[GOLD] R_PPC64_ENTRY support
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      unsigned char* view, section_size_type view_size,
635                      std::string* from, std::string* to) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, big_endian>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    Address view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, big_endian>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Emit relocations for a section.
666   void
667   relocate_relocs(const Relocate_info<size, big_endian>*,
668                   unsigned int sh_type,
669                   const unsigned char* prelocs,
670                   size_t reloc_count,
671                   Output_section* output_section,
672                   typename elfcpp::Elf_types<size>::Elf_Off
673                     offset_in_output_section,
674                   const Relocatable_relocs*,
675                   unsigned char*,
676                   Address view_address,
677                   section_size_type,
678                   unsigned char* reloc_view,
679                   section_size_type reloc_view_size);
680
681   // Return whether SYM is defined by the ABI.
682   bool
683   do_is_defined_by_abi(const Symbol* sym) const
684   {
685     return strcmp(sym->name(), "__tls_get_addr") == 0;
686   }
687
688   // Return the size of the GOT section.
689   section_size_type
690   got_size() const
691   {
692     gold_assert(this->got_ != NULL);
693     return this->got_->data_size();
694   }
695
696   // Get the PLT section.
697   const Output_data_plt_powerpc<size, big_endian>*
698   plt_section() const
699   {
700     gold_assert(this->plt_ != NULL);
701     return this->plt_;
702   }
703
704   // Get the IPLT section.
705   const Output_data_plt_powerpc<size, big_endian>*
706   iplt_section() const
707   {
708     gold_assert(this->iplt_ != NULL);
709     return this->iplt_;
710   }
711
712   // Get the .glink section.
713   const Output_data_glink<size, big_endian>*
714   glink_section() const
715   {
716     gold_assert(this->glink_ != NULL);
717     return this->glink_;
718   }
719
720   Output_data_glink<size, big_endian>*
721   glink_section()
722   {
723     gold_assert(this->glink_ != NULL);
724     return this->glink_;
725   }
726
727   bool has_glink() const
728   { return this->glink_ != NULL; }
729
730   // Get the GOT section.
731   const Output_data_got_powerpc<size, big_endian>*
732   got_section() const
733   {
734     gold_assert(this->got_ != NULL);
735     return this->got_;
736   }
737
738   // Get the GOT section, creating it if necessary.
739   Output_data_got_powerpc<size, big_endian>*
740   got_section(Symbol_table*, Layout*);
741
742   Object*
743   do_make_elf_object(const std::string&, Input_file*, off_t,
744                      const elfcpp::Ehdr<size, big_endian>&);
745
746   // Return the number of entries in the GOT.
747   unsigned int
748   got_entry_count() const
749   {
750     if (this->got_ == NULL)
751       return 0;
752     return this->got_size() / (size / 8);
753   }
754
755   // Return the number of entries in the PLT.
756   unsigned int
757   plt_entry_count() const;
758
759   // Return the offset of the first non-reserved PLT entry.
760   unsigned int
761   first_plt_entry_offset() const
762   {
763     if (size == 32)
764       return 0;
765     if (this->abiversion() >= 2)
766       return 16;
767     return 24;
768   }
769
770   // Return the size of each PLT entry.
771   unsigned int
772   plt_entry_size() const
773   {
774     if (size == 32)
775       return 4;
776     if (this->abiversion() >= 2)
777       return 8;
778     return 24;
779   }
780
781   Output_data_save_res<size, big_endian>*
782   savres_section() const
783   {
784     return this->savres_section_;
785   }
786
787   // Add any special sections for this symbol to the gc work list.
788   // For powerpc64, this adds the code section of a function
789   // descriptor.
790   void
791   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793   // Handle target specific gc actions when adding a gc reference from
794   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795   // and DST_OFF.  For powerpc64, this adds a referenc to the code
796   // section of a function descriptor.
797   void
798   do_gc_add_reference(Symbol_table* symtab,
799                       Relobj* src_obj,
800                       unsigned int src_shndx,
801                       Relobj* dst_obj,
802                       unsigned int dst_shndx,
803                       Address dst_off) const;
804
805   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806   const Stub_tables&
807   stub_tables() const
808   { return this->stub_tables_; }
809
810   const Output_data_brlt_powerpc<size, big_endian>*
811   brlt_section() const
812   { return this->brlt_section_; }
813
814   void
815   add_branch_lookup_table(Address to)
816   {
817     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818     this->branch_lookup_table_.insert(std::make_pair(to, off));
819   }
820
821   Address
822   find_branch_lookup_table(Address to)
823   {
824     typename Branch_lookup_table::const_iterator p
825       = this->branch_lookup_table_.find(to);
826     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827   }
828
829   void
830   write_branch_lookup_table(unsigned char *oview)
831   {
832     for (typename Branch_lookup_table::const_iterator p
833            = this->branch_lookup_table_.begin();
834          p != this->branch_lookup_table_.end();
835          ++p)
836       {
837         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838       }
839   }
840
841   bool
842   plt_thread_safe() const
843   { return this->plt_thread_safe_; }
844
845   int
846   abiversion () const
847   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849   void
850   set_abiversion (int ver)
851   {
852     elfcpp::Elf_Word flags = this->processor_specific_flags();
853     flags &= ~elfcpp::EF_PPC64_ABI;
854     flags |= ver & elfcpp::EF_PPC64_ABI;
855     this->set_processor_specific_flags(flags);
856   }
857
858   // Offset to to save stack slot
859   int
860   stk_toc () const
861   { return this->abiversion() < 2 ? 40 : 24; }
862
863  private:
864
865   class Track_tls
866   {
867   public:
868     enum Tls_get_addr
869     {
870       NOT_EXPECTED = 0,
871       EXPECTED = 1,
872       SKIP = 2,
873       NORMAL = 3
874     };
875
876     Track_tls()
877       : tls_get_addr_(NOT_EXPECTED),
878         relinfo_(NULL), relnum_(0), r_offset_(0)
879     { }
880
881     ~Track_tls()
882     {
883       if (this->tls_get_addr_ != NOT_EXPECTED)
884         this->missing();
885     }
886
887     void
888     missing(void)
889     {
890       if (this->relinfo_ != NULL)
891         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892                                _("missing expected __tls_get_addr call"));
893     }
894
895     void
896     expect_tls_get_addr_call(
897         const Relocate_info<size, big_endian>* relinfo,
898         size_t relnum,
899         Address r_offset)
900     {
901       this->tls_get_addr_ = EXPECTED;
902       this->relinfo_ = relinfo;
903       this->relnum_ = relnum;
904       this->r_offset_ = r_offset;
905     }
906
907     void
908     expect_tls_get_addr_call()
909     { this->tls_get_addr_ = EXPECTED; }
910
911     void
912     skip_next_tls_get_addr_call()
913     {this->tls_get_addr_ = SKIP; }
914
915     Tls_get_addr
916     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917     {
918       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919                            || r_type == elfcpp::R_PPC_PLTREL24)
920                           && gsym != NULL
921                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
922       Tls_get_addr last_tls = this->tls_get_addr_;
923       this->tls_get_addr_ = NOT_EXPECTED;
924       if (is_tls_call && last_tls != EXPECTED)
925         return last_tls;
926       else if (!is_tls_call && last_tls != NOT_EXPECTED)
927         {
928           this->missing();
929           return EXPECTED;
930         }
931       return NORMAL;
932     }
933
934   private:
935     // What we're up to regarding calls to __tls_get_addr.
936     // On powerpc, the branch and link insn making a call to
937     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940     // The marker relocation always comes first, and has the same
941     // symbol as the reloc on the insn setting up the __tls_get_addr
942     // argument.  This ties the arg setup insn with the call insn,
943     // allowing ld to safely optimize away the call.  We check that
944     // every call to __tls_get_addr has a marker relocation, and that
945     // every marker relocation is on a call to __tls_get_addr.
946     Tls_get_addr tls_get_addr_;
947     // Info about the last reloc for error message.
948     const Relocate_info<size, big_endian>* relinfo_;
949     size_t relnum_;
950     Address r_offset_;
951   };
952
953   // The class which scans relocations.
954   class Scan : protected Track_tls
955   {
956   public:
957     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959     Scan()
960       : Track_tls(), issued_non_pic_error_(false)
961     { }
962
963     static inline int
964     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966     inline void
967     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968           Sized_relobj_file<size, big_endian>* object,
969           unsigned int data_shndx,
970           Output_section* output_section,
971           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972           const elfcpp::Sym<size, big_endian>& lsym,
973           bool is_discarded);
974
975     inline void
976     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977            Sized_relobj_file<size, big_endian>* object,
978            unsigned int data_shndx,
979            Output_section* output_section,
980            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981            Symbol* gsym);
982
983     inline bool
984     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985                                         Target_powerpc* ,
986                                         Sized_relobj_file<size, big_endian>* relobj,
987                                         unsigned int ,
988                                         Output_section* ,
989                                         const elfcpp::Rela<size, big_endian>& ,
990                                         unsigned int r_type,
991                                         const elfcpp::Sym<size, big_endian>&)
992     {
993       // PowerPC64 .opd is not folded, so any identical function text
994       // may be folded and we'll still keep function addresses distinct.
995       // That means no reloc is of concern here.
996       if (size == 64)
997         {
998           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999             <Powerpc_relobj<size, big_endian>*>(relobj);
1000           if (ppcobj->abiversion() == 1)
1001             return false;
1002         }
1003       // For 32-bit and ELFv2, conservatively assume anything but calls to
1004       // function code might be taking the address of the function.
1005       return !is_branch_reloc(r_type);
1006     }
1007
1008     inline bool
1009     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010                                          Target_powerpc* ,
1011                                          Sized_relobj_file<size, big_endian>* relobj,
1012                                          unsigned int ,
1013                                          Output_section* ,
1014                                          const elfcpp::Rela<size, big_endian>& ,
1015                                          unsigned int r_type,
1016                                          Symbol*)
1017     {
1018       // As above.
1019       if (size == 64)
1020         {
1021           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022             <Powerpc_relobj<size, big_endian>*>(relobj);
1023           if (ppcobj->abiversion() == 1)
1024             return false;
1025         }
1026       return !is_branch_reloc(r_type);
1027     }
1028
1029     static bool
1030     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031                               Sized_relobj_file<size, big_endian>* object,
1032                               unsigned int r_type, bool report_err);
1033
1034   private:
1035     static void
1036     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037                             unsigned int r_type);
1038
1039     static void
1040     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041                              unsigned int r_type, Symbol*);
1042
1043     static void
1044     generate_tls_call(Symbol_table* symtab, Layout* layout,
1045                       Target_powerpc* target);
1046
1047     void
1048     check_non_pic(Relobj*, unsigned int r_type);
1049
1050     // Whether we have issued an error about a non-PIC compilation.
1051     bool issued_non_pic_error_;
1052   };
1053
1054   bool
1055   symval_for_branch(const Symbol_table* symtab,
1056                     const Sized_symbol<size>* gsym,
1057                     Powerpc_relobj<size, big_endian>* object,
1058                     Address *value, unsigned int *dest_shndx);
1059
1060   // The class which implements relocation.
1061   class Relocate : protected Track_tls
1062   {
1063    public:
1064     // Use 'at' branch hints when true, 'y' when false.
1065     // FIXME maybe: set this with an option.
1066     static const bool is_isa_v2 = true;
1067
1068     Relocate()
1069       : Track_tls()
1070     { }
1071
1072     // Do a relocation.  Return false if the caller should not issue
1073     // any warnings about this relocation.
1074     inline bool
1075     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076              Output_section*, size_t relnum,
1077              const elfcpp::Rela<size, big_endian>&,
1078              unsigned int r_type, const Sized_symbol<size>*,
1079              const Symbol_value<size>*,
1080              unsigned char*,
1081              typename elfcpp::Elf_types<size>::Elf_Addr,
1082              section_size_type);
1083   };
1084
1085   class Relocate_comdat_behavior
1086   {
1087    public:
1088     // Decide what the linker should do for relocations that refer to
1089     // discarded comdat sections.
1090     inline Comdat_behavior
1091     get(const char* name)
1092     {
1093       gold::Default_comdat_behavior default_behavior;
1094       Comdat_behavior ret = default_behavior.get(name);
1095       if (ret == CB_WARNING)
1096         {
1097           if (size == 32
1098               && (strcmp(name, ".fixup") == 0
1099                   || strcmp(name, ".got2") == 0))
1100             ret = CB_IGNORE;
1101           if (size == 64
1102               && (strcmp(name, ".opd") == 0
1103                   || strcmp(name, ".toc") == 0
1104                   || strcmp(name, ".toc1") == 0))
1105             ret = CB_IGNORE;
1106         }
1107       return ret;
1108     }
1109   };
1110
1111   // A class which returns the size required for a relocation type,
1112   // used while scanning relocs during a relocatable link.
1113   class Relocatable_size_for_reloc
1114   {
1115    public:
1116     unsigned int
1117     get_size_for_reloc(unsigned int, Relobj*)
1118     {
1119       gold_unreachable();
1120       return 0;
1121     }
1122   };
1123
1124   // Optimize the TLS relocation type based on what we know about the
1125   // symbol.  IS_FINAL is true if the final address of this symbol is
1126   // known at link time.
1127
1128   tls::Tls_optimization
1129   optimize_tls_gd(bool is_final)
1130   {
1131     // If we are generating a shared library, then we can't do anything
1132     // in the linker.
1133     if (parameters->options().shared())
1134       return tls::TLSOPT_NONE;
1135
1136     if (!is_final)
1137       return tls::TLSOPT_TO_IE;
1138     return tls::TLSOPT_TO_LE;
1139   }
1140
1141   tls::Tls_optimization
1142   optimize_tls_ld()
1143   {
1144     if (parameters->options().shared())
1145       return tls::TLSOPT_NONE;
1146
1147     return tls::TLSOPT_TO_LE;
1148   }
1149
1150   tls::Tls_optimization
1151   optimize_tls_ie(bool is_final)
1152   {
1153     if (!is_final || parameters->options().shared())
1154       return tls::TLSOPT_NONE;
1155
1156     return tls::TLSOPT_TO_LE;
1157   }
1158
1159   // Create glink.
1160   void
1161   make_glink_section(Layout*);
1162
1163   // Create the PLT section.
1164   void
1165   make_plt_section(Symbol_table*, Layout*);
1166
1167   void
1168   make_iplt_section(Symbol_table*, Layout*);
1169
1170   void
1171   make_brlt_section(Layout*);
1172
1173   // Create a PLT entry for a global symbol.
1174   void
1175   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177   // Create a PLT entry for a local IFUNC symbol.
1178   void
1179   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180                              Sized_relobj_file<size, big_endian>*,
1181                              unsigned int);
1182
1183
1184   // Create a GOT entry for local dynamic __tls_get_addr.
1185   unsigned int
1186   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187                    Sized_relobj_file<size, big_endian>* object);
1188
1189   unsigned int
1190   tlsld_got_offset() const
1191   {
1192     return this->tlsld_got_offset_;
1193   }
1194
1195   // Get the dynamic reloc section, creating it if necessary.
1196   Reloc_section*
1197   rela_dyn_section(Layout*);
1198
1199   // Similarly, but for ifunc symbols get the one for ifunc.
1200   Reloc_section*
1201   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203   // Copy a relocation against a global symbol.
1204   void
1205   copy_reloc(Symbol_table* symtab, Layout* layout,
1206              Sized_relobj_file<size, big_endian>* object,
1207              unsigned int shndx, Output_section* output_section,
1208              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209   {
1210     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1211     this->copy_relocs_.copy_reloc(symtab, layout,
1212                                   symtab->get_sized_symbol<size>(sym),
1213                                   object, shndx, output_section,
1214                                   r_type, reloc.get_r_offset(),
1215                                   reloc.get_r_addend(),
1216                                   this->rela_dyn_section(layout));
1217   }
1218
1219   // Look over all the input sections, deciding where to place stubs.
1220   void
1221   group_sections(Layout*, const Task*, bool);
1222
1223   // Sort output sections by address.
1224   struct Sort_sections
1225   {
1226     bool
1227     operator()(const Output_section* sec1, const Output_section* sec2)
1228     { return sec1->address() < sec2->address(); }
1229   };
1230
1231   class Branch_info
1232   {
1233    public:
1234     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1235                 unsigned int data_shndx,
1236                 Address r_offset,
1237                 unsigned int r_type,
1238                 unsigned int r_sym,
1239                 Address addend)
1240       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1241         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1242     { }
1243
1244     ~Branch_info()
1245     { }
1246
1247     // If this branch needs a plt call stub, or a long branch stub, make one.
1248     bool
1249     make_stub(Stub_table<size, big_endian>*,
1250               Stub_table<size, big_endian>*,
1251               Symbol_table*) const;
1252
1253    private:
1254     // The branch location..
1255     Powerpc_relobj<size, big_endian>* object_;
1256     unsigned int shndx_;
1257     Address offset_;
1258     // ..and the branch type and destination.
1259     unsigned int r_type_;
1260     unsigned int r_sym_;
1261     Address addend_;
1262   };
1263
1264   // Information about this specific target which we pass to the
1265   // general Target structure.
1266   static Target::Target_info powerpc_info;
1267
1268   // The types of GOT entries needed for this platform.
1269   // These values are exposed to the ABI in an incremental link.
1270   // Do not renumber existing values without changing the version
1271   // number of the .gnu_incremental_inputs section.
1272   enum Got_type
1273   {
1274     GOT_TYPE_STANDARD,
1275     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1276     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1277     GOT_TYPE_TPREL      // entry for @got@tprel
1278   };
1279
1280   // The GOT section.
1281   Output_data_got_powerpc<size, big_endian>* got_;
1282   // The PLT section.  This is a container for a table of addresses,
1283   // and their relocations.  Each address in the PLT has a dynamic
1284   // relocation (R_*_JMP_SLOT) and each address will have a
1285   // corresponding entry in .glink for lazy resolution of the PLT.
1286   // ppc32 initialises the PLT to point at the .glink entry, while
1287   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1288   // linker adds a stub that loads the PLT entry into ctr then
1289   // branches to ctr.  There may be more than one stub for each PLT
1290   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1291   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1292   Output_data_plt_powerpc<size, big_endian>* plt_;
1293   // The IPLT section.  Like plt_, this is a container for a table of
1294   // addresses and their relocations, specifically for STT_GNU_IFUNC
1295   // functions that resolve locally (STT_GNU_IFUNC functions that
1296   // don't resolve locally go in PLT).  Unlike plt_, these have no
1297   // entry in .glink for lazy resolution, and the relocation section
1298   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1299   // the relocation section may contain relocations against
1300   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1301   // relocation section will appear at the end of other dynamic
1302   // relocations, so that ld.so applies these relocations after other
1303   // dynamic relocations.  In a static executable, the relocation
1304   // section is emitted and marked with __rela_iplt_start and
1305   // __rela_iplt_end symbols.
1306   Output_data_plt_powerpc<size, big_endian>* iplt_;
1307   // Section holding long branch destinations.
1308   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1309   // The .glink section.
1310   Output_data_glink<size, big_endian>* glink_;
1311   // The dynamic reloc section.
1312   Reloc_section* rela_dyn_;
1313   // Relocs saved to avoid a COPY reloc.
1314   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1315   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1316   unsigned int tlsld_got_offset_;
1317
1318   Stub_tables stub_tables_;
1319   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1320   Branch_lookup_table branch_lookup_table_;
1321
1322   typedef std::vector<Branch_info> Branches;
1323   Branches branch_info_;
1324
1325   bool plt_thread_safe_;
1326
1327   bool relax_failed_;
1328   int relax_fail_count_;
1329   int32_t stub_group_size_;
1330
1331   Output_data_save_res<size, big_endian> *savres_section_;
1332 };
1333
1334 template<>
1335 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1336 {
1337   32,                   // size
1338   true,                 // is_big_endian
1339   elfcpp::EM_PPC,       // machine_code
1340   false,                // has_make_symbol
1341   false,                // has_resolve
1342   false,                // has_code_fill
1343   true,                 // is_default_stack_executable
1344   false,                // can_icf_inline_merge_sections
1345   '\0',                 // wrap_char
1346   "/usr/lib/ld.so.1",   // dynamic_linker
1347   0x10000000,           // default_text_segment_address
1348   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1349   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1350   false,                // isolate_execinstr
1351   0,                    // rosegment_gap
1352   elfcpp::SHN_UNDEF,    // small_common_shndx
1353   elfcpp::SHN_UNDEF,    // large_common_shndx
1354   0,                    // small_common_section_flags
1355   0,                    // large_common_section_flags
1356   NULL,                 // attributes_section
1357   NULL,                 // attributes_vendor
1358   "_start",             // entry_symbol_name
1359   32,                   // hash_entry_size
1360 };
1361
1362 template<>
1363 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1364 {
1365   32,                   // size
1366   false,                // is_big_endian
1367   elfcpp::EM_PPC,       // machine_code
1368   false,                // has_make_symbol
1369   false,                // has_resolve
1370   false,                // has_code_fill
1371   true,                 // is_default_stack_executable
1372   false,                // can_icf_inline_merge_sections
1373   '\0',                 // wrap_char
1374   "/usr/lib/ld.so.1",   // dynamic_linker
1375   0x10000000,           // default_text_segment_address
1376   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1377   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1378   false,                // isolate_execinstr
1379   0,                    // rosegment_gap
1380   elfcpp::SHN_UNDEF,    // small_common_shndx
1381   elfcpp::SHN_UNDEF,    // large_common_shndx
1382   0,                    // small_common_section_flags
1383   0,                    // large_common_section_flags
1384   NULL,                 // attributes_section
1385   NULL,                 // attributes_vendor
1386   "_start",             // entry_symbol_name
1387   32,                   // hash_entry_size
1388 };
1389
1390 template<>
1391 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1392 {
1393   64,                   // size
1394   true,                 // is_big_endian
1395   elfcpp::EM_PPC64,     // machine_code
1396   false,                // has_make_symbol
1397   false,                // has_resolve
1398   false,                // has_code_fill
1399   true,                 // is_default_stack_executable
1400   false,                // can_icf_inline_merge_sections
1401   '\0',                 // wrap_char
1402   "/usr/lib/ld.so.1",   // dynamic_linker
1403   0x10000000,           // default_text_segment_address
1404   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1405   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1406   false,                // isolate_execinstr
1407   0,                    // rosegment_gap
1408   elfcpp::SHN_UNDEF,    // small_common_shndx
1409   elfcpp::SHN_UNDEF,    // large_common_shndx
1410   0,                    // small_common_section_flags
1411   0,                    // large_common_section_flags
1412   NULL,                 // attributes_section
1413   NULL,                 // attributes_vendor
1414   "_start",             // entry_symbol_name
1415   32,                   // hash_entry_size
1416 };
1417
1418 template<>
1419 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1420 {
1421   64,                   // size
1422   false,                // is_big_endian
1423   elfcpp::EM_PPC64,     // machine_code
1424   false,                // has_make_symbol
1425   false,                // has_resolve
1426   false,                // has_code_fill
1427   true,                 // is_default_stack_executable
1428   false,                // can_icf_inline_merge_sections
1429   '\0',                 // wrap_char
1430   "/usr/lib/ld.so.1",   // dynamic_linker
1431   0x10000000,           // default_text_segment_address
1432   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1433   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1434   false,                // isolate_execinstr
1435   0,                    // rosegment_gap
1436   elfcpp::SHN_UNDEF,    // small_common_shndx
1437   elfcpp::SHN_UNDEF,    // large_common_shndx
1438   0,                    // small_common_section_flags
1439   0,                    // large_common_section_flags
1440   NULL,                 // attributes_section
1441   NULL,                 // attributes_vendor
1442   "_start",             // entry_symbol_name
1443   32,                   // hash_entry_size
1444 };
1445
1446 inline bool
1447 is_branch_reloc(unsigned int r_type)
1448 {
1449   return (r_type == elfcpp::R_POWERPC_REL24
1450           || r_type == elfcpp::R_PPC_PLTREL24
1451           || r_type == elfcpp::R_PPC_LOCAL24PC
1452           || r_type == elfcpp::R_POWERPC_REL14
1453           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1454           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1455           || r_type == elfcpp::R_POWERPC_ADDR24
1456           || r_type == elfcpp::R_POWERPC_ADDR14
1457           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1458           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1459 }
1460
1461 // If INSN is an opcode that may be used with an @tls operand, return
1462 // the transformed insn for TLS optimisation, otherwise return 0.  If
1463 // REG is non-zero only match an insn with RB or RA equal to REG.
1464 uint32_t
1465 at_tls_transform(uint32_t insn, unsigned int reg)
1466 {
1467   if ((insn & (0x3f << 26)) != 31 << 26)
1468     return 0;
1469
1470   unsigned int rtra;
1471   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1472     rtra = insn & ((1 << 26) - (1 << 16));
1473   else if (((insn >> 16) & 0x1f) == reg)
1474     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1475   else
1476     return 0;
1477
1478   if ((insn & (0x3ff << 1)) == 266 << 1)
1479     // add -> addi
1480     insn = 14 << 26;
1481   else if ((insn & (0x1f << 1)) == 23 << 1
1482            && ((insn & (0x1f << 6)) < 14 << 6
1483                || ((insn & (0x1f << 6)) >= 16 << 6
1484                    && (insn & (0x1f << 6)) < 24 << 6)))
1485     // load and store indexed -> dform
1486     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1487   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1488     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1489     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1490   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1491     // lwax -> lwa
1492     insn = (58 << 26) | 2;
1493   else
1494     return 0;
1495   insn |= rtra;
1496   return insn;
1497 }
1498
1499
1500 template<int size, bool big_endian>
1501 class Powerpc_relocate_functions
1502 {
1503 public:
1504   enum Overflow_check
1505   {
1506     CHECK_NONE,
1507     CHECK_SIGNED,
1508     CHECK_UNSIGNED,
1509     CHECK_BITFIELD,
1510     CHECK_LOW_INSN,
1511     CHECK_HIGH_INSN
1512   };
1513
1514   enum Status
1515   {
1516     STATUS_OK,
1517     STATUS_OVERFLOW
1518   };
1519
1520 private:
1521   typedef Powerpc_relocate_functions<size, big_endian> This;
1522   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1524
1525   template<int valsize>
1526   static inline bool
1527   has_overflow_signed(Address value)
1528   {
1529     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1530     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1531     limit <<= ((valsize - 1) >> 1);
1532     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1533     return value + limit > (limit << 1) - 1;
1534   }
1535
1536   template<int valsize>
1537   static inline bool
1538   has_overflow_unsigned(Address value)
1539   {
1540     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1541     limit <<= ((valsize - 1) >> 1);
1542     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1543     return value > (limit << 1) - 1;
1544   }
1545
1546   template<int valsize>
1547   static inline bool
1548   has_overflow_bitfield(Address value)
1549   {
1550     return (has_overflow_unsigned<valsize>(value)
1551             && has_overflow_signed<valsize>(value));
1552   }
1553
1554   template<int valsize>
1555   static inline Status
1556   overflowed(Address value, Overflow_check overflow)
1557   {
1558     if (overflow == CHECK_SIGNED)
1559       {
1560         if (has_overflow_signed<valsize>(value))
1561           return STATUS_OVERFLOW;
1562       }
1563     else if (overflow == CHECK_UNSIGNED)
1564       {
1565         if (has_overflow_unsigned<valsize>(value))
1566           return STATUS_OVERFLOW;
1567       }
1568     else if (overflow == CHECK_BITFIELD)
1569       {
1570         if (has_overflow_bitfield<valsize>(value))
1571           return STATUS_OVERFLOW;
1572       }
1573     return STATUS_OK;
1574   }
1575
1576   // Do a simple RELA relocation
1577   template<int fieldsize, int valsize>
1578   static inline Status
1579   rela(unsigned char* view, Address value, Overflow_check overflow)
1580   {
1581     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1582     Valtype* wv = reinterpret_cast<Valtype*>(view);
1583     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1584     return overflowed<valsize>(value, overflow);
1585   }
1586
1587   template<int fieldsize, int valsize>
1588   static inline Status
1589   rela(unsigned char* view,
1590        unsigned int right_shift,
1591        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1592        Address value,
1593        Overflow_check overflow)
1594   {
1595     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1596     Valtype* wv = reinterpret_cast<Valtype*>(view);
1597     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1598     Valtype reloc = value >> right_shift;
1599     val &= ~dst_mask;
1600     reloc &= dst_mask;
1601     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1602     return overflowed<valsize>(value >> right_shift, overflow);
1603   }
1604
1605   // Do a simple RELA relocation, unaligned.
1606   template<int fieldsize, int valsize>
1607   static inline Status
1608   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1609   {
1610     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1611     return overflowed<valsize>(value, overflow);
1612   }
1613
1614   template<int fieldsize, int valsize>
1615   static inline Status
1616   rela_ua(unsigned char* view,
1617           unsigned int right_shift,
1618           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1619           Address value,
1620           Overflow_check overflow)
1621   {
1622     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1623       Valtype;
1624     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1625     Valtype reloc = value >> right_shift;
1626     val &= ~dst_mask;
1627     reloc &= dst_mask;
1628     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1629     return overflowed<valsize>(value >> right_shift, overflow);
1630   }
1631
1632 public:
1633   // R_PPC64_ADDR64: (Symbol + Addend)
1634   static inline void
1635   addr64(unsigned char* view, Address value)
1636   { This::template rela<64,64>(view, value, CHECK_NONE); }
1637
1638   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1639   static inline void
1640   addr64_u(unsigned char* view, Address value)
1641   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1642
1643   // R_POWERPC_ADDR32: (Symbol + Addend)
1644   static inline Status
1645   addr32(unsigned char* view, Address value, Overflow_check overflow)
1646   { return This::template rela<32,32>(view, value, overflow); }
1647
1648   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1649   static inline Status
1650   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1651   { return This::template rela_ua<32,32>(view, value, overflow); }
1652
1653   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1654   static inline Status
1655   addr24(unsigned char* view, Address value, Overflow_check overflow)
1656   {
1657     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1658                                              value, overflow);
1659     if (overflow != CHECK_NONE && (value & 3) != 0)
1660       stat = STATUS_OVERFLOW;
1661     return stat;
1662   }
1663
1664   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1665   static inline Status
1666   addr16(unsigned char* view, Address value, Overflow_check overflow)
1667   { return This::template rela<16,16>(view, value, overflow); }
1668
1669   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1670   static inline Status
1671   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1672   { return This::template rela_ua<16,16>(view, value, overflow); }
1673
1674   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1675   static inline Status
1676   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1677   {
1678     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1679     if ((value & 3) != 0)
1680       stat = STATUS_OVERFLOW;
1681     return stat;
1682   }
1683
1684   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1685   static inline Status
1686   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1687   {
1688     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1689     if ((value & 15) != 0)
1690       stat = STATUS_OVERFLOW;
1691     return stat;
1692   }
1693
1694   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1695   static inline void
1696   addr16_hi(unsigned char* view, Address value)
1697   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1698
1699   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1700   static inline void
1701   addr16_ha(unsigned char* view, Address value)
1702   { This::addr16_hi(view, value + 0x8000); }
1703
1704   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1705   static inline void
1706   addr16_hi2(unsigned char* view, Address value)
1707   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1708
1709   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1710   static inline void
1711   addr16_ha2(unsigned char* view, Address value)
1712   { This::addr16_hi2(view, value + 0x8000); }
1713
1714   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1715   static inline void
1716   addr16_hi3(unsigned char* view, Address value)
1717   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1718
1719   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1720   static inline void
1721   addr16_ha3(unsigned char* view, Address value)
1722   { This::addr16_hi3(view, value + 0x8000); }
1723
1724   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1725   static inline Status
1726   addr14(unsigned char* view, Address value, Overflow_check overflow)
1727   {
1728     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1729     if (overflow != CHECK_NONE && (value & 3) != 0)
1730       stat = STATUS_OVERFLOW;
1731     return stat;
1732   }
1733
1734   // R_POWERPC_REL16DX_HA
1735   static inline Status
1736   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1737   {
1738     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1739     Valtype* wv = reinterpret_cast<Valtype*>(view);
1740     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1741     value += 0x8000;
1742     value = static_cast<SignedAddress>(value) >> 16;
1743     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1744     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1745     return overflowed<16>(value, overflow);
1746   }
1747 };
1748
1749 // Set ABI version for input and output.
1750
1751 template<int size, bool big_endian>
1752 void
1753 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1754 {
1755   this->e_flags_ |= ver;
1756   if (this->abiversion() != 0)
1757     {
1758       Target_powerpc<size, big_endian>* target =
1759         static_cast<Target_powerpc<size, big_endian>*>(
1760            parameters->sized_target<size, big_endian>());
1761       if (target->abiversion() == 0)
1762         target->set_abiversion(this->abiversion());
1763       else if (target->abiversion() != this->abiversion())
1764         gold_error(_("%s: ABI version %d is not compatible "
1765                      "with ABI version %d output"),
1766                    this->name().c_str(),
1767                    this->abiversion(), target->abiversion());
1768
1769     }
1770 }
1771
1772 // Stash away the index of .got2 or .opd in a relocatable object, if
1773 // such a section exists.
1774
1775 template<int size, bool big_endian>
1776 bool
1777 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1778     Read_symbols_data* sd)
1779 {
1780   const unsigned char* const pshdrs = sd->section_headers->data();
1781   const unsigned char* namesu = sd->section_names->data();
1782   const char* names = reinterpret_cast<const char*>(namesu);
1783   section_size_type names_size = sd->section_names_size;
1784   const unsigned char* s;
1785
1786   s = this->template find_shdr<size, big_endian>(pshdrs,
1787                                                  size == 32 ? ".got2" : ".opd",
1788                                                  names, names_size, NULL);
1789   if (s != NULL)
1790     {
1791       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1792       this->special_ = ndx;
1793       if (size == 64)
1794         {
1795           if (this->abiversion() == 0)
1796             this->set_abiversion(1);
1797           else if (this->abiversion() > 1)
1798             gold_error(_("%s: .opd invalid in abiv%d"),
1799                        this->name().c_str(), this->abiversion());
1800         }
1801     }
1802   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1803 }
1804
1805 // Examine .rela.opd to build info about function entry points.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1810     size_t reloc_count,
1811     const unsigned char* prelocs,
1812     const unsigned char* plocal_syms)
1813 {
1814   if (size == 64)
1815     {
1816       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1817         Reltype;
1818       const int reloc_size
1819         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1820       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1821       Address expected_off = 0;
1822       bool regular = true;
1823       unsigned int opd_ent_size = 0;
1824
1825       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1826         {
1827           Reltype reloc(prelocs);
1828           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1829             = reloc.get_r_info();
1830           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1831           if (r_type == elfcpp::R_PPC64_ADDR64)
1832             {
1833               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1834               typename elfcpp::Elf_types<size>::Elf_Addr value;
1835               bool is_ordinary;
1836               unsigned int shndx;
1837               if (r_sym < this->local_symbol_count())
1838                 {
1839                   typename elfcpp::Sym<size, big_endian>
1840                     lsym(plocal_syms + r_sym * sym_size);
1841                   shndx = lsym.get_st_shndx();
1842                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1843                   value = lsym.get_st_value();
1844                 }
1845               else
1846                 shndx = this->symbol_section_and_value(r_sym, &value,
1847                                                        &is_ordinary);
1848               this->set_opd_ent(reloc.get_r_offset(), shndx,
1849                                 value + reloc.get_r_addend());
1850               if (i == 2)
1851                 {
1852                   expected_off = reloc.get_r_offset();
1853                   opd_ent_size = expected_off;
1854                 }
1855               else if (expected_off != reloc.get_r_offset())
1856                 regular = false;
1857               expected_off += opd_ent_size;
1858             }
1859           else if (r_type == elfcpp::R_PPC64_TOC)
1860             {
1861               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1862                 regular = false;
1863             }
1864           else
1865             {
1866               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1867                            this->name().c_str(), r_type);
1868               regular = false;
1869             }
1870         }
1871       if (reloc_count <= 2)
1872         opd_ent_size = this->section_size(this->opd_shndx());
1873       if (opd_ent_size != 24 && opd_ent_size != 16)
1874         regular = false;
1875       if (!regular)
1876         {
1877           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1878                        this->name().c_str());
1879           opd_ent_size = 0;
1880         }
1881     }
1882 }
1883
1884 template<int size, bool big_endian>
1885 void
1886 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1887 {
1888   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1889   if (size == 64)
1890     {
1891       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1892            p != rd->relocs.end();
1893            ++p)
1894         {
1895           if (p->data_shndx == this->opd_shndx())
1896             {
1897               uint64_t opd_size = this->section_size(this->opd_shndx());
1898               gold_assert(opd_size == static_cast<size_t>(opd_size));
1899               if (opd_size != 0)
1900                 {
1901                   this->init_opd(opd_size);
1902                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1903                                         rd->local_symbols->data());
1904                 }
1905               break;
1906             }
1907         }
1908     }
1909 }
1910
1911 // Read the symbols then set up st_other vector.
1912
1913 template<int size, bool big_endian>
1914 void
1915 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1916 {
1917   this->base_read_symbols(sd);
1918   if (size == 64)
1919     {
1920       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1921       const unsigned char* const pshdrs = sd->section_headers->data();
1922       const unsigned int loccount = this->do_local_symbol_count();
1923       if (loccount != 0)
1924         {
1925           this->st_other_.resize(loccount);
1926           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1927           off_t locsize = loccount * sym_size;
1928           const unsigned int symtab_shndx = this->symtab_shndx();
1929           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1930           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1931           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1932                                                       locsize, true, false);
1933           psyms += sym_size;
1934           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1935             {
1936               elfcpp::Sym<size, big_endian> sym(psyms);
1937               unsigned char st_other = sym.get_st_other();
1938               this->st_other_[i] = st_other;
1939               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1940                 {
1941                   if (this->abiversion() == 0)
1942                     this->set_abiversion(2);
1943                   else if (this->abiversion() < 2)
1944                     gold_error(_("%s: local symbol %d has invalid st_other"
1945                                  " for ABI version 1"),
1946                                this->name().c_str(), i);
1947                 }
1948             }
1949         }
1950     }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1956 {
1957   this->e_flags_ |= ver;
1958   if (this->abiversion() != 0)
1959     {
1960       Target_powerpc<size, big_endian>* target =
1961         static_cast<Target_powerpc<size, big_endian>*>(
1962           parameters->sized_target<size, big_endian>());
1963       if (target->abiversion() == 0)
1964         target->set_abiversion(this->abiversion());
1965       else if (target->abiversion() != this->abiversion())
1966         gold_error(_("%s: ABI version %d is not compatible "
1967                      "with ABI version %d output"),
1968                    this->name().c_str(),
1969                    this->abiversion(), target->abiversion());
1970
1971     }
1972 }
1973
1974 // Call Sized_dynobj::base_read_symbols to read the symbols then
1975 // read .opd from a dynamic object, filling in opd_ent_ vector,
1976
1977 template<int size, bool big_endian>
1978 void
1979 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1980 {
1981   this->base_read_symbols(sd);
1982   if (size == 64)
1983     {
1984       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1985       const unsigned char* const pshdrs = sd->section_headers->data();
1986       const unsigned char* namesu = sd->section_names->data();
1987       const char* names = reinterpret_cast<const char*>(namesu);
1988       const unsigned char* s = NULL;
1989       const unsigned char* opd;
1990       section_size_type opd_size;
1991
1992       // Find and read .opd section.
1993       while (1)
1994         {
1995           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1996                                                          sd->section_names_size,
1997                                                          s);
1998           if (s == NULL)
1999             return;
2000
2001           typename elfcpp::Shdr<size, big_endian> shdr(s);
2002           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2003               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2004             {
2005               if (this->abiversion() == 0)
2006                 this->set_abiversion(1);
2007               else if (this->abiversion() > 1)
2008                 gold_error(_("%s: .opd invalid in abiv%d"),
2009                            this->name().c_str(), this->abiversion());
2010
2011               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2012               this->opd_address_ = shdr.get_sh_addr();
2013               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2014               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2015                                    true, false);
2016               break;
2017             }
2018         }
2019
2020       // Build set of executable sections.
2021       // Using a set is probably overkill.  There is likely to be only
2022       // a few executable sections, typically .init, .text and .fini,
2023       // and they are generally grouped together.
2024       typedef std::set<Sec_info> Exec_sections;
2025       Exec_sections exec_sections;
2026       s = pshdrs;
2027       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2028         {
2029           typename elfcpp::Shdr<size, big_endian> shdr(s);
2030           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2031               && ((shdr.get_sh_flags()
2032                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2034               && shdr.get_sh_size() != 0)
2035             {
2036               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2037                                             shdr.get_sh_size(), i));
2038             }
2039         }
2040       if (exec_sections.empty())
2041         return;
2042
2043       // Look over the OPD entries.  This is complicated by the fact
2044       // that some binaries will use two-word entries while others
2045       // will use the standard three-word entries.  In most cases
2046       // the third word (the environment pointer for languages like
2047       // Pascal) is unused and will be zero.  If the third word is
2048       // used it should not be pointing into executable sections,
2049       // I think.
2050       this->init_opd(opd_size);
2051       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2052         {
2053           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2054           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2055           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2056           if (val == 0)
2057             // Chances are that this is the third word of an OPD entry.
2058             continue;
2059           typename Exec_sections::const_iterator e
2060             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2061           if (e != exec_sections.begin())
2062             {
2063               --e;
2064               if (e->start <= val && val < e->start + e->len)
2065                 {
2066                   // We have an address in an executable section.
2067                   // VAL ought to be the function entry, set it up.
2068                   this->set_opd_ent(p - opd, e->shndx, val);
2069                   // Skip second word of OPD entry, the TOC pointer.
2070                   p += 8;
2071                 }
2072             }
2073           // If we didn't match any executable sections, we likely
2074           // have a non-zero third word in the OPD entry.
2075         }
2076     }
2077 }
2078
2079 // Set up some symbols.
2080
2081 template<int size, bool big_endian>
2082 void
2083 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2084     Symbol_table* symtab,
2085     Layout* layout)
2086 {
2087   if (size == 32)
2088     {
2089       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2090       // undefined when scanning relocs (and thus requires
2091       // non-relative dynamic relocs).  The proper value will be
2092       // updated later.
2093       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2094       if (gotsym != NULL && gotsym->is_undefined())
2095         {
2096           Target_powerpc<size, big_endian>* target =
2097             static_cast<Target_powerpc<size, big_endian>*>(
2098                 parameters->sized_target<size, big_endian>());
2099           Output_data_got_powerpc<size, big_endian>* got
2100             = target->got_section(symtab, layout);
2101           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2102                                         Symbol_table::PREDEFINED,
2103                                         got, 0, 0,
2104                                         elfcpp::STT_OBJECT,
2105                                         elfcpp::STB_LOCAL,
2106                                         elfcpp::STV_HIDDEN, 0,
2107                                         false, false);
2108         }
2109
2110       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2111       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2112       if (sdasym != NULL && sdasym->is_undefined())
2113         {
2114           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2115           Output_section* os
2116             = layout->add_output_section_data(".sdata", 0,
2117                                               elfcpp::SHF_ALLOC
2118                                               | elfcpp::SHF_WRITE,
2119                                               sdata, ORDER_SMALL_DATA, false);
2120           symtab->define_in_output_data("_SDA_BASE_", NULL,
2121                                         Symbol_table::PREDEFINED,
2122                                         os, 32768, 0, elfcpp::STT_OBJECT,
2123                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2124                                         0, false, false);
2125         }
2126     }
2127   else
2128     {
2129       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2130       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2131       if (gotsym != NULL && gotsym->is_undefined())
2132         {
2133           Target_powerpc<size, big_endian>* target =
2134             static_cast<Target_powerpc<size, big_endian>*>(
2135                 parameters->sized_target<size, big_endian>());
2136           Output_data_got_powerpc<size, big_endian>* got
2137             = target->got_section(symtab, layout);
2138           symtab->define_in_output_data(".TOC.", NULL,
2139                                         Symbol_table::PREDEFINED,
2140                                         got, 0x8000, 0,
2141                                         elfcpp::STT_OBJECT,
2142                                         elfcpp::STB_LOCAL,
2143                                         elfcpp::STV_HIDDEN, 0,
2144                                         false, false);
2145         }
2146     }
2147 }
2148
2149 // Set up PowerPC target specific relobj.
2150
2151 template<int size, bool big_endian>
2152 Object*
2153 Target_powerpc<size, big_endian>::do_make_elf_object(
2154     const std::string& name,
2155     Input_file* input_file,
2156     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2157 {
2158   int et = ehdr.get_e_type();
2159   // ET_EXEC files are valid input for --just-symbols/-R,
2160   // and we treat them as relocatable objects.
2161   if (et == elfcpp::ET_REL
2162       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2163     {
2164       Powerpc_relobj<size, big_endian>* obj =
2165         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2166       obj->setup();
2167       return obj;
2168     }
2169   else if (et == elfcpp::ET_DYN)
2170     {
2171       Powerpc_dynobj<size, big_endian>* obj =
2172         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2173       obj->setup();
2174       return obj;
2175     }
2176   else
2177     {
2178       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2179       return NULL;
2180     }
2181 }
2182
2183 template<int size, bool big_endian>
2184 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2185 {
2186 public:
2187   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2188   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2189
2190   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2191     : Output_data_got<size, big_endian>(),
2192       symtab_(symtab), layout_(layout),
2193       header_ent_cnt_(size == 32 ? 3 : 1),
2194       header_index_(size == 32 ? 0x2000 : 0)
2195   {
2196     if (size == 64)
2197       this->set_addralign(256);
2198   }
2199
2200   // Override all the Output_data_got methods we use so as to first call
2201   // reserve_ent().
2202   bool
2203   add_global(Symbol* gsym, unsigned int got_type)
2204   {
2205     this->reserve_ent();
2206     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2207   }
2208
2209   bool
2210   add_global_plt(Symbol* gsym, unsigned int got_type)
2211   {
2212     this->reserve_ent();
2213     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2214   }
2215
2216   bool
2217   add_global_tls(Symbol* gsym, unsigned int got_type)
2218   { return this->add_global_plt(gsym, got_type); }
2219
2220   void
2221   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2222                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2223   {
2224     this->reserve_ent();
2225     Output_data_got<size, big_endian>::
2226       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2227   }
2228
2229   void
2230   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2231                            Output_data_reloc_generic* rel_dyn,
2232                            unsigned int r_type_1, unsigned int r_type_2)
2233   {
2234     this->reserve_ent(2);
2235     Output_data_got<size, big_endian>::
2236       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2237   }
2238
2239   bool
2240   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2241   {
2242     this->reserve_ent();
2243     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2244                                                         got_type);
2245   }
2246
2247   bool
2248   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2249   {
2250     this->reserve_ent();
2251     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2252                                                             got_type);
2253   }
2254
2255   bool
2256   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2257   { return this->add_local_plt(object, sym_index, got_type); }
2258
2259   void
2260   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2261                      unsigned int got_type,
2262                      Output_data_reloc_generic* rel_dyn,
2263                      unsigned int r_type)
2264   {
2265     this->reserve_ent(2);
2266     Output_data_got<size, big_endian>::
2267       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2268   }
2269
2270   unsigned int
2271   add_constant(Valtype constant)
2272   {
2273     this->reserve_ent();
2274     return Output_data_got<size, big_endian>::add_constant(constant);
2275   }
2276
2277   unsigned int
2278   add_constant_pair(Valtype c1, Valtype c2)
2279   {
2280     this->reserve_ent(2);
2281     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2282   }
2283
2284   // Offset of _GLOBAL_OFFSET_TABLE_.
2285   unsigned int
2286   g_o_t() const
2287   {
2288     return this->got_offset(this->header_index_);
2289   }
2290
2291   // Offset of base used to access the GOT/TOC.
2292   // The got/toc pointer reg will be set to this value.
2293   Valtype
2294   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2295   {
2296     if (size == 32)
2297       return this->g_o_t();
2298     else
2299       return (this->output_section()->address()
2300               + object->toc_base_offset()
2301               - this->address());
2302   }
2303
2304   // Ensure our GOT has a header.
2305   void
2306   set_final_data_size()
2307   {
2308     if (this->header_ent_cnt_ != 0)
2309       this->make_header();
2310     Output_data_got<size, big_endian>::set_final_data_size();
2311   }
2312
2313   // First word of GOT header needs some values that are not
2314   // handled by Output_data_got so poke them in here.
2315   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2316   void
2317   do_write(Output_file* of)
2318   {
2319     Valtype val = 0;
2320     if (size == 32 && this->layout_->dynamic_data() != NULL)
2321       val = this->layout_->dynamic_section()->address();
2322     if (size == 64)
2323       val = this->output_section()->address() + 0x8000;
2324     this->replace_constant(this->header_index_, val);
2325     Output_data_got<size, big_endian>::do_write(of);
2326   }
2327
2328 private:
2329   void
2330   reserve_ent(unsigned int cnt = 1)
2331   {
2332     if (this->header_ent_cnt_ == 0)
2333       return;
2334     if (this->num_entries() + cnt > this->header_index_)
2335       this->make_header();
2336   }
2337
2338   void
2339   make_header()
2340   {
2341     this->header_ent_cnt_ = 0;
2342     this->header_index_ = this->num_entries();
2343     if (size == 32)
2344       {
2345         Output_data_got<size, big_endian>::add_constant(0);
2346         Output_data_got<size, big_endian>::add_constant(0);
2347         Output_data_got<size, big_endian>::add_constant(0);
2348
2349         // Define _GLOBAL_OFFSET_TABLE_ at the header
2350         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2351         if (gotsym != NULL)
2352           {
2353             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2354             sym->set_value(this->g_o_t());
2355           }
2356         else
2357           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2358                                                Symbol_table::PREDEFINED,
2359                                                this, this->g_o_t(), 0,
2360                                                elfcpp::STT_OBJECT,
2361                                                elfcpp::STB_LOCAL,
2362                                                elfcpp::STV_HIDDEN, 0,
2363                                                false, false);
2364       }
2365     else
2366       Output_data_got<size, big_endian>::add_constant(0);
2367   }
2368
2369   // Stashed pointers.
2370   Symbol_table* symtab_;
2371   Layout* layout_;
2372
2373   // GOT header size.
2374   unsigned int header_ent_cnt_;
2375   // GOT header index.
2376   unsigned int header_index_;
2377 };
2378
2379 // Get the GOT section, creating it if necessary.
2380
2381 template<int size, bool big_endian>
2382 Output_data_got_powerpc<size, big_endian>*
2383 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2384                                               Layout* layout)
2385 {
2386   if (this->got_ == NULL)
2387     {
2388       gold_assert(symtab != NULL && layout != NULL);
2389
2390       this->got_
2391         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2392
2393       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2394                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2395                                       this->got_, ORDER_DATA, false);
2396     }
2397
2398   return this->got_;
2399 }
2400
2401 // Get the dynamic reloc section, creating it if necessary.
2402
2403 template<int size, bool big_endian>
2404 typename Target_powerpc<size, big_endian>::Reloc_section*
2405 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2406 {
2407   if (this->rela_dyn_ == NULL)
2408     {
2409       gold_assert(layout != NULL);
2410       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2411       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2412                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2413                                       ORDER_DYNAMIC_RELOCS, false);
2414     }
2415   return this->rela_dyn_;
2416 }
2417
2418 // Similarly, but for ifunc symbols get the one for ifunc.
2419
2420 template<int size, bool big_endian>
2421 typename Target_powerpc<size, big_endian>::Reloc_section*
2422 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2423                                                    Layout* layout,
2424                                                    bool for_ifunc)
2425 {
2426   if (!for_ifunc)
2427     return this->rela_dyn_section(layout);
2428
2429   if (this->iplt_ == NULL)
2430     this->make_iplt_section(symtab, layout);
2431   return this->iplt_->rel_plt();
2432 }
2433
2434 class Stub_control
2435 {
2436  public:
2437   // Determine the stub group size.  The group size is the absolute
2438   // value of the parameter --stub-group-size.  If --stub-group-size
2439   // is passed a negative value, we restrict stubs to be always before
2440   // the stubbed branches.
2441   Stub_control(int32_t size, bool no_size_errors)
2442     : state_(NO_GROUP), stub_group_size_(abs(size)),
2443       stub14_group_size_(abs(size) >> 10),
2444       stubs_always_before_branch_(size < 0),
2445       suppress_size_errors_(no_size_errors),
2446       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2447   {
2448   }
2449
2450   // Return true iff input section can be handled by current stub
2451   // group.
2452   bool
2453   can_add_to_stub_group(Output_section* o,
2454                         const Output_section::Input_section* i,
2455                         bool has14);
2456
2457   const Output_section::Input_section*
2458   owner()
2459   { return owner_; }
2460
2461   Output_section*
2462   output_section()
2463   { return output_section_; }
2464
2465   void
2466   set_output_and_owner(Output_section* o,
2467                        const Output_section::Input_section* i)
2468   {
2469     this->output_section_ = o;
2470     this->owner_ = i;
2471   }
2472
2473  private:
2474   typedef enum
2475   {
2476     NO_GROUP,
2477     FINDING_STUB_SECTION,
2478     HAS_STUB_SECTION
2479   } State;
2480
2481   State state_;
2482   uint32_t stub_group_size_;
2483   uint32_t stub14_group_size_;
2484   bool stubs_always_before_branch_;
2485   bool suppress_size_errors_;
2486   uint64_t group_end_addr_;
2487   const Output_section::Input_section* owner_;
2488   Output_section* output_section_;
2489 };
2490
2491 // Return true iff input section can be handled by current stub
2492 // group.
2493
2494 bool
2495 Stub_control::can_add_to_stub_group(Output_section* o,
2496                                     const Output_section::Input_section* i,
2497                                     bool has14)
2498 {
2499   uint32_t group_size
2500     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2501   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2502   uint64_t this_size;
2503   uint64_t start_addr = o->address();
2504
2505   if (whole_sec)
2506     // .init and .fini sections are pasted together to form a single
2507     // function.  We can't be adding stubs in the middle of the function.
2508     this_size = o->data_size();
2509   else
2510     {
2511       start_addr += i->relobj()->output_section_offset(i->shndx());
2512       this_size = i->data_size();
2513     }
2514   uint64_t end_addr = start_addr + this_size;
2515   bool toobig = this_size > group_size;
2516
2517   if (toobig && !this->suppress_size_errors_)
2518     gold_warning(_("%s:%s exceeds group size"),
2519                  i->relobj()->name().c_str(),
2520                  i->relobj()->section_name(i->shndx()).c_str());
2521
2522   if (this->state_ != HAS_STUB_SECTION
2523       && (!whole_sec || this->output_section_ != o)
2524       && (this->state_ == NO_GROUP
2525           || this->group_end_addr_ - end_addr < group_size))
2526     {
2527       this->owner_ = i;
2528       this->output_section_ = o;
2529     }
2530
2531   if (this->state_ == NO_GROUP)
2532     {
2533       this->state_ = FINDING_STUB_SECTION;
2534       this->group_end_addr_ = end_addr;
2535     }
2536   else if (this->group_end_addr_ - start_addr < group_size)
2537     ;
2538   // Adding this section would make the group larger than GROUP_SIZE.
2539   else if (this->state_ == FINDING_STUB_SECTION
2540            && !this->stubs_always_before_branch_
2541            && !toobig)
2542     {
2543       // But wait, there's more!  Input sections up to GROUP_SIZE
2544       // bytes before the stub table can be handled by it too.
2545       this->state_ = HAS_STUB_SECTION;
2546       this->group_end_addr_ = end_addr;
2547     }
2548   else
2549     {
2550       this->state_ = NO_GROUP;
2551       return false;
2552     }
2553   return true;
2554 }
2555
2556 // Look over all the input sections, deciding where to place stubs.
2557
2558 template<int size, bool big_endian>
2559 void
2560 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2561                                                  const Task*,
2562                                                  bool no_size_errors)
2563 {
2564   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2565
2566   // Group input sections and insert stub table
2567   Stub_table_owner* table_owner = NULL;
2568   std::vector<Stub_table_owner*> tables;
2569   Layout::Section_list section_list;
2570   layout->get_executable_sections(&section_list);
2571   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2572   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2573        o != section_list.rend();
2574        ++o)
2575     {
2576       typedef Output_section::Input_section_list Input_section_list;
2577       for (Input_section_list::const_reverse_iterator i
2578              = (*o)->input_sections().rbegin();
2579            i != (*o)->input_sections().rend();
2580            ++i)
2581         {
2582           if (i->is_input_section()
2583               || i->is_relaxed_input_section())
2584             {
2585               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2586                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2587               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2588               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2589                 {
2590                   table_owner->output_section = stub_control.output_section();
2591                   table_owner->owner = stub_control.owner();
2592                   stub_control.set_output_and_owner(*o, &*i);
2593                   table_owner = NULL;
2594                 }
2595               if (table_owner == NULL)
2596                 {
2597                   table_owner = new Stub_table_owner;
2598                   tables.push_back(table_owner);
2599                 }
2600               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2601             }
2602         }
2603     }
2604   if (table_owner != NULL)
2605     {
2606       const Output_section::Input_section* i = stub_control.owner();
2607
2608       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2609         {
2610           // Corner case.  A new stub group was made for the first
2611           // section (last one looked at here) for some reason, but
2612           // the first section is already being used as the owner for
2613           // a stub table for following sections.  Force it into that
2614           // stub group.
2615           tables.pop_back();
2616           delete table_owner;
2617           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2618             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2619           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2620         }
2621       else
2622         {
2623           table_owner->output_section = stub_control.output_section();
2624           table_owner->owner = i;
2625         }
2626     }
2627   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2628        t != tables.end();
2629        ++t)
2630     {
2631       Stub_table<size, big_endian>* stub_table;
2632
2633       if ((*t)->owner->is_input_section())
2634         stub_table = new Stub_table<size, big_endian>(this,
2635                                                       (*t)->output_section,
2636                                                       (*t)->owner);
2637       else if ((*t)->owner->is_relaxed_input_section())
2638         stub_table = static_cast<Stub_table<size, big_endian>*>(
2639                         (*t)->owner->relaxed_input_section());
2640       else
2641         gold_unreachable();
2642       this->stub_tables_.push_back(stub_table);
2643       delete *t;
2644     }
2645 }
2646
2647 static unsigned long
2648 max_branch_delta (unsigned int r_type)
2649 {
2650   if (r_type == elfcpp::R_POWERPC_REL14
2651       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2652       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2653     return 1L << 15;
2654   if (r_type == elfcpp::R_POWERPC_REL24
2655       || r_type == elfcpp::R_PPC_PLTREL24
2656       || r_type == elfcpp::R_PPC_LOCAL24PC)
2657     return 1L << 25;
2658   return 0;
2659 }
2660
2661 // If this branch needs a plt call stub, or a long branch stub, make one.
2662
2663 template<int size, bool big_endian>
2664 bool
2665 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2666     Stub_table<size, big_endian>* stub_table,
2667     Stub_table<size, big_endian>* ifunc_stub_table,
2668     Symbol_table* symtab) const
2669 {
2670   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2671   if (sym != NULL && sym->is_forwarder())
2672     sym = symtab->resolve_forwards(sym);
2673   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2674   Target_powerpc<size, big_endian>* target =
2675     static_cast<Target_powerpc<size, big_endian>*>(
2676       parameters->sized_target<size, big_endian>());
2677   if (gsym != NULL
2678       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2679       : this->object_->local_has_plt_offset(this->r_sym_))
2680     {
2681       if (size == 64
2682           && gsym != NULL
2683           && target->abiversion() >= 2
2684           && !parameters->options().output_is_position_independent()
2685           && !is_branch_reloc(this->r_type_))
2686         target->glink_section()->add_global_entry(gsym);
2687       else
2688         {
2689           if (stub_table == NULL)
2690             stub_table = this->object_->stub_table(this->shndx_);
2691           if (stub_table == NULL)
2692             {
2693               // This is a ref from a data section to an ifunc symbol.
2694               stub_table = ifunc_stub_table;
2695             }
2696           gold_assert(stub_table != NULL);
2697           Address from = this->object_->get_output_section_offset(this->shndx_);
2698           if (from != invalid_address)
2699             from += (this->object_->output_section(this->shndx_)->address()
2700                      + this->offset_);
2701           if (gsym != NULL)
2702             return stub_table->add_plt_call_entry(from,
2703                                                   this->object_, gsym,
2704                                                   this->r_type_, this->addend_);
2705           else
2706             return stub_table->add_plt_call_entry(from,
2707                                                   this->object_, this->r_sym_,
2708                                                   this->r_type_, this->addend_);
2709         }
2710     }
2711   else
2712     {
2713       Address max_branch_offset = max_branch_delta(this->r_type_);
2714       if (max_branch_offset == 0)
2715         return true;
2716       Address from = this->object_->get_output_section_offset(this->shndx_);
2717       gold_assert(from != invalid_address);
2718       from += (this->object_->output_section(this->shndx_)->address()
2719                + this->offset_);
2720       Address to;
2721       if (gsym != NULL)
2722         {
2723           switch (gsym->source())
2724             {
2725             case Symbol::FROM_OBJECT:
2726               {
2727                 Object* symobj = gsym->object();
2728                 if (symobj->is_dynamic()
2729                     || symobj->pluginobj() != NULL)
2730                   return true;
2731                 bool is_ordinary;
2732                 unsigned int shndx = gsym->shndx(&is_ordinary);
2733                 if (shndx == elfcpp::SHN_UNDEF)
2734                   return true;
2735               }
2736               break;
2737
2738             case Symbol::IS_UNDEFINED:
2739               return true;
2740
2741             default:
2742               break;
2743             }
2744           Symbol_table::Compute_final_value_status status;
2745           to = symtab->compute_final_value<size>(gsym, &status);
2746           if (status != Symbol_table::CFVS_OK)
2747             return true;
2748           if (size == 64)
2749             to += this->object_->ppc64_local_entry_offset(gsym);
2750         }
2751       else
2752         {
2753           const Symbol_value<size>* psymval
2754             = this->object_->local_symbol(this->r_sym_);
2755           Symbol_value<size> symval;
2756           typedef Sized_relobj_file<size, big_endian> ObjType;
2757           typename ObjType::Compute_final_local_value_status status
2758             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2759                                                        &symval, symtab);
2760           if (status != ObjType::CFLV_OK
2761               || !symval.has_output_value())
2762             return true;
2763           to = symval.value(this->object_, 0);
2764           if (size == 64)
2765             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2766         }
2767       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2768         to += this->addend_;
2769       if (stub_table == NULL)
2770         stub_table = this->object_->stub_table(this->shndx_);
2771       if (size == 64 && target->abiversion() < 2)
2772         {
2773           unsigned int dest_shndx;
2774           if (!target->symval_for_branch(symtab, gsym, this->object_,
2775                                          &to, &dest_shndx))
2776             return true;
2777         }
2778       Address delta = to - from;
2779       if (delta + max_branch_offset >= 2 * max_branch_offset)
2780         {
2781           if (stub_table == NULL)
2782             {
2783               gold_warning(_("%s:%s: branch in non-executable section,"
2784                              " no long branch stub for you"),
2785                            this->object_->name().c_str(),
2786                            this->object_->section_name(this->shndx_).c_str());
2787               return true;
2788             }
2789           bool save_res = (size == 64
2790                            && gsym != NULL
2791                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2792                            && gsym->output_data() == target->savres_section());
2793           return stub_table->add_long_branch_entry(this->object_,
2794                                                    this->r_type_,
2795                                                    from, to, save_res);
2796         }
2797     }
2798   return true;
2799 }
2800
2801 // Relaxation hook.  This is where we do stub generation.
2802
2803 template<int size, bool big_endian>
2804 bool
2805 Target_powerpc<size, big_endian>::do_relax(int pass,
2806                                            const Input_objects*,
2807                                            Symbol_table* symtab,
2808                                            Layout* layout,
2809                                            const Task* task)
2810 {
2811   unsigned int prev_brlt_size = 0;
2812   if (pass == 1)
2813     {
2814       bool thread_safe
2815         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2816       if (size == 64
2817           && this->abiversion() < 2
2818           && !thread_safe
2819           && !parameters->options().user_set_plt_thread_safe())
2820         {
2821           static const char* const thread_starter[] =
2822             {
2823               "pthread_create",
2824               /* libstdc++ */
2825               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2826               /* librt */
2827               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2828               "mq_notify", "create_timer",
2829               /* libanl */
2830               "getaddrinfo_a",
2831               /* libgomp */
2832               "GOMP_parallel",
2833               "GOMP_parallel_start",
2834               "GOMP_parallel_loop_static",
2835               "GOMP_parallel_loop_static_start",
2836               "GOMP_parallel_loop_dynamic",
2837               "GOMP_parallel_loop_dynamic_start",
2838               "GOMP_parallel_loop_guided",
2839               "GOMP_parallel_loop_guided_start",
2840               "GOMP_parallel_loop_runtime",
2841               "GOMP_parallel_loop_runtime_start",
2842               "GOMP_parallel_sections",
2843               "GOMP_parallel_sections_start",
2844               /* libgo */
2845               "__go_go",
2846             };
2847
2848           if (parameters->options().shared())
2849             thread_safe = true;
2850           else
2851             {
2852               for (unsigned int i = 0;
2853                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2854                    i++)
2855                 {
2856                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2857                   thread_safe = (sym != NULL
2858                                  && sym->in_reg()
2859                                  && sym->in_real_elf());
2860                   if (thread_safe)
2861                     break;
2862                 }
2863             }
2864         }
2865       this->plt_thread_safe_ = thread_safe;
2866     }
2867
2868   if (pass == 1)
2869     {
2870       this->stub_group_size_ = parameters->options().stub_group_size();
2871       bool no_size_errors = true;
2872       if (this->stub_group_size_ == 1)
2873         this->stub_group_size_ = 0x1c00000;
2874       else if (this->stub_group_size_ == -1)
2875         this->stub_group_size_ = -0x1e00000;
2876       else
2877         no_size_errors = false;
2878       this->group_sections(layout, task, no_size_errors);
2879     }
2880   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2881     {
2882       this->branch_lookup_table_.clear();
2883       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2884            p != this->stub_tables_.end();
2885            ++p)
2886         {
2887           (*p)->clear_stubs(true);
2888         }
2889       this->stub_tables_.clear();
2890       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2891       gold_info(_("%s: stub group size is too large; retrying with %d"),
2892                 program_name, this->stub_group_size_);
2893       this->group_sections(layout, task, true);
2894     }
2895
2896   // We need address of stub tables valid for make_stub.
2897   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2898        p != this->stub_tables_.end();
2899        ++p)
2900     {
2901       const Powerpc_relobj<size, big_endian>* object
2902         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2903       Address off = object->get_output_section_offset((*p)->shndx());
2904       gold_assert(off != invalid_address);
2905       Output_section* os = (*p)->output_section();
2906       (*p)->set_address_and_size(os, off);
2907     }
2908
2909   if (pass != 1)
2910     {
2911       // Clear plt call stubs, long branch stubs and branch lookup table.
2912       prev_brlt_size = this->branch_lookup_table_.size();
2913       this->branch_lookup_table_.clear();
2914       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2915            p != this->stub_tables_.end();
2916            ++p)
2917         {
2918           (*p)->clear_stubs(false);
2919         }
2920     }
2921
2922   // Build all the stubs.
2923   this->relax_failed_ = false;
2924   Stub_table<size, big_endian>* ifunc_stub_table
2925     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2926   Stub_table<size, big_endian>* one_stub_table
2927     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2928   for (typename Branches::const_iterator b = this->branch_info_.begin();
2929        b != this->branch_info_.end();
2930        b++)
2931     {
2932       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2933           && !this->relax_failed_)
2934         {
2935           this->relax_failed_ = true;
2936           this->relax_fail_count_++;
2937           if (this->relax_fail_count_ < 3)
2938             return true;
2939         }
2940     }
2941
2942   // Did anything change size?
2943   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2944   bool again = num_huge_branches != prev_brlt_size;
2945   if (size == 64 && num_huge_branches != 0)
2946     this->make_brlt_section(layout);
2947   if (size == 64 && again)
2948     this->brlt_section_->set_current_size(num_huge_branches);
2949
2950   typedef Unordered_set<Output_section*> Output_sections;
2951   Output_sections os_need_update;
2952   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2953        p != this->stub_tables_.end();
2954        ++p)
2955     {
2956       if ((*p)->size_update())
2957         {
2958           again = true;
2959           (*p)->add_eh_frame(layout);
2960           os_need_update.insert((*p)->output_section());
2961         }
2962     }
2963
2964   // Set output section offsets for all input sections in an output
2965   // section that just changed size.  Anything past the stubs will
2966   // need updating.
2967   for (typename Output_sections::iterator p = os_need_update.begin();
2968        p != os_need_update.end();
2969        p++)
2970     {
2971       Output_section* os = *p;
2972       Address off = 0;
2973       typedef Output_section::Input_section_list Input_section_list;
2974       for (Input_section_list::const_iterator i = os->input_sections().begin();
2975            i != os->input_sections().end();
2976            ++i)
2977         {
2978           off = align_address(off, i->addralign());
2979           if (i->is_input_section() || i->is_relaxed_input_section())
2980             i->relobj()->set_section_offset(i->shndx(), off);
2981           if (i->is_relaxed_input_section())
2982             {
2983               Stub_table<size, big_endian>* stub_table
2984                 = static_cast<Stub_table<size, big_endian>*>(
2985                     i->relaxed_input_section());
2986               off += stub_table->set_address_and_size(os, off);
2987             }
2988           else
2989             off += i->data_size();
2990         }
2991       // If .branch_lt is part of this output section, then we have
2992       // just done the offset adjustment.
2993       os->clear_section_offsets_need_adjustment();
2994     }
2995
2996   if (size == 64
2997       && !again
2998       && num_huge_branches != 0
2999       && parameters->options().output_is_position_independent())
3000     {
3001       // Fill in the BRLT relocs.
3002       this->brlt_section_->reset_brlt_sizes();
3003       for (typename Branch_lookup_table::const_iterator p
3004              = this->branch_lookup_table_.begin();
3005            p != this->branch_lookup_table_.end();
3006            ++p)
3007         {
3008           this->brlt_section_->add_reloc(p->first, p->second);
3009         }
3010       this->brlt_section_->finalize_brlt_sizes();
3011     }
3012   return again;
3013 }
3014
3015 template<int size, bool big_endian>
3016 void
3017 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3018                                                       unsigned char* oview,
3019                                                       uint64_t* paddress,
3020                                                       off_t* plen) const
3021 {
3022   uint64_t address = plt->address();
3023   off_t len = plt->data_size();
3024
3025   if (plt == this->glink_)
3026     {
3027       // See Output_data_glink::do_write() for glink contents.
3028       if (len == 0)
3029         {
3030           gold_assert(parameters->doing_static_link());
3031           // Static linking may need stubs, to support ifunc and long
3032           // branches.  We need to create an output section for
3033           // .eh_frame early in the link process, to have a place to
3034           // attach stub .eh_frame info.  We also need to have
3035           // registered a CIE that matches the stub CIE.  Both of
3036           // these requirements are satisfied by creating an FDE and
3037           // CIE for .glink, even though static linking will leave
3038           // .glink zero length.
3039           // ??? Hopefully generating an FDE with a zero address range
3040           // won't confuse anything that consumes .eh_frame info.
3041         }
3042       else if (size == 64)
3043         {
3044           // There is one word before __glink_PLTresolve
3045           address += 8;
3046           len -= 8;
3047         }
3048       else if (parameters->options().output_is_position_independent())
3049         {
3050           // There are two FDEs for a position independent glink.
3051           // The first covers the branch table, the second
3052           // __glink_PLTresolve at the end of glink.
3053           off_t resolve_size = this->glink_->pltresolve_size;
3054           if (oview[9] == elfcpp::DW_CFA_nop)
3055             len -= resolve_size;
3056           else
3057             {
3058               address += len - resolve_size;
3059               len = resolve_size;
3060             }
3061         }
3062     }
3063   else
3064     {
3065       // Must be a stub table.
3066       const Stub_table<size, big_endian>* stub_table
3067         = static_cast<const Stub_table<size, big_endian>*>(plt);
3068       uint64_t stub_address = stub_table->stub_address();
3069       len -= stub_address - address;
3070       address = stub_address;
3071     }
3072
3073   *paddress = address;
3074   *plen = len;
3075 }
3076
3077 // A class to handle the PLT data.
3078
3079 template<int size, bool big_endian>
3080 class Output_data_plt_powerpc : public Output_section_data_build
3081 {
3082  public:
3083   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3084                             size, big_endian> Reloc_section;
3085
3086   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3087                           Reloc_section* plt_rel,
3088                           const char* name)
3089     : Output_section_data_build(size == 32 ? 4 : 8),
3090       rel_(plt_rel),
3091       targ_(targ),
3092       name_(name)
3093   { }
3094
3095   // Add an entry to the PLT.
3096   void
3097   add_entry(Symbol*);
3098
3099   void
3100   add_ifunc_entry(Symbol*);
3101
3102   void
3103   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3104
3105   // Return the .rela.plt section data.
3106   Reloc_section*
3107   rel_plt() const
3108   {
3109     return this->rel_;
3110   }
3111
3112   // Return the number of PLT entries.
3113   unsigned int
3114   entry_count() const
3115   {
3116     if (this->current_data_size() == 0)
3117       return 0;
3118     return ((this->current_data_size() - this->first_plt_entry_offset())
3119             / this->plt_entry_size());
3120   }
3121
3122  protected:
3123   void
3124   do_adjust_output_section(Output_section* os)
3125   {
3126     os->set_entsize(0);
3127   }
3128
3129   // Write to a map file.
3130   void
3131   do_print_to_mapfile(Mapfile* mapfile) const
3132   { mapfile->print_output_data(this, this->name_); }
3133
3134  private:
3135   // Return the offset of the first non-reserved PLT entry.
3136   unsigned int
3137   first_plt_entry_offset() const
3138   {
3139     // IPLT has no reserved entry.
3140     if (this->name_[3] == 'I')
3141       return 0;
3142     return this->targ_->first_plt_entry_offset();
3143   }
3144
3145   // Return the size of each PLT entry.
3146   unsigned int
3147   plt_entry_size() const
3148   {
3149     return this->targ_->plt_entry_size();
3150   }
3151
3152   // Write out the PLT data.
3153   void
3154   do_write(Output_file*);
3155
3156   // The reloc section.
3157   Reloc_section* rel_;
3158   // Allows access to .glink for do_write.
3159   Target_powerpc<size, big_endian>* targ_;
3160   // What to report in map file.
3161   const char *name_;
3162 };
3163
3164 // Add an entry to the PLT.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3169 {
3170   if (!gsym->has_plt_offset())
3171     {
3172       section_size_type off = this->current_data_size();
3173       if (off == 0)
3174         off += this->first_plt_entry_offset();
3175       gsym->set_plt_offset(off);
3176       gsym->set_needs_dynsym_entry();
3177       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3178       this->rel_->add_global(gsym, dynrel, this, off, 0);
3179       off += this->plt_entry_size();
3180       this->set_current_data_size(off);
3181     }
3182 }
3183
3184 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3185
3186 template<int size, bool big_endian>
3187 void
3188 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3189 {
3190   if (!gsym->has_plt_offset())
3191     {
3192       section_size_type off = this->current_data_size();
3193       gsym->set_plt_offset(off);
3194       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3195       if (size == 64 && this->targ_->abiversion() < 2)
3196         dynrel = elfcpp::R_PPC64_JMP_IREL;
3197       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3198       off += this->plt_entry_size();
3199       this->set_current_data_size(off);
3200     }
3201 }
3202
3203 // Add an entry for a local ifunc symbol to the IPLT.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3208     Sized_relobj_file<size, big_endian>* relobj,
3209     unsigned int local_sym_index)
3210 {
3211   if (!relobj->local_has_plt_offset(local_sym_index))
3212     {
3213       section_size_type off = this->current_data_size();
3214       relobj->set_local_plt_offset(local_sym_index, off);
3215       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3216       if (size == 64 && this->targ_->abiversion() < 2)
3217         dynrel = elfcpp::R_PPC64_JMP_IREL;
3218       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3219                                               this, off, 0);
3220       off += this->plt_entry_size();
3221       this->set_current_data_size(off);
3222     }
3223 }
3224
3225 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3226 static const uint32_t add_2_2_11        = 0x7c425a14;
3227 static const uint32_t add_2_2_12        = 0x7c426214;
3228 static const uint32_t add_3_3_2         = 0x7c631214;
3229 static const uint32_t add_3_3_13        = 0x7c636a14;
3230 static const uint32_t add_11_0_11       = 0x7d605a14;
3231 static const uint32_t add_11_2_11       = 0x7d625a14;
3232 static const uint32_t add_11_11_2       = 0x7d6b1214;
3233 static const uint32_t addi_0_12         = 0x380c0000;
3234 static const uint32_t addi_2_2          = 0x38420000;
3235 static const uint32_t addi_3_3          = 0x38630000;
3236 static const uint32_t addi_11_11        = 0x396b0000;
3237 static const uint32_t addi_12_1         = 0x39810000;
3238 static const uint32_t addi_12_12        = 0x398c0000;
3239 static const uint32_t addis_0_2         = 0x3c020000;
3240 static const uint32_t addis_0_13        = 0x3c0d0000;
3241 static const uint32_t addis_2_12        = 0x3c4c0000;
3242 static const uint32_t addis_11_2        = 0x3d620000;
3243 static const uint32_t addis_11_11       = 0x3d6b0000;
3244 static const uint32_t addis_11_30       = 0x3d7e0000;
3245 static const uint32_t addis_12_1        = 0x3d810000;
3246 static const uint32_t addis_12_2        = 0x3d820000;
3247 static const uint32_t addis_12_12       = 0x3d8c0000;
3248 static const uint32_t b                 = 0x48000000;
3249 static const uint32_t bcl_20_31         = 0x429f0005;
3250 static const uint32_t bctr              = 0x4e800420;
3251 static const uint32_t blr               = 0x4e800020;
3252 static const uint32_t bnectr_p4         = 0x4ce20420;
3253 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3254 static const uint32_t cmpldi_2_0        = 0x28220000;
3255 static const uint32_t cror_15_15_15     = 0x4def7b82;
3256 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3257 static const uint32_t ld_0_1            = 0xe8010000;
3258 static const uint32_t ld_0_12           = 0xe80c0000;
3259 static const uint32_t ld_2_1            = 0xe8410000;
3260 static const uint32_t ld_2_2            = 0xe8420000;
3261 static const uint32_t ld_2_11           = 0xe84b0000;
3262 static const uint32_t ld_2_12           = 0xe84c0000;
3263 static const uint32_t ld_11_2           = 0xe9620000;
3264 static const uint32_t ld_11_11          = 0xe96b0000;
3265 static const uint32_t ld_12_2           = 0xe9820000;
3266 static const uint32_t ld_12_11          = 0xe98b0000;
3267 static const uint32_t ld_12_12          = 0xe98c0000;
3268 static const uint32_t lfd_0_1           = 0xc8010000;
3269 static const uint32_t li_0_0            = 0x38000000;
3270 static const uint32_t li_12_0           = 0x39800000;
3271 static const uint32_t lis_0             = 0x3c000000;
3272 static const uint32_t lis_2             = 0x3c400000;
3273 static const uint32_t lis_11            = 0x3d600000;
3274 static const uint32_t lis_12            = 0x3d800000;
3275 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3276 static const uint32_t lwz_0_12          = 0x800c0000;
3277 static const uint32_t lwz_11_11         = 0x816b0000;
3278 static const uint32_t lwz_11_30         = 0x817e0000;
3279 static const uint32_t lwz_12_12         = 0x818c0000;
3280 static const uint32_t lwzu_0_12         = 0x840c0000;
3281 static const uint32_t mflr_0            = 0x7c0802a6;
3282 static const uint32_t mflr_11           = 0x7d6802a6;
3283 static const uint32_t mflr_12           = 0x7d8802a6;
3284 static const uint32_t mtctr_0           = 0x7c0903a6;
3285 static const uint32_t mtctr_11          = 0x7d6903a6;
3286 static const uint32_t mtctr_12          = 0x7d8903a6;
3287 static const uint32_t mtlr_0            = 0x7c0803a6;
3288 static const uint32_t mtlr_12           = 0x7d8803a6;
3289 static const uint32_t nop               = 0x60000000;
3290 static const uint32_t ori_0_0_0         = 0x60000000;
3291 static const uint32_t srdi_0_0_2        = 0x7800f082;
3292 static const uint32_t std_0_1           = 0xf8010000;
3293 static const uint32_t std_0_12          = 0xf80c0000;
3294 static const uint32_t std_2_1           = 0xf8410000;
3295 static const uint32_t stfd_0_1          = 0xd8010000;
3296 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3297 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3298 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3299 static const uint32_t xor_2_12_12       = 0x7d826278;
3300 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3301
3302 // Write out the PLT.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3307 {
3308   if (size == 32 && this->name_[3] != 'I')
3309     {
3310       const section_size_type offset = this->offset();
3311       const section_size_type oview_size
3312         = convert_to_section_size_type(this->data_size());
3313       unsigned char* const oview = of->get_output_view(offset, oview_size);
3314       unsigned char* pov = oview;
3315       unsigned char* endpov = oview + oview_size;
3316
3317       // The address of the .glink branch table
3318       const Output_data_glink<size, big_endian>* glink
3319         = this->targ_->glink_section();
3320       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3321
3322       while (pov < endpov)
3323         {
3324           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3325           pov += 4;
3326           branch_tab += 4;
3327         }
3328
3329       of->write_output_view(offset, oview_size, oview);
3330     }
3331 }
3332
3333 // Create the PLT section.
3334
3335 template<int size, bool big_endian>
3336 void
3337 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3338                                                    Layout* layout)
3339 {
3340   if (this->plt_ == NULL)
3341     {
3342       if (this->got_ == NULL)
3343         this->got_section(symtab, layout);
3344
3345       if (this->glink_ == NULL)
3346         make_glink_section(layout);
3347
3348       // Ensure that .rela.dyn always appears before .rela.plt  This is
3349       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3350       // needs to include .rela.plt in its range.
3351       this->rela_dyn_section(layout);
3352
3353       Reloc_section* plt_rel = new Reloc_section(false);
3354       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3355                                       elfcpp::SHF_ALLOC, plt_rel,
3356                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3357       this->plt_
3358         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3359                                                         "** PLT");
3360       layout->add_output_section_data(".plt",
3361                                       (size == 32
3362                                        ? elfcpp::SHT_PROGBITS
3363                                        : elfcpp::SHT_NOBITS),
3364                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3365                                       this->plt_,
3366                                       (size == 32
3367                                        ? ORDER_SMALL_DATA
3368                                        : ORDER_SMALL_BSS),
3369                                       false);
3370     }
3371 }
3372
3373 // Create the IPLT section.
3374
3375 template<int size, bool big_endian>
3376 void
3377 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3378                                                     Layout* layout)
3379 {
3380   if (this->iplt_ == NULL)
3381     {
3382       this->make_plt_section(symtab, layout);
3383
3384       Reloc_section* iplt_rel = new Reloc_section(false);
3385       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3386       this->iplt_
3387         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3388                                                         "** IPLT");
3389       this->plt_->output_section()->add_output_section_data(this->iplt_);
3390     }
3391 }
3392
3393 // A section for huge long branch addresses, similar to plt section.
3394
3395 template<int size, bool big_endian>
3396 class Output_data_brlt_powerpc : public Output_section_data_build
3397 {
3398  public:
3399   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3400   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3401                             size, big_endian> Reloc_section;
3402
3403   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3404                            Reloc_section* brlt_rel)
3405     : Output_section_data_build(size == 32 ? 4 : 8),
3406       rel_(brlt_rel),
3407       targ_(targ)
3408   { }
3409
3410   void
3411   reset_brlt_sizes()
3412   {
3413     this->reset_data_size();
3414     this->rel_->reset_data_size();
3415   }
3416
3417   void
3418   finalize_brlt_sizes()
3419   {
3420     this->finalize_data_size();
3421     this->rel_->finalize_data_size();
3422   }
3423
3424   // Add a reloc for an entry in the BRLT.
3425   void
3426   add_reloc(Address to, unsigned int off)
3427   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3428
3429   // Update section and reloc section size.
3430   void
3431   set_current_size(unsigned int num_branches)
3432   {
3433     this->reset_address_and_file_offset();
3434     this->set_current_data_size(num_branches * 16);
3435     this->finalize_data_size();
3436     Output_section* os = this->output_section();
3437     os->set_section_offsets_need_adjustment();
3438     if (this->rel_ != NULL)
3439       {
3440         unsigned int reloc_size
3441           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3442         this->rel_->reset_address_and_file_offset();
3443         this->rel_->set_current_data_size(num_branches * reloc_size);
3444         this->rel_->finalize_data_size();
3445         Output_section* os = this->rel_->output_section();
3446         os->set_section_offsets_need_adjustment();
3447       }
3448   }
3449
3450  protected:
3451   void
3452   do_adjust_output_section(Output_section* os)
3453   {
3454     os->set_entsize(0);
3455   }
3456
3457   // Write to a map file.
3458   void
3459   do_print_to_mapfile(Mapfile* mapfile) const
3460   { mapfile->print_output_data(this, "** BRLT"); }
3461
3462  private:
3463   // Write out the BRLT data.
3464   void
3465   do_write(Output_file*);
3466
3467   // The reloc section.
3468   Reloc_section* rel_;
3469   Target_powerpc<size, big_endian>* targ_;
3470 };
3471
3472 // Make the branch lookup table section.
3473
3474 template<int size, bool big_endian>
3475 void
3476 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3477 {
3478   if (size == 64 && this->brlt_section_ == NULL)
3479     {
3480       Reloc_section* brlt_rel = NULL;
3481       bool is_pic = parameters->options().output_is_position_independent();
3482       if (is_pic)
3483         {
3484           // When PIC we can't fill in .branch_lt (like .plt it can be
3485           // a bss style section) but must initialise at runtime via
3486           // dynamic relocats.
3487           this->rela_dyn_section(layout);
3488           brlt_rel = new Reloc_section(false);
3489           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3490         }
3491       this->brlt_section_
3492         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3493       if (this->plt_ && is_pic)
3494         this->plt_->output_section()
3495           ->add_output_section_data(this->brlt_section_);
3496       else
3497         layout->add_output_section_data(".branch_lt",
3498                                         (is_pic ? elfcpp::SHT_NOBITS
3499                                          : elfcpp::SHT_PROGBITS),
3500                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3501                                         this->brlt_section_,
3502                                         (is_pic ? ORDER_SMALL_BSS
3503                                          : ORDER_SMALL_DATA),
3504                                         false);
3505     }
3506 }
3507
3508 // Write out .branch_lt when non-PIC.
3509
3510 template<int size, bool big_endian>
3511 void
3512 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3513 {
3514   if (size == 64 && !parameters->options().output_is_position_independent())
3515     {
3516       const section_size_type offset = this->offset();
3517       const section_size_type oview_size
3518         = convert_to_section_size_type(this->data_size());
3519       unsigned char* const oview = of->get_output_view(offset, oview_size);
3520
3521       this->targ_->write_branch_lookup_table(oview);
3522       of->write_output_view(offset, oview_size, oview);
3523     }
3524 }
3525
3526 static inline uint32_t
3527 l(uint32_t a)
3528 {
3529   return a & 0xffff;
3530 }
3531
3532 static inline uint32_t
3533 hi(uint32_t a)
3534 {
3535   return l(a >> 16);
3536 }
3537
3538 static inline uint32_t
3539 ha(uint32_t a)
3540 {
3541   return hi(a + 0x8000);
3542 }
3543
3544 template<int size>
3545 struct Eh_cie
3546 {
3547   static const unsigned char eh_frame_cie[12];
3548 };
3549
3550 template<int size>
3551 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3552 {
3553   1,                                    // CIE version.
3554   'z', 'R', 0,                          // Augmentation string.
3555   4,                                    // Code alignment.
3556   0x80 - size / 8 ,                     // Data alignment.
3557   65,                                   // RA reg.
3558   1,                                    // Augmentation size.
3559   (elfcpp::DW_EH_PE_pcrel
3560    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3561   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3562 };
3563
3564 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3565 static const unsigned char glink_eh_frame_fde_64v1[] =
3566 {
3567   0, 0, 0, 0,                           // Replaced with offset to .glink.
3568   0, 0, 0, 0,                           // Replaced with size of .glink.
3569   0,                                    // Augmentation size.
3570   elfcpp::DW_CFA_advance_loc + 1,
3571   elfcpp::DW_CFA_register, 65, 12,
3572   elfcpp::DW_CFA_advance_loc + 4,
3573   elfcpp::DW_CFA_restore_extended, 65
3574 };
3575
3576 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3577 static const unsigned char glink_eh_frame_fde_64v2[] =
3578 {
3579   0, 0, 0, 0,                           // Replaced with offset to .glink.
3580   0, 0, 0, 0,                           // Replaced with size of .glink.
3581   0,                                    // Augmentation size.
3582   elfcpp::DW_CFA_advance_loc + 1,
3583   elfcpp::DW_CFA_register, 65, 0,
3584   elfcpp::DW_CFA_advance_loc + 4,
3585   elfcpp::DW_CFA_restore_extended, 65
3586 };
3587
3588 // Describe __glink_PLTresolve use of LR, 32-bit version.
3589 static const unsigned char glink_eh_frame_fde_32[] =
3590 {
3591   0, 0, 0, 0,                           // Replaced with offset to .glink.
3592   0, 0, 0, 0,                           // Replaced with size of .glink.
3593   0,                                    // Augmentation size.
3594   elfcpp::DW_CFA_advance_loc + 2,
3595   elfcpp::DW_CFA_register, 65, 0,
3596   elfcpp::DW_CFA_advance_loc + 4,
3597   elfcpp::DW_CFA_restore_extended, 65
3598 };
3599
3600 static const unsigned char default_fde[] =
3601 {
3602   0, 0, 0, 0,                           // Replaced with offset to stubs.
3603   0, 0, 0, 0,                           // Replaced with size of stubs.
3604   0,                                    // Augmentation size.
3605   elfcpp::DW_CFA_nop,                   // Pad.
3606   elfcpp::DW_CFA_nop,
3607   elfcpp::DW_CFA_nop
3608 };
3609
3610 template<bool big_endian>
3611 static inline void
3612 write_insn(unsigned char* p, uint32_t v)
3613 {
3614   elfcpp::Swap<32, big_endian>::writeval(p, v);
3615 }
3616
3617 // Stub_table holds information about plt and long branch stubs.
3618 // Stubs are built in an area following some input section determined
3619 // by group_sections().  This input section is converted to a relaxed
3620 // input section allowing it to be resized to accommodate the stubs
3621
3622 template<int size, bool big_endian>
3623 class Stub_table : public Output_relaxed_input_section
3624 {
3625  public:
3626   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3627   static const Address invalid_address = static_cast<Address>(0) - 1;
3628
3629   Stub_table(Target_powerpc<size, big_endian>* targ,
3630              Output_section* output_section,
3631              const Output_section::Input_section* owner)
3632     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3633                                    owner->relobj()
3634                                    ->section_addralign(owner->shndx())),
3635       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3636       orig_data_size_(owner->current_data_size()),
3637       plt_size_(0), last_plt_size_(0),
3638       branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3639       need_save_res_(false)
3640   {
3641     this->set_output_section(output_section);
3642
3643     std::vector<Output_relaxed_input_section*> new_relaxed;
3644     new_relaxed.push_back(this);
3645     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3646   }
3647
3648   // Add a plt call stub.
3649   bool
3650   add_plt_call_entry(Address,
3651                      const Sized_relobj_file<size, big_endian>*,
3652                      const Symbol*,
3653                      unsigned int,
3654                      Address);
3655
3656   bool
3657   add_plt_call_entry(Address,
3658                      const Sized_relobj_file<size, big_endian>*,
3659                      unsigned int,
3660                      unsigned int,
3661                      Address);
3662
3663   // Find a given plt call stub.
3664   Address
3665   find_plt_call_entry(const Symbol*) const;
3666
3667   Address
3668   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3669                       unsigned int) const;
3670
3671   Address
3672   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3673                       const Symbol*,
3674                       unsigned int,
3675                       Address) const;
3676
3677   Address
3678   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3679                       unsigned int,
3680                       unsigned int,
3681                       Address) const;
3682
3683   // Add a long branch stub.
3684   bool
3685   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3686                         unsigned int, Address, Address, bool);
3687
3688   Address
3689   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3690                          Address) const;
3691
3692   bool
3693   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3694   {
3695     Address max_branch_offset = max_branch_delta(r_type);
3696     if (max_branch_offset == 0)
3697       return true;
3698     gold_assert(from != invalid_address);
3699     Address loc = off + this->stub_address();
3700     return loc - from + max_branch_offset < 2 * max_branch_offset;
3701   }
3702
3703   void
3704   clear_stubs(bool all)
3705   {
3706     this->plt_call_stubs_.clear();
3707     this->plt_size_ = 0;
3708     this->long_branch_stubs_.clear();
3709     this->branch_size_ = 0;
3710     this->need_save_res_ = false;
3711     if (all)
3712       {
3713         this->last_plt_size_ = 0;
3714         this->last_branch_size_ = 0;
3715       }
3716   }
3717
3718   Address
3719   set_address_and_size(const Output_section* os, Address off)
3720   {
3721     Address start_off = off;
3722     off += this->orig_data_size_;
3723     Address my_size = this->plt_size_ + this->branch_size_;
3724     if (this->need_save_res_)
3725       my_size += this->targ_->savres_section()->data_size();
3726     if (my_size != 0)
3727       off = align_address(off, this->stub_align());
3728     // Include original section size and alignment padding in size
3729     my_size += off - start_off;
3730     this->reset_address_and_file_offset();
3731     this->set_current_data_size(my_size);
3732     this->set_address_and_file_offset(os->address() + start_off,
3733                                       os->offset() + start_off);
3734     return my_size;
3735   }
3736
3737   Address
3738   stub_address() const
3739   {
3740     return align_address(this->address() + this->orig_data_size_,
3741                          this->stub_align());
3742   }
3743
3744   Address
3745   stub_offset() const
3746   {
3747     return align_address(this->offset() + this->orig_data_size_,
3748                          this->stub_align());
3749   }
3750
3751   section_size_type
3752   plt_size() const
3753   { return this->plt_size_; }
3754
3755   bool
3756   size_update()
3757   {
3758     Output_section* os = this->output_section();
3759     if (os->addralign() < this->stub_align())
3760       {
3761         os->set_addralign(this->stub_align());
3762         // FIXME: get rid of the insane checkpointing.
3763         // We can't increase alignment of the input section to which
3764         // stubs are attached;  The input section may be .init which
3765         // is pasted together with other .init sections to form a
3766         // function.  Aligning might insert zero padding resulting in
3767         // sigill.  However we do need to increase alignment of the
3768         // output section so that the align_address() on offset in
3769         // set_address_and_size() adds the same padding as the
3770         // align_address() on address in stub_address().
3771         // What's more, we need this alignment for the layout done in
3772         // relaxation_loop_body() so that the output section starts at
3773         // a suitably aligned address.
3774         os->checkpoint_set_addralign(this->stub_align());
3775       }
3776     if (this->last_plt_size_ != this->plt_size_
3777         || this->last_branch_size_ != this->branch_size_)
3778       {
3779         this->last_plt_size_ = this->plt_size_;
3780         this->last_branch_size_ = this->branch_size_;
3781         return true;
3782       }
3783     return false;
3784   }
3785
3786   // Add .eh_frame info for this stub section.  Unlike other linker
3787   // generated .eh_frame this is added late in the link, because we
3788   // only want the .eh_frame info if this particular stub section is
3789   // non-empty.
3790   void
3791   add_eh_frame(Layout* layout)
3792   {
3793     if (!this->eh_frame_added_)
3794       {
3795         if (!parameters->options().ld_generated_unwind_info())
3796           return;
3797
3798         // Since we add stub .eh_frame info late, it must be placed
3799         // after all other linker generated .eh_frame info so that
3800         // merge mapping need not be updated for input sections.
3801         // There is no provision to use a different CIE to that used
3802         // by .glink.
3803         if (!this->targ_->has_glink())
3804           return;
3805
3806         layout->add_eh_frame_for_plt(this,
3807                                      Eh_cie<size>::eh_frame_cie,
3808                                      sizeof (Eh_cie<size>::eh_frame_cie),
3809                                      default_fde,
3810                                      sizeof (default_fde));
3811         this->eh_frame_added_ = true;
3812       }
3813   }
3814
3815   Target_powerpc<size, big_endian>*
3816   targ() const
3817   { return targ_; }
3818
3819  private:
3820   class Plt_stub_ent;
3821   class Plt_stub_ent_hash;
3822   typedef Unordered_map<Plt_stub_ent, unsigned int,
3823                         Plt_stub_ent_hash> Plt_stub_entries;
3824
3825   // Alignment of stub section.
3826   unsigned int
3827   stub_align() const
3828   {
3829     if (size == 32)
3830       return 16;
3831     unsigned int min_align = 32;
3832     unsigned int user_align = 1 << parameters->options().plt_align();
3833     return std::max(user_align, min_align);
3834   }
3835
3836   // Return the plt offset for the given call stub.
3837   Address
3838   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3839   {
3840     const Symbol* gsym = p->first.sym_;
3841     if (gsym != NULL)
3842       {
3843         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3844                     && gsym->can_use_relative_reloc(false));
3845         return gsym->plt_offset();
3846       }
3847     else
3848       {
3849         *is_iplt = true;
3850         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3851         unsigned int local_sym_index = p->first.locsym_;
3852         return relobj->local_plt_offset(local_sym_index);
3853       }
3854   }
3855
3856   // Size of a given plt call stub.
3857   unsigned int
3858   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3859   {
3860     if (size == 32)
3861       return 16;
3862
3863     bool is_iplt;
3864     Address plt_addr = this->plt_off(p, &is_iplt);
3865     if (is_iplt)
3866       plt_addr += this->targ_->iplt_section()->address();
3867     else
3868       plt_addr += this->targ_->plt_section()->address();
3869     Address got_addr = this->targ_->got_section()->output_section()->address();
3870     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3871       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3872     got_addr += ppcobj->toc_base_offset();
3873     Address off = plt_addr - got_addr;
3874     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3875     if (this->targ_->abiversion() < 2)
3876       {
3877         bool static_chain = parameters->options().plt_static_chain();
3878         bool thread_safe = this->targ_->plt_thread_safe();
3879         bytes += (4
3880                   + 4 * static_chain
3881                   + 8 * thread_safe
3882                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3883       }
3884     unsigned int align = 1 << parameters->options().plt_align();
3885     if (align > 1)
3886       bytes = (bytes + align - 1) & -align;
3887     return bytes;
3888   }
3889
3890   // Return long branch stub size.
3891   unsigned int
3892   branch_stub_size(Address to)
3893   {
3894     Address loc
3895       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3896     if (to - loc + (1 << 25) < 2 << 25)
3897       return 4;
3898     if (size == 64 || !parameters->options().output_is_position_independent())
3899       return 16;
3900     return 32;
3901   }
3902
3903   // Write out stubs.
3904   void
3905   do_write(Output_file*);
3906
3907   // Plt call stub keys.
3908   class Plt_stub_ent
3909   {
3910   public:
3911     Plt_stub_ent(const Symbol* sym)
3912       : sym_(sym), object_(0), addend_(0), locsym_(0)
3913     { }
3914
3915     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3916                  unsigned int locsym_index)
3917       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3918     { }
3919
3920     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3921                  const Symbol* sym,
3922                  unsigned int r_type,
3923                  Address addend)
3924       : sym_(sym), object_(0), addend_(0), locsym_(0)
3925     {
3926       if (size != 32)
3927         this->addend_ = addend;
3928       else if (parameters->options().output_is_position_independent()
3929                && r_type == elfcpp::R_PPC_PLTREL24)
3930         {
3931           this->addend_ = addend;
3932           if (this->addend_ >= 32768)
3933             this->object_ = object;
3934         }
3935     }
3936
3937     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3938                  unsigned int locsym_index,
3939                  unsigned int r_type,
3940                  Address addend)
3941       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3942     {
3943       if (size != 32)
3944         this->addend_ = addend;
3945       else if (parameters->options().output_is_position_independent()
3946                && r_type == elfcpp::R_PPC_PLTREL24)
3947         this->addend_ = addend;
3948     }
3949
3950     bool operator==(const Plt_stub_ent& that) const
3951     {
3952       return (this->sym_ == that.sym_
3953               && this->object_ == that.object_
3954               && this->addend_ == that.addend_
3955               && this->locsym_ == that.locsym_);
3956     }
3957
3958     const Symbol* sym_;
3959     const Sized_relobj_file<size, big_endian>* object_;
3960     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3961     unsigned int locsym_;
3962   };
3963
3964   class Plt_stub_ent_hash
3965   {
3966   public:
3967     size_t operator()(const Plt_stub_ent& ent) const
3968     {
3969       return (reinterpret_cast<uintptr_t>(ent.sym_)
3970               ^ reinterpret_cast<uintptr_t>(ent.object_)
3971               ^ ent.addend_
3972               ^ ent.locsym_);
3973     }
3974   };
3975
3976   // Long branch stub keys.
3977   class Branch_stub_ent
3978   {
3979   public:
3980     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3981                     Address to, bool save_res)
3982       : dest_(to), toc_base_off_(0), save_res_(save_res)
3983     {
3984       if (size == 64)
3985         toc_base_off_ = obj->toc_base_offset();
3986     }
3987
3988     bool operator==(const Branch_stub_ent& that) const
3989     {
3990       return (this->dest_ == that.dest_
3991               && (size == 32
3992                   || this->toc_base_off_ == that.toc_base_off_));
3993     }
3994
3995     Address dest_;
3996     unsigned int toc_base_off_;
3997     bool save_res_;
3998   };
3999
4000   class Branch_stub_ent_hash
4001   {
4002   public:
4003     size_t operator()(const Branch_stub_ent& ent) const
4004     { return ent.dest_ ^ ent.toc_base_off_; }
4005   };
4006
4007   // In a sane world this would be a global.
4008   Target_powerpc<size, big_endian>* targ_;
4009   // Map sym/object/addend to stub offset.
4010   Plt_stub_entries plt_call_stubs_;
4011   // Map destination address to stub offset.
4012   typedef Unordered_map<Branch_stub_ent, unsigned int,
4013                         Branch_stub_ent_hash> Branch_stub_entries;
4014   Branch_stub_entries long_branch_stubs_;
4015   // size of input section
4016   section_size_type orig_data_size_;
4017   // size of stubs
4018   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4019   // Whether .eh_frame info has been created for this stub section.
4020   bool eh_frame_added_;
4021   // Set if this stub group needs a copy of out-of-line register
4022   // save/restore functions.
4023   bool need_save_res_;
4024 };
4025
4026 // Add a plt call stub, if we do not already have one for this
4027 // sym/object/addend combo.
4028
4029 template<int size, bool big_endian>
4030 bool
4031 Stub_table<size, big_endian>::add_plt_call_entry(
4032     Address from,
4033     const Sized_relobj_file<size, big_endian>* object,
4034     const Symbol* gsym,
4035     unsigned int r_type,
4036     Address addend)
4037 {
4038   Plt_stub_ent ent(object, gsym, r_type, addend);
4039   unsigned int off = this->plt_size_;
4040   std::pair<typename Plt_stub_entries::iterator, bool> p
4041     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4042   if (p.second)
4043     this->plt_size_ = off + this->plt_call_size(p.first);
4044   return this->can_reach_stub(from, off, r_type);
4045 }
4046
4047 template<int size, bool big_endian>
4048 bool
4049 Stub_table<size, big_endian>::add_plt_call_entry(
4050     Address from,
4051     const Sized_relobj_file<size, big_endian>* object,
4052     unsigned int locsym_index,
4053     unsigned int r_type,
4054     Address addend)
4055 {
4056   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4057   unsigned int off = this->plt_size_;
4058   std::pair<typename Plt_stub_entries::iterator, bool> p
4059     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4060   if (p.second)
4061     this->plt_size_ = off + this->plt_call_size(p.first);
4062   return this->can_reach_stub(from, off, r_type);
4063 }
4064
4065 // Find a plt call stub.
4066
4067 template<int size, bool big_endian>
4068 typename Stub_table<size, big_endian>::Address
4069 Stub_table<size, big_endian>::find_plt_call_entry(
4070     const Sized_relobj_file<size, big_endian>* object,
4071     const Symbol* gsym,
4072     unsigned int r_type,
4073     Address addend) const
4074 {
4075   Plt_stub_ent ent(object, gsym, r_type, addend);
4076   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4077   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4078 }
4079
4080 template<int size, bool big_endian>
4081 typename Stub_table<size, big_endian>::Address
4082 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4083 {
4084   Plt_stub_ent ent(gsym);
4085   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4086   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4087 }
4088
4089 template<int size, bool big_endian>
4090 typename Stub_table<size, big_endian>::Address
4091 Stub_table<size, big_endian>::find_plt_call_entry(
4092     const Sized_relobj_file<size, big_endian>* object,
4093     unsigned int locsym_index,
4094     unsigned int r_type,
4095     Address addend) const
4096 {
4097   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4098   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4099   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4100 }
4101
4102 template<int size, bool big_endian>
4103 typename Stub_table<size, big_endian>::Address
4104 Stub_table<size, big_endian>::find_plt_call_entry(
4105     const Sized_relobj_file<size, big_endian>* object,
4106     unsigned int locsym_index) const
4107 {
4108   Plt_stub_ent ent(object, locsym_index);
4109   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4110   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4111 }
4112
4113 // Add a long branch stub if we don't already have one to given
4114 // destination.
4115
4116 template<int size, bool big_endian>
4117 bool
4118 Stub_table<size, big_endian>::add_long_branch_entry(
4119     const Powerpc_relobj<size, big_endian>* object,
4120     unsigned int r_type,
4121     Address from,
4122     Address to,
4123     bool save_res)
4124 {
4125   Branch_stub_ent ent(object, to, save_res);
4126   Address off = this->branch_size_;
4127   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4128     {
4129       if (save_res)
4130         this->need_save_res_ = true;
4131       else
4132         {
4133           unsigned int stub_size = this->branch_stub_size(to);
4134           this->branch_size_ = off + stub_size;
4135           if (size == 64 && stub_size != 4)
4136             this->targ_->add_branch_lookup_table(to);
4137         }
4138     }
4139   return this->can_reach_stub(from, off, r_type);
4140 }
4141
4142 // Find long branch stub offset.
4143
4144 template<int size, bool big_endian>
4145 typename Stub_table<size, big_endian>::Address
4146 Stub_table<size, big_endian>::find_long_branch_entry(
4147     const Powerpc_relobj<size, big_endian>* object,
4148     Address to) const
4149 {
4150   Branch_stub_ent ent(object, to, false);
4151   typename Branch_stub_entries::const_iterator p
4152     = this->long_branch_stubs_.find(ent);
4153   if (p == this->long_branch_stubs_.end())
4154     return invalid_address;
4155   if (p->first.save_res_)
4156     return to - this->targ_->savres_section()->address() + this->branch_size_;
4157   return p->second;
4158 }
4159
4160 // A class to handle .glink.
4161
4162 template<int size, bool big_endian>
4163 class Output_data_glink : public Output_section_data
4164 {
4165  public:
4166   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4167   static const Address invalid_address = static_cast<Address>(0) - 1;
4168   static const int pltresolve_size = 16*4;
4169
4170   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4171     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4172       end_branch_table_(), ge_size_(0)
4173   { }
4174
4175   void
4176   add_eh_frame(Layout* layout);
4177
4178   void
4179   add_global_entry(const Symbol*);
4180
4181   Address
4182   find_global_entry(const Symbol*) const;
4183
4184   Address
4185   global_entry_address() const
4186   {
4187     gold_assert(this->is_data_size_valid());
4188     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4189     return this->address() + global_entry_off;
4190   }
4191
4192  protected:
4193   // Write to a map file.
4194   void
4195   do_print_to_mapfile(Mapfile* mapfile) const
4196   { mapfile->print_output_data(this, _("** glink")); }
4197
4198  private:
4199   void
4200   set_final_data_size();
4201
4202   // Write out .glink
4203   void
4204   do_write(Output_file*);
4205
4206   // Allows access to .got and .plt for do_write.
4207   Target_powerpc<size, big_endian>* targ_;
4208
4209   // Map sym to stub offset.
4210   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4211   Global_entry_stub_entries global_entry_stubs_;
4212
4213   unsigned int end_branch_table_, ge_size_;
4214 };
4215
4216 template<int size, bool big_endian>
4217 void
4218 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4219 {
4220   if (!parameters->options().ld_generated_unwind_info())
4221     return;
4222
4223   if (size == 64)
4224     {
4225       if (this->targ_->abiversion() < 2)
4226         layout->add_eh_frame_for_plt(this,
4227                                      Eh_cie<64>::eh_frame_cie,
4228                                      sizeof (Eh_cie<64>::eh_frame_cie),
4229                                      glink_eh_frame_fde_64v1,
4230                                      sizeof (glink_eh_frame_fde_64v1));
4231       else
4232         layout->add_eh_frame_for_plt(this,
4233                                      Eh_cie<64>::eh_frame_cie,
4234                                      sizeof (Eh_cie<64>::eh_frame_cie),
4235                                      glink_eh_frame_fde_64v2,
4236                                      sizeof (glink_eh_frame_fde_64v2));
4237     }
4238   else
4239     {
4240       // 32-bit .glink can use the default since the CIE return
4241       // address reg, LR, is valid.
4242       layout->add_eh_frame_for_plt(this,
4243                                    Eh_cie<32>::eh_frame_cie,
4244                                    sizeof (Eh_cie<32>::eh_frame_cie),
4245                                    default_fde,
4246                                    sizeof (default_fde));
4247       // Except where LR is used in a PIC __glink_PLTresolve.
4248       if (parameters->options().output_is_position_independent())
4249         layout->add_eh_frame_for_plt(this,
4250                                      Eh_cie<32>::eh_frame_cie,
4251                                      sizeof (Eh_cie<32>::eh_frame_cie),
4252                                      glink_eh_frame_fde_32,
4253                                      sizeof (glink_eh_frame_fde_32));
4254     }
4255 }
4256
4257 template<int size, bool big_endian>
4258 void
4259 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4260 {
4261   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4262     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4263   if (p.second)
4264     this->ge_size_ += 16;
4265 }
4266
4267 template<int size, bool big_endian>
4268 typename Output_data_glink<size, big_endian>::Address
4269 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4270 {
4271   typename Global_entry_stub_entries::const_iterator p
4272     = this->global_entry_stubs_.find(gsym);
4273   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4274 }
4275
4276 template<int size, bool big_endian>
4277 void
4278 Output_data_glink<size, big_endian>::set_final_data_size()
4279 {
4280   unsigned int count = this->targ_->plt_entry_count();
4281   section_size_type total = 0;
4282
4283   if (count != 0)
4284     {
4285       if (size == 32)
4286         {
4287           // space for branch table
4288           total += 4 * (count - 1);
4289
4290           total += -total & 15;
4291           total += this->pltresolve_size;
4292         }
4293       else
4294         {
4295           total += this->pltresolve_size;
4296
4297           // space for branch table
4298           total += 4 * count;
4299           if (this->targ_->abiversion() < 2)
4300             {
4301               total += 4 * count;
4302               if (count > 0x8000)
4303                 total += 4 * (count - 0x8000);
4304             }
4305         }
4306     }
4307   this->end_branch_table_ = total;
4308   total = (total + 15) & -16;
4309   total += this->ge_size_;
4310
4311   this->set_data_size(total);
4312 }
4313
4314 // Write out plt and long branch stub code.
4315
4316 template<int size, bool big_endian>
4317 void
4318 Stub_table<size, big_endian>::do_write(Output_file* of)
4319 {
4320   if (this->plt_call_stubs_.empty()
4321       && this->long_branch_stubs_.empty())
4322     return;
4323
4324   const section_size_type start_off = this->offset();
4325   const section_size_type off = this->stub_offset();
4326   const section_size_type oview_size =
4327     convert_to_section_size_type(this->data_size() - (off - start_off));
4328   unsigned char* const oview = of->get_output_view(off, oview_size);
4329   unsigned char* p;
4330
4331   if (size == 64)
4332     {
4333       const Output_data_got_powerpc<size, big_endian>* got
4334         = this->targ_->got_section();
4335       Address got_os_addr = got->output_section()->address();
4336
4337       if (!this->plt_call_stubs_.empty())
4338         {
4339           // The base address of the .plt section.
4340           Address plt_base = this->targ_->plt_section()->address();
4341           Address iplt_base = invalid_address;
4342
4343           // Write out plt call stubs.
4344           typename Plt_stub_entries::const_iterator cs;
4345           for (cs = this->plt_call_stubs_.begin();
4346                cs != this->plt_call_stubs_.end();
4347                ++cs)
4348             {
4349               bool is_iplt;
4350               Address pltoff = this->plt_off(cs, &is_iplt);
4351               Address plt_addr = pltoff;
4352               if (is_iplt)
4353                 {
4354                   if (iplt_base == invalid_address)
4355                     iplt_base = this->targ_->iplt_section()->address();
4356                   plt_addr += iplt_base;
4357                 }
4358               else
4359                 plt_addr += plt_base;
4360               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4361                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4362               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4363               Address off = plt_addr - got_addr;
4364
4365               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4366                 gold_error(_("%s: linkage table error against `%s'"),
4367                            cs->first.object_->name().c_str(),
4368                            cs->first.sym_->demangled_name().c_str());
4369
4370               bool plt_load_toc = this->targ_->abiversion() < 2;
4371               bool static_chain
4372                 = plt_load_toc && parameters->options().plt_static_chain();
4373               bool thread_safe
4374                 = plt_load_toc && this->targ_->plt_thread_safe();
4375               bool use_fake_dep = false;
4376               Address cmp_branch_off = 0;
4377               if (thread_safe)
4378                 {
4379                   unsigned int pltindex
4380                     = ((pltoff - this->targ_->first_plt_entry_offset())
4381                        / this->targ_->plt_entry_size());
4382                   Address glinkoff
4383                     = (this->targ_->glink_section()->pltresolve_size
4384                        + pltindex * 8);
4385                   if (pltindex > 32768)
4386                     glinkoff += (pltindex - 32768) * 4;
4387                   Address to
4388                     = this->targ_->glink_section()->address() + glinkoff;
4389                   Address from
4390                     = (this->stub_address() + cs->second + 24
4391                        + 4 * (ha(off) != 0)
4392                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4393                        + 4 * static_chain);
4394                   cmp_branch_off = to - from;
4395                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4396                 }
4397
4398               p = oview + cs->second;
4399               if (ha(off) != 0)
4400                 {
4401                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4402                   p += 4;
4403                   if (plt_load_toc)
4404                     {
4405                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4406                       p += 4;
4407                       write_insn<big_endian>(p, ld_12_11 + l(off));
4408                       p += 4;
4409                     }
4410                   else
4411                     {
4412                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4413                       p += 4;
4414                       write_insn<big_endian>(p, ld_12_12 + l(off));
4415                       p += 4;
4416                     }
4417                   if (plt_load_toc
4418                       && ha(off + 8 + 8 * static_chain) != ha(off))
4419                     {
4420                       write_insn<big_endian>(p, addi_11_11 + l(off));
4421                       p += 4;
4422                       off = 0;
4423                     }
4424                   write_insn<big_endian>(p, mtctr_12);
4425                   p += 4;
4426                   if (plt_load_toc)
4427                     {
4428                       if (use_fake_dep)
4429                         {
4430                           write_insn<big_endian>(p, xor_2_12_12);
4431                           p += 4;
4432                           write_insn<big_endian>(p, add_11_11_2);
4433                           p += 4;
4434                         }
4435                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4436                       p += 4;
4437                       if (static_chain)
4438                         {
4439                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4440                           p += 4;
4441                         }
4442                     }
4443                 }
4444               else
4445                 {
4446                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4447                   p += 4;
4448                   write_insn<big_endian>(p, ld_12_2 + l(off));
4449                   p += 4;
4450                   if (plt_load_toc
4451                       && ha(off + 8 + 8 * static_chain) != ha(off))
4452                     {
4453                       write_insn<big_endian>(p, addi_2_2 + l(off));
4454                       p += 4;
4455                       off = 0;
4456                     }
4457                   write_insn<big_endian>(p, mtctr_12);
4458                   p += 4;
4459                   if (plt_load_toc)
4460                     {
4461                       if (use_fake_dep)
4462                         {
4463                           write_insn<big_endian>(p, xor_11_12_12);
4464                           p += 4;
4465                           write_insn<big_endian>(p, add_2_2_11);
4466                           p += 4;
4467                         }
4468                       if (static_chain)
4469                         {
4470                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4471                           p += 4;
4472                         }
4473                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4474                       p += 4;
4475                     }
4476                 }
4477               if (thread_safe && !use_fake_dep)
4478                 {
4479                   write_insn<big_endian>(p, cmpldi_2_0);
4480                   p += 4;
4481                   write_insn<big_endian>(p, bnectr_p4);
4482                   p += 4;
4483                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4484                 }
4485               else
4486                 write_insn<big_endian>(p, bctr);
4487             }
4488         }
4489
4490       // Write out long branch stubs.
4491       typename Branch_stub_entries::const_iterator bs;
4492       for (bs = this->long_branch_stubs_.begin();
4493            bs != this->long_branch_stubs_.end();
4494            ++bs)
4495         {
4496           if (bs->first.save_res_)
4497             continue;
4498           p = oview + this->plt_size_ + bs->second;
4499           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4500           Address delta = bs->first.dest_ - loc;
4501           if (delta + (1 << 25) < 2 << 25)
4502             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4503           else
4504             {
4505               Address brlt_addr
4506                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4507               gold_assert(brlt_addr != invalid_address);
4508               brlt_addr += this->targ_->brlt_section()->address();
4509               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4510               Address brltoff = brlt_addr - got_addr;
4511               if (ha(brltoff) == 0)
4512                 {
4513                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4514                 }
4515               else
4516                 {
4517                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4518                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4519                 }
4520               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4521               write_insn<big_endian>(p, bctr);
4522             }
4523         }
4524     }
4525   else
4526     {
4527       if (!this->plt_call_stubs_.empty())
4528         {
4529           // The base address of the .plt section.
4530           Address plt_base = this->targ_->plt_section()->address();
4531           Address iplt_base = invalid_address;
4532           // The address of _GLOBAL_OFFSET_TABLE_.
4533           Address g_o_t = invalid_address;
4534
4535           // Write out plt call stubs.
4536           typename Plt_stub_entries::const_iterator cs;
4537           for (cs = this->plt_call_stubs_.begin();
4538                cs != this->plt_call_stubs_.end();
4539                ++cs)
4540             {
4541               bool is_iplt;
4542               Address plt_addr = this->plt_off(cs, &is_iplt);
4543               if (is_iplt)
4544                 {
4545                   if (iplt_base == invalid_address)
4546                     iplt_base = this->targ_->iplt_section()->address();
4547                   plt_addr += iplt_base;
4548                 }
4549               else
4550                 plt_addr += plt_base;
4551
4552               p = oview + cs->second;
4553               if (parameters->options().output_is_position_independent())
4554                 {
4555                   Address got_addr;
4556                   const Powerpc_relobj<size, big_endian>* ppcobj
4557                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4558                        (cs->first.object_));
4559                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4560                     {
4561                       unsigned int got2 = ppcobj->got2_shndx();
4562                       got_addr = ppcobj->get_output_section_offset(got2);
4563                       gold_assert(got_addr != invalid_address);
4564                       got_addr += (ppcobj->output_section(got2)->address()
4565                                    + cs->first.addend_);
4566                     }
4567                   else
4568                     {
4569                       if (g_o_t == invalid_address)
4570                         {
4571                           const Output_data_got_powerpc<size, big_endian>* got
4572                             = this->targ_->got_section();
4573                           g_o_t = got->address() + got->g_o_t();
4574                         }
4575                       got_addr = g_o_t;
4576                     }
4577
4578                   Address off = plt_addr - got_addr;
4579                   if (ha(off) == 0)
4580                     {
4581                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4582                       write_insn<big_endian>(p +  4, mtctr_11);
4583                       write_insn<big_endian>(p +  8, bctr);
4584                     }
4585                   else
4586                     {
4587                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4588                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4589                       write_insn<big_endian>(p +  8, mtctr_11);
4590                       write_insn<big_endian>(p + 12, bctr);
4591                     }
4592                 }
4593               else
4594                 {
4595                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4596                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4597                   write_insn<big_endian>(p +  8, mtctr_11);
4598                   write_insn<big_endian>(p + 12, bctr);
4599                 }
4600             }
4601         }
4602
4603       // Write out long branch stubs.
4604       typename Branch_stub_entries::const_iterator bs;
4605       for (bs = this->long_branch_stubs_.begin();
4606            bs != this->long_branch_stubs_.end();
4607            ++bs)
4608         {
4609           if (bs->first.save_res_)
4610             continue;
4611           p = oview + this->plt_size_ + bs->second;
4612           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4613           Address delta = bs->first.dest_ - loc;
4614           if (delta + (1 << 25) < 2 << 25)
4615             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4616           else if (!parameters->options().output_is_position_independent())
4617             {
4618               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4619               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4620               write_insn<big_endian>(p +  8, mtctr_12);
4621               write_insn<big_endian>(p + 12, bctr);
4622             }
4623           else
4624             {
4625               delta -= 8;
4626               write_insn<big_endian>(p +  0, mflr_0);
4627               write_insn<big_endian>(p +  4, bcl_20_31);
4628               write_insn<big_endian>(p +  8, mflr_12);
4629               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4630               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4631               write_insn<big_endian>(p + 20, mtlr_0);
4632               write_insn<big_endian>(p + 24, mtctr_12);
4633               write_insn<big_endian>(p + 28, bctr);
4634             }
4635         }
4636     }
4637   if (this->need_save_res_)
4638     {
4639       p = oview + this->plt_size_ + this->branch_size_;
4640       memcpy (p, this->targ_->savres_section()->contents(),
4641               this->targ_->savres_section()->data_size());
4642     }
4643 }
4644
4645 // Write out .glink.
4646
4647 template<int size, bool big_endian>
4648 void
4649 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4650 {
4651   const section_size_type off = this->offset();
4652   const section_size_type oview_size =
4653     convert_to_section_size_type(this->data_size());
4654   unsigned char* const oview = of->get_output_view(off, oview_size);
4655   unsigned char* p;
4656
4657   // The base address of the .plt section.
4658   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4659   Address plt_base = this->targ_->plt_section()->address();
4660
4661   if (size == 64)
4662     {
4663       if (this->end_branch_table_ != 0)
4664         {
4665           // Write pltresolve stub.
4666           p = oview;
4667           Address after_bcl = this->address() + 16;
4668           Address pltoff = plt_base - after_bcl;
4669
4670           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4671
4672           if (this->targ_->abiversion() < 2)
4673             {
4674               write_insn<big_endian>(p, mflr_12),               p += 4;
4675               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4676               write_insn<big_endian>(p, mflr_11),               p += 4;
4677               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4678               write_insn<big_endian>(p, mtlr_12),               p += 4;
4679               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4680               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4681               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4682               write_insn<big_endian>(p, mtctr_12),              p += 4;
4683               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4684             }
4685           else
4686             {
4687               write_insn<big_endian>(p, mflr_0),                p += 4;
4688               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4689               write_insn<big_endian>(p, mflr_11),               p += 4;
4690               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4691               write_insn<big_endian>(p, mtlr_0),                p += 4;
4692               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4693               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4694               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4695               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4696               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4697               write_insn<big_endian>(p, mtctr_12),              p += 4;
4698               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4699             }
4700           write_insn<big_endian>(p, bctr),                      p += 4;
4701           while (p < oview + this->pltresolve_size)
4702             write_insn<big_endian>(p, nop), p += 4;
4703
4704           // Write lazy link call stubs.
4705           uint32_t indx = 0;
4706           while (p < oview + this->end_branch_table_)
4707             {
4708               if (this->targ_->abiversion() < 2)
4709                 {
4710                   if (indx < 0x8000)
4711                     {
4712                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4713                     }
4714                   else
4715                     {
4716                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4717                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4718                     }
4719                 }
4720               uint32_t branch_off = 8 - (p - oview);
4721               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4722               indx++;
4723             }
4724         }
4725
4726       Address plt_base = this->targ_->plt_section()->address();
4727       Address iplt_base = invalid_address;
4728       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4729       Address global_entry_base = this->address() + global_entry_off;
4730       typename Global_entry_stub_entries::const_iterator ge;
4731       for (ge = this->global_entry_stubs_.begin();
4732            ge != this->global_entry_stubs_.end();
4733            ++ge)
4734         {
4735           p = oview + global_entry_off + ge->second;
4736           Address plt_addr = ge->first->plt_offset();
4737           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4738               && ge->first->can_use_relative_reloc(false))
4739             {
4740               if (iplt_base == invalid_address)
4741                 iplt_base = this->targ_->iplt_section()->address();
4742               plt_addr += iplt_base;
4743             }
4744           else
4745             plt_addr += plt_base;
4746           Address my_addr = global_entry_base + ge->second;
4747           Address off = plt_addr - my_addr;
4748
4749           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4750             gold_error(_("%s: linkage table error against `%s'"),
4751                        ge->first->object()->name().c_str(),
4752                        ge->first->demangled_name().c_str());
4753
4754           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4755           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4756           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4757           write_insn<big_endian>(p, bctr);
4758         }
4759     }
4760   else
4761     {
4762       const Output_data_got_powerpc<size, big_endian>* got
4763         = this->targ_->got_section();
4764       // The address of _GLOBAL_OFFSET_TABLE_.
4765       Address g_o_t = got->address() + got->g_o_t();
4766
4767       // Write out pltresolve branch table.
4768       p = oview;
4769       unsigned int the_end = oview_size - this->pltresolve_size;
4770       unsigned char* end_p = oview + the_end;
4771       while (p < end_p - 8 * 4)
4772         write_insn<big_endian>(p, b + end_p - p), p += 4;
4773       while (p < end_p)
4774         write_insn<big_endian>(p, nop), p += 4;
4775
4776       // Write out pltresolve call stub.
4777       if (parameters->options().output_is_position_independent())
4778         {
4779           Address res0_off = 0;
4780           Address after_bcl_off = the_end + 12;
4781           Address bcl_res0 = after_bcl_off - res0_off;
4782
4783           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4784           write_insn<big_endian>(p +  4, mflr_0);
4785           write_insn<big_endian>(p +  8, bcl_20_31);
4786           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4787           write_insn<big_endian>(p + 16, mflr_12);
4788           write_insn<big_endian>(p + 20, mtlr_0);
4789           write_insn<big_endian>(p + 24, sub_11_11_12);
4790
4791           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4792
4793           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4794           if (ha(got_bcl) == ha(got_bcl + 4))
4795             {
4796               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4797               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4798             }
4799           else
4800             {
4801               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4802               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4803             }
4804           write_insn<big_endian>(p + 40, mtctr_0);
4805           write_insn<big_endian>(p + 44, add_0_11_11);
4806           write_insn<big_endian>(p + 48, add_11_0_11);
4807           write_insn<big_endian>(p + 52, bctr);
4808           write_insn<big_endian>(p + 56, nop);
4809           write_insn<big_endian>(p + 60, nop);
4810         }
4811       else
4812         {
4813           Address res0 = this->address();
4814
4815           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4816           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4817           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4818             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4819           else
4820             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4821           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4822           write_insn<big_endian>(p + 16, mtctr_0);
4823           write_insn<big_endian>(p + 20, add_0_11_11);
4824           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4825             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4826           else
4827             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4828           write_insn<big_endian>(p + 28, add_11_0_11);
4829           write_insn<big_endian>(p + 32, bctr);
4830           write_insn<big_endian>(p + 36, nop);
4831           write_insn<big_endian>(p + 40, nop);
4832           write_insn<big_endian>(p + 44, nop);
4833           write_insn<big_endian>(p + 48, nop);
4834           write_insn<big_endian>(p + 52, nop);
4835           write_insn<big_endian>(p + 56, nop);
4836           write_insn<big_endian>(p + 60, nop);
4837         }
4838       p += 64;
4839     }
4840
4841   of->write_output_view(off, oview_size, oview);
4842 }
4843
4844
4845 // A class to handle linker generated save/restore functions.
4846
4847 template<int size, bool big_endian>
4848 class Output_data_save_res : public Output_section_data_build
4849 {
4850  public:
4851   Output_data_save_res(Symbol_table* symtab);
4852
4853   const unsigned char*
4854   contents() const
4855   {
4856     return contents_;
4857   }
4858
4859  protected:
4860   // Write to a map file.
4861   void
4862   do_print_to_mapfile(Mapfile* mapfile) const
4863   { mapfile->print_output_data(this, _("** save/restore")); }
4864
4865   void
4866   do_write(Output_file*);
4867
4868  private:
4869   // The maximum size of save/restore contents.
4870   static const unsigned int savres_max = 218*4;
4871
4872   void
4873   savres_define(Symbol_table* symtab,
4874                 const char *name,
4875                 unsigned int lo, unsigned int hi,
4876                 unsigned char* write_ent(unsigned char*, int),
4877                 unsigned char* write_tail(unsigned char*, int));
4878
4879   unsigned char *contents_;
4880 };
4881
4882 template<bool big_endian>
4883 static unsigned char*
4884 savegpr0(unsigned char* p, int r)
4885 {
4886   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4887   write_insn<big_endian>(p, insn);
4888   return p + 4;
4889 }
4890
4891 template<bool big_endian>
4892 static unsigned char*
4893 savegpr0_tail(unsigned char* p, int r)
4894 {
4895   p = savegpr0<big_endian>(p, r);
4896   uint32_t insn = std_0_1 + 16;
4897   write_insn<big_endian>(p, insn);
4898   p = p + 4;
4899   write_insn<big_endian>(p, blr);
4900   return p + 4;
4901 }
4902
4903 template<bool big_endian>
4904 static unsigned char*
4905 restgpr0(unsigned char* p, int r)
4906 {
4907   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4908   write_insn<big_endian>(p, insn);
4909   return p + 4;
4910 }
4911
4912 template<bool big_endian>
4913 static unsigned char*
4914 restgpr0_tail(unsigned char* p, int r)
4915 {
4916   uint32_t insn = ld_0_1 + 16;
4917   write_insn<big_endian>(p, insn);
4918   p = p + 4;
4919   p = restgpr0<big_endian>(p, r);
4920   write_insn<big_endian>(p, mtlr_0);
4921   p = p + 4;
4922   if (r == 29)
4923     {
4924       p = restgpr0<big_endian>(p, 30);
4925       p = restgpr0<big_endian>(p, 31);
4926     }
4927   write_insn<big_endian>(p, blr);
4928   return p + 4;
4929 }
4930
4931 template<bool big_endian>
4932 static unsigned char*
4933 savegpr1(unsigned char* p, int r)
4934 {
4935   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4936   write_insn<big_endian>(p, insn);
4937   return p + 4;
4938 }
4939
4940 template<bool big_endian>
4941 static unsigned char*
4942 savegpr1_tail(unsigned char* p, int r)
4943 {
4944   p = savegpr1<big_endian>(p, r);
4945   write_insn<big_endian>(p, blr);
4946   return p + 4;
4947 }
4948
4949 template<bool big_endian>
4950 static unsigned char*
4951 restgpr1(unsigned char* p, int r)
4952 {
4953   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4954   write_insn<big_endian>(p, insn);
4955   return p + 4;
4956 }
4957
4958 template<bool big_endian>
4959 static unsigned char*
4960 restgpr1_tail(unsigned char* p, int r)
4961 {
4962   p = restgpr1<big_endian>(p, r);
4963   write_insn<big_endian>(p, blr);
4964   return p + 4;
4965 }
4966
4967 template<bool big_endian>
4968 static unsigned char*
4969 savefpr(unsigned char* p, int r)
4970 {
4971   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4972   write_insn<big_endian>(p, insn);
4973   return p + 4;
4974 }
4975
4976 template<bool big_endian>
4977 static unsigned char*
4978 savefpr0_tail(unsigned char* p, int r)
4979 {
4980   p = savefpr<big_endian>(p, r);
4981   write_insn<big_endian>(p, std_0_1 + 16);
4982   p = p + 4;
4983   write_insn<big_endian>(p, blr);
4984   return p + 4;
4985 }
4986
4987 template<bool big_endian>
4988 static unsigned char*
4989 restfpr(unsigned char* p, int r)
4990 {
4991   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4992   write_insn<big_endian>(p, insn);
4993   return p + 4;
4994 }
4995
4996 template<bool big_endian>
4997 static unsigned char*
4998 restfpr0_tail(unsigned char* p, int r)
4999 {
5000   write_insn<big_endian>(p, ld_0_1 + 16);
5001   p = p + 4;
5002   p = restfpr<big_endian>(p, r);
5003   write_insn<big_endian>(p, mtlr_0);
5004   p = p + 4;
5005   if (r == 29)
5006     {
5007       p = restfpr<big_endian>(p, 30);
5008       p = restfpr<big_endian>(p, 31);
5009     }
5010   write_insn<big_endian>(p, blr);
5011   return p + 4;
5012 }
5013
5014 template<bool big_endian>
5015 static unsigned char*
5016 savefpr1_tail(unsigned char* p, int r)
5017 {
5018   p = savefpr<big_endian>(p, r);
5019   write_insn<big_endian>(p, blr);
5020   return p + 4;
5021 }
5022
5023 template<bool big_endian>
5024 static unsigned char*
5025 restfpr1_tail(unsigned char* p, int r)
5026 {
5027   p = restfpr<big_endian>(p, r);
5028   write_insn<big_endian>(p, blr);
5029   return p + 4;
5030 }
5031
5032 template<bool big_endian>
5033 static unsigned char*
5034 savevr(unsigned char* p, int r)
5035 {
5036   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5037   write_insn<big_endian>(p, insn);
5038   p = p + 4;
5039   insn = stvx_0_12_0 + (r << 21);
5040   write_insn<big_endian>(p, insn);
5041   return p + 4;
5042 }
5043
5044 template<bool big_endian>
5045 static unsigned char*
5046 savevr_tail(unsigned char* p, int r)
5047 {
5048   p = savevr<big_endian>(p, r);
5049   write_insn<big_endian>(p, blr);
5050   return p + 4;
5051 }
5052
5053 template<bool big_endian>
5054 static unsigned char*
5055 restvr(unsigned char* p, int r)
5056 {
5057   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5058   write_insn<big_endian>(p, insn);
5059   p = p + 4;
5060   insn = lvx_0_12_0 + (r << 21);
5061   write_insn<big_endian>(p, insn);
5062   return p + 4;
5063 }
5064
5065 template<bool big_endian>
5066 static unsigned char*
5067 restvr_tail(unsigned char* p, int r)
5068 {
5069   p = restvr<big_endian>(p, r);
5070   write_insn<big_endian>(p, blr);
5071   return p + 4;
5072 }
5073
5074
5075 template<int size, bool big_endian>
5076 Output_data_save_res<size, big_endian>::Output_data_save_res(
5077     Symbol_table* symtab)
5078   : Output_section_data_build(4),
5079     contents_(NULL)
5080 {
5081   this->savres_define(symtab,
5082                       "_savegpr0_", 14, 31,
5083                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5084   this->savres_define(symtab,
5085                       "_restgpr0_", 14, 29,
5086                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5087   this->savres_define(symtab,
5088                       "_restgpr0_", 30, 31,
5089                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5090   this->savres_define(symtab,
5091                       "_savegpr1_", 14, 31,
5092                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5093   this->savres_define(symtab,
5094                       "_restgpr1_", 14, 31,
5095                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5096   this->savres_define(symtab,
5097                       "_savefpr_", 14, 31,
5098                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5099   this->savres_define(symtab,
5100                       "_restfpr_", 14, 29,
5101                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5102   this->savres_define(symtab,
5103                       "_restfpr_", 30, 31,
5104                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5105   this->savres_define(symtab,
5106                       "._savef", 14, 31,
5107                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5108   this->savres_define(symtab,
5109                       "._restf", 14, 31,
5110                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5111   this->savres_define(symtab,
5112                       "_savevr_", 20, 31,
5113                       savevr<big_endian>, savevr_tail<big_endian>);
5114   this->savres_define(symtab,
5115                       "_restvr_", 20, 31,
5116                       restvr<big_endian>, restvr_tail<big_endian>);
5117 }
5118
5119 template<int size, bool big_endian>
5120 void
5121 Output_data_save_res<size, big_endian>::savres_define(
5122     Symbol_table* symtab,
5123     const char *name,
5124     unsigned int lo, unsigned int hi,
5125     unsigned char* write_ent(unsigned char*, int),
5126     unsigned char* write_tail(unsigned char*, int))
5127 {
5128   size_t len = strlen(name);
5129   bool writing = false;
5130   char sym[16];
5131
5132   memcpy(sym, name, len);
5133   sym[len + 2] = 0;
5134
5135   for (unsigned int i = lo; i <= hi; i++)
5136     {
5137       sym[len + 0] = i / 10 + '0';
5138       sym[len + 1] = i % 10 + '0';
5139       Symbol* gsym = symtab->lookup(sym);
5140       bool refd = gsym != NULL && gsym->is_undefined();
5141       writing = writing || refd;
5142       if (writing)
5143         {
5144           if (this->contents_ == NULL)
5145             this->contents_ = new unsigned char[this->savres_max];
5146
5147           section_size_type value = this->current_data_size();
5148           unsigned char* p = this->contents_ + value;
5149           if (i != hi)
5150             p = write_ent(p, i);
5151           else
5152             p = write_tail(p, i);
5153           section_size_type cur_size = p - this->contents_;
5154           this->set_current_data_size(cur_size);
5155           if (refd)
5156             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5157                                           this, value, cur_size - value,
5158                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5159                                           elfcpp::STV_HIDDEN, 0, false, false);
5160         }
5161     }
5162 }
5163
5164 // Write out save/restore.
5165
5166 template<int size, bool big_endian>
5167 void
5168 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5169 {
5170   const section_size_type off = this->offset();
5171   const section_size_type oview_size =
5172     convert_to_section_size_type(this->data_size());
5173   unsigned char* const oview = of->get_output_view(off, oview_size);
5174   memcpy(oview, this->contents_, oview_size);
5175   of->write_output_view(off, oview_size, oview);
5176 }
5177
5178
5179 // Create the glink section.
5180
5181 template<int size, bool big_endian>
5182 void
5183 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5184 {
5185   if (this->glink_ == NULL)
5186     {
5187       this->glink_ = new Output_data_glink<size, big_endian>(this);
5188       this->glink_->add_eh_frame(layout);
5189       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5190                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5191                                       this->glink_, ORDER_TEXT, false);
5192     }
5193 }
5194
5195 // Create a PLT entry for a global symbol.
5196
5197 template<int size, bool big_endian>
5198 void
5199 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5200                                                  Layout* layout,
5201                                                  Symbol* gsym)
5202 {
5203   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5204       && gsym->can_use_relative_reloc(false))
5205     {
5206       if (this->iplt_ == NULL)
5207         this->make_iplt_section(symtab, layout);
5208       this->iplt_->add_ifunc_entry(gsym);
5209     }
5210   else
5211     {
5212       if (this->plt_ == NULL)
5213         this->make_plt_section(symtab, layout);
5214       this->plt_->add_entry(gsym);
5215     }
5216 }
5217
5218 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5219
5220 template<int size, bool big_endian>
5221 void
5222 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5223     Symbol_table* symtab,
5224     Layout* layout,
5225     Sized_relobj_file<size, big_endian>* relobj,
5226     unsigned int r_sym)
5227 {
5228   if (this->iplt_ == NULL)
5229     this->make_iplt_section(symtab, layout);
5230   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5231 }
5232
5233 // Return the number of entries in the PLT.
5234
5235 template<int size, bool big_endian>
5236 unsigned int
5237 Target_powerpc<size, big_endian>::plt_entry_count() const
5238 {
5239   if (this->plt_ == NULL)
5240     return 0;
5241   return this->plt_->entry_count();
5242 }
5243
5244 // Create a GOT entry for local dynamic __tls_get_addr calls.
5245
5246 template<int size, bool big_endian>
5247 unsigned int
5248 Target_powerpc<size, big_endian>::tlsld_got_offset(
5249     Symbol_table* symtab,
5250     Layout* layout,
5251     Sized_relobj_file<size, big_endian>* object)
5252 {
5253   if (this->tlsld_got_offset_ == -1U)
5254     {
5255       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5256       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5257       Output_data_got_powerpc<size, big_endian>* got
5258         = this->got_section(symtab, layout);
5259       unsigned int got_offset = got->add_constant_pair(0, 0);
5260       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5261                           got_offset, 0);
5262       this->tlsld_got_offset_ = got_offset;
5263     }
5264   return this->tlsld_got_offset_;
5265 }
5266
5267 // Get the Reference_flags for a particular relocation.
5268
5269 template<int size, bool big_endian>
5270 int
5271 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5272     unsigned int r_type,
5273     const Target_powerpc* target)
5274 {
5275   int ref = 0;
5276
5277   switch (r_type)
5278     {
5279     case elfcpp::R_POWERPC_NONE:
5280     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5281     case elfcpp::R_POWERPC_GNU_VTENTRY:
5282     case elfcpp::R_PPC64_TOC:
5283       // No symbol reference.
5284       break;
5285
5286     case elfcpp::R_PPC64_ADDR64:
5287     case elfcpp::R_PPC64_UADDR64:
5288     case elfcpp::R_POWERPC_ADDR32:
5289     case elfcpp::R_POWERPC_UADDR32:
5290     case elfcpp::R_POWERPC_ADDR16:
5291     case elfcpp::R_POWERPC_UADDR16:
5292     case elfcpp::R_POWERPC_ADDR16_LO:
5293     case elfcpp::R_POWERPC_ADDR16_HI:
5294     case elfcpp::R_POWERPC_ADDR16_HA:
5295       ref = Symbol::ABSOLUTE_REF;
5296       break;
5297
5298     case elfcpp::R_POWERPC_ADDR24:
5299     case elfcpp::R_POWERPC_ADDR14:
5300     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5301     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5302       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5303       break;
5304
5305     case elfcpp::R_PPC64_REL64:
5306     case elfcpp::R_POWERPC_REL32:
5307     case elfcpp::R_PPC_LOCAL24PC:
5308     case elfcpp::R_POWERPC_REL16:
5309     case elfcpp::R_POWERPC_REL16_LO:
5310     case elfcpp::R_POWERPC_REL16_HI:
5311     case elfcpp::R_POWERPC_REL16_HA:
5312       ref = Symbol::RELATIVE_REF;
5313       break;
5314
5315     case elfcpp::R_POWERPC_REL24:
5316     case elfcpp::R_PPC_PLTREL24:
5317     case elfcpp::R_POWERPC_REL14:
5318     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5319     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5320       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5321       break;
5322
5323     case elfcpp::R_POWERPC_GOT16:
5324     case elfcpp::R_POWERPC_GOT16_LO:
5325     case elfcpp::R_POWERPC_GOT16_HI:
5326     case elfcpp::R_POWERPC_GOT16_HA:
5327     case elfcpp::R_PPC64_GOT16_DS:
5328     case elfcpp::R_PPC64_GOT16_LO_DS:
5329     case elfcpp::R_PPC64_TOC16:
5330     case elfcpp::R_PPC64_TOC16_LO:
5331     case elfcpp::R_PPC64_TOC16_HI:
5332     case elfcpp::R_PPC64_TOC16_HA:
5333     case elfcpp::R_PPC64_TOC16_DS:
5334     case elfcpp::R_PPC64_TOC16_LO_DS:
5335       ref = Symbol::RELATIVE_REF;
5336       break;
5337
5338     case elfcpp::R_POWERPC_GOT_TPREL16:
5339     case elfcpp::R_POWERPC_TLS:
5340       ref = Symbol::TLS_REF;
5341       break;
5342
5343     case elfcpp::R_POWERPC_COPY:
5344     case elfcpp::R_POWERPC_GLOB_DAT:
5345     case elfcpp::R_POWERPC_JMP_SLOT:
5346     case elfcpp::R_POWERPC_RELATIVE:
5347     case elfcpp::R_POWERPC_DTPMOD:
5348     default:
5349       // Not expected.  We will give an error later.
5350       break;
5351     }
5352
5353   if (size == 64 && target->abiversion() < 2)
5354     ref |= Symbol::FUNC_DESC_ABI;
5355   return ref;
5356 }
5357
5358 // Report an unsupported relocation against a local symbol.
5359
5360 template<int size, bool big_endian>
5361 void
5362 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5363     Sized_relobj_file<size, big_endian>* object,
5364     unsigned int r_type)
5365 {
5366   gold_error(_("%s: unsupported reloc %u against local symbol"),
5367              object->name().c_str(), r_type);
5368 }
5369
5370 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5371 // dynamic linker does not support it, issue an error.
5372
5373 template<int size, bool big_endian>
5374 void
5375 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5376                                                       unsigned int r_type)
5377 {
5378   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5379
5380   // These are the relocation types supported by glibc for both 32-bit
5381   // and 64-bit powerpc.
5382   switch (r_type)
5383     {
5384     case elfcpp::R_POWERPC_NONE:
5385     case elfcpp::R_POWERPC_RELATIVE:
5386     case elfcpp::R_POWERPC_GLOB_DAT:
5387     case elfcpp::R_POWERPC_DTPMOD:
5388     case elfcpp::R_POWERPC_DTPREL:
5389     case elfcpp::R_POWERPC_TPREL:
5390     case elfcpp::R_POWERPC_JMP_SLOT:
5391     case elfcpp::R_POWERPC_COPY:
5392     case elfcpp::R_POWERPC_IRELATIVE:
5393     case elfcpp::R_POWERPC_ADDR32:
5394     case elfcpp::R_POWERPC_UADDR32:
5395     case elfcpp::R_POWERPC_ADDR24:
5396     case elfcpp::R_POWERPC_ADDR16:
5397     case elfcpp::R_POWERPC_UADDR16:
5398     case elfcpp::R_POWERPC_ADDR16_LO:
5399     case elfcpp::R_POWERPC_ADDR16_HI:
5400     case elfcpp::R_POWERPC_ADDR16_HA:
5401     case elfcpp::R_POWERPC_ADDR14:
5402     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5403     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5404     case elfcpp::R_POWERPC_REL32:
5405     case elfcpp::R_POWERPC_REL24:
5406     case elfcpp::R_POWERPC_TPREL16:
5407     case elfcpp::R_POWERPC_TPREL16_LO:
5408     case elfcpp::R_POWERPC_TPREL16_HI:
5409     case elfcpp::R_POWERPC_TPREL16_HA:
5410       return;
5411
5412     default:
5413       break;
5414     }
5415
5416   if (size == 64)
5417     {
5418       switch (r_type)
5419         {
5420           // These are the relocation types supported only on 64-bit.
5421         case elfcpp::R_PPC64_ADDR64:
5422         case elfcpp::R_PPC64_UADDR64:
5423         case elfcpp::R_PPC64_JMP_IREL:
5424         case elfcpp::R_PPC64_ADDR16_DS:
5425         case elfcpp::R_PPC64_ADDR16_LO_DS:
5426         case elfcpp::R_PPC64_ADDR16_HIGH:
5427         case elfcpp::R_PPC64_ADDR16_HIGHA:
5428         case elfcpp::R_PPC64_ADDR16_HIGHER:
5429         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5430         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5431         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5432         case elfcpp::R_PPC64_REL64:
5433         case elfcpp::R_POWERPC_ADDR30:
5434         case elfcpp::R_PPC64_TPREL16_DS:
5435         case elfcpp::R_PPC64_TPREL16_LO_DS:
5436         case elfcpp::R_PPC64_TPREL16_HIGH:
5437         case elfcpp::R_PPC64_TPREL16_HIGHA:
5438         case elfcpp::R_PPC64_TPREL16_HIGHER:
5439         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5440         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5441         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5442           return;
5443
5444         default:
5445           break;
5446         }
5447     }
5448   else
5449     {
5450       switch (r_type)
5451         {
5452           // These are the relocation types supported only on 32-bit.
5453           // ??? glibc ld.so doesn't need to support these.
5454         case elfcpp::R_POWERPC_DTPREL16:
5455         case elfcpp::R_POWERPC_DTPREL16_LO:
5456         case elfcpp::R_POWERPC_DTPREL16_HI:
5457         case elfcpp::R_POWERPC_DTPREL16_HA:
5458           return;
5459
5460         default:
5461           break;
5462         }
5463     }
5464
5465   // This prevents us from issuing more than one error per reloc
5466   // section.  But we can still wind up issuing more than one
5467   // error per object file.
5468   if (this->issued_non_pic_error_)
5469     return;
5470   gold_assert(parameters->options().output_is_position_independent());
5471   object->error(_("requires unsupported dynamic reloc; "
5472                   "recompile with -fPIC"));
5473   this->issued_non_pic_error_ = true;
5474   return;
5475 }
5476
5477 // Return whether we need to make a PLT entry for a relocation of the
5478 // given type against a STT_GNU_IFUNC symbol.
5479
5480 template<int size, bool big_endian>
5481 bool
5482 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5483      Target_powerpc<size, big_endian>* target,
5484      Sized_relobj_file<size, big_endian>* object,
5485      unsigned int r_type,
5486      bool report_err)
5487 {
5488   // In non-pic code any reference will resolve to the plt call stub
5489   // for the ifunc symbol.
5490   if ((size == 32 || target->abiversion() >= 2)
5491       && !parameters->options().output_is_position_independent())
5492     return true;
5493
5494   switch (r_type)
5495     {
5496     // Word size refs from data sections are OK, but don't need a PLT entry.
5497     case elfcpp::R_POWERPC_ADDR32:
5498     case elfcpp::R_POWERPC_UADDR32:
5499       if (size == 32)
5500         return false;
5501       break;
5502
5503     case elfcpp::R_PPC64_ADDR64:
5504     case elfcpp::R_PPC64_UADDR64:
5505       if (size == 64)
5506         return false;
5507       break;
5508
5509     // GOT refs are good, but also don't need a PLT entry.
5510     case elfcpp::R_POWERPC_GOT16:
5511     case elfcpp::R_POWERPC_GOT16_LO:
5512     case elfcpp::R_POWERPC_GOT16_HI:
5513     case elfcpp::R_POWERPC_GOT16_HA:
5514     case elfcpp::R_PPC64_GOT16_DS:
5515     case elfcpp::R_PPC64_GOT16_LO_DS:
5516       return false;
5517
5518     // Function calls are good, and these do need a PLT entry.
5519     case elfcpp::R_POWERPC_ADDR24:
5520     case elfcpp::R_POWERPC_ADDR14:
5521     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5522     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5523     case elfcpp::R_POWERPC_REL24:
5524     case elfcpp::R_PPC_PLTREL24:
5525     case elfcpp::R_POWERPC_REL14:
5526     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5527     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5528       return true;
5529
5530     default:
5531       break;
5532     }
5533
5534   // Anything else is a problem.
5535   // If we are building a static executable, the libc startup function
5536   // responsible for applying indirect function relocations is going
5537   // to complain about the reloc type.
5538   // If we are building a dynamic executable, we will have a text
5539   // relocation.  The dynamic loader will set the text segment
5540   // writable and non-executable to apply text relocations.  So we'll
5541   // segfault when trying to run the indirection function to resolve
5542   // the reloc.
5543   if (report_err)
5544     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5545                object->name().c_str(), r_type);
5546   return false;
5547 }
5548
5549 // Scan a relocation for a local symbol.
5550
5551 template<int size, bool big_endian>
5552 inline void
5553 Target_powerpc<size, big_endian>::Scan::local(
5554     Symbol_table* symtab,
5555     Layout* layout,
5556     Target_powerpc<size, big_endian>* target,
5557     Sized_relobj_file<size, big_endian>* object,
5558     unsigned int data_shndx,
5559     Output_section* output_section,
5560     const elfcpp::Rela<size, big_endian>& reloc,
5561     unsigned int r_type,
5562     const elfcpp::Sym<size, big_endian>& lsym,
5563     bool is_discarded)
5564 {
5565   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5566
5567   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5568       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5569     {
5570       this->expect_tls_get_addr_call();
5571       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5572       if (tls_type != tls::TLSOPT_NONE)
5573         this->skip_next_tls_get_addr_call();
5574     }
5575   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5576            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5577     {
5578       this->expect_tls_get_addr_call();
5579       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5580       if (tls_type != tls::TLSOPT_NONE)
5581         this->skip_next_tls_get_addr_call();
5582     }
5583
5584   Powerpc_relobj<size, big_endian>* ppc_object
5585     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5586
5587   if (is_discarded)
5588     {
5589       if (size == 64
5590           && data_shndx == ppc_object->opd_shndx()
5591           && r_type == elfcpp::R_PPC64_ADDR64)
5592         ppc_object->set_opd_discard(reloc.get_r_offset());
5593       return;
5594     }
5595
5596   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5597   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5598   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5599     {
5600       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5601       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5602                           r_type, r_sym, reloc.get_r_addend());
5603       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5604     }
5605
5606   switch (r_type)
5607     {
5608     case elfcpp::R_POWERPC_NONE:
5609     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5610     case elfcpp::R_POWERPC_GNU_VTENTRY:
5611     case elfcpp::R_PPC64_TOCSAVE:
5612     case elfcpp::R_POWERPC_TLS:
5613     case elfcpp::R_PPC64_ENTRY:
5614       break;
5615
5616     case elfcpp::R_PPC64_TOC:
5617       {
5618         Output_data_got_powerpc<size, big_endian>* got
5619           = target->got_section(symtab, layout);
5620         if (parameters->options().output_is_position_independent())
5621           {
5622             Address off = reloc.get_r_offset();
5623             if (size == 64
5624                 && target->abiversion() < 2
5625                 && data_shndx == ppc_object->opd_shndx()
5626                 && ppc_object->get_opd_discard(off - 8))
5627               break;
5628
5629             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5630             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5631             rela_dyn->add_output_section_relative(got->output_section(),
5632                                                   elfcpp::R_POWERPC_RELATIVE,
5633                                                   output_section,
5634                                                   object, data_shndx, off,
5635                                                   symobj->toc_base_offset());
5636           }
5637       }
5638       break;
5639
5640     case elfcpp::R_PPC64_ADDR64:
5641     case elfcpp::R_PPC64_UADDR64:
5642     case elfcpp::R_POWERPC_ADDR32:
5643     case elfcpp::R_POWERPC_UADDR32:
5644     case elfcpp::R_POWERPC_ADDR24:
5645     case elfcpp::R_POWERPC_ADDR16:
5646     case elfcpp::R_POWERPC_ADDR16_LO:
5647     case elfcpp::R_POWERPC_ADDR16_HI:
5648     case elfcpp::R_POWERPC_ADDR16_HA:
5649     case elfcpp::R_POWERPC_UADDR16:
5650     case elfcpp::R_PPC64_ADDR16_HIGH:
5651     case elfcpp::R_PPC64_ADDR16_HIGHA:
5652     case elfcpp::R_PPC64_ADDR16_HIGHER:
5653     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5654     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5655     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5656     case elfcpp::R_PPC64_ADDR16_DS:
5657     case elfcpp::R_PPC64_ADDR16_LO_DS:
5658     case elfcpp::R_POWERPC_ADDR14:
5659     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5660     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5661       // If building a shared library (or a position-independent
5662       // executable), we need to create a dynamic relocation for
5663       // this location.
5664       if (parameters->options().output_is_position_independent()
5665           || (size == 64 && is_ifunc && target->abiversion() < 2))
5666         {
5667           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5668                                                              is_ifunc);
5669           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5671               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5672             {
5673               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5674                                      : elfcpp::R_POWERPC_RELATIVE);
5675               rela_dyn->add_local_relative(object, r_sym, dynrel,
5676                                            output_section, data_shndx,
5677                                            reloc.get_r_offset(),
5678                                            reloc.get_r_addend(), false);
5679             }
5680           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5681             {
5682               check_non_pic(object, r_type);
5683               rela_dyn->add_local(object, r_sym, r_type, output_section,
5684                                   data_shndx, reloc.get_r_offset(),
5685                                   reloc.get_r_addend());
5686             }
5687           else
5688             {
5689               gold_assert(lsym.get_st_value() == 0);
5690               unsigned int shndx = lsym.get_st_shndx();
5691               bool is_ordinary;
5692               shndx = object->adjust_sym_shndx(r_sym, shndx,
5693                                                &is_ordinary);
5694               if (!is_ordinary)
5695                 object->error(_("section symbol %u has bad shndx %u"),
5696                               r_sym, shndx);
5697               else
5698                 rela_dyn->add_local_section(object, shndx, r_type,
5699                                             output_section, data_shndx,
5700                                             reloc.get_r_offset());
5701             }
5702         }
5703       break;
5704
5705     case elfcpp::R_POWERPC_REL24:
5706     case elfcpp::R_PPC_PLTREL24:
5707     case elfcpp::R_PPC_LOCAL24PC:
5708     case elfcpp::R_POWERPC_REL14:
5709     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5710     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5711       if (!is_ifunc)
5712         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5713                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5714                             reloc.get_r_addend());
5715       break;
5716
5717     case elfcpp::R_PPC64_REL64:
5718     case elfcpp::R_POWERPC_REL32:
5719     case elfcpp::R_POWERPC_REL16:
5720     case elfcpp::R_POWERPC_REL16_LO:
5721     case elfcpp::R_POWERPC_REL16_HI:
5722     case elfcpp::R_POWERPC_REL16_HA:
5723     case elfcpp::R_POWERPC_REL16DX_HA:
5724     case elfcpp::R_POWERPC_SECTOFF:
5725     case elfcpp::R_POWERPC_SECTOFF_LO:
5726     case elfcpp::R_POWERPC_SECTOFF_HI:
5727     case elfcpp::R_POWERPC_SECTOFF_HA:
5728     case elfcpp::R_PPC64_SECTOFF_DS:
5729     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5730     case elfcpp::R_POWERPC_TPREL16:
5731     case elfcpp::R_POWERPC_TPREL16_LO:
5732     case elfcpp::R_POWERPC_TPREL16_HI:
5733     case elfcpp::R_POWERPC_TPREL16_HA:
5734     case elfcpp::R_PPC64_TPREL16_DS:
5735     case elfcpp::R_PPC64_TPREL16_LO_DS:
5736     case elfcpp::R_PPC64_TPREL16_HIGH:
5737     case elfcpp::R_PPC64_TPREL16_HIGHA:
5738     case elfcpp::R_PPC64_TPREL16_HIGHER:
5739     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5740     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5741     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5742     case elfcpp::R_POWERPC_DTPREL16:
5743     case elfcpp::R_POWERPC_DTPREL16_LO:
5744     case elfcpp::R_POWERPC_DTPREL16_HI:
5745     case elfcpp::R_POWERPC_DTPREL16_HA:
5746     case elfcpp::R_PPC64_DTPREL16_DS:
5747     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5748     case elfcpp::R_PPC64_DTPREL16_HIGH:
5749     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5750     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5751     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5752     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5753     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5754     case elfcpp::R_PPC64_TLSGD:
5755     case elfcpp::R_PPC64_TLSLD:
5756     case elfcpp::R_PPC64_ADDR64_LOCAL:
5757       break;
5758
5759     case elfcpp::R_POWERPC_GOT16:
5760     case elfcpp::R_POWERPC_GOT16_LO:
5761     case elfcpp::R_POWERPC_GOT16_HI:
5762     case elfcpp::R_POWERPC_GOT16_HA:
5763     case elfcpp::R_PPC64_GOT16_DS:
5764     case elfcpp::R_PPC64_GOT16_LO_DS:
5765       {
5766         // The symbol requires a GOT entry.
5767         Output_data_got_powerpc<size, big_endian>* got
5768           = target->got_section(symtab, layout);
5769         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5770
5771         if (!parameters->options().output_is_position_independent())
5772           {
5773             if (is_ifunc
5774                 && (size == 32 || target->abiversion() >= 2))
5775               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5776             else
5777               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5778           }
5779         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5780           {
5781             // If we are generating a shared object or a pie, this
5782             // symbol's GOT entry will be set by a dynamic relocation.
5783             unsigned int off;
5784             off = got->add_constant(0);
5785             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5786
5787             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5788                                                                is_ifunc);
5789             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5790                                    : elfcpp::R_POWERPC_RELATIVE);
5791             rela_dyn->add_local_relative(object, r_sym, dynrel,
5792                                          got, off, 0, false);
5793           }
5794       }
5795       break;
5796
5797     case elfcpp::R_PPC64_TOC16:
5798     case elfcpp::R_PPC64_TOC16_LO:
5799     case elfcpp::R_PPC64_TOC16_HI:
5800     case elfcpp::R_PPC64_TOC16_HA:
5801     case elfcpp::R_PPC64_TOC16_DS:
5802     case elfcpp::R_PPC64_TOC16_LO_DS:
5803       // We need a GOT section.
5804       target->got_section(symtab, layout);
5805       break;
5806
5807     case elfcpp::R_POWERPC_GOT_TLSGD16:
5808     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5809     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5810     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5811       {
5812         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5813         if (tls_type == tls::TLSOPT_NONE)
5814           {
5815             Output_data_got_powerpc<size, big_endian>* got
5816               = target->got_section(symtab, layout);
5817             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5818             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5819             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5820                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5821           }
5822         else if (tls_type == tls::TLSOPT_TO_LE)
5823           {
5824             // no GOT relocs needed for Local Exec.
5825           }
5826         else
5827           gold_unreachable();
5828       }
5829       break;
5830
5831     case elfcpp::R_POWERPC_GOT_TLSLD16:
5832     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5833     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5834     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5835       {
5836         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5837         if (tls_type == tls::TLSOPT_NONE)
5838           target->tlsld_got_offset(symtab, layout, object);
5839         else if (tls_type == tls::TLSOPT_TO_LE)
5840           {
5841             // no GOT relocs needed for Local Exec.
5842             if (parameters->options().emit_relocs())
5843               {
5844                 Output_section* os = layout->tls_segment()->first_section();
5845                 gold_assert(os != NULL);
5846                 os->set_needs_symtab_index();
5847               }
5848           }
5849         else
5850           gold_unreachable();
5851       }
5852       break;
5853
5854     case elfcpp::R_POWERPC_GOT_DTPREL16:
5855     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5856     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5857     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5858       {
5859         Output_data_got_powerpc<size, big_endian>* got
5860           = target->got_section(symtab, layout);
5861         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5862         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5863       }
5864       break;
5865
5866     case elfcpp::R_POWERPC_GOT_TPREL16:
5867     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5868     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5869     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5870       {
5871         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5872         if (tls_type == tls::TLSOPT_NONE)
5873           {
5874             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5875             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5876               {
5877                 Output_data_got_powerpc<size, big_endian>* got
5878                   = target->got_section(symtab, layout);
5879                 unsigned int off = got->add_constant(0);
5880                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5881
5882                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5883                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5884                                                       elfcpp::R_POWERPC_TPREL,
5885                                                       got, off, 0);
5886               }
5887           }
5888         else if (tls_type == tls::TLSOPT_TO_LE)
5889           {
5890             // no GOT relocs needed for Local Exec.
5891           }
5892         else
5893           gold_unreachable();
5894       }
5895       break;
5896
5897     default:
5898       unsupported_reloc_local(object, r_type);
5899       break;
5900     }
5901
5902   switch (r_type)
5903     {
5904     case elfcpp::R_POWERPC_GOT_TLSLD16:
5905     case elfcpp::R_POWERPC_GOT_TLSGD16:
5906     case elfcpp::R_POWERPC_GOT_TPREL16:
5907     case elfcpp::R_POWERPC_GOT_DTPREL16:
5908     case elfcpp::R_POWERPC_GOT16:
5909     case elfcpp::R_PPC64_GOT16_DS:
5910     case elfcpp::R_PPC64_TOC16:
5911     case elfcpp::R_PPC64_TOC16_DS:
5912       ppc_object->set_has_small_toc_reloc();
5913     default:
5914       break;
5915     }
5916 }
5917
5918 // Report an unsupported relocation against a global symbol.
5919
5920 template<int size, bool big_endian>
5921 void
5922 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5923     Sized_relobj_file<size, big_endian>* object,
5924     unsigned int r_type,
5925     Symbol* gsym)
5926 {
5927   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5928              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5929 }
5930
5931 // Scan a relocation for a global symbol.
5932
5933 template<int size, bool big_endian>
5934 inline void
5935 Target_powerpc<size, big_endian>::Scan::global(
5936     Symbol_table* symtab,
5937     Layout* layout,
5938     Target_powerpc<size, big_endian>* target,
5939     Sized_relobj_file<size, big_endian>* object,
5940     unsigned int data_shndx,
5941     Output_section* output_section,
5942     const elfcpp::Rela<size, big_endian>& reloc,
5943     unsigned int r_type,
5944     Symbol* gsym)
5945 {
5946   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5947     return;
5948
5949   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5950       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5951     {
5952       this->expect_tls_get_addr_call();
5953       const bool final = gsym->final_value_is_known();
5954       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5955       if (tls_type != tls::TLSOPT_NONE)
5956         this->skip_next_tls_get_addr_call();
5957     }
5958   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5959            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5960     {
5961       this->expect_tls_get_addr_call();
5962       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5963       if (tls_type != tls::TLSOPT_NONE)
5964         this->skip_next_tls_get_addr_call();
5965     }
5966
5967   Powerpc_relobj<size, big_endian>* ppc_object
5968     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5969
5970   // A STT_GNU_IFUNC symbol may require a PLT entry.
5971   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5972   bool pushed_ifunc = false;
5973   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5974     {
5975       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5976                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5977                           reloc.get_r_addend());
5978       target->make_plt_entry(symtab, layout, gsym);
5979       pushed_ifunc = true;
5980     }
5981
5982   switch (r_type)
5983     {
5984     case elfcpp::R_POWERPC_NONE:
5985     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5986     case elfcpp::R_POWERPC_GNU_VTENTRY:
5987     case elfcpp::R_PPC_LOCAL24PC:
5988     case elfcpp::R_POWERPC_TLS:
5989     case elfcpp::R_PPC64_ENTRY:
5990       break;
5991
5992     case elfcpp::R_PPC64_TOC:
5993       {
5994         Output_data_got_powerpc<size, big_endian>* got
5995           = target->got_section(symtab, layout);
5996         if (parameters->options().output_is_position_independent())
5997           {
5998             Address off = reloc.get_r_offset();
5999             if (size == 64
6000                 && data_shndx == ppc_object->opd_shndx()
6001                 && ppc_object->get_opd_discard(off - 8))
6002               break;
6003
6004             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6005             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6006             if (data_shndx != ppc_object->opd_shndx())
6007               symobj = static_cast
6008                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6009             rela_dyn->add_output_section_relative(got->output_section(),
6010                                                   elfcpp::R_POWERPC_RELATIVE,
6011                                                   output_section,
6012                                                   object, data_shndx, off,
6013                                                   symobj->toc_base_offset());
6014           }
6015       }
6016       break;
6017
6018     case elfcpp::R_PPC64_ADDR64:
6019       if (size == 64
6020           && target->abiversion() < 2
6021           && data_shndx == ppc_object->opd_shndx()
6022           && (gsym->is_defined_in_discarded_section()
6023               || gsym->object() != object))
6024         {
6025           ppc_object->set_opd_discard(reloc.get_r_offset());
6026           break;
6027         }
6028       // Fall thru
6029     case elfcpp::R_PPC64_UADDR64:
6030     case elfcpp::R_POWERPC_ADDR32:
6031     case elfcpp::R_POWERPC_UADDR32:
6032     case elfcpp::R_POWERPC_ADDR24:
6033     case elfcpp::R_POWERPC_ADDR16:
6034     case elfcpp::R_POWERPC_ADDR16_LO:
6035     case elfcpp::R_POWERPC_ADDR16_HI:
6036     case elfcpp::R_POWERPC_ADDR16_HA:
6037     case elfcpp::R_POWERPC_UADDR16:
6038     case elfcpp::R_PPC64_ADDR16_HIGH:
6039     case elfcpp::R_PPC64_ADDR16_HIGHA:
6040     case elfcpp::R_PPC64_ADDR16_HIGHER:
6041     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6042     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6043     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6044     case elfcpp::R_PPC64_ADDR16_DS:
6045     case elfcpp::R_PPC64_ADDR16_LO_DS:
6046     case elfcpp::R_POWERPC_ADDR14:
6047     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6048     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6049       {
6050         // Make a PLT entry if necessary.
6051         if (gsym->needs_plt_entry())
6052           {
6053             // Since this is not a PC-relative relocation, we may be
6054             // taking the address of a function. In that case we need to
6055             // set the entry in the dynamic symbol table to the address of
6056             // the PLT call stub.
6057             bool need_ifunc_plt = false;
6058             if ((size == 32 || target->abiversion() >= 2)
6059                 && gsym->is_from_dynobj()
6060                 && !parameters->options().output_is_position_independent())
6061               {
6062                 gsym->set_needs_dynsym_value();
6063                 need_ifunc_plt = true;
6064               }
6065             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6066               {
6067                 target->push_branch(ppc_object, data_shndx,
6068                                     reloc.get_r_offset(), r_type,
6069                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6070                                     reloc.get_r_addend());
6071                 target->make_plt_entry(symtab, layout, gsym);
6072               }
6073           }
6074         // Make a dynamic relocation if necessary.
6075         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6076             || (size == 64 && is_ifunc && target->abiversion() < 2))
6077           {
6078             if (!parameters->options().output_is_position_independent()
6079                 && gsym->may_need_copy_reloc())
6080               {
6081                 target->copy_reloc(symtab, layout, object,
6082                                    data_shndx, output_section, gsym, reloc);
6083               }
6084             else if ((((size == 32
6085                         && r_type == elfcpp::R_POWERPC_ADDR32)
6086                        || (size == 64
6087                            && r_type == elfcpp::R_PPC64_ADDR64
6088                            && target->abiversion() >= 2))
6089                       && gsym->can_use_relative_reloc(false)
6090                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6091                            && parameters->options().shared()))
6092                      || (size == 64
6093                          && r_type == elfcpp::R_PPC64_ADDR64
6094                          && target->abiversion() < 2
6095                          && (gsym->can_use_relative_reloc(false)
6096                              || data_shndx == ppc_object->opd_shndx())))
6097               {
6098                 Reloc_section* rela_dyn
6099                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6100                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6101                                        : elfcpp::R_POWERPC_RELATIVE);
6102                 rela_dyn->add_symbolless_global_addend(
6103                     gsym, dynrel, output_section, object, data_shndx,
6104                     reloc.get_r_offset(), reloc.get_r_addend());
6105               }
6106             else
6107               {
6108                 Reloc_section* rela_dyn
6109                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6110                 check_non_pic(object, r_type);
6111                 rela_dyn->add_global(gsym, r_type, output_section,
6112                                      object, data_shndx,
6113                                      reloc.get_r_offset(),
6114                                      reloc.get_r_addend());
6115               }
6116           }
6117       }
6118       break;
6119
6120     case elfcpp::R_PPC_PLTREL24:
6121     case elfcpp::R_POWERPC_REL24:
6122       if (!is_ifunc)
6123         {
6124           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6125                               r_type,
6126                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6127                               reloc.get_r_addend());
6128           if (gsym->needs_plt_entry()
6129               || (!gsym->final_value_is_known()
6130                   && (gsym->is_undefined()
6131                       || gsym->is_from_dynobj()
6132                       || gsym->is_preemptible())))
6133             target->make_plt_entry(symtab, layout, gsym);
6134         }
6135       // Fall thru
6136
6137     case elfcpp::R_PPC64_REL64:
6138     case elfcpp::R_POWERPC_REL32:
6139       // Make a dynamic relocation if necessary.
6140       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6141         {
6142           if (!parameters->options().output_is_position_independent()
6143               && gsym->may_need_copy_reloc())
6144             {
6145               target->copy_reloc(symtab, layout, object,
6146                                  data_shndx, output_section, gsym,
6147                                  reloc);
6148             }
6149           else
6150             {
6151               Reloc_section* rela_dyn
6152                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6153               check_non_pic(object, r_type);
6154               rela_dyn->add_global(gsym, r_type, output_section, object,
6155                                    data_shndx, reloc.get_r_offset(),
6156                                    reloc.get_r_addend());
6157             }
6158         }
6159       break;
6160
6161     case elfcpp::R_POWERPC_REL14:
6162     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6163     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6164       if (!is_ifunc)
6165         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6166                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6167                             reloc.get_r_addend());
6168       break;
6169
6170     case elfcpp::R_POWERPC_REL16:
6171     case elfcpp::R_POWERPC_REL16_LO:
6172     case elfcpp::R_POWERPC_REL16_HI:
6173     case elfcpp::R_POWERPC_REL16_HA:
6174     case elfcpp::R_POWERPC_REL16DX_HA:
6175     case elfcpp::R_POWERPC_SECTOFF:
6176     case elfcpp::R_POWERPC_SECTOFF_LO:
6177     case elfcpp::R_POWERPC_SECTOFF_HI:
6178     case elfcpp::R_POWERPC_SECTOFF_HA:
6179     case elfcpp::R_PPC64_SECTOFF_DS:
6180     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6181     case elfcpp::R_POWERPC_TPREL16:
6182     case elfcpp::R_POWERPC_TPREL16_LO:
6183     case elfcpp::R_POWERPC_TPREL16_HI:
6184     case elfcpp::R_POWERPC_TPREL16_HA:
6185     case elfcpp::R_PPC64_TPREL16_DS:
6186     case elfcpp::R_PPC64_TPREL16_LO_DS:
6187     case elfcpp::R_PPC64_TPREL16_HIGH:
6188     case elfcpp::R_PPC64_TPREL16_HIGHA:
6189     case elfcpp::R_PPC64_TPREL16_HIGHER:
6190     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6191     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6192     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6193     case elfcpp::R_POWERPC_DTPREL16:
6194     case elfcpp::R_POWERPC_DTPREL16_LO:
6195     case elfcpp::R_POWERPC_DTPREL16_HI:
6196     case elfcpp::R_POWERPC_DTPREL16_HA:
6197     case elfcpp::R_PPC64_DTPREL16_DS:
6198     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6199     case elfcpp::R_PPC64_DTPREL16_HIGH:
6200     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6201     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6202     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6203     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6204     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6205     case elfcpp::R_PPC64_TLSGD:
6206     case elfcpp::R_PPC64_TLSLD:
6207     case elfcpp::R_PPC64_ADDR64_LOCAL:
6208       break;
6209
6210     case elfcpp::R_POWERPC_GOT16:
6211     case elfcpp::R_POWERPC_GOT16_LO:
6212     case elfcpp::R_POWERPC_GOT16_HI:
6213     case elfcpp::R_POWERPC_GOT16_HA:
6214     case elfcpp::R_PPC64_GOT16_DS:
6215     case elfcpp::R_PPC64_GOT16_LO_DS:
6216       {
6217         // The symbol requires a GOT entry.
6218         Output_data_got_powerpc<size, big_endian>* got;
6219
6220         got = target->got_section(symtab, layout);
6221         if (gsym->final_value_is_known())
6222           {
6223             if (is_ifunc
6224                 && (size == 32 || target->abiversion() >= 2))
6225               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6226             else
6227               got->add_global(gsym, GOT_TYPE_STANDARD);
6228           }
6229         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6230           {
6231             // If we are generating a shared object or a pie, this
6232             // symbol's GOT entry will be set by a dynamic relocation.
6233             unsigned int off = got->add_constant(0);
6234             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6235
6236             Reloc_section* rela_dyn
6237               = target->rela_dyn_section(symtab, layout, is_ifunc);
6238
6239             if (gsym->can_use_relative_reloc(false)
6240                 && !((size == 32
6241                       || target->abiversion() >= 2)
6242                      && gsym->visibility() == elfcpp::STV_PROTECTED
6243                      && parameters->options().shared()))
6244               {
6245                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6246                                        : elfcpp::R_POWERPC_RELATIVE);
6247                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6248               }
6249             else
6250               {
6251                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6252                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6253               }
6254           }
6255       }
6256       break;
6257
6258     case elfcpp::R_PPC64_TOC16:
6259     case elfcpp::R_PPC64_TOC16_LO:
6260     case elfcpp::R_PPC64_TOC16_HI:
6261     case elfcpp::R_PPC64_TOC16_HA:
6262     case elfcpp::R_PPC64_TOC16_DS:
6263     case elfcpp::R_PPC64_TOC16_LO_DS:
6264       // We need a GOT section.
6265       target->got_section(symtab, layout);
6266       break;
6267
6268     case elfcpp::R_POWERPC_GOT_TLSGD16:
6269     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6270     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6271     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6272       {
6273         const bool final = gsym->final_value_is_known();
6274         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6275         if (tls_type == tls::TLSOPT_NONE)
6276           {
6277             Output_data_got_powerpc<size, big_endian>* got
6278               = target->got_section(symtab, layout);
6279             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6280             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6281                                           elfcpp::R_POWERPC_DTPMOD,
6282                                           elfcpp::R_POWERPC_DTPREL);
6283           }
6284         else if (tls_type == tls::TLSOPT_TO_IE)
6285           {
6286             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6287               {
6288                 Output_data_got_powerpc<size, big_endian>* got
6289                   = target->got_section(symtab, layout);
6290                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6291                 if (gsym->is_undefined()
6292                     || gsym->is_from_dynobj())
6293                   {
6294                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6295                                              elfcpp::R_POWERPC_TPREL);
6296                   }
6297                 else
6298                   {
6299                     unsigned int off = got->add_constant(0);
6300                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6301                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6302                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6303                                                            got, off, 0);
6304                   }
6305               }
6306           }
6307         else if (tls_type == tls::TLSOPT_TO_LE)
6308           {
6309             // no GOT relocs needed for Local Exec.
6310           }
6311         else
6312           gold_unreachable();
6313       }
6314       break;
6315
6316     case elfcpp::R_POWERPC_GOT_TLSLD16:
6317     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6318     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6319     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6320       {
6321         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6322         if (tls_type == tls::TLSOPT_NONE)
6323           target->tlsld_got_offset(symtab, layout, object);
6324         else if (tls_type == tls::TLSOPT_TO_LE)
6325           {
6326             // no GOT relocs needed for Local Exec.
6327             if (parameters->options().emit_relocs())
6328               {
6329                 Output_section* os = layout->tls_segment()->first_section();
6330                 gold_assert(os != NULL);
6331                 os->set_needs_symtab_index();
6332               }
6333           }
6334         else
6335           gold_unreachable();
6336       }
6337       break;
6338
6339     case elfcpp::R_POWERPC_GOT_DTPREL16:
6340     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6341     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6342     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6343       {
6344         Output_data_got_powerpc<size, big_endian>* got
6345           = target->got_section(symtab, layout);
6346         if (!gsym->final_value_is_known()
6347             && (gsym->is_from_dynobj()
6348                 || gsym->is_undefined()
6349                 || gsym->is_preemptible()))
6350           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6351                                    target->rela_dyn_section(layout),
6352                                    elfcpp::R_POWERPC_DTPREL);
6353         else
6354           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6355       }
6356       break;
6357
6358     case elfcpp::R_POWERPC_GOT_TPREL16:
6359     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6360     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6361     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6362       {
6363         const bool final = gsym->final_value_is_known();
6364         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6365         if (tls_type == tls::TLSOPT_NONE)
6366           {
6367             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6368               {
6369                 Output_data_got_powerpc<size, big_endian>* got
6370                   = target->got_section(symtab, layout);
6371                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6372                 if (gsym->is_undefined()
6373                     || gsym->is_from_dynobj())
6374                   {
6375                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6376                                              elfcpp::R_POWERPC_TPREL);
6377                   }
6378                 else
6379                   {
6380                     unsigned int off = got->add_constant(0);
6381                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6382                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6383                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6384                                                            got, off, 0);
6385                   }
6386               }
6387           }
6388         else if (tls_type == tls::TLSOPT_TO_LE)
6389           {
6390             // no GOT relocs needed for Local Exec.
6391           }
6392         else
6393           gold_unreachable();
6394       }
6395       break;
6396
6397     default:
6398       unsupported_reloc_global(object, r_type, gsym);
6399       break;
6400     }
6401
6402   switch (r_type)
6403     {
6404     case elfcpp::R_POWERPC_GOT_TLSLD16:
6405     case elfcpp::R_POWERPC_GOT_TLSGD16:
6406     case elfcpp::R_POWERPC_GOT_TPREL16:
6407     case elfcpp::R_POWERPC_GOT_DTPREL16:
6408     case elfcpp::R_POWERPC_GOT16:
6409     case elfcpp::R_PPC64_GOT16_DS:
6410     case elfcpp::R_PPC64_TOC16:
6411     case elfcpp::R_PPC64_TOC16_DS:
6412       ppc_object->set_has_small_toc_reloc();
6413     default:
6414       break;
6415     }
6416 }
6417
6418 // Process relocations for gc.
6419
6420 template<int size, bool big_endian>
6421 void
6422 Target_powerpc<size, big_endian>::gc_process_relocs(
6423     Symbol_table* symtab,
6424     Layout* layout,
6425     Sized_relobj_file<size, big_endian>* object,
6426     unsigned int data_shndx,
6427     unsigned int,
6428     const unsigned char* prelocs,
6429     size_t reloc_count,
6430     Output_section* output_section,
6431     bool needs_special_offset_handling,
6432     size_t local_symbol_count,
6433     const unsigned char* plocal_symbols)
6434 {
6435   typedef Target_powerpc<size, big_endian> Powerpc;
6436   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6437   Powerpc_relobj<size, big_endian>* ppc_object
6438     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6439   if (size == 64)
6440     ppc_object->set_opd_valid();
6441   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6442     {
6443       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6444       for (p = ppc_object->access_from_map()->begin();
6445            p != ppc_object->access_from_map()->end();
6446            ++p)
6447         {
6448           Address dst_off = p->first;
6449           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6450           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6451           for (s = p->second.begin(); s != p->second.end(); ++s)
6452             {
6453               Relobj* src_obj = s->first;
6454               unsigned int src_indx = s->second;
6455               symtab->gc()->add_reference(src_obj, src_indx,
6456                                           ppc_object, dst_indx);
6457             }
6458           p->second.clear();
6459         }
6460       ppc_object->access_from_map()->clear();
6461       ppc_object->process_gc_mark(symtab);
6462       // Don't look at .opd relocs as .opd will reference everything.
6463       return;
6464     }
6465
6466   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6467                           typename Target_powerpc::Relocatable_size_for_reloc>(
6468     symtab,
6469     layout,
6470     this,
6471     object,
6472     data_shndx,
6473     prelocs,
6474     reloc_count,
6475     output_section,
6476     needs_special_offset_handling,
6477     local_symbol_count,
6478     plocal_symbols);
6479 }
6480
6481 // Handle target specific gc actions when adding a gc reference from
6482 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6483 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6484 // section of a function descriptor.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_gc_add_reference(
6489     Symbol_table* symtab,
6490     Relobj* src_obj,
6491     unsigned int src_shndx,
6492     Relobj* dst_obj,
6493     unsigned int dst_shndx,
6494     Address dst_off) const
6495 {
6496   if (size != 64 || dst_obj->is_dynamic())
6497     return;
6498
6499   Powerpc_relobj<size, big_endian>* ppc_object
6500     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6501   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6502     {
6503       if (ppc_object->opd_valid())
6504         {
6505           dst_shndx = ppc_object->get_opd_ent(dst_off);
6506           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6507         }
6508       else
6509         {
6510           // If we haven't run scan_opd_relocs, we must delay
6511           // processing this function descriptor reference.
6512           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6513         }
6514     }
6515 }
6516
6517 // Add any special sections for this symbol to the gc work list.
6518 // For powerpc64, this adds the code section of a function
6519 // descriptor.
6520
6521 template<int size, bool big_endian>
6522 void
6523 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6524     Symbol_table* symtab,
6525     Symbol* sym) const
6526 {
6527   if (size == 64)
6528     {
6529       Powerpc_relobj<size, big_endian>* ppc_object
6530         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6531       bool is_ordinary;
6532       unsigned int shndx = sym->shndx(&is_ordinary);
6533       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6534         {
6535           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6536           Address dst_off = gsym->value();
6537           if (ppc_object->opd_valid())
6538             {
6539               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6540               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6541                                                             dst_indx));
6542             }
6543           else
6544             ppc_object->add_gc_mark(dst_off);
6545         }
6546     }
6547 }
6548
6549 // For a symbol location in .opd, set LOC to the location of the
6550 // function entry.
6551
6552 template<int size, bool big_endian>
6553 void
6554 Target_powerpc<size, big_endian>::do_function_location(
6555     Symbol_location* loc) const
6556 {
6557   if (size == 64 && loc->shndx != 0)
6558     {
6559       if (loc->object->is_dynamic())
6560         {
6561           Powerpc_dynobj<size, big_endian>* ppc_object
6562             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6563           if (loc->shndx == ppc_object->opd_shndx())
6564             {
6565               Address dest_off;
6566               Address off = loc->offset - ppc_object->opd_address();
6567               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6568               loc->offset = dest_off;
6569             }
6570         }
6571       else
6572         {
6573           const Powerpc_relobj<size, big_endian>* ppc_object
6574             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6575           if (loc->shndx == ppc_object->opd_shndx())
6576             {
6577               Address dest_off;
6578               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6579               loc->offset = dest_off;
6580             }
6581         }
6582     }
6583 }
6584
6585 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6586 // compiled with -fsplit-stack.  The function calls non-split-stack
6587 // code.  Change the function to ensure it has enough stack space to
6588 // call some random function.
6589
6590 template<int size, bool big_endian>
6591 void
6592 Target_powerpc<size, big_endian>::do_calls_non_split(
6593     Relobj* object,
6594     unsigned int shndx,
6595     section_offset_type fnoffset,
6596     section_size_type fnsize,
6597     unsigned char* view,
6598     section_size_type view_size,
6599     std::string* from,
6600     std::string* to) const
6601 {
6602   // 32-bit not supported.
6603   if (size == 32)
6604     {
6605       // warn
6606       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6607                                  view, view_size, from, to);
6608       return;
6609     }
6610
6611   // The function always starts with
6612   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6613   //    addis %r12,%r1,-allocate@ha
6614   //    addi %r12,%r12,-allocate@l
6615   //    cmpld %r12,%r0
6616   // but note that the addis or addi may be replaced with a nop
6617
6618   unsigned char *entry = view + fnoffset;
6619   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6620
6621   if ((insn & 0xffff0000) == addis_2_12)
6622     {
6623       /* Skip ELFv2 global entry code.  */
6624       entry += 8;
6625       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6626     }
6627
6628   unsigned char *pinsn = entry;
6629   bool ok = false;
6630   const uint32_t ld_private_ss = 0xe80d8fc0;
6631   if (insn == ld_private_ss)
6632     {
6633       int32_t allocate = 0;
6634       while (1)
6635         {
6636           pinsn += 4;
6637           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6638           if ((insn & 0xffff0000) == addis_12_1)
6639             allocate += (insn & 0xffff) << 16;
6640           else if ((insn & 0xffff0000) == addi_12_1
6641                    || (insn & 0xffff0000) == addi_12_12)
6642             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6643           else if (insn != nop)
6644             break;
6645         }
6646       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6647         {
6648           int extra = parameters->options().split_stack_adjust_size();
6649           allocate -= extra;
6650           if (allocate >= 0 || extra < 0)
6651             {
6652               object->error(_("split-stack stack size overflow at "
6653                               "section %u offset %0zx"),
6654                             shndx, static_cast<size_t>(fnoffset));
6655               return;
6656             }
6657           pinsn = entry + 4;
6658           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6659           if (insn != addis_12_1)
6660             {
6661               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6662               pinsn += 4;
6663               insn = addi_12_12 | (allocate & 0xffff);
6664               if (insn != addi_12_12)
6665                 {
6666                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6667                   pinsn += 4;
6668                 }
6669             }
6670           else
6671             {
6672               insn = addi_12_1 | (allocate & 0xffff);
6673               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6674               pinsn += 4;
6675             }
6676           if (pinsn != entry + 12)
6677             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6678
6679           ok = true;
6680         }
6681     }
6682
6683   if (!ok)
6684     {
6685       if (!object->has_no_split_stack())
6686         object->error(_("failed to match split-stack sequence at "
6687                         "section %u offset %0zx"),
6688                       shndx, static_cast<size_t>(fnoffset));
6689     }
6690 }
6691
6692 // Scan relocations for a section.
6693
6694 template<int size, bool big_endian>
6695 void
6696 Target_powerpc<size, big_endian>::scan_relocs(
6697     Symbol_table* symtab,
6698     Layout* layout,
6699     Sized_relobj_file<size, big_endian>* object,
6700     unsigned int data_shndx,
6701     unsigned int sh_type,
6702     const unsigned char* prelocs,
6703     size_t reloc_count,
6704     Output_section* output_section,
6705     bool needs_special_offset_handling,
6706     size_t local_symbol_count,
6707     const unsigned char* plocal_symbols)
6708 {
6709   typedef Target_powerpc<size, big_endian> Powerpc;
6710   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6711
6712   if (sh_type == elfcpp::SHT_REL)
6713     {
6714       gold_error(_("%s: unsupported REL reloc section"),
6715                  object->name().c_str());
6716       return;
6717     }
6718
6719   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6720     symtab,
6721     layout,
6722     this,
6723     object,
6724     data_shndx,
6725     prelocs,
6726     reloc_count,
6727     output_section,
6728     needs_special_offset_handling,
6729     local_symbol_count,
6730     plocal_symbols);
6731 }
6732
6733 // Functor class for processing the global symbol table.
6734 // Removes symbols defined on discarded opd entries.
6735
6736 template<bool big_endian>
6737 class Global_symbol_visitor_opd
6738 {
6739  public:
6740   Global_symbol_visitor_opd()
6741   { }
6742
6743   void
6744   operator()(Sized_symbol<64>* sym)
6745   {
6746     if (sym->has_symtab_index()
6747         || sym->source() != Symbol::FROM_OBJECT
6748         || !sym->in_real_elf())
6749       return;
6750
6751     if (sym->object()->is_dynamic())
6752       return;
6753
6754     Powerpc_relobj<64, big_endian>* symobj
6755       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6756     if (symobj->opd_shndx() == 0)
6757       return;
6758
6759     bool is_ordinary;
6760     unsigned int shndx = sym->shndx(&is_ordinary);
6761     if (shndx == symobj->opd_shndx()
6762         && symobj->get_opd_discard(sym->value()))
6763       {
6764         sym->set_undefined();
6765         sym->set_visibility(elfcpp::STV_DEFAULT);
6766         sym->set_is_defined_in_discarded_section();
6767         sym->set_symtab_index(-1U);
6768       }
6769   }
6770 };
6771
6772 template<int size, bool big_endian>
6773 void
6774 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6775     Layout* layout,
6776     Symbol_table* symtab)
6777 {
6778   if (size == 64)
6779     {
6780       Output_data_save_res<size, big_endian>* savres
6781         = new Output_data_save_res<size, big_endian>(symtab);
6782       this->savres_section_ = savres;
6783       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6784                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6785                                       savres, ORDER_TEXT, false);
6786     }
6787 }
6788
6789 // Sort linker created .got section first (for the header), then input
6790 // sections belonging to files using small model code.
6791
6792 template<bool big_endian>
6793 class Sort_toc_sections
6794 {
6795  public:
6796   bool
6797   operator()(const Output_section::Input_section& is1,
6798              const Output_section::Input_section& is2) const
6799   {
6800     if (!is1.is_input_section() && is2.is_input_section())
6801       return true;
6802     bool small1
6803       = (is1.is_input_section()
6804          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6805              ->has_small_toc_reloc()));
6806     bool small2
6807       = (is2.is_input_section()
6808          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6809              ->has_small_toc_reloc()));
6810     return small1 && !small2;
6811   }
6812 };
6813
6814 // Finalize the sections.
6815
6816 template<int size, bool big_endian>
6817 void
6818 Target_powerpc<size, big_endian>::do_finalize_sections(
6819     Layout* layout,
6820     const Input_objects*,
6821     Symbol_table* symtab)
6822 {
6823   if (parameters->doing_static_link())
6824     {
6825       // At least some versions of glibc elf-init.o have a strong
6826       // reference to __rela_iplt marker syms.  A weak ref would be
6827       // better..
6828       if (this->iplt_ != NULL)
6829         {
6830           Reloc_section* rel = this->iplt_->rel_plt();
6831           symtab->define_in_output_data("__rela_iplt_start", NULL,
6832                                         Symbol_table::PREDEFINED, rel, 0, 0,
6833                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6834                                         elfcpp::STV_HIDDEN, 0, false, true);
6835           symtab->define_in_output_data("__rela_iplt_end", NULL,
6836                                         Symbol_table::PREDEFINED, rel, 0, 0,
6837                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6838                                         elfcpp::STV_HIDDEN, 0, true, true);
6839         }
6840       else
6841         {
6842           symtab->define_as_constant("__rela_iplt_start", NULL,
6843                                      Symbol_table::PREDEFINED, 0, 0,
6844                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6845                                      elfcpp::STV_HIDDEN, 0, true, false);
6846           symtab->define_as_constant("__rela_iplt_end", NULL,
6847                                      Symbol_table::PREDEFINED, 0, 0,
6848                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6849                                      elfcpp::STV_HIDDEN, 0, true, false);
6850         }
6851     }
6852
6853   if (size == 64)
6854     {
6855       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6856       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6857
6858       if (!parameters->options().relocatable())
6859         {
6860           this->define_save_restore_funcs(layout, symtab);
6861
6862           // Annoyingly, we need to make these sections now whether or
6863           // not we need them.  If we delay until do_relax then we
6864           // need to mess with the relaxation machinery checkpointing.
6865           this->got_section(symtab, layout);
6866           this->make_brlt_section(layout);
6867
6868           if (parameters->options().toc_sort())
6869             {
6870               Output_section* os = this->got_->output_section();
6871               if (os != NULL && os->input_sections().size() > 1)
6872                 std::stable_sort(os->input_sections().begin(),
6873                                  os->input_sections().end(),
6874                                  Sort_toc_sections<big_endian>());
6875             }
6876         }
6877     }
6878
6879   // Fill in some more dynamic tags.
6880   Output_data_dynamic* odyn = layout->dynamic_data();
6881   if (odyn != NULL)
6882     {
6883       const Reloc_section* rel_plt = (this->plt_ == NULL
6884                                       ? NULL
6885                                       : this->plt_->rel_plt());
6886       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6887                                       this->rela_dyn_, true, size == 32);
6888
6889       if (size == 32)
6890         {
6891           if (this->got_ != NULL)
6892             {
6893               this->got_->finalize_data_size();
6894               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6895                                             this->got_, this->got_->g_o_t());
6896             }
6897         }
6898       else
6899         {
6900           if (this->glink_ != NULL)
6901             {
6902               this->glink_->finalize_data_size();
6903               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6904                                             this->glink_,
6905                                             (this->glink_->pltresolve_size
6906                                              - 32));
6907             }
6908         }
6909     }
6910
6911   // Emit any relocs we saved in an attempt to avoid generating COPY
6912   // relocs.
6913   if (this->copy_relocs_.any_saved_relocs())
6914     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6915 }
6916
6917 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6918 // reloc.
6919
6920 static bool
6921 ok_lo_toc_insn(uint32_t insn)
6922 {
6923   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6924           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6925           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6926           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6927           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6928           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6929           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6930           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6931           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6932           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6933           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6934           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6935           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6936           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6937           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6938               && (insn & 3) != 1)
6939           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6940               && ((insn & 3) == 0 || (insn & 3) == 3))
6941           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6942 }
6943
6944 // Return the value to use for a branch relocation.
6945
6946 template<int size, bool big_endian>
6947 bool
6948 Target_powerpc<size, big_endian>::symval_for_branch(
6949     const Symbol_table* symtab,
6950     const Sized_symbol<size>* gsym,
6951     Powerpc_relobj<size, big_endian>* object,
6952     Address *value,
6953     unsigned int *dest_shndx)
6954 {
6955   if (size == 32 || this->abiversion() >= 2)
6956     gold_unreachable();
6957   *dest_shndx = 0;
6958
6959   // If the symbol is defined in an opd section, ie. is a function
6960   // descriptor, use the function descriptor code entry address
6961   Powerpc_relobj<size, big_endian>* symobj = object;
6962   if (gsym != NULL
6963       && gsym->source() != Symbol::FROM_OBJECT)
6964     return true;
6965   if (gsym != NULL)
6966     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6967   unsigned int shndx = symobj->opd_shndx();
6968   if (shndx == 0)
6969     return true;
6970   Address opd_addr = symobj->get_output_section_offset(shndx);
6971   if (opd_addr == invalid_address)
6972     return true;
6973   opd_addr += symobj->output_section_address(shndx);
6974   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6975     {
6976       Address sec_off;
6977       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6978       if (symtab->is_section_folded(symobj, *dest_shndx))
6979         {
6980           Section_id folded
6981             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6982           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6983           *dest_shndx = folded.second;
6984         }
6985       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6986       if (sec_addr == invalid_address)
6987         return false;
6988
6989       sec_addr += symobj->output_section(*dest_shndx)->address();
6990       *value = sec_addr + sec_off;
6991     }
6992   return true;
6993 }
6994
6995 // Perform a relocation.
6996
6997 template<int size, bool big_endian>
6998 inline bool
6999 Target_powerpc<size, big_endian>::Relocate::relocate(
7000     const Relocate_info<size, big_endian>* relinfo,
7001     Target_powerpc* target,
7002     Output_section* os,
7003     size_t relnum,
7004     const elfcpp::Rela<size, big_endian>& rela,
7005     unsigned int r_type,
7006     const Sized_symbol<size>* gsym,
7007     const Symbol_value<size>* psymval,
7008     unsigned char* view,
7009     Address address,
7010     section_size_type view_size)
7011 {
7012   if (view == NULL)
7013     return true;
7014
7015   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7016     {
7017     case Track_tls::NOT_EXPECTED:
7018       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7019                              _("__tls_get_addr call lacks marker reloc"));
7020       break;
7021     case Track_tls::EXPECTED:
7022       // We have already complained.
7023       break;
7024     case Track_tls::SKIP:
7025       return true;
7026     case Track_tls::NORMAL:
7027       break;
7028     }
7029
7030   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7031   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7032   Powerpc_relobj<size, big_endian>* const object
7033     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7034   Address value = 0;
7035   bool has_stub_value = false;
7036   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7037   if ((gsym != NULL
7038        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7039        : object->local_has_plt_offset(r_sym))
7040       && (!psymval->is_ifunc_symbol()
7041           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7042     {
7043       if (size == 64
7044           && gsym != NULL
7045           && target->abiversion() >= 2
7046           && !parameters->options().output_is_position_independent()
7047           && !is_branch_reloc(r_type))
7048         {
7049           Address off = target->glink_section()->find_global_entry(gsym);
7050           if (off != invalid_address)
7051             {
7052               value = target->glink_section()->global_entry_address() + off;
7053               has_stub_value = true;
7054             }
7055         }
7056       else
7057         {
7058           Stub_table<size, big_endian>* stub_table
7059             = object->stub_table(relinfo->data_shndx);
7060           if (stub_table == NULL)
7061             {
7062               // This is a ref from a data section to an ifunc symbol.
7063               if (target->stub_tables().size() != 0)
7064                 stub_table = target->stub_tables()[0];
7065             }
7066           if (stub_table != NULL)
7067             {
7068               Address off;
7069               if (gsym != NULL)
7070                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7071                                                       rela.get_r_addend());
7072               else
7073                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7074                                                       rela.get_r_addend());
7075               if (off != invalid_address)
7076                 {
7077                   value = stub_table->stub_address() + off;
7078                   has_stub_value = true;
7079                 }
7080             }
7081         }
7082       // We don't care too much about bogus debug references to
7083       // non-local functions, but otherwise there had better be a plt
7084       // call stub or global entry stub as appropriate.
7085       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7086     }
7087
7088   if (r_type == elfcpp::R_POWERPC_GOT16
7089       || r_type == elfcpp::R_POWERPC_GOT16_LO
7090       || r_type == elfcpp::R_POWERPC_GOT16_HI
7091       || r_type == elfcpp::R_POWERPC_GOT16_HA
7092       || r_type == elfcpp::R_PPC64_GOT16_DS
7093       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7094     {
7095       if (gsym != NULL)
7096         {
7097           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7098           value = gsym->got_offset(GOT_TYPE_STANDARD);
7099         }
7100       else
7101         {
7102           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7103           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7104           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7105         }
7106       value -= target->got_section()->got_base_offset(object);
7107     }
7108   else if (r_type == elfcpp::R_PPC64_TOC)
7109     {
7110       value = (target->got_section()->output_section()->address()
7111                + object->toc_base_offset());
7112     }
7113   else if (gsym != NULL
7114            && (r_type == elfcpp::R_POWERPC_REL24
7115                || r_type == elfcpp::R_PPC_PLTREL24)
7116            && has_stub_value)
7117     {
7118       if (size == 64)
7119         {
7120           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7121           Valtype* wv = reinterpret_cast<Valtype*>(view);
7122           bool can_plt_call = false;
7123           if (rela.get_r_offset() + 8 <= view_size)
7124             {
7125               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7126               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7127               if ((insn & 1) != 0
7128                   && (insn2 == nop
7129                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7130                 {
7131                   elfcpp::Swap<32, big_endian>::
7132                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7133                   can_plt_call = true;
7134                 }
7135             }
7136           if (!can_plt_call)
7137             {
7138               // If we don't have a branch and link followed by a nop,
7139               // we can't go via the plt because there is no place to
7140               // put a toc restoring instruction.
7141               // Unless we know we won't be returning.
7142               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7143                 can_plt_call = true;
7144             }
7145           if (!can_plt_call)
7146             {
7147               // g++ as of 20130507 emits self-calls without a
7148               // following nop.  This is arguably wrong since we have
7149               // conflicting information.  On the one hand a global
7150               // symbol and on the other a local call sequence, but
7151               // don't error for this special case.
7152               // It isn't possible to cheaply verify we have exactly
7153               // such a call.  Allow all calls to the same section.
7154               bool ok = false;
7155               Address code = value;
7156               if (gsym->source() == Symbol::FROM_OBJECT
7157                   && gsym->object() == object)
7158                 {
7159                   unsigned int dest_shndx = 0;
7160                   if (target->abiversion() < 2)
7161                     {
7162                       Address addend = rela.get_r_addend();
7163                       code = psymval->value(object, addend);
7164                       target->symval_for_branch(relinfo->symtab, gsym, object,
7165                                                 &code, &dest_shndx);
7166                     }
7167                   bool is_ordinary;
7168                   if (dest_shndx == 0)
7169                     dest_shndx = gsym->shndx(&is_ordinary);
7170                   ok = dest_shndx == relinfo->data_shndx;
7171                 }
7172               if (!ok)
7173                 {
7174                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7175                                          _("call lacks nop, can't restore toc; "
7176                                            "recompile with -fPIC"));
7177                   value = code;
7178                 }
7179             }
7180         }
7181     }
7182   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7183            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7184            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7185            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7186     {
7187       // First instruction of a global dynamic sequence, arg setup insn.
7188       const bool final = gsym == NULL || gsym->final_value_is_known();
7189       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7190       enum Got_type got_type = GOT_TYPE_STANDARD;
7191       if (tls_type == tls::TLSOPT_NONE)
7192         got_type = GOT_TYPE_TLSGD;
7193       else if (tls_type == tls::TLSOPT_TO_IE)
7194         got_type = GOT_TYPE_TPREL;
7195       if (got_type != GOT_TYPE_STANDARD)
7196         {
7197           if (gsym != NULL)
7198             {
7199               gold_assert(gsym->has_got_offset(got_type));
7200               value = gsym->got_offset(got_type);
7201             }
7202           else
7203             {
7204               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7205               gold_assert(object->local_has_got_offset(r_sym, got_type));
7206               value = object->local_got_offset(r_sym, got_type);
7207             }
7208           value -= target->got_section()->got_base_offset(object);
7209         }
7210       if (tls_type == tls::TLSOPT_TO_IE)
7211         {
7212           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7213               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7214             {
7215               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7216               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7217               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7218               if (size == 32)
7219                 insn |= 32 << 26; // lwz
7220               else
7221                 insn |= 58 << 26; // ld
7222               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7223             }
7224           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7225                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7226         }
7227       else if (tls_type == tls::TLSOPT_TO_LE)
7228         {
7229           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7230               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7231             {
7232               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7233               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7234               insn &= (1 << 26) - (1 << 21); // extract rt
7235               if (size == 32)
7236                 insn |= addis_0_2;
7237               else
7238                 insn |= addis_0_13;
7239               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7240               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7241               value = psymval->value(object, rela.get_r_addend());
7242             }
7243           else
7244             {
7245               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7246               Insn insn = nop;
7247               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7248               r_type = elfcpp::R_POWERPC_NONE;
7249             }
7250         }
7251     }
7252   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7253            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7254            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7255            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7256     {
7257       // First instruction of a local dynamic sequence, arg setup insn.
7258       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7259       if (tls_type == tls::TLSOPT_NONE)
7260         {
7261           value = target->tlsld_got_offset();
7262           value -= target->got_section()->got_base_offset(object);
7263         }
7264       else
7265         {
7266           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7267           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7268               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7269             {
7270               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7271               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7272               insn &= (1 << 26) - (1 << 21); // extract rt
7273               if (size == 32)
7274                 insn |= addis_0_2;
7275               else
7276                 insn |= addis_0_13;
7277               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7278               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7279               value = dtp_offset;
7280             }
7281           else
7282             {
7283               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7284               Insn insn = nop;
7285               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7286               r_type = elfcpp::R_POWERPC_NONE;
7287             }
7288         }
7289     }
7290   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7291            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7292            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7293            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7294     {
7295       // Accesses relative to a local dynamic sequence address,
7296       // no optimisation here.
7297       if (gsym != NULL)
7298         {
7299           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7300           value = gsym->got_offset(GOT_TYPE_DTPREL);
7301         }
7302       else
7303         {
7304           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7305           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7306           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7307         }
7308       value -= target->got_section()->got_base_offset(object);
7309     }
7310   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7311            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7312            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7313            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7314     {
7315       // First instruction of initial exec sequence.
7316       const bool final = gsym == NULL || gsym->final_value_is_known();
7317       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7318       if (tls_type == tls::TLSOPT_NONE)
7319         {
7320           if (gsym != NULL)
7321             {
7322               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7323               value = gsym->got_offset(GOT_TYPE_TPREL);
7324             }
7325           else
7326             {
7327               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7328               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7329               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7330             }
7331           value -= target->got_section()->got_base_offset(object);
7332         }
7333       else
7334         {
7335           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7336           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7337               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7338             {
7339               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7340               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7341               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7342               if (size == 32)
7343                 insn |= addis_0_2;
7344               else
7345                 insn |= addis_0_13;
7346               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7347               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7348               value = psymval->value(object, rela.get_r_addend());
7349             }
7350           else
7351             {
7352               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7353               Insn insn = nop;
7354               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7355               r_type = elfcpp::R_POWERPC_NONE;
7356             }
7357         }
7358     }
7359   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7360            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7361     {
7362       // Second instruction of a global dynamic sequence,
7363       // the __tls_get_addr call
7364       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7365       const bool final = gsym == NULL || gsym->final_value_is_known();
7366       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7367       if (tls_type != tls::TLSOPT_NONE)
7368         {
7369           if (tls_type == tls::TLSOPT_TO_IE)
7370             {
7371               Insn* iview = reinterpret_cast<Insn*>(view);
7372               Insn insn = add_3_3_13;
7373               if (size == 32)
7374                 insn = add_3_3_2;
7375               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7376               r_type = elfcpp::R_POWERPC_NONE;
7377             }
7378           else
7379             {
7380               Insn* iview = reinterpret_cast<Insn*>(view);
7381               Insn insn = addi_3_3;
7382               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7383               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7384               view += 2 * big_endian;
7385               value = psymval->value(object, rela.get_r_addend());
7386             }
7387           this->skip_next_tls_get_addr_call();
7388         }
7389     }
7390   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7391            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7392     {
7393       // Second instruction of a local dynamic sequence,
7394       // the __tls_get_addr call
7395       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7396       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7397       if (tls_type == tls::TLSOPT_TO_LE)
7398         {
7399           Insn* iview = reinterpret_cast<Insn*>(view);
7400           Insn insn = addi_3_3;
7401           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7402           this->skip_next_tls_get_addr_call();
7403           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7404           view += 2 * big_endian;
7405           value = dtp_offset;
7406         }
7407     }
7408   else if (r_type == elfcpp::R_POWERPC_TLS)
7409     {
7410       // Second instruction of an initial exec sequence
7411       const bool final = gsym == NULL || gsym->final_value_is_known();
7412       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7413       if (tls_type == tls::TLSOPT_TO_LE)
7414         {
7415           Insn* iview = reinterpret_cast<Insn*>(view);
7416           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7417           unsigned int reg = size == 32 ? 2 : 13;
7418           insn = at_tls_transform(insn, reg);
7419           gold_assert(insn != 0);
7420           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7421           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7422           view += 2 * big_endian;
7423           value = psymval->value(object, rela.get_r_addend());
7424         }
7425     }
7426   else if (!has_stub_value)
7427     {
7428       Address addend = 0;
7429       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7430         addend = rela.get_r_addend();
7431       value = psymval->value(object, addend);
7432       if (size == 64 && is_branch_reloc(r_type))
7433         {
7434           if (target->abiversion() >= 2)
7435             {
7436               if (gsym != NULL)
7437                 value += object->ppc64_local_entry_offset(gsym);
7438               else
7439                 value += object->ppc64_local_entry_offset(r_sym);
7440             }
7441           else
7442             {
7443               unsigned int dest_shndx;
7444               target->symval_for_branch(relinfo->symtab, gsym, object,
7445                                         &value, &dest_shndx);
7446             }
7447         }
7448       Address max_branch_offset = max_branch_delta(r_type);
7449       if (max_branch_offset != 0
7450           && value - address + max_branch_offset >= 2 * max_branch_offset)
7451         {
7452           Stub_table<size, big_endian>* stub_table
7453             = object->stub_table(relinfo->data_shndx);
7454           if (stub_table != NULL)
7455             {
7456               Address off = stub_table->find_long_branch_entry(object, value);
7457               if (off != invalid_address)
7458                 {
7459                   value = (stub_table->stub_address() + stub_table->plt_size()
7460                            + off);
7461                   has_stub_value = true;
7462                 }
7463             }
7464         }
7465     }
7466
7467   switch (r_type)
7468     {
7469     case elfcpp::R_PPC64_REL64:
7470     case elfcpp::R_POWERPC_REL32:
7471     case elfcpp::R_POWERPC_REL24:
7472     case elfcpp::R_PPC_PLTREL24:
7473     case elfcpp::R_PPC_LOCAL24PC:
7474     case elfcpp::R_POWERPC_REL16:
7475     case elfcpp::R_POWERPC_REL16_LO:
7476     case elfcpp::R_POWERPC_REL16_HI:
7477     case elfcpp::R_POWERPC_REL16_HA:
7478     case elfcpp::R_POWERPC_REL16DX_HA:
7479     case elfcpp::R_POWERPC_REL14:
7480     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7481     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7482       value -= address;
7483       break;
7484
7485     case elfcpp::R_PPC64_TOC16:
7486     case elfcpp::R_PPC64_TOC16_LO:
7487     case elfcpp::R_PPC64_TOC16_HI:
7488     case elfcpp::R_PPC64_TOC16_HA:
7489     case elfcpp::R_PPC64_TOC16_DS:
7490     case elfcpp::R_PPC64_TOC16_LO_DS:
7491       // Subtract the TOC base address.
7492       value -= (target->got_section()->output_section()->address()
7493                 + object->toc_base_offset());
7494       break;
7495
7496     case elfcpp::R_POWERPC_SECTOFF:
7497     case elfcpp::R_POWERPC_SECTOFF_LO:
7498     case elfcpp::R_POWERPC_SECTOFF_HI:
7499     case elfcpp::R_POWERPC_SECTOFF_HA:
7500     case elfcpp::R_PPC64_SECTOFF_DS:
7501     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7502       if (os != NULL)
7503         value -= os->address();
7504       break;
7505
7506     case elfcpp::R_PPC64_TPREL16_DS:
7507     case elfcpp::R_PPC64_TPREL16_LO_DS:
7508     case elfcpp::R_PPC64_TPREL16_HIGH:
7509     case elfcpp::R_PPC64_TPREL16_HIGHA:
7510       if (size != 64)
7511         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7512         break;
7513     case elfcpp::R_POWERPC_TPREL16:
7514     case elfcpp::R_POWERPC_TPREL16_LO:
7515     case elfcpp::R_POWERPC_TPREL16_HI:
7516     case elfcpp::R_POWERPC_TPREL16_HA:
7517     case elfcpp::R_POWERPC_TPREL:
7518     case elfcpp::R_PPC64_TPREL16_HIGHER:
7519     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7520     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7521     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7522       // tls symbol values are relative to tls_segment()->vaddr()
7523       value -= tp_offset;
7524       break;
7525
7526     case elfcpp::R_PPC64_DTPREL16_DS:
7527     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7528     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7529     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7530     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7531     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7532       if (size != 64)
7533         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7534         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7535         break;
7536     case elfcpp::R_POWERPC_DTPREL16:
7537     case elfcpp::R_POWERPC_DTPREL16_LO:
7538     case elfcpp::R_POWERPC_DTPREL16_HI:
7539     case elfcpp::R_POWERPC_DTPREL16_HA:
7540     case elfcpp::R_POWERPC_DTPREL:
7541     case elfcpp::R_PPC64_DTPREL16_HIGH:
7542     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7543       // tls symbol values are relative to tls_segment()->vaddr()
7544       value -= dtp_offset;
7545       break;
7546
7547     case elfcpp::R_PPC64_ADDR64_LOCAL:
7548       if (gsym != NULL)
7549         value += object->ppc64_local_entry_offset(gsym);
7550       else
7551         value += object->ppc64_local_entry_offset(r_sym);
7552       break;
7553
7554     default:
7555       break;
7556     }
7557
7558   Insn branch_bit = 0;
7559   switch (r_type)
7560     {
7561     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7562     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7563       branch_bit = 1 << 21;
7564     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7565     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7566       {
7567         Insn* iview = reinterpret_cast<Insn*>(view);
7568         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7569         insn &= ~(1 << 21);
7570         insn |= branch_bit;
7571         if (this->is_isa_v2)
7572           {
7573             // Set 'a' bit.  This is 0b00010 in BO field for branch
7574             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7575             // for branch on CTR insns (BO == 1a00t or 1a01t).
7576             if ((insn & (0x14 << 21)) == (0x04 << 21))
7577               insn |= 0x02 << 21;
7578             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7579               insn |= 0x08 << 21;
7580             else
7581               break;
7582           }
7583         else
7584           {
7585             // Invert 'y' bit if not the default.
7586             if (static_cast<Signed_address>(value) < 0)
7587               insn ^= 1 << 21;
7588           }
7589         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7590       }
7591       break;
7592
7593     default:
7594       break;
7595     }
7596
7597   if (size == 64)
7598     {
7599       // Multi-instruction sequences that access the TOC can be
7600       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7601       // to             nop;           addi rb,r2,x;
7602       switch (r_type)
7603         {
7604         default:
7605           break;
7606
7607         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7608         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7609         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7610         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7611         case elfcpp::R_POWERPC_GOT16_HA:
7612         case elfcpp::R_PPC64_TOC16_HA:
7613           if (parameters->options().toc_optimize())
7614             {
7615               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7616               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7617               if ((insn & ((0x3f << 26) | 0x1f << 16))
7618                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7619                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7620                                        _("toc optimization is not supported "
7621                                          "for %#08x instruction"), insn);
7622               else if (value + 0x8000 < 0x10000)
7623                 {
7624                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7625                   return true;
7626                 }
7627             }
7628           break;
7629
7630         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7631         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7632         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7633         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7634         case elfcpp::R_POWERPC_GOT16_LO:
7635         case elfcpp::R_PPC64_GOT16_LO_DS:
7636         case elfcpp::R_PPC64_TOC16_LO:
7637         case elfcpp::R_PPC64_TOC16_LO_DS:
7638           if (parameters->options().toc_optimize())
7639             {
7640               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7641               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7642               if (!ok_lo_toc_insn(insn))
7643                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7644                                        _("toc optimization is not supported "
7645                                          "for %#08x instruction"), insn);
7646               else if (value + 0x8000 < 0x10000)
7647                 {
7648                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7649                     {
7650                       // Transform addic to addi when we change reg.
7651                       insn &= ~((0x3f << 26) | (0x1f << 16));
7652                       insn |= (14u << 26) | (2 << 16);
7653                     }
7654                   else
7655                     {
7656                       insn &= ~(0x1f << 16);
7657                       insn |= 2 << 16;
7658                     }
7659                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7660                 }
7661             }
7662           break;
7663
7664         case elfcpp::R_PPC64_ENTRY:
7665           value = (target->got_section()->output_section()->address()
7666                    + object->toc_base_offset());
7667           if (value + 0x80008000 <= 0xffffffff
7668               && !parameters->options().output_is_position_independent())
7669             {
7670               Insn* iview = reinterpret_cast<Insn*>(view);
7671               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7672               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7673
7674               if ((insn1 & ~0xfffc) == ld_2_12
7675                   && insn2 == add_2_2_12)
7676                 {
7677                   insn1 = lis_2 + ha(value);
7678                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7679                   insn2 = addi_2_2 + l(value);
7680                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7681                   return true;
7682                 }
7683             }
7684           else
7685             {
7686               value -= address;
7687               if (value + 0x80008000 <= 0xffffffff)
7688                 {
7689                   Insn* iview = reinterpret_cast<Insn*>(view);
7690                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7691                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7692
7693                   if ((insn1 & ~0xfffc) == ld_2_12
7694                       && insn2 == add_2_2_12)
7695                     {
7696                       insn1 = addis_2_12 + ha(value);
7697                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7698                       insn2 = addi_2_2 + l(value);
7699                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7700                       return true;
7701                     }
7702                 }
7703             }
7704           break;
7705         }
7706     }
7707
7708   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7709   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7710   switch (r_type)
7711     {
7712     case elfcpp::R_POWERPC_ADDR32:
7713     case elfcpp::R_POWERPC_UADDR32:
7714       if (size == 64)
7715         overflow = Reloc::CHECK_BITFIELD;
7716       break;
7717
7718     case elfcpp::R_POWERPC_REL32:
7719     case elfcpp::R_POWERPC_REL16DX_HA:
7720       if (size == 64)
7721         overflow = Reloc::CHECK_SIGNED;
7722       break;
7723
7724     case elfcpp::R_POWERPC_UADDR16:
7725       overflow = Reloc::CHECK_BITFIELD;
7726       break;
7727
7728     case elfcpp::R_POWERPC_ADDR16:
7729       // We really should have three separate relocations,
7730       // one for 16-bit data, one for insns with 16-bit signed fields,
7731       // and one for insns with 16-bit unsigned fields.
7732       overflow = Reloc::CHECK_BITFIELD;
7733       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7734         overflow = Reloc::CHECK_LOW_INSN;
7735       break;
7736
7737     case elfcpp::R_POWERPC_ADDR16_HI:
7738     case elfcpp::R_POWERPC_ADDR16_HA:
7739     case elfcpp::R_POWERPC_GOT16_HI:
7740     case elfcpp::R_POWERPC_GOT16_HA:
7741     case elfcpp::R_POWERPC_PLT16_HI:
7742     case elfcpp::R_POWERPC_PLT16_HA:
7743     case elfcpp::R_POWERPC_SECTOFF_HI:
7744     case elfcpp::R_POWERPC_SECTOFF_HA:
7745     case elfcpp::R_PPC64_TOC16_HI:
7746     case elfcpp::R_PPC64_TOC16_HA:
7747     case elfcpp::R_PPC64_PLTGOT16_HI:
7748     case elfcpp::R_PPC64_PLTGOT16_HA:
7749     case elfcpp::R_POWERPC_TPREL16_HI:
7750     case elfcpp::R_POWERPC_TPREL16_HA:
7751     case elfcpp::R_POWERPC_DTPREL16_HI:
7752     case elfcpp::R_POWERPC_DTPREL16_HA:
7753     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7754     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7755     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7756     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7757     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7758     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7759     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7760     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7761     case elfcpp::R_POWERPC_REL16_HI:
7762     case elfcpp::R_POWERPC_REL16_HA:
7763       if (size != 32)
7764         overflow = Reloc::CHECK_HIGH_INSN;
7765       break;
7766
7767     case elfcpp::R_POWERPC_REL16:
7768     case elfcpp::R_PPC64_TOC16:
7769     case elfcpp::R_POWERPC_GOT16:
7770     case elfcpp::R_POWERPC_SECTOFF:
7771     case elfcpp::R_POWERPC_TPREL16:
7772     case elfcpp::R_POWERPC_DTPREL16:
7773     case elfcpp::R_POWERPC_GOT_TLSGD16:
7774     case elfcpp::R_POWERPC_GOT_TLSLD16:
7775     case elfcpp::R_POWERPC_GOT_TPREL16:
7776     case elfcpp::R_POWERPC_GOT_DTPREL16:
7777       overflow = Reloc::CHECK_LOW_INSN;
7778       break;
7779
7780     case elfcpp::R_POWERPC_ADDR24:
7781     case elfcpp::R_POWERPC_ADDR14:
7782     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7783     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7784     case elfcpp::R_PPC64_ADDR16_DS:
7785     case elfcpp::R_POWERPC_REL24:
7786     case elfcpp::R_PPC_PLTREL24:
7787     case elfcpp::R_PPC_LOCAL24PC:
7788     case elfcpp::R_PPC64_TPREL16_DS:
7789     case elfcpp::R_PPC64_DTPREL16_DS:
7790     case elfcpp::R_PPC64_TOC16_DS:
7791     case elfcpp::R_PPC64_GOT16_DS:
7792     case elfcpp::R_PPC64_SECTOFF_DS:
7793     case elfcpp::R_POWERPC_REL14:
7794     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7795     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7796       overflow = Reloc::CHECK_SIGNED;
7797       break;
7798     }
7799
7800   Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7801   Insn insn = 0;
7802
7803   if (overflow == Reloc::CHECK_LOW_INSN
7804       || overflow == Reloc::CHECK_HIGH_INSN)
7805     {
7806       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7807
7808       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7809         overflow = Reloc::CHECK_BITFIELD;
7810       else if (overflow == Reloc::CHECK_LOW_INSN
7811                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7812                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7813                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7814                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7815                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7816                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7817         overflow = Reloc::CHECK_UNSIGNED;
7818       else
7819         overflow = Reloc::CHECK_SIGNED;
7820     }
7821
7822   bool maybe_dq_reloc = false;
7823   typename Powerpc_relocate_functions<size, big_endian>::Status status
7824     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7825   switch (r_type)
7826     {
7827     case elfcpp::R_POWERPC_NONE:
7828     case elfcpp::R_POWERPC_TLS:
7829     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7830     case elfcpp::R_POWERPC_GNU_VTENTRY:
7831       break;
7832
7833     case elfcpp::R_PPC64_ADDR64:
7834     case elfcpp::R_PPC64_REL64:
7835     case elfcpp::R_PPC64_TOC:
7836     case elfcpp::R_PPC64_ADDR64_LOCAL:
7837       Reloc::addr64(view, value);
7838       break;
7839
7840     case elfcpp::R_POWERPC_TPREL:
7841     case elfcpp::R_POWERPC_DTPREL:
7842       if (size == 64)
7843         Reloc::addr64(view, value);
7844       else
7845         status = Reloc::addr32(view, value, overflow);
7846       break;
7847
7848     case elfcpp::R_PPC64_UADDR64:
7849       Reloc::addr64_u(view, value);
7850       break;
7851
7852     case elfcpp::R_POWERPC_ADDR32:
7853       status = Reloc::addr32(view, value, overflow);
7854       break;
7855
7856     case elfcpp::R_POWERPC_REL32:
7857     case elfcpp::R_POWERPC_UADDR32:
7858       status = Reloc::addr32_u(view, value, overflow);
7859       break;
7860
7861     case elfcpp::R_POWERPC_ADDR24:
7862     case elfcpp::R_POWERPC_REL24:
7863     case elfcpp::R_PPC_PLTREL24:
7864     case elfcpp::R_PPC_LOCAL24PC:
7865       status = Reloc::addr24(view, value, overflow);
7866       break;
7867
7868     case elfcpp::R_POWERPC_GOT_DTPREL16:
7869     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7870     case elfcpp::R_POWERPC_GOT_TPREL16:
7871     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7872       if (size == 64)
7873         {
7874           // On ppc64 these are all ds form
7875           maybe_dq_reloc = true;
7876           break;
7877         }
7878     case elfcpp::R_POWERPC_ADDR16:
7879     case elfcpp::R_POWERPC_REL16:
7880     case elfcpp::R_PPC64_TOC16:
7881     case elfcpp::R_POWERPC_GOT16:
7882     case elfcpp::R_POWERPC_SECTOFF:
7883     case elfcpp::R_POWERPC_TPREL16:
7884     case elfcpp::R_POWERPC_DTPREL16:
7885     case elfcpp::R_POWERPC_GOT_TLSGD16:
7886     case elfcpp::R_POWERPC_GOT_TLSLD16:
7887     case elfcpp::R_POWERPC_ADDR16_LO:
7888     case elfcpp::R_POWERPC_REL16_LO:
7889     case elfcpp::R_PPC64_TOC16_LO:
7890     case elfcpp::R_POWERPC_GOT16_LO:
7891     case elfcpp::R_POWERPC_SECTOFF_LO:
7892     case elfcpp::R_POWERPC_TPREL16_LO:
7893     case elfcpp::R_POWERPC_DTPREL16_LO:
7894     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7895     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7896       if (size == 64)
7897         status = Reloc::addr16(view, value, overflow);
7898       else
7899         maybe_dq_reloc = true;
7900       break;
7901
7902     case elfcpp::R_POWERPC_UADDR16:
7903       status = Reloc::addr16_u(view, value, overflow);
7904       break;
7905
7906     case elfcpp::R_PPC64_ADDR16_HIGH:
7907     case elfcpp::R_PPC64_TPREL16_HIGH:
7908     case elfcpp::R_PPC64_DTPREL16_HIGH:
7909       if (size == 32)
7910         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7911         goto unsupp;
7912     case elfcpp::R_POWERPC_ADDR16_HI:
7913     case elfcpp::R_POWERPC_REL16_HI:
7914     case elfcpp::R_PPC64_TOC16_HI:
7915     case elfcpp::R_POWERPC_GOT16_HI:
7916     case elfcpp::R_POWERPC_SECTOFF_HI:
7917     case elfcpp::R_POWERPC_TPREL16_HI:
7918     case elfcpp::R_POWERPC_DTPREL16_HI:
7919     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7920     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7921     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7922     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7923       Reloc::addr16_hi(view, value);
7924       break;
7925
7926     case elfcpp::R_PPC64_ADDR16_HIGHA:
7927     case elfcpp::R_PPC64_TPREL16_HIGHA:
7928     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7929       if (size == 32)
7930         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7931         goto unsupp;
7932     case elfcpp::R_POWERPC_ADDR16_HA:
7933     case elfcpp::R_POWERPC_REL16_HA:
7934     case elfcpp::R_PPC64_TOC16_HA:
7935     case elfcpp::R_POWERPC_GOT16_HA:
7936     case elfcpp::R_POWERPC_SECTOFF_HA:
7937     case elfcpp::R_POWERPC_TPREL16_HA:
7938     case elfcpp::R_POWERPC_DTPREL16_HA:
7939     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7940     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7941     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7942     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7943       Reloc::addr16_ha(view, value);
7944       break;
7945
7946     case elfcpp::R_POWERPC_REL16DX_HA:
7947       status = Reloc::addr16dx_ha(view, value, overflow);
7948       break;
7949
7950     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7951       if (size == 32)
7952         // R_PPC_EMB_NADDR16_LO
7953         goto unsupp;
7954     case elfcpp::R_PPC64_ADDR16_HIGHER:
7955     case elfcpp::R_PPC64_TPREL16_HIGHER:
7956       Reloc::addr16_hi2(view, value);
7957       break;
7958
7959     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7960       if (size == 32)
7961         // R_PPC_EMB_NADDR16_HI
7962         goto unsupp;
7963     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7964     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7965       Reloc::addr16_ha2(view, value);
7966       break;
7967
7968     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7969       if (size == 32)
7970         // R_PPC_EMB_NADDR16_HA
7971         goto unsupp;
7972     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7973     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7974       Reloc::addr16_hi3(view, value);
7975       break;
7976
7977     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7978       if (size == 32)
7979         // R_PPC_EMB_SDAI16
7980         goto unsupp;
7981     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7982     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7983       Reloc::addr16_ha3(view, value);
7984       break;
7985
7986     case elfcpp::R_PPC64_DTPREL16_DS:
7987     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7988       if (size == 32)
7989         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7990         goto unsupp;
7991     case elfcpp::R_PPC64_TPREL16_DS:
7992     case elfcpp::R_PPC64_TPREL16_LO_DS:
7993       if (size == 32)
7994         // R_PPC_TLSGD, R_PPC_TLSLD
7995         break;
7996     case elfcpp::R_PPC64_ADDR16_DS:
7997     case elfcpp::R_PPC64_ADDR16_LO_DS:
7998     case elfcpp::R_PPC64_TOC16_DS:
7999     case elfcpp::R_PPC64_TOC16_LO_DS:
8000     case elfcpp::R_PPC64_GOT16_DS:
8001     case elfcpp::R_PPC64_GOT16_LO_DS:
8002     case elfcpp::R_PPC64_SECTOFF_DS:
8003     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8004       maybe_dq_reloc = true;
8005       break;
8006
8007     case elfcpp::R_POWERPC_ADDR14:
8008     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8009     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8010     case elfcpp::R_POWERPC_REL14:
8011     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8012     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8013       status = Reloc::addr14(view, value, overflow);
8014       break;
8015
8016     case elfcpp::R_POWERPC_COPY:
8017     case elfcpp::R_POWERPC_GLOB_DAT:
8018     case elfcpp::R_POWERPC_JMP_SLOT:
8019     case elfcpp::R_POWERPC_RELATIVE:
8020     case elfcpp::R_POWERPC_DTPMOD:
8021     case elfcpp::R_PPC64_JMP_IREL:
8022     case elfcpp::R_POWERPC_IRELATIVE:
8023       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8024                              _("unexpected reloc %u in object file"),
8025                              r_type);
8026       break;
8027
8028     case elfcpp::R_PPC_EMB_SDA21:
8029       if (size == 32)
8030         goto unsupp;
8031       else
8032         {
8033           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8034         }
8035       break;
8036
8037     case elfcpp::R_PPC_EMB_SDA2I16:
8038     case elfcpp::R_PPC_EMB_SDA2REL:
8039       if (size == 32)
8040         goto unsupp;
8041       // R_PPC64_TLSGD, R_PPC64_TLSLD
8042       break;
8043
8044     case elfcpp::R_POWERPC_PLT32:
8045     case elfcpp::R_POWERPC_PLTREL32:
8046     case elfcpp::R_POWERPC_PLT16_LO:
8047     case elfcpp::R_POWERPC_PLT16_HI:
8048     case elfcpp::R_POWERPC_PLT16_HA:
8049     case elfcpp::R_PPC_SDAREL16:
8050     case elfcpp::R_POWERPC_ADDR30:
8051     case elfcpp::R_PPC64_PLT64:
8052     case elfcpp::R_PPC64_PLTREL64:
8053     case elfcpp::R_PPC64_PLTGOT16:
8054     case elfcpp::R_PPC64_PLTGOT16_LO:
8055     case elfcpp::R_PPC64_PLTGOT16_HI:
8056     case elfcpp::R_PPC64_PLTGOT16_HA:
8057     case elfcpp::R_PPC64_PLT16_LO_DS:
8058     case elfcpp::R_PPC64_PLTGOT16_DS:
8059     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8060     case elfcpp::R_PPC_EMB_RELSDA:
8061     case elfcpp::R_PPC_TOC16:
8062     default:
8063     unsupp:
8064       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8065                              _("unsupported reloc %u"),
8066                              r_type);
8067       break;
8068     }
8069
8070   if (maybe_dq_reloc)
8071     {
8072       if (insn == 0)
8073         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8074
8075       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8076           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8077               && (insn & 3) == 1))
8078         status = Reloc::addr16_dq(view, value, overflow);
8079       else if (size == 64
8080                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8081                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8082                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8083                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8084         status = Reloc::addr16_ds(view, value, overflow);
8085       else
8086         status = Reloc::addr16(view, value, overflow);
8087     }
8088
8089   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8090       && (has_stub_value
8091           || !(gsym != NULL
8092                && gsym->is_undefined()
8093                && is_branch_reloc(r_type))))
8094     {
8095       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8096                              _("relocation overflow"));
8097       if (has_stub_value)
8098         gold_info(_("try relinking with a smaller --stub-group-size"));
8099     }
8100
8101   return true;
8102 }
8103
8104 // Relocate section data.
8105
8106 template<int size, bool big_endian>
8107 void
8108 Target_powerpc<size, big_endian>::relocate_section(
8109     const Relocate_info<size, big_endian>* relinfo,
8110     unsigned int sh_type,
8111     const unsigned char* prelocs,
8112     size_t reloc_count,
8113     Output_section* output_section,
8114     bool needs_special_offset_handling,
8115     unsigned char* view,
8116     Address address,
8117     section_size_type view_size,
8118     const Reloc_symbol_changes* reloc_symbol_changes)
8119 {
8120   typedef Target_powerpc<size, big_endian> Powerpc;
8121   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8122   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8123     Powerpc_comdat_behavior;
8124
8125   gold_assert(sh_type == elfcpp::SHT_RELA);
8126
8127   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8128                          Powerpc_relocate, Powerpc_comdat_behavior>(
8129     relinfo,
8130     this,
8131     prelocs,
8132     reloc_count,
8133     output_section,
8134     needs_special_offset_handling,
8135     view,
8136     address,
8137     view_size,
8138     reloc_symbol_changes);
8139 }
8140
8141 class Powerpc_scan_relocatable_reloc
8142 {
8143 public:
8144   // Return the strategy to use for a local symbol which is not a
8145   // section symbol, given the relocation type.
8146   inline Relocatable_relocs::Reloc_strategy
8147   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8148   {
8149     if (r_type == 0 && r_sym == 0)
8150       return Relocatable_relocs::RELOC_DISCARD;
8151     return Relocatable_relocs::RELOC_COPY;
8152   }
8153
8154   // Return the strategy to use for a local symbol which is a section
8155   // symbol, given the relocation type.
8156   inline Relocatable_relocs::Reloc_strategy
8157   local_section_strategy(unsigned int, Relobj*)
8158   {
8159     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8160   }
8161
8162   // Return the strategy to use for a global symbol, given the
8163   // relocation type, the object, and the symbol index.
8164   inline Relocatable_relocs::Reloc_strategy
8165   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8166   {
8167     if (r_type == elfcpp::R_PPC_PLTREL24)
8168       return Relocatable_relocs::RELOC_SPECIAL;
8169     return Relocatable_relocs::RELOC_COPY;
8170   }
8171 };
8172
8173 // Scan the relocs during a relocatable link.
8174
8175 template<int size, bool big_endian>
8176 void
8177 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8178     Symbol_table* symtab,
8179     Layout* layout,
8180     Sized_relobj_file<size, big_endian>* object,
8181     unsigned int data_shndx,
8182     unsigned int sh_type,
8183     const unsigned char* prelocs,
8184     size_t reloc_count,
8185     Output_section* output_section,
8186     bool needs_special_offset_handling,
8187     size_t local_symbol_count,
8188     const unsigned char* plocal_symbols,
8189     Relocatable_relocs* rr)
8190 {
8191   gold_assert(sh_type == elfcpp::SHT_RELA);
8192
8193   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8194                                 Powerpc_scan_relocatable_reloc>(
8195     symtab,
8196     layout,
8197     object,
8198     data_shndx,
8199     prelocs,
8200     reloc_count,
8201     output_section,
8202     needs_special_offset_handling,
8203     local_symbol_count,
8204     plocal_symbols,
8205     rr);
8206 }
8207
8208 // Emit relocations for a section.
8209 // This is a modified version of the function by the same name in
8210 // target-reloc.h.  Using relocate_special_relocatable for
8211 // R_PPC_PLTREL24 would require duplication of the entire body of the
8212 // loop, so we may as well duplicate the whole thing.
8213
8214 template<int size, bool big_endian>
8215 void
8216 Target_powerpc<size, big_endian>::relocate_relocs(
8217     const Relocate_info<size, big_endian>* relinfo,
8218     unsigned int sh_type,
8219     const unsigned char* prelocs,
8220     size_t reloc_count,
8221     Output_section* output_section,
8222     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8223     const Relocatable_relocs* rr,
8224     unsigned char*,
8225     Address view_address,
8226     section_size_type,
8227     unsigned char* reloc_view,
8228     section_size_type reloc_view_size)
8229 {
8230   gold_assert(sh_type == elfcpp::SHT_RELA);
8231
8232   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8233     Reltype;
8234   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8235     Reltype_write;
8236   const int reloc_size
8237     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8238
8239   Powerpc_relobj<size, big_endian>* const object
8240     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8241   const unsigned int local_count = object->local_symbol_count();
8242   unsigned int got2_shndx = object->got2_shndx();
8243   Address got2_addend = 0;
8244   if (got2_shndx != 0)
8245     {
8246       got2_addend = object->get_output_section_offset(got2_shndx);
8247       gold_assert(got2_addend != invalid_address);
8248     }
8249
8250   unsigned char* pwrite = reloc_view;
8251   bool zap_next = false;
8252   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8253     {
8254       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8255       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8256         continue;
8257
8258       Reltype reloc(prelocs);
8259       Reltype_write reloc_write(pwrite);
8260
8261       Address offset = reloc.get_r_offset();
8262       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8263       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8264       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8265       const unsigned int orig_r_sym = r_sym;
8266       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8267         = reloc.get_r_addend();
8268       const Symbol* gsym = NULL;
8269
8270       if (zap_next)
8271         {
8272           // We could arrange to discard these and other relocs for
8273           // tls optimised sequences in the strategy methods, but for
8274           // now do as BFD ld does.
8275           r_type = elfcpp::R_POWERPC_NONE;
8276           zap_next = false;
8277         }
8278
8279       // Get the new symbol index.
8280       Output_section* os = NULL;
8281       if (r_sym < local_count)
8282         {
8283           switch (strategy)
8284             {
8285             case Relocatable_relocs::RELOC_COPY:
8286             case Relocatable_relocs::RELOC_SPECIAL:
8287               if (r_sym != 0)
8288                 {
8289                   r_sym = object->symtab_index(r_sym);
8290                   gold_assert(r_sym != -1U);
8291                 }
8292               break;
8293
8294             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8295               {
8296                 // We are adjusting a section symbol.  We need to find
8297                 // the symbol table index of the section symbol for
8298                 // the output section corresponding to input section
8299                 // in which this symbol is defined.
8300                 gold_assert(r_sym < local_count);
8301                 bool is_ordinary;
8302                 unsigned int shndx =
8303                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8304                 gold_assert(is_ordinary);
8305                 os = object->output_section(shndx);
8306                 gold_assert(os != NULL);
8307                 gold_assert(os->needs_symtab_index());
8308                 r_sym = os->symtab_index();
8309               }
8310               break;
8311
8312             default:
8313               gold_unreachable();
8314             }
8315         }
8316       else
8317         {
8318           gsym = object->global_symbol(r_sym);
8319           gold_assert(gsym != NULL);
8320           if (gsym->is_forwarder())
8321             gsym = relinfo->symtab->resolve_forwards(gsym);
8322
8323           gold_assert(gsym->has_symtab_index());
8324           r_sym = gsym->symtab_index();
8325         }
8326
8327       // Get the new offset--the location in the output section where
8328       // this relocation should be applied.
8329       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8330         offset += offset_in_output_section;
8331       else
8332         {
8333           section_offset_type sot_offset =
8334             convert_types<section_offset_type, Address>(offset);
8335           section_offset_type new_sot_offset =
8336             output_section->output_offset(object, relinfo->data_shndx,
8337                                           sot_offset);
8338           gold_assert(new_sot_offset != -1);
8339           offset = new_sot_offset;
8340         }
8341
8342       // In an object file, r_offset is an offset within the section.
8343       // In an executable or dynamic object, generated by
8344       // --emit-relocs, r_offset is an absolute address.
8345       if (!parameters->options().relocatable())
8346         {
8347           offset += view_address;
8348           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8349             offset -= offset_in_output_section;
8350         }
8351
8352       // Handle the reloc addend based on the strategy.
8353       if (strategy == Relocatable_relocs::RELOC_COPY)
8354         ;
8355       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8356         {
8357           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8358           gold_assert(os != NULL);
8359           addend = psymval->value(object, addend) - os->address();
8360         }
8361       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8362         {
8363           if (addend >= 32768)
8364             addend += got2_addend;
8365         }
8366       else
8367         gold_unreachable();
8368
8369       if (!parameters->options().relocatable())
8370         {
8371           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8372               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8373               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8374               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8375             {
8376               // First instruction of a global dynamic sequence,
8377               // arg setup insn.
8378               const bool final = gsym == NULL || gsym->final_value_is_known();
8379               switch (this->optimize_tls_gd(final))
8380                 {
8381                 case tls::TLSOPT_TO_IE:
8382                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8383                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8384                   break;
8385                 case tls::TLSOPT_TO_LE:
8386                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8387                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8388                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8389                   else
8390                     {
8391                       r_type = elfcpp::R_POWERPC_NONE;
8392                       offset -= 2 * big_endian;
8393                     }
8394                   break;
8395                 default:
8396                   break;
8397                 }
8398             }
8399           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8400                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8401                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8402                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8403             {
8404               // First instruction of a local dynamic sequence,
8405               // arg setup insn.
8406               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8407                 {
8408                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8409                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8410                     {
8411                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8412                       const Output_section* os = relinfo->layout->tls_segment()
8413                         ->first_section();
8414                       gold_assert(os != NULL);
8415                       gold_assert(os->needs_symtab_index());
8416                       r_sym = os->symtab_index();
8417                       addend = dtp_offset;
8418                     }
8419                   else
8420                     {
8421                       r_type = elfcpp::R_POWERPC_NONE;
8422                       offset -= 2 * big_endian;
8423                     }
8424                 }
8425             }
8426           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8427                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8428                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8429                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8430             {
8431               // First instruction of initial exec sequence.
8432               const bool final = gsym == NULL || gsym->final_value_is_known();
8433               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8434                 {
8435                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8436                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8437                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8438                   else
8439                     {
8440                       r_type = elfcpp::R_POWERPC_NONE;
8441                       offset -= 2 * big_endian;
8442                     }
8443                 }
8444             }
8445           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8446                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8447             {
8448               // Second instruction of a global dynamic sequence,
8449               // the __tls_get_addr call
8450               const bool final = gsym == NULL || gsym->final_value_is_known();
8451               switch (this->optimize_tls_gd(final))
8452                 {
8453                 case tls::TLSOPT_TO_IE:
8454                   r_type = elfcpp::R_POWERPC_NONE;
8455                   zap_next = true;
8456                   break;
8457                 case tls::TLSOPT_TO_LE:
8458                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8459                   offset += 2 * big_endian;
8460                   zap_next = true;
8461                   break;
8462                 default:
8463                   break;
8464                 }
8465             }
8466           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8467                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8468             {
8469               // Second instruction of a local dynamic sequence,
8470               // the __tls_get_addr call
8471               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8472                 {
8473                   const Output_section* os = relinfo->layout->tls_segment()
8474                     ->first_section();
8475                   gold_assert(os != NULL);
8476                   gold_assert(os->needs_symtab_index());
8477                   r_sym = os->symtab_index();
8478                   addend = dtp_offset;
8479                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8480                   offset += 2 * big_endian;
8481                   zap_next = true;
8482                 }
8483             }
8484           else if (r_type == elfcpp::R_POWERPC_TLS)
8485             {
8486               // Second instruction of an initial exec sequence
8487               const bool final = gsym == NULL || gsym->final_value_is_known();
8488               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8489                 {
8490                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8491                   offset += 2 * big_endian;
8492                 }
8493             }
8494         }
8495
8496       reloc_write.put_r_offset(offset);
8497       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8498       reloc_write.put_r_addend(addend);
8499
8500       pwrite += reloc_size;
8501     }
8502
8503   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8504               == reloc_view_size);
8505 }
8506
8507 // Return the value to use for a dynamic symbol which requires special
8508 // treatment.  This is how we support equality comparisons of function
8509 // pointers across shared library boundaries, as described in the
8510 // processor specific ABI supplement.
8511
8512 template<int size, bool big_endian>
8513 uint64_t
8514 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8515 {
8516   if (size == 32)
8517     {
8518       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8519       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8520            p != this->stub_tables_.end();
8521            ++p)
8522         {
8523           Address off = (*p)->find_plt_call_entry(gsym);
8524           if (off != invalid_address)
8525             return (*p)->stub_address() + off;
8526         }
8527     }
8528   else if (this->abiversion() >= 2)
8529     {
8530       Address off = this->glink_section()->find_global_entry(gsym);
8531       if (off != invalid_address)
8532         return this->glink_section()->global_entry_address() + off;
8533     }
8534   gold_unreachable();
8535 }
8536
8537 // Return the PLT address to use for a local symbol.
8538 template<int size, bool big_endian>
8539 uint64_t
8540 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8541     const Relobj* object,
8542     unsigned int symndx) const
8543 {
8544   if (size == 32)
8545     {
8546       const Sized_relobj<size, big_endian>* relobj
8547         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8548       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8549            p != this->stub_tables_.end();
8550            ++p)
8551         {
8552           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8553                                                   symndx);
8554           if (off != invalid_address)
8555             return (*p)->stub_address() + off;
8556         }
8557     }
8558   gold_unreachable();
8559 }
8560
8561 // Return the PLT address to use for a global symbol.
8562 template<int size, bool big_endian>
8563 uint64_t
8564 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8565     const Symbol* gsym) const
8566 {
8567   if (size == 32)
8568     {
8569       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8570            p != this->stub_tables_.end();
8571            ++p)
8572         {
8573           Address off = (*p)->find_plt_call_entry(gsym);
8574           if (off != invalid_address)
8575             return (*p)->stub_address() + off;
8576         }
8577     }
8578   else if (this->abiversion() >= 2)
8579     {
8580       Address off = this->glink_section()->find_global_entry(gsym);
8581       if (off != invalid_address)
8582         return this->glink_section()->global_entry_address() + off;
8583     }
8584   gold_unreachable();
8585 }
8586
8587 // Return the offset to use for the GOT_INDX'th got entry which is
8588 // for a local tls symbol specified by OBJECT, SYMNDX.
8589 template<int size, bool big_endian>
8590 int64_t
8591 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8592     const Relobj* object,
8593     unsigned int symndx,
8594     unsigned int got_indx) const
8595 {
8596   const Powerpc_relobj<size, big_endian>* ppc_object
8597     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8598   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8599     {
8600       for (Got_type got_type = GOT_TYPE_TLSGD;
8601            got_type <= GOT_TYPE_TPREL;
8602            got_type = Got_type(got_type + 1))
8603         if (ppc_object->local_has_got_offset(symndx, got_type))
8604           {
8605             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8606             if (got_type == GOT_TYPE_TLSGD)
8607               off += size / 8;
8608             if (off == got_indx * (size / 8))
8609               {
8610                 if (got_type == GOT_TYPE_TPREL)
8611                   return -tp_offset;
8612                 else
8613                   return -dtp_offset;
8614               }
8615           }
8616     }
8617   gold_unreachable();
8618 }
8619
8620 // Return the offset to use for the GOT_INDX'th got entry which is
8621 // for global tls symbol GSYM.
8622 template<int size, bool big_endian>
8623 int64_t
8624 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8625     Symbol* gsym,
8626     unsigned int got_indx) const
8627 {
8628   if (gsym->type() == elfcpp::STT_TLS)
8629     {
8630       for (Got_type got_type = GOT_TYPE_TLSGD;
8631            got_type <= GOT_TYPE_TPREL;
8632            got_type = Got_type(got_type + 1))
8633         if (gsym->has_got_offset(got_type))
8634           {
8635             unsigned int off = gsym->got_offset(got_type);
8636             if (got_type == GOT_TYPE_TLSGD)
8637               off += size / 8;
8638             if (off == got_indx * (size / 8))
8639               {
8640                 if (got_type == GOT_TYPE_TPREL)
8641                   return -tp_offset;
8642                 else
8643                   return -dtp_offset;
8644               }
8645           }
8646     }
8647   gold_unreachable();
8648 }
8649
8650 // The selector for powerpc object files.
8651
8652 template<int size, bool big_endian>
8653 class Target_selector_powerpc : public Target_selector
8654 {
8655 public:
8656   Target_selector_powerpc()
8657     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8658                       size, big_endian,
8659                       (size == 64
8660                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8661                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8662                       (size == 64
8663                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8664                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8665   { }
8666
8667   virtual Target*
8668   do_instantiate_target()
8669   { return new Target_powerpc<size, big_endian>(); }
8670 };
8671
8672 Target_selector_powerpc<32, true> target_selector_ppc32;
8673 Target_selector_powerpc<32, false> target_selector_ppc32le;
8674 Target_selector_powerpc<64, true> target_selector_ppc64;
8675 Target_selector_powerpc<64, false> target_selector_ppc64le;
8676
8677 // Instantiate these constants for -O0
8678 template<int size, bool big_endian>
8679 const int Output_data_glink<size, big_endian>::pltresolve_size;
8680 template<int size, bool big_endian>
8681 const typename Output_data_glink<size, big_endian>::Address
8682   Output_data_glink<size, big_endian>::invalid_address;
8683 template<int size, bool big_endian>
8684 const typename Stub_table<size, big_endian>::Address
8685   Stub_table<size, big_endian>::invalid_address;
8686 template<int size, bool big_endian>
8687 const typename Target_powerpc<size, big_endian>::Address
8688   Target_powerpc<size, big_endian>::invalid_address;
8689
8690 } // End anonymous namespace.