    default_fde,
4561                                    sizeof (default_fde));
4562       // Except where LR is used in a PIC __glink_PLTresolve.
4563       if (parameters->options().output_is_position_independent())
4564         layout->add_eh_frame_for_plt(this,
4565                                      Eh_cie<32>::eh_frame_cie,
4566                                      sizeof (Eh_cie<32>::eh_frame_cie),
4567                                      glink_eh_frame_fde_32,
4568                                      sizeof (glink_eh_frame_fde_32));
4569     }
4570 }
4571
4572 template<int size, bool big_endian>
4573 void
4574 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4575 {
4576   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4577     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4578   if (p.second)
4579     this->ge_size_ += 16;
4580 }
4581
4582 template<int size, bool big_endian>
4583 typename Output_data_glink<size, big_endian>::Address
4584 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4585 {
4586   typename Global_entry_stub_entries::const_iterator p
4587     = this->global_entry_stubs_.find(gsym);
4588   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4589 }
4590
4591 template<int size, bool big_endian>
4592 void
4593 Output_data_glink<size, big_endian>::set_final_data_size()
4594 {
4595   unsigned int count = this->targ_->plt_entry_count();
4596   section_size_type total = 0;
4597
4598   if (count != 0)
4599     {
4600       if (size == 32)
4601         {
4602           // space for branch table
4603           total += 4 * (count - 1);
4604
4605           total += -total & 15;
4606           total += this->pltresolve_size;
4607         }
4608       else
4609         {
4610           total += this->pltresolve_size;
4611
4612           // space for branch table
4613           total += 4 * count;
4614           if (this->targ_->abiversion() < 2)
4615             {
4616               total += 4 * count;
4617               if (count > 0x8000)
4618                 total += 4 * (count - 0x8000);
4619             }
4620         }
4621     }
4622   this->end_branch_table_ = total;
4623   total = (total + 15) & -16;
4624   total += this->ge_size_;
4625
4626   this->set_data_size(total);
4627 }
4628
4629 // Define symbols on stubs, identifying the stub.
4630
4631 template<int size, bool big_endian>
4632 void
4633 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
4634 {
4635   if (!this->plt_call_stubs_.empty())
4636     {
4637       // The key for the plt call stub hash table includes addresses,
4638       // therefore traversal order depends on those addresses, which
4639       // can change between runs if gold is a PIE.  Unfortunately the
4640       // output .symtab ordering depends on the order in which symbols
4641       // are added to the linker symtab.  We want reproducible output
4642       // so must sort the call stub symbols.
4643       typedef typename Plt_stub_entries::const_iterator plt_iter;
4644       std::vector<plt_iter> sorted;
4645       sorted.resize(this->plt_call_stubs_.size());
4646
4647       for (plt_iter cs = this->plt_call_stubs_.begin();
4648            cs != this->plt_call_stubs_.end();
4649            ++cs)
4650         sorted[cs->first.indx_] = cs;
4651
4652       for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
4653         {
4654           plt_iter cs = sorted[i];
4655           char add[10];
4656           add[0] = 0;
4657           if (cs->first.addend_ != 0)
4658             sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
4659           char localname[18];
4660           const char *symname;
4661           if (cs->first.sym_ == NULL)
4662             {
4663               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4664                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4665               sprintf(localname, "%x:%x", ppcobj->uniq(), cs->first.locsym_);
4666               symname = localname;
4667             }
4668           else
4669             symname = cs->first.sym_->name();
4670           char* name = new char[8 + 10 + strlen(symname) + strlen(add) + 1];
4671           sprintf(name, "%08x.plt_call.%s%s", this->uniq_, symname, add);
4672           Address value = this->stub_address() - this->address() + cs->second;
4673           unsigned int stub_size = this->plt_call_size(cs);
4674           this->targ_->define_local(symtab, name, this, value, stub_size);
4675         }
4676     }
4677
4678   typedef typename Branch_stub_entries::const_iterator branch_iter;
4679   for (branch_iter bs = this->long_branch_stubs_.begin();
4680        bs != this->long_branch_stubs_.end();
4681        ++bs)
4682     {
4683       if (bs->first.save_res_)
4684         continue;
4685
4686       char* name = new char[8 + 13 + 16 + 1];
4687       sprintf(name, "%08x.long_branch.%llx", this->uniq_,
4688               static_cast<unsigned long long>(bs->first.dest_));
4689       Address value = (this->stub_address() - this->address()
4690                        + this->plt_size_ + bs->second);
4691       unsigned int stub_size = this->branch_stub_size(bs);
4692       this->targ_->define_local(symtab, name, this, value, stub_size);
4693     }
4694 }
4695
4696 // Write out plt and long branch stub code.
4697
4698 template<int size, bool big_endian>
4699 void
4700 Stub_table<size, big_endian>::do_write(Output_file* of)
4701 {
4702   if (this->plt_call_stubs_.empty()
4703       && this->long_branch_stubs_.empty())
4704     return;
4705
4706   const section_size_type start_off = this->offset();
4707   const section_size_type off = this->stub_offset();
4708   const section_size_type oview_size =
4709     convert_to_section_size_type(this->data_size() - (off - start_off));
4710   unsigned char* const oview = of->get_output_view(off, oview_size);
4711   unsigned char* p;
4712
4713   if (size == 64)
4714     {
4715       const Output_data_got_powerpc<size, big_endian>* got
4716         = this->targ_->got_section();
4717       Address got_os_addr = got->output_section()->address();
4718
4719       if (!this->plt_call_stubs_.empty())
4720         {
4721           // The base address of the .plt section.
4722           Address plt_base = this->targ_->plt_section()->address();
4723           Address iplt_base = invalid_address;
4724
4725           // Write out plt call stubs.
4726           typename Plt_stub_entries::const_iterator cs;
4727           for (cs = this->plt_call_stubs_.begin();
4728                cs != this->plt_call_stubs_.end();
4729                ++cs)
4730             {
4731               bool is_iplt;
4732               Address pltoff = this->plt_off(cs, &is_iplt);
4733               Address plt_addr = pltoff;
4734               if (is_iplt)
4735                 {
4736                   if (iplt_base == invalid_address)
4737                     iplt_base = this->targ_->iplt_section()->address();
4738                   plt_addr += iplt_base;
4739                 }
4740               else
4741                 plt_addr += plt_base;
4742               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4743                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4744               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4745               Address off = plt_addr - got_addr;
4746
4747               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4748                 gold_error(_("%s: linkage table error against `%s'"),
4749                            cs->first.object_->name().c_str(),
4750                            cs->first.sym_->demangled_name().c_str());
4751
4752               bool plt_load_toc = this->targ_->abiversion() < 2;
4753               bool static_chain
4754                 = plt_load_toc && parameters->options().plt_static_chain();
4755               bool thread_safe
4756                 = plt_load_toc && this->targ_->plt_thread_safe();
4757               bool use_fake_dep = false;
4758               Address cmp_branch_off = 0;
4759               if (thread_safe)
4760                 {
4761                   unsigned int pltindex
4762                     = ((pltoff - this->targ_->first_plt_entry_offset())
4763                        / this->targ_->plt_entry_size());
4764                   Address glinkoff
4765                     = (this->targ_->glink_section()->pltresolve_size
4766                        + pltindex * 8);
4767                   if (pltindex > 32768)
4768                     glinkoff += (pltindex - 32768) * 4;
4769                   Address to
4770                     = this->targ_->glink_section()->address() + glinkoff;
4771                   Address from
4772                     = (this->stub_address() + cs->second + 24
4773                        + 4 * (ha(off) != 0)
4774                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4775                        + 4 * static_chain);
4776                   cmp_branch_off = to - from;
4777                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4778                 }
4779
4780               p = oview + cs->second;
4781               if (ha(off) != 0)
4782                 {
4783                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4784                   p += 4;
4785                   if (plt_load_toc)
4786                     {
4787                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4788                       p += 4;
4789                       write_insn<big_endian>(p, ld_12_11 + l(off));
4790                       p += 4;
4791                     }
4792                   else
4793                     {
4794                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4795                       p += 4;
4796                       write_insn<big_endian>(p, ld_12_12 + l(off));
4797                       p += 4;
4798                     }
4799                   if (plt_load_toc
4800                       && ha(off + 8 + 8 * static_chain) != ha(off))
4801                     {
4802                       write_insn<big_endian>(p, addi_11_11 + l(off));
4803                       p += 4;
4804                       off = 0;
4805                     }
4806                   write_insn<big_endian>(p, mtctr_12);
4807                   p += 4;
4808                   if (plt_load_toc)
4809                     {
4810                       if (use_fake_dep)
4811                         {
4812                           write_insn<big_endian>(p, xor_2_12_12);
4813                           p += 4;
4814                           write_insn<big_endian>(p, add_11_11_2);
4815                           p += 4;
4816                         }
4817                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4818                       p += 4;
4819                       if (static_chain)
4820                         {
4821                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4822                           p += 4;
4823                         }
4824                     }
4825                 }
4826               else
4827                 {
4828                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4829                   p += 4;
4830                   write_insn<big_endian>(p, ld_12_2 + l(off));
4831                   p += 4;
4832                   if (plt_load_toc
4833                       && ha(off + 8 + 8 * static_chain) != ha(off))
4834                     {
4835                       write_insn<big_endian>(p, addi_2_2 + l(off));
4836                       p += 4;
4837                       off = 0;
4838                     }
4839                   write_insn<big_endian>(p, mtctr_12);
4840                   p += 4;
4841                   if (plt_load_toc)
4842                     {
4843                       if (use_fake_dep)
4844                         {
4845                           write_insn<big_endian>(p, xor_11_12_12);
4846                           p += 4;
4847                           write_insn<big_endian>(p, add_2_2_11);
4848                           p += 4;
4849                         }
4850                       if (static_chain)
4851                         {
4852                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4853                           p += 4;
4854                         }
4855                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4856                       p += 4;
4857                     }
4858                 }
4859               if (thread_safe && !use_fake_dep)
4860                 {
4861                   write_insn<big_endian>(p, cmpldi_2_0);
4862                   p += 4;
4863                   write_insn<big_endian>(p, bnectr_p4);
4864                   p += 4;
4865                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4866                 }
4867               else
4868                 write_insn<big_endian>(p, bctr);
4869             }
4870         }
4871
4872       // Write out long branch stubs.
4873       typename Branch_stub_entries::const_iterator bs;
4874       for (bs = this->long_branch_stubs_.begin();
4875            bs != this->long_branch_stubs_.end();
4876            ++bs)
4877         {
4878           if (bs->first.save_res_)
4879             continue;
4880           p = oview + this->plt_size_ + bs->second;
4881           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4882           Address delta = bs->first.dest_ - loc;
4883           if (delta + (1 << 25) < 2 << 25)
4884             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4885           else
4886             {
4887               Address brlt_addr
4888                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4889               gold_assert(brlt_addr != invalid_address);
4890               brlt_addr += this->targ_->brlt_section()->address();
4891               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4892               Address brltoff = brlt_addr - got_addr;
4893               if (ha(brltoff) == 0)
4894                 {
4895                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4896                 }
4897               else
4898                 {
4899                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4900                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4901                 }
4902               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4903               write_insn<big_endian>(p, bctr);
4904             }
4905         }
4906     }
4907   else
4908     {
4909       if (!this->plt_call_stubs_.empty())
4910         {
4911           // The base address of the .plt section.
4912           Address plt_base = this->targ_->plt_section()->address();
4913           Address iplt_base = invalid_address;
4914           // The address of _GLOBAL_OFFSET_TABLE_.
4915           Address g_o_t = invalid_address;
4916
4917           // Write out plt call stubs.
4918           typename Plt_stub_entries::const_iterator cs;
4919           for (cs = this->plt_call_stubs_.begin();
4920                cs != this->plt_call_stubs_.end();
4921                ++cs)
4922             {
4923               bool is_iplt;
4924               Address plt_addr = this->plt_off(cs, &is_iplt);
4925               if (is_iplt)
4926                 {
4927                   if (iplt_base == invalid_address)
4928                     iplt_base = this->targ_->iplt_section()->address();
4929                   plt_addr += iplt_base;
4930                 }
4931               else
4932                 plt_addr += plt_base;
4933
4934               p = oview + cs->second;
4935               if (parameters->options().output_is_position_independent())
4936                 {
4937                   Address got_addr;
4938                   const Powerpc_relobj<size, big_endian>* ppcobj
4939                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4940                        (cs->first.object_));
4941                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4942                     {
4943                       unsigned int got2 = ppcobj->got2_shndx();
4944                       got_addr = ppcobj->get_output_section_offset(got2);
4945                       gold_assert(got_addr != invalid_address);
4946                       got_addr += (ppcobj->output_section(got2)->address()
4947                                    + cs->first.addend_);
4948                     }
4949                   else
4950                     {
4951                       if (g_o_t == invalid_address)
4952                         {
4953                           const Output_data_got_powerpc<size, big_endian>* got
4954                             = this->targ_->got_section();
4955                           g_o_t = got->address() + got->g_o_t();
4956                         }
4957                       got_addr = g_o_t;
4958                     }
4959
4960                   Address off = plt_addr - got_addr;
4961                   if (ha(off) == 0)
4962                     {
4963                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4964                       write_insn<big_endian>(p +  4, mtctr_11);
4965                       write_insn<big_endian>(p +  8, bctr);
4966                     }
4967                   else
4968                     {
4969                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4970                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4971                       write_insn<big_endian>(p +  8, mtctr_11);
4972                       write_insn<big_endian>(p + 12, bctr);
4973                     }
4974                 }
4975               else
4976                 {
4977                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4978                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4979                   write_insn<big_endian>(p +  8, mtctr_11);
4980                   write_insn<big_endian>(p + 12, bctr);
4981                 }
4982             }
4983         }
4984
4985       // Write out long branch stubs.
4986       typename Branch_stub_entries::const_iterator bs;
4987       for (bs = this->long_branch_stubs_.begin();
4988            bs != this->long_branch_stubs_.end();
4989            ++bs)
4990         {
4991           if (bs->first.save_res_)
4992             continue;
4993           p = oview + this->plt_size_ + bs->second;
4994           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4995           Address delta = bs->first.dest_ - loc;
4996           if (delta + (1 << 25) < 2 << 25)
4997             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4998           else if (!parameters->options().output_is_position_independent())
4999             {
5000               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
5001               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
5002               write_insn<big_endian>(p +  8, mtctr_12);
5003               write_insn<big_endian>(p + 12, bctr);
5004             }
5005           else
5006             {
5007               delta -= 8;
5008               write_insn<big_endian>(p +  0, mflr_0);
5009               write_insn<big_endian>(p +  4, bcl_20_31);
5010               write_insn<big_endian>(p +  8, mflr_12);
5011               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
5012               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
5013               write_insn<big_endian>(p + 20, mtlr_0);
5014               write_insn<big_endian>(p + 24, mtctr_12);
5015               write_insn<big_endian>(p + 28, bctr);
5016             }
5017         }
5018     }
5019   if (this->need_save_res_)
5020     {
5021       p = oview + this->plt_size_ + this->branch_size_;
5022       memcpy (p, this->targ_->savres_section()->contents(),
5023               this->targ_->savres_section()->data_size());
5024     }
5025 }
5026
5027 // Write out .glink.
5028
5029 template<int size, bool big_endian>
5030 void
5031 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5032 {
5033   const section_size_type off = this->offset();
5034   const section_size_type oview_size =
5035     convert_to_section_size_type(this->data_size());
5036   unsigned char* const oview = of->get_output_view(off, oview_size);
5037   unsigned char* p;
5038
5039   // The base address of the .plt section.
5040   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5041   Address plt_base = this->targ_->plt_section()->address();
5042
5043   if (size == 64)
5044     {
5045       if (this->end_branch_table_ != 0)
5046         {
5047           // Write pltresolve stub.
5048           p = oview;
5049           Address after_bcl = this->address() + 16;
5050           Address pltoff = plt_base - after_bcl;
5051
5052           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
5053
5054           if (this->targ_->abiversion() < 2)
5055             {
5056               write_insn<big_endian>(p, mflr_12),               p += 4;
5057               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5058               write_insn<big_endian>(p, mflr_11),               p += 4;
5059               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5060               write_insn<big_endian>(p, mtlr_12),               p += 4;
5061               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5062               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5063               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
5064               write_insn<big_endian>(p, mtctr_12),              p += 4;
5065               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
5066             }
5067           else
5068             {
5069               write_insn<big_endian>(p, mflr_0),                p += 4;
5070               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5071               write_insn<big_endian>(p, mflr_11),               p += 4;
5072               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5073               write_insn<big_endian>(p, mtlr_0),                p += 4;
5074               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
5075               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5076               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
5077               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5078               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
5079               write_insn<big_endian>(p, mtctr_12),              p += 4;
5080               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
5081             }
5082           write_insn<big_endian>(p, bctr),                      p += 4;
5083           while (p < oview + this->pltresolve_size)
5084             write_insn<big_endian>(p, nop), p += 4;
5085
5086           // Write lazy link call stubs.
5087           uint32_t indx = 0;
5088           while (p < oview + this->end_branch_table_)
5089             {
5090               if (this->targ_->abiversion() < 2)
5091                 {
5092                   if (indx < 0x8000)
5093                     {
5094                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
5095                     }
5096                   else
5097                     {
5098                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
5099                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
5100                     }
5101                 }
5102               uint32_t branch_off = 8 - (p - oview);
5103               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
5104               indx++;
5105             }
5106         }
5107
5108       Address plt_base = this->targ_->plt_section()->address();
5109       Address iplt_base = invalid_address;
5110       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
5111       Address global_entry_base = this->address() + global_entry_off;
5112       typename Global_entry_stub_entries::const_iterator ge;
5113       for (ge = this->global_entry_stubs_.begin();
5114            ge != this->global_entry_stubs_.end();
5115            ++ge)
5116         {
5117           p = oview + global_entry_off + ge->second;
5118           Address plt_addr = ge->first->plt_offset();
5119           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5120               && ge->first->can_use_relative_reloc(false))
5121             {
5122               if (iplt_base == invalid_address)
5123                 iplt_base = this->targ_->iplt_section()->address();
5124               plt_addr += iplt_base;
5125             }
5126           else
5127             plt_addr += plt_base;
5128           Address my_addr = global_entry_base + ge->second;
5129           Address off = plt_addr - my_addr;
5130
5131           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5132             gold_error(_("%s: linkage table error against `%s'"),
5133                        ge->first->object()->name().c_str(),
5134                        ge->first->demangled_name().c_str());
5135
5136           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
5137           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
5138           write_insn<big_endian>(p, mtctr_12),                  p += 4;
5139           write_insn<big_endian>(p, bctr);
5140         }
5141     }
5142   else
5143     {
5144       const Output_data_got_powerpc<size, big_endian>* got
5145         = this->targ_->got_section();
5146       // The address of _GLOBAL_OFFSET_TABLE_.
5147       Address g_o_t = got->address() + got->g_o_t();
5148
5149       // Write out pltresolve branch table.
5150       p = oview;
5151       unsigned int the_end = oview_size - this->pltresolve_size;
5152       unsigned char* end_p = oview + the_end;
5153       while (p < end_p - 8 * 4)
5154         write_insn<big_endian>(p, b + end_p - p), p += 4;
5155       while (p < end_p)
5156         write_insn<big_endian>(p, nop), p += 4;
5157
5158       // Write out pltresolve call stub.
5159       if (parameters->options().output_is_position_independent())
5160         {
5161           Address res0_off = 0;
5162           Address after_bcl_off = the_end + 12;
5163           Address bcl_res0 = after_bcl_off - res0_off;
5164
5165           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
5166           write_insn<big_endian>(p +  4, mflr_0);
5167           write_insn<big_endian>(p +  8, bcl_20_31);
5168           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
5169           write_insn<big_endian>(p + 16, mflr_12);
5170           write_insn<big_endian>(p + 20, mtlr_0);
5171           write_insn<big_endian>(p + 24, sub_11_11_12);
5172
5173           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5174
5175           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
5176           if (ha(got_bcl) == ha(got_bcl + 4))
5177             {
5178               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
5179               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
5180             }
5181           else
5182             {
5183               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
5184               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
5185             }
5186           write_insn<big_endian>(p + 40, mtctr_0);
5187           write_insn<big_endian>(p + 44, add_0_11_11);
5188           write_insn<big_endian>(p + 48, add_11_0_11);
5189           write_insn<big_endian>(p + 52, bctr);
5190           write_insn<big_endian>(p + 56, nop);
5191           write_insn<big_endian>(p + 60, nop);
5192         }
5193       else
5194         {
5195           Address res0 = this->address();
5196
5197           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
5198           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
5199           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5200             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
5201           else
5202             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
5203           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
5204           write_insn<big_endian>(p + 16, mtctr_0);
5205           write_insn<big_endian>(p + 20, add_0_11_11);
5206           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5207             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
5208           else
5209             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
5210           write_insn<big_endian>(p + 28, add_11_0_11);
5211           write_insn<big_endian>(p + 32, bctr);
5212           write_insn<big_endian>(p + 36, nop);
5213           write_insn<big_endian>(p + 40, nop);
5214           write_insn<big_endian>(p + 44, nop);
5215           write_insn<big_endian>(p + 48, nop);
5216           write_insn<big_endian>(p + 52, nop);
5217           write_insn<big_endian>(p + 56, nop);
5218           write_insn<big_endian>(p + 60, nop);
5219         }
5220       p += 64;
5221     }
5222
5223   of->write_output_view(off, oview_size, oview);
5224 }
5225
5226
5227 // A class to handle linker generated save/restore functions.
5228
5229 template<int size, bool big_endian>
5230 class Output_data_save_res : public Output_section_data_build
5231 {
5232  public:
5233   Output_data_save_res(Symbol_table* symtab);
5234
5235   const unsigned char*
5236   contents() const
5237   {
5238     return contents_;
5239   }
5240
5241  protected:
5242   // Write to a map file.
5243   void
5244   do_print_to_mapfile(Mapfile* mapfile) const
5245   { mapfile->print_output_data(this, _("** save/restore")); }
5246
5247   void
5248   do_write(Output_file*);
5249
5250  private:
5251   // The maximum size of save/restore contents.
5252   static const unsigned int savres_max = 218*4;
5253
5254   void
5255   savres_define(Symbol_table* symtab,
5256                 const char *name,
5257                 unsigned int lo, unsigned int hi,
5258                 unsigned char* write_ent(unsigned char*, int),
5259                 unsigned char* write_tail(unsigned char*, int));
5260
5261   unsigned char *contents_;
5262 };
5263
5264 template<bool big_endian>
5265 static unsigned char*
5266 savegpr0(unsigned char* p, int r)
5267 {
5268   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5269   write_insn<big_endian>(p, insn);
5270   return p + 4;
5271 }
5272
5273 template<bool big_endian>
5274 static unsigned char*
5275 savegpr0_tail(unsigned char* p, int r)
5276 {
5277   p = savegpr0<big_endian>(p, r);
5278   uint32_t insn = std_0_1 + 16;
5279   write_insn<big_endian>(p, insn);
5280   p = p + 4;
5281   write_insn<big_endian>(p, blr);
5282   return p + 4;
5283 }
5284
5285 template<bool big_endian>
5286 static unsigned char*
5287 restgpr0(unsigned char* p, int r)
5288 {
5289   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5290   write_insn<big_endian>(p, insn);
5291   return p + 4;
5292 }
5293
5294 template<bool big_endian>
5295 static unsigned char*
5296 restgpr0_tail(unsigned char* p, int r)
5297 {
5298   uint32_t insn = ld_0_1 + 16;
5299   write_insn<big_endian>(p, insn);
5300   p = p + 4;
5301   p = restgpr0<big_endian>(p, r);
5302   write_insn<big_endian>(p, mtlr_0);
5303   p = p + 4;
5304   if (r == 29)
5305     {
5306       p = restgpr0<big_endian>(p, 30);
5307       p = restgpr0<big_endian>(p, 31);
5308     }
5309   write_insn<big_endian>(p, blr);
5310   return p + 4;
5311 }
5312
5313 template<bool big_endian>
5314 static unsigned char*
5315 savegpr1(unsigned char* p, int r)
5316 {
5317   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5318   write_insn<big_endian>(p, insn);
5319   return p + 4;
5320 }
5321
5322 template<bool big_endian>
5323 static unsigned char*
5324 savegpr1_tail(unsigned char* p, int r)
5325 {
5326   p = savegpr1<big_endian>(p, r);
5327   write_insn<big_endian>(p, blr);
5328   return p + 4;
5329 }
5330
5331 template<bool big_endian>
5332 static unsigned char*
5333 restgpr1(unsigned char* p, int r)
5334 {
5335   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5336   write_insn<big_endian>(p, insn);
5337   return p + 4;
5338 }
5339
5340 template<bool big_endian>
5341 static unsigned char*
5342 restgpr1_tail(unsigned char* p, int r)
5343 {
5344   p = restgpr1<big_endian>(p, r);
5345   write_insn<big_endian>(p, blr);
5346   return p + 4;
5347 }
5348
5349 template<bool big_endian>
5350 static unsigned char*
5351 savefpr(unsigned char* p, int r)
5352 {
5353   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5354   write_insn<big_endian>(p, insn);
5355   return p + 4;
5356 }
5357
5358 template<bool big_endian>
5359 static unsigned char*
5360 savefpr0_tail(unsigned char* p, int r)
5361 {
5362   p = savefpr<big_endian>(p, r);
5363   write_insn<big_endian>(p, std_0_1 + 16);
5364   p = p + 4;
5365   write_insn<big_endian>(p, blr);
5366   return p + 4;
5367 }
5368
5369 template<bool big_endian>
5370 static unsigned char*
5371 restfpr(unsigned char* p, int r)
5372 {
5373   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5374   write_insn<big_endian>(p, insn);
5375   return p + 4;
5376 }
5377
5378 template<bool big_endian>
5379 static unsigned char*
5380 restfpr0_tail(unsigned char* p, int r)
5381 {
5382   write_insn<big_endian>(p, ld_0_1 + 16);
5383   p = p + 4;
5384   p = restfpr<big_endian>(p, r);
5385   write_insn<big_endian>(p, mtlr_0);
5386   p = p + 4;
5387   if (r == 29)
5388     {
5389       p = restfpr<big_endian>(p, 30);
5390       p = restfpr<big_endian>(p, 31);
5391     }
5392   write_insn<big_endian>(p, blr);
5393   return p + 4;
5394 }
5395
5396 template<bool big_endian>
5397 static unsigned char*
5398 savefpr1_tail(unsigned char* p, int r)
5399 {
5400   p = savefpr<big_endian>(p, r);
5401   write_insn<big_endian>(p, blr);
5402   return p + 4;
5403 }
5404
5405 template<bool big_endian>
5406 static unsigned char*
5407 restfpr1_tail(unsigned char* p, int r)
5408 {
5409   p = restfpr<big_endian>(p, r);
5410   write_insn<big_endian>(p, blr);
5411   return p + 4;
5412 }
5413
5414 template<bool big_endian>
5415 static unsigned char*
5416 savevr(unsigned char* p, int r)
5417 {
5418   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5419   write_insn<big_endian>(p, insn);
5420   p = p + 4;
5421   insn = stvx_0_12_0 + (r << 21);
5422   write_insn<big_endian>(p, insn);
5423   return p + 4;
5424 }
5425
5426 template<bool big_endian>
5427 static unsigned char*
5428 savevr_tail(unsigned char* p, int r)
5429 {
5430   p = savevr<big_endian>(p, r);
5431   write_insn<big_endian>(p, blr);
5432   return p + 4;
5433 }
5434
5435 template<bool big_endian>
5436 static unsigned char*
5437 restvr(unsigned char* p, int r)
5438 {
5439   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5440   write_insn<big_endian>(p, insn);
5441   p = p + 4;
5442   insn = lvx_0_12_0 + (r << 21);
5443   write_insn<big_endian>(p, insn);
5444   return p + 4;
5445 }
5446
5447 template<bool big_endian>
5448 static unsigned char*
5449 restvr_tail(unsigned char* p, int r)
5450 {
5451   p = restvr<big_endian>(p, r);
5452   write_insn<big_endian>(p, blr);
5453   return p + 4;
5454 }
5455
5456
5457 template<int size, bool big_endian>
5458 Output_data_save_res<size, big_endian>::Output_data_save_res(
5459     Symbol_table* symtab)
5460   : Output_section_data_build(4),
5461     contents_(NULL)
5462 {
5463   this->savres_define(symtab,
5464                       "_savegpr0_", 14, 31,
5465                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5466   this->savres_define(symtab,
5467                       "_restgpr0_", 14, 29,
5468                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5469   this->savres_define(symtab,
5470                       "_restgpr0_", 30, 31,
5471                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5472   this->savres_define(symtab,
5473                       "_savegpr1_", 14, 31,
5474                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5475   this->savres_define(symtab,
5476                       "_restgpr1_", 14, 31,
5477                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5478   this->savres_define(symtab,
5479                       "_savefpr_", 14, 31,
5480                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5481   this->savres_define(symtab,
5482                       "_restfpr_", 14, 29,
5483                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5484   this->savres_define(symtab,
5485                       "_restfpr_", 30, 31,
5486                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5487   this->savres_define(symtab,
5488                       "._savef", 14, 31,
5489                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5490   this->savres_define(symtab,
5491                       "._restf", 14, 31,
5492                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5493   this->savres_define(symtab,
5494                       "_savevr_", 20, 31,
5495                       savevr<big_endian>, savevr_tail<big_endian>);
5496   this->savres_define(symtab,
5497                       "_restvr_", 20, 31,
5498                       restvr<big_endian>, restvr_tail<big_endian>);
5499 }
5500
5501 template<int size, bool big_endian>
5502 void
5503 Output_data_save_res<size, big_endian>::savres_define(
5504     Symbol_table* symtab,
5505     const char *name,
5506     unsigned int lo, unsigned int hi,
5507     unsigned char* write_ent(unsigned char*, int),
5508     unsigned char* write_tail(unsigned char*, int))
5509 {
5510   size_t len = strlen(name);
5511   bool writing = false;
5512   char sym[16];
5513
5514   memcpy(sym, name, len);
5515   sym[len + 2] = 0;
5516
5517   for (unsigned int i = lo; i <= hi; i++)
5518     {
5519       sym[len + 0] = i / 10 + '0';
5520       sym[len + 1] = i % 10 + '0';
5521       Symbol* gsym = symtab->lookup(sym);
5522       bool refd = gsym != NULL && gsym->is_undefined();
5523       writing = writing || refd;
5524       if (writing)
5525         {
5526           if (this->contents_ == NULL)
5527             this->contents_ = new unsigned char[this->savres_max];
5528
5529           section_size_type value = this->current_data_size();
5530           unsigned char* p = this->contents_ + value;
5531           if (i != hi)
5532             p = write_ent(p, i);
5533           else
5534             p = write_tail(p, i);
5535           section_size_type cur_size = p - this->contents_;
5536           this->set_current_data_size(cur_size);
5537           if (refd)
5538             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5539                                           this, value, cur_size - value,
5540                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5541                                           elfcpp::STV_HIDDEN, 0, false, false);
5542         }
5543     }
5544 }
5545
5546 // Write out save/restore.
5547
5548 template<int size, bool big_endian>
5549 void
5550 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5551 {
5552   const section_size_type off = this->offset();
5553   const section_size_type oview_size =
5554     convert_to_section_size_type(this->data_size());
5555   unsigned char* const oview = of->get_output_view(off, oview_size);
5556   memcpy(oview, this->contents_, oview_size);
5557   of->write_output_view(off, oview_size, oview);
5558 }
5559
5560
5561 // Create the glink section.
5562
5563 template<int size, bool big_endian>
5564 void
5565 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5566 {
5567   if (this->glink_ == NULL)
5568     {
5569       this->glink_ = new Output_data_glink<size, big_endian>(this);
5570       this->glink_->add_eh_frame(layout);
5571       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5572                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5573                                       this->glink_, ORDER_TEXT, false);
5574     }
5575 }
5576
5577 // Create a PLT entry for a global symbol.
5578
5579 template<int size, bool big_endian>
5580 void
5581 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5582                                                  Layout* layout,
5583                                                  Symbol* gsym)
5584 {
5585   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5586       && gsym->can_use_relative_reloc(false))
5587     {
5588       if (this->iplt_ == NULL)
5589         this->make_iplt_section(symtab, layout);
5590       this->iplt_->add_ifunc_entry(gsym);
5591     }
5592   else
5593     {
5594       if (this->plt_ == NULL)
5595         this->make_plt_section(symtab, layout);
5596       this->plt_->add_entry(gsym);
5597     }
5598 }
5599
5600 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5601
5602 template<int size, bool big_endian>
5603 void
5604 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5605     Symbol_table* symtab,
5606     Layout* layout,
5607     Sized_relobj_file<size, big_endian>* relobj,
5608     unsigned int r_sym)
5609 {
5610   if (this->iplt_ == NULL)
5611     this->make_iplt_section(symtab, layout);
5612   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5613 }
5614
5615 // Return the number of entries in the PLT.
5616
5617 template<int size, bool big_endian>
5618 unsigned int
5619 Target_powerpc<size, big_endian>::plt_entry_count() const
5620 {
5621   if (this->plt_ == NULL)
5622     return 0;
5623   return this->plt_->entry_count();
5624 }
5625
5626 // Create a GOT entry for local dynamic __tls_get_addr calls.
5627
5628 template<int size, bool big_endian>
5629 unsigned int
5630 Target_powerpc<size, big_endian>::tlsld_got_offset(
5631     Symbol_table* symtab,
5632     Layout* layout,
5633     Sized_relobj_file<size, big_endian>* object)
5634 {
5635   if (this->tlsld_got_offset_ == -1U)
5636     {
5637       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5638       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5639       Output_data_got_powerpc<size, big_endian>* got
5640         = this->got_section(symtab, layout);
5641       unsigned int got_offset = got->add_constant_pair(0, 0);
5642       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5643                           got_offset, 0);
5644       this->tlsld_got_offset_ = got_offset;
5645     }
5646   return this->tlsld_got_offset_;
5647 }
5648
5649 // Get the Reference_flags for a particular relocation.
5650
5651 template<int size, bool big_endian>
5652 int
5653 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5654     unsigned int r_type,
5655     const Target_powerpc* target)
5656 {
5657   int ref = 0;
5658
5659   switch (r_type)
5660     {
5661     case elfcpp::R_POWERPC_NONE:
5662     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5663     case elfcpp::R_POWERPC_GNU_VTENTRY:
5664     case elfcpp::R_PPC64_TOC:
5665       // No symbol reference.
5666       break;
5667
5668     case elfcpp::R_PPC64_ADDR64:
5669     case elfcpp::R_PPC64_UADDR64:
5670     case elfcpp::R_POWERPC_ADDR32:
5671     case elfcpp::R_POWERPC_UADDR32:
5672     case elfcpp::R_POWERPC_ADDR16:
5673     case elfcpp::R_POWERPC_UADDR16:
5674     case elfcpp::R_POWERPC_ADDR16_LO:
5675     case elfcpp::R_POWERPC_ADDR16_HI:
5676     case elfcpp::R_POWERPC_ADDR16_HA:
5677       ref = Symbol::ABSOLUTE_REF;
5678       break;
5679
5680     case elfcpp::R_POWERPC_ADDR24:
5681     case elfcpp::R_POWERPC_ADDR14:
5682     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5683     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5684       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5685       break;
5686
5687     case elfcpp::R_PPC64_REL64:
5688     case elfcpp::R_POWERPC_REL32:
5689     case elfcpp::R_PPC_LOCAL24PC:
5690     case elfcpp::R_POWERPC_REL16:
5691     case elfcpp::R_POWERPC_REL16_LO:
5692     case elfcpp::R_POWERPC_REL16_HI:
5693     case elfcpp::R_POWERPC_REL16_HA:
5694       ref = Symbol::RELATIVE_REF;
5695       break;
5696
5697     case elfcpp::R_POWERPC_REL24:
5698     case elfcpp::R_PPC_PLTREL24:
5699     case elfcpp::R_POWERPC_REL14:
5700     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5701     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5702       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5703       break;
5704
5705     case elfcpp::R_POWERPC_GOT16:
5706     case elfcpp::R_POWERPC_GOT16_LO:
5707     case elfcpp::R_POWERPC_GOT16_HI:
5708     case elfcpp::R_POWERPC_GOT16_HA:
5709     case elfcpp::R_PPC64_GOT16_DS:
5710     case elfcpp::R_PPC64_GOT16_LO_DS:
5711     case elfcpp::R_PPC64_TOC16:
5712     case elfcpp::R_PPC64_TOC16_LO:
5713     case elfcpp::R_PPC64_TOC16_HI:
5714     case elfcpp::R_PPC64_TOC16_HA:
5715     case elfcpp::R_PPC64_TOC16_DS:
5716     case elfcpp::R_PPC64_TOC16_LO_DS:
5717       ref = Symbol::RELATIVE_REF;
5718       break;
5719
5720     case elfcpp::R_POWERPC_GOT_TPREL16:
5721     case elfcpp::R_POWERPC_TLS:
5722       ref = Symbol::TLS_REF;
5723       break;
5724
5725     case elfcpp::R_POWERPC_COPY:
5726     case elfcpp::R_POWERPC_GLOB_DAT:
5727     case elfcpp::R_POWERPC_JMP_SLOT:
5728     case elfcpp::R_POWERPC_RELATIVE:
5729     case elfcpp::R_POWERPC_DTPMOD:
5730     default:
5731       // Not expected.  We will give an error later.
5732       break;
5733     }
5734
5735   if (size == 64 && target->abiversion() < 2)
5736     ref |= Symbol::FUNC_DESC_ABI;
5737   return ref;
5738 }
5739
5740 // Report an unsupported relocation against a local symbol.
5741
5742 template<int size, bool big_endian>
5743 void
5744 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5745     Sized_relobj_file<size, big_endian>* object,
5746     unsigned int r_type)
5747 {
5748   gold_error(_("%s: unsupported reloc %u against local symbol"),
5749              object->name().c_str(), r_type);
5750 }
5751
5752 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5753 // dynamic linker does not support it, issue an error.
5754
5755 template<int size, bool big_endian>
5756 void
5757 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5758                                                       unsigned int r_type)
5759 {
5760   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5761
5762   // These are the relocation types supported by glibc for both 32-bit
5763   // and 64-bit powerpc.
5764   switch (r_type)
5765     {
5766     case elfcpp::R_POWERPC_NONE:
5767     case elfcpp::R_POWERPC_RELATIVE:
5768     case elfcpp::R_POWERPC_GLOB_DAT:
5769     case elfcpp::R_POWERPC_DTPMOD:
5770     case elfcpp::R_POWERPC_DTPREL:
5771     case elfcpp::R_POWERPC_TPREL:
5772     case elfcpp::R_POWERPC_JMP_SLOT:
5773     case elfcpp::R_POWERPC_COPY:
5774     case elfcpp::R_POWERPC_IRELATIVE:
5775     case elfcpp::R_POWERPC_ADDR32:
5776     case elfcpp::R_POWERPC_UADDR32:
5777     case elfcpp::R_POWERPC_ADDR24:
5778     case elfcpp::R_POWERPC_ADDR16:
5779     case elfcpp::R_POWERPC_UADDR16:
5780     case elfcpp::R_POWERPC_ADDR16_LO:
5781     case elfcpp::R_POWERPC_ADDR16_HI:
5782     case elfcpp::R_POWERPC_ADDR16_HA:
5783     case elfcpp::R_POWERPC_ADDR14:
5784     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5785     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5786     case elfcpp::R_POWERPC_REL32:
5787     case elfcpp::R_POWERPC_REL24:
5788     case elfcpp::R_POWERPC_TPREL16:
5789     case elfcpp::R_POWERPC_TPREL16_LO:
5790     case elfcpp::R_POWERPC_TPREL16_HI:
5791     case elfcpp::R_POWERPC_TPREL16_HA:
5792       return;
5793
5794     default:
5795       break;
5796     }
5797
5798   if (size == 64)
5799     {
5800       switch (r_type)
5801         {
5802           // These are the relocation types supported only on 64-bit.
5803         case elfcpp::R_PPC64_ADDR64:
5804         case elfcpp::R_PPC64_UADDR64:
5805         case elfcpp::R_PPC64_JMP_IREL:
5806         case elfcpp::R_PPC64_ADDR16_DS:
5807         case elfcpp::R_PPC64_ADDR16_LO_DS:
5808         case elfcpp::R_PPC64_ADDR16_HIGH:
5809         case elfcpp::R_PPC64_ADDR16_HIGHA:
5810         case elfcpp::R_PPC64_ADDR16_HIGHER:
5811         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5812         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5813         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5814         case elfcpp::R_PPC64_REL64:
5815         case elfcpp::R_POWERPC_ADDR30:
5816         case elfcpp::R_PPC64_TPREL16_DS:
5817         case elfcpp::R_PPC64_TPREL16_LO_DS:
5818         case elfcpp::R_PPC64_TPREL16_HIGH:
5819         case elfcpp::R_PPC64_TPREL16_HIGHA:
5820         case elfcpp::R_PPC64_TPREL16_HIGHER:
5821         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5822         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5823         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5824           return;
5825
5826         default:
5827           break;
5828         }
5829     }
5830   else
5831     {
5832       switch (r_type)
5833         {
5834           // These are the relocation types supported only on 32-bit.
5835           // ??? glibc ld.so doesn't need to support these.
5836         case elfcpp::R_POWERPC_DTPREL16:
5837         case elfcpp::R_POWERPC_DTPREL16_LO:
5838         case elfcpp::R_POWERPC_DTPREL16_HI:
5839         case elfcpp::R_POWERPC_DTPREL16_HA:
5840           return;
5841
5842         default:
5843           break;
5844         }
5845     }
5846
5847   // This prevents us from issuing more than one error per reloc
5848   // section.  But we can still wind up issuing more than one
5849   // error per object file.
5850   if (this->issued_non_pic_error_)
5851     return;
5852   gold_assert(parameters->options().output_is_position_independent());
5853   object->error(_("requires unsupported dynamic reloc; "
5854                   "recompile with -fPIC"));
5855   this->issued_non_pic_error_ = true;
5856   return;
5857 }
5858
5859 // Return whether we need to make a PLT entry for a relocation of the
5860 // given type against a STT_GNU_IFUNC symbol.
5861
5862 template<int size, bool big_endian>
5863 bool
5864 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5865      Target_powerpc<size, big_endian>* target,
5866      Sized_relobj_file<size, big_endian>* object,
5867      unsigned int r_type,
5868      bool report_err)
5869 {
5870   // In non-pic code any reference will resolve to the plt call stub
5871   // for the ifunc symbol.
5872   if ((size == 32 || target->abiversion() >= 2)
5873       && !parameters->options().output_is_position_independent())
5874     return true;
5875
5876   switch (r_type)
5877     {
5878     // Word size refs from data sections are OK, but don't need a PLT entry.
5879     case elfcpp::R_POWERPC_ADDR32:
5880     case elfcpp::R_POWERPC_UADDR32:
5881       if (size == 32)
5882         return false;
5883       break;
5884
5885     case elfcpp::R_PPC64_ADDR64:
5886     case elfcpp::R_PPC64_UADDR64:
5887       if (size == 64)
5888         return false;
5889       break;
5890
5891     // GOT refs are good, but also don't need a PLT entry.
5892     case elfcpp::R_POWERPC_GOT16:
5893     case elfcpp::R_POWERPC_GOT16_LO:
5894     case elfcpp::R_POWERPC_GOT16_HI:
5895     case elfcpp::R_POWERPC_GOT16_HA:
5896     case elfcpp::R_PPC64_GOT16_DS:
5897     case elfcpp::R_PPC64_GOT16_LO_DS:
5898       return false;
5899
5900     // Function calls are good, and these do need a PLT entry.
5901     case elfcpp::R_POWERPC_ADDR24:
5902     case elfcpp::R_POWERPC_ADDR14:
5903     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5904     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5905     case elfcpp::R_POWERPC_REL24:
5906     case elfcpp::R_PPC_PLTREL24:
5907     case elfcpp::R_POWERPC_REL14:
5908     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5909     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5910       return true;
5911
5912     default:
5913       break;
5914     }
5915
5916   // Anything else is a problem.
5917   // If we are building a static executable, the libc startup function
5918   // responsible for applying indirect function relocations is going
5919   // to complain about the reloc type.
5920   // If we are building a dynamic executable, we will have a text
5921   // relocation.  The dynamic loader will set the text segment
5922   // writable and non-executable to apply text relocations.  So we'll
5923   // segfault when trying to run the indirection function to resolve
5924   // the reloc.
5925   if (report_err)
5926     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5927                object->name().c_str(), r_type);
5928   return false;
5929 }
5930
5931 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5932 // reloc.
5933
5934 static bool
5935 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
5936 {
5937   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
5938           || (insn & (0x3f << 26)) == 14u << 26 /* addi */
5939           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5940           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5941           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5942           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5943           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5944           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5945           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5946           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5947           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5948           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5949           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5950           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5951           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5952           || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
5953           || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
5954               /* Exclude lfqu by testing reloc.  If relocs are ever
5955                  defined for the reduced D field in psq_lu then those
5956                  will need testing too.  */
5957               && r_type != elfcpp::R_PPC64_TOC16_LO
5958               && r_type != elfcpp::R_POWERPC_GOT16_LO)
5959           || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
5960               && (insn & 1) == 0)
5961           || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
5962           || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
5963               /* Exclude stfqu.  psq_stu as above for psq_lu.  */
5964               && r_type != elfcpp::R_PPC64_TOC16_LO
5965               && r_type != elfcpp::R_POWERPC_GOT16_LO)
5966           || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
5967               && (insn & 1) == 0));
5968 }
5969
5970 // Scan a relocation for a local symbol.
5971
5972 template<int size, bool big_endian>
5973 inline void
5974 Target_powerpc<size, big_endian>::Scan::local(
5975     Symbol_table* symtab,
5976     Layout* layout,
5977     Target_powerpc<size, big_endian>* target,
5978     Sized_relobj_file<size, big_endian>* object,
5979     unsigned int data_shndx,
5980     Output_section* output_section,
5981     const elfcpp::Rela<size, big_endian>& reloc,
5982     unsigned int r_type,
5983     const elfcpp::Sym<size, big_endian>& lsym,
5984     bool is_discarded)
5985 {
5986   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5987
5988   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5989       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5990     {
5991       this->expect_tls_get_addr_call();
5992       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5993       if (tls_type != tls::TLSOPT_NONE)
5994         this->skip_next_tls_get_addr_call();
5995     }
5996   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5997            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5998     {
5999       this->expect_tls_get_addr_call();
6000       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6001       if (tls_type != tls::TLSOPT_NONE)
6002         this->skip_next_tls_get_addr_call();
6003     }
6004
6005   Powerpc_relobj<size, big_endian>* ppc_object
6006     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6007
6008   if (is_discarded)
6009     {
6010       if (size == 64
6011           && data_shndx == ppc_object->opd_shndx()
6012           && r_type == elfcpp::R_PPC64_ADDR64)
6013         ppc_object->set_opd_discard(reloc.get_r_offset());
6014       return;
6015     }
6016
6017   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6018   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6019   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6020     {
6021       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6022       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6023                           r_type, r_sym, reloc.get_r_addend());
6024       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6025     }
6026
6027   switch (r_type)
6028     {
6029     case elfcpp::R_POWERPC_NONE:
6030     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6031     case elfcpp::R_POWERPC_GNU_VTENTRY:
6032     case elfcpp::R_PPC64_TOCSAVE:
6033     case elfcpp::R_POWERPC_TLS:
6034     case elfcpp::R_PPC64_ENTRY:
6035       break;
6036
6037     case elfcpp::R_PPC64_TOC:
6038       {
6039         Output_data_got_powerpc<size, big_endian>* got
6040           = target->got_section(symtab, layout);
6041         if (parameters->options().output_is_position_independent())
6042           {
6043             Address off = reloc.get_r_offset();
6044             if (size == 64
6045                 && target->abiversion() < 2
6046                 && data_shndx == ppc_object->opd_shndx()
6047                 && ppc_object->get_opd_discard(off - 8))
6048               break;
6049
6050             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6051             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6052             rela_dyn->add_output_section_relative(got->output_section(),
6053                                                   elfcpp::R_POWERPC_RELATIVE,
6054                                                   output_section,
6055                                                   object, data_shndx, off,
6056                                                   symobj->toc_base_offset());
6057           }
6058       }
6059       break;
6060
6061     case elfcpp::R_PPC64_ADDR64:
6062     case elfcpp::R_PPC64_UADDR64:
6063     case elfcpp::R_POWERPC_ADDR32:
6064     case elfcpp::R_POWERPC_UADDR32:
6065     case elfcpp::R_POWERPC_ADDR24:
6066     case elfcpp::R_POWERPC_ADDR16:
6067     case elfcpp::R_POWERPC_ADDR16_LO:
6068     case elfcpp::R_POWERPC_ADDR16_HI:
6069     case elfcpp::R_POWERPC_ADDR16_HA:
6070     case elfcpp::R_POWERPC_UADDR16:
6071     case elfcpp::R_PPC64_ADDR16_HIGH:
6072     case elfcpp::R_PPC64_ADDR16_HIGHA:
6073     case elfcpp::R_PPC64_ADDR16_HIGHER:
6074     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6075     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6076     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6077     case elfcpp::R_PPC64_ADDR16_DS:
6078     case elfcpp::R_PPC64_ADDR16_LO_DS:
6079     case elfcpp::R_POWERPC_ADDR14:
6080     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6081     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6082       // If building a shared library (or a position-independent
6083       // executable), we need to create a dynamic relocation for
6084       // this location.
6085       if (parameters->options().output_is_position_independent()
6086           || (size == 64 && is_ifunc && target->abiversion() < 2))
6087         {
6088           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6089                                                              is_ifunc);
6090           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6091           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6092               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6093             {
6094               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6095                                      : elfcpp::R_POWERPC_RELATIVE);
6096               rela_dyn->add_local_relative(object, r_sym, dynrel,
6097                                            output_section, data_shndx,
6098                                            reloc.get_r_offset(),
6099                                            reloc.get_r_addend(), false);
6100             }
6101           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6102             {
6103               check_non_pic(object, r_type);
6104               rela_dyn->add_local(object, r_sym, r_type, output_section,
6105                                   data_shndx, reloc.get_r_offset(),
6106                                   reloc.get_r_addend());
6107             }
6108           else
6109             {
6110               gold_assert(lsym.get_st_value() == 0);
6111               unsigned int shndx = lsym.get_st_shndx();
6112               bool is_ordinary;
6113               shndx = object->adjust_sym_shndx(r_sym, shndx,
6114                                                &is_ordinary);
6115               if (!is_ordinary)
6116                 object->error(_("section symbol %u has bad shndx %u"),
6117                               r_sym, shndx);
6118               else
6119                 rela_dyn->add_local_section(object, shndx, r_type,
6120                                             output_section, data_shndx,
6121                                             reloc.get_r_offset());
6122             }
6123         }
6124       break;
6125
6126     case elfcpp::R_POWERPC_REL24:
6127     case elfcpp::R_PPC_PLTREL24:
6128     case elfcpp::R_PPC_LOCAL24PC:
6129     case elfcpp::R_POWERPC_REL14:
6130     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6131     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6132       if (!is_ifunc)
6133         {
6134           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6135           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6136                               r_type, r_sym, reloc.get_r_addend());
6137         }
6138       break;
6139
6140     case elfcpp::R_PPC64_REL64:
6141     case elfcpp::R_POWERPC_REL32:
6142     case elfcpp::R_POWERPC_REL16:
6143     case elfcpp::R_POWERPC_REL16_LO:
6144     case elfcpp::R_POWERPC_REL16_HI:
6145     case elfcpp::R_POWERPC_REL16_HA:
6146     case elfcpp::R_POWERPC_REL16DX_HA:
6147     case elfcpp::R_POWERPC_SECTOFF:
6148     case elfcpp::R_POWERPC_SECTOFF_LO:
6149     case elfcpp::R_POWERPC_SECTOFF_HI:
6150     case elfcpp::R_POWERPC_SECTOFF_HA:
6151     case elfcpp::R_PPC64_SECTOFF_DS:
6152     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6153     case elfcpp::R_POWERPC_TPREL16:
6154     case elfcpp::R_POWERPC_TPREL16_LO:
6155     case elfcpp::R_POWERPC_TPREL16_HI:
6156     case elfcpp::R_POWERPC_TPREL16_HA:
6157     case elfcpp::R_PPC64_TPREL16_DS:
6158     case elfcpp::R_PPC64_TPREL16_LO_DS:
6159     case elfcpp::R_PPC64_TPREL16_HIGH:
6160     case elfcpp::R_PPC64_TPREL16_HIGHA:
6161     case elfcpp::R_PPC64_TPREL16_HIGHER:
6162     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6163     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6164     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6165     case elfcpp::R_POWERPC_DTPREL16:
6166     case elfcpp::R_POWERPC_DTPREL16_LO:
6167     case elfcpp::R_POWERPC_DTPREL16_HI:
6168     case elfcpp::R_POWERPC_DTPREL16_HA:
6169     case elfcpp::R_PPC64_DTPREL16_DS:
6170     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6171     case elfcpp::R_PPC64_DTPREL16_HIGH:
6172     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6173     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6174     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6175     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6176     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6177     case elfcpp::R_PPC64_TLSGD:
6178     case elfcpp::R_PPC64_TLSLD:
6179     case elfcpp::R_PPC64_ADDR64_LOCAL:
6180       break;
6181
6182     case elfcpp::R_POWERPC_GOT16:
6183     case elfcpp::R_POWERPC_GOT16_LO:
6184     case elfcpp::R_POWERPC_GOT16_HI:
6185     case elfcpp::R_POWERPC_GOT16_HA:
6186     case elfcpp::R_PPC64_GOT16_DS:
6187     case elfcpp::R_PPC64_GOT16_LO_DS:
6188       {
6189         // The symbol requires a GOT entry.
6190         Output_data_got_powerpc<size, big_endian>* got
6191           = target->got_section(symtab, layout);
6192         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6193
6194         if (!parameters->options().output_is_position_independent())
6195           {
6196             if (is_ifunc
6197                 && (size == 32 || target->abiversion() >= 2))
6198               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6199             else
6200               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6201           }
6202         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6203           {
6204             // If we are generating a shared object or a pie, this
6205             // symbol's GOT entry will be set by a dynamic relocation.
6206             unsigned int off;
6207             off = got->add_constant(0);
6208             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6209
6210             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6211                                                                is_ifunc);
6212             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6213                                    : elfcpp::R_POWERPC_RELATIVE);
6214             rela_dyn->add_local_relative(object, r_sym, dynrel,
6215                                          got, off, 0, false);
6216           }
6217       }
6218       break;
6219
6220     case elfcpp::R_PPC64_TOC16:
6221     case elfcpp::R_PPC64_TOC16_LO:
6222     case elfcpp::R_PPC64_TOC16_HI:
6223     case elfcpp::R_PPC64_TOC16_HA:
6224     case elfcpp::R_PPC64_TOC16_DS:
6225     case elfcpp::R_PPC64_TOC16_LO_DS:
6226       // We need a GOT section.
6227       target->got_section(symtab, layout);
6228       break;
6229
6230     case elfcpp::R_POWERPC_GOT_TLSGD16:
6231     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6232     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6233     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6234       {
6235         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6236         if (tls_type == tls::TLSOPT_NONE)
6237           {
6238             Output_data_got_powerpc<size, big_endian>* got
6239               = target->got_section(symtab, layout);
6240             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6241             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6242             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6243                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6244           }
6245         else if (tls_type == tls::TLSOPT_TO_LE)
6246           {
6247             // no GOT relocs needed for Local Exec.
6248           }
6249         else
6250           gold_unreachable();
6251       }
6252       break;
6253
6254     case elfcpp::R_POWERPC_GOT_TLSLD16:
6255     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6256     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6257     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6258       {
6259         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6260         if (tls_type == tls::TLSOPT_NONE)
6261           target->tlsld_got_offset(symtab, layout, object);
6262         else if (tls_type == tls::TLSOPT_TO_LE)
6263           {
6264             // no GOT relocs needed for Local Exec.
6265             if (parameters->options().emit_relocs())
6266               {
6267                 Output_section* os = layout->tls_segment()->first_section();
6268                 gold_assert(os != NULL);
6269                 os->set_needs_symtab_index();
6270               }
6271           }
6272         else
6273           gold_unreachable();
6274       }
6275       break;
6276
6277     case elfcpp::R_POWERPC_GOT_DTPREL16:
6278     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6279     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6280     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6281       {
6282         Output_data_got_powerpc<size, big_endian>* got
6283           = target->got_section(symtab, layout);
6284         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6285         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6286       }
6287       break;
6288
6289     case elfcpp::R_POWERPC_GOT_TPREL16:
6290     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6291     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6292     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6293       {
6294         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6295         if (tls_type == tls::TLSOPT_NONE)
6296           {
6297             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6298             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6299               {
6300                 Output_data_got_powerpc<size, big_endian>* got
6301                   = target->got_section(symtab, layout);
6302                 unsigned int off = got->add_constant(0);
6303                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6304
6305                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6306                 rela_dyn->add_symbolless_local_addend(object, r_sym,
6307                                                       elfcpp::R_POWERPC_TPREL,
6308                                                       got, off, 0);
6309               }
6310           }
6311         else if (tls_type == tls::TLSOPT_TO_LE)
6312           {
6313             // no GOT relocs needed for Local Exec.
6314           }
6315         else
6316           gold_unreachable();
6317       }
6318       break;
6319
6320     default:
6321       unsupported_reloc_local(object, r_type);
6322       break;
6323     }
6324
6325   if (size == 64
6326       && parameters->options().toc_optimize())
6327     {
6328       if (data_shndx == ppc_object->toc_shndx())
6329         {
6330           bool ok = true;
6331           if (r_type != elfcpp::R_PPC64_ADDR64
6332               || (is_ifunc && target->abiversion() < 2))
6333             ok = false;
6334           else if (parameters->options().output_is_position_independent())
6335             {
6336               if (is_ifunc)
6337                 ok = false;
6338               else
6339                 {
6340                   unsigned int shndx = lsym.get_st_shndx();
6341                   if (shndx >= elfcpp::SHN_LORESERVE
6342                       && shndx != elfcpp::SHN_XINDEX)
6343                     ok = false;
6344                 }
6345             }
6346           if (!ok)
6347             ppc_object->set_no_toc_opt(reloc.get_r_offset());
6348         }
6349
6350       enum {no_check, check_lo, check_ha} insn_check;
6351       switch (r_type)
6352         {
6353         default:
6354           insn_check = no_check;
6355           break;
6356
6357         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6358         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6359         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6360         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6361         case elfcpp::R_POWERPC_GOT16_HA:
6362         case elfcpp::R_PPC64_TOC16_HA:
6363           insn_check = check_ha;
6364           break;
6365
6366         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6367         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6368         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6369         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6370         case elfcpp::R_POWERPC_GOT16_LO:
6371         case elfcpp::R_PPC64_GOT16_LO_DS:
6372         case elfcpp::R_PPC64_TOC16_LO:
6373         case elfcpp::R_PPC64_TOC16_LO_DS:
6374           insn_check = check_lo;
6375           break;
6376         }
6377
6378       section_size_type slen;
6379       const unsigned char* view = NULL;
6380       if (insn_check != no_check)
6381         {
6382           view = ppc_object->section_contents(data_shndx, &slen, false);
6383           section_size_type off =
6384             convert_to_section_size_type(reloc.get_r_offset()) & -4;
6385           if (off < slen)
6386             {
6387               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6388               if (insn_check == check_lo
6389                   ? !ok_lo_toc_insn(insn, r_type)
6390                   : ((insn & ((0x3f << 26) | 0x1f << 16))
6391                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6392                 {
6393                   ppc_object->set_no_toc_opt();
6394                   gold_warning(_("%s: toc optimization is not supported "
6395                                  "for %#08x instruction"),
6396                                ppc_object->name().c_str(), insn);
6397                 }
6398             }
6399         }
6400
6401       switch (r_type)
6402         {
6403         default:
6404           break;
6405         case elfcpp::R_PPC64_TOC16:
6406         case elfcpp::R_PPC64_TOC16_LO:
6407         case elfcpp::R_PPC64_TOC16_HI:
6408         case elfcpp::R_PPC64_TOC16_HA:
6409         case elfcpp::R_PPC64_TOC16_DS:
6410         case elfcpp::R_PPC64_TOC16_LO_DS:
6411           unsigned int shndx = lsym.get_st_shndx();
6412           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6413           bool is_ordinary;
6414           shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6415           if (is_ordinary && shndx == ppc_object->toc_shndx())
6416             {
6417               Address dst_off = lsym.get_st_value() + reloc.get_r_offset();
6418               if (dst_off < ppc_object->section_size(shndx))
6419                 {
6420                   bool ok = false;
6421                   if (r_type == elfcpp::R_PPC64_TOC16_HA)
6422                     ok = true;
6423                   else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6424                     {
6425                       // Need to check that the insn is a ld
6426                       if (!view)
6427                         view = ppc_object->section_contents(data_shndx,
6428                                                             &slen,
6429                                                             false);
6430                       section_size_type off =
6431                         (convert_to_section_size_type(reloc.get_r_offset())
6432                          + (big_endian ? -2 : 3));
6433                       if (off < slen
6434                           && (view[off] & (0x3f << 2)) == 58u << 2)
6435                         ok = true;
6436                     }
6437                   if (!ok)
6438                     ppc_object->set_no_toc_opt(dst_off);
6439                 }
6440             }
6441           break;
6442         }
6443     }
6444
6445   if (size == 32)
6446     {
6447       switch (r_type)
6448         {
6449         case elfcpp::R_POWERPC_REL32:
6450           if (ppc_object->got2_shndx() != 0
6451               && parameters->options().output_is_position_independent())
6452             {
6453               unsigned int shndx = lsym.get_st_shndx();
6454               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6455               bool is_ordinary;
6456               shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6457               if (is_ordinary && shndx == ppc_object->got2_shndx()
6458                   && (ppc_object->section_flags(data_shndx)
6459                       & elfcpp::SHF_EXECINSTR) != 0)
6460                 gold_error(_("%s: unsupported -mbss-plt code"),
6461                            ppc_object->name().c_str());
6462             }
6463           break;
6464         default:
6465           break;
6466         }
6467     }
6468
6469   switch (r_type)
6470     {
6471     case elfcpp::R_POWERPC_GOT_TLSLD16:
6472     case elfcpp::R_POWERPC_GOT_TLSGD16:
6473     case elfcpp::R_POWERPC_GOT_TPREL16:
6474     case elfcpp::R_POWERPC_GOT_DTPREL16:
6475     case elfcpp::R_POWERPC_GOT16:
6476     case elfcpp::R_PPC64_GOT16_DS:
6477     case elfcpp::R_PPC64_TOC16:
6478     case elfcpp::R_PPC64_TOC16_DS:
6479       ppc_object->set_has_small_toc_reloc();
6480     default:
6481       break;
6482     }
6483 }
6484
6485 // Report an unsupported relocation against a global symbol.
6486
6487 template<int size, bool big_endian>
6488 void
6489 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
6490     Sized_relobj_file<size, big_endian>* object,
6491     unsigned int r_type,
6492     Symbol* gsym)
6493 {
6494   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6495              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6496 }
6497
6498 // Scan a relocation for a global symbol.
6499
6500 template<int size, bool big_endian>
6501 inline void
6502 Target_powerpc<size, big_endian>::Scan::global(
6503     Symbol_table* symtab,
6504     Layout* layout,
6505     Target_powerpc<size, big_endian>* target,
6506     Sized_relobj_file<size, big_endian>* object,
6507     unsigned int data_shndx,
6508     Output_section* output_section,
6509     const elfcpp::Rela<size, big_endian>& reloc,
6510     unsigned int r_type,
6511     Symbol* gsym)
6512 {
6513   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6514     return;
6515
6516   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6517       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6518     {
6519       this->expect_tls_get_addr_call();
6520       const bool final = gsym->final_value_is_known();
6521       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6522       if (tls_type != tls::TLSOPT_NONE)
6523         this->skip_next_tls_get_addr_call();
6524     }
6525   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6526            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6527     {
6528       this->expect_tls_get_addr_call();
6529       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6530       if (tls_type != tls::TLSOPT_NONE)
6531         this->skip_next_tls_get_addr_call();
6532     }
6533
6534   Powerpc_relobj<size, big_endian>* ppc_object
6535     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6536
6537   // A STT_GNU_IFUNC symbol may require a PLT entry.
6538   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6539   bool pushed_ifunc = false;
6540   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6541     {
6542       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6543       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6544                           r_type, r_sym, reloc.get_r_addend());
6545       target->make_plt_entry(symtab, layout, gsym);
6546       pushed_ifunc = true;
6547     }
6548
6549   switch (r_type)
6550     {
6551     case elfcpp::R_POWERPC_NONE:
6552     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6553     case elfcpp::R_POWERPC_GNU_VTENTRY:
6554     case elfcpp::R_PPC_LOCAL24PC:
6555     case elfcpp::R_POWERPC_TLS:
6556     case elfcpp::R_PPC64_ENTRY:
6557       break;
6558
6559     case elfcpp::R_PPC64_TOC:
6560       {
6561         Output_data_got_powerpc<size, big_endian>* got
6562           = target->got_section(symtab, layout);
6563         if (parameters->options().output_is_position_independent())
6564           {
6565             Address off = reloc.get_r_offset();
6566             if (size == 64
6567                 && data_shndx == ppc_object->opd_shndx()
6568                 && ppc_object->get_opd_discard(off - 8))
6569               break;
6570
6571             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6572             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6573             if (data_shndx != ppc_object->opd_shndx())
6574               symobj = static_cast
6575                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6576             rela_dyn->add_output_section_relative(got->output_section(),
6577                                                   elfcpp::R_POWERPC_RELATIVE,
6578                                                   output_section,
6579                                                   object, data_shndx, off,
6580                                                   symobj->toc_base_offset());
6581           }
6582       }
6583       break;
6584
6585     case elfcpp::R_PPC64_ADDR64:
6586       if (size == 64
6587           && target->abiversion() < 2
6588           && data_shndx == ppc_object->opd_shndx()
6589           && (gsym->is_defined_in_discarded_section()
6590               || gsym->object() != object))
6591         {
6592           ppc_object->set_opd_discard(reloc.get_r_offset());
6593           break;
6594         }
6595       // Fall through.
6596     case elfcpp::R_PPC64_UADDR64:
6597     case elfcpp::R_POWERPC_ADDR32:
6598     case elfcpp::R_POWERPC_UADDR32:
6599     case elfcpp::R_POWERPC_ADDR24:
6600     case elfcpp::R_POWERPC_ADDR16:
6601     case elfcpp::R_POWERPC_ADDR16_LO:
6602     case elfcpp::R_POWERPC_ADDR16_HI:
6603     case elfcpp::R_POWERPC_ADDR16_HA:
6604     case elfcpp::R_POWERPC_UADDR16:
6605     case elfcpp::R_PPC64_ADDR16_HIGH:
6606     case elfcpp::R_PPC64_ADDR16_HIGHA:
6607     case elfcpp::R_PPC64_ADDR16_HIGHER:
6608     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6609     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6610     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6611     case elfcpp::R_PPC64_ADDR16_DS:
6612     case elfcpp::R_PPC64_ADDR16_LO_DS:
6613     case elfcpp::R_POWERPC_ADDR14:
6614     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6615     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6616       {
6617         // Make a PLT entry if necessary.
6618         if (gsym->needs_plt_entry())
6619           {
6620             // Since this is not a PC-relative relocation, we may be
6621             // taking the address of a function. In that case we need to
6622             // set the entry in the dynamic symbol table to the address of
6623             // the PLT call stub.
6624             bool need_ifunc_plt = false;
6625             if ((size == 32 || target->abiversion() >= 2)
6626                 && gsym->is_from_dynobj()
6627                 && !parameters->options().output_is_position_independent())
6628               {
6629                 gsym->set_needs_dynsym_value();
6630                 need_ifunc_plt = true;
6631               }
6632             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6633               {
6634                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6635                 target->push_branch(ppc_object, data_shndx,
6636                                     reloc.get_r_offset(), r_type, r_sym,
6637                                     reloc.get_r_addend());
6638                 target->make_plt_entry(symtab, layout, gsym);
6639               }
6640           }
6641         // Make a dynamic relocation if necessary.
6642         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6643             || (size == 64 && is_ifunc && target->abiversion() < 2))
6644           {
6645             if (!parameters->options().output_is_position_independent()
6646                 && gsym->may_need_copy_reloc())
6647               {
6648                 target->copy_reloc(symtab, layout, object,
6649                                    data_shndx, output_section, gsym, reloc);
6650               }
6651             else if ((((size == 32
6652                         && r_type == elfcpp::R_POWERPC_ADDR32)
6653                        || (size == 64
6654                            && r_type == elfcpp::R_PPC64_ADDR64
6655                            && target->abiversion() >= 2))
6656                       && gsym->can_use_relative_reloc(false)
6657                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6658                            && parameters->options().shared()))
6659                      || (size == 64
6660                          && r_type == elfcpp::R_PPC64_ADDR64
6661                          && target->abiversion() < 2
6662                          && (gsym->can_use_relative_reloc(false)
6663                              || data_shndx == ppc_object->opd_shndx())))
6664               {
6665                 Reloc_section* rela_dyn
6666                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6667                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6668                                        : elfcpp::R_POWERPC_RELATIVE);
6669                 rela_dyn->add_symbolless_global_addend(
6670                     gsym, dynrel, output_section, object, data_shndx,
6671                     reloc.get_r_offset(), reloc.get_r_addend());
6672               }
6673             else
6674               {
6675                 Reloc_section* rela_dyn
6676                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6677                 check_non_pic(object, r_type);
6678                 rela_dyn->add_global(gsym, r_type, output_section,
6679                                      object, data_shndx,
6680                                      reloc.get_r_offset(),
6681                                      reloc.get_r_addend());
6682
6683                 if (size == 64
6684                     && parameters->options().toc_optimize()
6685                     && data_shndx == ppc_object->toc_shndx())
6686                   ppc_object->set_no_toc_opt(reloc.get_r_offset());
6687               }
6688           }
6689       }
6690       break;
6691
6692     case elfcpp::R_PPC_PLTREL24:
6693     case elfcpp::R_POWERPC_REL24:
6694       if (!is_ifunc)
6695         {
6696           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6697           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6698                               r_type, r_sym, reloc.get_r_addend());
6699           if (gsym->needs_plt_entry()
6700               || (!gsym->final_value_is_known()
6701                   && (gsym->is_undefined()
6702                       || gsym->is_from_dynobj()
6703                       || gsym->is_preemptible())))
6704             target->make_plt_entry(symtab, layout, gsym);
6705         }
6706       // Fall through.
6707
6708     case elfcpp::R_PPC64_REL64:
6709     case elfcpp::R_POWERPC_REL32:
6710       // Make a dynamic relocation if necessary.
6711       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6712         {
6713           if (!parameters->options().output_is_position_independent()
6714               && gsym->may_need_copy_reloc())
6715             {
6716               target->copy_reloc(symtab, layout, object,
6717                                  data_shndx, output_section, gsym,
6718                                  reloc);
6719             }
6720           else
6721             {
6722               Reloc_section* rela_dyn
6723                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6724               check_non_pic(object, r_type);
6725               rela_dyn->add_global(gsym, r_type, output_section, object,
6726                                    data_shndx, reloc.get_r_offset(),
6727                                    reloc.get_r_addend());
6728             }
6729         }
6730       break;
6731
6732     case elfcpp::R_POWERPC_REL14:
6733     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6734     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6735       if (!is_ifunc)
6736         {
6737           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6738           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6739                               r_type, r_sym, reloc.get_r_addend());
6740         }
6741       break;
6742
6743     case elfcpp::R_POWERPC_REL16:
6744     case elfcpp::R_POWERPC_REL16_LO:
6745     case elfcpp::R_POWERPC_REL16_HI:
6746     case elfcpp::R_POWERPC_REL16_HA:
6747     case elfcpp::R_POWERPC_REL16DX_HA:
6748     case elfcpp::R_POWERPC_SECTOFF:
6749     case elfcpp::R_POWERPC_SECTOFF_LO:
6750     case elfcpp::R_POWERPC_SECTOFF_HI:
6751     case elfcpp::R_POWERPC_SECTOFF_HA:
6752     case elfcpp::R_PPC64_SECTOFF_DS:
6753     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6754     case elfcpp::R_POWERPC_TPREL16:
6755     case elfcpp::R_POWERPC_TPREL16_LO:
6756     case elfcpp::R_POWERPC_TPREL16_HI:
6757     case elfcpp::R_POWERPC_TPREL16_HA:
6758     case elfcpp::R_PPC64_TPREL16_DS:
6759     case elfcpp::R_PPC64_TPREL16_LO_DS:
6760     case elfcpp::R_PPC64_TPREL16_HIGH:
6761     case elfcpp::R_PPC64_TPREL16_HIGHA:
6762     case elfcpp::R_PPC64_TPREL16_HIGHER:
6763     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6764     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6765     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6766     case elfcpp::R_POWERPC_DTPREL16:
6767     case elfcpp::R_POWERPC_DTPREL16_LO:
6768     case elfcpp::R_POWERPC_DTPREL16_HI:
6769     case elfcpp::R_POWERPC_DTPREL16_HA:
6770     case elfcpp::R_PPC64_DTPREL16_DS:
6771     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6772     case elfcpp::R_PPC64_DTPREL16_HIGH:
6773     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6774     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6775     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6776     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6777     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6778     case elfcpp::R_PPC64_TLSGD:
6779     case elfcpp::R_PPC64_TLSLD:
6780     case elfcpp::R_PPC64_ADDR64_LOCAL:
6781       break;
6782
6783     case elfcpp::R_POWERPC_GOT16:
6784     case elfcpp::R_POWERPC_GOT16_LO:
6785     case elfcpp::R_POWERPC_GOT16_HI:
6786     case elfcpp::R_POWERPC_GOT16_HA:
6787     case elfcpp::R_PPC64_GOT16_DS:
6788     case elfcpp::R_PPC64_GOT16_LO_DS:
6789       {
6790         // The symbol requires a GOT entry.
6791         Output_data_got_powerpc<size, big_endian>* got;
6792
6793         got = target->got_section(symtab, layout);
6794         if (gsym->final_value_is_known())
6795           {
6796             if (is_ifunc
6797                 && (size == 32 || target->abiversion() >= 2))
6798               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6799             else
6800               got->add_global(gsym, GOT_TYPE_STANDARD);
6801           }
6802         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6803           {
6804             // If we are generating a shared object or a pie, this
6805             // symbol's GOT entry will be set by a dynamic relocation.
6806             unsigned int off = got->add_constant(0);
6807             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6808
6809             Reloc_section* rela_dyn
6810               = target->rela_dyn_section(symtab, layout, is_ifunc);
6811
6812             if (gsym->can_use_relative_reloc(false)
6813                 && !((size == 32
6814                       || target->abiversion() >= 2)
6815                      && gsym->visibility() == elfcpp::STV_PROTECTED
6816                      && parameters->options().shared()))
6817               {
6818                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6819                                        : elfcpp::R_POWERPC_RELATIVE);
6820                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6821               }
6822             else
6823               {
6824                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6825                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6826               }
6827           }
6828       }
6829       break;
6830
6831     case elfcpp::R_PPC64_TOC16:
6832     case elfcpp::R_PPC64_TOC16_LO:
6833     case elfcpp::R_PPC64_TOC16_HI:
6834     case elfcpp::R_PPC64_TOC16_HA:
6835     case elfcpp::R_PPC64_TOC16_DS:
6836     case elfcpp::R_PPC64_TOC16_LO_DS:
6837       // We need a GOT section.
6838       target->got_section(symtab, layout);
6839       break;
6840
6841     case elfcpp::R_POWERPC_GOT_TLSGD16:
6842     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6843     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6844     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6845       {
6846         const bool final = gsym->final_value_is_known();
6847         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6848         if (tls_type == tls::TLSOPT_NONE)
6849           {
6850             Output_data_got_powerpc<size, big_endian>* got
6851               = target->got_section(symtab, layout);
6852             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6853             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6854                                           elfcpp::R_POWERPC_DTPMOD,
6855                                           elfcpp::R_POWERPC_DTPREL);
6856           }
6857         else if (tls_type == tls::TLSOPT_TO_IE)
6858           {
6859             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6860               {
6861                 Output_data_got_powerpc<size, big_endian>* got
6862                   = target->got_section(symtab, layout);
6863                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6864                 if (gsym->is_undefined()
6865                     || gsym->is_from_dynobj())
6866                   {
6867                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6868                                              elfcpp::R_POWERPC_TPREL);
6869                   }
6870                 else
6871                   {
6872                     unsigned int off = got->add_constant(0);
6873                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6874                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6875                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6876                                                            got, off, 0);
6877                   }
6878               }
6879           }
6880         else if (tls_type == tls::TLSOPT_TO_LE)
6881           {
6882             // no GOT relocs needed for Local Exec.
6883           }
6884         else
6885           gold_unreachable();
6886       }
6887       break;
6888
6889     case elfcpp::R_POWERPC_GOT_TLSLD16:
6890     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6891     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6892     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6893       {
6894         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6895         if (tls_type == tls::TLSOPT_NONE)
6896           target->tlsld_got_offset(symtab, layout, object);
6897         else if (tls_type == tls::TLSOPT_TO_LE)
6898           {
6899             // no GOT relocs needed for Local Exec.
6900             if (parameters->options().emit_relocs())
6901               {
6902                 Output_section* os = layout->tls_segment()->first_section();
6903                 gold_assert(os != NULL);
6904                 os->set_needs_symtab_index();
6905               }
6906           }
6907         else
6908           gold_unreachable();
6909       }
6910       break;
6911
6912     case elfcpp::R_POWERPC_GOT_DTPREL16:
6913     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6914     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6915     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6916       {
6917         Output_data_got_powerpc<size, big_endian>* got
6918           = target->got_section(symtab, layout);
6919         if (!gsym->final_value_is_known()
6920             && (gsym->is_from_dynobj()
6921                 || gsym->is_undefined()
6922                 || gsym->is_preemptible()))
6923           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6924                                    target->rela_dyn_section(layout),
6925                                    elfcpp::R_POWERPC_DTPREL);
6926         else
6927           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6928       }
6929       break;
6930
6931     case elfcpp::R_POWERPC_GOT_TPREL16:
6932     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6933     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6934     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6935       {
6936         const bool final = gsym->final_value_is_known();
6937         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6938         if (tls_type == tls::TLSOPT_NONE)
6939           {
6940             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6941               {
6942                 Output_data_got_powerpc<size, big_endian>* got
6943                   = target->got_section(symtab, layout);
6944                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6945                 if (gsym->is_undefined()
6946                     || gsym->is_from_dynobj())
6947                   {
6948                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6949                                              elfcpp::R_POWERPC_TPREL);
6950                   }
6951                 else
6952                   {
6953                     unsigned int off = got->add_constant(0);
6954                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6955                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6956                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6957                                                            got, off, 0);
6958                   }
6959               }
6960           }
6961         else if (tls_type == tls::TLSOPT_TO_LE)
6962           {
6963             // no GOT relocs needed for Local Exec.
6964           }
6965         else
6966           gold_unreachable();
6967       }
6968       break;
6969
6970     default:
6971       unsupported_reloc_global(object, r_type, gsym);
6972       break;
6973     }
6974
6975   if (size == 64
6976       && parameters->options().toc_optimize())
6977     {
6978       if (data_shndx == ppc_object->toc_shndx())
6979         {
6980           bool ok = true;
6981           if (r_type != elfcpp::R_PPC64_ADDR64
6982               || (is_ifunc && target->abiversion() < 2))
6983             ok = false;
6984           else if (parameters->options().output_is_position_independent()
6985                    && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
6986             ok = false;
6987           if (!ok)
6988             ppc_object->set_no_toc_opt(reloc.get_r_offset());
6989         }
6990
6991       enum {no_check, check_lo, check_ha} insn_check;
6992       switch (r_type)
6993         {
6994         default:
6995           insn_check = no_check;
6996           break;
6997
6998         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6999         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7000         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7001         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7002         case elfcpp::R_POWERPC_GOT16_HA:
7003         case elfcpp::R_PPC64_TOC16_HA:
7004           insn_check = check_ha;
7005           break;
7006
7007         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7008         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7009         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7010         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7011         case elfcpp::R_POWERPC_GOT16_LO:
7012         case elfcpp::R_PPC64_GOT16_LO_DS:
7013         case elfcpp::R_PPC64_TOC16_LO:
7014         case elfcpp::R_PPC64_TOC16_LO_DS:
7015           insn_check = check_lo;
7016           break;
7017         }
7018
7019       section_size_type slen;
7020       const unsigned char* view = NULL;
7021       if (insn_check != no_check)
7022         {
7023           view = ppc_object->section_contents(data_shndx, &slen, false);
7024           section_size_type off =
7025             convert_to_section_size_type(reloc.get_r_offset()) & -4;
7026           if (off < slen)
7027             {
7028               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7029               if (insn_check == check_lo
7030                   ? !ok_lo_toc_insn(insn, r_type)
7031                   : ((insn & ((0x3f << 26) | 0x1f << 16))
7032                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7033                 {
7034                   ppc_object->set_no_toc_opt();
7035                   gold_warning(_("%s: toc optimization is not supported "
7036                                  "for %#08x instruction"),
7037                                ppc_object->name().c_str(), insn);
7038                 }
7039             }
7040         }
7041
7042       switch (r_type)
7043         {
7044         default:
7045           break;
7046         case elfcpp::R_PPC64_TOC16:
7047         case elfcpp::R_PPC64_TOC16_LO:
7048         case elfcpp::R_PPC64_TOC16_HI:
7049         case elfcpp::R_PPC64_TOC16_HA:
7050         case elfcpp::R_PPC64_TOC16_DS:
7051         case elfcpp::R_PPC64_TOC16_LO_DS:
7052           if (gsym->source() == Symbol::FROM_OBJECT
7053               && !gsym->object()->is_dynamic())
7054             {
7055               Powerpc_relobj<size, big_endian>* sym_object
7056                 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7057               bool is_ordinary;
7058               unsigned int shndx = gsym->shndx(&is_ordinary);
7059               if (shndx == sym_object->toc_shndx())
7060                 {
7061                   Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7062                   Address dst_off = sym->value() + reloc.get_r_offset();
7063                   if (dst_off < sym_object->section_size(shndx))
7064                     {
7065                       bool ok = false;
7066                       if (r_type == elfcpp::R_PPC64_TOC16_HA)
7067                         ok = true;
7068                       else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7069                         {
7070                           // Need to check that the insn is a ld
7071                           if (!view)
7072                             view = ppc_object->section_contents(data_shndx,
7073                                                                 &slen,
7074                                                                 false);
7075                           section_size_type off =
7076                             (convert_to_section_size_type(reloc.get_r_offset())
7077                              + (big_endian ? -2 : 3));
7078                           if (off < slen
7079                               && (view[off] & (0x3f << 2)) == (58u << 2))
7080                             ok = true;
7081                         }
7082                       if (!ok)
7083                         sym_object->set_no_toc_opt(dst_off);
7084                     }
7085                 }
7086             }
7087           break;
7088         }
7089     }
7090
7091   if (size == 32)
7092     {
7093       switch (r_type)
7094         {
7095         case elfcpp::R_PPC_LOCAL24PC:
7096           if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7097             gold_error(_("%s: unsupported -mbss-plt code"),
7098                        ppc_object->name().c_str());
7099           break;
7100         default:
7101           break;
7102         }
7103     }
7104
7105   switch (r_type)
7106     {
7107     case elfcpp::R_POWERPC_GOT_TLSLD16:
7108     case elfcpp::R_POWERPC_GOT_TLSGD16:
7109     case elfcpp::R_POWERPC_GOT_TPREL16:
7110     case elfcpp::R_POWERPC_GOT_DTPREL16:
7111     case elfcpp::R_POWERPC_GOT16:
7112     case elfcpp::R_PPC64_GOT16_DS:
7113     case elfcpp::R_PPC64_TOC16:
7114     case elfcpp::R_PPC64_TOC16_DS:
7115       ppc_object->set_has_small_toc_reloc();
7116     default:
7117       break;
7118     }
7119 }
7120
7121 // Process relocations for gc.
7122
7123 template<int size, bool big_endian>
7124 void
7125 Target_powerpc<size, big_endian>::gc_process_relocs(
7126     Symbol_table* symtab,
7127     Layout* layout,
7128     Sized_relobj_file<size, big_endian>* object,
7129     unsigned int data_shndx,
7130     unsigned int,
7131     const unsigned char* prelocs,
7132     size_t reloc_count,
7133     Output_section* output_section,
7134     bool needs_special_offset_handling,
7135     size_t local_symbol_count,
7136     const unsigned char* plocal_symbols)
7137 {
7138   typedef Target_powerpc<size, big_endian> Powerpc;
7139   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7140       Classify_reloc;
7141
7142   Powerpc_relobj<size, big_endian>* ppc_object
7143     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7144   if (size == 64)
7145     ppc_object->set_opd_valid();
7146   if (size == 64 && data_shndx == ppc_object->opd_shndx())
7147     {
7148       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7149       for (p = ppc_object->access_from_map()->begin();
7150            p != ppc_object->access_from_map()->end();
7151            ++p)
7152         {
7153           Address dst_off = p->first;
7154           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7155           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7156           for (s = p->second.begin(); s != p->second.end(); ++s)
7157             {
7158               Relobj* src_obj = s->first;
7159               unsigned int src_indx = s->second;
7160               symtab->gc()->add_reference(src_obj, src_indx,
7161                                           ppc_object, dst_indx);
7162             }
7163           p->second.clear();
7164         }
7165       ppc_object->access_from_map()->clear();
7166       ppc_object->process_gc_mark(symtab);
7167       // Don't look at .opd relocs as .opd will reference everything.
7168       return;
7169     }
7170
7171   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7172     symtab,
7173     layout,
7174     this,
7175     object,
7176     data_shndx,
7177     prelocs,
7178     reloc_count,
7179     output_section,
7180     needs_special_offset_handling,
7181     local_symbol_count,
7182     plocal_symbols);
7183 }
7184
7185 // Handle target specific gc actions when adding a gc reference from
7186 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7187 // and DST_OFF.  For powerpc64, this adds a referenc to the code
7188 // section of a function descriptor.
7189
7190 template<int size, bool big_endian>
7191 void
7192 Target_powerpc<size, big_endian>::do_gc_add_reference(
7193     Symbol_table* symtab,
7194     Relobj* src_obj,
7195     unsigned int src_shndx,
7196     Relobj* dst_obj,
7197     unsigned int dst_shndx,
7198     Address dst_off) const
7199 {
7200   if (size != 64 || dst_obj->is_dynamic())
7201     return;
7202
7203   Powerpc_relobj<size, big_endian>* ppc_object
7204     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7205   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7206     {
7207       if (ppc_object->opd_valid())
7208         {
7209           dst_shndx = ppc_object->get_opd_ent(dst_off);
7210           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7211         }
7212       else
7213         {
7214           // If we haven't run scan_opd_relocs, we must delay
7215           // processing this function descriptor reference.
7216           ppc_object->add_reference(src_obj, src_shndx, dst_off);
7217         }
7218     }
7219 }
7220
7221 // Add any special sections for this symbol to the gc work list.
7222 // For powerpc64, this adds the code section of a function
7223 // descriptor.
7224
7225 template<int size, bool big_endian>
7226 void
7227 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7228     Symbol_table* symtab,
7229     Symbol* sym) const
7230 {
7231   if (size == 64)
7232     {
7233       Powerpc_relobj<size, big_endian>* ppc_object
7234         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7235       bool is_ordinary;
7236       unsigned int shndx = sym->shndx(&is_ordinary);
7237       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7238         {
7239           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7240           Address dst_off = gsym->value();
7241           if (ppc_object->opd_valid())
7242             {
7243               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7244               symtab->gc()->worklist().push_back(Section_id(ppc_object,
7245                                                             dst_indx));
7246             }
7247           else
7248             ppc_object->add_gc_mark(dst_off);
7249         }
7250     }
7251 }
7252
7253 // For a symbol location in .opd, set LOC to the location of the
7254 // function entry.
7255
7256 template<int size, bool big_endian>
7257 void
7258 Target_powerpc<size, big_endian>::do_function_location(
7259     Symbol_location* loc) const
7260 {
7261   if (size == 64 && loc->shndx != 0)
7262     {
7263       if (loc->object->is_dynamic())
7264         {
7265           Powerpc_dynobj<size, big_endian>* ppc_object
7266             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7267           if (loc->shndx == ppc_object->opd_shndx())
7268             {
7269               Address dest_off;
7270               Address off = loc->offset - ppc_object->opd_address();
7271               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7272               loc->offset = dest_off;
7273             }
7274         }
7275       else
7276         {
7277           const Powerpc_relobj<size, big_endian>* ppc_object
7278             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7279           if (loc->shndx == ppc_object->opd_shndx())
7280             {
7281               Address dest_off;
7282               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7283               loc->offset = dest_off;
7284             }
7285         }
7286     }
7287 }
7288
7289 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7290 // compiled with -fsplit-stack.  The function calls non-split-stack
7291 // code.  Change the function to ensure it has enough stack space to
7292 // call some random function.
7293
7294 template<int size, bool big_endian>
7295 void
7296 Target_powerpc<size, big_endian>::do_calls_non_split(
7297     Relobj* object,
7298     unsigned int shndx,
7299     section_offset_type fnoffset,
7300     section_size_type fnsize,
7301     const unsigned char* prelocs,
7302     size_t reloc_count,
7303     unsigned char* view,
7304     section_size_type view_size,
7305     std::string* from,
7306     std::string* to) const
7307 {
7308   // 32-bit not supported.
7309   if (size == 32)
7310     {
7311       // warn
7312       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7313                                  prelocs, reloc_count, view, view_size,
7314                                  from, to);
7315       return;
7316     }
7317
7318   // The function always starts with
7319   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
7320   //    addis %r12,%r1,-allocate@ha
7321   //    addi %r12,%r12,-allocate@l
7322   //    cmpld %r12,%r0
7323   // but note that the addis or addi may be replaced with a nop
7324
7325   unsigned char *entry = view + fnoffset;
7326   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7327
7328   if ((insn & 0xffff0000) == addis_2_12)
7329     {
7330       /* Skip ELFv2 global entry code.  */
7331       entry += 8;
7332       insn = elfcpp::Swap<32, big_endian>::readval(entry);
7333     }
7334
7335   unsigned char *pinsn = entry;
7336   bool ok = false;
7337   const uint32_t ld_private_ss = 0xe80d8fc0;
7338   if (insn == ld_private_ss)
7339     {
7340       int32_t allocate = 0;
7341       while (1)
7342         {
7343           pinsn += 4;
7344           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7345           if ((insn & 0xffff0000) == addis_12_1)
7346             allocate += (insn & 0xffff) << 16;
7347           else if ((insn & 0xffff0000) == addi_12_1
7348                    || (insn & 0xffff0000) == addi_12_12)
7349             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7350           else if (insn != nop)
7351             break;
7352         }
7353       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7354         {
7355           int extra = parameters->options().split_stack_adjust_size();
7356           allocate -= extra;
7357           if (allocate >= 0 || extra < 0)
7358             {
7359               object->error(_("split-stack stack size overflow at "
7360                               "section %u offset %0zx"),
7361                             shndx, static_cast<size_t>(fnoffset));
7362               return;
7363             }
7364           pinsn = entry + 4;
7365           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7366           if (insn != addis_12_1)
7367             {
7368               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7369               pinsn += 4;
7370               insn = addi_12_12 | (allocate & 0xffff);
7371               if (insn != addi_12_12)
7372                 {
7373                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7374                   pinsn += 4;
7375                 }
7376             }
7377           else
7378             {
7379               insn = addi_12_1 | (allocate & 0xffff);
7380               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7381               pinsn += 4;
7382             }
7383           if (pinsn != entry + 12)
7384             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7385
7386           ok = true;
7387         }
7388     }
7389
7390   if (!ok)
7391     {
7392       if (!object->has_no_split_stack())
7393         object->error(_("failed to match split-stack sequence at "
7394                         "section %u offset %0zx"),
7395                       shndx, static_cast<size_t>(fnoffset));
7396     }
7397 }
7398
7399 // Scan relocations for a section.
7400
7401 template<int size, bool big_endian>
7402 void
7403 Target_powerpc<size, big_endian>::scan_relocs(
7404     Symbol_table* symtab,
7405     Layout* layout,
7406     Sized_relobj_file<size, big_endian>* object,
7407     unsigned int data_shndx,
7408     unsigned int sh_type,
7409     const unsigned char* prelocs,
7410     size_t reloc_count,
7411     Output_section* output_section,
7412     bool needs_special_offset_handling,
7413     size_t local_symbol_count,
7414     const unsigned char* plocal_symbols)
7415 {
7416   typedef Target_powerpc<size, big_endian> Powerpc;
7417   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7418       Classify_reloc;
7419
7420   if (sh_type == elfcpp::SHT_REL)
7421     {
7422       gold_error(_("%s: unsupported REL reloc section"),
7423                  object->name().c_str());
7424       return;
7425     }
7426
7427   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7428     symtab,
7429     layout,
7430     this,
7431     object,
7432     data_shndx,
7433     prelocs,
7434     reloc_count,
7435     output_section,
7436     needs_special_offset_handling,
7437     local_symbol_count,
7438     plocal_symbols);
7439 }
7440
7441 // Functor class for processing the global symbol table.
7442 // Removes symbols defined on discarded opd entries.
7443
7444 template<bool big_endian>
7445 class Global_symbol_visitor_opd
7446 {
7447  public:
7448   Global_symbol_visitor_opd()
7449   { }
7450
7451   void
7452   operator()(Sized_symbol<64>* sym)
7453   {
7454     if (sym->has_symtab_index()
7455         || sym->source() != Symbol::FROM_OBJECT
7456         || !sym->in_real_elf())
7457       return;
7458
7459     if (sym->object()->is_dynamic())
7460       return;
7461
7462     Powerpc_relobj<64, big_endian>* symobj
7463       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
7464     if (symobj->opd_shndx() == 0)
7465       return;
7466
7467     bool is_ordinary;
7468     unsigned int shndx = sym->shndx(&is_ordinary);
7469     if (shndx == symobj->opd_shndx()
7470         && symobj->get_opd_discard(sym->value()))
7471       {
7472         sym->set_undefined();
7473         sym->set_visibility(elfcpp::STV_DEFAULT);
7474         sym->set_is_defined_in_discarded_section();
7475         sym->set_symtab_index(-1U);
7476       }
7477   }
7478 };
7479
7480 template<int size, bool big_endian>
7481 void
7482 Target_powerpc<size, big_endian>::define_save_restore_funcs(
7483     Layout* layout,
7484     Symbol_table* symtab)
7485 {
7486   if (size == 64)
7487     {
7488       Output_data_save_res<size, big_endian>* savres
7489         = new Output_data_save_res<size, big_endian>(symtab);
7490       this->savres_section_ = savres;
7491       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7492                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7493                                       savres, ORDER_TEXT, false);
7494     }
7495 }
7496
7497 // Sort linker created .got section first (for the header), then input
7498 // sections belonging to files using small model code.
7499
7500 template<bool big_endian>
7501 class Sort_toc_sections
7502 {
7503  public:
7504   bool
7505   operator()(const Output_section::Input_section& is1,
7506              const Output_section::Input_section& is2) const
7507   {
7508     if (!is1.is_input_section() && is2.is_input_section())
7509       return true;
7510     bool small1
7511       = (is1.is_input_section()
7512          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
7513              ->has_small_toc_reloc()));
7514     bool small2
7515       = (is2.is_input_section()
7516          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
7517              ->has_small_toc_reloc()));
7518     return small1 && !small2;
7519   }
7520 };
7521
7522 // Finalize the sections.
7523
7524 template<int size, bool big_endian>
7525 void
7526 Target_powerpc<size, big_endian>::do_finalize_sections(
7527     Layout* layout,
7528     const Input_objects*,
7529     Symbol_table* symtab)
7530 {
7531   if (parameters->doing_static_link())
7532     {
7533       // At least some versions of glibc elf-init.o have a strong
7534       // reference to __rela_iplt marker syms.  A weak ref would be
7535       // better..
7536       if (this->iplt_ != NULL)
7537         {
7538           Reloc_section* rel = this->iplt_->rel_plt();
7539           symtab->define_in_output_data("__rela_iplt_start", NULL,
7540                                         Symbol_table::PREDEFINED, rel, 0, 0,
7541                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7542                                         elfcpp::STV_HIDDEN, 0, false, true);
7543           symtab->define_in_output_data("__rela_iplt_end", NULL,
7544                                         Symbol_table::PREDEFINED, rel, 0, 0,
7545                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7546                                         elfcpp::STV_HIDDEN, 0, true, true);
7547         }
7548       else
7549         {
7550           symtab->define_as_constant("__rela_iplt_start", NULL,
7551                                      Symbol_table::PREDEFINED, 0, 0,
7552                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7553                                      elfcpp::STV_HIDDEN, 0, true, false);
7554           symtab->define_as_constant("__rela_iplt_end", NULL,
7555                                      Symbol_table::PREDEFINED, 0, 0,
7556                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7557                                      elfcpp::STV_HIDDEN, 0, true, false);
7558         }
7559     }
7560
7561   if (size == 64)
7562     {
7563       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
7564       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
7565
7566       if (!parameters->options().relocatable())
7567         {
7568           this->define_save_restore_funcs(layout, symtab);
7569
7570           // Annoyingly, we need to make these sections now whether or
7571           // not we need them.  If we delay until do_relax then we
7572           // need to mess with the relaxation machinery checkpointing.
7573           this->got_section(symtab, layout);
7574           this->make_brlt_section(layout);
7575
7576           if (parameters->options().toc_sort())
7577             {
7578               Output_section* os = this->got_->output_section();
7579               if (os != NULL && os->input_sections().size() > 1)
7580                 std::stable_sort(os->input_sections().begin(),
7581                                  os->input_sections().end(),
7582                                  Sort_toc_sections<big_endian>());
7583             }
7584         }
7585     }
7586
7587   // Fill in some more dynamic tags.
7588   Output_data_dynamic* odyn = layout->dynamic_data();
7589   if (odyn != NULL)
7590     {
7591       const Reloc_section* rel_plt = (this->plt_ == NULL
7592                                       ? NULL
7593                                       : this->plt_->rel_plt());
7594       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
7595                                       this->rela_dyn_, true, size == 32);
7596
7597       if (size == 32)
7598         {
7599           if (this->got_ != NULL)
7600             {
7601               this->got_->finalize_data_size();
7602               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
7603                                             this->got_, this->got_->g_o_t());
7604             }
7605         }
7606       else
7607         {
7608           if (this->glink_ != NULL)
7609             {
7610               this->glink_->finalize_data_size();
7611               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
7612                                             this->glink_,
7613                                             (this->glink_->pltresolve_size
7614                                              - 32));
7615             }
7616         }
7617     }
7618
7619   // Emit any relocs we saved in an attempt to avoid generating COPY
7620   // relocs.
7621   if (this->copy_relocs_.any_saved_relocs())
7622     this->copy_relocs_.emit(this->rela_dyn_section(layout));
7623 }
7624
7625 // Emit any saved relocs, and mark toc entries using any of these
7626 // relocs as not optimizable.
7627
7628 template<int sh_type, int size, bool big_endian>
7629 void
7630 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
7631     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
7632 {
7633   if (size == 64
7634       && parameters->options().toc_optimize())
7635     {
7636       for (typename Copy_relocs<sh_type, size, big_endian>::
7637              Copy_reloc_entries::iterator p = this->entries_.begin();
7638            p != this->entries_.end();
7639            ++p)
7640         {
7641           typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
7642             entry = *p;
7643
7644           // If the symbol is no longer defined in a dynamic object,
7645           // then we emitted a COPY relocation.  If it is still
7646           // dynamic then we'll need dynamic relocations and thus
7647           // can't optimize toc entries.
7648           if (entry.sym_->is_from_dynobj())
7649             {
7650               Powerpc_relobj<size, big_endian>* ppc_object
7651                 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
7652               if (entry.shndx_ == ppc_object->toc_shndx())
7653                 ppc_object->set_no_toc_opt(entry.address_);
7654             }
7655         }
7656     }
7657
7658   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
7659 }
7660
7661 // Return the value to use for a branch relocation.
7662
7663 template<int size, bool big_endian>
7664 bool
7665 Target_powerpc<size, big_endian>::symval_for_branch(
7666     const Symbol_table* symtab,
7667     const Sized_symbol<size>* gsym,
7668     Powerpc_relobj<size, big_endian>* object,
7669     Address *value,
7670     unsigned int *dest_shndx)
7671 {
7672   if (size == 32 || this->abiversion() >= 2)
7673     gold_unreachable();
7674   *dest_shndx = 0;
7675
7676   // If the symbol is defined in an opd section, ie. is a function
7677   // descriptor, use the function descriptor code entry address
7678   Powerpc_relobj<size, big_endian>* symobj = object;
7679   if (gsym != NULL
7680       && (gsym->source() != Symbol::FROM_OBJECT
7681           || gsym->object()->is_dynamic()))
7682     return true;
7683   if (gsym != NULL)
7684     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7685   unsigned int shndx = symobj->opd_shndx();
7686   if (shndx == 0)
7687     return true;
7688   Address opd_addr = symobj->get_output_section_offset(shndx);
7689   if (opd_addr == invalid_address)
7690     return true;
7691   opd_addr += symobj->output_section_address(shndx);
7692   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7693     {
7694       Address sec_off;
7695       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7696       if (symtab->is_section_folded(symobj, *dest_shndx))
7697         {
7698           Section_id folded
7699             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7700           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7701           *dest_shndx = folded.second;
7702         }
7703       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7704       if (sec_addr == invalid_address)
7705         return false;
7706
7707       sec_addr += symobj->output_section(*dest_shndx)->address();
7708       *value = sec_addr + sec_off;
7709     }
7710   return true;
7711 }
7712
7713 // Perform a relocation.
7714
7715 template<int size, bool big_endian>
7716 inline bool
7717 Target_powerpc<size, big_endian>::Relocate::relocate(
7718     const Relocate_info<size, big_endian>* relinfo,
7719     unsigned int,
7720     Target_powerpc* target,
7721     Output_section* os,
7722     size_t relnum,
7723     const unsigned char* preloc,
7724     const Sized_symbol<size>* gsym,
7725     const Symbol_value<size>* psymval,
7726     unsigned char* view,
7727     Address address,
7728     section_size_type view_size)
7729 {
7730   if (view == NULL)
7731     return true;
7732
7733   const elfcpp::Rela<size, big_endian> rela(preloc);
7734   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7735   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7736     {
7737     case Track_tls::NOT_EXPECTED:
7738       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7739                              _("__tls_get_addr call lacks marker reloc"));
7740       break;
7741     case Track_tls::EXPECTED:
7742       // We have already complained.
7743       break;
7744     case Track_tls::SKIP:
7745       return true;
7746     case Track_tls::NORMAL:
7747       break;
7748     }
7749
7750   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7751   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7752   typedef typename elfcpp::Rela<size, big_endian> Reltype;
7753   // Offset from start of insn to d-field reloc.
7754   const int d_offset = big_endian ? 2 : 0;
7755
7756   Powerpc_relobj<size, big_endian>* const object
7757     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7758   Address value = 0;
7759   bool has_stub_value = false;
7760   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7761   if ((gsym != NULL
7762        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7763        : object->local_has_plt_offset(r_sym))
7764       && (!psymval->is_ifunc_symbol()
7765           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7766     {
7767       if (size == 64
7768           && gsym != NULL
7769           && target->abiversion() >= 2
7770           && !parameters->options().output_is_position_independent()
7771           && !is_branch_reloc(r_type))
7772         {
7773           Address off = target->glink_section()->find_global_entry(gsym);
7774           if (off != invalid_address)
7775             {
7776               value = target->glink_section()->global_entry_address() + off;
7777               has_stub_value = true;
7778             }
7779         }
7780       else
7781         {
7782           Stub_table<size, big_endian>* stub_table
7783             = object->stub_table(relinfo->data_shndx);
7784           if (stub_table == NULL)
7785             {
7786               // This is a ref from a data section to an ifunc symbol.
7787               if (target->stub_tables().size() != 0)
7788                 stub_table = target->stub_tables()[0];
7789             }
7790           if (stub_table != NULL)
7791             {
7792               Address off;
7793               if (gsym != NULL)
7794                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7795                                                       rela.get_r_addend());
7796               else
7797                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7798                                                       rela.get_r_addend());
7799               if (off != invalid_address)
7800                 {
7801                   value = stub_table->stub_address() + off;
7802                   has_stub_value = true;
7803                 }
7804             }
7805         }
7806       // We don't care too much about bogus debug references to
7807       // non-local functions, but otherwise there had better be a plt
7808       // call stub or global entry stub as appropriate.
7809       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7810     }
7811
7812   if (r_type == elfcpp::R_POWERPC_GOT16
7813       || r_type == elfcpp::R_POWERPC_GOT16_LO
7814       || r_type == elfcpp::R_POWERPC_GOT16_HI
7815       || r_type == elfcpp::R_POWERPC_GOT16_HA
7816       || r_type == elfcpp::R_PPC64_GOT16_DS
7817       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7818     {
7819       if (gsym != NULL)
7820         {
7821           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7822           value = gsym->got_offset(GOT_TYPE_STANDARD);
7823         }
7824       else
7825         {
7826           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7827           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7828         }
7829       value -= target->got_section()->got_base_offset(object);
7830     }
7831   else if (r_type == elfcpp::R_PPC64_TOC)
7832     {
7833       value = (target->got_section()->output_section()->address()
7834                + object->toc_base_offset());
7835     }
7836   else if (gsym != NULL
7837            && (r_type == elfcpp::R_POWERPC_REL24
7838                || r_type == elfcpp::R_PPC_PLTREL24)
7839            && has_stub_value)
7840     {
7841       if (size == 64)
7842         {
7843           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7844           Valtype* wv = reinterpret_cast<Valtype*>(view);
7845           bool can_plt_call = false;
7846           if (rela.get_r_offset() + 8 <= view_size)
7847             {
7848               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7849               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7850               if ((insn & 1) != 0
7851                   && (insn2 == nop
7852                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7853                 {
7854                   elfcpp::Swap<32, big_endian>::
7855                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7856                   can_plt_call = true;
7857                 }
7858             }
7859           if (!can_plt_call)
7860             {
7861               // If we don't have a branch and link followed by a nop,
7862               // we can't go via the plt because there is no place to
7863               // put a toc restoring instruction.
7864               // Unless we know we won't be returning.
7865               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7866                 can_plt_call = true;
7867             }
7868           if (!can_plt_call)
7869             {
7870               // g++ as of 20130507 emits self-calls without a
7871               // following nop.  This is arguably wrong since we have
7872               // conflicting information.  On the one hand a global
7873               // symbol and on the other a local call sequence, but
7874               // don't error for this special case.
7875               // It isn't possible to cheaply verify we have exactly
7876               // such a call.  Allow all calls to the same section.
7877               bool ok = false;
7878               Address code = value;
7879               if (gsym->source() == Symbol::FROM_OBJECT
7880                   && gsym->object() == object)
7881                 {
7882                   unsigned int dest_shndx = 0;
7883                   if (target->abiversion() < 2)
7884                     {
7885                       Address addend = rela.get_r_addend();
7886                       code = psymval->value(object, addend);
7887                       target->symval_for_branch(relinfo->symtab, gsym, object,
7888                                                 &code, &dest_shndx);
7889                     }
7890                   bool is_ordinary;
7891                   if (dest_shndx == 0)
7892                     dest_shndx = gsym->shndx(&is_ordinary);
7893                   ok = dest_shndx == relinfo->data_shndx;
7894                 }
7895               if (!ok)
7896                 {
7897                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7898                                          _("call lacks nop, can't restore toc; "
7899                                            "recompile with -fPIC"));
7900                   value = code;
7901                 }
7902             }
7903         }
7904     }
7905   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7906            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7907            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7908            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7909     {
7910       // First instruction of a global dynamic sequence, arg setup insn.
7911       const bool final = gsym == NULL || gsym->final_value_is_known();
7912       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7913       enum Got_type got_type = GOT_TYPE_STANDARD;
7914       if (tls_type == tls::TLSOPT_NONE)
7915         got_type = GOT_TYPE_TLSGD;
7916       else if (tls_type == tls::TLSOPT_TO_IE)
7917         got_type = GOT_TYPE_TPREL;
7918       if (got_type != GOT_TYPE_STANDARD)
7919         {
7920           if (gsym != NULL)
7921             {
7922               gold_assert(gsym->has_got_offset(got_type));
7923               value = gsym->got_offset(got_type);
7924             }
7925           else
7926             {
7927               gold_assert(object->local_has_got_offset(r_sym, got_type));
7928               value = object->local_got_offset(r_sym, got_type);
7929             }
7930           value -= target->got_section()->got_base_offset(object);
7931         }
7932       if (tls_type == tls::TLSOPT_TO_IE)
7933         {
7934           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7935               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7936             {
7937               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7938               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7939               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7940               if (size == 32)
7941                 insn |= 32 << 26; // lwz
7942               else
7943                 insn |= 58 << 26; // ld
7944               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7945             }
7946           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7947                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7948         }
7949       else if (tls_type == tls::TLSOPT_TO_LE)
7950         {
7951           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7952               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7953             {
7954               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7955               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7956               insn &= (1 << 26) - (1 << 21); // extract rt
7957               if (size == 32)
7958                 insn |= addis_0_2;
7959               else
7960                 insn |= addis_0_13;
7961               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7962               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7963               value = psymval->value(object, rela.get_r_addend());
7964             }
7965           else
7966             {
7967               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7968               Insn insn = nop;
7969               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7970               r_type = elfcpp::R_POWERPC_NONE;
7971             }
7972         }
7973     }
7974   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7975            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7976            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7977            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7978     {
7979       // First instruction of a local dynamic sequence, arg setup insn.
7980       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7981       if (tls_type == tls::TLSOPT_NONE)
7982         {
7983           value = target->tlsld_got_offset();
7984           value -= target->got_section()->got_base_offset(object);
7985         }
7986       else
7987         {
7988           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7989           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7990               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7991             {
7992               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7993               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7994               insn &= (1 << 26) - (1 << 21); // extract rt
7995               if (size == 32)
7996                 insn |= addis_0_2;
7997               else
7998                 insn |= addis_0_13;
7999               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8000               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8001               value = dtp_offset;
8002             }
8003           else
8004             {
8005               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8006               Insn insn = nop;
8007               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8008               r_type = elfcpp::R_POWERPC_NONE;
8009             }
8010         }
8011     }
8012   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8013            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8014            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8015            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8016     {
8017       // Accesses relative to a local dynamic sequence address,
8018       // no optimisation here.
8019       if (gsym != NULL)
8020         {
8021           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8022           value = gsym->got_offset(GOT_TYPE_DTPREL);
8023         }
8024       else
8025         {
8026           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8027           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8028         }
8029       value -= target->got_section()->got_base_offset(object);
8030     }
8031   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8032            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8033            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8034            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8035     {
8036       // First instruction of initial exec sequence.
8037       const bool final = gsym == NULL || gsym->final_value_is_known();
8038       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8039       if (tls_type == tls::TLSOPT_NONE)
8040         {
8041           if (gsym != NULL)
8042             {
8043               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8044               value = gsym->got_offset(GOT_TYPE_TPREL);
8045             }
8046           else
8047             {
8048               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8049               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8050             }
8051           value -= target->got_section()->got_base_offset(object);
8052         }
8053       else
8054         {
8055           gold_assert(tls_type == tls::TLSOPT_TO_LE);
8056           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8057               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8058             {
8059               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8060               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8061               insn &= (1 << 26) - (1 << 21); // extract rt from ld
8062               if (size == 32)
8063                 insn |= addis_0_2;
8064               else
8065                 insn |= addis_0_13;
8066               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8067               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8068               value = psymval->value(object, rela.get_r_addend());
8069             }
8070           else
8071             {
8072               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8073               Insn insn = nop;
8074               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8075               r_type = elfcpp::R_POWERPC_NONE;
8076             }
8077         }
8078     }
8079   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8080            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8081     {
8082       // Second instruction of a global dynamic sequence,
8083       // the __tls_get_addr call
8084       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8085       const bool final = gsym == NULL || gsym->final_value_is_known();
8086       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8087       if (tls_type != tls::TLSOPT_NONE)
8088         {
8089           if (tls_type == tls::TLSOPT_TO_IE)
8090             {
8091               Insn* iview = reinterpret_cast<Insn*>(view);
8092               Insn insn = add_3_3_13;
8093               if (size == 32)
8094                 insn = add_3_3_2;
8095               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8096               r_type = elfcpp::R_POWERPC_NONE;
8097             }
8098           else
8099             {
8100               Insn* iview = reinterpret_cast<Insn*>(view);
8101               Insn insn = addi_3_3;
8102               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8103               r_type = elfcpp::R_POWERPC_TPREL16_LO;
8104               view += d_offset;
8105               value = psymval->value(object, rela.get_r_addend());
8106             }
8107           this->skip_next_tls_get_addr_call();
8108         }
8109     }
8110   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8111            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8112     {
8113       // Second instruction of a local dynamic sequence,
8114       // the __tls_get_addr call
8115       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8116       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8117       if (tls_type == tls::TLSOPT_TO_LE)
8118         {
8119           Insn* iview = reinterpret_cast<Insn*>(view);
8120           Insn insn = addi_3_3;
8121           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8122           this->skip_next_tls_get_addr_call();
8123           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8124           view += d_offset;
8125           value = dtp_offset;
8126         }
8127     }
8128   else if (r_type == elfcpp::R_POWERPC_TLS)
8129     {
8130       // Second instruction of an initial exec sequence
8131       const bool final = gsym == NULL || gsym->final_value_is_known();
8132       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8133       if (tls_type == tls::TLSOPT_TO_LE)
8134         {
8135           Insn* iview = reinterpret_cast<Insn*>(view);
8136           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8137           unsigned int reg = size == 32 ? 2 : 13;
8138           insn = at_tls_transform(insn, reg);
8139           gold_assert(insn != 0);
8140           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8141           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8142           view += d_offset;
8143           value = psymval->value(object, rela.get_r_addend());
8144         }
8145     }
8146   else if (!has_stub_value)
8147     {
8148       Address addend = 0;
8149       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8150         addend = rela.get_r_addend();
8151       value = psymval->value(object, addend);
8152       if (size == 64 && is_branch_reloc(r_type))
8153         {
8154           if (target->abiversion() >= 2)
8155             {
8156               if (gsym != NULL)
8157                 value += object->ppc64_local_entry_offset(gsym);
8158               else
8159                 value += object->ppc64_local_entry_offset(r_sym);
8160             }
8161           else
8162             {
8163               unsigned int dest_shndx;
8164               target->symval_for_branch(relinfo->symtab, gsym, object,
8165                                         &value, &dest_shndx);
8166             }
8167         }
8168       Address max_branch_offset = max_branch_delta(r_type);
8169       if (max_branch_offset != 0
8170           && value - address + max_branch_offset >= 2 * max_branch_offset)
8171         {
8172           Stub_table<size, big_endian>* stub_table
8173             = object->stub_table(relinfo->data_shndx);
8174           if (stub_table != NULL)
8175             {
8176               Address off = stub_table->find_long_branch_entry(object, value);
8177               if (off != invalid_address)
8178                 {
8179                   value = (stub_table->stub_address() + stub_table->plt_size()
8180                            + off);
8181                   has_stub_value = true;
8182                 }
8183             }
8184         }
8185     }
8186
8187   switch (r_type)
8188     {
8189     case elfcpp::R_PPC64_REL64:
8190     case elfcpp::R_POWERPC_REL32:
8191     case elfcpp::R_POWERPC_REL24:
8192     case elfcpp::R_PPC_PLTREL24:
8193     case elfcpp::R_PPC_LOCAL24PC:
8194     case elfcpp::R_POWERPC_REL16:
8195     case elfcpp::R_POWERPC_REL16_LO:
8196     case elfcpp::R_POWERPC_REL16_HI:
8197     case elfcpp::R_POWERPC_REL16_HA:
8198     case elfcpp::R_POWERPC_REL16DX_HA:
8199     case elfcpp::R_POWERPC_REL14:
8200     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8201     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8202       value -= address;
8203       break;
8204
8205     case elfcpp::R_PPC64_TOC16:
8206     case elfcpp::R_PPC64_TOC16_LO:
8207     case elfcpp::R_PPC64_TOC16_HI:
8208     case elfcpp::R_PPC64_TOC16_HA:
8209     case elfcpp::R_PPC64_TOC16_DS:
8210     case elfcpp::R_PPC64_TOC16_LO_DS:
8211       // Subtract the TOC base address.
8212       value -= (target->got_section()->output_section()->address()
8213                 + object->toc_base_offset());
8214       break;
8215
8216     case elfcpp::R_POWERPC_SECTOFF:
8217     case elfcpp::R_POWERPC_SECTOFF_LO:
8218     case elfcpp::R_POWERPC_SECTOFF_HI:
8219     case elfcpp::R_POWERPC_SECTOFF_HA:
8220     case elfcpp::R_PPC64_SECTOFF_DS:
8221     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8222       if (os != NULL)
8223         value -= os->address();
8224       break;
8225
8226     case elfcpp::R_PPC64_TPREL16_DS:
8227     case elfcpp::R_PPC64_TPREL16_LO_DS:
8228     case elfcpp::R_PPC64_TPREL16_HIGH:
8229     case elfcpp::R_PPC64_TPREL16_HIGHA:
8230       if (size != 64)
8231         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8232         break;
8233       // Fall through.
8234     case elfcpp::R_POWERPC_TPREL16:
8235     case elfcpp::R_POWERPC_TPREL16_LO:
8236     case elfcpp::R_POWERPC_TPREL16_HI:
8237     case elfcpp::R_POWERPC_TPREL16_HA:
8238     case elfcpp::R_POWERPC_TPREL:
8239     case elfcpp::R_PPC64_TPREL16_HIGHER:
8240     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8241     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8242     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8243       // tls symbol values are relative to tls_segment()->vaddr()
8244       value -= tp_offset;
8245       break;
8246
8247     case elfcpp::R_PPC64_DTPREL16_DS:
8248     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8249     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8250     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8251     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8252     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8253       if (size != 64)
8254         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8255         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8256         break;
8257       // Fall through.
8258     case elfcpp::R_POWERPC_DTPREL16:
8259     case elfcpp::R_POWERPC_DTPREL16_LO:
8260     case elfcpp::R_POWERPC_DTPREL16_HI:
8261     case elfcpp::R_POWERPC_DTPREL16_HA:
8262     case elfcpp::R_POWERPC_DTPREL:
8263     case elfcpp::R_PPC64_DTPREL16_HIGH:
8264     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8265       // tls symbol values are relative to tls_segment()->vaddr()
8266       value -= dtp_offset;
8267       break;
8268
8269     case elfcpp::R_PPC64_ADDR64_LOCAL:
8270       if (gsym != NULL)
8271         value += object->ppc64_local_entry_offset(gsym);
8272       else
8273         value += object->ppc64_local_entry_offset(r_sym);
8274       break;
8275
8276     default:
8277       break;
8278     }
8279
8280   Insn branch_bit = 0;
8281   switch (r_type)
8282     {
8283     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8284     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8285       branch_bit = 1 << 21;
8286       // Fall through.
8287     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8288     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8289       {
8290         Insn* iview = reinterpret_cast<Insn*>(view);
8291         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8292         insn &= ~(1 << 21);
8293         insn |= branch_bit;
8294         if (this->is_isa_v2)
8295           {
8296             // Set 'a' bit.  This is 0b00010 in BO field for branch
8297             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8298             // for branch on CTR insns (BO == 1a00t or 1a01t).
8299             if ((insn & (0x14 << 21)) == (0x04 << 21))
8300               insn |= 0x02 << 21;
8301             else if ((insn & (0x14 << 21)) == (0x10 << 21))
8302               insn |= 0x08 << 21;
8303             else
8304               break;
8305           }
8306         else
8307           {
8308             // Invert 'y' bit if not the default.
8309             if (static_cast<Signed_address>(value) < 0)
8310               insn ^= 1 << 21;
8311           }
8312         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8313       }
8314       break;
8315
8316     default:
8317       break;
8318     }
8319
8320   if (size == 64)
8321     {
8322       switch (r_type)
8323         {
8324         default:
8325           break;
8326
8327           // Multi-instruction sequences that access the GOT/TOC can
8328           // be optimized, eg.
8329           //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8330           // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8331           // and
8332           //     addis ra,r2,0; addi rb,ra,x@toc@l;
8333           // to  nop;           addi rb,r2,x@toc;
8334           // FIXME: the @got sequence shown above is not yet
8335           // optimized.  Note that gcc as of 2017-01-07 doesn't use
8336           // the ELF @got relocs except for TLS, instead using the
8337           // PowerOpen variant of a compiler managed GOT (called TOC).
8338           // The PowerOpen TOC sequence equivalent to the first
8339           // example is optimized.
8340         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8341         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8342         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8343         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8344         case elfcpp::R_POWERPC_GOT16_HA:
8345         case elfcpp::R_PPC64_TOC16_HA:
8346           if (parameters->options().toc_optimize())
8347             {
8348               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8349               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8350               if (r_type == elfcpp::R_PPC64_TOC16_HA
8351                   && object->make_toc_relative(target, &value))
8352                 {
8353                   gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8354                               == ((15u << 26) | (2 << 16)));
8355                 }
8356               if (((insn & ((0x3f << 26) | 0x1f << 16))
8357                    == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8358                   && value + 0x8000 < 0x10000)
8359                 {
8360                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8361                   return true;
8362                 }
8363             }
8364           break;
8365
8366         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8367         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8368         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8369         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8370         case elfcpp::R_POWERPC_GOT16_LO:
8371         case elfcpp::R_PPC64_GOT16_LO_DS:
8372         case elfcpp::R_PPC64_TOC16_LO:
8373         case elfcpp::R_PPC64_TOC16_LO_DS:
8374           if (parameters->options().toc_optimize())
8375             {
8376               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8377               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8378               bool changed = false;
8379               if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
8380                   && object->make_toc_relative(target, &value))
8381                 {
8382                   gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
8383                   insn ^= (14u << 26) ^ (58u << 26);
8384                   r_type = elfcpp::R_PPC64_TOC16_LO;
8385                   changed = true;
8386                 }
8387               if (ok_lo_toc_insn(insn, r_type)
8388                   && value + 0x8000 < 0x10000)
8389                 {
8390                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
8391                     {
8392                       // Transform addic to addi when we change reg.
8393                       insn &= ~((0x3f << 26) | (0x1f << 16));
8394                       insn |= (14u << 26) | (2 << 16);
8395                     }
8396                   else
8397                     {
8398                       insn &= ~(0x1f << 16);
8399                       insn |= 2 << 16;
8400                     }
8401                   changed = true;
8402                 }
8403               if (changed)
8404                 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8405             }
8406           break;
8407
8408         case elfcpp::R_PPC64_ENTRY:
8409           value = (target->got_section()->output_section()->address()
8410                    + object->toc_base_offset());
8411           if (value + 0x80008000 <= 0xffffffff
8412               && !parameters->options().output_is_position_independent())
8413             {
8414               Insn* iview = reinterpret_cast<Insn*>(view);
8415               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8416               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8417
8418               if ((insn1 & ~0xfffc) == ld_2_12
8419                   && insn2 == add_2_2_12)
8420                 {
8421                   insn1 = lis_2 + ha(value);
8422                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8423                   insn2 = addi_2_2 + l(value);
8424                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8425                   return true;
8426                 }
8427             }
8428           else
8429             {
8430               value -= address;
8431               if (value + 0x80008000 <= 0xffffffff)
8432                 {
8433                   Insn* iview = reinterpret_cast<Insn*>(view);
8434                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8435                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8436
8437                   if ((insn1 & ~0xfffc) == ld_2_12
8438                       && insn2 == add_2_2_12)
8439                     {
8440                       insn1 = addis_2_12 + ha(value);
8441                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8442                       insn2 = addi_2_2 + l(value);
8443                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8444                       return true;
8445                     }
8446                 }
8447             }
8448           break;
8449
8450         case elfcpp::R_POWERPC_REL16_LO:
8451           // If we are generating a non-PIC executable, edit
8452           //    0:      addis 2,12,.TOC.-0b@ha
8453           //            addi 2,2,.TOC.-0b@l
8454           // used by ELFv2 global entry points to set up r2, to
8455           //            lis 2,.TOC.@ha
8456           //            addi 2,2,.TOC.@l
8457           // if .TOC. is in range.  */
8458           if (value + address - 4 + 0x80008000 <= 0xffffffff
8459               && relnum != 0
8460               && preloc != NULL
8461               && target->abiversion() >= 2
8462               && !parameters->options().output_is_position_independent()
8463               && rela.get_r_addend() == d_offset + 4
8464               && gsym != NULL
8465               && strcmp(gsym->name(), ".TOC.") == 0)
8466             {
8467               const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8468               Reltype prev_rela(preloc - reloc_size);
8469               if ((prev_rela.get_r_info()
8470                    == elfcpp::elf_r_info<size>(r_sym,
8471                                                elfcpp::R_POWERPC_REL16_HA))
8472                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
8473                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
8474                 {
8475                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8476                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
8477                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
8478
8479                   if ((insn1 & 0xffff0000) == addis_2_12
8480                       && (insn2 & 0xffff0000) == addi_2_2)
8481                     {
8482                       insn1 = lis_2 + ha(value + address - 4);
8483                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
8484                       insn2 = addi_2_2 + l(value + address - 4);
8485                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
8486                       if (relinfo->rr)
8487                         {
8488                           relinfo->rr->set_strategy(relnum - 1,
8489                                                     Relocatable_relocs::RELOC_SPECIAL);
8490                           relinfo->rr->set_strategy(relnum,
8491                                                     Relocatable_relocs::RELOC_SPECIAL);
8492                         }
8493                       return true;
8494                     }
8495                 }
8496             }
8497           break;
8498         }
8499     }
8500
8501   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
8502   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
8503   switch (r_type)
8504     {
8505     case elfcpp::R_POWERPC_ADDR32:
8506     case elfcpp::R_POWERPC_UADDR32:
8507       if (size == 64)
8508         overflow = Reloc::CHECK_BITFIELD;
8509       break;
8510
8511     case elfcpp::R_POWERPC_REL32:
8512     case elfcpp::R_POWERPC_REL16DX_HA:
8513       if (size == 64)
8514         overflow = Reloc::CHECK_SIGNED;
8515       break;
8516
8517     case elfcpp::R_POWERPC_UADDR16:
8518       overflow = Reloc::CHECK_BITFIELD;
8519       break;
8520
8521     case elfcpp::R_POWERPC_ADDR16:
8522       // We really should have three separate relocations,
8523       // one for 16-bit data, one for insns with 16-bit signed fields,
8524       // and one for insns with 16-bit unsigned fields.
8525       overflow = Reloc::CHECK_BITFIELD;
8526       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
8527         overflow = Reloc::CHECK_LOW_INSN;
8528       break;
8529
8530     case elfcpp::R_POWERPC_ADDR16_HI:
8531     case elfcpp::R_POWERPC_ADDR16_HA:
8532     case elfcpp::R_POWERPC_GOT16_HI:
8533     case elfcpp::R_POWERPC_GOT16_HA:
8534     case elfcpp::R_POWERPC_PLT16_HI:
8535     case elfcpp::R_POWERPC_PLT16_HA:
8536     case elfcpp::R_POWERPC_SECTOFF_HI:
8537     case elfcpp::R_POWERPC_SECTOFF_HA:
8538     case elfcpp::R_PPC64_TOC16_HI:
8539     case elfcpp::R_PPC64_TOC16_HA:
8540     case elfcpp::R_PPC64_PLTGOT16_HI:
8541     case elfcpp::R_PPC64_PLTGOT16_HA:
8542     case elfcpp::R_POWERPC_TPREL16_HI:
8543     case elfcpp::R_POWERPC_TPREL16_HA:
8544     case elfcpp::R_POWERPC_DTPREL16_HI:
8545     case elfcpp::R_POWERPC_DTPREL16_HA:
8546     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8547     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8548     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8549     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8550     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8551     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8552     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8553     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8554     case elfcpp::R_POWERPC_REL16_HI:
8555     case elfcpp::R_POWERPC_REL16_HA:
8556       if (size != 32)
8557         overflow = Reloc::CHECK_HIGH_INSN;
8558       break;
8559
8560     case elfcpp::R_POWERPC_REL16:
8561     case elfcpp::R_PPC64_TOC16:
8562     case elfcpp::R_POWERPC_GOT16:
8563     case elfcpp::R_POWERPC_SECTOFF:
8564     case elfcpp::R_POWERPC_TPREL16:
8565     case elfcpp::R_POWERPC_DTPREL16:
8566     case elfcpp::R_POWERPC_GOT_TLSGD16:
8567     case elfcpp::R_POWERPC_GOT_TLSLD16:
8568     case elfcpp::R_POWERPC_GOT_TPREL16:
8569     case elfcpp::R_POWERPC_GOT_DTPREL16:
8570       overflow = Reloc::CHECK_LOW_INSN;
8571       break;
8572
8573     case elfcpp::R_POWERPC_ADDR24:
8574     case elfcpp::R_POWERPC_ADDR14:
8575     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8576     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8577     case elfcpp::R_PPC64_ADDR16_DS:
8578     case elfcpp::R_POWERPC_REL24:
8579     case elfcpp::R_PPC_PLTREL24:
8580     case elfcpp::R_PPC_LOCAL24PC:
8581     case elfcpp::R_PPC64_TPREL16_DS:
8582     case elfcpp::R_PPC64_DTPREL16_DS:
8583     case elfcpp::R_PPC64_TOC16_DS:
8584     case elfcpp::R_PPC64_GOT16_DS:
8585     case elfcpp::R_PPC64_SECTOFF_DS:
8586     case elfcpp::R_POWERPC_REL14:
8587     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8588     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8589       overflow = Reloc::CHECK_SIGNED;
8590       break;
8591     }
8592
8593   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8594   Insn insn = 0;
8595
8596   if (overflow == Reloc::CHECK_LOW_INSN
8597       || overflow == Reloc::CHECK_HIGH_INSN)
8598     {
8599       insn = elfcpp::Swap<32, big_endian>::readval(iview);
8600
8601       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
8602         overflow = Reloc::CHECK_BITFIELD;
8603       else if (overflow == Reloc::CHECK_LOW_INSN
8604                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
8605                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
8606                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
8607                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
8608                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
8609                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
8610         overflow = Reloc::CHECK_UNSIGNED;
8611       else
8612         overflow = Reloc::CHECK_SIGNED;
8613     }
8614
8615   bool maybe_dq_reloc = false;
8616   typename Powerpc_relocate_functions<size, big_endian>::Status status
8617     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
8618   switch (r_type)
8619     {
8620     case elfcpp::R_POWERPC_NONE:
8621     case elfcpp::R_POWERPC_TLS:
8622     case elfcpp::R_POWERPC_GNU_VTINHERIT:
8623     case elfcpp::R_POWERPC_GNU_VTENTRY:
8624       break;
8625
8626     case elfcpp::R_PPC64_ADDR64:
8627     case elfcpp::R_PPC64_REL64:
8628     case elfcpp::R_PPC64_TOC:
8629     case elfcpp::R_PPC64_ADDR64_LOCAL:
8630       Reloc::addr64(view, value);
8631       break;
8632
8633     case elfcpp::R_POWERPC_TPREL:
8634     case elfcpp::R_POWERPC_DTPREL:
8635       if (size == 64)
8636         Reloc::addr64(view, value);
8637       else
8638         status = Reloc::addr32(view, value, overflow);
8639       break;
8640
8641     case elfcpp::R_PPC64_UADDR64:
8642       Reloc::addr64_u(view, value);
8643       break;
8644
8645     case elfcpp::R_POWERPC_ADDR32:
8646       status = Reloc::addr32(view, value, overflow);
8647       break;
8648
8649     case elfcpp::R_POWERPC_REL32:
8650     case elfcpp::R_POWERPC_UADDR32:
8651       status = Reloc::addr32_u(view, value, overflow);
8652       break;
8653
8654     case elfcpp::R_POWERPC_ADDR24:
8655     case elfcpp::R_POWERPC_REL24:
8656     case elfcpp::R_PPC_PLTREL24:
8657     case elfcpp::R_PPC_LOCAL24PC:
8658       status = Reloc::addr24(view, value, overflow);
8659       break;
8660
8661     case elfcpp::R_POWERPC_GOT_DTPREL16:
8662     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8663     case elfcpp::R_POWERPC_GOT_TPREL16:
8664     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8665       if (size == 64)
8666         {
8667           // On ppc64 these are all ds form
8668           maybe_dq_reloc = true;
8669           break;
8670         }
8671       // Fall through.
8672     case elfcpp::R_POWERPC_ADDR16:
8673     case elfcpp::R_POWERPC_REL16:
8674     case elfcpp::R_PPC64_TOC16:
8675     case elfcpp::R_POWERPC_GOT16:
8676     case elfcpp::R_POWERPC_SECTOFF:
8677     case elfcpp::R_POWERPC_TPREL16:
8678     case elfcpp::R_POWERPC_DTPREL16:
8679     case elfcpp::R_POWERPC_GOT_TLSGD16:
8680     case elfcpp::R_POWERPC_GOT_TLSLD16:
8681     case elfcpp::R_POWERPC_ADDR16_LO:
8682     case elfcpp::R_POWERPC_REL16_LO:
8683     case elfcpp::R_PPC64_TOC16_LO:
8684     case elfcpp::R_POWERPC_GOT16_LO:
8685     case elfcpp::R_POWERPC_SECTOFF_LO:
8686     case elfcpp::R_POWERPC_TPREL16_LO:
8687     case elfcpp::R_POWERPC_DTPREL16_LO:
8688     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8689     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8690       if (size == 64)
8691         status = Reloc::addr16(view, value, overflow);
8692       else
8693         maybe_dq_reloc = true;
8694       break;
8695
8696     case elfcpp::R_POWERPC_UADDR16:
8697       status = Reloc::addr16_u(view, value, overflow);
8698       break;
8699
8700     case elfcpp::R_PPC64_ADDR16_HIGH:
8701     case elfcpp::R_PPC64_TPREL16_HIGH:
8702     case elfcpp::R_PPC64_DTPREL16_HIGH:
8703       if (size == 32)
8704         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8705         goto unsupp;
8706       // Fall through.
8707     case elfcpp::R_POWERPC_ADDR16_HI:
8708     case elfcpp::R_POWERPC_REL16_HI:
8709     case elfcpp::R_PPC64_TOC16_HI:
8710     case elfcpp::R_POWERPC_GOT16_HI:
8711     case elfcpp::R_POWERPC_SECTOFF_HI:
8712     case elfcpp::R_POWERPC_TPREL16_HI:
8713     case elfcpp::R_POWERPC_DTPREL16_HI:
8714     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8715     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8716     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8717     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8718       Reloc::addr16_hi(view, value);
8719       break;
8720
8721     case elfcpp::R_PPC64_ADDR16_HIGHA:
8722     case elfcpp::R_PPC64_TPREL16_HIGHA:
8723     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8724       if (size == 32)
8725         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8726         goto unsupp;
8727       // Fall through.
8728     case elfcpp::R_POWERPC_ADDR16_HA:
8729     case elfcpp::R_POWERPC_REL16_HA:
8730     case elfcpp::R_PPC64_TOC16_HA:
8731     case elfcpp::R_POWERPC_GOT16_HA:
8732     case elfcpp::R_POWERPC_SECTOFF_HA:
8733     case elfcpp::R_POWERPC_TPREL16_HA:
8734     case elfcpp::R_POWERPC_DTPREL16_HA:
8735     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8736     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8737     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8738     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8739       Reloc::addr16_ha(view, value);
8740       break;
8741
8742     case elfcpp::R_POWERPC_REL16DX_HA:
8743       status = Reloc::addr16dx_ha(view, value, overflow);
8744       break;
8745
8746     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8747       if (size == 32)
8748         // R_PPC_EMB_NADDR16_LO
8749         goto unsupp;
8750       // Fall through.
8751     case elfcpp::R_PPC64_ADDR16_HIGHER:
8752     case elfcpp::R_PPC64_TPREL16_HIGHER:
8753       Reloc::addr16_hi2(view, value);
8754       break;
8755
8756     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8757       if (size == 32)
8758         // R_PPC_EMB_NADDR16_HI
8759         goto unsupp;
8760       // Fall through.
8761     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8762     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8763       Reloc::addr16_ha2(view, value);
8764       break;
8765
8766     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8767       if (size == 32)
8768         // R_PPC_EMB_NADDR16_HA
8769         goto unsupp;
8770       // Fall through.
8771     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8772     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8773       Reloc::addr16_hi3(view, value);
8774       break;
8775
8776     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8777       if (size == 32)
8778         // R_PPC_EMB_SDAI16
8779         goto unsupp;
8780       // Fall through.
8781     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8782     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8783       Reloc::addr16_ha3(view, value);
8784       break;
8785
8786     case elfcpp::R_PPC64_DTPREL16_DS:
8787     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8788       if (size == 32)
8789         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8790         goto unsupp;
8791       // Fall through.
8792     case elfcpp::R_PPC64_TPREL16_DS:
8793     case elfcpp::R_PPC64_TPREL16_LO_DS:
8794       if (size == 32)
8795         // R_PPC_TLSGD, R_PPC_TLSLD
8796         break;
8797       // Fall through.
8798     case elfcpp::R_PPC64_ADDR16_DS:
8799     case elfcpp::R_PPC64_ADDR16_LO_DS:
8800     case elfcpp::R_PPC64_TOC16_DS:
8801     case elfcpp::R_PPC64_TOC16_LO_DS:
8802     case elfcpp::R_PPC64_GOT16_DS:
8803     case elfcpp::R_PPC64_GOT16_LO_DS:
8804     case elfcpp::R_PPC64_SECTOFF_DS:
8805     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8806       maybe_dq_reloc = true;
8807       break;
8808
8809     case elfcpp::R_POWERPC_ADDR14:
8810     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8811     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8812     case elfcpp::R_POWERPC_REL14:
8813     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8814     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8815       status = Reloc::addr14(view, value, overflow);
8816       break;
8817
8818     case elfcpp::R_POWERPC_COPY:
8819     case elfcpp::R_POWERPC_GLOB_DAT:
8820     case elfcpp::R_POWERPC_JMP_SLOT:
8821     case elfcpp::R_POWERPC_RELATIVE:
8822     case elfcpp::R_POWERPC_DTPMOD:
8823     case elfcpp::R_PPC64_JMP_IREL:
8824     case elfcpp::R_POWERPC_IRELATIVE:
8825       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8826                              _("unexpected reloc %u in object file"),
8827                              r_type);
8828       break;
8829
8830     case elfcpp::R_PPC_EMB_SDA21:
8831       if (size == 32)
8832         goto unsupp;
8833       else
8834         {
8835           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8836         }
8837       break;
8838
8839     case elfcpp::R_PPC_EMB_SDA2I16:
8840     case elfcpp::R_PPC_EMB_SDA2REL:
8841       if (size == 32)
8842         goto unsupp;
8843       // R_PPC64_TLSGD, R_PPC64_TLSLD
8844       break;
8845
8846     case elfcpp::R_POWERPC_PLT32:
8847     case elfcpp::R_POWERPC_PLTREL32:
8848     case elfcpp::R_POWERPC_PLT16_LO:
8849     case elfcpp::R_POWERPC_PLT16_HI:
8850     case elfcpp::R_POWERPC_PLT16_HA:
8851     case elfcpp::R_PPC_SDAREL16:
8852     case elfcpp::R_POWERPC_ADDR30:
8853     case elfcpp::R_PPC64_PLT64:
8854     case elfcpp::R_PPC64_PLTREL64:
8855     case elfcpp::R_PPC64_PLTGOT16:
8856     case elfcpp::R_PPC64_PLTGOT16_LO:
8857     case elfcpp::R_PPC64_PLTGOT16_HI:
8858     case elfcpp::R_PPC64_PLTGOT16_HA:
8859     case elfcpp::R_PPC64_PLT16_LO_DS:
8860     case elfcpp::R_PPC64_PLTGOT16_DS:
8861     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8862     case elfcpp::R_PPC_EMB_RELSDA:
8863     case elfcpp::R_PPC_TOC16:
8864     default:
8865     unsupp:
8866       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8867                              _("unsupported reloc %u"),
8868                              r_type);
8869       break;
8870     }
8871
8872   if (maybe_dq_reloc)
8873     {
8874       if (insn == 0)
8875         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8876
8877       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8878           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8879               && (insn & 3) == 1))
8880         status = Reloc::addr16_dq(view, value, overflow);
8881       else if (size == 64
8882                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8883                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8884                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8885                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8886         status = Reloc::addr16_ds(view, value, overflow);
8887       else
8888         status = Reloc::addr16(view, value, overflow);
8889     }
8890
8891   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8892       && (has_stub_value
8893           || !(gsym != NULL
8894                && gsym->is_undefined()
8895                && is_branch_reloc(r_type))))
8896     {
8897       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8898                              _("relocation overflow"));
8899       if (has_stub_value)
8900         gold_info(_("try relinking with a smaller --stub-group-size"));
8901     }
8902
8903   return true;
8904 }
8905
8906 // Relocate section data.
8907
8908 template<int size, bool big_endian>
8909 void
8910 Target_powerpc<size, big_endian>::relocate_section(
8911     const Relocate_info<size, big_endian>* relinfo,
8912     unsigned int sh_type,
8913     const unsigned char* prelocs,
8914     size_t reloc_count,
8915     Output_section* output_section,
8916     bool needs_special_offset_handling,
8917     unsigned char* view,
8918     Address address,
8919     section_size_type view_size,
8920     const Reloc_symbol_changes* reloc_symbol_changes)
8921 {
8922   typedef Target_powerpc<size, big_endian> Powerpc;
8923   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8924   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8925     Powerpc_comdat_behavior;
8926   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8927       Classify_reloc;
8928
8929   gold_assert(sh_type == elfcpp::SHT_RELA);
8930
8931   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8932                          Powerpc_comdat_behavior, Classify_reloc>(
8933     relinfo,
8934     this,
8935     prelocs,
8936     reloc_count,
8937     output_section,
8938     needs_special_offset_handling,
8939     view,
8940     address,
8941     view_size,
8942     reloc_symbol_changes);
8943 }
8944
8945 template<int size, bool big_endian>
8946 class Powerpc_scan_relocatable_reloc
8947 {
8948 public:
8949   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8950   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8951   static const int sh_type = elfcpp::SHT_RELA;
8952
8953   // Return the symbol referred to by the relocation.
8954   static inline unsigned int
8955   get_r_sym(const Reltype* reloc)
8956   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8957
8958   // Return the type of the relocation.
8959   static inline unsigned int
8960   get_r_type(const Reltype* reloc)
8961   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8962
8963   // Return the strategy to use for a local symbol which is not a
8964   // section symbol, given the relocation type.
8965   inline Relocatable_relocs::Reloc_strategy
8966   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8967   {
8968     if (r_type == 0 && r_sym == 0)
8969       return Relocatable_relocs::RELOC_DISCARD;
8970     return Relocatable_relocs::RELOC_COPY;
8971   }
8972
8973   // Return the strategy to use for a local symbol which is a section
8974   // symbol, given the relocation type.
8975   inline Relocatable_relocs::Reloc_strategy
8976   local_section_strategy(unsigned int, Relobj*)
8977   {
8978     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8979   }
8980
8981   // Return the strategy to use for a global symbol, given the
8982   // relocation type, the object, and the symbol index.
8983   inline Relocatable_relocs::Reloc_strategy
8984   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8985   {
8986     if (r_type == elfcpp::R_PPC_PLTREL24)
8987       return Relocatable_relocs::RELOC_SPECIAL;
8988     return Relocatable_relocs::RELOC_COPY;
8989   }
8990 };
8991
8992 // Scan the relocs during a relocatable link.
8993
8994 template<int size, bool big_endian>
8995 void
8996 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8997     Symbol_table* symtab,
8998     Layout* layout,
8999     Sized_relobj_file<size, big_endian>* object,
9000     unsigned int data_shndx,
9001     unsigned int sh_type,
9002     const unsigned char* prelocs,
9003     size_t reloc_count,
9004     Output_section* output_section,
9005     bool needs_special_offset_handling,
9006     size_t local_symbol_count,
9007     const unsigned char* plocal_symbols,
9008     Relocatable_relocs* rr)
9009 {
9010   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9011
9012   gold_assert(sh_type == elfcpp::SHT_RELA);
9013
9014   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9015     symtab,
9016     layout,
9017     object,
9018     data_shndx,
9019     prelocs,
9020     reloc_count,
9021     output_section,
9022     needs_special_offset_handling,
9023     local_symbol_count,
9024     plocal_symbols,
9025     rr);
9026 }
9027
9028 // Scan the relocs for --emit-relocs.
9029
9030 template<int size, bool big_endian>
9031 void
9032 Target_powerpc<size, big_endian>::emit_relocs_scan(
9033     Symbol_table* symtab,
9034     Layout* layout,
9035     Sized_relobj_file<size, big_endian>* object,
9036     unsigned int data_shndx,
9037     unsigned int sh_type,
9038     const unsigned char* prelocs,
9039     size_t reloc_count,
9040     Output_section* output_section,
9041     bool needs_special_offset_handling,
9042     size_t local_symbol_count,
9043     const unsigned char* plocal_syms,
9044     Relocatable_relocs* rr)
9045 {
9046   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9047       Classify_reloc;
9048   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9049       Emit_relocs_strategy;
9050
9051   gold_assert(sh_type == elfcpp::SHT_RELA);
9052
9053   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9054     symtab,
9055     layout,
9056     object,
9057     data_shndx,
9058     prelocs,
9059     reloc_count,
9060     output_section,
9061     needs_special_offset_handling,
9062     local_symbol_count,
9063     plocal_syms,
9064     rr);
9065 }
9066
9067 // Emit relocations for a section.
9068 // This is a modified version of the function by the same name in
9069 // target-reloc.h.  Using relocate_special_relocatable for
9070 // R_PPC_PLTREL24 would require duplication of the entire body of the
9071 // loop, so we may as well duplicate the whole thing.
9072
9073 template<int size, bool big_endian>
9074 void
9075 Target_powerpc<size, big_endian>::relocate_relocs(
9076     const Relocate_info<size, big_endian>* relinfo,
9077     unsigned int sh_type,
9078     const unsigned char* prelocs,
9079     size_t reloc_count,
9080     Output_section* output_section,
9081     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9082     unsigned char*,
9083     Address view_address,
9084     section_size_type,
9085     unsigned char* reloc_view,
9086     section_size_type reloc_view_size)
9087 {
9088   gold_assert(sh_type == elfcpp::SHT_RELA);
9089
9090   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9091   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9092   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9093   // Offset from start of insn to d-field reloc.
9094   const int d_offset = big_endian ? 2 : 0;
9095
9096   Powerpc_relobj<size, big_endian>* const object
9097     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9098   const unsigned int local_count = object->local_symbol_count();
9099   unsigned int got2_shndx = object->got2_shndx();
9100   Address got2_addend = 0;
9101   if (got2_shndx != 0)
9102     {
9103       got2_addend = object->get_output_section_offset(got2_shndx);
9104       gold_assert(got2_addend != invalid_address);
9105     }
9106
9107   unsigned char* pwrite = reloc_view;
9108   bool zap_next = false;
9109   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9110     {
9111       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9112       if (strategy == Relocatable_relocs::RELOC_DISCARD)
9113         continue;
9114
9115       Reltype reloc(prelocs);
9116       Reltype_write reloc_write(pwrite);
9117
9118       Address offset = reloc.get_r_offset();
9119       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9120       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9121       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9122       const unsigned int orig_r_sym = r_sym;
9123       typename elfcpp::Elf_types<size>::Elf_Swxword addend
9124         = reloc.get_r_addend();
9125       const Symbol* gsym = NULL;
9126
9127       if (zap_next)
9128         {
9129           // We could arrange to discard these and other relocs for
9130           // tls optimised sequences in the strategy methods, but for
9131           // now do as BFD ld does.
9132           r_type = elfcpp::R_POWERPC_NONE;
9133           zap_next = false;
9134         }
9135
9136       // Get the new symbol index.
9137       Output_section* os = NULL;
9138       if (r_sym < local_count)
9139         {
9140           switch (strategy)
9141             {
9142             case Relocatable_relocs::RELOC_COPY:
9143             case Relocatable_relocs::RELOC_SPECIAL:
9144               if (r_sym != 0)
9145                 {
9146                   r_sym = object->symtab_index(r_sym);
9147                   gold_assert(r_sym != -1U);
9148                 }
9149               break;
9150
9151             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9152               {
9153                 // We are adjusting a section symbol.  We need to find
9154                 // the symbol table index of the section symbol for
9155                 // the output section corresponding to input section
9156                 // in which this symbol is defined.
9157                 gold_assert(r_sym < local_count);
9158                 bool is_ordinary;
9159                 unsigned int shndx =
9160                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
9161                 gold_assert(is_ordinary);
9162                 os = object->output_section(shndx);
9163                 gold_assert(os != NULL);
9164                 gold_assert(os->needs_symtab_index());
9165                 r_sym = os->symtab_index();
9166               }
9167               break;
9168
9169             default:
9170               gold_unreachable();
9171             }
9172         }
9173       else
9174         {
9175           gsym = object->global_symbol(r_sym);
9176           gold_assert(gsym != NULL);
9177           if (gsym->is_forwarder())
9178             gsym = relinfo->symtab->resolve_forwards(gsym);
9179
9180           gold_assert(gsym->has_symtab_index());
9181           r_sym = gsym->symtab_index();
9182         }
9183
9184       // Get the new offset--the location in the output section where
9185       // this relocation should be applied.
9186       if (static_cast<Address>(offset_in_output_section) != invalid_address)
9187         offset += offset_in_output_section;
9188       else
9189         {
9190           section_offset_type sot_offset =
9191             convert_types<section_offset_type, Address>(offset);
9192           section_offset_type new_sot_offset =
9193             output_section->output_offset(object, relinfo->data_shndx,
9194                                           sot_offset);
9195           gold_assert(new_sot_offset != -1);
9196           offset = new_sot_offset;
9197         }
9198
9199       // In an object file, r_offset is an offset within the section.
9200       // In an executable or dynamic object, generated by
9201       // --emit-relocs, r_offset is an absolute address.
9202       if (!parameters->options().relocatable())
9203         {
9204           offset += view_address;
9205           if (static_cast<Address>(offset_in_output_section) != invalid_address)
9206             offset -= offset_in_output_section;
9207         }
9208
9209       // Handle the reloc addend based on the strategy.
9210       if (strategy == Relocatable_relocs::RELOC_COPY)
9211         ;
9212       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9213         {
9214           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9215           gold_assert(os != NULL);
9216           addend = psymval->value(object, addend) - os->address();
9217         }
9218       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9219         {
9220           if (size == 32)
9221             {
9222               if (addend >= 32768)
9223                 addend += got2_addend;
9224             }
9225           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9226             {
9227               r_type = elfcpp::R_POWERPC_ADDR16_HA;
9228               addend -= d_offset;
9229             }
9230           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9231             {
9232               r_type = elfcpp::R_POWERPC_ADDR16_LO;
9233               addend -= d_offset + 4;
9234             }
9235         }
9236       else
9237         gold_unreachable();
9238
9239       if (!parameters->options().relocatable())
9240         {
9241           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9242               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9243               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9244               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9245             {
9246               // First instruction of a global dynamic sequence,
9247               // arg setup insn.
9248               const bool final = gsym == NULL || gsym->final_value_is_known();
9249               switch (this->optimize_tls_gd(final))
9250                 {
9251                 case tls::TLSOPT_TO_IE:
9252                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9253                              - elfcpp::R_POWERPC_GOT_TLSGD16);
9254                   break;
9255                 case tls::TLSOPT_TO_LE:
9256                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9257                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9258                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
9259                   else
9260                     {
9261                       r_type = elfcpp::R_POWERPC_NONE;
9262                       offset -= d_offset;
9263                     }
9264                   break;
9265                 default:
9266                   break;
9267                 }
9268             }
9269           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9270                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9271                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9272                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9273             {
9274               // First instruction of a local dynamic sequence,
9275               // arg setup insn.
9276               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9277                 {
9278                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9279                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9280                     {
9281                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
9282                       const Output_section* os = relinfo->layout->tls_segment()
9283                         ->first_section();
9284                       gold_assert(os != NULL);
9285                       gold_assert(os->needs_symtab_index());
9286                       r_sym = os->symtab_index();
9287                       addend = dtp_offset;
9288                     }
9289                   else
9290                     {
9291                       r_type = elfcpp::R_POWERPC_NONE;
9292                       offset -= d_offset;
9293                     }
9294                 }
9295             }
9296           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9297                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9298                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9299                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9300             {
9301               // First instruction of initial exec sequence.
9302               const bool final = gsym == NULL || gsym->final_value_is_known();
9303               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9304                 {
9305                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9306                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9307                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
9308                   else
9309                     {
9310                       r_type = elfcpp::R_POWERPC_NONE;
9311                       offset -= d_offset;
9312                     }
9313                 }
9314             }
9315           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9316                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9317             {
9318               // Second instruction of a global dynamic sequence,
9319               // the __tls_get_addr call
9320               const bool final = gsym == NULL || gsym->final_value_is_known();
9321               switch (this->optimize_tls_gd(final))
9322                 {
9323                 case tls::TLSOPT_TO_IE:
9324                   r_type = elfcpp::R_POWERPC_NONE;
9325                   zap_next = true;
9326                   break;
9327                 case tls::TLSOPT_TO_LE:
9328                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
9329                   offset += d_offset;
9330                   zap_next = true;
9331                   break;
9332                 default:
9333                   break;
9334                 }
9335             }
9336           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9337                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9338             {
9339               // Second instruction of a local dynamic sequence,
9340               // the __tls_get_addr call
9341               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9342                 {
9343                   const Output_section* os = relinfo->layout->tls_segment()
9344                     ->first_section();
9345                   gold_assert(os != NULL);
9346                   gold_assert(os->needs_symtab_index());
9347                   r_sym = os->symtab_index();
9348                   addend = dtp_offset;
9349                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
9350                   offset += d_offset;
9351                   zap_next = true;
9352                 }
9353             }
9354           else if (r_type == elfcpp::R_POWERPC_TLS)
9355             {
9356               // Second instruction of an initial exec sequence
9357               const bool final = gsym == NULL || gsym->final_value_is_known();
9358               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9359                 {
9360                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
9361                   offset += d_offset;
9362                 }
9363             }
9364         }
9365
9366       reloc_write.put_r_offset(offset);
9367       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
9368       reloc_write.put_r_addend(addend);
9369
9370       pwrite += reloc_size;
9371     }
9372
9373   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
9374               == reloc_view_size);
9375 }
9376
9377 // Return the value to use for a dynamic symbol which requires special
9378 // treatment.  This is how we support equality comparisons of function
9379 // pointers across shared library boundaries, as described in the
9380 // processor specific ABI supplement.
9381
9382 template<int size, bool big_endian>
9383 uint64_t
9384 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
9385 {
9386   if (size == 32)
9387     {
9388       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9389       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9390            p != this->stub_tables_.end();
9391            ++p)
9392         {
9393           Address off = (*p)->find_plt_call_entry(gsym);
9394           if (off != invalid_address)
9395             return (*p)->stub_address() + off;
9396         }
9397     }
9398   else if (this->abiversion() >= 2)
9399     {
9400       Address off = this->glink_section()->find_global_entry(gsym);
9401       if (off != invalid_address)
9402         return this->glink_section()->global_entry_address() + off;
9403     }
9404   gold_unreachable();
9405 }
9406
9407 // Return the PLT address to use for a local symbol.
9408 template<int size, bool big_endian>
9409 uint64_t
9410 Target_powerpc<size, big_endian>::do_plt_address_for_local(
9411     const Relobj* object,
9412     unsigned int symndx) const
9413 {
9414   if (size == 32)
9415     {
9416       const Sized_relobj<size, big_endian>* relobj
9417         = static_cast<const Sized_relobj<size, big_endian>*>(object);
9418       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9419            p != this->stub_tables_.end();
9420            ++p)
9421         {
9422           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
9423                                                   symndx);
9424           if (off != invalid_address)
9425             return (*p)->stub_address() + off;
9426         }
9427     }
9428   gold_unreachable();
9429 }
9430
9431 // Return the PLT address to use for a global symbol.
9432 template<int size, bool big_endian>
9433 uint64_t
9434 Target_powerpc<size, big_endian>::do_plt_address_for_global(
9435     const Symbol* gsym) const
9436 {
9437   if (size == 32)
9438     {
9439       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9440            p != this->stub_tables_.end();
9441            ++p)
9442         {
9443           Address off = (*p)->find_plt_call_entry(gsym);
9444           if (off != invalid_address)
9445             return (*p)->stub_address() + off;
9446         }
9447     }
9448   else if (this->abiversion() >= 2)
9449     {
9450       Address off = this->glink_section()->find_global_entry(gsym);
9451       if (off != invalid_address)
9452         return this->glink_section()->global_entry_address() + off;
9453     }
9454   gold_unreachable();
9455 }
9456
9457 // Return the offset to use for the GOT_INDX'th got entry which is
9458 // for a local tls symbol specified by OBJECT, SYMNDX.
9459 template<int size, bool big_endian>
9460 int64_t
9461 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
9462     const Relobj* object,
9463     unsigned int symndx,
9464     unsigned int got_indx) const
9465 {
9466   const Powerpc_relobj<size, big_endian>* ppc_object
9467     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
9468   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
9469     {
9470       for (Got_type got_type = GOT_TYPE_TLSGD;
9471            got_type <= GOT_TYPE_TPREL;
9472            got_type = Got_type(got_type + 1))
9473         if (ppc_object->local_has_got_offset(symndx, got_type))
9474           {
9475             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
9476             if (got_type == GOT_TYPE_TLSGD)
9477               off += size / 8;
9478             if (off == got_indx * (size / 8))
9479               {
9480                 if (got_type == GOT_TYPE_TPREL)
9481                   return -tp_offset;
9482                 else
9483                   return -dtp_offset;
9484               }
9485           }
9486     }
9487   gold_unreachable();
9488 }
9489
9490 // Return the offset to use for the GOT_INDX'th got entry which is
9491 // for global tls symbol GSYM.
9492 template<int size, bool big_endian>
9493 int64_t
9494 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
9495     Symbol* gsym,
9496     unsigned int got_indx) const
9497 {
9498   if (gsym->type() == elfcpp::STT_TLS)
9499     {
9500       for (Got_type got_type = GOT_TYPE_TLSGD;
9501            got_type <= GOT_TYPE_TPREL;
9502            got_type = Got_type(got_type + 1))
9503         if (gsym->has_got_offset(got_type))
9504           {
9505             unsigned int off = gsym->got_offset(got_type);
9506             if (got_type == GOT_TYPE_TLSGD)
9507               off += size / 8;
9508             if (off == got_indx * (size / 8))
9509               {
9510                 if (got_type == GOT_TYPE_TPREL)
9511                   return -tp_offset;
9512                 else
9513                   return -dtp_offset;
9514               }
9515           }
9516     }
9517   gold_unreachable();
9518 }
9519
9520 // The selector for powerpc object files.
9521
9522 template<int size, bool big_endian>
9523 class Target_selector_powerpc : public Target_selector
9524 {
9525 public:
9526   Target_selector_powerpc()
9527     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
9528                       size, big_endian,
9529                       (size == 64
9530                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
9531                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
9532                       (size == 64
9533                        ? (big_endian ? "elf64ppc" : "elf64lppc")
9534                        : (big_endian ? "elf32ppc" : "elf32lppc")))
9535   { }
9536
9537   virtual Target*
9538   do_instantiate_target()
9539   { return new Target_powerpc<size, big_endian>(); }
9540 };
9541
9542 Target_selector_powerpc<32, true> target_selector_ppc32;
9543 Target_selector_powerpc<32, false> target_selector_ppc32le;
9544 Target_selector_powerpc<64, true> target_selector_ppc64;
9545 Target_selector_powerpc<64, false> target_selector_ppc64le;
9546
9547 // Instantiate these constants for -O0
9548 template<int size, bool big_endian>
9549 const int Output_data_glink<size, big_endian>::pltresolve_size;
9550 template<int size, bool big_endian>
9551 const typename Output_data_glink<size, big_endian>::Address
9552   Output_data_glink<size, big_endian>::invalid_address;
9553 template<int size, bool big_endian>
9554 const typename Stub_table<size, big_endian>::Address
9555   Stub_table<size, big_endian>::invalid_address;
9556 template<int size, bool big_endian>
9557 const typename Target_powerpc<size, big_endian>::Address
9558   Target_powerpc<size, big_endian>::invalid_address;
9559
9560 } // End anonymous namespace.